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ABSTRACT

In this work, I estimate the value of soil and water quality improvements using revealed

and stated preferences of anglers and farmers, respectively. I also identify the causal effect

of a groundwater management program in India. I find that the standard approach to valu-

ing changes in environmental quality may often underestimate the true marginal benefits of

potential improvements. I find that farmers are willing to pay for some soil quality improve-

ments separate from any benefits realized in changes in crop revenues or production costs,

which suggests that the current approach to estimating the benefits of soil conservation may

not be capturing the full set of benefits for farmers. Finally, I find that a large groundwater

management program in India had - at best - moderate success in conserving groundwater.

In the first essay, I explore the value of short- and long-term changes in water quality. The

economic value of water quality improvements is often assessed using short-term changes in

quality measures. Meanwhile, water quality regulators seek long-term, permanent changes.

I use a pooled cross-section of angler surveys administered in Texas from 2001 - 2015 and a

panel of water quality data to measure the effect of short-term and long-term variation in

water quality on anticipated angler utility. Using a two-stage estimation process, I find that

anglers are willing to pay substantially more for long-term changes in water quality than

for short-term changes. Approaches that capture only short-term variation in water quality

may thus result in significant undervaluation.

In the second essay, I explore the value of soil quality improvements. The on-farm value

of soil quality improvements has historically been captured by changes in production costs

or crop revenues. I design a discrete choice experiment that captures the willingness-to-pay

from farmers to improve three manageable soil quality characteristics, providing for the first

time an estimate of the value of soil quality improvements without involving the potentially

confounding effects of conservation practices. I find that, on average, farmers are willing

to pay more for improvements in water infiltration than organic matter which realistically

ii



occur with the adoption of a no-till regime. When I incorporate preference heterogeneity

through the use of mixed logit models, the 95% confidence intervals for all willingness-to-

pay measures include zero, even within distinct sub-groups. This suggests that while some

farmers are willing to pay more than others for soil quality improvement, there is a lot of

heterogeneity and many farmers may not be willing to pay anything to improve soil quality.

In the third essay, I identify the effect of a participatory groundwater management pro-

gram on groundwater levels in India. The Andhra Pradesh Farmer-Managed Groundwater

System (APFAMGS) was a multi-year program that provided farmers with tools to man-

age groundwater collectively through constant monitoring of local aquifers. Using a two-way

fixed effects difference-in-differences model, I find the program had some moderate success in

the intra-year groundwater levels throughout a full agricultural year. The success of the pro-

gram, however, did not extend to average groundwater levels nor was the success consistent

across years.
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1. INTRODUCTION

Estimating the costs and benefits of policies is a core component of modern economics. In

the United States, federal regulation requires that “regulatory action shall not be undertaken

unless the potential benefits to society from the regulation outweigh the potential costs to

society”.1 Although not always enshrined in law, benefit-cost analysis is performed worldwide

prior to regulatory action or new policy.

It is, however, exceedingly difficult to estimate all the costs and benefits of polices.

Society has lots of people in it, and those people may be impacted differently. There are also

some costs and benefits that don’t have inherent price-tags. For example, the construction

of a new dam may generate electricity but displace people. It may create a beautiful lake

but demolish the habitat of a river snail. The calculus of identifying and accounting for

the various costs and benefits has been particularly developed in the field of resource and

environmental economics and has been appropriately named non-market valuation.

In the first essay I show some evidence that a current approach to valuing the benefits

of environmental improvement is severely underestimating the true benefits. In the second

essay I show that farmers value their soil beyond what it produces. In the third essay I

provide evidence that a large-scale project in India provided - at best - modest benefits to

groundwater levels.

Conditional logit (and more recently mixed logit) models are a popular class of models

that can model an entire demand system by observing individual choices. The breakthrough

work of McFadden (1974) has been applied numerous times to estimate recreational, agri-

cultural, and environmental choices to ultimately estimate the value of changes to the envi-

ronment, which is often an important part of the benefit-cost calculus for regulations. It is

increasingly common to observe choices in a panel format, and in panel settings, the inclusion

of fixed effects is standard to control for a myriad of characteristics that we don’t observe
1Executive Order 12291
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in demand systems. The larger class of fixed effects models are praised for their ability to

control for a wide swath of unobserved effects, but the well-known curse is that character-

istics that don’t vary over time (or any other singular dimension) are not identifiable: they

are often differenced-out and forgotten about.

Water quality clearly changes over time. Anyone who has driven over multiple bridges in

a day knows, however, that water quality also changes over space. The dominant approach

for estimating the benefits of water quality improvement uses water quality changes over

time to identify conditional logit choice models. They use fixed effects, and forget about

the change over space. Existing methods in the non-market valuation (Murdock, 2006) and

political science (Plümper and Troeger, 2007) literature show that it is entirely possible to use

a two-stage regression to recover both the within (time-varying) and between (space-varying)

effects of a model. I apply these methods and show that changes across space matter much

more to individuals than changes across time. In other words, permanent changes matter

more than temporary changes. This finding is miraculously novel, and means that the

current approach to estimating the benefits of environmental improvement may significantly

underestimate the true benefits.

Upstream from the anglers experiencing changes in water quality, farmers manage the

soil that may cause the changes. Farmers rely on their soil for their agricultural production,

and this channel has dominated the way we calculate the benefit of soil quality for farmers

since the middle of last century (Ciriacy-Wantrup, 1947). Clearly, if you improve your soil

and that improves your yield, that is a convenient way to put a price-tag on the benefits of

whatever you did to improve your soil. It is nonetheless only a partial picture of the total

benefits. To get a more complete picture of the benefits, I talk to farmers and essentially

ask them about how they value their soil.

Using observations of their behavior is difficult or impossible because of the lack of data.

Asking them directly is problematic because of hypothetical bias (Murphy et al., 2005). A

team of scientists and I instead create a choice experiment where we take great care to
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create a hypothetical but realistic scenario where we can observe choices dealing with soil

quality. By observing the trade-offs farmers make with their soil - something impossible

to do with existing data - I estimate the value of soil quality improvements removed from

the confounding effects of conservation practices and production decisions. My estimate

of the benefits of soil quality improvement stand alone in its separation from agricultural

production, and more work needs to be done to both validate my estimates and to estimate

similar measures for other areas around the country and world.

The implications for my estimates of the benefits of water and soil quality improvements

are potentially large. Any regulation compares potential costs and benefits, and my estimates

have never been accounted for in regulation decisions. No one has estimated the value of

changes in long-term conditions, and no one has worked with farmers to value soil apart

from production. These new values tip the scale in favor conservation, and could alter the

ultimate decision to enact some conservation policy.

It is also important to understand the costs and benefits of previous policies when reg-

ulating for the future. Indeed, the modern empirical economics field is dominated by the

evaluation of previous policies. Recently, a large-scale groundwater management program

in India sought to conserve groundwater resources through better monitoring. There is cur-

rently another proposal for a massive duplication of that project, since there has been some

evidence that the program was successful. I apply causal econometric methods to formally

analyze the project, and find that the program was largely unsuccessful. There is some

evidence of weak success, but the benefits to groundwater levels are just that: weak.

This work focuses on the benefits of conserving agricultural resources. Not all conser-

vation efforts are successful, and I explore a particular partial failure. I also provide an

estimate of benefits that does not rely on conservation success to be true. When conser-

vation is successful, benefits accrue to downstream individuals, and I show an easy way to

properly capture a fuller picture of those benefits.
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2. THE VALUE OF SHORT AND LONG TERM CHANGES IN WATER QUALITY

2.1 Introduction

The current standard approach in valuing changes in water quality using recreation de-

mand data is to focus on contemporaneous water quality conditions and use fixed-effects esti-

mators to control for all time-invariant heterogeneity across sites (Moeltner and Von Haefen,

2011; Dundas, von Haefen, and Mansfield, 2018; Melstrom et al., 2015; Von Haefen and Pha-

neuf, 2008). This is powerful but costly because the effects of any observable time-invariant

characteristics can not be simultaneously identified alongside site fixed-effects. The value of

any time-invariant effect in panel recreational demand models is swept under the rug of the

alternative-specific constants (ASCs). In this paper, we show that the value of long-term

water quality conditions (time-invariant by construction) can be estimated, and ignoring

these values potentially results in significant undervaluation of policies that would lead to

improvements in water quality.

There is good reason to suspect that variation in long-term conditions may have a larger

effect on a recreational fishermans choices than short-term variation. First, in most settings

the choice set available to anglers will include sites that have consistently different fishing

conditions. When considering where to fish, an angler may have a better understanding of

these long-term typical conditions than the current conditions of all sites in the choice set.

Moreover, recent work suggests that researchers may encounter substantial measurement

error in using current water quality conditions (Keiser, 2019). Anglers, too, could perceive

current conditions with substantial error, as the costs of acquiring the knowledge of current

conditions for all sites could be large.1

Nonetheless, most modern recreational demand models use contemporary water qual-

ity conditions at the time of the choice occasion to model angler behavior (Pendleton and
1The difference between the value of an attribute and the value of information on that attribute is an

important distinction that we do not address in this paper.
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Mendelsohn, 1998; Parsons et al., 2009; Whitehead et al., 2018). As we will show, however,

the standard inclusion of ASCs does not prevent the identification of the effect of long-term

water quality variation on angler utility. Both Murdock (2006) and Ji, Keiser, and Kling

(2020) have shown that the ASCs can be decomposed in a second stage regression to identify

effects that only vary across sites. As we define it, short-term (or acute/contemporary) water

quality varies across time and space, while long-term water quality only varies across space.

In this paper we show that standard methodologies in the recreational demand literature

can be adapted to simultaneously identify the effect of variation in short- and long-term wa-

ter quality on angler utility, while still accounting for unobserved alternative heterogeneity.

We also provide evidence that changes in long-term conditions affect angler utility much

more than changes in short-term conditions, which has significant implications for welfare

measurement.

To understand our basic model, first consider a simple form of indirect angler utility:

Vijt = Xjtβ + Cijtγ + αj, (2.1)

where the anticipated indirect utility of fishing for angler i choosing site j on choice occasion

t is a function of the water quality characteristics (Xjt) of site j at time t, and the costs

for angler i to get to site j on occasion t (Cijt). The inclusion of site-fixed effects (αj) has

become standard, since there may be unobserved site-specific characteristics that, when not

controlled for, result in a biased estimate of γ and thus biased welfare results (Murdock,

2006). The inclusion of αj controls for all time-invariant site-specific features of the choice

set for any angler. However, researchers may be interested in some time-invariant site-specific

characteristics that affect anticipated angler utility.

We hypothesize that long-term water quality also affects an angler’s anticipated indirect

utility, i.e.

Vijt = Xjtβ
S + X̄jβ

L + Cijtγ + αj, (2.2)
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where X̄j is the long-term water quality specific to site j that does not change over the

period of study, and βS and βL capture the effect of variation in short- and long-term water

quality on anticipated indirect utility, respectively. If βS = βL, then short- and long-term

changes in water quality affect indirect utility by the same magnitude, and the exercise of

separately identifying the effects becomes moot. There is no reason, however, to assume

changes in short- and long-term conditions affect indirect utility by the same magnitude.

For example, long term water quality conditions may be widely known and play a major role

in where an angler goes to fish, but current conditions (as they deviate from the long-term

average) may be less certain and less widely known. Even though Xjt and X̄j are measured

on different time-scales, their effect on indirect utility in (2.2) is on the same scale: a single

choice occasion. If (2.2) is the true form of indirect utility, there is a problem: we cannot

simultaneously identify αj and βL. One option would be to assume that αj in (2.2) is a

random effect, thus relegating it to the error term. As mentioned above, this may lead

to biased estimation when time-invariant characteristics are correlated with other observed

characteristics.

The classic fixed effects estimator is a within-estimator, which uses only within-unit

variation for identification (Wooldridge, 2010). Thus, if we could estimate (2.2) directly

using OLS, βS would be the marginal effect of (Xjt − X̄j) on anticipated utility, and both

αj and βL would be differenced out.2 There are several approaches to recover βL. The first

is to use a between estimator, which is a cross-section OLS regression on the de-meaned

values of regressors and regressands. The second is to use a hybrid model that would allow

direct estimation of (2.2), but this requires the assumption that after controlling for X̄j, the

remaining site-specific fixed effects must be random and zero in expectation (Allison, 2009).

A third approach is fixed effect vector decomposition (Plümper and Troeger, 2007), which
2The within-estimator in a fixed effects framework subtracts the time-averaged value from each regressor,

so any effect that is constant over time is “differenced out” and is not used in identification.
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proceeds in two stages. The first stage would use conditional logistic regression to estimate

Uijt = Xjtβ
S + Cijtγ + αj + εijt, (2.3)

and the second stage uses the vector of estimated αj to estimate

α̂j = α + X̄jβ
L + uj. (2.4)

Any of the three approaches may work if utility were directly observable, but none of the

utility models above can be directly estimated.

In the recreational demand literature, random utility models (RUMs) are used to es-

timate the key features of recreationalists’ utility. Researchers frequently estimate models

that assume that utility takes the form of equation 2.1, and we use this approach to esti-

mate the short-term effect, βS. However, it is still possible to recover the long-term effect,

βL, in equation 2.2. We use a two-stage approach first suggested by Murdock (2006) and

recently used by Ji, Keiser, and Kling (2020) that is analogous to the fixed-effects vector

decomposition (Plümper and Troeger, 2007) in a choice model framework.

