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 ABSTRACT 

Artificial intelligence (AI) is revolutionizing various systems within the 

Architecture, Engineering, Construction, and Facilities Management (AEC/FM) 

domains. The rapid advancements in computational methods, engineering knowledge, 

and sensor technologies is transforming the current construction practices that are 

heavily reliant on human intervention. Therefore, visionaries are foreseeing that future 

construction works will be collaborated by humans and machines which will lead to 

unprecedented socio-economic outcomes in the safety, health, and productivity of 

construction workers. This Dissertation aims to advance the fundamental knowledge for 

effectively implementing human-machine collaboration in the construction site. 

Particularly, the ultimate objective of this Dissertation is to design AI-based autonomous 

systems for continuously monitoring workplace safety and productivity. Toward this 

goal, firstly, a content retrieval scheme is designed to analyze a large volume of 

construction imagery at a rapid speed. Next, an object recognition framework is 

developed to detect construction-related objects from digital images or videos in real-

time. By further extending this framework, an automated safety monitoring system is 

subsequently designed to verify workers’ compliance with the requirements related to 

personal protective equipment (PPE). Next, an AI-enabled image enhancement 

technique is developed to improve the quality of visual data to achieve better 

performance from the detection models in the preceding steps. Finally, an active vision 

system is proposed that enables an autonomous camera to intelligently navigates through 

a jobsite to monitor objects of interest for their safety and productivity. 
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CHAPTER I  

INTRODUCTION  

 

The landscape of future construction work will be significantly different from 

what we observe now. The rapid advancement in computational techniques, engineering 

knowledge, and sensor technologies is revolutionizing the current practices that are 

heavily reliant on manual work and direct human intervention. Inspired by this vision of 

the future of work, organizations engaged in frontier-level scientific research have 

predicted that the next generation of construction work will involve many levels of 

collaboration between humans and machines (NSF 2020; Autodesk 2020). While high-

risk or routine tasks will be delegated to autonomous robots, for the cognitively 

demanding tasks, robots will work hand in hand with the human to maximize the 

productivity and quality of work, while minimizing project cost, duration, and risks. To 

achieve this goal, many researchers and practitioners are relying on CV, AI, and ML due 

to their remarkable success in numerous real-world applications across various domains. 

From this perspective, the research presented in this Dissertation aims to pave the 

ground for new scientific discoveries and lay the theoretical foundation of human-

centered algorithms powered by CV and AI/ML to autonomously monitor the risks and 

productivity in construction sites through self-governing machines. Achieving this goal, 

however, is not trivial and requires a rigorous and systematic multi-faceted study to 

integrate multiple processes and methods. Therefore, this Dissertation follows a bottom-

up approach starting from the most fundamental procedures to the most advanced 
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techniques. Chapters II and III cover the state-of-the-art and theoretical background of 

the most relevant AI/ML techniques used in this research. In Chapter IV, a content 

retrieval scheme is designed to analyze a large volume of construction imagery at a fast 

pace. Chapter V describes an object recognition framework designed to detect 

construction-related objects from digital imagery (photos and videos) in real-time. By 

further expanding upon this framework in Chapter VI, an automated safety monitoring 

system is designed to verify workers’ compliance with the requirements related to PPE. 

In Chapter VII, an AI-enabled image enhancement technique is developed and evaluated 

to improve the quality of visual data in order to increase the performance of the 

previously developed detection models. Chapter VIII describes the details of an active 

vision system that allows a camera mounted on a UAV to autonomously navigate in a 

construction site to monitor the safety and productivity of the crew. Finally, Chapter IX 

provides an abridged summary along with a discussion of future research opportunities. 

A detailed description of the background and motivation behind these 

applications is as follows. For an autonomous machine to work in collaboration with 

humans, within their physical proximity, it is necessary that the machine understands its 

surrounding in order to safely operate and accomplish the tasks delegated to it. In CV, 

the capacity to comprehend the surrounding is also known as scene understanding which 

includes the ability of an intelligent machine to recognize key objects in a complex scene 

followed by analyzing the contextual relationships among them (Li et al. 2009). For a 

vision-based autonomous system, an essential technical step toward achieving this goal 

is to have the ability to analyze visual data in real-time. Therefore, as the most 
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fundamental step, this Dissertation aims to build and validate AI models that can process 

digital contents at a fast pace and recognize the vital objects within the scene. Apart 

from building the foundation of an autonomous machine with scene understanding, this 

AI-enabled image analysis tool has several real-world implications, including content 

retrieval and safety monitoring, that are discussed in the following paragraphs. 

Visual data, such as images or videos, is one of the most common types of media 

to document construction fieldwork. Photos and videos are frequently used to prepare 

and document progress reports, RFI, safety training, productivity monitoring, and claims 

and litigation. Recently, the ubiquity of digital cameras, mobile devices (e.g., 

smartphones) with internet connectivity, and UAVs (a.k.a., drones) equipped with 

onboard cameras has exponentially increased the volume of visual data collected on a 

daily basis. If fully utilized, this big data can be readily used to increase the accuracy and 

timeliness of decision-making in construction. However, captured images and videos 

rarely contain rich metadata other than date, time, and (in some cases) geolocation 

information. Therefore, retrieving a set of specific visual contents from a large volume 

of image data (a.k.a., content retrieval) may turn into a non-trivial and resource-intensive 

task. A potential solution to this challenge is to create a semantic structure for the 

collection of images by using metadata tags that among others, describe the content (e.g., 

objects, scenes) and appearance (e.g., color, context). In pattern recognition and ML, 

automated generation of metadata tags for visual data using AI models is known as 

image/video classification. The majority of research in this direction has focused on 

recognizing everyday objects (e.g., flower, umbrella) and animals (e.g., cat, dog) in 
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digital images (Krizhevsky et al. 2012; Simonyan et al. 2014). In the construction 

domain, previous studies have attempted at recognizing construction equipment, e.g., 

excavators (Zou et al. 2007), and materials (Brilakis et al. 2008) in digital imagery. 

However, these studies either focused on a specific application or employed a time-

consuming analysis tool, rendering the content retrieval for large image collections for 

general applications futile. In contrast, this Dissertation creates and presents a large-scale 

image dataset, Pictor-v1, containing >2,000 images where each image is tagged with 

keywords based on the presence of general construction-related objects (e.g., building, 

equipment, worker). Next, a DL model, particularly, a CNN, is built and trained to 

perform image classification in real-time. 

While image classification assigns a single label or multiple labels for the entire 

image, object detection localizes objects within the image and assigns a label for each of 

the detected objects. Compared to image classification, object detection provides more 

semantically rich information (e.g., the number of objects belonging to a particular class, 

and the spatial relationships among them) which can be utilized for more refined content 

retrieval. Furthermore, object detection constitutes the basis for scene understanding by 

providing distinctive information (e.g., type, color, position) about individual objects in 

the scene. To conduct object detection in this Dissertation, a second dataset, Pictor-v2 

(with ~2,500 images), is created that contains instance-level annotations of construction-

related objects (e.g., building, equipment, worker). Next, DL-based object detection 

models are examined to perform real-time detection of these objects. Since construction 

sites are dynamic and complex, generally, the images captured from these sites are 
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visually diverse. Therefore, the performance of the above DL models is particularly 

scrutinized for different images under different visual conditions.  

The next element of the Dissertation is focused on one of the most crucial 

applications in construction, i.e., safety monitoring. According to the BLS, in 2016-17 

alone, the total number of fatal occupational injuries was the highest in construction 

compared to all other industries. During this period, a total of 991 fatal incidents (~19% 

of all the fatalities) were recorded (BLS 2019). Moreover, in 2017, 79,810 (~9% of total 

cases) non-fatal occupational injuries and illnesses occurred in construction which was 

also exorbitant (BLS 2019). Previous studies have found that many construction 

fatalities occur due to traumatic brain injuries (resulted from fall and electrocution) and 

collisions (resulted from struck by objects). Therefore, the U.S. OSHA requires that all 

workers properly use PPE at all times to prevent such accidents. The majority of 

previous studies in this area has used AI techniques to verify the use of only hard hats 

(Fang et al. 2018; Wu et al. 2019). Building upon past work, this Dissertation designs a 

more comprehensive framework that automatically monitors workers’ proper usage of 

multiple PPE in real-time. For the purpose of training and testing AI models, another 

dataset, Pictor-v3, containing ~1,500 annotated images and ~4,700 instances of workers 

wearing various combinations of PPE components, is also developed. 

Generally, vision-based algorithms (including object detection) perform 

extraordinarily better when the quality of the input image is high. For example, 

researchers have achieved remarkable improvement in recognizing human faces in 

everyday images, or retrieving biological information from medical images by using 
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higher quality images (Li et al. 2018; Trinh et al. 2014). However, since construction 

projects often take place in harsh environments, the ability to collect good quality and 

well-lit imagery may be limited, which in turn, can significantly lower the performance 

of DL-based object detection models. Therefore, this Dissertation also proposes an AI-

based image enhancement technique that particularly uses a GAN to increase the input 

image resolution for fast and reliable object detection.  

The previously mentioned methods for object detection and safety monitoring 

could not successfully perform the intended task if the object of interest is considerably 

occluded by another object in the scene, as viewed by the camera. In fact, occlusion is 

one of the most prevailing challenges to CV-based algorithms (Hoiem et al. 2011). For 

example, a previous study has found a significant drop in the performance of facial 

recognition when the face is partially occluded (Ekenel et al. 2009). In the context of this 

research, a good example is safety monitoring when a worker’s PPE requirement cannot 

be verified with high certainty due to the occlusion. A potential remedy to this problem 

is to revisit the construction site and capture more images from multiple viewing angles 

so that the worker appears adequately visible in the image. However, for a large active 

construction site with multiple active crews and moving equipment, it may not be 

feasible to set up, calibrate, and maintain multiple cameras to continuously collect 

occlusion-free images. Therefore, this Dissertation presents a smart active vision system 

that gives a UAV-mounted camera the ability to navigate the scene and operate 

autonomously in search of an optimal viewpoint from which sufficiently good and 

occlusion-free visual data can be captured to reliably verify workers’ safety 
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compliances. The camera mechanism is trained with RL and tested in both a simulated 

environment (feasibility testing) as well as a real-world setting (captured in a warehouse 

with 360-degree video) to validate the proposed method. This RL-based technique 

supports and promotes human-machine collaboration in construction sites by delegating 

the routine task of continuous monitoring of safety compliance to the autonomous 

robots, thus allowing workers and safety managers to dedicate time and effort to more 

cognitively demanding tasks such as high-level analysis and decision-making. 
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CHAPTER II  

STATE OF THE ART 

 

AI and Deep Learning 

Traditional ML algorithms require careful and meticulous engineering of features 

that might be only relevant to specific tasks and set of classes (Kolar et al. 2018). 

However, for content-rich construction images that cover a large visual field containing 

diverse and complex categories of objects in various ambient conditions (e.g., lighting, 

landscape), automatic feature extraction through DL is more practical. Particularly, 

CNN-based algorithms have gained more traction due to their ability to self-learn 

features from a given dataset without demanding exorbitant computational power (Kolar 

et al. 2018; LeCun et al. 1998). LeCun et al. (1998) proposed a precursor to the modern 

CNN algorithms which can recognize handwritten digits in an image. However, recent 

CNN models are now capable of classifying images into 1,000 different categories 

(Krizhevsky et al. 2012; Simonyan et al. 2014), or identifying 9,000 different object 

types in images (Redmon et al. 2017). Nonetheless, these models are limited to detecting 

only everyday objects (e.g., printer, umbrella, bicycle, dog). 

For object detection problems in CV, region-based CNN (a.k.a., R-CNN) 

(Girshick et al. 2014) is one of the most prevailing examples of state-of-the-art 

algorithms. Particularly, R-CNN uses selective search to identify RoI, followed by using 

CNN to extract features from each region, and finally applying SVM to classify the 

object in that region (Girshick 2015; Girshick et al. 2014). However, due to excessive 
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time and space requirements to run this algorithm, several faster variants of it, e.g., Fast 

R-CNN (Girshick 2015), and Faster R-CNN (Ren et al. 2017) have been also proposed. 

For example, Faster R-CNN comprises of RPN, which is a fully convolutional network 

for proposing ROIs, followed by the Fast R-CNN algorithm for performing final object 

detection (Ren et al. 2017). While R-CNN and Fast/Faster R-CNN output rectangular 

bounding boxes for each detected object, another variant of R-CNN, namely Mask R-

CNN (He et al. 2017), can output segmentation masks of irregular shapes. Particularly, 

Mask R-CNN has an extra branch to output the segmentation masks in addition to the 

existing branches of Faster R-CNN that output classification labels and bounding boxes 

(He et al. 2017). Another variant, R-FCN, eliminates the computationally extravagant 

fully connected layers in R-CNN and uses only the convolutional layers for faster yet 

accurate object detections (Dai et al. 2016). Unlike region proposal-based methods, 

YOLO (Redmon et al. 2016; Redmon et al. 2017, 2018) and SSD (Liu et al. 2016) 

algorithms combine the classification and localization tasks into one single neural 

network which significantly reduces the computational burden. According to a 

comparison of the performance of different algorithms performed by Liu et al. (2016), 

only the YOLO algorithm can perform detection in real-time and. Therefore, considering 

the ability of YOLO for fast yet accurate object detection, it is used in this Dissertation. 

Previous studies have shown that vision-based AI algorithms perform poorly if 

the quality of the input image is low. Therefore, many researchers have attempted to 

improve the quality of input images to achieve better performance from AI models. For 

example, researchers have achieved a 30% improvement in facial recognition by 
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deblurring low-quality photos (Li et al. 2018). Similarly, in medical imaging, high-

resolution imagery is desirable to retrieve vital biological, anatomical, physical, and 

metabolic information which might be difficult to catch in a low-resolution (noisy or 

blurry) image (Trinh et al. 2014). Another area where higher resolution images capture 

more crucial pieces of evidence for future investigations includes video surveillance 

(e.g., for public safety, traffic monitoring, military reconnaissance) (Kumar et al. 2016). 

From these motivations, there have been previous attempts at investigating ways to 

enhance image quality. For instance, an example-based method, that relies on training 

images, is applied to learn a general process to enlarge an image and restore missing 

pixels with rich and fine details based on the spatial contexts in the given low-resolution 

image (Freeman et al. 2002). To this end, DL-based methods have achieved remarkable 

performance in this task (Ledig et al. 2017). Particularly, past research has found that 

GAN is uniquely reliable in producing realistic and natural up-sampled images (Ledig et 

al. 2017). Therefore, in this Dissertation, a GAN-based method is designed and validated 

to enhance the resolution (quality) of an input image. 

AI/ML for Automation in Construction 

Within the construction domain, various studies have utilized AI/ML algorithms 

to automate the process of visual recognition in construction site imagery. For example, 

Chi et al. (2011) used NB, and NN classifiers to detect workers, loaders, and backhoes. 

Son et al. (2014) used a voting-based ensemble classifier combining several base 

classifiers, e.g., SVM, NN, NB, decision tree, logistic regression, and KNN, to identify 

construction materials (e.g., concrete, steel, and wood) in an image. Dimitrov et al. 
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(2014), and Han et al. (2015) used one-vs-all multi-class SVM to classify major 

construction materials (around 20 types).  

Recently, researchers in this domain have documented the use of CNN for visual 

recognition, however, primarily for construction safety. For examples, Kolar et al. 

(2018) used CNN to detect safety guardrails, Siddula et al. (2016) combined the GMM 

(Zivkovic 2004) with CNN to detect objects in roof construction, and Ding et al. (2018) 

integrated LSTM model (Hochreiter et al. 1997) with CNN to recognize unsafe behavior 

(e.g., climbing a ladder) of construction workers. For monitoring PPE compliance, most 

existing vision-based methods focus on identifying only hard hats. For example, Fang et 

al. (2018) used R-CNNs to detect if a worker is not wearing a hard hat. Wu et al. (2019) 

proposed an SSD-based algorithm to detect hard hats. Mneymneh et al. (2018) isolated 

moving workers (by detecting motion) in videos and identified if any hard hat was in or 

around the top area of a worker’s detection box. Similarly, Xie et al. (2018) used fully 

convolution-based algorithms to detect workers’ hard hats. However, to date, only a few 

studies have been directed at identifying multi-class PPE harnessing the power of CNN-

based DL algorithms. Among the scarce examples of multiple PPE detection, a 

commercially available software, named smartvid.io, applies an AI-driven algorithm to 

detect multiple PPE components (e.g., hard hat, safety vest, gloves, safety goggles, and 

steel toe shoes) (smartvid.io 2017). While existing work facilitates the detection of only 

the presence of PPE components, it is also valuable to recognize the color of the PPE 

components. For example, in construction sites, color-coding schemes are widely used to 

differentiate roles, trades, or access rights (Highways England 2016). Therefore, having 
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the ability to identify the color of PPE components can provide additional insights into 

the type of activities that are taking place in a particular location within the site, as well 

as monitoring site security and crew productivity. 

