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ABSTRACT

Before humanity can safely venture away from their terrestrial roots, robotic probes will be

required to survey distant planets and moons. The current methodology for interfacing with rovers

on the Moon and Mars is through teleoperated transmissions, whose reliability comes at the ex-

pense of inherent communication delays between the transmitter and the receiver. As distances

between space assets increase, which implies more pronounced time delays, so too will the need

for offloading requirements in a way that promotes navigational independence. This thesis presents

a novel approach to autonomous vehicle localization using celestial observations (e.g., Sun, stars,

and the visible planets) and a reference measurement of the unit gravity vector provided by a

higher-fidelity planetary shape model than the traditional axial-symmetric ellipsoid, i.e., the exact

direction provided by the geoid. In doing so, the mapping between local and body reference frames

was improved and initial position errors were mitigated by two or three orders of magnitude. This

work also includes a literature review on topics such as space vehicle localization, optimal attitude

estimation, navigation filtering, and measurement data processing/fitting using two-dimensional

orthogonal polynomials, as well as derivations for a multivariate nonlinear least-squares technique

and inclinometer covariance matrix with extended Kalman filter. Finally, a full-system sensitiv-

ity analysis was conducted using two test data sets, namely, the Himalayan mountain range on

Earth and the Olympus Mons volcano on Mars, whose markedly different topologies were used to

characterize the algorithm’s performance.
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1. INTRODUCTION

1.1 Literature Review

Modern Earth-based autonomous navigation and localization is made possible by the Global

Positioning System (GPS), which provides measurement accuracy of 3.9 meters vertically and 1.9

meters horizontally with 95% confidence [2]. While this accuracy is sufficient for the majority

of human operations on Earth, ground-based extraterrestrial applications will require even greater

precision in order to facilitate autonomous roving and other surface activities on distant planets and

moons. The accuracy of GPS could be drastically improved using dual-frequency receivers (com-

monly found in military applications), which enable real-time measurements on the order of a few

centimeters. The extent to which this system is used to support autonomous systems is demon-

strated in the consumer smartphone, which has been shown to obtain position estimates within 4.9

meters of the user’s actual location [3]. While this system enables wide-scale autonomy, it relies

heavily on its network of pre-positioned satellites to triangulate (and track over time) an asset’s

global position. These networks require years of planning and billions of dollars to construct,

which currently makes the technology infeasible for applications away from Earth. Therefore, it is

clear that the success of future space operations will require a technology solution that promotes

navigational independence from GPS (or GPS-spoofed) environments.

Currently, navigation throughout the Solar System is supported by a network of relay satel-

lites that fall under the umbrella of the National Aeronautics and Space Administration’s (NASA)

Space Communications and Navigation (SCaN) network [4], which includes the Near Earth Net-

work (NEN), Space Network (SN) and Deep Space Network (DSN). This architecture is capable of

providing position measurements through sequential ranging and delta differential one-way rang-

ing (Delta DOR) [5] with an accuracy of 2.5 nrad, which corresponds to position errors between

136 meters and 1 kilometer for surface assets on Mars, depending on the relative distance between

the transmitter and receiver [5, 6]. For Martian rovers, two other state localization techniques have
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been demonstrated to date. First, the VIPER algorithm was developed and analyzed with data

from NASA’s Mars Exploration Rover PANCAM [7]. This technique performed a state estimate

by matching the rover’s location with respect to the local horizon, as measured by optical sensors,

to known surface digital elevation models. In general, this technique was able to determine Spirit’s

landing site with an accuracy of 51 meters, and Opportunity’s landing site with an accuracy of 27

meters. The other localization technique leveraged orbital imagery, more specifically, the HiRISE

Orthoimage-Based Rover Localization, to produce position estimates with errors as small as 3.5

meters [8, 9]. NASA’s extensive probing of the Martian surface has provided a test-bed for other

ground-based localization techniques as well. For instance, the Mars Pathfinder mission used a

heading sensor and wheeler encoder to estimate changes in a vehicle’s localized position [10, 11];

however, it also included an over-reliance on precision initialization. The Mars Exploration Rovers,

on the other hand, used inertial measurement units (IMU) and mobility motor encoder information,

coupled with Sun observations, to refine its state measurements [12, 13, 14, 15]. Another method

leveraged visual odometry, where the motion of the vehicle is estimated by tracking terrain fea-

tures between two pairs of stereo images [16]. Regardless of approach, these techniques are highly

dependent on initial localization and are more specifically designed for relative navigation systems

(as opposed to inertial). Due to the dependencies on precision initialization and/or orbital asset in-

terfacing to define inertial positions, several other techniques have attempted to leverage celestial

measurements [17, 18, 19, 20, 21]. In general, these methods utilize Sun, star, and planet imagery,

coupled with measurements from an IMU or inclinometer array, to determine ground-based as-

set positions. Of all the celestial measurement-based approaches, the Stellar Positioning System

(SPS) [22, 23] provides one of the most succinct and thorough investigations of this approach,

and was used as the general framework for demonstrating the effectiveness of the geoid correction

algorithm that will be introduced in Chapter 3.

1.2 Reference Frames

The orthonormal reference frame is fundamental for coordinatizing points in space with respect

to a reference point, which is typically set as the origin of the frame. For the purposes of this work,
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five unique frames of reference are formalized. A quick summary of definitions can be found in

Table 1.1 below, while an expanded version is provided in the following bulleted list.

Name Notation x-axis y-axis z-axis

Earth-Centered Inertial (ECI) i Vernal Equinox - Spin Axis
Earth-Centered Earth-Fixed (ECEF) f Prime Meridian - Spin Axis

Local (ENU) ` Local East Local North -
Inclinometer (Body) b - Vehicle Heading Outward Normal

Camera c - Vehicle Heading Optical Axis

Table 1.1: Reference Frame Summary

• Earth-Centered Inertial (ECI) reference frame, i. The axes of the ECI are right-handed

and fixed with respect to their origin at Earth’s center of mass (Fig. 1.1). Neglecting the

acceleration of Earth’s motion about the Sun, the ECI is considered to be inertially fixed with

respect to the stars. The xy-plane is coincident with Earth’s equatorial plane, and the z-axis

points to Earth’s axis of rotation (i.e., the North Pole) and is orthogonal to the mean equator

of epoch J2000. The x-axis points to the the vernal equinox where the Earth’s equatorial

plane intersects the ecliptic plane.

• Earth-Centered Earth-Fixed (ECEF) reference frame, f . The axes of the ECEF are right-

handed and centered at their origin, Earth’s center of mass (Fig. 1.2). The x and y-axes of the

ECEF, which lie on Earth’s equatorial plane, rotate in time with respect to Earth’s spin axis.

A point can be coordinatized with respect to the ECEF using either a Cartesian, {x, y, z},

or geodetic, {ϕ, λ, h}, representation. In the geodetic coordinate set, h is the distance above

the reference spheroid, measured along the local normal at a given point. The x-axis of the

ECEF points to the intersection of Earth’s equator and prime meridian, i.e., the point of 0◦

latitude and longitude. The y-axis points to 0◦ latitude and 90◦ longitude. The z-axis points

to 90◦ latitude, which is coincident with Earth’s rotational axis.
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Figure 1.1: Earth-Centered Inertial Reference Frame

Figure 1.2: Earth-Centered Earth-Fixed Reference Frame

• Local (ENU) reference frame, `. The axes of the local (geographic) reference frame are

right-handed and centered at their origin, the point on Earth’s surface at which the vehicle is

located (Fig. 1.3). The orientation of axes is problem specific. For the purposes of this work,

it is such that the x-axis points to the East, the y-axis points to the North, and the z-axis

points vertically upward (i.e., ENU). By orienting the local reference frame in this way, the

zenith direction of the frame would be co-linear with the direction of the local unit gravity

vector, ĝ`, when considering a perfectly spherical celestial body with homogeneous density,
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and the local level plane would be orthogonal to ĝ`.

Figure 1.3: Local (East-North-Up) Reference Frame

• Inclinometer (body) reference frame, b. The axes of the inclinometer (body) reference

frame are right-handed and centered at their origin, the vehicle’s center of mass (Fig. 1.4).

The xy-plane of this reference frame is defined by a pair of inclination sensors that are rigidly

mounted to a level platform onboard the vehicle. The inclination sensors are oriented such

that they are nearly perpendicular to each other (the exactness of which can be determined

through laboratory calibration prior to the mission date), with the y-axis pointing in the

heading direction of the vehicle. Assuming a small misalignment angle, ε, exists between

the mounted inclinometer set, the orientation of one of the in-plane reference axes must be

written as a function of ε. For instance,

xb =


1

0

0

→ yb =


sin ε

cos ε

0

→ zb =
xb × yb
‖xb × yb‖2

=
1√

cos2 ε− sin2 ε


0

− sin ε

cos ε

 .

(1.1)
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Figure 1.4: Inclinometer (Body)/Camera Reference Frames

• Camera reference frame, c. The axes of the camera reference frame are right-handed and

centered at their origin, the center of mass of a sensor platter that is rigidly mounted to

the vehicle (Fig. 1.4). The xy-plane of this reference frame is defined by the idealized

orthogonal mount of the inclinometer set to a level platform onboard the vehicle, such that

xc ⊥ yc. The optical camera is assumed to be rigidly mounted to the level platform such that

the aperture points upward. In other words, the zenith direction of this frame of reference,

zc, points to the camera’s optical axis.

1.3 Transformation Matrices

We also introduce the following five transformation matrices, which are ultimately used

to relate measurement vectors taken in the inclinometer and camera reference frames with

reference vectors defined in the local and inertial reference frames. Here, we standardize

subscript notation such that the new reference frame is introduced first, followed by the

old. For example, CA,B (or more explicitly, CA←B) denotes the transformation of a point

in reference frame B to reference frame A. Furthermore, whenever reference is made to a

specific element of a transformation matrix, the indexing is defined such that the row number

preceeds the column number, i.e., CA,B[1, 2] would be the element located in the first row

and second column of CA,B.
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• Inertial-to-fixed transformation matrix, Cf,i. This transformation matrix accounts for a

celestial body’s near-constant rotation rate about its polar axis, which affects the pointing

direction of the ECEF’s x and y-axes over time (Fig. 1.5). The rotation rates for bodies of

interest, namely, Earth, Mars, and the Moon, are provided in Appendix A.

Figure 1.5: Description of ECI/ECEF Relationship

By neglecting higher order perturbations, such as nutation and precession of the Earth’s spin

axis, we have

Cf,i(t) =


cos(αg0 + ωe(t− t0)) − sin(αg0 + ωe(t− t0)) 0

sin(αg0 + ωe(t− t0)) cos(αg0 + ωe(t− t0)) 0

0 0 1

 ,

where αg0 is the longitude of Greenwich at the reference time, t0, and t is the current time.

• Inertial-to-camera transformation matrix, Cc,i. This transformation matrix is estimated

by mapping unit measurement vectors provided in the camera reference frame with their

known inertial counterparts. Here, a method for determining the best estimate of the atti-

tude matrix is required. While a number of techniques exist, this work employs Davenport’s

q-method to find the unit quaternion that minimizes Wahba’s loss function. While the at-
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titude quaternion, qc,i, provides a sufficient description of the relationship between inertial

and camera reference frames, the attitude matrix can be derived from the following transfor-

mation given a unit quaternion of the form q = [qw, qv]
T = [qw, qx, qy, qz]

T,

Cc,i(q) =


q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qwqy + qxqz)

2(qxqy + qwqz) q2
w − q2

x + q2
y − q2

z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qwqx + qyqz) q2
w − q2

x − q2
y + q2

z

 .