While the methods employed here would be ideally suited to panel data, such data sets

for recreation demand are extremely rare (e.g., Yi and Herriges (2017)). We use a more

common type of data set, a pooled-cross section of angler surveys. The surveys we use were

administered in the state of Texas from 2001 - 2015 and we combine these data with a panel

of water quality data from sites across the state. In the first stage we estimate a random

utility model (RUM) to recover the marginal effect of travel costs and short-term water

quality conditions on anticipated angler utility, while controlling for any unobserved site-

specific heterogeneity. Then in the second stage we regress the estimated vector of site fixed

effects on time-invariant water quality, recovering the long-term effects on angler utility. We

apply the results of our model to a simulation that improves water quality for a watershed

in central Texas, and find that per-trip benefits for long-term improvements are larger than
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per-trip benefits for short-term improvements. Our results suggest that valuing water quality

using only short-term variation is a significant undervaluation of the willingness-to-pay for

permanent changes in water quality.

2.2 The Model

We hypothesize that an anglers choice of where to fish is a function of the current wa-

ter quality conditions and the long-term average conditions at each site on a given choice

occasion. Our data are in a repeated cross-section format, and we use a conditional logistic

regression to model only the site-choice decision conditional on the participation decision

already having been made. We assume a standard random utility model (McFadden, 1974),

in which angler i chooses sites based on his or her anticipated utility from site j on choice

occasion t:

Uijt = Xjtβ
S + X̄jβ

L + Cijtγ + αj + εijt, (2.5)

where αj is an alternative-specific constant (ASC) to control for unobserved heterogeneity

across sites, Xjt is a vector of water quality characteristics unique to site j in year t and X̄j

is a vector of long-term water quality measurements. Finally, Cijt is a measure of the travel

cost for angler i to get to site j with costs unique to year t, and εijt is an i.i.d. random term

with a Type I extreme value distribution.

Following the standard random utility model, we assume that angler i chooses site j at

time t when the expected utility from choosing site j is the maximum of all possible sites k

in the choice set J , i.e.:

Uijt ≥ Uikt, ∀k ∈ J. (2.6)

Ideally, we would model the probability that angler i chooses site j at time t as:

Pi(j, t) =
eVijt∑
k∈J e

Vikt
, (2.7)
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where Vijt is the deterministic portion of equation 2.5. However, αj and βL cannot be

simultaneously identified, since αj and X̄j both vary only over j. We therefore proceed in

a two-stage estimation process. In the first stage, we use conditional logistic regression to

identify the following indirect utility function:

Vijt = Xjtβ
S + Cijtγ + α̂j. (2.8)

In the second stage, we use simple OLS and regress the estimated ASCs (α̂j) on long-term

water quality measures:

α̂j = α + X̄jβ
L + uj. (2.9)

The estimated slope coefficient, βL, captures the effect of long-term water quality conditions

at site j on angler is anticipated indirect utility. The intercept plus residual in this second

stage regression, α + uj, captures the remaining unobserved heterogeneity across sites, i.e.

αj = α + uj from equation 2.5. The two stage estimation process is analogous to Murdock

(2006), with two differences. First, Murdock uses a random parameters logit (RPL) (Mc-

Fadden and Train, 2000) which allows each individual to have a separate preference for site

characteristics. Second, the site characteristics in Murdocks model do not vary over time.

In our work, we emphasize that when a site characteristic varies over time, its average over

time is itself a time-invariant characteristic and one that has potentially important economic

significance.

We use a conditional logit in the first stage, which as Murdock explains is a simplification

of the RPL.3 Two well-known threats to inference in recreational demand models come from

unobservable and endogenous site characteristics (Moeltner and Von Haefen, 2011). Our

first stage of estimation controls for unobservable site-specific characteristics and we are able

to identify the ASCs directly, in part because the number of sites greatly exceeds the number

of water quality characteristics in our model (Von Haefen and Phaneuf, 2008). Identification
3The coefficient on site characteristics in the conditional logit is the mean taste parameter from the RPL,

and the standard deviation draws from the RPL are omitted in the conditional logit.
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of our second stage would be biased if there is any remaining endogeneity in equation 2.9,

e.g. if angler choices affect average water quality, in which case unbiased identification of the

second stage would require an instrumental variables approach (Moeltner and Von Haefen,

2011; Murdock, 2006). In our context, however, it is unlikely that endogeneity will bias our

estimates. Unlike catch rates or congestion (two common culprits of endogeneity), we do

not believe the measurements used to capture water quality in our analysis are affected by

angler choices. Hence, we assume anglers make the decision on where to fish based in part

on the exogenously determined water quality measurements.

2.3 Data

Our site-choice and water quality data are obtained from two sources. Recreational fishing

data were drawn from the periodically administered Texas Parks and Wildlife Department

(TPWD) Survey of Texas Anglers. We use 5 surveys administered between 2001 - 2015, which

elicit information on a single choice of fishing location, allowing us to estimate a site-choice

model. Water quality data are obtained through the Texas Commission on Environmental

Quality (TCEQ) Surface Water Quality Monitoring Information System. Information on

dissolved oxygen, specific conductance, transparency, and pH for each fishing site in Texas is

averaged for each site for a given year to arrive at a single annual measure of water quality.

By spanning a 15-year period with a consistent measure of angler behavior and water quality,

these data offer a unique opportunity to explore how water quality affects angler choices.

2.3.1 Angler data

Beginning in 2001, the TPWD included two questions in the Survey of Texas Anglers

about the fishing sites that anglers choose. One question, hereafter referred to as the typical-

trip question, asks each respondent to “. . . recall a specific fishing trip in the last 12 months

which you consider a typical fishing trip,” and subsequently asks respondents to identify the

type of waterbody, and if it is freshwater, to name the waterbody. Respondents are asked to

provide information on the timing of the trip (month of the year), one-way travel distance,
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Figure 2.1: Typical-Trip And Most-Often Survey Questions

days spent on the trip, and itemized estimates of the cost of the trip. Another question,

hereafter referred to as the most-often question, asks each respondent: “What public water-

body have you fished most often since last year?” Despite their apparent similarities, these

questions do not always elicit the same response from anglers, so we estimate our models

separately using both questions. As described below, we prefer using the typical-trip question

because of the additional information embedded in the question and better framing. Images

of the typical-trip and most-often questions can be seen in Figure 2.1.

In the survey data we observe the 5-digit zip-code of the home address,4 and for each

Texas zip-code we find the geographic centroid using U.S. Census Bureau data. For each

reported trip, we observe the name of the fishing site, but not the access point. For lakes,

we find the geographic centroid of the waterbody using Google Maps.5 For rivers, however,
4The data for the 2001, 2004, and 2009 surveys initially included only 3-digit zip-codes; the additional

digits had been lost with the death of the principle investigator (Robert Ditton). Thanks to diligent data
management, we were able to contact other researchers associated with the surveys to recover the lost
information. Special thanks to Dr. David Anderson for the 2001 information, Dr. Yung-Ping Tseng for
the 2004 information, Dr. Adam Landon for the 2009 information, and generally the Human Dimensions of
Natural Resources Lab at Texas A&M University.

5Using the centroid of a lake could be problematic if the only nearby road substantially lengthens the
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there are many potential access points that might be hundreds of miles apart. There are two

common approaches of setting an access point when the access point is not observed. The

dominant approach uses the nearest access point to the angler’s home zip-code, and another

approach uses the midpoint of the river. Recent evidence suggests the second approach

can lead to significant bias in the estimated travel cost parameter (Ji, Herriges, and Kling,

2016), so we opt for the first approach. We manually tag access points for each river from

the survey by virtually floating downstream and marking points where roads intersect or

end at the river. To obtain a specific site on a river for each angler, we first calculate the

distance from the anglers home zip code to every access point along the river. The nearest

location is used as the site location on that river in the anglers choice set. The location on

the river therefore varies depending on the anglers home zip-codes.

Travel distances are calculated using the Stata package osrmtime,6 which uses the Open

Source Routing Machine7 to generate optimal routes by car. Self-reported distances are

available for the typical-trip question and, although the elicited distance may suffer from

recall bias (Mazurkiewicz et al., 1996), the self-reported and distances and those calculated

using osrmtime share a correlation coefficient of 0.32.

We calculate the cost angler i would incur by traveling to site j in year t as:

Cijt = ρ

(
incomei
2000

· durationij

)
+ ηt(distij). (2.10)

Information on annual income is elicited in the survey.8 Dividing by 2000 approximates the

route to get as close to the centroid by road as possible. The routing software addresses this by allowing
for “jumps”; when a route is close to the centroid, the route can leave the road and jump to the centroid or
take a different road to get a little closer to the centroid, potentially lengthening the travel distance. The
routing software will make the jump rather than lengthen the route, and reports the length of the jump for
every route. The user can determine ex-post if some jumps are too large and selectively re-route to get a
more realistic estimate.

6https://www.uni-regensburg.de/wirtschaftswissenschaften/vwl-moeller/medien/huber/osrm_paper_
online.pdf

7http://project-osrm.org/
8Income is reported as a categorical variable, where each survey contains several total income bins. For

any angler that reports income within a given bin, we take the median value of the bin and consider that
the angler’s income. For example, if an angler reported income of $25,000 - $35,000, we assume that angler’s
income in $30,000. The lowest/highest income bin is typically “below/above $15,000/$100,000”, and in this
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salary as an hourly wage. The hourly wage is multiplied by the estimated round-trip travel

time (durationij: the time in hours for angler i to travel to site j and back - calculated

in osrmtime) to capture the value of travel time (VOTT). Next, the VOTT is weighted by

a scalar that discounts the VOTT, ρ , assumed to be 0.33.9 The two-way travel distance

estimated in osrmtime is multiplied by ηt: the per-mile cost of travel for an angler in year

t.10

Each survey iteration was administered independently, drawing a random sample from

the set of licensed anglers each year. Demographic information on age, race, gender, zip-

code, and income is not sufficient to uniquely identify individuals through time, so traditional

panel estimation or repeated choice models are unavailable. Instead, we estimate a pooled

cross-sectional model.

Demographic data on Texas anglers from usable responses are summarized in Table 2.1.

Across all survey years, the average age is approximately 47 - well below typical retirement

age.11 Average income across all years is approximately $83,800 in 2015 U.S. dollars, though

we observe wide variance. In particular, respondents from the 2012 survey have a noticeably

higher income than other years. We compare the demographics of the survey respondents to

the United States Fish and Wildlife Service (USFWS) National Survey of Fishing, Hunting,

and Wildlife-Associated Recreation results for Texas for 2001, 2006, and 2011 (the only years

of the USFWS survey), and find similar observable characteristics between our data and the

USFWS surveys. Average one-way distance exhibits similarly wide variance, which ranges

from nearly 194 miles in 2001 to just 60 miles in 2015.

case we assume the angler’s income is half the width of the other income bins away from the lowest/highest
amount. For example, if the lowest bin was “below $15,000” and the average bin width was $10,000, we
assume the anglers with the lowest income earn $10,000 per year. On the other hand, if the highest bin was
“above $100,000” and the average bin width was $10,000, we assume the anglers with the highest income
earn $105,000 per year. We drop anglers with missing income observations.

9We test a range of weights from 0.1 to 0.9, and the weight has little impact on the results.
10We use per-mile cost estimates from the American Automobile Association (AAA), assuming the angler

is using a 4WD Sport-Utility Vehicle (SUV) and drives 10,000 miles per year.
11If the sample had a greater proportion of individuals over the age of 66 (Full Retirement Age, e.g. eligible

for 100% of Social Security benefits), using foregone wages in formulating travel costs could be problematic,
since retirees have no wage to forgo.
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Table 2.1: Summary Of Angler Survey: Demographic Information

Texas Parks and Wildlife Department Survey USFWS National Survey: Texas
Year 2001 2004 2009 2012 2015 2001 2006 2011

Age 46 44 46 48 49 35-44 35-44 45-54(11) (12) (13) (15) (11)

Income (2015 USD) 86, 719 77, 443 73, 603 98, 984 84, 211 66,735 - 100,102 58,928 -88,390 79,591 - 106,122(39, 771) (37, 230) (35, 574) (48, 792) (48, 536)

Reported Distance (One Way Miles) 66 74 66 94 60
(81) (81) (74) (136) (82)

Calculated Distance (One Way Miles) 194 131 81 97 73
(121) (139) (85) (105) (93)

Calculated Travel Costs (2015 USD) 452 341 258 328 247
(217) (259) (181) (230) (193)

Percent White 90 93 91 96 93 97 90 75
Percent Male 86 85 83 91 80 71 73 76

Notes: Summary statistics for the Texas Parks and Wildlife Department Survey of Texas Anglers and United States Fish and Wildlife Service
National Survey results for the state of Texas. Standard deviations in parentheses. The USFWS National Survey does not provide averages
for age and income of respondents. Instead, the median category is reported in the table. The median income category has been inflated to reflect
2015 USD.
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2.3.2 Water quality data

Our water quality data are obtained from TCEQ’s Surface Water Quality Monitoring In-

formation System (SWQMIS). This database contains information on 5,980 parameters12 at

waterbodies across the state. Unfortunately, the data are neither uniform nor comprehensive.

Instead, a handful of parameters are measured per site per visit and monitoring visits occur

at the discretion of volunteer monitoring organizations, so the frequency of measurement per

site is not consistent.

We choose pH, specific conductance, dissolved oxygen, and transparency as our water

quality parameters for several reasons. First, these four parameters are taken directly in

the field as opposed to a lab sample that occurs sometime after a water sample is taken.