Outside the immediate domain of construction safety, Luo et al. (2018) proposed 

a method that uses R-CNN to detect 22 classes of construction-related objects and 

predict construction activities based on the spatial relevance between the detected 

objects. Kim et al. (2018) used R-FCN to detect different types of construction 

equipment. However, the majority of the aforementioned studies use object detection 

algorithms that are computationally intensive and require heavy processing power to 

perform analyses on high volumes of visual data. Therefore, there is also a need, within 

the construction domain, to investigate fast algorithms for performing object detection in 

real-time. Although previous studies (Ren et al. 2015) have defined “real-time” as 

processing at least 5 FPS, more recent studies (Redmon et al. 2016; Redmon et al. 2017) 

prefer higher FPS to be considered as real-time. At such a fast rate, detection of PPE as a 

standalone application or in conjunction with other construction-related objects (e.g., 

building, equipment) allows the identification of more complex and subtle 

spatiotemporal relationships that might not be possible to detect otherwise. For example, 

an employee, not wearing PPE while working in close proximity to heavy construction 

equipment (e.g., excavator), is exposed to a high risk of being struck by the equipment. 

To accurately track object movements in a live-streamed video and predict an imminent 

collision, it is essential to have an extremely fast algorithm that can repeatedly process 

videos frame-by-frame and provide feedback in real-time. Moreover, since a fast 
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algorithm is less computationally expensive, it will significantly reduce the upfront cost 

associated with securing and operating computational resources, allowing it to be 

launched on mobile devices and even on light-weight drones (Kyrkou et al. 2018). 

Problem Statement and Contributions to the Body of Knowledge 

The review of the literature highlights the limited number of studies that have 

systematically addressed the problem of recognizing common construction objects for 

general applications or detecting multiple PPE for verifying safety compliance. 

Moreover, current research in this area lacks a thorough investigation of crowdsourced 

image collection (in addition to web mining) to build training datasets for DL models. 

Furthermore, the tradeoff between detection speed and accuracy needs to be thoroughly 

examined since a faster model (i.e., YOLO) may pose weaknesses especially when 

tested under different visual conditions.  

For the particular task of PPE detection, since past work has primarily focused on 

a single PPE type (i.e., detecting only hard hats), it is necessary to develop a general 

framework for detecting multiple PPE components. However, detecting multiple PPE 

components in isolation may not paint a full picture of whether a worker is properly 

wearing those PPE components. Therefore, more work is needed to design algorithms 

that not only do detect PPE components but also recognize the contextual relationship 

between them and the worker and, then, use this information to verify compliance with 

PPE requirements, all in real-time. Furthermore, since the color of the PPE component is 

useful to be recognized, an integrated approach to simultaneously verify the PPE 

compliance and identify the color of the PPE components is also desirable. 
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Previous work indicates that the major challenges that hinder the performance of 

AI-based visual recognition models include low-quality images and occluded objects of 

interest. In the general domain, past studies have investigated various methods for 

improving image quality. However, it is necessary to examine those methods with 

construction imagery and verify the performance of AI models specifically developed 

for construction-related applications. Furthermore, to date, there is no study in the 

construction domain that investigates the use of an active vision camera to intelligently 

search for occlusion-free views of construction objects (e.g., workers). In summary, the 

primary contributions of this Dissertation are as follows: 

1. Develop large image datasets, through crowdsourcing and web mining, for 

various vision-based applications in the construction domain. 

2. Examine the performance of object detection models trained and tested on 

various subsets of crowdsourced and web mined images. 

3. Restructure the YOLO model to detect three common classes of construction-

related objects, namely building, equipment, and worker, in construction sites, 

and compare the performance of YOLO-v2 and YOLO-v3, two variants of the 

YOLO algorithm. 

4. Investigate the strengths and weaknesses of the YOLO model in detecting 

construction objects of different sizes and in environments with varying levels of 

crowdedness and lighting conditions and discuss potential ways to improve the 

performance of the YOLO model considering the revealed weaknesses. 
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5. Design YOLO-based algorithms to detect multiple PPE components (i.e., hard 

hat, safety vest), and verify workers’ compliance with PPE-related requirements 

in real-time. 

6. Develop algorithms to detect not only the presence of PPE on workers but also to 

recognize the color of the detected PPE component, simultaneously. 

7. Develop GAN models to enhance the quality of construction imagery and 

compare the performance of YOLO models on low-quality images and GAN-

improved images, for various construction-related applications. 

8. Design the underlying methods and algorithms for an active vision camera 

capable of autonomously searching for occlusion-free views of objects of interest 

(e.g., workers, forklift) in a construction site, train the AI model through RL, and 

evaluate the model by testing it in a simulated environment of a construction site 

and a real-world setting of a warehouse (captured with 360-degree video). 
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CHAPTER III  

THEORETICAL BACKGROUND 

 

Convolutional Neural Network (CNN) 

Similar to the traditional NN, CNN consists of a series of layers (i.e., input, 

hidden, and output layers). However, in CNN, the first few hidden layers are 

convolutional layers where convolution and pooling operations take place (LeCun et al. 

2015). Each convolution operation outputs a numerical value by applying a filter (i.e., a 

matrix of weights) to a sub-region of an image (Kolar et al. 2018). A sample convolution 

operation involving a 3×3 filter is shown in Figure 1(a). A pooling operation, on the 

other hand, is performed to merge semantically similar features into one, thus reducing 

the size of the image (a.k.a., sub-sampling) (LeCun et al. 2015). Figure 1(b) illustrates 

max-pooling, one of the most commonly used pooling operations, where a 2D image is 

divided into fixed-sized sub-regions (i.e., kernels) and the maximum value in each sub-

region is passed to the next layer. The remaining hidden layers are FC layers that are 

similar to traditional NN. Of note, while working with small training data, to prevent 

overfitting, some hidden units are often randomly turned off in a process called dropout 

(Hinton et al. 2012). 
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Figure 1. Example of (a) convolution operation performed with 3×3 filter and (b) 
max-pooling operation performed with a 2×2 filter. Reprinted with permission 
from Nath et al. (2019). 
 

Activation function 

The ReLU non-linear activation function is applied to the output of each hidden 

convolutional or FC layer to accelerate convergence (Krizhevsky et al. 2012). While the 

activation functions are the same at each hidden layer of single-label and multi-label 

classifier model, they are different at the output layer. For the single-label classifier 

model, the softmax activation function (Murphy 2012) (Equation 1) is used at the output 

layer, whereas for the multi-label classifier model, the Sigmoid activation function 

(Friedman et al. 2001) (Equation 2) is used. 

𝜎𝜎softmax(𝒛𝒛)𝑖𝑖 =
𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝐾𝐾
𝑗𝑗=1

  (1) 

𝜎𝜎sigmoid(𝑧𝑧𝑖𝑖) =
𝑒𝑒𝑧𝑧𝑖𝑖

𝑒𝑒𝑧𝑧𝑖𝑖 + 1
 (2) 

Here, 𝑧𝑧𝑖𝑖 is the output value of 𝑖𝑖th node in the output layer, and 𝒛𝒛 is the vector 

output of the output later, i.e., 𝒛𝒛 = {𝑧𝑧1, … 𝑧𝑧𝐾𝐾}. 
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Loss function 

For single-label classification, multi-class cross-entropy (Friedman et al. 2001) is used as 

a loss function. This loss function is defined by Equation 3. On the other hand, for multi-

label classification, the loss function is defined as the sum of binary cross-entropy (Buja 

et al. 2005) over all classes, as formulated in Equation 4. 

𝐿𝐿single_label(𝒚𝒚,𝒑𝒑) = −��𝑦𝑦𝑖𝑖,𝑐𝑐

𝑁𝑁𝑐𝑐

𝑐𝑐=1

log (𝑝𝑝𝑖𝑖,𝑐𝑐)
𝑁𝑁

𝑖𝑖=1

 (3) 

𝐿𝐿multi_label(𝒚𝒚,𝒑𝒑) = −���𝑦𝑦𝑖𝑖,𝑐𝑐log (𝑝𝑝𝑖𝑖,𝑐𝑐) − �1 − 𝑦𝑦𝑖𝑖,𝑐𝑐�log (1 − 𝑝𝑝𝑖𝑖,𝑐𝑐)�
𝑁𝑁𝑐𝑐

𝑐𝑐=1

𝑁𝑁

𝑖𝑖=1

 (4) 

Here, 𝑁𝑁 is the total number of samples, 𝑁𝑁𝑐𝑐 is the total number of classes, 𝑦𝑦𝑖𝑖,𝑐𝑐 and 

𝑝𝑝𝑖𝑖,𝑐𝑐 are the ground-truth label and predicted label, respectively, for the 𝑖𝑖th sample and 𝑐𝑐th class, 

and 𝒚𝒚 and 𝒑𝒑 are matrices containing all the ground-truth and predicted labels, respectively, i.e., 

𝒚𝒚 = [𝑦𝑦𝑖𝑖,𝑐𝑐] and 𝒑𝒑 = [𝑝𝑝𝑖𝑖,𝑐𝑐] for 𝑖𝑖 = 1,2, …𝑁𝑁, and 𝑐𝑐 = 1,2, …𝑁𝑁𝑐𝑐. To note, the ground-truth 

labels (𝑦𝑦𝑖𝑖,𝑐𝑐) are presented as binary numbers with the value of one (1) indicating that the sample 

belongs to the corresponding class, and zero (0) meaning that it does not belong to that class. 

You-Only-Look-Once (YOLO) 

A schematic diagram of the YOLO algorithm is shown in Figure 2. As shown in 

this Figure, YOLO initially divides the input image into a 𝑆𝑆 × 𝑆𝑆 grid and predicts 𝑀𝑀 

bounding boxes of different shapes (a.k.a., anchor boxes) for each grid cell, each defined 

by a (𝑁𝑁 + 5)-dimensional vector, where 𝑁𝑁 is the number of classes. The values 𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 

𝑡𝑡𝑤𝑤, and 𝑡𝑡ℎ are associated with x- and y-coordinates of the center, the width, and the 

height of the box, respectively. The value 𝑝𝑝0 (a.k.a., objectness score) represents the 
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probability that an object is present inside the bounding box. The remaining values are 𝑁𝑁 

conditional probabilities, 𝑃𝑃(𝐶𝐶𝑖𝑖|𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑐𝑐𝑡𝑡), indicating the probability of the object 

belonging to the class 𝐶𝐶𝑖𝑖 where 𝑖𝑖 = 1, . . ,𝑁𝑁, given that such object is present inside the 

box.  

 

Figure 2. Schematic diagram of the YOLO algorithm. Reprinted with permission 
from Nath et al. (2020). 
 

The architecture of the YOLO-v3 model is shown in Figure 3. This model 

consists of convolutional, residual, and output blocks. Particularly, it has three output 

layers to detect three different sizes of objects – large, medium, and small. 
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Figure 3. Architecture of the YOLO-v3 model. 
 

Generative Adversarial Network (GAN) 

A GAN model has two components, a generator 𝐺𝐺 and a discriminator 𝐷𝐷 

(Goodfellow et al. 2014). For the image quality enhancement problem, given a low 

quality or low-resolution image 𝐼𝐼𝐿𝐿, the objective of the generator 𝐺𝐺 is to generate the 

same image but with higher resolution and enhanced quality. This GAN-generated 

image is also called the super-resolved image (Ledig et al. 2017) and is denoted as 𝐼𝐼𝑆𝑆. 
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For each low-resolution image (𝐼𝐼𝐿𝐿) used to train the network, there is a ground-truth 

high quality counterpart image (𝐼𝐼𝐻𝐻). Given a 𝐼𝐼𝑆𝑆 (generated) or 𝐼𝐼𝐻𝐻 (real) image, the goal 

of the discriminator 𝐷𝐷 is to accurately distinguish between them.  

In a training scheme, known as adversarial training, 𝐺𝐺 and 𝐷𝐷 compete with one 

another to improve their performance (Goodfellow et al. 2014). In particular, during the 

training, 𝐺𝐺 aims to generate 𝐼𝐼𝑆𝑆 images similar to 𝐼𝐼𝐻𝐻 images so that 𝐷𝐷 fails to notice the 

differences between the two images. In contrast, 𝐷𝐷 tries to learn more subtle differences 

between 𝐼𝐼𝑆𝑆 and 𝐼𝐼𝐻𝐻 images so that 𝐺𝐺 cannot deceive it. From the perspective of game 

theory (Freund et al. 1996), this process constitutes a minimax game between two 

agents, 𝐺𝐺 and 𝐷𝐷, and the game settles when each agent achieves the minimum level of 

competency that is perceived as maximum by the other agent (Goodfellow et al. 2014). 

Upon successful training, it is expected that the discriminator 𝐷𝐷 can differentiate 𝐼𝐼𝑆𝑆 and 

𝐼𝐼𝐻𝐻 images with high accuracy. However, more importantly, the generator 𝐺𝐺 learns to 

generate high-quality 𝐼𝐼𝑆𝑆 images that are difficult to tell apart from the 𝐼𝐼𝐻𝐻 images, even 

by a high performing 𝐷𝐷. 

Transfer Learning 

For a particular dataset, a CNN model can be trained from scratch. However, to 

achieve best results, a large amount of training data coupled with the proper selection of 

optimal hyper-parameters (e.g., number of layers, number of nodes in each layer, filter 

size, number of epochs, learning rate, dropout) is required, which can make the training 

process extremely slow and time-consuming (Kolar et al. 2018). One way to overcome 

this challenge is to perform transfer learning, i.e., using a CNN model (e.g., GoogleNet, 
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AlexNet, VGG-16) pre-trained with a different but related dataset (a.k.a., source 

dataset), and partly re-trained with the desired dataset (a.k.a., target dataset). 

Particularly, transfer learning allows the model to remember high- and mid-level 

features (e.g., edge, shape, color) learned from the source dataset and apply these 

features (with minor adjustment) to effectively distinguish the classes in the target 

dataset (Oquab et al. 2014). Building upon previous studies that have found significantly 

better and consistent performance using transfer learning (Oquab et al. 2014; Shin et al. 

2016), for the image-level content retrieval, this Dissertation utilizes the VGG-16 

architecture, pre-trained on the ImageNet dataset (Simonyan et al. 2014). This model is 

particularly selected for its wide adaptation in various domains, consistent performance 

comparable to the state-of-the-art techniques (Simonyan et al. 2014), and manageable 

size (i.e., only 16 convolutional layers) that allow porting the model on embedded 

systems (e.g., smartphones, drones, autonomous vehicles, handheld smart devices) with 

limited computational power (Alippi et al. 2018). 

Reinforcement Learning (RL) 

RL, a branch of ML, is a trial-and-error method of learning behavior (i.e., what 

actions to take in which situations) through continuous interaction with the environment 

(Chollet 2018; Géron 2019; Sutton et al. 2018; Szepesvári 2010). Examples include but 

are not limited to Google’s AlphaGo learning to play a game named Go (Silver et al. 

2017; Silver et al. 2016), self-learning robots learning how to walk (Yang et al. 2020; 

Haarnoja et al. 2018), and self-driving cars learning how to drive on roads (Liang et al. 

2018; Pan et al. 2017). 
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RL terminology 

In an RL problem, the learner is often referred to as an agent (Chollet 2018; 

Géron 2019; Sutton et al. 2018; Szepesvári 2010). Everything surrounding the agent, that 

can be interacted with, is called the environment (Chollet 2018; Géron 2019; Sutton et 

al. 2018; Szepesvári 2010). In the RL problem of this Dissertation, the moving camera is 

the agent while the construction site or warehouse and all objects within it comprise the 

environment. At any given time, the part of the environment that is accessible by the 

agent can be described in a mathematical form which is called the state of the 

environment (Géron 2019; Sutton et al. 2018). For example, the moving camera (i.e., 

agent) can see some part of the site (i.e., environment) and capture it as an image (i.e., a 

matrix of pixel values). The captured image is considered as the current state of the 

environment. 