• Fixed-to-local transformation matrix, C`,f . This transformation matrix is used to localize

a point on the Earth’s surface with respect to Earth’s center of mass, i.e., the origin of the

ECEF. By considering two angles, one in-plane (longitude) and one out-of-plane (latitude),

we can write the local reference frame with respect to the ECEF as a two-rotation Euler

sequence (Fig. 1.6).

Figure 1.6: Two-Rotation Sequence of the ECEF

The specific orientation of the local reference frame axes is problem specific. For the pur-

poses of this work, an "East-North-Up" (ENU) orientation of the local reference frame was

required. Using a permutation matrix, P , we pre-multiply the Euler sequence such that the
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intended local reference frame axes are obtained (Fig. 1.7). Thus, we have

C`,f (ϕ, λ) = P Ry′f
(−ϕ) RZf

(λ)

=


0 1 0

0 0 1

1 0 0




cos(−ϕ) 0 − sin(−ϕ)

0 1 0

sin(−ϕ) 0 cos(−ϕ)




cosλ sinλ 0

− sinλ cosλ 0

0 0 1

 .

If we consider the negative angle identities for sine and cosine, sin(−θ) = − sin θ and

cos(−θ) = cos θ, we have

C`,f (ϕ, λ) =


0 1 0

0 0 1

1 0 0




cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ




cosλ sinλ 0

− sinλ cosλ 0

0 0 1



=


0 1 0

0 0 1

1 0 0




cosϕ cosλ cosϕ sinλ sinϕ

− sinλ cosλ 0

− sinϕ cosλ − sinϕ sinλ cosϕ



=


− sinλ cosλ 0

− sinϕ cosλ − sinϕ sinλ cosϕ

cosϕ cosλ cosϕ sinλ sinϕ

 .

(1.2)

The vehicle’s latitude and longitude can be extracted from Eq. (1.2) using

tanϕ = −C`,f [2, 1]

C`,f [3, 1]
=⇒ ϕ = − arctan2 (C`,f [2, 1], C`,f [3, 1])

tanλ =
C`,f [3, 2]

C`,f [3, 1]
=⇒ λ = arctan2 (C`,f [3, 2], C`,f [3, 1])

• Inclinometer-to-camera transformation matrix, Cc,b. By revisiting Fig. 1.4, it is trivial to

write this transformation matrix as a function of the mounting misalignment angle, ε, which

we assume to be statistically quantified through laboratory calibration. Using the vector

9



Figure 1.7: Description of ECEF/ENU Relationship

definitions of the inclinometer (body) reference axes with respect to the camera reference

axes provided by Eq. (1.1), we have

Cc,b(ε) =


...

...
...

xb yb zb
...

...
...

 =


1 sin ε 0

0 cos ε − sin ε√
cos2 ε−sin2 ε

0 0 cos ε√
cos2 ε−sin2 ε

 .

• Inclinometer-to-local transformation matrix, C`,b. As shown in Fig. 1.8, this transforma-

tion matrix can be derived from the previous four, such that

C`,b = C`,f (ϕ, λ) Cf,i(t) C
T
c,i(q) Cc,b(ε).

Alternatively, C`,b can be written as a function of the inclination sensor measurement angles,

αx and αy, and the body azimuth angle, γ, which we define as the angular deviation between

the y-axes of the local (N`) and inclinometer (yb) reference frames, after projecting yb onto

the local level plane,

γ = arccos (N T
` · yb,proj.) .

The inclination angle definitions, αx and αy, are a more realistic representation of the raw
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Figure 1.8: Reference Frame Relationships

sensor data output of a typical COTS inclinometer. For analytical purposes, however, we also

introduce a second definition of the inclination angles, ϑx and ϑy, which are used to perform

a proper covariance analysis. As we will show in a later section, the covariance derivation

requires that we re-frame the inclination angle definitions in order to avoid null values of

the expectation operator associated with the “odd" sine function. Fig. 1.9 highlights the

Figure 1.9: Description of ENU/Inclinometer (Body) Reference Frame Relationship
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relationship between inclination angle definitions, in particular,

θx =
π

2
− αx and θy =

π

2
− αy.

We note here that a positive deflection angle with respect to either E` or N` describes the

body reference frame tilting toward local zenith. This is a consequential definition, as we can

now derive C`,b as a three-rotation Euler sequence that assumes positive counterclockwise

rotations about each reference axis, given by

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 , Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .
(1.3)
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From Eq. (1.3), and with Fig. 1.9 in mind, we have

C`,b = RU`
(γ) RN`

(−αx) RE`
(αy)

=


cos γ − sin γ 0

sin γ cos γ 0

0 0 1




cos(−αx) 0 sin(−αx)

0 1 0

− sin(−αx) 0 cos(−αx)




1 0 0

0 cosαy − sinαy

0 sinαy cosαy



=


cos γ − sin γ 0

sin γ cos γ 0

0 0 1




cosαx 0 − sinαx

0 1 0

sinαx 0 cosαx




1 0 0

0 cosαy − sinαy

0 sinαy cosαy



=


cos γ − sin γ 0

sin γ cos γ 0

0 0 1




cosαx − sinαx sinαy − sinαx cosαy

0 cosαy − sinαy

sinαx cosαx sinαy cosαx cosαy



=


cos γ cosαx − cos γ sinαx sinαy − sin γ cosαy − cos γ sinαx cosαy + sin γ sinαy

sin γ cosαx − sin γ sinαx sinαy + cos γ cosαy − sin γ sinαx cosαy − cos γ sinαy

sinαx cosαx sinαy cosαx cosαy

 .
(1.4)

The tilt angles can be extracted from Eq. (1.4) using

αx = arcsin (C`,b[3, 1]) and αy = arctan2 (C`,b[3, 2], C`,b[3, 3]) ,

along with the body azimuth angle,

γ = arctan2 (C`,b[2, 1], C`,b[1, 1]) .

1.4 Optimal Attitude Estimation

Consider a finite set of unit vectors, rk, where k = 1, · · · , N , that exist in a known frame

of reference. Now, suppose the same unit vectors are measured in a second frame, e.g., the body
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reference frame of a vehicle, bk, where k = 1, · · · , N . Then, the vehicle’s orientation with respect

to the known reference frame can be described by an orthogonal matrix C, with detC = +1, that

satisfies

bk = Crk.

Determination of the optimal attitude matrix for a given set of measurement vectors has been a

topic of research for decades since Grace Wahba [24] first posed the problem using a simplification

of the following least-squares loss function,

L(C) =
1

2

N∑
k=1

wk ‖bk − C rk‖2
2 .

Here, ‖ · ‖2 denotes the Euclidean norm operator, wk is a scalar weight associated with the kth

measurement vector, and C is the attitude matrix that minimizes L. Throughout this work, we

estimate the vehicle’s attitude, Cc,i, from Wahba’s problem using Paul Davenport’s q-method [25],

which is summarized in the following sentences. First, the known inertial position vectors of the

Sun, stars, and visible planets are concatenated into a matrix, R, such as

R = [
√
w1 r1,

√
w2 r2,

√
w3 r3,

√
w4 r4,

√
w5 r5] ,

while their observed counterparts, provided by the onboard imager, are arranged in a separate

matrix, B, such as

B = [
√
w1 b1,

√
w2 b2,

√
w3 b3,

√
w4 b4,

√
w5 b5] .

Davenport’s q-method parameterizes the attitude matrix as a unit quaternion such that the eigen-

vector associated with the largest eigenvalue of the matrix K is precisely the optimal attitude

quaternion, i.e.,

Kqopt = λmaxqopt,
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where

K =

Q− σI3×3 Z T

Z σ

 .
Here, I3×3 is the identity matrix. The remaining terms in K are defined by



Q = A+ A T

Z =

[
A[2, 3]− A[3, 2] A[3, 1]− A[1, 3] A[1, 2]− A[2, 1]

]
σ = tr(A)

where tr (·) denotes the matrix trace operator and A is the attitude profile matrix, given by

A = BR T. (1.5)

1.5 Navigation Filtering

The field of guidance, navigation, and control in aerospace engineering leans heavily on linear

estimation theory to model the time evolved behavior of nonlinear systems. The Extended Kalman

Filter (EKF) provides a mathematical framework to achieve this, as was first demonstrated in the

Apollo program, by integrating sensor measurement data (when available) such that uncertainties

in the dynamics model of the vehicle are mitigated. It should be emphasized here that the EKF

assumes a first-order linear approximation of both the nonlinear state and measurement equations

in order to propagate the entire system forward in time. Given that this is a simplification of the

true dynamics, the filter can drift over time when measurements are sparse or parameters such as

the covariance matrices are not properly tuned. In general, the discrete EKF can be summarized in

two steps:

1. Predict. During the prediction step, the EKF propagates the dynamics forward in time by

passing nonlinear state information through a linearization function, f , subject to additive

zero-mean Gaussian noise, w, whose variance, σ2
w, is known. In doing so, the best estimate
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of the state is given by

x̂k = f(x̂k−1) + wk−1, w ∼ N (0, σ2
w).

Errors associated with the linearization of the state and any unfiltered noise are collected

in a covariance matrix, P , which is effectively a measurement of the filter’s confidence in

its estimate of the state. The covariance matrix is also propagated forward in time using a

linearization of the dynamical model as defined by a Jacobian matrix of partial derivatives,

F , and an uncertainty matrix, Q, whose diagonal elements are the variances associated with

each element of the state vector,

Pk = Fk Pk−1 F
T
k +Qk, Fk =

∂f

∂x

∣∣∣∣
x=x̂k−1

.

2. Update. The navigation filter’s ability to maintain reasonable estimates of the state over time

depends on the availability and accuracy of measurement data. When an onboard sensor

returns a measurement of the state (the frequency of which is constrained by the sampling

rate of the device), the EKF update step is initiated in order to temper the covariance error of

the state model that has accrued over a propagation period. This is achieved by minimizing

the difference between a measurement model, z, (subject to additive zero-mean Gaussian

noise, v, with known variance, σ2
v) and a linearized measurement model provided by the best

estimate of the state, h(x̂). More explicitly, the measurement model is given by

zk = h(x̂k) + νk, νk ∼ N
(
0, σ2

v

)
.

which is used, along with the Kalman gain defined by a Jacobian matrix of partial derivatives

(H) and an uncertainty matrix (R) whose diagonal elements are the variances associated with
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each element of the measurement vector,

Kk = Pk−1H
T
k (Hk Pk−1H

T
k +Rk)

−1 , Hk =
∂h

∂x

∣∣∣∣
x=x̂k−1

,

to update the state estimate and covariance matrix as follows,


x̂k = x̂k−1 +Kk(zk − h(x̂k−1))

Pk = (I −KkHk) Pk−1

.
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2. MEASUREMENT DATA PROCESSING

2.1 Introduction

Numerical simulations provide a means for demonstrating an algorithm’s capabilities and defin-

ing operational limits through statistical analyses. This procedure typically involves the preparation

and processing of reference data sets, which are used to stress test the algorithm using a random

sampling approach such as the Monte Carlo method. This work utilized several data sets, including

the Hipparcos star catalog, SPICE data kernels, and binary files containing two-component vertical

deflection data for Earth (EGM2008), Moon (LGM2011), and Mars (MGM2011). The following

sections describe in greater detail how each data set was utilized within simulations.