Second, these measurements are the most often measured parameter group, and often taken

as a bundle together. Third, we focus on water quality parameters that can be affected

by upstream management, which is the policy-relevant scale for water-quality improvements

across the state. Soil conservation, for example, may result in decreased levels of sediment

and nutrient runoff, thus affecting downstream pH, specific conductance, dissolved oxygen,

and transparency. Recent evidence suggests nutrient pollution is a growing problem in Texas

Kuwayama et al. (2020).

Finally, we choose parameters that affect the quality of fishing for anglers. All four

measurements can affect the health and abundance of fish species (Alabaster and Lloyd,

2013; Miller, Bradford, and Peters, 1988). Dissolved oxygen is a measure of how much

oxygen - a vital resource for fish - is in the water. While different fish species have different

low-oxygen tolerance levels, we expect the marginal effect of dissolved oxygen on angler utility

to be positive. Specific conductance is a measurement of water’s ability to pass electric flow.

While pure distilled water is a poor conductor of electricity, conductance increases as water

contains more metallic ions from dissolved salts or inorganic material as electricity can pass

from ion to ion. Specific conductance (electrical conductance corrected for temperature) is
12https://www.tceq.texas.gov/assets/public/waterquality/crp/data/ParameterInventory_12202018.txt
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relatively stable across time, but will change during high rainfall events when runoff picks up

soil sediment and distributes it downstream.13 We anticipate the marginal effect of specific

conductance on angler utility to be negative, since higher levels of specific conductance

indicate more dissolved salts/ions from soil runoff since higher levels of dissolved salts are

detrimental to most freshwater fish species, which are the focus of this work. The pH of

water is a measure of acidity, measured on a unit-less scale ranging from 0 - 14, with 7 being

a neutral value. As water becomes either too acidic or too basic, fish populations may be

detrimentally affected. The marginal effect of pH on angler utility may likely take the shape

of an inverted-U, with high and low values of pH being undesirable. In our data, however,

we do not observe extreme values of pH and averages are above 7 so that for the most

part, larger values are further from neutral. Hence we assume a linear relationship over the

relevant range of values. Finally, we expect increasing transparency of water to positively

affect an angler’s utility: the ability to see for both the angler and the sought fish should be

a desirable attribute.

In a more data-rich setting, the month of the trip from the survey could be matched to

the same month’s water quality information. However, both our site choice and water quality

data are too sparse. On average, only 11% of stations have water quality observations for

every month of the year. Hence, we are forced to use a single annual choice and a single

annual measure of water quality. To arrive at the single annual measure of water quality, we

take several rounds of averages for each quality parameter. First we average across depths,

then across time (days, months, year) and finally, if a site has multiple stations, we take a

average across the nearby stations since we do not observe the access point of the lake used

by the angler and access points may change across anglers. We only consider measurements

that are taken between the hours of 7am and 8pm, since measurements taken at night may

not be representative of the fishing conditions experienced by anglers. Finally, because water

quality changes may be slow and there is a gap of three or more years between each survey,
13https://www.waterboards.ca.gov/water_issues/programs/swamp/docs/cwt/guidance/3130en.pdf
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Figure 2.2: Water Quality Over Time For Most-Visited Sites
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Figure 2.3: Long-term Water Quality Across Texas
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we include the leading 10 months after the survey. We also include the lagging 10 months,

since anglers may have experienced water quality at some sites during the previous fishing

season. Including the leading and lagging months also increases our sample size of water

quality monitoring stations: on average, the number of stations with at least one observation

increases by 8% when we include the extra months.

Water quality along our selected dimensions varies over time and space. For example,

Figure 2.2 illustrates how water quality changes over time for five popular sites. It is apparent

that some sites are chronically different from other sites. Lake Sommerville and Lake Conroe,

for example, have consistently higher specific conductance and lower transparency than the

other popular sites.

Figure 2.3 shows the spatial distribution of long-term water quality conditions. Each

point on the map represents a single water quality monitoring station, and the color indicates

the long-term average from 2000 - 2016. Areas near the Gulf Coast or in the western part

of the state have higher specific conductance, which is likely the result of saline water or

agricultural runoff. The eastern part of the state has higher pH, likely from underlying

parent material of local soil, or from the higher incidence of pines (whose needles, when

dropped, are acidic). The central part of the state appears to have clearer water, while there

is no clear spatial pattern of dissolved oxygen.

2.4 Estimation Results

Table 2.2 presents the results of the estimation of both the short-term (first-stage)

and long-term (second-stage) models. The alternative-specific conditional logit (site-choice

RUM) and the OLS linear model are estimated using Stata 14.2. The first-stage is estimated

using the asclogit command with clustered standard errors.14 The second-stage is estimating

using the standard reg command, with heteroskedastic-robust standard errors. After drop-

ping missing information for water quality and/or travel cost, we estimate the models using

observations for 1,687 trips taken across the 5 survey years to a set of 198 sites across Texas.
14Similar to Dundas, von Haefen, and Mansfield (2018), we cluster at the individual level (i.e. angler).
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Table 2.2: First And Second Stage Estimation Results

Short-Term Long-Term
Travel Cost -0.00609***

(0.00)
Dissolved Oxygen 0.102* -0.0486

(0.0586) (0.551)
pH 0.537*** 4.473**

(0.204) (1.908)
Specific Conductance -0.311*** -1.788**

(0.107) (0.692)
Transparency 0.316*** 3.042***

(0.112) (1.166)
Constant -33.08**

(13.02)
Observations 262,103 198
R-squared 0.089
Adjusted R-squared 0.070
AIC 11,978.2
Log-Likelihood -5,781.1
Standard errors in parentheses
*p<0.1, **p<0.05, ***p<0.01

The short-term model contains travel cost, the four water quality measures, and a suite

of alternative-specific constants (ASCs - not presented in Table 2.2) as explanatory variables.

The presence of the ASCs controls for unobserved heterogeneity at the site level (Murdock,

2006). There may be similar unobserved heterogeneity across anglers, which we could po-

tentially address by allowing the preference parameters on travel cost or water quality vary

by individual. However, there is evidence that specifying a random-parameters logit (RPL)

with ASCs leads to poor in-sample prediction (Klaiber and von Haefen, 2011). The repeated

cross-sectional nature of our survey data also prevents the use of an RPL. The long-term
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model contains the four long-term measures of water quality as explanatory variables.

Table 2.2 presents the main estimation results. First, we estimate the short-term model

by assuming anglers have linear preferences over water quality (Column 1). Next, we estimate

the long-term model using the estimated ASCs from the short-term model (Column 2).15

In the short-term model, we observe a significant negative coefficient on travel cost,

as expected; anglers anticipate lower utility from sites that are more costly to travel to,

ceteris paribus. Dissolved oxygen has a significant positive effect on anticipated utility;

anglers anticipate higher utility for sites with higher levels of dissolved oxygen. While the

sign of the coefficient is as expected, its relatively low statistical significance is surprising

since dissolved oxygen is one of the most important factors influencing fresh water fisheries.

The coefficient on pH is positive, suggesting for the Texas sites considered here, angler

anticipated utility tends to increase as water becomes more basic. The coefficient on specific

conductance is negative, suggesting that angler anticipated utility decreases with increased

conductance. In other words, as a site is loaded with more salt and metallic ions, the

specific conductance increases and anticipated utility of fishing at that site decreases. The

coefficient on transparency is positive, suggesting that angler anticipated utility increases as

water becomes clearer.

The estimated coefficients in the long-term model (Column 2, Table 2.2) are similarly

signed to the short-term model, with the exception of dissolved oxygen. This suggests that

the direction of the marginal effect for changes in water quality in either the short- or long-

term will be similar. However, the magnitude of the coefficients between the short- and

long-term models is very different: the long-term coefficients are approximately seven times

larger than their short-term counterparts. As we discuss below, the stark difference in the

relative size of the coefficients between the short- and long-term models is the main empirical

finding of this study.

Before proceeding to a welfare analysis, we explore the robustness of our main results by
15There are J −1 ASCs identified in the short-term model. The omitted site is set to zero, and is included

in the long-term model so there are J observations in the OLS regression.
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estimating a range of alternate specifications with both the typical-trip question (Table A.2)

and the most-often question (Table A.1). First, we present the base model identical to the

short-term model in Table 2.2. Second, we estimate the base model using an alternate form

of travel cost.16 Third, we restrict the choice set for each angler to only include those sites

that are 150 miles or less to each anglers home zip-code centroid. Fourth, we only include

anglers who reported at least one trip over the prior 12 months, excluding the small group

of anglers (less than 2%) who reported a typical-trip while simultaneously indicating they

took no trips. Fifth, we estimate the base model but only include lakes. Sixth, we estimate

the base model using rivers only. Seventh, we estimate the model dropping the 2001 survey

because, as discussed above, respondents in the 2001 survey reported much longer trips than

the other survey years. Finally, we estimate two additional specifications including only day

trips (Column 8, Table A.2) and where the difference between the reported and calculated

distance is less than 100 miles (Column 9, Table A.2), but only for typical trip question since

the necessary complementary data were not available for the most often question.

In Tables A.3 and A.4, we estimate the long-term model using the “typical-trip” and

“most-often” survey question, respectively, for the preceding short-term models. The alter-

nate specifications are the same as in Table A.2, though for each specification we estimate

the model with and without regional fixed effects.17

Across all the estimated specifications for the long and short-term models, the estimated

coefficients are generally similar in sign, though the magnitudes and significance varies. In

Table A.2, we observe that changes in short-term dissolved oxygen, pH, and transparency

affect anticipated utility for lake-based anglers, while specific conductance does not. Con-

versely, changes in short-term specific conductance and dissolved oxygen are important for

river-based anglers, and pH and transparency are not. Curiously, we do not observe the

same pattern in the difference in preferences between lake and river anglers when using the
16We specify the alternate form of travel cost as: Cijt = τρ

(
incomei

250

)
+ ηt(distij), which uses daily income

and we assume that the duration of the trip, τ is one day. In other words, we use the value of a day of fishing
instead of the value of travel time.

17Regional fixed effects are used for each of the state’s 24 major river basins.
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“most-often" question.

The difference in estimated coefficients across model specifications suggests our point

estimates are not robust. The lack of robust estimates is likely a function of sparse water

quality data coupled with an imperfect survey instrument.

The coefficient from the short-term model, which is often used in recreation demand

studies to estimate the value of a improvement in a site characteristic, captures the total

value of improvements in those characteristics only if the coefficient in the short-term and

long-term models are equal. Our data strongly rejects that equivalence. We find compelling

evidence that anglers pay much more attention to long-term site characteristics when making

their recreation choices. Hence, using the coefficients from the first-stage site-choice model,

which only capture the impact of period-to-period variation on site choices, would result in

a significant underestimate of the value of water quality to recreational anglers in Texas.

Furthermore, environmental regulation is crafted to improve the long-term conditions of

sites. Given the reality of regulation and the results of our estimation, we show in the next

section that when we only consider the short-term improvements of water quality (as has

been done in previous recreational demand studies18), we substantially underestimate the

benefits of water quality improvements.

2.5 Policy Simulation and Welfare

To consider the value of short- and long-term changes in water quality in a policy context,

we use the results from our two-stage econometric model with the “typical-trip” question

(Table 2.2) and simulate a hypothetical policy scenario. Specifically, we assume an improve-

ment in water quality conditions for all sites in the watershed of the Brazos River (hereafter

referred to as the watershed). The Brazos River is the third longest river in Texas, and its wa-

tershed is the second largest by area.19 We select this particular watershed for three reasons:

1) It is centrally located, and thus we assume it has sites that are feasible for most anglers
18For example: Pendleton and Mendelsohn (1998); Parsons et al. (2009); Whitehead et al. (2018)
19From the Texas Water Development Board: https://www.twdb.texas.gov/surfacewater/rivers/river_

basins/brazos/index.asp
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to choose; 2) It contains 46 sites, making up 23% of the entire choice set for anglers across

our survey years; and 3) Agricultural operations dominate the landscape, and we assume

that the policy scenario we investigate could be physically attainable by altering agricultural

land management. A map of the watershed and the sites affected by our scenario is seen in

Figure 2.4.20

Figure 2.4: Map Of The Brazos River Watershed

In our simulation, we assume a hypothetical policy wherein conservation practices are

widely adopted by farmers in the watershed, with the primary downstream impact being a

reduction in sediment loads. Nutrient pollution - often associated with sediment runoff - is

a growing and realistic problem for the state of Texas (Kuwayama et al., 2020). The effect

of conservation practices on downstream water quality is often complicated, dependent on
20In Figure 2.4, there appear to be more than 46 sites. As explained previously, a river (like the Brazos)

contains multiple fishing locations considered to be independent fishing sites. When we alter water quality
in our hypothetical scenario, we do so for every site along each river as well as at every lake.
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inherent geomorphological characteristics of watershed, and is often measured by nitrogen

and phosphorus loads (Moriasi et al., 2020). A 16-year study on downstream impacts of con-

servation practices for a portion of the Brazos river watershed, for example, only measured

downstream nitrogen and phosphorus loads and found mixed results (Smith, Harmel, and

Haney, 2020). We do not have strong evidence how upstream agricultural conservation prac-

tices will impact downstream dissolved oxygen, pH, specific conductance, and transparency.

We simplify the hypothetical policy by focusing only on an improvement in transparency.

We speculate that region-wide changes in agricultural practices (like reduced tillage, cover

crops, terraces, buffer zones, etc.) will result in a reduction of sediment loads, leading to

improvements in transparency.