An RL problem is called continuous if the behavior of an RL agent can continue 

indefinitely (e.g., a robot walking) (Sutton et al. 2018). On the contrary, if the behavior 

can be broken down into episodes (e.g., a match in the AlphaGo game), the problem is 

called episodic (Sutton et al. 2018; Szepesvári 2010). The last state of an episode is 

called the terminal state (Sutton et al. 2018; Szepesvári 2010). In this Dissertation, the 

RL problem is episodic where one episode consists of starting from the initial camera 

position and moving to a position from where the object of interest is sufficiently visible. 

In an RL problem, at one time step, the agent can perform an action by 

transitioning from the current state to the next state of the environment (Chollet 2018; 

Géron 2019; Sutton et al. 2018; Szepesvári 2010). For example, in the RL problem of 
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this Dissertation, the camera can move “up”, “down”, “left”, “right”, or stay at the 

current position (a.k.a., “do nothing”). All such actions (except for “do nothing”) alter 

the position of the camera and, thus, allow it to capture a slightly different image (i.e., 

state) of the site (i.e., environment). If the camera decides to stay at the current position, 

i.e., when it selects the action “do nothing”, the job is considered done and the episode is 

terminated. 

As soon as the agent performs an action, it receives feedback from the 

environment which indicates the merit of the action in meeting the ultimate learning goal 

of the problem. This feedback is described in a numerical form and referred to as reward 

(Chollet 2018; Géron 2019; Sutton et al. 2018; Szepesvári 2010). The RL problem 

should be mathematically formulated in such a way that maximizing the reward also 

leads to meeting the learning goal (Sutton et al. 2018; Van Seijen et al. 2017). For 

example, in the RL problem of this Dissertation, the goal of the camera is to learn to take 

actions (move or stay) in such a way that workers are adequately visible from its vantage 

point. To remove the notion of subjectiveness from this description of the goal, the term 

“adequately visible” will be precisely defined in the upcoming Section. Nonetheless, it is 

also important (and challenging) to define the reward function so that the camera can 

achieve “adequate visibility” (whatever it is) of the worker by maximizing the 

cumulative reward received through a series of actions taken in every episode. 

RL vs. other ML problems 

RL is different from commonly used supervised ML in many aspects. In 

supervised ML, the machine learns from a given set of training data labeled by a 
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supervisor (Chollet 2018; Géron 2019). However, in RL, the agent actively searches for 

the training data (i.e., state and reward) in the environment which is, however, not 

labeled (i.e., it is not explicitly indicated what is the best action to take in each state) 

(Sutton et al. 2018). Moreover, in supervised ML, each sample is associated with a 

single ground-truth label (Chollet 2018; Géron 2019). For example, given an image of a 

cat, the ground-truth label for classifying the image will always be “cat” regardless of 

when it is used during the training. However, in RL, one sample might have multiple 

different consequences (Sutton et al. 2018). For example, given an image of an occluded 

worker in a construction site, for better visibility of the worker, the best action might be 

moving to left or right (or other directions) depending on what actions were taken before 

and will be taken next. Therefore, the decision in an RL problem does not depend only 

on the current state but also on the prior and subsequent states. 

In practice, RL can be considered as online learning since not all training data are 

available at once (Szepesvári 2010); the RL agent explores the environment and collects 

the training data. In one iteration of training, the agent considers only the training data 

available up to that point. In case the environment changes over time (a.k.a., non-

stationary environment), the agent only considers the newest training samples (Sutton et 

al. 2018). However, in the RL problem of this Dissertation, it is assumed that the 

environment is stationary (Sutton et al. 2018), i.e., does not change over time. 

Q-value 

In each state, the RL agent can take multiple actions. Previously, it was stated 

that the agent should take the action which will ultimately lead to the maximum reward, 
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i.e., the action with the highest value. The value of the action in each state is called 

action value or Q-value (Géron 2019; Szepesvári 2010; Sutton et al. 2018), and is 

mathematically denoted as 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎), where 𝑆𝑆𝑡𝑡 is the state at time 𝑡𝑡 and 𝑎𝑎 is the action. 

Therefore, the agent should take the action with the maximum Q-value, as shown in 

Equation 5. 

𝑎𝑎greedy = argmax𝑎𝑎𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) (5) 

 Assume, as shown in Figure 4, at state 𝑆𝑆𝑡𝑡, the agent takes action 𝑎𝑎 and receives a 

reward 𝑟𝑟𝑡𝑡, termed as the immediate reward. This leads the agent to state 𝑆𝑆𝑡𝑡+1, at which 

point it will take action 𝑎𝑎′ and receives a reward 𝑟𝑟𝑡𝑡+1, termed as the future reward. After 

𝑛𝑛 steps, i.e., at time 𝑡𝑡 + 𝑛𝑛, the agent reaches to the terminal state and receives a reward 

𝑟𝑟𝑡𝑡+𝑛𝑛. The future reward received at the terminal state (i.e., 𝑟𝑟𝑡𝑡+𝑛𝑛) is also referred to as the 

termination reward. 

 

Figure 4. Rewards at each step of an episode. 
 

  Subsequently, the Q-value of action 𝑎𝑎 at state 𝑆𝑆𝑡𝑡, 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) is defined as the sum 

of all the rewards that will have been received, as expressed by Equation 6, 

𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) = 𝑟𝑟𝑡𝑡 + 𝑟𝑟𝑡𝑡+1 + 𝑟𝑟𝑡𝑡+2 + ⋯+ 𝑟𝑟𝑡𝑡+𝑛𝑛 (6) 

 However, with this definition, the agent might want to continue the task forever 

(𝑛𝑛 = ∞) to maximize the cumulative reward. Therefore, the concept of discounting is 
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used (Géron 2019; Szepesvári 2010; Sutton et al. 2018) at each state by giving more 

importance to the immediate reward than the future rewards, such that the agent does not 

heavily rely on future rewards. Using a discount rate 𝛾𝛾 (0 ≤ 𝛾𝛾 ≤ 1), the Q-value can be 

redefined as in Equation 7, 

𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑟𝑟𝑡𝑡+1 + 𝛾𝛾2𝑟𝑟𝑡𝑡+2 + ⋯+ 𝛾𝛾𝑛𝑛𝑟𝑟𝑡𝑡+𝑛𝑛 (7) 

Equation 7 can be further rewritten by factoring 𝛾𝛾 in the second and subsequent 

terms in RHS, as shown in Equation 8, where 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑟𝑟𝑡𝑡+2 + ⋯+ 𝛾𝛾𝑛𝑛−1𝑟𝑟𝑡𝑡+𝑛𝑛 denotes the 

immediate reward received at state 𝑆𝑆𝑡𝑡+1 for taking action 𝑎𝑎′, plus the discounted rewards 

received subsequently. Therefore, 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) can be expressed as the sum of the immediate 

reward at state 𝑆𝑆𝑡𝑡 and 𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′). 

𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾(𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑟𝑟𝑡𝑡+2 + 𝛾𝛾2𝑟𝑟𝑡𝑡+3 + ⋯+ 𝛾𝛾𝑛𝑛−1𝑟𝑟𝑡𝑡+𝑛𝑛) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) (8) 

 However, taking action 𝑎𝑎′ at state 𝑆𝑆𝑡𝑡+1 may not maximize the cumulative reward 

received at state 𝑆𝑆𝑡𝑡. Rather, at state 𝑆𝑆𝑡𝑡+1, the action with the highest Q-value, i.e., 

max𝑎𝑎′𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) should be taken. Thus, Equation 8 is further modified as shown in 

Equation 9, 

𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑎𝑎′𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) (9) 

 This recursive relationship has two important implications. First, one can 

estimate 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) based on the immediate reward 𝑟𝑟𝑡𝑡 and the Q-values of the actions in 

the next state. Using dynamic programming to estimate the values will significantly 

reduce computation time (Sutton et al. 2018). Secondly, it forms the basis of Q-learning 

which we will be discussed at length in the following Section. 
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Q-learning 

The term Q-learning refers to the algorithm behind learning Q-values in RL 

(Sutton et al. 2018). As Equation 9 implies, given an estimation of 𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′), one can 

approximate 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎). Here, the process of achieving a more accurate estimation of the 

Q-values in an iterative process, a.k.a., TD learning (Géron 2019; Szepesvári 2010; 

Sutton et al. 2018) is discussed. Assume old estimations of 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) and 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎) are given, after one iteration of training, a new estimation of 𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) is 

obtained. Based on this new estimation, using Equation 9, the Q-value for 𝑆𝑆𝑡𝑡 and 𝑎𝑎 

(a.k.a., TD target) is estimated using Equation 10, 

TD target = 𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑎𝑎′𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) (10) 

 The difference between TD target (potentially better estimation of 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎)) and 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎′) is termed TD error or 𝛿𝛿𝑡𝑡, as written in Equation 11, 

𝛿𝛿𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑎𝑎′𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎) (11) 

 In the most simplistic approach, adding 𝛿𝛿𝑡𝑡 to the old estimate 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎) yields a 

new estimate of 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎). However, it is important to note that TD error in Equation 11 

is based on the estimation of 𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′), which might be affected by the stochasticity of 

the RL problem, making it inaccurate. Therefore, the TD error is multiplied by a factor 𝛼𝛼 

(0 < 𝛼𝛼 < 1), and the product is added to 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎) to obtain 𝑄𝑄𝑛𝑛𝑛𝑛𝑤𝑤(𝑆𝑆𝑡𝑡,𝑎𝑎), as expressed 

in Equation 12. The term 𝛼𝛼, a.k.a., the learning rate (a.k.a. step size) (Géron 2019; 

Szepesvári 2010; Sutton et al. 2018), allows the agent to incrementally learn from the 

newest experience one step at a time, rather than drastically change the previous 

learnings. 
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𝑄𝑄𝑛𝑛𝑛𝑛𝑤𝑤(𝑆𝑆𝑡𝑡,𝑎𝑎) = 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎) + 𝛼𝛼[𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑎𝑎′𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎)] (12) 

Generally, a large value of 𝛼𝛼 might destabilize the training by correcting the Q-

values too much at each step of training (Géron 2019). On the other hand, a small value 

of 𝛼𝛼 might lengthen the training time since at each time only a small correction is made 

(Géron 2019). Therefore, a careful experimentation with different values of 𝛼𝛼 is needed 

to find an optimum 𝛼𝛼 that balances the training stabilization and training time. 

Deep Q-learning 

A DNN model can be utilized to predict the Q-values. The model will take the 

state 𝑆𝑆𝑡𝑡 as input, and outputs 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) for each action 𝑎𝑎. The Q-learning for DNN is 

known as deep Q-learning (Van Hasselt et al. 2015; Silver et al. 2016; Géron 2019; 

Sutton et al. 2018). In DNN, the weights are updated based on the loss 𝐿𝐿. The update 

rule is shown in Equation 13, where 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑊𝑊𝑛𝑛𝑛𝑛𝑤𝑤 are old and new weights, 

respectively, and 𝛼𝛼 is the learning rate. 

𝑊𝑊𝑛𝑛𝑛𝑛𝑤𝑤 = 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 − 𝛼𝛼 �
∂𝐿𝐿

∂𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜� 
(13) 

 Comparing Equation 12 and Equation 13, one can think of the estimation of Q-

values (Equation 12) as a weight update task (Equation 13). This leads to the definition 

of loss 𝐿𝐿 shown in Equation 14, which suggests that loss 𝐿𝐿 would be the MSE. 

Therefore, in deep Q-learning, MSE is used as the loss function (Géron 2019; Sutton et 

al. 2018). 

−
∂𝐿𝐿

∂𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎) = 𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑎𝑎′𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎)  
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⟹�
∂𝐿𝐿

∂𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎) d𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎)

= −�[𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑎𝑎′𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎)] d𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎) 

⟹ 𝐿𝐿 =
1
2

[𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑎𝑎′𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑡𝑡,𝑎𝑎)]2 + 𝐶𝐶  

⟹ 𝐿𝐿 =
1
2
𝛿𝛿𝑡𝑡2 + 𝐶𝐶 (14) 

Exploration vs. exploitation 

It was previously established that through iterating Equation 12, an increasingly 

better estimation of 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) can be achieved. This, however, requires the agent to take 

action 𝑎𝑎 at state 𝑆𝑆𝑡𝑡 many times. However, if the environment is too large (i.e., containing 

too many states and allowing too many actions), the excessively large computational 

time might hinder the ability to try out all possible state-action pairs several times. In 

fact, for a large environment, the agent might rarely arrive at some of the states and 

might leave out many states completely (Sutton et al. 2018). If action 𝑎𝑎 is potentially the 

best action to take at 𝑆𝑆𝑡𝑡, it is worth to estimate 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎) multiple times. However, since 

this presumption may not be always true (at least, during training), other actions at 𝑆𝑆𝑡𝑡 

need to be also tried, leading to a dilemma known as the exploration vs. exploitation 

problem in RL (Géron 2019; Sutton et al. 2018). The term exploration means to try a 

state-action pair that has not been explored enough (or not explored at all) (Géron 2019; 

Sutton et al. 2018). On the other hand, exploitation means to exploit the prior knowledge 

and take the best-known action at a particular state for better estimation of the Q-value 

of that state-action pair (Géron 2019; Sutton et al. 2018). 
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 The rule for selecting an action at a given state is referred to as policy (Géron 

2019; Sutton et al. 2018). Based on current knowledge, selecting the action that has the 

highest Q-value is called the greedy policy, and the corresponding action is called the 

greedy action (Sutton et al. 2018). The greedy policy allows the agent to exploit the 

current knowledge. However, the agent must explore the environment as well. 

Therefore, a policy called ε-greedy policy is commonly used where at each state, the 

agent will explore a randomly selected action with probability 𝜀𝜀 (0 ≤ 𝜀𝜀 ≤ 1), and exploit 

this greedy action with probability 1 − 𝜀𝜀 (Géron 2019; Sutton et al. 2018). 

 At the beginning of training, the agent is encouraged to explore the environment 

more (Géron 2019). Throughout the training, however, and as the agent becomes more 

mature by gaining better knowledge about the environment, it can progressively favor 

exploitation (Géron 2019). This is done by selecting a high value of 𝜀𝜀 (assume, 𝜀𝜀max) at 

the very beginning of the training process, followed by linearly decaying 𝜀𝜀 so that after a 

certain number of iterations (assume, 𝑛𝑛iteration), it reaches to a very small value 

(assume, 𝜀𝜀min). Equation 15 shows the formula for calculating 𝜀𝜀𝑖𝑖, i.e., the value of 𝜀𝜀 at 

the 𝑖𝑖th iteration. 

𝜀𝜀𝑖𝑖 = 𝜀𝜀max −
𝜀𝜀max − 𝜀𝜀min
𝑛𝑛iteration

∗ 𝑖𝑖 (15) 

Performance Metrics 

Precision, recall, and accuracy 

To test the performance of a classifier model, unseen testing data are fed to the 

trained model. The performance of the classifier model in single-label and multi-label 
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classification tasks is evaluated using well-established measures of accuracy, precision, 

and recall, as shown in Equations 16 through 18. 

Accuracy =
TP + TN

TP + TN + FP + FN
 (16) 

Precision =
TP

TP +  FP
 (17) 

Recall =
TP

TP +  FN
 (18) 

Here, TP, TN, FP, and FN refer to true positive (correctly classified to the class), 

true negative (correctly classified to other class), false positive (incorrectly classified to 

the class), and false negative (incorrectly classified to other class), respectively. 

Intersection over union (IoU) 

For the object detection problems, IoU metric represents the percentage of 

overlap between ground-truth boxes and predicted boxes (Nath et al. 2020) for an object, 

is measured using Equation 19 where G and P denote the ground-truth and predicted 

boxes, respectively. 

IoU =
intersection

union
=
𝐺𝐺 ∩ 𝑃𝑃
𝐺𝐺 ∪ 𝑃𝑃

 (19) 

Mean average precision (mAP) 

To calculate mAP, first, IoU is measured using Equation 19. Next, all detections 

are ranked in order of their corresponding confidence level. This is followed by moving 

through the ranked sequence, from the highest to the lowest confidence level, and 

calculating the precision and recall values, at each position for a particular class. In 

object detection, TP, FN, and FP are calculated by comparing the IoU against a threshold 
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value (e.g., 50%). Next, for each class, AP is calculated using Equation 20, where 𝑛𝑛 is 

the total number of detections, 𝑖𝑖 is the rank of a particular detection in the list sorted in 

descending order of confidence, 𝑝𝑝(𝑖𝑖) is the precision of the sub-list ranged from 1st to 

𝑖𝑖th detection, and ∆𝑟𝑟(𝑖𝑖) is the change in recall from (𝑖𝑖 − 1)th to 𝑖𝑖th detection. Finally, 

mAP is estimated by calculating the mean of APs of all possible classes. 