2.2 Sun

Ephemerides for the Sun, along with the visible planets, were generated in the ECI from data

kernels provided by NASA SPICE [26] using a Pythonic wrapper, SpiceyPy [27]. In the ECI

reference frame, the unit position vector of the Sun is defined as ŝi. A Sun sensor can be used to

measure the Sun’s unit position vector in the camera reference frame, s̃c. From here, a relationship

is established between inertial unit reference vectors and camera measured unit vectors through an

attitude matrix,

s̃c = Cc,i ŝi

which is simply a restatement of Wahba’s problem, as described in Section 1.2.

2.3 Stars

Modern star trackers have earned a reputation for being the first-choice of space mission design-

ers who require precision attitude estimates. From a mechanical perspective, both the Sun sensor

and the star tracker can be considered digital cameras that measure point light sources within their

fields-of-view (Fig. 2.1). Photons emitted from visible light sources occupying three-dimensional

space are mapped onto a two-dimensional image plane that is populated by either CCD (charge-
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coupled device) or CMOS (complementary metal-oxide semiconductor) pixels, which convert pho-

tons to electrons in order to characterize individual pixel intensities. After passing through the cam-

era’s open aperture, wherein the trajectory of incoming photons is slightly distorted by the shape

and surface imperfections of the lens, the star tracker uses onboard centroiding algorithms, such

as Run-Length-Encode (RLE), to determine the location of objects in a scene on the image plane

[28]. Several peak finding approaches exist to estimate the centroid, the most popular of which are

center-of-mass and topological. The RLE is a topological centroiding algorithm, which performs

an iterative search over rows or columns of pixels, clustering those of similar intensities, and merg-

ing them into updated centroid locations. Once a centroid is estimated, the pinhole camera model

can be used to project the centroid’s pixel coordinates on the image plane into three-dimensional

space using knowledge of the camera’s focal length. From here, the star tracker implements a star

identification algorithm, such as Pyramid [29], in order to relate interstellar angles of measurement

vectors in the body reference frame of the camera, defined by

b̃c =
1√

x2 + y2 + f 2


x

y

f

 ,

with a reference star catalog (e.g., Hipparcos), which tabulates unit star vectors in the ECI reference

frame based on their right ascension (α) and declination (β) angles,

r̂i =


cosα sin β

sinα sin β

cos β

 .

It is worth mentioning here as well that a common practice for star identification is star catalog

preparation, which tailors the reference catalog to the mission timeline by implementing proper

star motion and merging or throwing out stars based on a visual magnitude thresholding criteria.

In doing so, the overhead required to carry a reference star database onboard is reduced, and the
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range searching algorithms become faster and more robust. The searching procedure of this sub-

catalog is conducted until four or more stars are identified in the scene, upon which an attitude

estimate is made using a quaternion solution of Wahba’s problem (e.g., q-method [25], QUEST

[30], ESOQ [31], ESOQ2 [32]) in order to satisfy

b̃c = Cc,ir̂i.

Figure 2.1: Real Star Image Taken with a Digital Camera in College Station, TX

2.4 Planets

The astronomical distances of the Sun, stars, and planets from Earth requires particular atten-

tion when attempting to leverage them for navigation. The first problem relates to the visibility of

the observation, measured in terms of its brightness. A number of factors can influence the visibil-
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ity of a celestial observation from an Earth-bound observer, including atmospheric scintillation and

certain operational settings of the device used for imaging (e.g., exposure time). Additional prob-

lems arise due to the dynamic motion of celestial observations. Light, either emitted or reflected,

travels through space from a source to an observer at a finite constant speed, c. Two angular correc-

tions to the measured position vectors, commonly referred to as light-time and stellar aberration

corrections, are required in order to resolve discrepancies between the observed and actual posi-

tions of an optical observation for a given time, t. The following subsections describe in detail how

these corrections are implemented. Finally, we note here that the derivation provided for stellar

aberration of planets is also applicable to the stars.

2.4.1 Visual Magnitude

The visibility of a planet can be characterized in several ways. For instance, the absolute

magnitude, as defined in Ref. [33], corresponds to full solar illumination of a body (modeled as a

Lambertian disk) when the source and observer are distanced by one astronomical unit, and their

phase angle, α, is zero. Eq. (2.1) defines the absolute magnitude of a planet with respect to the

apparent magnitude of the Sun in the Earth-Sun system,

Mp = mSun − 5 log10

(
rp
d0

√
ap

)
(2.1)

where mSun = −26.73 and d0 = 1 AU ≈ 1.49598 · 108 km. Values for the radius and geometric

albedo of the visible planets, denoted in Eq. (2.1) as rp and ap, respectively, are provided in Table

A.2. From the absolute magnitude the apparent (visual) magnitude of a planet is then computed

by,

mp = Mp + 2.5 log10

(
d2
s,bd

2
o,b

d4
0I(α)

)
,

where I(α) is the phase integral, ds,b and do,b are the body-to-Sun and body-to-observer distances

shown in Fig. 2.2, and α is derived from the law of cosines,

cosα =
d2
o,b + d2

s,b − d2
s,o

2 do,b ds,b
.
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If we assume a planet can be modeled as an ideal diffuse reflecting sphere, then the phase integral

becomes

I(α) =
2

3

[(
1− α

π

)
cosα +

1

π
sinα

]
, α ∈ [0, π].

Figure 2.2: Geometry of Source-Body-Observer Phase Angle

2.4.2 Light-time Correction

The light-time phenomenon exists due to the fact that light speed is finite and not instantaneous,

as was first argued by Ole Rømer in 1676 [34]. The light-time correction accounts for the displace-

ment of a celestial observation as light travels from source-to-observer. For the visible planets, a

reasonable approximation of this correction can be made by first estimating the elapsed light-time,

∆t ≈
‖rp(t)‖2

c
,

where c ≈ 2.99792 · 105 km/s and rp(t) is the position vector of a planet as measured from an

Earth-bound observer (Fig. 2.3). The linear displacement of the planet over the elapsed light-time

is then determined from

d(t) = vp(t)∆t,
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Figure 2.3: Travel-time of Light for the Visible Planets with Respect to an Earth-bound Observer

where vp(t) is the orbital velocity vector of the planet (see Table A.3). Finally, if we assume that

the observer’s location is fixed for the duration of the elapsed light-time, ∆t, the observed planet’s

position vector can be updated using the light-time correction, such that

rp(t−∆t) = rp(t)− d(t),

where rp(t − ∆t) represents the actual location of a planet at the time of observation. Moreover,

the light-time angle, can be computed using the geometry of Fig. 2.4,

β`t = arccos
(
r T
p (t) · rp(t−∆t)

)
.

2.4.3 Stellar Aberration Correction

The stellar aberration was first conjectured by James Bradley in 1727 [35] after he discov-

ered discrepancies in his parallax measurements of Gamma Draconis, the brightest star in the
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Figure 2.4: Light-time Geometry

Draco constellation. Bradley recognized that during a measurement period, the observation loca-

tion moves with nonzero velocity due to the Earth’s rotation rate and relative motion around the

Sun. To account for this effect, Bradley considered a finite speed of light and derived the stellar

aberration geometry and velocity triangle shown in Figs. 2.5 and 2.6, respectively. In doing so, he

quantified the effect of the stellar aberration through a correction angle, βsa, which is determined

from the following procedure.

Let vp and vo be the velocities of the planet and the observer in the Heliocentric Inertial (HCI)

reference frame, whose definition is such that its x-axis points to the ascending node of the Sun’s

equatorial plane on the ecliptic plane of J2000 and its z-axis points to the Sun’s rotation axis.

With reference to Fig. 2.5, which provides the stellar aberration geometry, the velocities can be

decomposed into two orthogonal terms, v‖ (aligned with the direction of the observer-to-planet

unit vector, d̂p,o) and v⊥ (orthogonal to d̂p,o). The vector components of each are provided by


v‖ =

(
v · d̂p,o

)
d̂p,o

v⊥ = v − v‖
.
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An Earth-bound observer could expect to have a linear velocity defined by

vo = vE + ωE × ro,

where vE is the orbital velocity vector of Earth, ωE is the angular velocity vector of Earth, and

ro is the radial vector pointing from the Earth’s center of mass to the observer, all of which are

expressed in the HCI reference frame. Thus, the stellar aberration deflection angle, βsa, is known

from the velocity triangle shown in Fig. 2.6, whereby

βsa = arctan

(
‖vo⊥ − vp⊥‖2

c

)
.

An iterative approach for implementing both light-time and stellar aberration corrections is out-

lined in [36].

Figure 2.5: Stellar Aberration Geometry Figure 2.6: Stellar Aberration Velocity Triangle

2.5 Gravity

The Earth’s gravitational field is a constantly evolving dynamical system that cannot be ana-

lytically defined by modern scientific frameworks. The local gravity vector that one would feel on
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Earth is simply a static sampling of the ever-fluctuating mass around the observer. In the decades

since launching several satellite surveillance missions, such as the GRACE [37] and GRACE-FO

[38] orbiters, NASA, ESA, and others have managed to generate best-fit models for both Earth’s

shape and its gravitational field that are orders of magnitude more accurate than the earliest as-

sumed representations of each.

2.5.1 Celestial Body Shape Models

The irregular shape of Earth has presented significant challenges to surveyers and cartographers

throughout history. The early map makers considered the Earth to be a perfect sphere prior to Isaac

Newton positing an oblate spheroid shape model in Principia [39]. The unit sphere can be thought

of as a subclass of the ellipsoid, subject to the following governing equation,

x2 + y2 + z2 = 1,

where {x, y, z} are the Cartesian coordinates of a point on the surface. The ellipsoid generalizes

the unit sphere by considering affine transformations with respect to its reference axes, and is

typically used as a first approximation when modeling the shape of celestial bodies. The equation

of the ellipsoid is
x2

a2
+
y2

b2
+
z2

c2
= 1,

where {a, b, c} are scalar distortions of its surface with respect to a particular reference direction.

A common assumption is that a ≡ b, which is the mathematical definition of an axial-symmetric

ellipsoid, whose governing equation is

x2 + y2

a2
+
z2

c2
= 1,

where a and c define the semi-major and semi-minor axes, respectively. The axial-symmetric

ellipsoid description of Earth, which has been formalized as the WGS84, is reliably used as the

standard shape model for most of today’s GPS applications [40]. The WGS84 (as provided in
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Table A.4) is defined by estimates of the Earth’s equatorial and polar radii, and a flattening factor,

f , which denotes the relative ratio between two ellipsoidal reference axes, such that

f =
a− c
a

.

Describing a point on the surface of these three-dimensional objects can be done in a number of

ways. The traditional Cartesian coordinate set could be used; however, geodesists have historically

opted for the angular definition using latitude and longitude. Referenced from the ECEF x-axis,

where the mean equator intersects the line of zero meridian, the longitude, λ, measures the an-

gular distance along Earth’s equatorial plane. Referenced from the equatorial plane, the latitude

measures the angular distance to the surface normal, whose definition depends on how the Earth

is modeled. Fig. 2.7 illustrates this point by considering three definitions of the latitude. Consider

a body whose center of mass is defined as its geocenter. For a perfect sphere, the surface normal

at all points extends through the geocenter. On the other hand, the surface normal for points on

the ellipsoid will not extend exactly through the geocenter unless they lie on the equatorial plane

or exist at the poles. Thus, two unique definitions of latitude are required to differentiate a perfect

sphere from an ellipsoid, namely, geocentric (θ) and geodetic (ϕ). As proved by Snyder in Ref.