Next, we decide on the level of transparency improvement. We calculate the standard

deviation of transparency over time for all sites with more than three observations over the

time horizon. The standard deviation of transparency for most sites in the watershed is

less than 0.2 meters and the average standard deviation is 0.18 meters (approximately 7

inches). We make the simplifying assumption that the conservation policy scenario improves

transparency at each site in the watershed by 0.18 meters. We apply the improvement in

transparency to the short- and long-term conditions separately. That is, we first evaluate

the welfare impacts of an improvement in transparency for all sites in the watershed by

0.18 meters with the assumption that this will be a one-period shock, holding long-term

transparency constant at its status quo level. Then we carry out the same exercise but

assume that the change leads to a permanent increase in transparency.

After creating a new vector of water quality conditions, we calculate the willingness-to-

pay (WTP) per-trip for the change as:

WTPi =

[
ln

(∑
j∈J

exp(V ∗
ijt)

)
− ln

(∑
j∈J

exp(Vijt)

)]
· γ−1 (2.11)

where Vijt is the indirect utility of angler i choosing site j in year t, V ∗
ijt is the same measure

but with the new vector of water quality, and γ is the coefficient on the travel cost variable.
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This standard equation (Haab and McConnell, 2002) yields the per-trip expected WTP for

the change in water quality for angler i. It is calculated for each angler using parameters

from all of the nine specifications and sample restrictions presented in Tables A.2 and A.3.

Because the angler’s choices are measured for a single choice occasion, both the short- and

long-term impacts capture the effect on a representative angler’s welfare at a single choice

occasion; the duration of the welfare change is the same, the difference is whether the angler

perceives the change as a short-term change or a permanent shift in water quality.

As seen in Table 2.3, we find slight differences in per-trip WTP across model specifi-

cations, and significant differences in per-trip WTP for short- and long-term transparency

improvements. Mean WTP for a 0.18 meter increase in short-term transparency at all sites

in the watershed ranges between -$0.27 and $2.56, depending on the model specification and

sample restriction. Mean WTP for a 0.18 meter increase in long-term transparency ranges

between $6.28 and $25.17. While the point estimate for mean WTP varies across mod-

els, there is a consistently significant difference between WTP for short-term and long-term

changes; we find strong evidence that on a per-trip basis anglers are willing to pay more for

long-term improvements in water quality than for the same change in the short-term. Since

polices targeting water quality improvements generally seek long-term quality standards,

analysts should be careful of how they are calculating the benefits of such policies. The

current standard approach would only use short-term measures of water quality, which can

significantly understate the true benefits.

To construct confidence intervals around the WTP point estimates for the base model,

we use a bootstrapping approach. Using 200 independent random draws of 1,687 anglers,

we calculate the WTP measurements for the base model for each iteration, keeping the

mean WTP for each draw. The results are shown in Table 2.4. On average, the per-trip

benefit to a Texas angler for short-term improvements to the watershed is $1.38, with a 95%

confidence interval ranging from $0.67 to $1.96. The same measure per-season (calculated

by multiplying the per-trip WTP by the number of reported trips per randomly selected
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Table 2.3: Per-Trip WTP For Simulated Transparency Improvement In A Watershed

Model Mean WTP: Short-Term Mean WTP: Long-Term
Base Model 1.36 14.24
Alternate Travel Cost 1.09 11.45
Choice set restricted to 150 miles -0.27 6.28
Positive trips only 1.17 15.37
Lakes only 1.34 8.08
Rivers only 2.56 25.17
Drop 2001 survey 0.32 7.90
Day trips only 0.60 7.89
Distance error of less than 100 miles 0.40 12.84
Notes: Mean WTP is presented in 2015 USD. Rows represent alternate model specifications.

angler) is $36.46, with a 95% confidence interval from $17.88 - $52.57. If the water quality

changes are perceived as long-term, the benefits are much larger. On average, the per-

trip benefit for long-term improvements for transparency in the watershed is $15.76 (95%

confidence interval: $0.50 - $21.37), and the per-season benefit is $417.57 (95% confidence

interval: $254.85 - $561.83). As stated above, while we are not confident in the magnitude

of the model coefficients, we are confident in the difference in the relative magnitude of the

coefficients in the short- and long-term models.

Table 2.4: Bootstrapped WTP For Simulated Transparency Improvement In A Watershed

Statistic Mean 95% CI: Lower 95% CI: Upper
Short-term, per trip 1.38 0.67 1.96
Short-term, per season 36.46 17.88 52.67
Long-term, per trip 15.76 9.50 21.37
Long-term, per season 417.57 254.85 561.93
Bootstrap results from 200 iterations of random angler selection
from base model
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2.6 Conclusion and Limitations

There is growing evidence that the recreational demand literature should consider im-

portant temporal aspects of water quality. Recent work shows that welfare estimates may

not be stable over time (Ji, Keiser, and Kling, 2020), and using only site-specific short-term

variations may result in significant measurement error (Keiser, 2019). Long-term water qual-

ity is a measure that is stable over time and plays a large role in the site-choice decision for

anglers. We show that existing methods can be adapted to identify the effect of long-term

variations on angler anticipated utility, while still identifying the traditional effect of short-

term variations and controlling for unobserved site characteristics. Moreover, using standard

fixed-effects estimate to value changes in water quality that are intended to be permanent

will result in a significant underestimate of the true value. We are able to estimate the

welfare impacts of improving short- and long-term water transparency and find significant

differences between the two.

As far as our empirical estimates of the value of water quality to Texas anglers, there are

several important limitations to our data that lead to imprecise value estimates. First, we

do not observe the participation decision of the angler. For this reason, we are not able to

capture the extensive margin of anglers, which may bias the welfare estimates. Second, we

are missing substantial water quality data. The SWQMIS database has rich spatial data,

but the frequency of measurements for many sites is quite low. With more measurements per

site, we would have a better idea of the water quality conditions. Third, we do not observe

the targeted fish species. If anglers are targeting specific types of fish, their preference for

water quality conditions may change; some fish are more tolerant of muddy or briny water.

For anglers targeting these species, low water transparency may be preferred. By failing

to take into account angler preferences between clear- and muddy-water species, we are

likely biasing the coefficients on water quality towards zero, which should result in more

conservative welfare estimates.21

21Another approach could employ both ASCs and random parameters to account for angler heterogeneity.
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Despite the data limitations, we believe our results strongly support the conclusion that

anglers per trip willingness-to-pay is more for long-term improvements in water quality than

for short-term improvements; we believe this is an important empirical contribution to the

recreational demand literature. More generally, we show that standard coefficients estimated

with site fixed effects capture only the value of short-term variation in water quality; the

value of long-term water can be estimated in a second stage regulation and for many policy

interventions this may be the more appropriate measure.

Some actions that might be undertaken to affect water quality have short-term conse-

quences, while others have long-lasting impacts. Our work, therefore, has important impli-

cations for policy makers or environmental damage assessment, because we have shown that

only accounting for the effect of short-term changes on angler welfare is not the complete

story; the effect of long-term changes is potentially an important driver of site-choice, and

thus an aspect of angler welfare that should not be ignored.

We opt for what Klaiber and von Haefen (2011) call a “second-best” strategy which prioritizes in-sample
predictions, since the goal of this paper is to show the two-stage estimation process using ASCs, and since
the repeated-cross-section nature of the data does not allow us to use a random parameters logit
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3. AN EMPIRICAL ESTIMATE OF THE VALUE OF SOIL QUALITY

IMPROVEMENTS

3.1 Introduction

During the past century, the United States has addressed soil conservation through a va-

riety of conservation acts and services.1 Today, the United States Department of Agriculture

(USDA) spends approximately $6 billion each year on conservation programs.2 Despite the

evident importance of soil conservation, we have an incomplete picture of the value of soil

quality improvements.

The benefits of soil quality improvements can accrue both on and off the farm, and

recent literature has mostly focused on the off-farm benefits. It is widely recognized that

soil provides a bevy of ecosystem services that are valuable to society, such as flood control,

recreational benefits, and carbon storage (Dominati et al., 2014; Jonsson and Daviosdottir,

2016; Lal, 2014; Hansen and Hellerstein, 2007; Hansen and Ribaudo, 2008). Researchers

have used a variety of non-market valuation tools to value the effect that soil conservation

has on the provision of these ecosystem services.3

Meanwhile, estimation of the on-farm benefits of soil quality improvements is stuck in

time. Early work on the on-farm economic value of soil quality focused on changes in crop

revenue or return-on-investments associated with soil conservation efforts (Ciriacy-Wantrup,

1947). After the Soil and Water Resources Conservation Act of 1977, there was renewed

interest in the value of soil conservation, though most work was anchored in theoretical

optimal control models (Barbier, 1990; Barrett, 1991; McConnell, 1983; Burt, 1981). A

seminal paper on the optimal control of soil resources from McConnell (1983) assumes that
1See, for example; Public Law 74-46 and the establishment of the Soil Conservation Service, Public Law

73-67 and the establishment of the Soil Erosion Service, the Flood Control Act of 1936, the Watershed
Protection and Flood Control Act of 1954, and the Soil and Water Resources Conservation Act of 1977

2https://www.ers.usda.gov/topics/natural-resources-environment/conservation-programs/
3For an exhaustive summary of soil ecosystem service valuation studies, see Jonsson and Daviosdottir

(2016).
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a farmer seeks to maximize net revenues for her operation by considering the depth of soil

as the only state variable. The economic literature on soil conservation since the 1980’s has

overwhelmingly focused on soil erosion Barbier (1990); Barrett (1991); Burt (1981); King

and Sinden (1988); Lee (1980); Seitz and Swanson (1980), and benefits of soil conservation

are typically captured in changes in revenues or input costs.

Estimating the on-farm benefits of soil quality improvements beyond erosion effects has

received little attention. Nonetheless, farmers may value improvements in other character-

istics like organic matter and water infiltration. In this paper, we directly estimate the

willingness-to-pay to improve a set of soil quality characteristics without translating the

changes to revenue. We use a direct stated preference approach since revealed preference

approaches are not appropriate in this setting. Revealed preferences for soil quality charac-

teristics elicited through choices of conservation practices are confounded by unobservable

factors such as inherent (non-manageable, e.g. depth of horizons, clay content, and soil

order) soil characteristics, effort of the farmer, and farmer-specific cost considerations. Re-

vealed preferences could be elicited from observing land purchases, but there is no widely

available data on manageable soil quality. We therefore build a hypothetical scenario to

identify farmer preferences for manageable soil quality characteristics. Specifically, we uti-

lize a discrete choice experiment (DCE) which is a popular approach to valuing specific

attributes of a resource (Hanley et al., 1998). We follow a well-established framework for

constructing a DCE (Holmes, Adamowicz, and Carlsson, 2017), opting for a multinomial

choice-sequence version, where respondents face greater than two alternatives from which to

choose (multinomial), and make a choice multiple times (sequence) (Carson and Louviere,

2011). We ask respondents to choose between two land parcels to rent for their operation,

where each land parcel has different levels of manageable soil quality and rental rates, and

a status-quo option where they may choose neither parcel.

The United States Natural Resources Conservation Service (NRCS) provides technical

and financial assistance to farmers to adopt soil conservation practices. To effectively balance
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the costs and benefits of soil conservation, farmers and agents need to understand the mon-

etary value of soil quality improvement. For example, the official benefit-cost template for

no-till conservation lists potential on-farm benefits such as “[i]ncreased infiltration”, “high

soil organic carbon”, and “reduce[d]...potential for soil compaction”.4 Our estimates of the

willingness-to-pay for improvements in these characteristics is the first step in monetizing

these benefits, which helps the USDA make more informed choices.

This work focuses only on estimating the perceived benefits of improved soil health. To be

fully policy-relevant, our estimates should be compared to the costs of achieving soil quality

improvements across different types of farmers to better understand which farmers need the

most or least incentive to adopt soil conservation practices. Our work can ultimately lead

to more efficient funding and targeting of conservation practices for the NRCS and similar

agencies.

3.2 Survey Development

3.2.1 Study Area

The selected study area is the watershed of the Brazos River in central Texas. We are

particularly interested in the middle portion of the basin, where farms share similar geolog-

ical and climatic characteristics. The watershed consists of a few major land resource areas

(MLRAs), as defined by the United States Department of Agriculture, Natural Resource

Conservation Service (United States Department of Agriculture, Natural Resources Conser-

vation Service, 2006). The major MLRAs in the region are the Texas Blackland Prairie and

Texas Claypan areas. In both MLRAs, most soils are entisols, mollisols, and vertisols, and

have an ustic soil moisture regime. Cropland and grassland are the dominant land covers

and the major crops are cotton, corn, and sorghum. The average annual rainfall across both

areas is 27 to 45 inches, and the average annual temperature is 64 to 70 degrees (United

States Department of Agriculture, Natural Resources Conservation Service, 2006).

Ustic soil moisture regimes are soils that are intermittently dry and wet throughout the
4https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/econ/data/?cid=nrcseprd1298864
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year (United States Department of Agriculture, Natural Resources Conservation Service,

2015). The soil moisture is generally adequate during the growing season but can be scarce

during other times of the year. This differs from udic regimes, for example, which are

consistently more moist throughout the year. Other MLRAs in Texas can be characterized

by different soil orders and soil moisture regimes, for which management concerns (and

therefore preferences for soil health characteristics) may vary significantly. We therefore

target the Texas Blackland Prairie and Texas Claypan areas so that the difference in observed

preferences is purely a function of manageable soil quality and not also a function of inherent

geologic or climatic context for the farmer.