𝐴𝐴𝑃𝑃 =  � 𝑝𝑝(𝑖𝑖)∆𝑟𝑟(𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
 (20) 
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CHAPTER IV  

IMAGE-LEVEL CONTENT RETRIEVAL* 

 

In this Chapter, DL-based approaches for retrieving image-level contents will be 

described. These approaches can be applied to analyze a large volume of construction 

imagery and automatedly generate metadata tags describing the contents of each image. 

Dataset Description 

Single-label dataset (Pictor v.1.0) 

The Pictor-v1 dataset contains 2,037 images web-mined from Google image 

search database by using the keywords such as “building under construction”, 

“construction equipment”, “truck”, “dozer”, “excavator”, “crane”, and “construction 

worker”. Next, each image is manually annotated with a single label – building, 

equipment, or worker – based on the most prominent object in the image. The Pictor-v1 

dataset with single-label annotation is named Pictor-v1.0 and the statistics and examples 

are shown in Figure 5. 

Multi-label dataset (Pictor v.1.1) 

All images in the Pictor-v1 dataset are also manually annotated with multiple 

labels – building, equipment, and worker – depending on the presence of the objects in 

 

* Part of the data and analyses reported in this chapter is reprinted with permission from “Single-and 
multi-label classification of construction objects using deep transfer learning methods” by Nath, Nipun, 
Theodora Chaspari, and Amir Behzadan. 2019. Journal of Information Technology in Construction, 24: 
511-26. 
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the image and named Pictor-v1.1. The number of images and sample images per class 

label in the Pictor- v1.1 dataset are shown in Figure 6. 

 

Figure 5. Number of images and sample images per class label in Pictor-v1.0 
dataset. Reprinted with permission from Nath et al. (2019). 

 

 

Figure 6. Number of images and sample images per class label in Pictor-v1.1 
dataset. Reprinted with permission from Nath et al. (2019). 
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Proposed Methodology 

Data pre-processing and splitting 

Since the CNN models generally takes square-sized input images, for single-label 

classification, any rectangular image is cropped into a group of square images that cover 

the entire visual field of the original image while being equidistantly distributed along 

the longer dimension of the original image. An example is shown in Figure 7 where a 

portrait rectangular image is cropped into three square images. The number of cropped 

images is determined based on the smallest integer number greater than or equal to (i.e., 

ceiling of) the ratio between the longer and shorter dimensions of the original image. 

Next, all cropped images are resized to 128 × 128 images using the bi-cubic 

interpolation method (Zhang et al. 2011). 

 

Figure 7. Example of cropping a rectangular image into a group of square-sized 
images. Reprinted with permission from Nath et al. (2019). 
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Data augmentation 

Data augmentation is an effective technique to prevent classifier models from 

overfitting by providing randomly distorted training images to the model and thus, 

allowing the model to learn general features (Perez et al. 2017). In this Dissertation, 

during each epoch of training, training images are distorted by randomly scaling the 

image by ±20% and horizontally flipping the image randomly 50% of the time. Example 

of an actual image and randomly generated augmented images are shown in Figure 8. As 

shown in this Figure, data augmentation generates more training images with different 

orientations (e.g., bucket of the excavator facing left and right) and zoom-levels (e.g., the 

bucket appearing closer in some images, and farther in other images). It allows the 

model to learn to recognize the objects regardless of their orientation and distance with 

respect to the camera. 

 

Figure 8. Example of data augmentation using random scaling and horizontal 
flipping. Reprinted with permission from Nath et al. (2019). 



 

38 

 

Architecture of the CNN 

The designed CNN, for both single-label and multi-label classification, is based 

on the VGG-16 model (Simonyan et al. 2014). It consists of one input layer (i.e., 128×

128 RGB images), 18 VGG-16 layers, 2 fully connected layers, and one output layer 

(e.g., labels or tags) as shown in Figure 9. The output layer yields a vector represented as 

“one-hot encoding” (Marinai et al. 2005) where each element of the vector represents 

one class and can have a value of either 1 (i.e., the input image belongs to that class) or 0 

(i.e., the input image does not belong to that class). 

 

Figure 9. Architecture of the proposed CNN model. Reprinted with permission 
from Nath et al. (2019). 
 

Activation and loss functions 

For both models, at each hidden convolutional or FC layer, the ReLU non-linear 

activation function is applied to accelerate the convergence (Krizhevsky et al. 2012). 

However, for the single-label classifier model, the softmax (Equation 1) activation 
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function (Murphy 2012) is used at the output layer, whereas for the multi-label classifier 

model, the Sigmoid (Equation 2) activation function (Friedman et al. 2001) is used. 

Also, for single-label classification, multi-class cross-entropy (Equation 3) (Friedman et 

al. 2001) is used as a loss function, while for multi-label classification, the loss function 

is defined as the sum of binary cross-entropy (Buja et al. 2005) over all classes 

(Equation 4). 

Model training 

To train the models, a transfer learning scheme is used which allows the models 

to remember high- and mid-level features (e.g., edge, shape, color) learned from a large 

dataset and apply these features (with minor adjustment) to effectively distinguish the 

classes in a smaller target dataset (Oquab et al. 2014). According to this scheme, the pre-

trained weights from the ImageNet dataset (Simonyan et al. 2014) are used in the VGG-

16 layers of the models. Next, only the weights in the FC layers are optimized using the 

RMSprop optimization algorithm (Tieleman et al. 2012). Then, the weight values of the 

last three convolutional layers and two fully-connected layers are updated using the 

stochastic gradient descent (SGD) algorithm (Bottou 2010) with a slow-learning rate 

(hyper-parameters, e.g., learning rate = 10-4, and momentum = 0.9, are empirically 

selected). 

Results and Discussion 

The performance of the single-label classifier model on the Pictor-v1.0 dataset is 

summarized in Table 1. It shows that all classes are predicted with ~90% accuracy, 

precision, and recall. However, the precision of recognizing buildings (i.e., 89.1%) and 
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the recall of recognizing a worker (i.e., 88.7%) is relatively lower. The underlying 

reason is that model tends to label the image with that class that has the larger visual 

footprint in the image. For example, as shown in Figure 10, an image with a building in 

the background and a worker in the foreground is labeled as a worker by the annotator as 

the worker appears more prominent to the human. However, the model would classify it 

as a building because of its larger footprint compared to the worker, lowering both the 

precision of building and recall of worker. This observation reveals one of the 

weaknesses of single-label classification and suggests performing multi-label 

classification. For the multi-label classification, the performance of the model on the 

Pictor-v1.1 dataset is summarized in Table 2, and examples are shown in Figure 11. The 

Table shows that all object classes are detected with >82% accuracy. However, it is 

noticeable that for all classes, the recall (>92%) is relatively higher than the precision 

(>73%). It indicates that the model sometimes predicts a class that is not present in the 

image (which lowers the precision). However, if a class is actually present, there is a 

high probability that the model will predict that class (which increases the recall). 

Table 1 Performance metrics of the model for single-label classification. Adapted 
with permission from Nath et al. (2019). 
Class Accuracy Precision Recall 

Building 95.2% 89.1% 95.2% 

Equipment 89.5% 92.6% 89.5% 

Worker 88.7% 94.0% 88.7% 

Unweighted Average 91.1% 91.9% 91.1% 

Weighted Average 91.2% 91.3% 91.2% 
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Table 2 Performance of the model for multi-label classification. Adapted with 
permission from Nath et al. (2019). 
Class Accuracy Precision Recall 

Building 85.9% 73.7% 92.8% 

Equipment 82.9% 76.0% 97.5% 

Worker 89.2% 76.9% 94.5% 

Unweighted Average 86.0% 75.5% 94.9% 

Weighted Average 85.5% 75.6% 95.3% 

 

 

Figure 10. Visualization of the confused labels in single-label classification. 
Reprinted with permission from Nath et al. (2019). 
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Figure 11. Visualization of the confused labels in multi-label classification. 
Reprinted with permission from Nath et al. (2019). 
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CHAPTER V  

INSTANCE-LEVEL CONTENT RETRIEVAL* 

 

This Chapter describes an object detection framework for retrieving instance-

level contents in real-time. This framework can provide semantically richer information 

on the objects (e.g., the number, and the spatial relationships among them). Upon 

selecting the best-performing model, from different YOLO models, trained and tested on 

images collected through different methods, the Chapter will also discuss the strength 

and weakness of the model in detecting objects under different visual conditions. 

Dataset Description 

The Pictor-v2 dataset (Figure 12) contains instance-level annotations of 

buildings, equipment, and worker on the images collected through crowd-sourcing 

(Yuen et al. 2011) and web-mining (Kosala et al. 2000). As shown in Figure 13, the 

Pictor-v2 dataset contains 1,105 crowd-sourced images and 1,402 web-mined images. 

As shown in Figure 13(a), in total, there are 1,821 instances of building, 1,180 instances 

of equipment, and 2,611 instances of workers in the crowd-sourced images and 2,110 

instances of building, 1,593 instances of equipment, and 2,257 instances of workers in 

the web-mined images of Pictor-v2 dataset. The number of images for each class in the 

 

* Part of the data and analyses reported in this chapter is reprinted with permission from “Deep 
convolutional networks for construction object detection under different visual conditions” by Nath, 
Nipun, and Amir Behzadan. 2020. Frontier's in Built Environment, 6(97): 1-22. 
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randomly split training (~64%), validation (~16%), and testing (~20%) subsets of crowd-

sourced and web-mined Pictor-v2 dataset are shown in Figure 13(b). 

 

Figure 12. Examples of images and annotations in the Pictor-v2 dataset. Reprinted 
with permission from Nath et al. (2020). 
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Figure 13. Number of images (a) per class labels retrieved through crowd-sourcing 
and web-mining in Pictor-v2 dataset, and (b) in the training, validation, and testing 
datasets. Reprinted with permission from Nath et al. (2020). 
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Proposed Methodology 

Dataset pre-processing 

Since YOLO takes 416×416 images as input, all images in the Pictor-v2 dataset 

are resized to 416×416 using bi-cubic interpolation (Zhang et al. 2011). During resizing, 

the original aspect ratio is preserved by padding the image equally on both sides along 

the shorter dimension. Next, each of the crowd-sourced and web-mined datasets is 

randomly split into training, validation, and testing subsets containing mutually 

exclusive 64%, 16%, and 20% of the entire dataset, respectively. The corresponding 

subsets (training, validation, and testing) of crowd-sourced and web-mined datasets are 

then merged to form the third combination, namely the “combined” subset. Next, k-

means clustering (Redmon et al. 2017) is performed on all the rectangular boxes in the 

training dataset of each combination to obtain the desired number of anchor boxes. 

Clustering 

Since YOLO-v2 and YOLO-v3 models require five and nine anchor boxes, 

respectively, all the boxes in the training subset of each combination (crowd-sourced, 

web-mined, and combined) of the Pictor-v2 dataset are clustered into five (Figure 14(a)) 

and nine (Figure 14(b)) groups, using k-means clustering (Redmon et al. 2017), and a 

representative (centroid) from each group is selected as anchor box.  
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Figure 14. Clusters and corresponding anchor boxes for (a) YOLO-v2, and (b) 
YOLO-v3 implementation. Reprinted with permission from Nath et al. (2020). 
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It is evident from the anchor boxes in Figure 14 that the size of anchor boxes in 

the web-mined dataset is larger than those in the crowd-sourced dataset. This is rooted in 

the fact that web-mined images often contain a fewer number of objects, and the objects 

cover a larger visual field within the image. This setup imitates professional 

photographic arrangements where the appearance of the objects is of particular interest. 

On the contrary, the crowd-sourced images generally cover a larger field of view that 

captures more objects, each appearing smaller in the images. It also indicates that crowd-

sourced images prioritize the amount of information over the appearance of objects in 

the image. The Figure also shows that the anchor boxes in the five-cluster groups are 

slenderer than the anchor boxes in the nine-cluster groups. This observation uncovers 

that when boxes are clustered into a fewer number of groups, slender objects (e.g., tall 

buildings, cranes, standing human) dominate, indicating the presence of a larger number 

of slender objects in the dataset. 

Data augmentation 

During training, real-time data augmentation is performed to prevent overfitting. 

Particularly, in every training step, each training image is randomly scaled up/down by 

±30%, translated horizontally or vertically by ±30% (positive sign indicates translating 

to the right/downwards), and flipped in the horizontal direction in randomly selected 

50% of the times. Also, hue, saturation, and value (brightness) of the training image are 

randomly changed (with uniform probability) in the range of [-10%, +10%], [-33%, 

50%], and [-33%, 50%], respectively. Example of an actual image and generated images 

through random data augmentation are shown in Figure 15. 
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Figure 15. Example of actual and randomly augmented data. Reprinted with 
permission from Nath et al. (2020). 
 

Model training 

In this Dissertation, two different variations of the YOLO architecture, YOLO-v2 

(Redmon et al. 2017) and YOLO-v3 (Redmon et al. 2018) are investigated with different 

combinations of subsets in the Pictor-v2 dataset (i.e., crowd-sourced, web-mined, and 

combined). All YOLO models are pre-trained on the COCO dataset (Chen et al. 2015), 

followed by re-training only the output layer(s) of the models on the training dataset of 

each combination for 25 epochs with a learning rate of 10−3 using Adam's (Kingma et 

al. 2014) optimizer. In the next step, all layers are fine-tuned with a slower learning rate 

using the same optimizer. To avoid overfitting during this fine-tuning phase, the loss on 
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the validation data is continuously monitored and the learning rate is dynamically 

adjusted. Particularly, the fine-tuning phase is started with the initial learning rate of 

10−4. However, if the validation loss does not decrease for three consecutive epochs, the 

learning rate is reduced by a factor of 0.5. Moreover, if the validation loss does not 

decrease for ten consecutive epochs, the training is stopped. Additionally, during the re-

training and fine-tuning phases, conventional data augmentation (e.g., translation, zoom 

in/out, horizontal flipping, and change of hue, saturation, and brightness of the image) 

(Perez et al. 2017) is performed. 

Results and Discussion 

Performance of the trained YOLO-v2 and YOLO-v3 models, in terms of AP for 

each class and mAP across all classes, are shown in Figure 16 and Figure 17, 

respectively. The Figures show that comparing crowd-sourced and web-mined subsets, 

the model performs better if it is trained and tested on a similar subset. In other words, 

the model performs poorly if it is trained on one subset and tested on another subset. It 

indicates significant visual differences between the images in crowd-sourced and web-

mined subsets. However, both YOLO-v2 and YOLO-v3, models perform better when 

trained on the combined subset. It can be attributed to the higher number of training 

images in the combined data that allows the model to learn more generalizable features. 

However, it also indicates that the balance of diverse and challenging crowd-sourced 

images and well-structured web-mined images makes the model more robust. The 

Figures also show that, for any combination, the YOLO-v3 model performs better than 

the YOLO-v2 model. Particularly, the three output layers of the YOLO-v3 model allow 
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the model to detect objects of various sizes. Therefore, YOLO-v3 models, trained on the 

combined subsets, are used for further analyses. 

 

Figure 16. Performance of YOLO-v2 models trained and tested on different 
combinations of the Pictor-v2 dataset. Reprinted with permission from Nath et al. 
(2020). 
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Figure 17. Performance of YOLO-v3 models trained and tested on different 
combinations of the Pictor-v2 dataset. Reprinted with permission from Nath et al. 
(2020). 
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Strengths and Weaknesses of Object Detection Model 

To understand the strengths and weaknesses of the best model, YOLO-v3 trained 

and tested on the combined subset, the model is further tested under different visual 

conditions. For example, an object in the construction site imagery may appear in 

various sizes based on its real size, distance to the camera, and occlusion. Therefore, the 

object instances in the combined Pictor-v2 dataset are divided into two categories – 

“smaller” if the size is smaller than the median size, and “larger” otherwise. Moreover, 

construction sites generally consist of crowded spaces and occluded which can hinder 

the ability of the model to accurately find those objects. Therefore, if an object that has a 

bounding box overlapping with the bounding box of another object (i.e., the intersection 

over union, IoU > 0%) is considered as a “more crowded” object. Furthermore, images 

captured in a poorly lit construction site may not contain content-rich information (due 

to less brightness and contrast). The amount of useful information in an image can be 

measured by Shannon entropy (Wu et al. 2013). Therefore, objects having Shannon 

entropy larger than the median value are considered as “well-lit” objects, while the 

others are considered as “poorly-lit” objects.  