[41], a geometric relationship exists between the two latitudes. In particular,

θ = arctan
(
(1− f)2 tanϕ

)
. (2.2)

Eq. (2.2) can be used to demonstrate the effectiveness of the ellipsoidal refinement to Earth’s shape,

as opposed to assuming a perfect sphere (Fig. 2.8). At worst, the angular deviation in latitudes is

nearly 700 arcseconds, a discrepancy that would introduce over 21 km of position error on Earth.

Given that the ellipsoid is still a modest simplification of Earth’s true shape, a third definition

of latitude, the astronomic latitude (Φ), is also considered. Astronomic latitude defines the angle

between Earth’s equatorial plane and the true zenith of an observer, and is estimated using refer-

ence stars whose declination is known with extreme precision. A final definition falls out of the
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Figure 2.7: Definitions of the Latitude Angle

Figure 2.8: Expected Angular and Position Errors Due to Sphere/Ellipsoid Assumption

relationship between astronomic and geodetic latitudes, that is, the “deflection of vertical,” which

is comprised of North-South (ξ) and East-West (η) components,

ξ = Φ− ϕ and η = (Λ− λ) cosϕ,
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where Λ is the astronomic longitude of an observer with respect to the stars. Astronomic latitude

and longitude are considered to be the best descriptors for both an observer’s location on Earth and

the pointing direction of the local unit gravity vector.

2.5.2 Continuous Description of the Geoid

The geoid was first described by Gauss [42] as the shape that the ocean surface would take

if the only acceleration forces acting on it were Earth’s gravitational field and the rotational dy-

namics of the planet. In reality, this is still a simplification of Earth’s true topography. The geoid

is particularly useful for describing the effect that mass anomalies (such as mountain ranges or

caverns) have on the local pointing direction of gravity, which can deviate from the reference el-

lipsoid by tens, hundreds, or even thousands of arcseconds, depending on the celestial body (see

Figs. 2.10, 2.13, 2.16). It is also worth pointing out that, unlike the axial-symmetric ellipsoid

and other simplified shape models, there is no true mathematical description of the geoid. For

Earth, the EGM2008 provides an approximation of Earth’s gravitational potential surface by inter-

polating satellite measurement data using a normalized basis combination of Legendre orthogonal

polynomials and harmonic coefficients, such that

V =
GM

r

(
N∑
n=0

(a
r

)n n∑
m=0

P̄nm sinϕ
[
C̄nm cos(mλ) + S̄nm sin(mλ)

])
. (2.3)

Here, GM is the geocentric gravitational constant, a is the semi-major axis, (ϕ, λ, r) are the spher-

ical coordinates at which the evaluation is made, P̄nm are the normalized Legendre basis functions

of degree n and order m, and C̄nm and S̄nm are the normalized harmonic coefficients. Taking nor-

malized partial derivatives of Eq. (2.3) with respect to latitude and longitude, we obtain a mathe-

matical definition for the vertical deflections with respect to North-South and East-West reference

directions,

ξ = − 1

γr

∂V

∂ϕ
= −GM

γr2

(
N∑
n=2

(a
r

)n n∑
m=0

dP̄nm sinϕ

dϕ
[
C̄nm cos(mλ) + S̄nm sin(mλ)

])
, (2.4)
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and

η = − 1

γr cosϕ

∂V

∂λ
= − GM

γr2 cosϕ

(
N∑
n=2

(a
r

)n n∑
m=0

mP̄nm sinϕ
[
−C̄nm sin(mλ) + S̄nm cos(mλ)

])
,

(2.5)

where γ is a scalar value representing the theoretical normal gravity [40]. The analytical complex-

ities associated with these infinite series (Eqs. (2.4), (2.5)) make them difficult to evaluate numeri-

cally. Through nonlinear regression, observation data can be approximated as a linear combination

of coefficients, whose values are optimized using least-squares and a set of basis functions, such

as Chebyshev orthogonal polynomials of the first kind. In one dimension, the Chebyshev basis set

can be computed recursively from


S0(x) = 1

S1(x) = x

Sk+1(x) = 2xSk(x)− Sk−1(x), ∀k > 1

. (2.6)

The first derivatives of Eq. (2.6), which can be used to prove the existence of a critical point in a

given data set, have a similar recursive form. Namely,



dS0(x)

dx
= 0

dS1(x)

dx
= 1

dSk+1(x)

dx
= 2

(
Sk(x) + x

dSk(x)

dx

)
− dSk−1(x)

dx
, ∀k > 1

.

Before performing polynomial regression, the independent coordinates of each data set must be

mapped into the operational domain of the Chebyshev orthogonal polynomials, x ∈ [−1,+1].

Two mappings can be applied, the first (and simplest) is a linear map,

x = 2

(
ϕ− ϕmin

ϕmax − ϕmin

)
− 1 and y = 2

(
λ− λmin

λmax − λmin

)
.
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The second is the Gauss-Lobatto-Chebyshev nodes, which provide the optimal point spacing dis-

tribution for the Chebyshev orthogonal polynomials, and are given by

xk = cos

(
π

2k − 1

2n

)
, k = 1, · · · , n

where n represents the number of discrete data points to be mapped within a given domain of

interest. Since the values of ξ and η depend on two coordinates, ϕ and λ, the following bi-variate

functions must be developed independently,


ξ̃ = f(ϕ, λ) =

N−j∑
i=0

N∑
j=0

αijSi(ϕ)Sj(λ)

η̃ = g(ϕ, λ) =

N−j∑
i=0

N∑
j=0

βijSi(ϕ)Sj(λ)

. (2.7)

where N represents the maximum degree of fit. Re-writing Eq. (2.7) in matrix-vector form, we

have

Sα = ξ and Sβ = η,

which are linear systems with respect to their unknown coefficients. Thus, from least-squares, we

have

α = (S TS)−1S Tξ and β = (S TS)−1S Tη.

Finally, we can express Eq. (2.7) in terms of the now known coefficients, using


ξ̃ = f(ϕ, λ) =

N∑
k=1

αkSk(ϕ, λ)

η̃ = g(ϕ, λ) =
N∑
k=1

βkSk(ϕ, λ)

. (2.8)
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2.5.3 Earth Gravitational Model (EGM2008)

The EGM2008 [43] is a gravitational model of Earth developed by the National Geospatial-

Intelligence Agency (NGA). It uses a degree 2159 spherical harmonic best-fitting of discrete mea-

surement data provided by the GRACE satellite missions to refine the local pointing direction of

the unit gravity vector with respect to the standard axial-symmetric ellipsoid model of Earth, the

WGS84 (see Table A.4). The EGM2008, at the advent of this work, was considered to be the

most precise geoid model of Earth, providing 2.5 arcminute resolution over the entirety of the

world’s surface. Fig. 2.9 was generated by reading two binary files that contained discretized

North-South and East-West vertical deflection data in units of arcseconds. As standalone grids,

it is difficult to identify any of the Earth’s prominent topological features. Therefore, the total

deflection (
√
ξ2 + η2) was computed and plotted as shown in Fig. 2.10. From this perspective,

the mountainous regions of the world are evident. In particular, the most prominent vertical de-

flections were found to be in the Himalayas of Asia and the Andes of South America. In order to

demonstrate the effectiveness of the geoid correction, a sub-grid around the Himalayan mountain

range was selected, and the associated vertical deflections were stored in separate sub-grids. Fig.

2.11 shows the highly nonlinear behavior of the vertical deflection values within the Himalayas.

Properly fitting this region with two-dimensional Chebyshev orthogonal polynomials required a

study of how the maximum absolute fitting error across the entire sub-grid changed with respect

to the degree of polynomial fit. Fig. 2.11 also shows how these error trends evolve with increasing

degree of fit. For preliminary testing purposes, a degree 20 fit was determined to be sufficient, as

it is not overly-expensive to compute and clearly avoids the over-fitting behavior defined by the

discontinuity that occurs in both error trends around degree 37.

2.5.4 Mars Gravitational Model (MGM2011)

The MGM2011 [44] is a gravitational model of Mars developed by researchers at the Curtin

University of Technology in Austalia. It uses discrete measurement data provided by the MOLA

satellite mission to estimate vertical deflections of the local unit gravity vector from the Mars ref-

32



erence ellipsoid at 3 arcminute resolution over the entire Martian surface. Fig. 2.12 was generated

by reading two binary files that contained discretized North-South and East-West vertical deflec-

tion data in units of arcseconds. As standalone grids, the Martian mountains (Olympus Mons, in

particular, as well as Ascraeus Mons, Pavonis Mons, and Arsia Mons) are easy to identify due

to their significant masses inducing large deflections of the vertical plumbline. Just as we did in

the previous subsection, the total deflection (
√
ξ2 + η2) was computed and plotted as shown in

Fig. 2.13. Using this sub-grid of values, the most significant variation in vertical deflections were

found to be in and around Olympus Mons. In order to demonstrate the effectiveness of the geoid

correction, a sub-grid around Olympus Mons was selected, and the associated vertical deflections

were stored in separate sub-grids. Fig. 2.14 describes this region in terms of vertical deflections,

wherein the steep ascent of the volcano walls have been captured beautifully. A similar study, as

described in the previous subsection, was conducted to determine how the maximum absolute fit-

ting error across the entire sub-grid changes with respect to the degree of fit. Fig. 2.14 also shows

how these error trends evolve with increasing degree of fit. For preliminary testing purposes, a

degree 20 fit was determined to be sufficient, as it is not overly-expensive to compute and clearly

avoids the over-fitting behavior defined by the discontinuity that occurs in both error trends around

degree 38.

2.5.5 Lunar Gravitational Model (LGM2011)

The LGM2011 [45] is a gravitational model of the Moon developed by researchers at the Curtin

University of Technology in Austalia. It uses discrete measurement data provided by the SELENE

and LOLA satellite missions to estimate vertical deflections of the local unit gravity vector from

the Moon’s homogeneous mass-sphere, as opposed to the reference ellipsoids used in the Earth

and Mars cases, at 3 arcminute resolution over the entire Lunar surface. Fig. 2.15 was generated

by reading two binary files that contained discretized North-South and East-West vertical deflec-

tion data in units of arcseconds. Just as we did in the previous subsections, the total deflection

(
√
ξ2 + η2) was computed and plotted as shown in Fig. 2.16. Using this sub-grid of values, the

most significant variation in vertical deflections were found to be associated with an unidentifiable
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crater in the North-Eastern region of the grid. The variation in vertical deflection extrema for the

Moon, as well as the resolution of the data set, are quite similar to the Martian data sets described

in the prior subsection. To this end, a numerical analysis of the LGM2011 was not considered for

this work.