3.2.2 Attribute Selection

We adhere to standard best-practices laid out by Johnston et al. (2017) in design of the

discrete choice experiment (DCE). For example, we use prior empirical results and pretesting

to create a design that efficiently identifies key parameters5. When estimating preference

parameters, previous estimates can be used to create more efficient experimental designs. A

common metric to measure is a design’s D-efficiency (described in Appendix), which is a

measure of how efficiently an experimental design can identify coefficients of interest. Given

the number of choice sets and attributes for an experiment, a researcher can maximize the

D-efficiency of the design (Rose and Bliemer, 2009) by selecting combinations of attribute

levels. This section describes the design process that ensures both the choice occasion and

the alternatives are realistic to avoid a long-standing concern of hypothetical bias (Murphy

et al., 2005) and consequentiality (Groothuis et al., 2017).

In both characterizing the decision problem and defining the attributes of the choice

alternatives, we sought early input from farmers in the study area. In June of 2018, we met

with two groups of farmers: those who had adopted soil conservation practices, and those

who had not. The groups were recruited with the help of local extension service agents,

who identified the adopting status of each farmer. Each group was asked a similar set of
5See recommendation 4 in Johnston et al. (2017)
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questions. After reviewing the recorded transcripts of both group meetings, we found that

water management, organic matter, yield, and biomass of crops were important measures of

soil health (Bagnall et al., 2020).

After the focus groups, we constructed an initial DCE where farmers were asked to

choose between parcels of land to rent, with different soil health attributes and price for

each alternative parcel. The initial list of attributes was refined through conversations with

soil scientists. For example, water retention is a measure of how much water is held in a

given type of soil, but soil scientists cautioned that the water-holding capacity of a given

soil is more likely a function of its inherent characteristics and is not manageable.6 Other

attributes, like previous yield, were dropped because of endogeneity concerns.

In designing a choice experiment, it is important to frame alternatives in a realistic

way (Johnston et al., 2017). Soil health is measured in a variety of ways. Some popular

soil science measures are bulk density (grams/cm3), organic matter (% of soil sample), soil

respiration (mg of CO2/kg soil/time), and other technical measurements (Bünemann et al.,

2018). However, simple non-technical measurements - like the number of earthworms in a

clump of soil - can also be good indicators of soil health (Plaas et al., 2019). Walking the

tightrope between meaningful technical measurements and measurements that have meaning

to farmers led us to explore the concept of linking indicators, a term coined by Boyd et al.

(2015). A linking indicator is one that indicates some important ecological measure, and

also has meaning to the person interpreting it. For example, the hydraulic conductivity of

soil (a measure of how fast water travels through soil) is sometimes referred to as KSAT , and

is measured in µm/seconds. If hydraulic conductivity is selected as an attribute in a choice

experiment, should it be called “hydraulic conductivity", “KSAT ”, “How fast water moves

through the soil", or something else? Should it be measured in µm/seconds, or perhaps

scaled to meters (or feet) per day?

The list of soil attributes were first identified using the focus groups and an initial review
6Personal communication with Dr. Dianna Bagnall and Dr. Cristine Morgan.
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of the soil literature, and then refined after discussions with soil scientists and initial pre-tests

of the survey with farmers. See Table 3.1 for the final list of attributes and levels. The four

attributes used in the choice experiment are water infiltration, organic matter, compaction,

and price. Water infiltration is a measure of how well water flows through the soil. The

inherent characteristics of any soil (like sand and clay content) significantly influence water

infiltration rates, but within a given soil class, variation in infiltration rates is likely due to soil

management. We measure water infiltration as time (in hours) for an inch of standing water

to absorb. Organic matter is the amount of organic material in a unit of soil, and we measure

it in percentage terms. In pre-testing, farmers were familiar with measuring organic matter

in percentage terms. Soil compaction is measure of how much resistance roots encounter

when penetrating downwards. In certain conditions, pressure from heavy equipment can

cause a compaction of the soil beneath the ground, which acts as a root barrier. The root

barrier restricts the downward growth of the roots, causing plants to become less physically

stable and produce less fruit as energy is re-routed to root exploration (Unger and Kaspar,

1994). The levels for all three soil attributes were set based on real in-field measurements

taken at several field stations in the project area (Bagnall and Morgan, 2021).

The final attribute is the monetary vehicle. The choice occasion is the rental of a new

field, so naturally the rental rate serves as the ideal monetary attribute.7 Unfortunately, the

average rental rates vary significantly over the study area. Figure 3.1 shows the average cash

rental rate in USD from 2008 - 2020 for the State of Texas, with the Brazos River Watershed

outlined in the first panel. There are significant differences across field types: irrigated

land is generally more expensive than non-irrigated land, and pasture land is generally

the cheapest of the three land types. Even within broad field types, there is substantial

heterogeneity in typical cash rental rates across the study area. The large variance in land

prices is problematic in determining the attribute levels. For example, a farmer operating

on non-irrigated land near Austin (in the lower-middle region of the watershed) may be
7Some farmers in the focus group indicated their rental agreements are sometimes structured as crop-

shares, but most were engaged in cash rentals.
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Table 3.1: Discrete Choice Experiment Attributes and Levels

Attribute Levels
Water infiltration 1 inch of standing water absorbed in 10 hours

1 inch of standing water absorbed in 5 hours
1 inch of standing water absorbed in 3 hours

Organic matter 0.5% by soil mass
1% by soil mass
2.5% by soil mass

Compaction Does not restrict root growth
Restricts root growth partially
Restricts root growth substantially

Price $10/acre less expensive that typical price
Typical price
$10/acre more expensive that typical price

Note: Soil attribute levels from Bagnall and Morgan (2021)

accustomed to rental rates of $40/acre. If we were to center the payment vehicle around $40

and present the survey to a farmer operating in an area where the average rental rates are

closer to $10/acre, they may likely choose the opt-out alternative because the land is too

expensive to rent.

To combat the large variance of the intended payment vehicle, we opt for a pivoted

design, where the rental rates that each respondent is presented with are relative to their

prior experience. Pivoted designs are relatively popular in the choice modeling literature (see

Hensher and Rose (2007); Train and Wilson (2008); Hess and Rose (2009)). In a pivoted

design, one attribute level is selected by the respondent based on some prior experience. The

other attribute levels then pivot from the reference point, usually taking some symmetric

deviation above and below the reference point. In our context, we ask the respondent to

select his or her “base field.” The base field is some field that the farmer knows well. If a

farmer were to choose any of his/her fields, there may be substantial selection bias where

the base field is under no-till, but also happens to be in a favorable location with favorable

inherent soil characteristics. To minimize the potential selection bias, we ask farmers to
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Figure 3.1: Cash Rental Rates In Texas (Average, 2008 - 2020)

select roughly the same type of field, regardless of tillage practice. If the field is under no-till

or strip-till, we ask the respondent to select a field where the tillage is marginally effective.

If the field is under conventional tillage, we ask the respondent to select a field where no-

till/strip-till could be advantageous. Once the base field is selected, we ask a series of several
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questions to learn about the base field’s size, location, crop mix, tillage practices, ownership

structure, topography, and perceptions on urban encroachment and soil health. Finally, we

ask each respondent for the typical cash rental rate for their base field. The respondent’s

typical rental rate is the reference point, and we add two additional levels: $10 above and

$10 below the reference point.

3.2.3 Experimental Design

To our knowledge, we are the first to estimate the value of manageable soil character-

istics using a discrete-choice experimental approach. Without prior expectations for any of

the preference parameters, we initially construct a traditional factorial design using the R

package support.CEs(Aizaki, 2012).8 We then deployed the choice experiment and used the

preliminary results to estimate preference parameters. These initial parameters were then

used as priors, and we re-designed the choice experiment using the Stata package dcreate,

which maximizes the D-efficiency of the experimental design assuming a conditional logit

choice model (Hole, 2015).

In the initial design phase, we faced a design challenge. We avoided the following condi-

tions which make little sense in real fields:

Avoidance Condition 1. Field A has higher water infiltration, equal or lower organic

matter, and equal or higher compaction than Field B, or vice versa.

Avoidance Condition 2. Field A has lower water infiltration, equal or more organic matter,

and equal or lower compaction than Field B, or vice versa.

While there are established methods to avoid certain attribute level combinations for a

given alternative, there is little consideration in the literature for alternatives that are prob-
8Specifically, we use a mix-and-match method described in Johnson et al. (2006): we find the orthogonal

main-effects design (OMED), which is unique to our design of four attributes with three levels each. A
new design is created by rotating the levels for each attribute up by one (and returning to the lowest for
the highest attribute levels). The two designs represent two alternatives, with each row corresponding to a
choice set. Next, each row is shuffled for both designs independently. Finally, a random draw is made from
each design to construct the first choice set. The drawing continues with replacement until the number of
drawable choice sets equals zero.
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lematic only relative to otherwise unproblematic alternatives. There is no way to identify

a problematic design until after the alternative combinations have been set. Our final de-

sign removes alternatives that could be problematic relative to others from the full-factorial

combinations of all attributes and levels. For example, we removed alternatives that had the

highest water infiltration rate, the lowest organic matter percentage, and the highest com-

paction level since this alternative would fail the first avoidance condition. We then iterate

a full design until two conditions are met: 1) we avoid the identified problematic conditions

and 2) we retain one choice occasion with a dominated alternative to check the monotonicity

of preferences (Scarpa, Campbell, and Hutchinson, 2007).

The final DCE is embedded in a larger survey consisting of 12 sections that address

the research questions of the interdisciplinary team of economists, sociologists, and soil

scientists. The first section collects general demographic information, the second collects

information specific to the farmer’s base field, the third collects perception of soil quality

and effectiveness of soil conservation practices, the fourth is the choice experiment, and the

remaining 8 sections are sociological in nature and use the theory of planned behavior (TPB)

to understand why farmers make the decision to adopt or not adopt a practice.

3.3 Survey Results

The final survey was administered through the USDA National Agricultural Statistics

Service (NASS) to guarantee a representative and random sample in our study area. A

total of 575 usable responses were collected in 2020 from a total of 2,833 mailed surveys,

for an effective response rate of 20.3%. See Table 3.2 and Figure 3.2 for selected summary

statistics. Note that because of NASS confidentiality concerns, we cannot present median

values or any other individually identifying statistic. The average respondent is 68 years old

and has been in operation for approximately 34 years. The average respondent rents more

acres (681) than he owns (479), which is consistent with our initial focus group conversations

about the prevalence of renting land in central Texas. The average base field operation is

approximately 77 acres, and for those who have adopted no-till on the field, they have almost
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9 years of experience with no-till on average. Approximately 15% of the average base field is

prone to flooding. Figure 3.2 summarizes categorical responses across a set of key questions.

Almost half of respondents plan on continuing to operate in five years. A vast majority of

respondents did not use strip-till in 2018, and had no plans to change. The same is true

for no-till, though a more sizable 15% of the sample used no-till in 2018. Most respondents

did not use outside crop consultants, and of those who did, the vast majority relied on the

consultant’s advice “somewhat” or “very little”. The selected base field for respondents is,

on average, rented, under conventional-till, and is gently sloping. Most respondents consider

their base-field to be neither floodplain nor hilly/upland.

Table 3.2: Selected Summary Statistics, Farmer Survey

Survey Question Mean Std Deviation
Years in Operation 34.47 17.66
Age 68.30 12.02
Acres Owned 479.94 4,455.19
Acres Rented 681.25 2,700.69
Base Field Size (Acres) 77.03 174.08
Base Field Number of Years in No-till 8.91 35.77
Percent of Base Field Prone to Flooding 15.56 77.07
Note: Outliers cause large standard deviations. While outliers would
normally be dropped, USDA NASS restrictions prevent the sharing of
any data that could be used to identify a single operation. Outliers are
therefore retained in our summary statistics.

3.4 Models

The statistical efficiency of the DCE design presupposes a conditional logit model of esti-

mation (Hole, 2015). Our main modeling approach therefore characterizes respondent choice

by using a random utility framework, estimated by a conditional logit (McFadden, 1974).

The conditional logit setup ignores attribute preference heterogeneity across respondents.

There is good reason to believe, however, that there may be substantial heterogeneity across
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Figure 3.2: Selected Summary Statistics, Farmer Survey
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respondent farmers. We try to capture preference heterogeneity in a variety of ways. First,

we split the sample across base field rental rates, tillage practices, future operational plans,

and base field topography. Second, we employ a latent class analysis to split the sample

into distinct groups based on soil health attitudes. As we explain below, we identify four

distinct groups of farmers based on these attitudinal questions. Third, we estimate several

mixed logit regressions: one for every restricted sample in the conditional logit and latent

class analyses.

In the next three subsections, we describe the model and estimation results for the

standard conditional logit, latent class analysis, and mixed logit approaches.

3.4.1 Conditional Logit Analysis

Following the standard random utility model, we assume that respondent i chooses al-

ternative j at choice occasion t when the expected utility from choosing alternative j is the

maximum of all possible alternatives k in the choice set J , i.e.:

Uijt ≥ Uikt, ∀k ∈ J (3.1)

where utility is comprised of two separable components: a deterministic component Vijt

and a structural error εijt assumed to exhibit a Type I extreme value distribution, i.e.

Uijt = Vijt + εijt. In our case, J = {Field A, Field B, Neither Field A nor Field B}. We

model the probability that respondent i chooses alternative j at choice occasion t as:

Pi(j, t) =
eVijt∑
k∈J e

Vikt
, (3.2)

where Vijt is the deterministic portion of utility, and takes the form:

Vijt = αj +Xjtβ + γrjt. (3.3)

The αj term is a set of two dummy variables that indicate if alternative j is Field A or Field
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B. A negative αj would suggest that respondents are less likely to choose one of the two

main alternatives, and more likely to choose the opt-out alternative, ceteris paribus. The

alternative-specific constants are not of particular interest in our study. The Xjt term is a

matrix of values for the three selected soil attributes (water infiltration, organic matter, and

compaction9) in the DCE. Finally, the rjt term is the rental rate value for alternative j at

occasion t. Recall that this is a pivoted variable, and thus takes one of three values: -1 if

the rental rate is $10 below the base rate, 0 if the rental rate is equal to the base rate, and

1 if the rental rate is $10 above the base rate. The vector of estimated coefficients, β, and γ

capture the marginal effect of a change in attribute levels on respondent utility.