Examples of smaller vs. larger objects, more crowded vs. larger objects, and 

poorly lit vs. well-lit objects in Pictor-v2 dataset are shown in Figure 18. The 

performance of the YOLO-v3 models for various conditions is summarized in Table 3. 

As shown in the Table, the model performs substantially better in detecting large objects. 

Particularly, for detecting workers, the precision and recall of the model are 98%, 

indicating near human-level accuracy. Also, the Table shows that the model detects less 
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crowded objects more accurately which is intuitive. Furthermore, in general, the model 

is better at detecting well-lit objects. However, if there is equipment in the image, the 

model is equally likely to detect the equipment regardless of the crowdedness or the 

lighting condition. 

 

Figure 18. Examples of objects with different constraints (e.g., size, crowdedness, 
and lighting conditions) in Pictor-v2 dataset. Reprinted with permission from Nath 
et al. (2020). 
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Table 3. Performance of the best model in detecting building (B), Equipment (E), 
and worker (W) under different visual conditions. Reprinted with permission from 
Nath et al. (2020). 

C
ri

te
ri

a  Precision Recall 

B E W B E W 

Si
ze

 

Large object 90% 80% 98% 94% 93% 98% 

Small object 77% 72% 83% 71% 80% 75% 

Difference +13% +8% +15% +23% +13% +23% 

C
ro

w
de

dn
es

s Less crowded 84% 80% 87% 78% 83% 83% 

More crowded 80% 73% 85% 76% 83% 75% 

Difference +4% +7% +2% +2% ±0% +8% 

L
ig

ht
in

g 

Well-lit 83% 78% 93% 83% 83% 88% 

Poorly lit 79% 71% 77% 70% 83% 68% 

Difference +4% +7% +16% +13% ±0% +20% 
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CHAPTER VI  

VERIFICATION OF PPE COMPLIANCE* 

 

Various safety and health organizations, such as OSHA, require that all workers 

properly use PPE at all times to avoid accidents. This Chapter describes DL-based 

approaches for an automated safety monitoring system that is designed to verify 

workers’ compliance with the requirements related to PPE in real-time. The Chapter also 

demonstrates a process to recognize PPE components and their color, simultaneously, in 

real-time.  

Dataset Description 

The Pictor-v3 dataset contains the annotated object instances of the worker, hard 

hat, and safety vest, in 1,472 images. As shown in Figure 19, the dataset contains 774 

crowd-sourced images and 698 web-mined images. Among the crowd-sourced, 240 

images contain only worker (W), 517 images contain worker and hat (W+H), and 17 

images contain worker, hat, and vest (W+H+V). Moreover, among the 2,496 workers in 

the crowd-sourced images, 873 workers do not wear any hat or vest (W), 1,583 workers 

wear hat (WH), 40 workers wear both hat and vest (WHV), and no worker wears only 

vest without hat (WV). 

 

* Part of the data and analyses reported in this chapter is reprinted with permission from “Deep learning 
for site safety: Real-time detection of personal protective equipment” by Nath, Nipun, Amir Behzadan, 
and Stephanie G Paal. 2020. Automation in Construction, 112: 103085. 
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Figure 19. Number of images and number of instances per class label in the crowd-
sourced and web-mined subsets of Pictor-v3 dataset. Reprinted with permission 
from Nath et al. (2020). 
 

Worker and PPE Detections 

Three approaches 

In this Dissertation, three approaches are investigated to verify the PPE attire of 

workers. As shown in Figure 20, In Approach-1, a YOLO-v3-based model (named 

YOLO-v3-A1) is trained and tested to detect worker (W) and different PPE types, e.g., 

hat (H), and vest (V), individually. In contrast, in Approach-2, another YOLO-v3-based 

(named YOLO-v3-A2) model is designed to localize workers and directly classify them 

based on their PPE attire, i.e., W, WH, WV, and WHV. Finally, in Approach-3, a 

YOLO-v3-based model (named YOLO-v3-A3) is used to detect only workers 
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(regardless of the PPE attire), then crops parts of the image that contain workers. 

Subsequently, different algorithms are applied to verify the PPE attire which will be 

discussed in the following Section. 

 

Figure 20. Schematic diagram of the three approaches. Reprinted with permission 
from Nath et al. (2020). 
 

Data pre-processing 

 Data processing, splitting, and augmentation are performed following the similar 

methods described in Chapter V. Examples of augmented images are shown in Figure 

21. 
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Figure 21. Examples of actual and randomly augmented data in three approaches. 
Reprinted with permission from Nath et al. (2020). 
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Clustering 

Next, k-means clustering (Redmon et al. 2017) is performed on all the 

rectangular boxes in the training dataset of the Pictor-v3 to obtain nine anchor boxes for 

the models  (Figure 22). All YOLO-v3 models are subsequently pre-trained on the 

COCO dataset (Chen et al. 2015). 

 

Figure 22. Nine clusters and corresponding anchor boxes for each approach. 
Reprinted with permission from Nath et al. (2020). 
 

Model training 

In all three approaches, the architecture of the pre-trained YOLO-v3 models 

(particularly, the last three output layers) are modified based on the number of 

considered classes in each approach. For example, in Approach-1, the YOLO-v3 model 

detects worker and 𝑛𝑛𝑃𝑃 number of different PPE types, a total of 𝑛𝑛𝑃𝑃 + 1 number of 
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classes, individually. Therefore, each bounding box in each grid cell of the output layers 

of the YOLO-v3 architecture should be a (𝑛𝑛𝑃𝑃 + 6)-dimensional vector. For example, 

since there are 3 bounding boxes in each 13 × 13 grids of Output-1 layer, the dimension 

of the predicted tensor should be 13 × 13 × 3(𝑛𝑛𝑃𝑃 + 6). Similarly, for Output-2 and 

Output-3 layers, the dimensions of the predicted tensors should be 26 × 26 × 3(𝑛𝑛𝑃𝑃 + 6) 

and 52 × 52 × 3(𝑛𝑛𝑃𝑃 + 6), respectively. However, since the dimensions of output layers 

and the number and types of classes in the pre-trained YOLO-v3 models may not match 

with the problem at hand, all three output layers are replaced with new layers with 

required dimensions, and the weights in the newly added layers are randomly initialized. 

The modified model is referred to as YOLO-v3-A1. In Approach-2, the YOLO-v3 

model directly detects worker’s 2𝑛𝑛𝑃𝑃 different combinations of PPE attire for 𝑛𝑛𝑃𝑃 different 

PPE types. Therefore, the dimensions of the output layers are 13 × 13 × 3(2𝑛𝑛𝑃𝑃 + 5), 

26 × 26 × 3(2𝑛𝑛𝑃𝑃 + 5), and 52 × 52 × 3(2𝑛𝑛𝑃𝑃 + 5), respectively. With the same token as 

in Approach-1, the output layers of the YOLO-v3 model for Approach-2 are modified 

and referred to as YOLO-v3-A2 hereafter. In contrast, regardless of the number of 

considered PPE types, in Approach-3, the YOLO model detects only workers (i.e., one 

class) in the input image or video frame. Therefore, the dimensions of the output layers 

in the modified YOLO-v3 model for this approach (referred to as YOLO-v3-A3) are 

13 × 13 × 3 ∗ 6, 26 × 26 × 3 ∗ 6, and 52 × 52 × 3 ∗ 6, respectively. 

 In YOLO-v3-A1, -A2, and -A3 models, all layers except the last three output 

layers contain pre-determined weights obtained by pre-training the models on COCO 

dataset. These pre-trained weights can extract useful features (e.g., colors, edges) that 



 

62 

 

can effectively distinguish the classes (e.g., person, dog, car, apple, laptop, clock) 

present in the COCO dataset. However, in the newly added output layers, weights are 

initialized with random values and updated through re-training the models with the 

Pictor-v3 dataset for classifying the target classes. During this re-training process, the 

weights in all other layers are kept frozen (i.e., unchanged). The idea is to familiarize the 

models with the new target classes and allow them to learn how to use the pre-learned 

features to distinguish the target classes. The re-training process involves training for 25 

epochs with a learning rate of 10−3 using Adam (Kingma et al. 2014) optimizer.  Next, 

the entire model is fine-tuned by updating the weights in all layers, however, with a 

slower learning rate. This allows the models to slightly modify the pre-learned features 

to find more effective features that work better for detecting the target classes. To 

prevent the model from overfitting, fine-tuning is performed by continuously monitoring 

the validation loss after each epoch and adjusting the learning rate accordingly. 

Particularly, the following criteria are maintained in this step: fine-tuning of the model is 

started with an initial learning rate of 10−4; the learning rate is reduced by half if the 

validation loss does not decrease for three consecutive epochs; training is terminated if 

the validation loss does not decrease for 10 consecutive epochs. 

Performance of YOLO-v3 in three approaches 

All the YOLO-v3 models are trained on the Pictor-v3 dataset following the 

transfer learning scheme. The mAPs of the YOLO-v3 models in three approaches are 

shown in Figure 23. As shown in the Figure, Approach-1 achieves 81.2% mAP. Among 

all three classes, worker class (W) has the highest AP, reaching 85%, which can be 



 

63 

 

attributed to the large size of this object class compared to the other two classes – hat (H) 

and vest (V). The mAP is the lowest in Approach-2 (72.3%) which is not surprising 

since the target classes (i.e., W, WH, WV, and WHV) are visually very similar (i.e., all 

contain humans). Also, as expected, the mAP of Approach-3 is the highest (85.6%) since 

there is only one class to learn (i.e., W) and there is no chance of inter-class confusion. 

 

Figure 23. Performance of the YOLO-v3 models in three approaches. Reprinted 
with permission from Nath et al. (2020). 
  

Classification of Worker Images for PPE Detections 

CNN classifiers 

After receiving the images of workers, from Approach-3, various classifier 

models can be applied to classify the image into four classes – worker wearing no hat or 

vest (W), worker wearing only hat (WH), worker wearing only vest (WV), and worker 

wearing both hat and vest (WHV). Particularly, three CNN classifier models based on 
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three different architectures, VGG-16 (Simonyan et al. 2014), ResNet-50 (He et al. 

2016), and Xception (Chollet 2017), are investigated for this Dissertation. 

The accuracy of the VGG-16, ResNet-50, and Xception models in classifying 

worker images into W, WH, WV, and WHV classes are 78.2%, 77.8%, and 76.8%, 

respectively. The confusion matrices for these models are shown in Figure 24. The 

confusion matrices show that the CNN models tend to confuse the class W with the class 

WH, and the class WV with the class WHV. In both cases, the models false-positively 

detect hats in the images even if the worker is not wearing any hat. It can be attributed to 

the unbalanced dataset (where the samples of WH and WHV are higher than the samples 

of W and WV, respectively) and the small size of the hat.  

 

Figure 24. Confusion matrices for VGG-16, ResNet-50, and Xception classifier 
models. Reprinted with permission from Nath et al. (2020). 

 

Bayesian classifiers 

In addition to the CNN classifiers, Bayesian inference models are investigated 

where the prior and posterior probabilities are calculated from the predictions of CNN 

classifiers (e.g., VGG-16, ResNet-50, and Xception) on trained data, and the posterior 

probability is used to classify the test images. Particularly, given a set of 𝑛𝑛 classes 𝐶𝐶 =

{𝑐𝑐1, … 𝑐𝑐𝑛𝑛} and  CNN models 𝑀𝑀1, … ,𝑀𝑀𝑚𝑚, a sample that is classified to class 𝑐𝑐𝑖𝑖
𝑀𝑀𝑗𝑗 ∈ 𝐶𝐶 by 
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the CNN model 𝑀𝑀𝑗𝑗, the posterior probability 𝑃𝑃(𝑐𝑐𝑘𝑘𝐵𝐵|𝑐𝑐𝑖𝑖
𝑀𝑀1 , … , 𝑐𝑐𝑗𝑗

𝑀𝑀𝑚𝑚) represents the 

probability that the sample belongs to class 𝑐𝑐𝑘𝑘𝐵𝐵 ∈ 𝐶𝐶. The posterior probabilities for all 

combination of 𝑐𝑐𝑘𝑘𝐵𝐵, 𝑐𝑐𝑖𝑖
𝑀𝑀1 , … , 𝑐𝑐𝑗𝑗

𝑀𝑀𝑚𝑚 ∈ 𝐶𝐶 are calculated from the training dataset using the 

Bayesian formula in Equation 21. 

𝑃𝑃�𝑐𝑐𝑘𝑘𝐵𝐵�𝑐𝑐𝑖𝑖
𝑀𝑀1 , … , 𝑐𝑐𝑗𝑗

𝑀𝑀𝑚𝑚� =
𝑃𝑃(𝑐𝑐𝑘𝑘𝐵𝐵, 𝑐𝑐𝑖𝑖

𝑀𝑀1 , … , 𝑐𝑐𝑗𝑗
𝑀𝑀𝑚𝑚)

𝑃𝑃(𝑐𝑐𝑖𝑖
𝑀𝑀1 , … , 𝑐𝑐𝑗𝑗

𝑀𝑀𝑚𝑚)
 (21) 

During the inference phase, a test sample is classified by each CNN model as 𝑐𝑐𝑖𝑖
𝑀𝑀𝑗𝑗  

with probability 𝑝𝑝𝑀𝑀𝑗𝑗(𝑐𝑐𝑖𝑖). The final class (𝑐𝑐𝐵𝐵) is determined by checking the posterior 

probabilities for all classes 𝑐𝑐𝑘𝑘𝐵𝐵 ∈ 𝐶𝐶 and choosing the class (𝑐𝑐𝐵𝐵) that yields the maximum 

probability, as shown in Equation 22. Also, the final probability is the maximum of the 

probabilities of the final class, i.e., max
𝑗𝑗

𝑝𝑝𝑀𝑀𝑗𝑗(𝑐𝑐𝐵𝐵).  

𝑐𝑐𝐵𝐵 = argmax
𝑐𝑐𝑘𝑘
𝐵𝐵∈𝐶𝐶

𝑃𝑃�𝑐𝑐𝑘𝑘𝐵𝐵�𝑐𝑐𝑖𝑖
𝑀𝑀1 , … , 𝑐𝑐𝑗𝑗

𝑀𝑀𝑚𝑚� (22) 

The performance of the Bayesian models, along with CNN models, is shown in 

Figure 25. The Figure shows that, in general, the Bayesian models perform slightly 

better than the CNN models. Particularly, the Bayesian model with all three classifiers 

performs the best (67.9% mAP). 
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Figure 25. Comparison of the performance of CNN classifier and Bayesian models. 
Reprinted with permission from Nath et al. (2020). 
 

Similarity Measure Technique for PPE Detections 

Similarity measure technique 

Given the images of a worker, the PPE attire can also be determined using the 

similarity measurement technique which is often used for PRID (Zhang et al. 2017) in 

the CV domain. In this technique, a query image of a person (with unknown information, 

e.g., identity or attire) is compared with the gallery images of other people (with known 

information). Then, from the best-matched gallery image, the required information of the 

person in the query image is retrieved. For PPE detection, the premise is that the people 

wearing similar PPE also look similar. Therefore, it is anticipated that given an image of 

a worker with unknown PPE attire, a trained PRID model will find the best-matching 

gallery image with similar PPE. Furthermore, the model has the potential to find the 

matching based on the color of the PPE as well. Therefore, for example, if the worker in 

the best-matched gallery image is wearing a red hard hat and a yellow safety vest (i.e., 
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WHV), it is likely that the worker in the query image is also wearing a hard hat and a 

vest (i.e., WHV) of potentially same colors. From this motivation, a state-of-the-art 

PRID algorithm, AlignedReID (Luo et al. 2019), is adapted for detecting the PPE attire 

of workers in the Pictor-v3 dataset. 

Dynamically matching local information (DMLI) 

As shown in Figure 26, the AlignedReID algorithm divides an image into seven 

horizontal stripes, extracts local features from each stripe, and dynamically aligns two 

images from top to bottom using the shortest path in the distance matrix (Zhang et al. 

2017). This process is termed DMLI (Luo et al. 2019). As Figure 26 illustrates, even if 

the persons in two images are in different poses, facing different directions, or occluded 

differently, the algorithm still finds similar attributes and calculates the similarity only 

based on the matching parts while ignoring the rest (e.g., irrelevant background). 