Figure 2.9: EGM2008 Discrete Data Description; North-South and East-West Deflections of the
Vertical Plumb-line with Respect to WGS84 Reference Ellipsoid

Figure 2.10: EGM2008 Discrete Data Description; Total Deflection of the Vertical Plumb-line with
Respect to WGS84 Reference Ellipsoid
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Figure 2.11: Vertical Deflection Sub-grids, and Maximum Absolute Fitting Error with Respect to
Degree of Chebyshev Basis Functions, for the Himalayas
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Figure 2.12: MGM2011 Discrete Data Description; North-South and East-West Deflections of the
Vertical Plumb-line with Respect to Mars Reference Ellipsoid

Figure 2.13: MGM2011 Discrete Data Description; Total Deflection of the Vertical Plumb-line
with Respect to Mars Reference Ellipsoid
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Figure 2.14: Vertical Deflection Sub-grids, and Maximum Absolute Fitting Error with Respect to
Degree of Chebyshev Basis Functions, for Olympus Mons
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Figure 2.15: LGM2011 Discrete Data Description; North-South and East-West Deflections of the
Vertical Plumb-line with Respect to Moon Reference Sphere

Figure 2.16: LGM2011 Discrete Data Description; Total Deflection of the Vertical Plumb-line with
Respect to Moon Reference Sphere
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3. SYSTEM DESCRIPTION AND POSITION ESTIMATION

3.1 System Description

Figure 3.1: Flowchart of Geoid Correction Algorithm

The idea for the geoid correction, which we formalize now as the iterative sequence shown in

Fig. 3.1, was born out of the derivations and discussion provided by Parish et al. in Ref. [22]

(and later field-tested in Ref. [23]). This work considers the same real-world sensor suite that was

proposed in these seminal papers (i.e., a pair of inclinometers and a digital camera) for performing

position estimation. The inclinometer set measures relative tilt of the platform with respect to the

local horizon defined by the unit gravity vector. The drawback in using these sensors is that they

measure static tilt, which makes dynamic motion of the vehicle difficult to estimate. In theory,
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one could swap out these sensors for an inertial measurement unit (IMU), which measures both

relative tilt and rotation rates of the platform. In doing so, the same tilt angles provided by the in-

clinometer set could be dynamically estimated through sensor fusion of accelerometer (tilt sensor)

and gyroscope (rate sensor) measurements. Irrespective of the artifacts that comprise the suite,

measurement biases and random noise are inherent to all sensory devices (primarily attributable

to thermal cycling and electrical fluctuations). Mitigating these measurement errors is typically

done using a Kalman filter, whose derivation is provided in the next chapter. As Fig. 3.1 shows,

the extended Kalman filter, labeled as EKF, is just one of several functions that make up the entire

geoid correction algorithm. Other prominent functions include Body2Local, Fixed2Local,

NLLS, q2C, and q-method. Table 3.1 provides a brief summary of each of these functions, along

with their expected input(s) and output(s), and the remaining sections of this chapter include the

derivations necessary for implementing the geoid correction.

Name Description Input(s) Output(s)

Body2Local
Maps unit gravity measurement vectors
from the inclinometer (body) reference
frame to the local (ENU) reference frame

g̃b, Cc,b(ε), Cc,i(q),
Cf,i(t), C`,f (ϕ, λ)

g̃`

EKF

Filters zero-mean Gaussian noise out of
inclinometer measurement angles using a
first-order linearization of the system dy-
namics

g̃b(θx, θy), σθ ḡb

Fixed2Local
Constructs fixed-to-local transformation
matrix

ϕ0, λ0 C`,f

NLLS
Applies iterative nonlinear least-squares
algorithm detailed in Section 3.4

ϕ0, λ0, ĝ(ξ, η), g̃` ϕ, λ

q2C
Maps a quaternion to a direction cosine
matrix

q C

q-method
Applies q-method to compute a quater-
nion

b̃c, r̂i qc,i

Table 3.1: Summary of Geoid Correction Functions
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3.2 Derivation of the Reference Unit Gravity Vector

A reference unit gravity vector can be derived from the geoid. In particular, the North-South (ξ)

and East-West (η) deflections of the vertical plumb-line are used to form the first two components

of ĝ`. In the local reference frame, the unit gravity vector is

ĝ` =


sin η

sin ξ

−
√

1− sin2 η − sin2 ξ

 . (3.1)

In order to apply a multivariate Newton update, the Jacobian matrix of the reference unit gravity

vector must be derived. Here, we have

Ĵ =

[
∂ĝ`
∂ϕ

,
∂ĝ`
∂λ

]
=

[
∂ĝ`
∂ξ

∂ξ

∂ϕ
+
∂ĝ`
∂η

∂η

∂ϕ
,
∂ĝ`
∂ξ

∂ξ

∂λ
+
∂ĝ`
∂η

∂η

∂λ

]
.

These partial derivatives are easily computed from Eq. (3.1) as,

∂ĝ`
∂ξ

=


0

cos ξ

sin ξ cos ξ√
1− sin2 η − sin2 ξ


and

∂ĝ`
∂η

=


cos η

0

sin η cos η√
1− sin2 η − sin2 ξ


.
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Furthermore, Eq. (2.8) yields the remaining partial derivatives necessary to define the Jacobian

matrix. Namely,



∂ξ

∂ϕ
=

∂

∂ϕ
f(ϕ, λ) =

N∑
k=1

αk
∂Sk(ϕ, λ)

∂ϕ

∂ξ

∂λ
=

∂

∂λ
f(ϕ, λ) =

N∑
k=1

αk
∂Sk(ϕ, λ)

∂λ



∂η

∂ϕ
=

∂

∂ϕ
g(ϕ, λ) =

N∑
k=1

βk
∂Sk(ϕ, λ)

∂ϕ

∂η

∂λ
=

∂

∂λ
g(ϕ, λ) =

N∑
k=1

βk
∂Sk(ϕ, λ)

∂λ

3.3 Derivation of the Measurement Unit Gravity Vector

A pair of inclination sensors can also be used to measure the orientation of the local unit gravity

vector. This vector is observed in the body reference frame of the tilt sensors; therefore, a series of

transformations are required in order to map the geoid description of gravity, as described in the

previous subsection, to its measured counterpart. In the body reference frame, we have

g̃b =


g̃x

g̃y

−
√

1− g̃2
x − g̃2

y


b

=


cosϑx

cosϑy − cosϑx sin ε

cos ε

−
√

1− g̃2
x − g̃2

y


b

, (3.2)

where ϑx and ϑy represent the angular deviation of the local unit gravity vector with respect to the

two body reference axes. The measured unit gravity vector can then be expressed in the ECEF

such that independence from latitude and longitude is preserved. Here, we have

g̃f = Cf,i(t) C
T
c,i(q) Cc,b(ε) g̃b.
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A local description of the measurement unit gravity vector, g̃`, requires us to consider C`,f , which

depends on the sensitivity parameters, ϕ and λ. In doing so, we can write g̃` as follows,

g̃` = C`,f (ϕ, λ)g̃f =


− sinλ cosλ 0

− sinϕ cosλ − sinϕ sinλ cosϕ

cosϕ cosλ cosϕ sinλ sinϕ



gx

gy

gz


f

=


−gx,f sinλ+ gy,f cosλ

−gx,f sinϕ cosλ− gy,f sinϕ sinλ+ gz,f cosϕ

gx,f cosϕ cosλ+ gy,f cosϕ sinλ+ gz,f sinϕ


`

.

(3.3)

Taking the partial derivatives of Eq. (3.3), we have

∂g̃`
∂ϕ

=


0

−gx,f cosϕ cosλ− gy,f cosϕ sinλ− gz,f sinϕ

−gx,f sinϕ cosλ− gy,f sinϕ sinλ+ gz,f cosϕ


and

∂g̃`
∂λ

=


−gx,f cosλ− gy,f sinλ

gx,f sinϕ sinλ− gy,f sinϕ cosλ

−gx,f cosϕ sinλ+ gy,f cosϕ cosλ

 .

Finally, we can derive a measurement Jacobian matrix as follows,

J̃ =

[
∂g̃`
∂ϕ

,
∂g̃`
∂λ

]

=


0 −gx,f cosλ− gy,f sinλ

−gx,f cosϕ cosλ− gy,f cosϕ sinλ− gz,f sinϕ gx,f sinϕ sinλ− gy,f sinϕ cosλ

−gx,f sinϕ cosλ− gy,f sinϕ sinλ+ gz,f cosϕ −gx,f cosϕ sinλ+ gy,f cosϕ cosλ

 .
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3.4 Nonlinear Iterative Estimation of Geographic Coordinates

With the reference and measurement unit gravity vector definitions in mind, let us define a loss

vector, of size (3× 1), as the difference between their components,

L = ĝ`(η, ξ)− C`,f (ϕ, λ) Cf,i(t) C
T
c,i(q) Cc,b(ε) g̃b(ϑx, ϑy)︸ ︷︷ ︸

g̃`(ϕ,λ,t,q,ε,ϑx,ϑy)

. (3.4)

Regional convergence can be somewhat predictive based on the loss function’s behavior over a

data set. For both test cases (namely, the Himalayan mountain range provided by EGM2008 and

the region around Olympus Mons provided by MGM2011), the L2-norm of the loss function was

computed over the entirety of the sub-grids with respect to their midpoints. Fig 3.2 shows this

result, in which the darkest section of the surface represents the coordinates that minimize the

Euclidean norm of the loss function.

Figure 3.2: L2-norm of Loss Function for the Himalayan Mountain Range (left) and Olympus
Mons (right)
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Let us now define a Jacobian difference matrix, of size (3 × 2), whose values depend on the

reference and measurement Jacobian matrices described in previous sections,

J = Ĵ− J̃ =

[
∂ĝ`
∂ϕ

,
∂ĝ`
∂λ

]
−
[
∂g̃`
∂ϕ

,
∂g̃`
∂λ

]
.

The goal in applying the Newton method is to minimize Eq. (3.4), or more specifically, the dif-

ference between the unit gravity vector provided by the geoid vertical deflection data and the unit

gravity vector measured by a pair of inclination sensors. Since we seek L = 0, a first-order Taylor

series expansion can be used to derive the following Newton update equation,

ϕλ

k+1

=

ϕλ

k

− (J T
k Jk)−1 J T

k Lk.
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4. SENSITIVITY ANALYSIS AND FILTERING

4.1 Gravity Covariance Matrix

Since the pair of inclination sensors are likely to be corrupted by random noise, a covariance

analysis was conducted in order to quantify this effect on the system’s ability to maintain accurate

measurements of the gravity vector over time. Let the two angles measured by the inclinometer

set, ϑx and ϑy, be perturbed by additive Gaussian noise (implying a local approximation to the

solution space),

ϑx ∼ N
(
µx, σ

2
ϑ

)
and ϑy ∼ N

(
µy, σ

2
ϑ

)
.

where µx and µy are the mean values of ϑx and ϑy, respectively, and σ2
ϑ is the measurement variance

associated with the inclinometers. Assuming the hardware is identical on each of the measurement

axes, these angles can be rewritten as a fixed bias with additive zero-mean noise,


ϑx = µx + δϑ

ϑy = µy + δϑ

where δϑ ∼ N
(
0, σ2

ϑ

)
.