Before estimating any model, we first filter out respondents that appear to not be making

utility-maximizing decisions by eliminating respondents who choose a dominated alternative.

We purposefully included a dominated alternative in choice occasion six to check for irrational

choices. We also observe many respondents did not provide a base field rental rate, which

is the center of the pivoted rental rate variable. While the pivoted design allows prior

experience to enhance the realism in the choice experiment, the center pivot is not needed

for estimation.10 We retain respondents who did not provide the rental rate for their base

field (approximately 19% of the sample) and assume the DCE was nonetheless realistic for

this group.

See Table 3.3 for the conditional logit estimation results for each of the restricted samples

described above. The base model which includes the entire sample is presented in column 1.

All attributes significantly affect respondent utility, though there is a noticeable difference in

magnitudes. We discuss relative magnitudes across attribute coefficients in the willingness-

to-pay calculations below, where we scale the marginal change by a realistic change in soil

management to more accurately compare differences in soil quality attribute preferences. The
9Compaction is a categorical variable that takes three values: high, medium, and low. We set the reference

level to be “low” and omit this category from estimation
10The coefficient and variable for the rental rate in equation 3.3 can be represented as: γ(ri + rjt) where

ri is the rental rate of the respondent’s base field, and rjt is the pivoted value, which can be the same as the
base rate, or $10 above or below that rate. Note that ri can be factored out and as in all conditional logits,
drops out of the estimation process because it varies only over individuals.
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coefficients in Table 3.3 are most helpful when interpreting coefficient signs or comparing

across models. Again focusing on the base model, the coefficients on water infiltration and

organic matter are positive, which means as water infiltration or organic matter increase for

a field, respondent utility associated with choosing that field increases. On the other hand,

the coefficients on high and medium compaction are negative, which means that a field with

high or medium compaction yields lower respondent utility – compared to a field with low

compaction. Finally, the coefficient on rental rate is negative, suggesting that as the rental

rate of a field increases, the respondent utility associated with choosing that field decreases.

After estimating the base model, we split the sample in a variety of ways. First, we create

three rental rate groups: a low-price group with base field rental rates of $0 - $20 per acre, a

medium-price group with base field rental rates of $21 - $40 per acre, and a high-price group

with a base field rental rate of more than $40 per acre. Second, we create a conventional

tillage group who use conventional tillage on their base fields, and a no-till/strip-till group

who use either no-till or strip-till on their base fields.11 Third, we create three groups based

on the planned operator in five years: self if the respondent plans on continuing to operate

himself, other if the respondent plans on having a relative or other person operating his

fields, and uncertain if the respondent does not know who will be operating the farm in five

years. Finally, we create two groups based on the topography of the base field: level if the

base field is level (less than 1% slope), and sloped if the base field has any slope greater than

1%.

Columns 2 - 11 in Table 3.3 present the same conditional logit results for the restricted

samples. Despite some noticeable differences in estimated coefficients across sample restric-

tions, all groups (sub-samples) yield somewhat similar results in coefficient magnitudes and

identically-signed coefficients, all of which are significant at the 5% level. As we explore be-
11We tried creating three tillage groups: conventional, no-till, and strip-till, but the number of strip-till

users was too small for subsequent analysis. We therefore absorbed the strip-till group into the no-till
group, recognizing that there may be important differences in soil preferences between no-till and strip-till
producers. Unfortunately, we lack the power to identify any differences between the unconventional tillage
groups.
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low, this leads to no significant differences in estimated willingness-to-pay across the groups.

Note that all groups are not mutually exclusive; an individual in the medium rental rate

group will also be in the level or sloped topography groups. However, within the group cat-

egories (rental rates, tillage practices, future plans, and topography), groups are mutually

exclusive and a direct comparison of coefficient magnitudes can be made. For example, the

high rental rate group is much less affected by changes in rental rates than the medium or

low rental rate groups, as evidenced by the smaller coefficient on rental rate for the high

rental rate group. Similarly, no-till/strip-till farmers appear to be much less sensitive to

rental rates than conventional-till farmers in their choice to rent a field. At the same time,

the no-till/strip-till farmers are more affected by all soil quality attributes than conventional-

till farmers. Focusing on future plans, farmers who plan to continue to operate their own

farms in five years are more affected by changes in water infiltration than farmers who are

uncertain about their plans or are planning on selling their operation. Interestingly, there

is little difference in the soil quality attribute coefficients for the two topography groups,

though respondents with sloped base fields are more sensitive to rental rate changes than

respondents on mostly level land.
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Table 3.3: Conditional Logit Estimation Results

Rental Rate Groups Tillage Groups Future Plan Groups Topography Groups
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Base Low Rental Rate Medium Rental Rate High Rental Rate Conventional No-till/Strip-till Self Other Uncertain Level Slope
Rental Rate −0.198∗∗∗ −0.259∗∗∗ −0.294∗∗∗ −0.134∗∗∗ −0.233∗∗∗ −0.121∗∗ −0.208∗∗∗ −0.240∗∗∗ −0.221∗∗∗ −0.128∗∗∗ −0.219∗∗∗

(0.029) (0.057) (0.063) (0.057) (0.038) 0.061) (0.039) (0.063) (0.072) (0.053) (0.036)
Water Infiltration 4.311∗∗∗ 3.980∗∗∗ 5.493∗∗∗ 4.730∗∗∗ 4.319∗∗∗ 4.720∗∗∗ 4.736∗∗∗ 3.265∗∗∗ 3.497∗∗∗ 4.242∗∗∗ 4.255∗∗∗

(0.510) (0.998) (1.145) (0.974) (0.662) (1.076) (0.675) (1.134) (1.243) (0.929) (0.645)
Organic Matter 0.401∗∗∗ 0.421∗∗∗ 0.392∗∗∗ 0.343∗∗∗ 0.324∗∗∗ 0.603∗∗∗ 0.400∗∗∗ 0.337∗∗∗ 0.390∗∗∗ 0.429∗∗∗ 0.388∗∗∗

(0.042) (0.080) (0.088) (0.080) (0.053) (0.091) (0.054) (0.089) (0.104) (0.077) (0.052)
High Compactiona −1.745∗∗∗ −1.862∗∗∗ −1.613∗∗∗ −1.489∗∗∗ −1.637∗∗∗ −1.849∗∗∗ −1.566∗∗∗ −1.887∗∗∗ −2.070∗∗∗ −1.713∗∗∗ −1.744∗∗∗

(0.109) (0.217) (0.219) (0.206) (0.134) (0.257) (0.142) (0.230) (0.272) (0.204) (0.135)
Medium Compactiona −0.566∗∗∗ −0.483∗∗∗ −0.580∗∗∗ −0.437∗∗∗ −0.466∗∗∗ −0.647∗∗∗ −0.6105∗∗∗ −0.458∗∗∗ −0.573∗∗∗ −0.608∗∗∗ −0.512∗∗∗

(0.078) (0.149) (0.168) (0.152) (0.099) (0.172) (0.104) (0.165) (0.186) (0.146) (0.097)
Field A Intercept 0.186∗ 0.088 0.633∗∗∗ −0.178 0.374∗∗∗ −0.633∗∗∗ −0.057 0.783∗∗∗ 0.570∗∗ −0.124 0.305∗∗

(0.127) (0.259) (0.273) (0.240) (0.163) (0.283) (0.169) (0.286) (0.314) (0.234) (0.161)
Field B Intercept 0.073 0.305∗ 0.452∗∗ −0.444∗∗ 0.161 −0.328∗ −0.135 0.696∗∗∗ 0.307 −0.219 0.251∗∗

(0.111) (0.216) (0.239) (0.215) (0.143) (0.237) (0.148) (0.242) (0.267) (0.205) (0.139)
Observations 7,815 1,986 1,716 2,133 4,776 1,635 4,275 1,701 1,431 2,283 4,932
Log-Likelihood −2,311.282 −5611.013 −471.865 −635.231 −1,399.470 −504.524 −1,310.564 −486.749 −401.685 −689.568 −1,453.835
AIC 4,636.564 1,236.026 957.730 1,284.462 2,812.940 1,023.047 2,635.127 987.498 817.370 1,393.137 2,921.67

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
aOmitted base category: low compaction
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3.4.2 Latent Class Analysis

As seen in Table 3.3, restricting the sample of respondents based on a single observable

variable (like base field rental rate or tillage practice) results in relatively minor differences

in coefficient estimates across groups. Splitting the sample does not remove potentially

confounding opinion or behavioral patterns that can persist within restricted samples. For

example, the medium-price group may have distinctly different groups of respondents, and

estimating a single coefficient on various preference parameters hides potentially important

heterogeneity.

Latent class analysis uses a set of categorical responses (referred to as manifest variables)

to group respondents into distinct groups, or classes. The assigned class is referred to as the

latent class, and is assumed to remove potential confounding between the set of manifest

variables. Latent class models have been used, for example, to group agricultural producers

based on their production decisions, the size of their operations, and their risk preferences

(Chinedu et al., 2018). Latent class analysis (LCA) allows researchers to identify distinct

groups of respondents that exhibit similar observed behavior, and an unobserved grouping

variable is assumed to cause the observed patterns.

We hypothesize that farmers may be categorized into distinct groups based on their opin-

ions on soil health and conservation practices. We in turn assume that the latent grouping

variable causes differences in preferences for the discrete choice experiment and estimate a

conditional logit for each latent class. Instead of a sample-wide fixed coefficient for each

preference parameter, the LCA allows for a fixed coefficient for each class, which allows

heterogeneous preferences across classes.

In setting up our latent class analysis, we use best practices outlined in Collins and Lanza

(2009). The section preceding the DCE in the survey gathers information on the respondents’

attitudes towards soil health. See Table 3.4 for a list of the fourteen questions and possible

responses. For seven soil characteristics (water infiltration, organic matter, runoff, erosion,

bulk density, compaction, and drainage), we as respondents 1) how important are changes
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in these characteristics to their base field, and 2) how no-till/strip-till would affect these

characteristics on their base field.

Table 3.4: Latent Class Analysis Manifest Variables

Importance of a change in soil health characteristics to your base field:
Very Important Fairly Important Important Slightly Important Not Important Don’t Know

Increasing water infiltration ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Increasing organic matter ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Decreasing runoff ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Decreasing erosion ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Decreasing bulk density ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Decreasing compaction ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Increasing drainage ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

No-till or strip-till would increase or decrease soil characteristics on your base field:
Greatly Increase Increase Neither Decrease Greatly Decrease Don’t Know

Water infiltration ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Organic matter ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Runoff ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Erosion ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Bulk density ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Compaction ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
Drainage ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

We observe J = 14 manifest variables, each of which has K = 6 number of possible

outcomes for each individual i = 1, ..., N . Let Yijk = 1 if respondent i responds with k for

manifest variable j, and Yijk = 0 otherwise. Finally, let R be the number of anticipated latent

classes, set prior to estimation. We return to the search for the optimal size of R below.

Let πjrk be the probability that an individual in class r responds with option k for manifest

variable j. Finally, let pr be the unconditional probability of any given individual belonging

to class r. The probability density function of a vector of responses (Yi) for individual i

conditional on π and p is

Pr(Yi|π, p) =
R∑

r=1

pr

J∏
j=1

K∏
k=1

(πjrk)
Yijk , (3.4)

and estimation proceeds by iteratively estimating π̂jrk and p̂r, and replacing the initial ex-

pectations in the log-likelihood function version of equation 3.4 until the difference in log-

likelihood between iterations becomes arbitrarily small. We estimate the above probabilities
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using the R package poLCA which identifies equation 3.4 using an expectation-maximization

algorithm (Linzer, Lewis et al., 2011; Bandeen-Roche et al., 1997).

The final step in searching for the optimal latent class analysis is to identify the number of

classes R. We estimate the above latent class model for classes of size 1 to 5, and examine the

model fit across the versions. We search for the log-likelihood closest to zero, and the model

that minimizes the Akaike information criterion (AIC) and Bayesian information criterion

(BIC) (Akaike, 1998; Schwarz et al., 1978). An LCA with class size R = 4 yields the overall

best fit across the AIC and BIC statistics.

Figure 3.3 shows the class-conditional response probabilities from the LCA. There are

clear patterns that allow us to name the generic latent classes for subsequent analysis. We

focus first on the “importance” responses: how important are the soil health characteristics

to respondents’ base fields? Class 1 has varied predicted response probabilities, but members

of this class are most likely to think the seven soil health characteristics are slightly or not

at all important to their base field. Member of class 2 are overwhelmingly likely to think the

characteristics are very important to their base field. The predicted response probabilities

for class 3 are the most balanced, with no dominant response for any of the “importance”

questions. Finally, members of class 4 are most likely to not know how important the soil

characteristics are for the health of their base field.

Figure 3.3 also shows the class-conditional response probabilities for the “effect” re-

sponses: how do respondents think no-till/strip-till would affect the soil health characteris-

tics? Members of class 1 are most likely to think no-till/strip-till would not change any of

the characteristics. Members of class 2 are most likely to think no-till would greatly increase

all characteristics. Members of class 3 are again balanced with roughly neutral opinions,

except for water infiltration and organic matter, which members agree would increase under

a no-till regime. Members of class 4 are almost certain to not know how no-till would affect

the soil health characteristics.