 

Figure 26. Example of aligning two images using DMLI. 
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Model training 

A CNN model, based on ResNet-50 architecture, is used. The model extracts 

global and local features from two given images (one query image and another gallery 

image) and calculates the final distance between these two images as shown in Figure 

27. The final distance represents the similarity between two images, where a smaller 

distance indicates a higher degree of similarity.  

 

Figure 27. Calculation of local and global distances from two images. 
 

The training protocol used in this Dissertation is inspired by the AlignedReID 

algorithm (Luo et al. 2019; Zhang et al. 2017). As shown in Figure 27, the CNN model, 

ResNet-50 (He et al. 2016), takes 128×256 RGB images as input and extracts a 

7×7×2048 feature map. As shown in this Figure, horizontal pooling is then performed to 

extract 1×7×128 local features (128-dimensional feature for each of the 7 horizontal 

patches in the image) and global pooling is performed to extract 1×1×2048 global 

features of the image (Zhang et al. 2017). 

The CNN model is trained on the training subset of the Pictor-v3 dataset with 

triplet loss (Zhang et al. 2017). In each training step, a batch of 𝑁𝑁 images is fed to the 
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model and (local and global) distances between each image pair are calculated. As 

illustrated in Figure 28, for each image in the batch, based on the global distances 

between the considered image (a.k.a., anchor) and other images, the farthest (most 

dissimilar) one from the same cluster (a.k.a. hardest positive) and the closest (most 

similar) one from a different cluster (a.k.a. hardest negative) are selected. The anchor 

image and its hardest positive and negative counterparts, altogether, is referred to as a 

triplet. For all valid triplets in the batch, the distances between each anchor and its 

positive and negative counterparts is used to calculate the triplet loss (Zhang et al. 2017). 

The sum of triplet losses for global and local distances along with softmax loss for 

global features is considered as the total loss (Luo et al. 2019). During training, the CNN 

model simultaneously learns to extract effective global and local features from the total 

loss (Luo et al. 2019). However, triplet loss, in particular, helps the model to learn subtle 

similarities between the inter-cluster images (i.e., anchors and their positive 

counterparts) and tenuous dissimilarities between intra-cluster images (i.e., anchors and 

their negative counterparts). 

 

Figure 28. Schematic diagram of calculating triplet loss. 
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Result and discussion 

The performance of this framework on the testing subset is shown in Figure 29. 

The Figure shows that the workers without any hat or vest (W), with hat (WH), with vest 

(WV), and with both hat and vest (WHV) are detected with 90% accuracy, which is 

higher than the accuracies of previously described CNN and Bayesian models. 

Moreover, the color of the PPE component is also recognized with 77% accuracy. 

 

Figure 29. Confusion matrix and examples of detecting different PPE attire using 
PRID technique. 
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CHAPTER VII  

IMAGE ENHANCEMENT FOR IMPROVED DETECTION PERFORMANCE 

 

As CV-based algorithms perform better on high-quality images, this Chapter 

describes an AI-enabled image enhancement technique, using GAN, to improve the 

quality of visual data in order to increase the performance of the previously developed 

DL models. 

Dataset Description 

In this Chapter, a combination of two previously developed datasets, Pictor-v2 

(Nath et al. 2020) and Pictor-v3 (Nath et al. 2020), as described in Chapters V and VI, is 

used. As shown in  Figure 30, Pictor-v2 contains 1,994 training and 513 testing images, 

labeled with three object classes – building (B), equipment (E), and worker (W). On the 

other hand, Pictor-v3 contains 1,184 training and 288 testing images, also labeled with 

three object classes – hat (H), vest (V), and worker (W). The GAN model will be 

evaluated based on the performance of two YOLO models, namely YOLO-BEW and 

YOLO-WHV, which are trained on the training subsets of Pictor-v2 and Pictor-v3 

datasets, respectively. To ensure that these YOLO models do not encounter any images 

on which they are already trained, the union of the testing subsets of Pictor-v2 and 

Pictor-v3 datasets is used for evaluating the GAN and YOLO models and, therefore, 

excluded from training the GAN models. This results in a total of 1,906 training and 744 

testing images for the GAN models, as shown in Figure 30. 
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Figure 30. Number of images in the training and testing subsets. 
 

Proposed Methodology 

In this Dissertation, during the training, the weights of the discriminator 𝐷𝐷 and 

generator 𝐺𝐺 of the GAN model (Figure 31) are updated through backpropagation using 

Adam optimizer (Aggarwal 2018) with a starting learning rate of 1 × 10−4. However, 

after 150th, 250th, and 300th epochs, the learning rate is reduced by a factor of 5. 

Finally, training is terminated after 330 epochs. Next, to investigate the influence of 

different image resolutions, 𝐼𝐼𝐿𝐿 images are created by letterboxing the testing images, 

from Pictor-v2 and -v3 datasets, to sizes 52 × 52, 72 × 72, 96 × 96, 144 × 144, and 

208 × 208 resolutions. Then, the GAN model (particularly, the generator 𝐺𝐺) is applied 

to the images which increases the resolution of each input image by a factor of 2×2. 

Next, two previously developed YOLO-v3 models are applied to the GAN-generated 

images to measure their object detection performance on the improved images. 

Particularly, YOLO-v3-BEW was trained on the Pictor-v2 dataset to detect common 

construction objects, namely buildings (B), equipment (E), and workers (W), as 

described in Chapter V. Another model YOLO-v3- WHV was trained on Pictor-v3 
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dataset to detect workers (W) and personal protective equipment (PPE), e.g., hat (H) and 

vest (V), as described in Chapter VI. 

 

Figure 31. Architecture of the GAN models. 
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Loss functions 

To train the generator and discriminator networks, three loss functions, namely 

the binary cross-entropy, content loss, and perceptual loss are used (Ledig et al. 2017). 

In particular, given an image 𝐼𝐼𝐻𝐻 (𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 = 1) or 𝐼𝐼𝑆𝑆 (𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 = 0), if the discriminator 

predicts the image as 𝐼𝐼𝐻𝐻 with the probability of 𝑦𝑦𝑃𝑃𝑇𝑇𝑛𝑛𝑜𝑜, the binary cross-entropy loss 

(Aggarwal 2018) is defined by Equation 23. 

 
 𝐿𝐿binary = −�𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 log�𝑦𝑦𝑃𝑃𝑇𝑇𝑛𝑛𝑜𝑜� + (1 − 𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛) log�1 − 𝑦𝑦𝑃𝑃𝑇𝑇𝑛𝑛𝑜𝑜�� (23) 
 
 To calculate content loss, a VGG-19 model, without the FC layers, and pre-

trained on the ImageNet dataset, is used (Simonyan et al. 2014). Given the 𝐼𝐼𝑆𝑆 and 𝐼𝐼𝐻𝐻 

images, the network extracts the two-dimensional feature maps 𝐹𝐹𝑆𝑆 and 𝐹𝐹𝐻𝐻, respectively, 

each of size 𝑤𝑤𝐹𝐹 × ℎ𝐹𝐹 . The content loss is then defined as the Euclidean distance between 

these two feature maps (Ledig et al. 2017), as expressed in Equation 24. 

 
 𝐿𝐿content = 1

𝑤𝑤𝐹𝐹ℎ𝐹𝐹
∑ ∑ �𝐹𝐹𝑖𝑖,𝑗𝑗𝐻𝐻 − 𝐹𝐹𝑖𝑖,𝑗𝑗𝑆𝑆 �

2ℎ𝐹𝐹
𝑗𝑗=1

𝑤𝑤𝐹𝐹
𝑖𝑖=1  (24) 

 
 Finally, the perceptual loss is defined as the weighted average of content loss and 

binary cross-entropy loss (Ledig et al. 2017), as shown in Equation 25. 

 
 𝐿𝐿perceptual = 𝐿𝐿content + 10−3𝐿𝐿binary (25) 
 

Data pre-processing 

To prepare the data for training and testing the GAN model, colors are linearly 

scaled (a.k.a., normalized) across all images so that all values remain in the range of 
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[−1, +1]. Next, images are divided into two subsets of training and testing. Only the 

training images are randomly augmented, as shown in Figure 32. 

 

Figure 32. Preparation of training data through random augmentation. 
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First, randomly selected 50% of the original training images are flipped 

horizontally. Next, color-shifting is performed by multiplying the color of each pixel by 

a random value drawn from a normal distribution 𝑁𝑁(1.0, 0.1), and adding another 

random value drawn from 𝑁𝑁(0.0, 0.1) distribution. Following this step, 𝑚𝑚 × 𝑛𝑛 

rectangular tiles are generated for each image. For the images with an aspect ratio (i.e., 

the ratio between image width and its height) between 0.5 to 2.0, 𝑚𝑚 = 2 and 𝑛𝑛 = 2 are 

used. For other aspect ratios (i.e., <0.5 or >2.0), 2 rectangular tiles, stacked along the 

longer dimension of the image, are generated. Next, each tile is randomly scaled by 

multiplying its box size with a factor drawn from 𝑁𝑁(1.0, 0.25) distribution. Also, tile 

centers are further shifted along X and Y directions, each by a length from 

𝑁𝑁(1.0, 0.167) distribution, multiplied by their size along that direction. To note, the use 

of the normal distributions is based on Krizhevsky et al. (2017), however, the mean and 

standard deviation of these distributions are selected empirically by examining the 

dataset.  

 During the scaling and translation of the tile boxes, if any box is moved outside 

the image boundaries, it is trimmed so that the residual part remains inside the image. 

Next, the portion of the image within each tile box is cropped. Each cropped image is 

then resized to a 192×192 square-sized image which is treated as the high-resolution 

(ground-truth) image, or 𝐼𝐼𝐻𝐻. The 𝐼𝐼𝐻𝐻 is subsequently resized to 48×48 resolution which 

serves as the low-resolution version, or 𝐼𝐼𝐿𝐿, corresponding to the 𝐼𝐼𝐻𝐻. Finally, 𝐼𝐼𝐿𝐿 and 𝐼𝐼𝐻𝐻 

images are stacked in batches to allow the GPU to perform operations (e.g., 
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convolutions) on all the images in one batch simultaneously, rather than treating each 

image individually, thus leading to a significantly lower computational time. 

Model training 

As shown in Figure 33, at each iteration of training, a single batch of training 

images (𝐼𝐼𝐿𝐿) is first fed to the generator (𝐺𝐺) and outputs (𝐼𝐼𝑆𝑆) are recorded. Next, 

generated images (𝐼𝐼𝑆𝑆) and corresponding ground-truth images (𝐼𝐼𝐻𝐻) are assorted and fed 

to the discriminator (𝐷𝐷) to check if it can distinguish between them. This task is 

analogous to binary classification where the job of the discriminator is to classify any 

given image into two classes: 𝐼𝐼𝑆𝑆or 𝐼𝐼𝐻𝐻. Based on 𝐷𝐷’s output, the binary cross-entropy 

loss is calculated using Equation 23, and subsequently, its weights are updated using 

backpropagation (Aggarwal 2018).  

 

Figure 33. Schematic diagram of one iteration of training GAN models. 
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Next, the process is repeated with another batch of 𝐼𝐼𝐿𝐿 images and binary loss is 

calculated, but without updating 𝐷𝐷’s weights. This time, 𝐺𝐺’s outputs (𝐼𝐼𝑆𝑆) and 

corresponding ground-truths (𝐼𝐼𝐻𝐻) are also fed to the VGG-19 model and the content loss 

is calculated using Equation 24. Based on the VGG-19’s content loss and 𝐷𝐷’s binary 

loss, the perceptual loss is subsequently calculated using Equation 25, and 𝐺𝐺’s weights 

are updated. These sequential updates of 𝐷𝐷 and 𝐺𝐺 accomplish one iteration of training. 

The number of iterations in one epoch is equal to the number of training images divided 

by the number of images in one batch (a.k.a. batch size), rounded to the lowest integer. 

Model testing 

As mentioned earlier, two previously trained YOLO models – YOLO-BEW and 

YOLO- WHV – are tested on the low-resolution images (𝐼𝐼𝐿𝐿) and super-resolved images 

(𝐼𝐼𝑆𝑆) generated by the trained 𝐺𝐺 model. Each model takes a 416×416 resolution image 

and outputs bounding boxes for detected objects. To investigate the influence of 

different image resolutions, 𝐼𝐼𝐿𝐿 images are created by letterboxing the original testing 

images to sizes 52 × 52, 72 × 72, 96 × 96, 144 × 144, and 208 × 208 resolutions. 

Following this step, to test the performance of the object detection model on low-

resolution images (referred to as Model-LR), 𝐼𝐼𝐿𝐿 images are directly fed to the YOLO 

models and bounding boxes for detected objects are recorded. On the other hand, to test 

the performance of object detection model on GAN-improved images (referred to as 

Model-SR), first, each 𝐼𝐼𝐿𝐿 image is broken down to 2 × 2 tiles and stacked into one batch 

of 4 images. Next, the batch is given to the trained 𝐺𝐺 model to generate corresponding 4 
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super-resolved images, which are then tiled back to create the full image 𝐼𝐼𝑆𝑆. Finally, this 

𝐼𝐼𝑆𝑆 image is supplied to the YOLO models and detected bounding boxes are recorded. 

To evaluate the quality of the generated 𝐼𝐼𝑆𝑆 images, the content loss is calculated 

using  Equation 24 to determine how much useful content is missing in 𝐼𝐼𝑆𝑆 images 

compared to the 𝐼𝐼𝐻𝐻 (ground-truth) images (Ledig et al. 2017). The lower value of 

content loss implies higher perceptual similarities between the two images. Additionally, 

another metric, called BRISQUE, is used (Mittal et al. 2012) to evaluates an image as a 

whole and measure the possible loss of naturalness in it. Similar to content loss, the 

lower score of BRISQUE indicates better quality of the image. Finally, the performance 

of YOLO object detection models is measured by calculating AP for each class and 

taking the average of these, a.k.a., mAP (Nath et al. 2020). 

Results and Discussion 

Quality of the generated images 

Figure 34 shows the examples of 𝐼𝐼𝐿𝐿, 𝐼𝐼𝑆𝑆 and 𝐼𝐼𝐻𝐻 images and Table 4 lists the 

content loss and BRISQUE score of the 𝐼𝐼𝐿𝐿 and 𝐼𝐼𝑆𝑆 images for different resolutions. The 

Table shows that the higher the input resolution the lower the content loss. Intuitively, 

the higher resolution images preserve the contents of the original image. It can be seen 

that for 52 × 52, 72 × 72, and 96 × 96 images, 𝐼𝐼𝑆𝑆 images have lower content loss than 

the corresponding 𝐼𝐼𝐿𝐿 images, indicating that some of the contents lost in the 𝐼𝐼𝐿𝐿 images 

(when resized from 𝐼𝐼𝐻𝐻 images) are successfully retrieved by the GAN model in the 𝐼𝐼𝑆𝑆 

images. However, for higher resolutions, i.e., 144 × 144 and 208 × 208, 𝐼𝐼𝑳𝑳 images 

have slightly better contents than the 𝐼𝐼𝑆𝑆 images. One possible reason is that the GAN 
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model is trained on low-resolution (48 × 48) images and, therefore, performs better on 

those images. The BRISQUE scores in Table 4 show that 𝐼𝐼𝑆𝑆 images have smaller score 

(or distortion) and thus, higher naturalness compared to the 𝐼𝐼𝐿𝐿 images. Moreover, the 

score does not vary much with the change in input resolution, indicating a consistent 

level of naturalness in the 𝐼𝐼𝑆𝑆 images. 

 

Figure 34. Examples of low-resolution (𝑰𝑰𝑳𝑳), GAN-generated (𝑰𝑰𝑺𝑺), and high-
resolution (𝑰𝑰𝑯𝑯) images. 
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Table 4. Content loss and BRISQUE score of the low-resolution (𝑰𝑰𝑳𝑳) and GAN-
improved (𝑰𝑰𝑺𝑺) images (lower is better). 