To estimate the unit gravity vector direction in the inclinometer (body) reference frame, Eq. (3.2)

requires that we evaluate the the first moment, or mean value, of cosϑx and cosϑy using the

expectation operator, E{·}. In this case, we drop the axis-specific subscript, and arrive at

E{cosϑ} = E{cos(µ+ δϑ)} = cosµ · E{cos δϑ} − sinµ · E{sin δϑ}. (4.1)

Now, because sine is an odd function, we know that the expected value of an odd function of a

zero-mean Gaussian random variable is identically zero. Therefore, Eq. (4.1) simplifies as

E{cosϑ} = cosµ · E{cos δϑ}.
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We compute E{cos δϑ} by expanding it via a Maclaurin series. Here too, we drop a subscript ϑ,

such that

E{cos δ} = E

{
∞∑
k=0

(−1)k

(2k)!
δ2k

}
=
∞∑
k=0

(−1)k

(2k)!
E
{
δ2k
}
. (4.2)

From [46], we know that a zero-mean Gaussian angle has the following identity,

E
{
δ2k
}

= 1 · 3 · 5 · . . . · (2k − 1)σ2k =
(2k)!

2k k!
σ2k. (4.3)

Therefore, we may substitute Eq. (4.3) into Eq. (4.2) and obtain the expected value of cosine of a

zero-mean Gaussian angle,

E{cos δ} =
∞∑
k=0

(−1)k

2k k!
σ2k =

∞∑
k=0

(−1)k

k!

(
σ2

2

)k
= e−σ

2/2.

Now, we reintroduce subscripting in order to write individual definitions for the expectations of

cosϑx and cosϑy, 
E{cosϑx} = e−σ

2
ϑ/2 cosµx

E{cosϑy} = e−σ
2
ϑ/2 cosµy

. (4.4)

Consequently, the expected values of the first two components of the measured unit gravity vector

(see Eq. (3.2)), ĝx = E{gx} and ĝy = E{gy}, can be written as,

ĝx = e−σ
2
ϑ/2 cosµx (4.5)

and

ĝy = e−σ
2
ϑ/2
(cosµy

cos ε
− cosµx tan ε

)
. (4.6)
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Now, the symmetric gravity direction covariance matrix is defined as,

Pb = E {(gb − ĝb)(gb − ĝb)T} =


E{g2

x} − ĝ2
x E{gxgy} − ĝx ĝy E{gxgz} − ĝx ĝz

E{gxgy} − ĝx ĝy E{g2
y} − ĝ2

y E{gygz} − ĝy ĝz

E{gxgz} − ĝx ĝz E{gygz} − ĝy ĝz E{g2
z} − ĝ2

z

 .

Computing the remaining terms of this matrix requires us to estimate an expected value containing

E{cos2 δ} and E{sin2 δ}, namely

E{cos2 ϑ} = E{(cosµ cos δ − sinµ sin δ)2} = cos2 µE{cos2 δ}+ sin2 µE{sin2 δ}.

It turns out that these expectations can also be computed using a Maclaurin series, whereby

E{cos2 δ} = E

{
1

2
+

1

2

∞∑
k=0

(−1)k22k

(2k)!
δ2k

}
=

1

2
+

1

2

∞∑
k=0

(−1)k22k

(2k)!
E
{
δ2k
}

=

=
1

2
+

1

2

∞∑
k=0

(−1)k 22 k

(2 k)!
· (2k)!

2k k!
· σ2k =

1

2
+

1

2

∞∑
k=0

(−1)k 2k

k!
· σ2k =

=
1

2

(
1 + e−2σ2

)

and, similarly,

E{sin2 δ} = E

{
1

2
− 1

2

∞∑
k=0

(−1)k22k

(2k)!
δ2k

}
= · · · = 1

2

(
1− e−2σ2

)
.

Therefore,

E{cos2 ϑ} =
1

2
cos2 µ

(
1 + e−2σ2

)
+

1

2
sin2 µ

(
1− e−2σ2

)
=

2 cos2 µ− 1

2
e−2σ2

+
1

2

and, specifically, 
E{cos2 ϑx} =

2 cos2 µx − 1

2
e−2σ2

ϑ +
1

2

E{cos2 ϑy} =
2 cos2 µy − 1

2
e−2σ2

ϑ +
1

2

. (4.7)
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Using these results, the exact (analytical) expression of the P [1, 1] term of the covariance matrix is

known,

P [1, 1] =
2 cos2 µx − 1

2
e−2σ2

+
1

2
− e−σ2

cos2 µx. (4.8)

As for the term, P [2, 2], we may write it as

P [2, 2] = E{g2
y} − ĝ2

y = E{g2
y} − ĝ2

y = E

{(
cosϑy
cos ε

− cosϑx tan ε

)2
}
− ĝ2

y.

That is,

P [2, 2] =
E{cos2 ϑy}

cos2 ε
− 2

tan ε

cos ε
E{cosϑx cosϑy}+ E{cos2 ϑx} tan2 ε− ĝ2

y,

where theE{cos2 ϑx} andE{cos2 ϑy} terms are provided by Eq. (4.7), while theE{cosϑx cosϑy}

term can be expressed as

E{cosϑx cosϑy} = E{cosϑx}E{cosϑy} =

= cosµx cosµy e
−σ2/2 e−σ

2/2 =

= cosµx cosµy e
−σ2

since the terms, cosϑx and cosϑy, are statistically independent. Therefore, we have,

E{g2
y} =

1

cos2 ε

[
2 cos2 µy − 1

2
e−2σ2

+
1

2

]
− 2

tan ε

cos ε
cosµx cosµy e

−σ2
+

+

[
2 cos2 µx − 1

2
e−2σ2

+
1

2

]
tan2 ε

.

That is,

E{g2
y} =

(
cos2 µy
cos2 ε

+ cos2 µx tan2 ε

)
e−2σ2 − 2

tan ε

cos ε
cosµx cosµy e

−σ2
+

+
(

1− e−2σ2
) 2− cos2 ε

2 cos2 ε

.
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Finally, we arrive at an exact analytical expression for P [2, 2],

P [2, 2] =

(
cos2 µy
cos2 ε

+ cos2 µx tan2 ε

)(
e−2σ2 − e−σ2

)
+
(

1− e−2σ2
) 2− cos2 ε

2 cos2 ε
. (4.9)

Here, we note that when ε = 0 (i.e., the inclinometer mount is perfectly orthogonal), Eq. (4.9)

becomes formally identical to Eq. (4.8). We now move to the P [1, 2] off-diagonal term, which is

computed as

P [1, 2] =
1

cos ε
E {cosϑx (cosϑy − cosϑx sin ε)} − cosµx

cos ε
e−σ

2

(cosµy − cosµx sin ε) =

=
1

cos ε

[
E{cosϑx}E{cosϑy} − E{cos2 ϑx} sin ε− e−σ2

cosµx (cosµy − cosµx sin ε)
]
.

All of the expectation terms appearing in the expression of P [1, 2] were previously derived in Eqs.

(4.4) and (4.7). Thus,

P [1, 2] =
1

cos ε

[
e−σ

2

cosµx cosµy −
(

(2 cos2 µx − 1)e−2σ2

+ 1
) sin ε

2

− e−σ2

cosµx (cosµy − cosµx sin ε)

]
=

=
1

cos ε

[
−
(

(2 cos2 µx − 1)e−2σ2

+ 1
) sin ε

2
+ e−σ

2

cos2 µx sin ε

]
.

Finally, we arrive at a closed-form expression for the P [1, 2] off-diagonal term of the gravity co-

variance matrix,

P [1, 2] = tan ε

[
cos2 µx

(
e−σ

2 − e−2σ2
)

+
1

2

(
e−2σ2 − 1

)]
. (4.10)

The expression for the remaining diagonal covariance matrix term, P [3, 3] = E{g2
z} − ĝ2

z , is

obtained using linear error propagation theory, which provides a reasonably accurate estimation

50



for P [3, 3]. Since gz = −
√

1− g2
x − g2

y , we can derive an expression for its variance from

σ2
gz ≈

∂gz
∂gx

∣∣∣∣2
ĝx,ĝy

σ2
gx +

∂gz
∂gy

∣∣∣∣2
ĝx,ĝy

σ2
gy =

ĝ2
x σ

2
gx + ĝ2

y σ
2
gy

1− ĝ2
x − ĝ2

y

.

However, we know that σ2
gx ≡ P [1, 1], σ2

gy ≡ P [2, 2], and σ2
gz ≡ P [3, 3]. So,

P [3, 3] ≈
ĝ2
x P [1, 1] + ĝ2

y P [2, 2]

1− ĝ2
x − ĝ2

y

. (4.11)

The estimation of the covariance term P [3, 3] allows us to derive an expression for the expected

value of the third measured unit gravity vector component, ĝz = E{gz}. Since gb is a unit vector,

whereby g2
z = 1− g2

x − g2
y , it follows that

E{g2
z} = P [3, 3] + ĝ2

z = 1− E{g2
x} − E{g2

y} = 1− P [1, 1]− ĝ2
x − P [2, 2]− ĝ2

y.

So,

ĝz = −
√

1− P [1, 1]− P [2, 2]− P [3, 3]− ĝ2
x − ĝ2

y. (4.12)

Thus, the expected gravity direction, which can be written as a three-component unit vector, is

obtained from the expressions provided by Eqs. (4.5), (4.6), and (4.12),

E {gb} = ĝb =


ĝx

ĝy

ĝz


b

.

The gravity covariance matrix derivation is completed by approximating the remaining off-diagonal

terms, P [1, 3] and P [2, 3], which are approximated by

P [1, 3] ≈ ĝx

√
1− ĝ2

x − ĝ2
y + ĝx ĝz (4.13)
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and

P [2, 3] ≈ ĝy

√
1− ĝ2

x − ĝ2
y + ĝy ĝz. (4.14)

Next, we look to validate the estimation of the unit gravity vector direction, given by Eqs. (4.5),

(4.6), (4.12), as well as the estimation of the gravity covariance matrix, whose diagonal and off-

diagonal elements are given by Eqs. (4.8), (4.9), (4.11) and Eqs. (4.10), (4.13), (4.14), respectively.

To do so, 1,000,000 Monte Carlo tests were performed using the following approach:

• The true unit gravity vector direction, in the ECEF, was randomly set to

gf =


gx

gy

gz


f

=


cosλ cosϕ

sinλ cosϕ

sinϕ

 , where


λ = 135◦

ϕ = 20◦
.

• The non-orthogonality condition was set to ε = 1◦, which is likely an extreme over-estimate.

• The standard deviation of the measurement Gaussian noise was set to σϑ = 0.1◦, which is a

reasonable assumption for a typical COTS inclinometer.

The Monte Carlo test results are captured in Figs. 4.1 and 4.2. Fig. 4.1 quantifies the accuracy

provided by Eqs. (4.5), (4.6), and (4.12) when estimating the mean value of the three gravity

direction components. The left-hand plot provides the statistics associated with the gx gravity

component. The dotted green line represents the mean of the Monte Carlo tests (ḡx) while the red

markers indicate the expected mean value (ĝx) defined by Eq. (4.5). The percent error between

the mean and the expected mean is also provided as the title of the subplot. For the gx component,

the relative percent error was computed as: 100 ·
∣∣∣1− ĝx

ḡx

∣∣∣ ≈ 0.0018%. Using the same statistical

interpretation, the center and right-hand subplots provide the results obtained for the gy and gz

gravity direction components, respectively. Furthermore, Fig. 4.2 quantifies the results of the

covariance analysis conducted from the same Monte Carlo test using a series of histograms. Each

subplot includes the same statistical parameters that were mentioned in the description of Fig. 4.1,
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i.e., the dotted green lines represent the mean of the Monte Carlo tests and the red markers represent

the expected mean value of the associated covariance element. For each subplot, the absolute error

between the mean and expected values is provided as the title (e.g., |δP11| = |P̄ [1, 1]− P̂ [1, 1]| in

the upper-left figure).