Based on the predicted class-conditional response probabilities, we assign the following
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labels to the four generic classes. Class 1 is the soil-apathetic class, since members are likely

to think the seven soil characteristics are not important and likely to think no-till would have

no effect on the characteristics. Class 2 is the soil-conscious class, since members are likely to

think the characteristics are very important and no-till would greatly increase them. Class 3

is the moderate class, for balanced and tepid predicted response probabilities. Finally, class

4 is the uninformed class, since members are likely to not know either the importance of the

characteristics nor the effect no-till would have.

After forming the latent classes and assigning individuals to their respective classes,

we estimate the standard conditional logit from the previous section for each latent class

separately. Results are shown in Table 3.5. Across all four latent classes, the estimated

coefficients are similar in sign and significance to each other and the general results from the

conditional logit models of the last section. There are, however, some noticeable differences

in magnitude across the latent classes. For example, the uninformed class has a much smaller

coefficient on water infiltration than the other classes, and the coefficient on water infiltration

is largest for the soil-conscious class. Similar to the conventional-till group from the previous

section, the moderate class is most sensitive to rental rates. Despite these differences in

coefficient magnitudes, the four classes yield estimates that are generally similar. This

suggests – and we confirm below – that attitudes on soil health are not responsible for

significant differences in willingness-to-pay for soil quality improvements.

3.4.3 Mixed Logit Analysis

While splitting the sample for the conditional logit model by observable or latent charac-

teristics may account for some important respondent heterogeneity, an alternative approach

is to use a mixed logit model. In our mixed logit approach, we assume the indirect utility of

respondent i selecting alternative j at choice occasion t to be:

Vijt = αj +X ′
jtβi + γWjt, (3.5)
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Figure 3.3: Class-Conditional Response Probabilities, Latent Class Analysis
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Table 3.5: Conditional Logit Estimation Results By Latent Class

(1) (2) (3) (4)
Soil-Apathetic Class Soil-Conscious Class Moderate Class Uninformed Class

Rental Rate −0.201∗∗∗ −0.139∗∗ −0.247∗∗∗ −0.188∗∗∗

(0.082) (0.073) (0.053) (0.066)
Water Infiltration 6.427∗∗∗ 5.799∗∗∗ 5.168∗∗∗ 2.361∗∗

(1.382) (1.311) (0.930) (1.161)
Organic Matter 0.323∗∗∗ 0.527∗∗∗ 0.369∗∗∗ 0.455∗∗∗

(0.113) (0.113) (0.075) (0.092)
High Compactiona −1.610∗∗∗ −1.963∗∗∗ −1.710∗∗∗ −1.554∗∗∗

(0.298) (0.288) (0.191) (0.248)
Medium Compactiona −0.639∗∗∗ −0.787∗∗∗ −0.508∗∗∗ −0.402∗∗∗

(0.212) (0.209) (0.140) (0.178)
Field A Intercept −0.560∗∗ 0.045 0.258 0.140

(0.347) (0.315) (0.227) (0.300)
Field B Intercept −0.580∗∗ −0.128 0.138 0.166

(0.301) (0.276) (0.197) (0.259)
Observations 1,062 1,296 2,460 1,398
Log-Likelihood −319.992 −346.346 −703.812 −448.784
AIC 653.985 706.691 1,421.624 911.568
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
aOmitted base category: low compaction

which differs from equation 3.3 by allowing the vector of preference parameters on the soil

quality characteristics, β, to vary over individuals. The mixed logit is an extension of the

conditional logit (McFadden and Train, 2000), with the full form of utility still comprised of

two parts: the deterministic indirect utility of equation 3.5 and a structural error that is still

assumed to be distributed i.i.d. type I extreme value. The mixed logit is attractive because

it allows for respondent preference heterogeneity and relaxes the restrictive IIA assumption

required for the conditional logit (McFadden and Train, 2000). However, because βi is

a random variable, it takes some distribution, i.e. f(βi|θ), and we make an assumption

about the shape of that distribution. Specifically, we recover the parameters in equation

3.5 assuming a normal distribution of βi for each soil quality characteristic and therefore

recover the mean β̄ and standard deviation σ of f(βi|θ). We then explore the differences in

estimated coefficients.

Recent advances in the mixed logit literature suggest that the typical distributional
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assumptions of f(βi|θ) can result in unreliable WTP estimates, and more flexible semi-

parametric distributional approaches (polynomials, splines, step-functions) can improve the

reliability of WTP estimates (Bazzani, Palma, and Nayga Jr, 2018; Train, 2016; Scarpa,

Franceschinis, and Thiene, 2021). Our empirical estimates for MWTP for improvements

in manageable soil quality characteristics are, however, novel. We therefore do not have

strong prior expectations that heterogeneous preferences exist, much less the shape of the

distribution of the preferences. Instead of dialing-in on precise estimates in a highly uncertain

environment, our focus in this work is to use three common approaches (conditional logit,

mixed logit, and latent class analysis) and identify broad differences in MWTP estimates to

better improve future DCE efforts for valuation of manageable soil quality.

Results for the mixed logit models using the sample restrictions above are shown in Ta-

ble 3.6. Results are similar to the standard conditional logit specification, except for the

additional standard deviation parameter. For water infiltration and high compaction, the

standard deviation coefficient is significant, suggesting the presence of preference heterogene-

ity even within the restricted sample. There is also heterogeneity in preferences for organic

matter, though not for the low rental rate group, the conventional till group, and the un-

certain future plan groups. There is no evidence of preference heterogeneity for medium

compaction across any of the models.

Results for the mixed logit models using the estimated latent classes are shown in Table

3.7. Results are again similar, with significant preference heterogeneity in water infiltration

and high compaction across the four classes, and less heterogeneity in preferences for water

infiltration for the soil-apathetic and soil-conscious classes. There is again no significant

preference heterogeneity for medium compaction.
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Table 3.6: Mixed Logit Estimation Results

Rental Rate Groups Tillage Groups Future Plan Groups Topography Groups
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Base Low Rental Rate Medium Rental Rate High Rental Rate Conventional No-till/Strip-till Self Other Uncertain Level Slope
Means
Rental Rate -0.368∗∗∗ -0.465∗∗∗ -0.477∗∗∗ -0.292∗∗∗ -0.436∗∗∗ -0.281∗∗∗ -0.398∗∗∗ -0.41∗∗∗ -0.411∗∗∗ -0.259∗∗∗ -0.412∗∗∗

(0.041) (0.082) (0.086) (0.079) (0.054) (0.083) (0.054) (0.086) (0.111) (0.079) (0.05)
Water Infiltration 9.686∗∗∗ 9.228∗∗∗ 10.144∗∗∗ 10.758∗∗∗ 9.847∗∗∗ 8.281∗∗∗ 9.806∗∗∗ 6.626∗∗∗ 12.839∗∗∗ 10.1∗∗∗ 9.631∗∗∗

(1.008) (1.895) (2.078) (1.831) (1.366) (1.856) (1.356) (1.919) (3.518) (2.023) (1.257)
Organic Matter 0.687∗∗∗ 0.714∗∗∗ 0.593∗∗∗ 0.614∗∗∗ 0.584∗∗∗ 0.933∗∗∗ 0.713∗∗∗ 0.564∗∗∗ 0.596∗∗∗ 0.79∗∗∗ 0.675∗∗∗

(0.068) (0.128) (0.135) (0.142) (0.08) (0.161) (0.092) (0.142) (0.179) (0.144) (0.084)
High Compaction -2.853∗∗∗ -3.025∗∗∗ -2.603∗∗∗ -2.601∗∗∗ -2.749∗∗∗ -3.183∗∗∗ -2.632∗∗∗ -2.962∗∗∗ -3.706∗∗∗ -2.563∗∗∗ -3.037∗∗∗

(0.226) (0.474) (0.451) (0.448) (0.296) (0.501) (0.278) (0.507) (0.893) (0.412) (0.302)
Medium Compaction -1.038∗∗∗ -0.912∗∗∗ -0.956∗∗∗ -0.863∗∗∗ -0.966∗∗∗ -1.124∗∗∗ -1.095∗∗∗ -0.803∗∗∗ -1.252∗∗∗ -1.081∗∗∗ -1.029∗∗∗

(0.111) (0.21) (0.224) (0.214) (0.139) (0.239) (0.146) (0.222) (0.314) (0.228) (0.135)
Field A Intercept 0.078 -0.145 0.729∗∗ -0.424 0.393∗ -0.814∗∗ -0.13 0.829∗∗ 0.335 -0.59∗ 0.348∗

(0.158) (0.323) (0.33) (0.301) (0.202) (0.338) (0.208) (0.354) (0.404) (0.304) (0.196)
Field B Intercept 0.213 0.444∗ 0.635∗∗ -0.391 0.381∗∗ -0.243 0.081 0.904∗∗∗ 0.323 -0.509∗ 0.535∗∗∗

(0.138) (0.266) (0.292) (0.27) (0.177) (0.288) (0.184) (0.301) (0.352) (0.278) (0.17)
Standard Deviations
Water Infiltration 8.693∗∗∗ 8.124∗∗∗ 7.79∗∗∗ 8.767∗∗∗ 9.697∗∗∗ 8.952∗∗∗ 9.61∗∗∗ 7.062∗∗∗ 10.698∗∗∗ 10.02∗∗∗ 8.692∗∗∗

(0.727) (1.163) (1.353) (1.283) (0.986) (1.87) (1.057) (1.23) (2.145) (1.58) (0.812)
Organic Matter 0.38∗∗∗ 0.283 0.35∗∗ 0.544∗∗∗ 0.185 0.504∗∗∗ 0.434∗∗∗ 0.364∗∗ 0.08 0.489∗∗∗ 0.384∗∗∗

(0.109) (0.213) (0.151) (0.15) (0.141) (0.186) (0.13) (0.157) (0.739) (0.189) (0.123)
High Compaction 1.789∗∗∗ 2.023∗∗∗ 1.495∗∗∗ 1.953∗∗∗ 1.785∗∗∗ 1.55∗∗∗ 1.71∗∗∗ 1.621∗∗∗ 1.849∗∗∗ 1.77∗∗∗ 1.867∗∗∗

(0.209) (0.395) (0.34) (0.506) (0.255) (0.438) (0.226) (0.393) (0.6) (0.413) (0.238)
Medium Compaction 0.117 0.145 0.233 0.041 0.009 0.309 0.069 0.069 0.514 0.46 0.104

(0.137) (0.191) (0.304) (0.298) (0.186) (0.336) (0.168) (0.251) (0.406) (0.346) (0.141)
Observations 2072 530 466 580 1258 474 1181 428 354 577 1367
Log-Likelihood -1603.690 -425.047 -354.779 -436.740 -966.634 -379.356 -934.794 -337.904 -242.133 -447.958 -1057.480
AIC 3229.379 872.095 731.557 895.479 1955.268 780.711 1891.588 697.807 506.266 917.916 2136.960
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.7: Mixed Logit Estimation Results: Latent Class Analysis

(1) (2) (3) (4)
Soil-Apathetic Class Soil-Conscious Class Moderate Class Uninformed Class

Means
Rental Rate -0.374∗∗∗ -0.308∗∗∗ -0.398∗∗∗ -0.377∗∗∗

(0.101) (0.093) (0.065) (0.086)
Water Infiltration 11.322∗∗∗ 11.665∗∗∗ 10.018∗∗∗ 6.360∗∗∗

(2.371) (2.442) (1.557) (1.938)
Organic Matter 0.553∗∗∗ 0.848∗∗∗ 0.563∗∗∗ 0.745∗∗∗

(0.150) (0.172) (0.106) (0.160)
High Compaction -2.581∗∗∗ -3.284∗∗∗ -2.882∗∗∗ -2.831∗∗∗

(0.488) (0.526) (0.366) (0.496)
Medium Compaction -1.166∗∗∗ -1.383∗∗∗ -0.894∗∗∗ -0.900∗∗∗

(0.269) (0.267) (0.170) (0.233)
Field A Intercept -0.572 -0.048 0.278 0.263

(0.376) (0.355) (0.251) (0.340)
Field B Intercept -0.339 0.018 0.313 0.512∗

(0.327) (0.317) (0.219) (0.299)
Standard Deviations
Water Infiltration 9.714∗∗∗ 9.242∗∗∗ 7.756∗∗∗ 9.110∗∗∗

(1.665) (1.61) (1.031) (1.438)
Organic Matter 0.137 0.476∗ 0.468∗∗∗ 0.627∗∗∗

(0.162) (0.247) (0.145) (0.178)
High Compaction 1.385∗∗∗ 1.727∗∗∗ 1.680∗∗∗ 1.774∗∗∗

(0.439) (0.528) (0.276) (0.390)
Medium Compaction 0.090 0.049 0.047 0.044

(0.261) (0.271) (0.206) (0.304)
Observations 354 432 820 466
Log-Likelihood -275.696 -303.367 -631.037 -374.968
AIC 573.393 628.734 1284.074 771.936
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3.5 Willingness-To-Pay Simulations

After estimating preference parameters for various subsamples and latent classes, we

calculate marginal willingness to pay (MWTP) using a standard approach (Haab and Mc-

Connell, 2002):

WTP = −β

γ
·∆ · ρ, (3.6)

where β is the coefficient on water infiltration, organic matter, or compaction (or a distribu-

tion defined by the mean and standard deviation coefficients on the same parameters), and

γ is the coefficient on the rental rate. The ratio of these coefficients is the mean willingness-
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to-pay (MWTP) for a unit change in a specific attribute. For non-unit changes, we can

multiply the ratio by any value of ∆, which is the magnitude of the change. The monetary

vehicle in DCEs is typically continuous and thus varies by a natural unit: the dollar. In our

case, rental rate varies by increments of $10, and we must therefore multiply the ratio and

∆ by ρ = 10 to translate MWTP to normal dollar terms.12

Setting ∆ = 1 in our context is not necessarily realistic nor helpful, since a full unit

change might not be possible in the study area. Instead, we base our MWTP estimates on

realistic soil quality changes attained in our study area. A team of soil scientists conducted

a longitudinal study of soil quality measures in the watershed of the Brazos River in central

Texas, taking repeated measurements of soil quality across farms under different manage-

ment regimes (Bagnall and Morgan, 2021). See Table 3.8 for median soil quality measures

under three different tillage regimes: conventional-till, no-till, and a perennial grass system.