Input Size Model Content Loss BRISQUE 

52×52 
𝑰𝑰𝑳𝑳 61.3 85.4 

𝑰𝑰𝑺𝑺 57.2 43.8 

72×72 
𝑰𝑰𝑳𝑳 51.0 75.0 

𝑰𝑰𝑺𝑺 48.5 45.1 

96×96 
𝑰𝑰𝑳𝑳 40.8 68.5 

𝑰𝑰𝑺𝑺 39.2 45.4 

144×144 
𝑰𝑰𝑳𝑳 23.7 65.0 

𝑰𝑰𝑺𝑺 26.4 45.7 

208×208 
𝑰𝑰𝑳𝑳 12.2 60.9 

𝑰𝑰𝑺𝑺 16.0 46.1 

 

Performance of object detection 

The mAP of the YOLO-v3-BEW and YOLO-v3- WHV models is illustrated in 

Figure 35(a) and Figure 35(b), respectively. The Figure shows that with the increase of 

input size, the performance of both models improves. Particularly, for lower resolution 

input images, the models perform remarkably better with the SR images than with the 

counterpart LR models. For example, for 52×52 images, compared to the LR images, the 

YOLO-v3-BEW and YOLO-v3- WHV models are 14% and 18% better, respectively, 

with the SR images. However, for higher resolution images, the difference in the 

performances for LR and SR images slightly drops. For example, for 208×208 images, 
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compared to the LR images, the YOLO-v3-BEW and YOLO-v3-WHV models are only 

4% and 5% better, respectively, with the SR images. It indicates that when the input 

resolution is lower, the GAN model can generate significantly better content-rich 

images. However, if the image resolution is already sufficiently good, it leaves less 

improvement room for the GAN model. Nonetheless, the results indicate that the GAN 

has a significant potential to enhance the quality of images which subsequently allows 

the YOLO models to perform better in detecting objects in the enhanced images. 

 

Figure 35. Performance of the YOLO-v3-BEW (a) and YOLO-v3-WHV (b) models 
with LR and SR input images. 
 

Example of object detection with GAN image 

Figure 36 shows an example of object detection by YOLO-WHV model for 𝐼𝐼𝐿𝐿 

and 𝐼𝐼𝑆𝑆 images with an input size 96×96. The Figure shows that for both images, workers 

𝑊𝑊1,  𝑊𝑊3, and 𝑊𝑊4, as well as their PPE components (hat and vest) are detected 

correctly. However, for worker 𝑊𝑊2, the model missed the hat and incorrectly detected 

the yellow bucket as a hat in 𝐼𝐼𝐿𝐿 image. Meanwhile, in the 𝐼𝐼𝑆𝑆 image, the model not only 
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did detect 𝑊𝑊2’s hat and vest correctly but also detected the vest with higher confidence 

(85%) compared to the 49% confidence in the corresponding detection in 𝐼𝐼𝐿𝐿 image. This 

example highlights some of the primary reasons why YOLO models achieve better mAP 

on the 𝐼𝐼𝑆𝑆 images than the counterpart 𝐼𝐼𝐿𝐿 images. 

 

Figure 36. An example of object detection by YOLO-WHV for low-resolution (𝑰𝑰𝑳𝑳) 
and GAN-generated (𝑰𝑰𝑺𝑺) images with an input size of 96×96. 
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CHAPTER VIII  

ACTIVE VISION SYSTEM 

 

As mentioned earlier, occlusion is one of the prevailing issues that hinder the 

performance of CV-based algorithms. This Chapter describes the details of an active 

vision system that allows a camera to autonomously navigate in an environment to 

collect occlusion-free images of the objects of interest. 

Intelligent Visual Data Acquisition 

Simulated environment 

In order to obtain occlusion-free images of a congested workspace (e.g., 

construction jobsite), one potential solution is to perform smart spatiotemporal 

navigation by mounting an ordinary camera on a UAV with AI capabilities, in the form 

of RL. The AI model in this scenario will allow the camera to adjust its position and 

angle of view for the best target visibility in the scene. To demonstrate the key steps of 

the proposed method, as shown in Figure 37, a single construction worker standing on 

the site is considered as the target object. The environment is created in Autodesk® 

Maya® using commercially available 3D models of a construction site and a worker. As 

shown in the Figure, the workspace is a 17.5×17.5 square foot area with the worker 

standing near the center. A 3D camera, which serves as the RL agent, is created and 

positioned at 27.5 feet away from the center of the site. This RL camera can move in a 

circular orbit of 55-foot diameter while maintaining its aim at the center of the site.  
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Figure 37. 3D model of the worker and the construction site for the RL experiment. 
 

The space, in this experiment is assumed to be discrete. At each time step, the RL 

camera can move 1° arc length. Therefore, there are a total of 360 positions (referred to 

as horizontal positions hereafter) where the camera can position itself. The camera can 

also move vertically. There are 8 discrete elevations on which the camera can fly. As 

shown in Figure 37, the lowest elevation is at 57 inches above the ground, and the 

remaining elevations are 9.5 inches apart from each other. Hereafter, these elevations are 
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referred to as vertical positions. The RL camera can take the “left” or “right” action to 

move to the next left or right horizontal position, respectively. Similarly, the RL camera 

can take “up” or “down” action to fly to the immediate upper and lower vertical position, 

respectively. The camera can also decide to “do nothing” and hover at its current 

position. 

Mathematical formulations 

Visibility 

The definition of visibility of a worker in an image can be derived based on the 

end-use of that image. In this Dissertation, it is assumed that the image will be used to 

train deep learning (DL) algorithms for object detection in support of tasks such as 

worker’s activity recognition (Nath et al. 2018; Han et al. 2013; Aggarwal et al. 2014; 

Zhao et al. 2012), or safety monitoring through continuous measurement of PPE 

compliance (Nath et al. 2020; Park et al. 2015; Fang et al. 2018). Previous studies have 

found that the performance of DL algorithms in extracting contextual information from 

images is positively correlated with the size of objects in that image (Nath et al. 2020; 

Redmon et al. 2018). Therefore, the visibility of an object is defined in terms of its 

footprint in the image, hereafter referred to as immersive visibility, and mathematically 

expressed as the ratio of the pixel area of the object to the total pixel area of the image, 

represented as a percentage. 

 Assume, a gray-scale image 𝑀𝑀worker of height 𝐻𝐻 and width 𝑊𝑊 represents the 

mask of the worker (as shown in Figure 38). A pixel 0 ≤ 𝑀𝑀worker(𝑖𝑖, 𝑜𝑜) ≤ 1 represents 

the pixel at position (𝑖𝑖, 𝑜𝑜). If this pixel belongs to the worker, 𝑀𝑀worker(𝑖𝑖, 𝑜𝑜) = 1, and if it 
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does not belong to the worker, 𝑀𝑀worker(𝑖𝑖, 𝑜𝑜) = 0. It must be noted that if antialiasing is 

used to increase the degree of realisticness of the image by smoothing edges on curved 

lines (Szeliski 2019), some pixels (that fall on object edges) may partially contain the 

worker, in which case 𝑀𝑀worker(𝑖𝑖, 𝑜𝑜) will contain fractional values between 0 and 1 

(Figure 38). With this notation, we can define the immersive visibility of a worker using 

Equation 26. For example, immersive visibility 𝑣𝑣𝑖𝑖 = 1.75% means that the worker 

covers 1.75% of the total pixels in the entire image. 

𝑣𝑣immersive(%) =
1
𝐻𝐻𝑊𝑊

��𝑀𝑀worker(𝑖𝑖, 𝑜𝑜)
𝑊𝑊

𝑗𝑗=1

𝐻𝐻

𝑖𝑖=1

∗ 100 (26) 

 

Figure 38. Mask of workers and antialiasing effect. 
 

Also, in some applications, it is important that certain parts of the object be 

completely (or sufficiently) visible to perform desired recognition task. For example, to 

recognize PPE attire (hard hat and safety vest) of a worker, the worker’s head and trunk 

must be completely visible to the camera. Therefore, visibility can also be defined in 
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terms of completeness (referred to as complete visibility hereafter). In this way, a body 

part (i.e., head, trunk, left hand, right hand, left leg, or right leg) is called completely 

visible in the image if no other object (even another body part) blocks that body part, 

i.e., in other words, there is no occlusion. Assume, as shown in Figure 39, a gray-scale 

image 𝑀𝑀current,𝑏𝑏
(𝑚𝑚)  represents the mask of body part 𝑜𝑜 of the worker in the current frame 

𝑚𝑚. Also, another gray-scale image 𝑀𝑀complete,𝑏𝑏
(𝑚𝑚)  represents the mask of body part 𝑜𝑜 in the 

same frame but in the absence of any occlusion (i.e., when the body part 𝑜𝑜 is completely 

visible). Mathematically, the complete visibility of body part 𝑜𝑜 is defined as shown in 

Equation 27, 

𝑣𝑣complete,𝑏𝑏
(𝑚𝑚) =

∑ ∑ 𝑀𝑀current,𝑏𝑏
(𝑚𝑚) (𝑖𝑖, 𝑜𝑜)𝑊𝑊

𝑗𝑗=1
𝐻𝐻
𝑖𝑖=1

∑ ∑ 𝑀𝑀complete,𝑏𝑏
(𝑚𝑚) (𝑖𝑖, 𝑜𝑜)𝑊𝑊

𝑗𝑗=1
𝐻𝐻
𝑖𝑖=1

 (27) 

 

Figure 39. Mask of different body parts of the worker. 
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Therefore, by definition, the maximum value of 𝑣𝑣complete,𝑏𝑏
(𝑚𝑚)  is 1, which indicates 

that body part 𝑜𝑜 is completely visible in frame 𝑚𝑚. If the camera moves in a circular orbit 

with the worker at the center (i.e., the worker is always at a constant distance from the 

camera), and there exists at least one point in the orbit from where the body part 𝑜𝑜 is 

completely visible, then, in the image captured from that point, the body part will have 

the maximum pixel area. Thus, for this special case, visibility 𝑣𝑣complete,𝑏𝑏
(𝑚𝑚)  is defined as 

shown in Equation 28, where 𝑀𝑀𝑏𝑏
(𝑚𝑚) represents the mask of body part 𝑜𝑜 in frame 𝑚𝑚, and 

𝑛𝑛 ∈ 𝐹𝐹 represents any frame 𝑛𝑛 in the set of all frames 𝐹𝐹. 

𝑣𝑣complete,𝑏𝑏
(𝑚𝑚) =

∑ ∑ 𝑀𝑀𝑏𝑏
(𝑚𝑚)(𝑖𝑖, 𝑜𝑜)𝑊𝑊

𝑗𝑗=1
𝐻𝐻
𝑖𝑖=1

max
𝑛𝑛∈𝐹𝐹

�∑ ∑ 𝑀𝑀𝑏𝑏
(𝑛𝑛)(𝑖𝑖, 𝑜𝑜)𝑊𝑊

𝑗𝑗=1
𝐻𝐻
𝑖𝑖=1 �

 (28) 

Once the complete visibility of 𝑘𝑘 body parts, 𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑘𝑘, are calculated, 

complete visibility of the worker, 𝑣𝑣complete
(𝑚𝑚) , can be obtained by taking 𝐿𝐿2 norm (a.k.a. 

Euclidean distance) of complete visibility of all body parts, as shown in Equation 29. 

The use of 𝐿𝐿2 norm instead of 𝐿𝐿1 norm (i.e., ∑ 𝑣𝑣complete,𝑏𝑏𝑖𝑖
(𝑚𝑚)𝑘𝑘

𝑖𝑖=1 ) is because 

mathematically, 𝐿𝐿2 norm offers better stability, particularly, in an optimization task. For 

example, between two points in a high-dimensional space, there might be multiple paths 

where 𝐿𝐿1 distance is minimum. However, there is only one path (i.e., a straight line 

connecting those two points) where 𝐿𝐿2 distance is minimum. 

𝑣𝑣complete
(𝑚𝑚) = ���𝑣𝑣complete,𝑏𝑏𝑖𝑖

(𝑚𝑚) �
2

𝑘𝑘

𝑖𝑖=1

 (29) 
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From Equation 29, it can be inferred that the maximum value of 𝑣𝑣𝑐𝑐 is √𝑘𝑘, 

corresponding to the case where all 𝑘𝑘 body parts of the worker are completely visible. It 

must be noted that while all body parts are considered to be equally important in 

Equation 29, it is possible to assign different weights 𝑤𝑤𝑖𝑖 (0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1) to each body part 

𝑜𝑜𝑖𝑖, as shown in Equation 30, depending on the end-use of the model. For example, to 

detect workers’ PPE attire, it is logical to give higher weights to the head and trunk 

compared to other body parts. 

𝑣𝑣complete
(𝑚𝑚) = ���𝑤𝑤𝑖𝑖 ⋅ 𝑣𝑣complete,𝑏𝑏𝑖𝑖

(𝑚𝑚) �
2

𝑘𝑘

𝑖𝑖=1

 (30) 

Reward and discount factor 

This Section describes the mathematical grounds for selecting the reward 

function and numerical value of discount factor 𝛾𝛾 to calculate Q-values using Equation 

31. First, assume the agent starts from state 𝑆𝑆0 and takes the action 𝑎𝑎 ∈

{up, down, left, right}. After time 𝑡𝑡, the agent reaches the terminal state and receives a 

reward 𝑟𝑟𝑡𝑡. For simplicity, it can be assumed that the rewards received in the intermediate 

states are negligible compared to the terminal reward. Therefore, Equation 31 can be 

deduced, as follows. 

𝑄𝑄(𝑆𝑆0,𝑎𝑎) = 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡 (31) 

 From Equation 31, it can be seen that the Q-value is directly proportional to the 

terminal reward. Since the goal of the agent is to maximize the Q-value, this implies that 

the agent will try to maximize the terminal reward. If the objective is to maximize the 
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worker’s visibility, a reasonable approach would be to set the terminal reward as the 

visibility of the worker at the terminal state. Assume, 𝑣𝑣𝑡𝑡 is the visibility (immersive or 

complete, based on the application) of worker at time 𝑡𝑡 and 𝑟𝑟𝑡𝑡 = 𝑣𝑣𝑡𝑡. Therefore, Equation 

31 can be rewritten as shown in Equation 32. 

𝑄𝑄(𝑆𝑆0,𝑎𝑎) = 𝛾𝛾𝑡𝑡𝑣𝑣𝑡𝑡 (32) 

Nonetheless, at state 𝑆𝑆0, the agent could have decided to do nothing which will 

terminate the episode and give a terminal reward 𝑟𝑟0 = 𝑣𝑣0, where 𝑣𝑣0 is the visibility 

(immersive or complete) of the worker at time 𝑡𝑡 = 0. This is expressed in Equation 33, 

𝑄𝑄(𝑆𝑆0, do nothing) = 𝑟𝑟0 = 𝑣𝑣0 (33) 

 At state 𝑆𝑆0, the agent will be motivated to select action 𝑎𝑎 instead of doing 

nothing only if 𝑄𝑄(𝑆𝑆0,𝑎𝑎) >  𝑄𝑄(𝑆𝑆0, do nothing), or 𝛾𝛾𝑡𝑡𝑣𝑣𝑡𝑡 > 𝑣𝑣0. By setting the two sides 

equal, an equation for 𝛾𝛾 can be derived, as shown in Equation 34. 

𝛾𝛾𝑡𝑡𝑣𝑣𝑡𝑡 = 𝑣𝑣0  

⟹ 𝛾𝛾 = �
𝑣𝑣𝑡𝑡
𝑣𝑣0
�
−1𝑡𝑡

 (34) 

 If 𝛾𝛾 < 1 and 𝑡𝑡 > 0, then 𝑣𝑣𝑡𝑡/𝑣𝑣0 > 1 indicating an improvement to visibility 

(immersive or complete). The mathematical relations, shown in Equations 32 through 

34, can be interpreted as follows: If the agent believes that the visibility of the worker 

can be improved by more than 𝑣𝑣𝑡𝑡/𝑣𝑣0 within 𝑡𝑡 timesteps, it will move in the direction 

that leads to visibility 𝑣𝑣𝑡𝑡; otherwise, it will stay put at its current position. Clearly, the 

value of 𝑣𝑣𝑡𝑡/𝑣𝑣0 and 𝑡𝑡 in Equation 34 can be manually set to calculate 𝛾𝛾. However, these 

values should be select based on the desired outcome. For example, selecting a 𝑣𝑣𝑡𝑡/𝑣𝑣0 
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close to 1 can make the agent too greedy (and perhaps, unstable), i.e., even for slight 

improvement, the camera might continuously change its position. On the other hand, a 

large 𝑣𝑣𝑡𝑡/𝑣𝑣0 value can make the agent too ambitious, i.e., the camera might not move 

unless there is a potential for huge improvement of visibility. If the value of 𝑡𝑡 is very 

small, the camera might be too impatient, i.e., if it cannot gain the desired improvement 

within a few steps, it might not do anything. In contrast, a large 𝑡𝑡 value can make the 

camera too patient and optimistic, i.e., it might continuously search for improvements 

forever. 