Figure 4.1: Histograms of the Gravity Direction Components Obtained from 1,000,000 Monte
Carlo Tests

4.2 Extended Kalman Filter

The observed unit gravity vector, g̃b, when measured by an inclinometer set, can be fully-

defined using two reference angles, ϑx and ϑy, and a mounting angle, ε (see Eq. (3.2)). The

implication of this formulation is that the third component of g̃b can be derived from the first

two (e.g., gz = −
√

1− g2
x − g2

y), which in turn reduces the EKF to a two-state filter. Assuming

the vehicle is stationary over a measurement period, the state model dynamics are propagated

without an additive uncertainty, meaning the best estimate of the state is the state itself for all

time. The inclinometer measurement angles are used to define the filter’s observation model based

on Eqs. (4.5) and (4.6), wherein additive zero-mean Gaussian noise is used to simulate random

fluctuations in the sensor readings due to thermal and electrical cycling. A summary of the EKF’s

implementation follows:
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Figure 4.2: Histograms of the Covariance Matrix Elements Obtained from 1,000,000 Monte Carlo
Tests

• State model.

xk =

gxgy

k

=

xkyk
 = xk−1 +wk−1.

• Observation model.

yk =

ϑ̃xϑ̃y

k

= h(xk) + vk = cos−1

eσ2/2

 xk

yk cos ε+ xk sin ε


k

+ vk.

• Initialization. Assume we are given an initial state vector, x−0 ,

x−0 =


cos ϑ̃x

cos ϑ̃y − cos ϑ̃x sin ε

cos ε

 =

x0

y0

 ,
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with known covariance matrix, P−0 ,

P−0 =

P0[1, 1] P0[1, 2]

P0[2, 1] P0[2, 2]

 ,
whose elements are determined using Eqs. (4.8), (4.10), and (4.9). In terms of the initial

state vector, x−0 , we have



P0[1, 1] =
(
e−2σ2

ϑ − e−σ2
ϑ

)
x2

0 +
1

2

(
1− e−2σ2

ϑ

)
P0[1, 2] ≡ P0[2, 1] =

[(
e−σ

2
ϑ − e−2σ2

ϑ

)
x2

0 −
1

2

(
1− e−2σ2

ϑ

)]
tan ε

P0[2, 2] = (y2
0 + 2x0 y0 tan ε+ 2x2

0 tan2 ε)
(
e−2σ2

ϑ − e−σ2
ϑ

)
+

(
2− cos2 ε

2 cos2 ε

)(
1− e−2σ2

ϑ

) .

Now, assume there is no noise on the dynamics, such that Qk = E{wkw
T
k} = 02×2, and that

the measurements are corrupted by independently sampled Gaussian white-noise, whose

covariance is given by Rk = E{vkvT
k} = σ2

ϑ I2×2.

• Predict step. 
x+
k = x−k−1

P+
k = P−k−1

.

• Update step. 
Kk = P+

k J
T
h(xk)

(
Jh(xk)P

+
k J

T
h(xk) +Rk

)−1

x−k = x+
k +Kk

(
yk − h

(
x+
k

))
P−k = (I −Kk Jh(xk)) P

+
k

.

Here, the Jacobian matrix of the observation model is given by,

Jh(xk) =
∂h (xk)

∂xk
=


− 1√

1− x2
k e

σ2
ϑ

0

−sin ε

dk
−cos ε

dk

 eσ
2
ϑ/2,
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where

dk =

√
1− eσ2

ϑ(xk sin ε+ yk cos ε)2.

The filter was verified through a numerical simulation using the following approach:

• The true unit gravity vector direction, in the ECEF, was randomly set to

gf =


gx

gy

gz


f

=


cosλ cosϕ

sinλ cosϕ

sinϕ

 , where


λ = 135◦

ϕ = 160◦
.

• The non-orthogonality condition was set to ε = 1◦, which is likely an extreme over-estimate.

• The standard deviation of the measurement Gaussian noise was set to σϑ = 0.1◦, which is a

reasonable assumption for a typical COTS inclinometer.

Fig. 4.3 proves the filter’s convergence capability for the individual vector components of the unit

gravity vector, gx (upper left) and gy (lower left). For each of these subplots, the true value is

given by a solid black line, noisy measurements are indicated using black markers, and the filtered

estimate is shown as a solid blue line. ±3σ bounds were also included as dotted red lines. The

right-hand figure shows how the error in the gravity direction estimate (with respect to the true

direction) evolves over the measurement index.

4.3 Numerical Sensitivity Analysis to Errors

From a numerical simulation perspective, the effectiveness of the geoid correction algorithm

can be quantified through a series of Monte Carlo tests. Ultimately, we are interested in character-

izing the sensitivity of the unit gravity vector mapping (between inclinometer and local reference

frames) to perturbations associated with error sources that could be attributed to the given sensor

suite. The goal for each of these preliminary numerical tests was to isolate an expected error source,

define a range of possible values for it, and perturb the localizing transformation matrix, C`,f , in

order to identify a threshold that would prevent the algorithm from maintaining accurate position
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Figure 4.3: Numerical Validation of EKF

estimates. In the ideal case, the geoid data providing the reference unit gravity vector and the

inclination sensors providing the measurement unit gravity would be perfect descriptions of each,

i.e., no noise or biases are present on either vector, or their mapping. In reality, the relationship

between the unit vectors is affected by a number of potential error sources, including:

1. Initial location uncertainty, which adjusts the estimate of C`,f (ϕ, λ);

2. Time uncertainty, which adjusts the estimate of Cf,i(t);

3. Interlock matrix uncertainty, which adjusts the estimate of Cc,b(ε);

4. Attitude uncertainty, which adjusts the estimate of Cc,i(q);

5. Inclinometer measurement noise, which adjusts the estimate of g̃b(ϑx, ϑy).
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It is clear that each of these error sources are present in the system when we write the transforma-

tion matrix of interest as a function of all other transformation matrices,

C`,b = C`,f (ϕ, λ) Cf,i(t) C
T
c,i(q) Cc,b(ε).

While parameter ranges vary across numerical tests, the final position error estimate is always

computed using the same procedure:

1. Assume the vehicle’s true position can be defined in the ECEF as a function of latitude and

longitude, such that

r̂f =


cosλ cosϕ

sinλ cosϕ

sinϕ

 , where


λ ∈ [0, 2π]

ϕ ∈
[
−π

2
, +π

2

]

2. To avoid certain numerical instabilities, the linear (additive) approach to the expected error

source analyses is abandoned in favor of an angular (multiplicative) approach [47]. We

generate perturbed versions of r̂f by injecting uncertainty into the system in the following

way:

(a) Sample a random vector from the unit sphere,

ê =


cosα cos β

sinα cos β

sin β

 , where


α ∼ U [0, 2π]

cos β ∼ U [−1, +1]

.

(b) Compute the cross product of the reference unit vector and the random unit vector, and

normalize by the Euclidean norm of their cross product,

n̂ =
r̂f × ê
‖r̂f × ê‖2

.
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(c) Rotate the reference unit vector about the orthonormal unit vector by a prescribed angu-

lar distance. For a given reference transformation matrix, T , we define a noisy variant

using Euler’s rotation theorem,

C̃ = T ·∆C(n̂, γ),

where

∆C(n̂, γ) = I3×3 cos γ + (1− cos γ) n̂ · n̂ T + [n̂×] sin γ, γ ∼ N (0, σ2
γ)

and [×] is the skew-symmetric matrix operator.

(d) Compute a perturbed version of the reference unit gravity vector,

r̃f =


cos λ̃ cos ϕ̃

sin λ̃ cos ϕ̃

sin ϕ̃


f

=


r̃x

r̃y

r̃z


f

= C̃(n̂, γ) r̂f (ϕ, λ).

3. Extract the perturbed position coordinates of the vehicle,


ϕ̃ = arcsin (r̃z)

λ̃ = arctan2 (r̃y, r̃x)

.

4. Finally, evaluate the position error by multiplying the square root of the sum of squared

differences in position coordinates by the mean equatorial radius of the planet (e.g., RE for

Earth),

∆d = RE

√
(ϕ− ϕ̃)2 +

(
λ− λ̃

)2

.
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4.3.1 Attitude and Inclinometer Errors

The geoid correction algorithm utilizes an onboard star tracker and inclinometer set to take

simultaneous measurements of the body’s attitude matrix and unit gravity vector direction. Based

on the recommendations of industry experts at NASA’s Marshall Spaceflight Center (namely, Dr.

Evan Anzalone and Mr. Joel Amert), a COTS CubeSat star tracker from Blue Canyon Technol-

ogy [48] and a space-grade inclination sensor [49] were selected as the hardware components that

would likely be used in a real-world demonstration of the algorithm. Before generating the contour

result shown in Fig. 4.5, an initial numerical simulation was conducted to quantify the expected

attitude error caused by noise along and about the boresight direction of the BCT star tracker

(see Appendix B). The star tracker’s single measurement attitude accuracy was estimated based

on N = 10, 000 Monte Carlo tests, wherein a random true attitude matrix, T , was perturbed by

about-boresight and cross-boresight uncertainty matrices whose principle angles were determined

by sampling from zero-mean Gaussian distributions subject to the standard deviations provided on

the hardware specification sheet. Fig. 4.4 proves that the majority of attitude errors fall on the

order of 10 arcseconds when taking a single static attitude measurement with the BCT star tracker.

Considering the robustness of modern navigation filters, it is reasonable to assume that both the

attitude and inclinometer measurement errors could be reduced to the sub-10 arcsecond range. Fig.

4.5 shows the results of this idealized scenario as a contour plot of expected total position error.

Both the inclinometer gravity direction and star tracker attitude measurements, which define the

inclinometer-to-local and inertial-to-camera mappings, respectively, were purturbed by sweeping

over a range of sub-10 arcsecond standard deviations, 0 ≤ σi ≤ 5 arcseconds and 0 ≤ σa ≤ 5

arcseconds. The plotted values were found by taking the mean of N = 10, 000 Monte Carlo test

samples at each error combination within the sample space. In doing so, we can reasonably con-

clude that measurement errors associated with the critical pieces of onboard hardware, namely, the

star tracker and inclinometer set, would likely induce around 100 meters of total position error. In

general, a difference of about 0.5 arcseconds on either measurement equates to roughly 10 meters

of position error on Earth. Given that this method relies on angular deviations as its reference pa-
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rameters, we can also conclude that the position error will monotonically increase with the radius

of the celestial body.