Model training 

The expectation is that a fully trained RL camera, if it determines that the worker 

is occluded by any object, would automatically adjust its position by moving around the 

site so that from the new position the worker is better visible to the camera. For this 

experiment, a DQN model (Géron 2019) (Figure 40) will be used which takes the RGB 

image captured by the camera (i.e., the state of the environment) and returns the Q-

values corresponding to each action – “left”, “right”, “up”, “down”, and “do nothing”. 

The maximum reward that can be achieved by taking an action at a particular time is 

called the Q-value of that action at that time (Géron 2019; Szepesvári 2010; Sutton et al. 

2018). Therefore, the camera would take the action which has the highest Q-value. 
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Figure 40. Layers and dimensions of the features in the DQN model. 
 

The reward function for this RL experiment is defined based on the visibility of 

the worker. However, the visibility of a worker is mathematically defined by the total 

percentage of the pixel area the worker occupies in the image. Therefore, by maximizing 

the reward, the RL camera would maximize the visibility of the worker.  

During the training, an ε-greedy policy is followed which balances the 

exploration versus exploitation dilemma (Géron 2019; Sutton et al. 2018) for the RL 

camera. Particularly, with a probability 𝜀𝜀, the RL camera will explore the construction 

site by taking randomly selected actions at different time steps. However, for the other 

times (with probability 1 − 𝜀𝜀), the RL camera will exploit its current knowledge about 

the construction site and will select the action that is known best to maximize the reward 

function. 

At each episode of training, the RL camera is started from a random position in 

the environment. Then, it is given a maximum number of time steps (a.k.a., time-out) to 

find a better position to view the worker. At the end of the episode, a reward is given 

based on the final visibility of the worker and the time taken to achieve this visibility. 
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Next, the weights of the DQN model are updated based on the reward value achieved. 

This process is iterated a number of times until the RL camera gets sufficiently trained 

so that it consistently achieves a high reward in each episode. For example, the 

preliminary results of the training are shown in Figure 41 (immersive visibility) and 

Figure 42 (complete visibility). The Figures show the average reward received in 1,000-

episode intervals. It can be seen that after ~200,000th episodes, the RL camera continues 

to achieve better rewards. 

 
Figure 41. Average reward received in 1,000-episode intervals during training with 
immersive visibility. 
 

 
Figure 42. Average reward received in 1,000-episode intervals during training with 
complete visibility. 
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Performance evaluation 

Figure 43 (immersive visibility) and Figure 44 (complete visibility) display 

initial visibility (𝑣𝑣𝑂𝑂) versus final visibility (𝑣𝑣𝑃𝑃) for different camera positions. The 45° 

equality line represents the positions where 𝑣𝑣𝑃𝑃 = 𝑣𝑣𝑂𝑂, i.e., the visibility of the worker 

remained the same.  

 

Figure 43. Improvement in immersive visibility for various initial positions of the 
camera. 
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In Figure 43, 96.77% of the points are on or above the equality line (i.e., 𝑣𝑣𝑃𝑃 ≥

𝑣𝑣𝑂𝑂) and 80.42% of the points are above the equality line (i.e., 𝑣𝑣𝑃𝑃 > 𝑣𝑣𝑂𝑂). Also, in Figure 

44, 89.41% of the points are on or above the equality line (i.e., 𝑣𝑣𝑃𝑃 ≥ 𝑣𝑣𝑂𝑂) and 72.19% of 

the points are above the equality line (i.e., 𝑣𝑣𝑃𝑃 > 𝑣𝑣𝑂𝑂). These results imply that in most of 

the times, the camera was successful in improving visibility. There are also a limited 

number of points below the equality line, i.e., 𝑣𝑣𝑃𝑃 < 𝑣𝑣𝑂𝑂, i.e., depicting cases where 

visibility was decreased as a result of camera movement. 

 

Figure 44. Improvement in complete visibility for various initial positions of the 
camera. 
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Surveillance of Warehouse Operations 

Environment 

In the construction domain, jobsite safety and accident prevention is one of the 

most active areas of research with real implications (OSHA 2019). Therefore, to 

complement the previous experiment, another scenario is created and tested, this time in 

a real-world setting, to find forklifts in an active warehouse environment.  Particularly, 

an RL agent with active vision capability is trained to locate and monitor forklifts in a 

dynamic space. The framework can be implemented in a jobsite for alerting workers of 

imminent contact collisions (e.g., due to the worker and forklift moving too close to each 

other, or the worker moving into the blind spot of the forklift). 

The environment is generated from a 360° video of warehouse operation, which 

is referred to as Pictor-360 video. Figure 45 shows a sample from the Pictor-360 video. 

As shown in the Figure, the frame encompasses a 360° panoramic view of a warehouse. 

The resolution of each frame is 5120×1080 from which a window of 420×420 portion is 

cropped to mimic the camera view of an autonomous drone. At each step, the camera 

can rotate 11.25° to left or right (i.e., rotation along yaw axis) and 5° in the up or down 

direction (i.e., rotation along pitch axis). These actions result in translating the 420×420 

window 160 pixels along the horizontal direction (when the drone moves left or right) 

and 60 pixels along the vertical direction (when the drone moves up or down), as shown 

in Figure 45. 
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Figure 45. A sample frame of the Pictor-360 video and extracted camera views by 
taking different actions. 
 

Model training 

In this experiment, a VGG-16 model is selected to extract features because of its 

high performance in classifying numerous real-world objects. The architecture of the 

model is shown in Figure 46. The VGG-16 network is amended by three convolution 

blocks, each consisting of a convolution with ELU activation function, followed by a 

max-pooling layer. Features are then flattened and connected with a dense layer with 64 
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nodes. The final output layer consists of 5 nodes to predict individual Q-values 

corresponding to the five actions. 

 

Figure 46. The architecture of the DQN model for the Pictor-360 experiment. 
 

Model training follows similar steps to the previous RL experiment. However, in 

this experiment, the reward is defined based on the IoU between the box of the forklifts 

and the viewing window of the RL camera. The hyperparameters for this experiment are 

listed in Table 5. The outcome of training is shown in Figure 47, which illustrates the 

average reward received by the RL agent in 1,000-episode intervals. It can be seen that 

the model achieves higher rewards with the progress of training. 
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Table 5. Hyperparameters for the Pictor-360 experiment. 
Category Hyperparameter Value 

Environment Number of states 268,416 

Number of actions 5 

Image resolution 420×420 

Time-out 100 

Reward Step reward 10×IoU 

Discount factor, 𝛾𝛾 0.995 

Policy 𝜀𝜀max  1 

𝜀𝜀min  0.1 

𝑛𝑛iteration  2,000,000 

Experience  Deque memory size 100,000 

Batch size 20 

Training Number of iterations 2,000,000 

Warm-up period 5,000 steps 

Target model update interval 5,000 steps 

Optimizer Adam 

Learning rate 0.0001 
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Figure 47. The average reward received in 1,000-episode intervals during training 
for the Pictor-360 experiment. 
 

Performance evaluation 

Figure 48 displays the initial IoU (𝐼𝐼𝑂𝑂) versus maximum IoU (𝐼𝐼𝑚𝑚) from testing the 

RL camera starting from randomly selected 100 different positions. The 45° equality line 

represents the positions where 𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑂𝑂, i.e., the visibility of the worker remained the 

same. In this experiment, all (100%) of the points are on or above the equality line (i.e., 

𝐼𝐼𝑚𝑚 ≥ 𝐼𝐼𝑂𝑂) and 42% of the points are above the equality line (i.e., 𝐼𝐼𝑚𝑚 > 𝐼𝐼𝑂𝑂). This means 

that in 42% of the times the RL agent found a position from where the forklift was more 

visible, indicating the effectiveness of the RL agent in successfully locating the object of 

interest in complex and dynamic real-world settings. It is worth noting that in the 

remaining 58% of cases, the visibility of the forklift was preserved at the same level, and 

in no cases, the movement of the RL agent resulted in lower visibility. 
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Figure 48. Improvement in IoU, for finding forklifts in the warehouse, for various 
initial positions of the camera.



 

 

CHAPTER IX  

CONCLUSION 

 

Summary and Discussion 

The research presented in this Dissertation aimed to advance the knowledge 

necessary for effectively implementing human-machine collaboration in the construction 

site. Particularly, the ultimate objective of this Dissertation was to design and evaluate 

human-centered AI-based solutions to fundamental challenges in construction including 

content and information retrieval, jobsite safety, and intelligent visual data acquisition. 

To achieve this overarching goal, first, fundamental methods most closely related to the 

scope of the research were thoroughly investigated in order to identify key domain-

specific challenges and potential solutions. Next, following a bottom-up approach, a host 

of AI-enabled computing and visual analytics were designed and tested with several 

large construction-related datasets that were generated as part of this research.  

In Chapter IV, in order to rapidly retrieve contents from a large volume of 

construction imagery, single-label classification was performed on the Pictor-v1.0 

dataset. Particularly, a VGG-16-based classifier model was trained and found to be 

~90% accurate in assigning single-label tags (i.e., building, equipment, worker) to 

individual images. However, when a single image contained multiple object types, the 

model showed a tendency to assign the class that had a larger visual footprint in the 

image, a behavior that might disagree with that of a human annotator in some cases. For 

example, the model classified an image as one that contained a building (appearing as a 
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large object but in the background) whereas a human annotator noticed a worker 

standing in the foreground as the main content of the image. 

Therefore, in Chapter IV, multi-label classification was performed on the Pictor-

v1.1 dataset where another VGG-16-based classifier assigned multiple labels (i.e., 

building, equipment, or worker) to each individual image if those objects were present 

and visible. Although the model was 86.0% accurate on average, it could only indicate 

the presence of an object without precisely locating that object within the coordinate 

frame of the image. Therefore, in Chapter V, object detection was performed to localize 

the objects of interest and classify them at the same time. Particularly, YOLO algorithm 

was used given its known ability to perform real-time object detection without 

noticeably compromising accuracy. Two variants of the YOLO algorithm, YOLO-v2 

and -v3, were applied to various combinations (crowdsourced, web mined, and 

combined) of the Pictor-v2 dataset. To note, the crowdsourced and web mined portions 

of the dataset were visually distinguishable; while crowdsourced images were more 

challenging and less structured, web mined images were cleaner and more structured. It 

was found that the YOLO models perform best when trained and tested on images from 

the same category (crowdsourced, web mined). However, the performance increased 

when the models were trained with a combination of crowdsourced and web mined 

images. This finding indicates that using diverse images for training helps the model 

learn generalizable features which allows it to perform better in object detection. It was 

also found that, for any combination of training and testing images, the YOLO-v3 model 

performs better than the YOLO-v2 model, a behavior that can be attributed to the three 
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output layers of the YOLO-v3 model that are specifically designed for detecting three 

different object sizes – large, medium, and small. This also indicates that the size of the 

object is one of the important factors that can influence the performance of object 

detection models. To investigate this further, the YOLO-v3 model was tested for objects 

under various visual conditions, e.g., if the object was large or small, crowded or not, 

and well-lit or poorly lit. Results showed that the model tends to perform better when the 

object is large, not crowded, and well-lit. Particularly, for detecting workers, the model 

achieved near-human level precision and recall (~98%) when the worker appeared large 

in an image. 

Motivated by the satisfactory performance of the YOLO-v3 model for general 

applications, Chapter VI used this model in a more specific task of verifying workers’ 

compliance with PPE requirements. Particularly, three approaches were proposed. In the 

first approach, worker, hat, and vest objects were detected separately, resulting in 81.2% 

mean average precision (mAP). The second approach achieved 72.3% mAP in detecting 

the worker based on their PPE attire – W (no hat or vest), WH (with only hat), WV (with 

only vest), and WHV (with both hat and vest). The third approach only detected 

workers, however, with 85.6% mAP. In this case, the detected portion of the image 

(containing the worker object) was subsequently cropped and forwarded to another 

algorithm to perform PPE detection. Applying the VGG-16, ResNet-50, and Xception 

classifier models to the cropped worker images yielded 78.2%, 77.8%, and 76.8% 

accuracy in detecting PPE attire, respectively. Next, a Bayesian scheme was used to 

combine the individual detections from each classifier and resulted in improved 
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performance (67.9% mAP as opposed to 62.6%, 64.2% and 63.2% mAPs for VGG-16, 

ResNet-50, and Xception models, respectively) in classifying the input image into W, 

WH, WV, and WHV. While these models were able to detect the presence of PPE 

components, another technique, based on PRID was also investigated to detect the color 

of the PPE components. By comparing the query image of a worker (with unknown 

PPE) with a gallery of images of workers (with known PPE), the method was able to 

infer the PPE attire of the query worker from the PPE attire of the best-matched (i.e. 

most similar) gallery worker. The model achieved 90% accuracy in determining the PPE 

attire of workers, and 77% accuracy in recognizing the color of each PPE component. 

While the abovementioned methods demonstrated promising results in support of 

building autonomous systems for monitoring crew safety and productivity, all could be 

in vain if the images were of low quality. Therefore, in Chapter VII, a GAN model was 

trained and tested on the combination of Pictor-v2 and -v3 datasets to enhance image 

quality. Next, previously trained YOLO-v3 models were applied to GAN-improved 

images. It is found that the YOLO-v3 model, trained for detecting buildings, equipment, 

and worker, performed 4%-14% better with GAN-improved images compared to the 

low-quality counterparts. Similarly, the YOLO-v3 model, trained for detecting worker, 

hat, and vest, performed 5%-18% better with GAN-improved images in contrast to low-

quality images. 

Finally, in Chapter VIII, an intelligent vision-based navigation technique was 

designed to help a digital capture device (i.e., camera) obtain occlusion-free views of 

objects of interest (e.g., worker) in an environment. Two sets of experiments were 
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conducted to quantify and analyze the capability of a drone-mounted (flying) camera in 

performing an active vision task first in a simulated 3D model of a construction 

workspace, and then in the 360-degree video of an active warehouse operation. Through 

the application of RL, the mathematical foundation of the reward function, and 

systematic training of a DQN, and the approach for measuring the performance of the 

algorithm were explained. It was found that in both experiments the RL model learned to 

perform the intended task by improving the received reward during training. 

Concluding Remarks 

Construction is one of the largest global industries with a major impact on the 

global economy (BLS 2019). However, it is also one of the least digitalized work 

domains with a substantial portion of the industry (mostly, the small businesses) 

reluctant to adopt new technologies (Peltier et al. 2012; Gandhi et al. 2016). The most 

direct consequence of this lack of technology integration is that a vast majority (almost 

70%) of construction projects fail to finish within the estimated time and budget. Also, 

numbers show that about 37% of the assumptions made during the planning phase turn 

out to be untrue when the actual execution starts (Mieritz 2012). Moreover, frequent 

illnesses, injuries, and fatalities have marked construction as one of the most hazardous 

occupations in the world (BLS 2014). Therefore, there is an urgent need for a disruption 

in this industry to transform the current practices by providing the workforce with better 

means (informed by operations-level data) to perform the job faster, safer, and with 

better quality. Market research and technology trends have shown that new technologies 

such as BIM, 3D printing, VR/AR, IoT, and robotics – that enable automation in 
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construction – have the potential to revolutionize the industry and improve productivity 

and safety by a significant margin (Manyika et al. 2017). Particularly, researchers and 

practitioners are foreseeing that human-machine collaboration in the construction site 

holds the key to improving safety, productivity, quality of work, and return on 

investment (NSF 2020; Autodesk 2020). Therefore, this Dissertation was an attempt to 

lay out the theoretical foundations of several AI-based applications that will enable and 

promote successful human-machine partnership in construction. In the future, the 

research presented in this Dissertation can be further extended, for example, by 

contributing to the design of autonomous robots with situation awareness for performing 

complex construction tasks. These robots can be trained through imitation learning 

where they learn an intricate task simply by observing the demonstration given by a 

human expert (Billard et al. 2011; Bonardi et al. 2020; Finn et al. 2017). Besides 

developing theoretical and practical models for construction robotics, it is also equally 

important to enable trust in AI and reskill the current workforce to prepare them for 

adopting new technologies (National Academies 2017; Siau et al. 2018). Toward this 

goal, by enabling and promoting a synergic relationship between the AI-powered 

machines and their human partners, a safer and more productive construction workplace 

can be established that can lead to positive socio-economic outcomes for all 

stakeholders. 
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