Figure 4.4: Monte Carlo Attitude Error Distribution for BCT Star Tracker [Reprinted from [1]]

4.3.2 Initial Location Error

Through preliminary numerical testing of the geoid correction algorithm, it was quickly deter-

mined that the likelihood of achieving a convergent solution was heavily dependent on the amount

of error injected into the initialized, or “guessed,” location of the vehicle, as well as on charac-

teristics of the regional data set at-hand, including the resolution of the grid and the presence of

local minimina around the reference location. In order to gain a better understanding of where the

threshold for initial location uncertainty exists, a Monte Carlo analysis was conducted such that

annular regions around the vehicle’s true location could be iteratively expanded until a minimum

threshold for achieving convergent solutions was identified. The initial guesses for latitude and

longitude were generated by reframing the problem in terms of polar coordinates, with r̂ and θ̂
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Figure 4.5: Contour Plot of Expected Position Error Due to Attitude Uncertainty and Inclinometer
Noise

replacing the two-coordinate axes that were originally described using λ̂ and ϕ̂. For each of the

selected sub-grids, initial location uncertainty was implemented by sweeping over a range of an-

nular radii and angular distances. Both of these parameter spaces were randomly sampled from

uniform distributions before being added to the reference location defined as the center point of

the sub-grids. In other words,


ϕ̃ = ϕ+R sin θ

λ̃ = λ+R cos θ

, where


R ∼ U [Rmin, Rmax]

θ ∼ U [0, 2π]

.

Here, the annular radii were defined by a minimum and maximum linear distance from the mid-

point, Rmin and Rmax. The parameter combinations were sampled N = 10, 000 times before

taking an average of the position error and plotting the results. Fig. 4.6 includes two subplots

associated with this computation, wherein the mean position error due to increasing annular radii

up to 1 km is shown for both the Himalayan and (left) and Olympus Mons (right) regions. From

62



observation of these trend lines, it is clear the algorithm is more sensitive to initial guesses in the

Himalayas due to the presence of many local minima in the region. Proving this theory required

some additional investigation into the loss vector surfaces for each region. Figs. 4.7 and 4.8 show

the individual surfaces of each loss vector component as well as the Euclidean norm of the loss

vector for the Himalayan and Olympus Mons data sets, respectively, with reference to the midpoint

of these regions. For each of these test cases, the random samples around the true location were

binned depending on their eventual convergence or divergence. In Fig. 4.7, the black dashed line

represents the trajectory of a random sample that diverged due to a component of the loss vector

pulling it away from the reference location. In this case, it appears that the x-component of the

loss vector initially forced this initial guess to move toward a local minimum at the right-hand

edge of the sub-grid, at which point the nonlinear least-squares could not overcome the local max-

imum of the z-component of the loss vector and the solution eventually diverged. On the other

hand, Fig. 4.8 shows the algorithm quickly moving toward a nearby local minimum present in

the x-component of the loss vector, which turned out to be unrecoverable and led to divergence

after just a few iterations. While all of the random samples drawn from regions within the 0.25 km

(Himalayas) and 1 km (Olympus Mons) bounds derived from Fig. 4.6 converged, nearly all other

samples diverged due to the presence of local minima in one or more of the loss vector component

surfaces.

4.3.3 Time Error

A simplifying assumption of this sensitivity study is that the relationship between the ECI and

ECEF is purely a function of the Earth’s rotation rate, ωE and time, t. Since the Earth rotates

at a near-constant rate about its polar axis, errors in time would only perturb the estimate of the

longitude, λ. Quantifying the position error due to clock drift was done by initializing the longitude

as null, λ0 = 0◦, and propagating reference values by adding a non-biased and non-noisy rotational

velocity parameter that increases linearly with time, ωE · t. Higher fidelity numerical modeling

of atomic clocks considers a drift rate that randomly walks over time. In other words, the bias

can appear to self-correct itself when viewed on an abbreviated time scale. For our purposes, a
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Figure 4.6: Expected Position Error Due to Initial Location Uncertainty Around Himalayas (left)
and Olympus Mons (right)

Figure 4.7: Loss Vector Surface Plots with Convergent/Divergent Random Samples for Himalayan
Region
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Figure 4.8: Loss Vector Surface Plots with Convergent/Divergent Random Samples for Olympus
Mons Region
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simplified approach was taken to compute time-corrupted variations of the reference longitudes

using a fixed bias and zero-mean white noise, such that

λ∗ = λ0 + ωE(t+ bt + δt), δt ∼ N (0, σ2
t ).

The values for the time error parameters were pulled from a chip-scale atomic clock (CSAC)

specification sheet provided by Microsemi [50], wherein the expected drift rate of a high-end

Rubidium atomic oscillator was listed as 200 nanoseconds per day, i.e., bt ≈ 2·10−7 seconds, while

the white noise standard deviation was set to a picosecond, i.e., σt = 1 ·10−12 seconds. Finally, the

expected position error due to time was computed by multiplying the absolute difference between

reference and perturbed longitudes by the mean radius of the Earth. Fig. 4.9 shows the effect of

clock drift on the position error over a one year measurement period. At its worst, the position

error due to time is still on the centimeter scale, which is negligible when compared to the effects

of attitude and inclinometer noise as detailed in the prior subsection.

Figure 4.9: Expected Position Error Due to Atomic Clock Drift
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4.3.4 Interlock Matrix Error

The interlock matrix is typically quantified in a laboratory setting using a mounting table and

precision measurement instrumentation. In general, the deviation between camera and inclinome-

ter mounts is small but not negligible; therefore, a numerical test was required in order to establish

an initial guess as to how significant the effect of the interlock matrix could be on position esti-

mates if left uncalibrated. Here again, we take the same approach to quantifying the effect of an

expected error source. Namely, we generate variants of a reference transformation matrix, which

would simply be the identity matrix if the inclinometer mount was perfectly orthogonal, using a

range of expected standard deviations, 0◦ ≤ σε ≤ 0.01◦. Fig. 4.10 shows that in a worst case

scenario, where the mounting misalignment angle cannot be confidently estimated to a resolution

greater than 0.01◦, the position error could be reasonably anticipated to exist on the centimeter

scale, similar to what was found in the atomic clock subsection. In the same way, we can conclude

that the position error induced by uncertainties in the interlock matrix angle are negligible with

respect to inclinometer and attitude errors.

Figure 4.10: Expected Position Error Due to Mounting Misalignment Angle Between Non-
orthogonal Inclinometer Set
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4.3.5 Full System Sensitivity Test

The final demonstration of the geoid correction algorithm’s performance was characterized

through a full system sensitivity test, where each of the aforementioned error sources were instan-

tiated and randomly sampled over a set ofN = 1, 000 Monte Carlo tests. Two data sets were simu-

lated over within this subsection, namely, the highly nonlinear sub-grid of the Himalayan mountain

range and the smoother sub-grid of Olympus Mons. For each test case, the initial position error was

bounded by the results of the sensitivity study presented in Section 4.3.2. In particular, the Earth

test case only considered initial guesses that were within 0.25 km of the sub-grid’s midpoint, while

the Mars test cases only considered initial guesses within 1 km. In both scenarios, the reference

transformation matrices were perturbed by zero-mean Gaussian noise whose standard deviations

were set based on the specification sheets of the hardware under consideration [48, 49, 50]. The

following bulleted list provides a summary of the noise parameters applied to each reference frame:

• The initializing coordinates were derived from the fixed-to-local perturbation matrix, ∆C`,f ,

which was defined by a position error standard deviation of σE = 0.25 km for Earth and

σM = 1 km for Mars;

• The inertial-to-fixed perturbation matrix, ∆Cf,i, was defined by a time error standard devia-

tion of σt = 1 · 10−7 seconds;

• The inertial-to-camera perturbation matrix, ∆Cc,i, was defined by an attitude error standard

deviation of σa = 10 arcseconds;

• The inclinometer-to-local perturbation matrix, ∆C`,b, was defined by an inclinometer error

standard deviation of σi = 1◦;

• The inclinometer-to-camera perturbation matrix, ∆Cc,b, was defined by a mounting error

standard deviation of σε = 0.01◦.

After applying each of these error sources to the reference coordinates, the “guessed” position

of the vehicle (defined by its latitude and longitude) was passed into the geoid correction algo-
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rithm, which performed the nonlinear least-squares procedure detailed in Chapter 3. Figs. 4.11

and 4.12 show the algorithm’s performance over the Earth and Mars data sets, respectively. For

the Himalayan region, the geoid correction, on average, provided a two to three order of magni-

tude improvement to the total initial position error. For the Olympus Mons region, the algorithm

returned even better results, as shown by the tightly bound distribution of latitude and longitude

errors.
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Figure 4.11: Demonstration of Geoid Correction Performance on Earth
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Figure 4.12: Demonstration of Geoid Correction Performance on Mars
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5. SUMMARY AND CONCLUSIONS

5.1 Conclusions

This work presented a novel approach to vehicle localization using celestial observations and

a direct measurement of the unit gravity vector. While the modern GPS solution to position esti-

mation uses a reference axial-symmetric ellipsoid as its shape model of Earth, this thesis proved

that a higher-fidelity approximation of a planet’s shape, such as the geoid, can improve position

errors by two or three orders of magnitude based on the precision of local gravity measurements.

In addition to demonstrating the utility of the geoid as the best-fit shape model of Earth and Mars,

several algorithms were derived in order to numerically test this theory, including an iterative non-

linear least-squares technique and a gravity covariance analysis with extended Kalman filtering.

Finally, a full-system sensitivity study was conducted using simulated models of COTS space-

grade hardware, which proved the viability of the geoid correction algorithm. From these tests,

it was concluded that the predictability of a convergent solution depends, at least in part, on the

convexity of the surface that characterizes the loss vector defined in Chapter 3.

5.2 Future Work

Finding a definitive solution for “convexifying" the loss vector persists as future work for an

interested reader, though it is likely that a new optimization approach is required, such as the

stochastic sampling techniques used in particle swarms [51] and genetic algorithms [52], in order

to properly discern a global minimum in the presence of many local minima. A short-term fix

to this problem is highlighted by the subplots found in Fig. 5.1, wherein the loss vector could

potentially be swapped for a scalar value, using the Euclidean norm, for instance, in situations

where the scalar loss surface happens to be smoother than the individual loss vector component

surfaces. Additional future work includes deriving a more comprehensive navigation filter, with

a state vector that considers measurement biases and multi-sensor data fusion, and validating the

results obtained through numerical simulation with a real-world hardware demonstration.
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Figure 5.1: Loss Surfaces of Olympus Mons with Respect to its Midpoint
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APPENDIX A

CELESTIAL BODY PARAMETERS

Celestial Body Rotational Velocity Magnitude (rad/s), ‖ω‖

Earth 7.292115053925690e-05
Moon 2.661699538941653e-06
Mars 7.088218127178316e-05

Table A.1: Rotation Rates of Earth, Moon, and Mars

Planet Albedo, ap Radius (km), rp

Mercury 0.106-0.138 2439.7
Venus 0.65-0.67 6052.0
Mars 0.15 3397.0

Jupiter 0.52 71492.0
Saturn 0.47 60268.0

Table A.2: Albedo and Equatorial Radius of the Visible Planets

Planet Orbital Velocity Magnitude (km/s), ‖vp‖2

Mercury 47.4
Venus 35.0
Mars 24.1

Jupiter 13.1
Saturn 9.7

Table A.3: Orbital Velocity Magnitude of the Visible Planets
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Semi-major Axis (km), a Semi-minor Axis (km), c Inverse Flattening Factor, 1/f

6378.1370 6356.7523142 298.2572229328749

Table A.4: WGS84 Reference Ellipsoid Parameters
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APPENDIX B

HARDWARE SPECIFICATIONS

Blue Canyon Technologies Standard Star Tracker Attitude Knowledge

Cross-boresight Accuracy (1σ) 6 arcsec
About-boresight Accuracy (1σ) 40 arcsec

Table B.1: Star Tracker Measurement Uncertainties
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