Hydraulic conductivity is equivalent to what we present as water infiltration in the DCE.

Bulk density is equivalent to what we categorize as compaction.13 While there is no real

difference in bulk density across the regimes, there is a clear increase in water infiltration and

organic matter moving from conventional-till to no-till in our study area. It is also important

to note that despite the small difference in bulk density across the regimes, it is still possible

to achieve significant improvements in compaction levels for farmers in our area.

Table 3.8: Median Soil Quality Indicators For Study Area

Management Regime Hydraulic Conductivity (cm/hr) Bulk Density (g/cm3) Organic Matter (% by mass)
Conventional 1.33 1.38 2.06

No-till 2.01 1.42 2.29
Perennial 3.04 1.40 4.40

Source: Bagnall and Morgan (2021)

12Specifically, MWTP = −β
γ , but since the rental rate changes in tens of dollars, the denominator must

be divided by 10 to convert to single dollars. Thus, MWTP = − β
γ
10

= −β
γ · 10

13By “equivalent”, we mean it measures the same soil quality attribute, even if the units or labels are
different.
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Based on the in-field measurements, we calculate the willingness-to-pay for a ∆ change

in soil quality based on the adoption of no-till. That is, we estimate the MWTP for an

average conventional-till farm to achieve the average soil quality improvements associated

with a typical improvement for farms in the area. We set ∆ = 0.27inches/hour for water

infiltration.14 We set ∆ = 0.04% for organic matter. We leave the compaction indicators

equal to one.

For both the conditional logit and mixed logit models, we calculate the 95% confidence

intervals using the delta method. The delta method does not require any simulation for

the conditional logit models, but because the mixed logit coefficients define a distribution,

with the key distributional parameters also subject to sampling variance, the delta method

requires both a closed form solution and simulation (Bliemer and Rose, 2013). Specifically,

we take 1,000 random draws of the mean and standard error of the distribution of WTP over

individuals, and use the average of the drawn means and standard errors of the distributions

to define the asymptotic full distribution of WTP. As Bliemer and Rose (2013) note, the

nature of variation over the WTP distribution and sampling variance of the key distributional

parameters typically result in wide confidence intervals, which is what we find.

Results of the MWTP estimates for the conditional logit can be seen in Figure 3.4.

Panel A shows MWTP for a realistic improvement in water infiltration by switching from

conventional to no-till in our study area. Individuals in the soil-conscious latent class and the

no-till/strip-till group are willing to pay the most, about $100/acre. Respondents operating

on flat topography are willing to pay more for water infiltration than respondents on sloped

terrain, though the difference is not statistically significant. Indeed, no individual subsample

or latent class has a significantly different MWTP than any other group. The same is true

for the other soil quality characteristics (Panels B - D). In general, the conditional logit

models suggest that farmers in the watershed of the Brazos River in Texas are willing to pay

approximately $50 - $100/acre to improve water infiltration and approximately $1 - $2/acre
14We convert the raw difference of 0.68cm/hour to an inch/hour measure by multiplying the measure by

0.393701.
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to improve organic matter by adopting no-till. Farmers are willing-to-pay approximately

$100/acre to move from high to low compaction, and approximately $40/acre to move from

medium to low compaction.

Figure 3.4: Marginal Willingness-To-Pay By Model Specification: Conditional Logit

58



Results of the MWTP estimates for the mixed logit models can be seen in Figure 3.5.

Perhaps unsurprisingly, the MWTP estimates are similar to the conditional logit estimates,

but with much wider confidence intervals. While all MWTP estimates were significant at

the 5% level, few of the MWTP estimates are significant at the same level for the mixed

logit models, which is common for mixed logit models Bliemer and Rose (2013). The wide

confidence intervals for the mixed logit models are a result of random preference parameters

that vary over individuals and the key parameters that define that variation also exhibit

natural sampling variance. In the context of the mixed logits, we find no strong evidence

that farmers are willing to pay for improvements in soil quality associated with adopting

no-till. The full numerical MWTP results for the conditional logit and mixed logit models

is presented in Tables B.1 and B.2, respectively.

3.6 Policy Implications

The on-farm value of manageable soil quality characteristics has long been estimated

using changes in crop revenues or input costs. This study is the first to directly measure

the value of changes in manageable soil quality characteristics independent of changes in

agricultural production. Our willingness-to-pay estimates can therefore be considered the

perceived benefits of soil quality improvements to farmers in our study area. Our results

have important policy implications.

Our results can be compared to realized benefits to identify any significant difference

between perceived and realized benefits of improved soil quality. For example, recent work

from the Soil Health Institute has focused on partial budget analysis, which estimates the

explicit costs and benefits of soil health management. An average soil health management

system resulted in some reduced expenses and additional revenue for a total benefit of $93.66

per acre for a typical corn operation in Iowa (Soil Health Institute, 2021). They also estimate

a total change in cost of $29.81 per acre. A direct comparison to our WTP results is not

appropriate because of significant differences in inherent soil and agricultural characteristics

between Texas and Iowa. Nonetheless, estimates from partial budget analyses and studies like
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Figure 3.5: Marginal Willingness-To-Pay By Model Specification: Mixed Logit

ours can help policy makers identify potential gaps between potential and realized benefits.

For example, suppose a farmer in the Texas Blackland MLRA is considering switching

from a conventional to no-till regime. Suppose further that the farmer has a medium com-

pacted soil, and he expects no-till to result in average improvements in water infiltration,
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organic matter, and a move from medium to low compaction. According to our work, that

farmer (on average) is willing to pay approximately $87 ($58 + $1 + $28 from the conditional

logit, full sample results) per acre to improve his manageable soil quality. Suppose partial

budget analysis indicates that the benefits per acre of this change in soil health characteris-

tics is $150 per acre per year. This would be nearly twice the the stated preference estimate

of $86 and it is only for a single year – soil health benefits in our study should reflect the

value of those characteristics for up to five years. In other words, this would suggest that

the perceived benefits are much smaller than the best estimates of the true financial benefit.

Understanding the difference between these two estimates can help policy makers understand

the need for better communication on the benefits of conservation practices and how such

practices are marketed, funded, and targeted.

Even without a comparison to partial budget analysis, our results are an estimate of the

total value of improvements in soil quality and are therefore important on their own. Partial

budget analysis misses non-use values that could be important to farmers and are captured

in choice experiments like ours. With or without partial budget analysis, our results should

be compared with estimated of the costs of implementing conservation practices to be fully

relevant. If the costs of implementing no-till on Texas Blackland Prairie are $100 per acre,

then we find that on average, the marginal benefits of improved soil quality characteristics

may not exceed the marginal costs, on average (assuming the $87 per acre benefit from

above). However, we also find that farmers operating on flat topography are willing to

pay $136 ($88 + $1 + $47) per acre to improve water infiltration and organic matter by

the average amount from switching to no-till and moving from medium to low compaction.

These farmers would need less incentive to adopt no-till than other groups, which could lead

to more efficient funding decisions from the United States NRCS or Farm Service Agency.

3.7 Discussion and Limitations

We follow a set of best-practices outlined in Johnston et al. (2017), including adminis-

tering focus groups, performing pilot studies, and refining our experimental design before
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deploying a survey with a discrete choice experiment to farmers in central Texas. The final

survey was administered through the USDA National Agricultural Statistics Service (NASS)

to guarantee a representative and random sample in our study area.

We estimate several models to capture both the population-level preferences and the

heterogeneous preferences that exist within sub-groups. We find that there are few differences

in soil quality and rental rate preferences across groups based on their local rental rates,

tillage practices, future plans, topography, or soil health attitudes.

When considering the average change in soil health characteristics that has been achieved

by farmers in our study area moving from conventional tillage to no-till, we find that farmers

in our study area are willing to pay approximately $58 per acre to improve water infiltration,

$1 per acre to improve organic matter, $88 per acre to move from high to low compaction,

and $29 per acre to move from medium to low compaction. The conditional logit results

suggest statistically significant MWTP estimates, while the larger standard errors for the

mixed logit models yield mostly insignificant estimates.

The significant difference in the estimated MWTP between organic matter and the other

soil health characteristics deserves more attention. It may be the case that farmers truly

value improvements in water infiltration 60 times more than a comparable improvement in

organic matter. If the majority of farmers are satisfied with the prevailing average organic

matter levels in their area but are unsatisfied with some levels of water infiltration, this could

be the case. Alternatively, farmers may be more comfortable with the way water infiltration

was presented in the DCE (as inches absorbed per hour) than organic matter (as percent

by soil mass). The way indicators of environmental quality are measured and presented is

important (see Boyd et al. (2015) for evidence), and future work should experiment with

alternative soil quality indicators to test how soil quality measurement affects valuation

efforts.

For many respondents, the estimated WTP measures are larger than the prevailing rental

rates across the study area. While this may raise concerns of a possible failure of the scope
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test, we speculate that it may be rational to expect WTP per acre measures that are larger

than the rental rate per acre. The rental rate is an annual cost, while investments in soil

health may be fixed, or at least variable for only a short time period. For example, to engage

in strip-till, a farmer would need specialized tillage equipment which could be a substantial

investment. It is not necessarily helpful to compare the WTP estimates directly to the

prevailing rental rates. Rather, future work should be focused on comparing WTP estimates

with the marginal costs of adopting soil-health practices that could achieve improvements in

manageable soil health characteristics. A rational farmer should equate expected marginal

costs with expected marginal benefits, and we only provide estimates of the marginal benefits

in this work.

To our knowledge, we are the first study to estimate the willingness-to-pay for changes

in soil quality characteristics using a discrete choice experiment. As such, we have learned

important lessons that future researchers should keep in mind. First, we have concerns that

our pivoted design on the rental rate would be better if we used an online survey. In an online

format, each rental rate level could immediately pivot from a respondent’s response, but in

the paper format we were forced to use a generic $10 pivot and were not able to display an

actual dollar amount.15 This could bias the estimated coefficient(s) on rental rate towards

zero, and thus bias the estimates of WTP upwards. Second, we encourage replication of

our work in other regions. Our results are not likely to be externally valid for other areas

with different inherent soil quality characteristics. The marginal benefits of improvement

of manageable characteristics are likely dependent on the local inherent conditions. For

example, farmers in Iowa probably value changes in water infiltration quite differently than

farmers in our study area.

Nonetheless, in this study we provide novel estimates of the marginal benefits of manage-

able soil quality improvement for farmers in central Texas. The estimated benefits are not

directly tied to production output, as has been the dominant method of valuation for more
15On the other hand, we are cognizant that response rates may decline in online surveys, relative to paper

surveys.
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than half a century (Ciriacy-Wantrup, 1947). We find evidence that farmers are willing to

pay to improve manageable soil health, and while some groups are willing to pay more than

others, we hope future valuation work continues to acknowledge that there is more to the

value of soil than what it produces.
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4. THE EFFECT OF A PARTICIPATORY GROUNDWATER MANAGEMENT

PROGRAM ON GROUNDWATER LEVELS

4.1 Introduction

Increasing water scarcity and competition for surface water has increased the pressure on

the groundwater reserves of the world. The less developed world depends substantially on

the groundwater sources because of less reliable public water supply systems. In developing

and heavily populated countries like India and China, groundwater sources have reached

unsustainable levels of exploitation. For example, India is home to 18 percent of the world’s

total population and only 4 percent of the world’s water resources (Reddy and Reddy, 2020).

Nearly 90 percent of India’s rural domestic water needs and 70 percent of agricultural needs

are fulfilled from drawing water from aquifers (Central Groundwater Board, 2017).

After the Green revolution in the 1960s, India’s consumption of groundwater rose signif-

icantly on the back of increases in irrigated agriculture. Much of this increase was driven

by development of personal irrigation systems - dug wells and borewells - and the use of

subsidized electricity to pump groundwater (Zaveri et al., 2016). Between 1950 and 2013,

the net irrigated area tripled from 21 million hectares to 68 million hectares and the share

of ground water irrigation through wells during the same period rose substantially from 28

percent to 62 percent (Central Groundwater Board, 2017).

Kulkarni, Shah, and Shankar (2015) compare India’s Central Groundwater Board’s as-

sessment of groundwater depletion across India between 1995 and 2009. The compari-

son shows that groundwater reserves depleted sharply between 1995-2005, before showing

marginal improvement between 2005-2009. According to the National Groundwater Assess-

ment in 2011, 68 percent of a total of 6607 units1 are safe, 16 percent are over-exploited, 10

percent are semi-critical, and 3 percent are critical (Central Groundwater Board, 2011). The
1Units are defined as districts and/or mandals, which are geographically equivalent to the county level

and sub-county level, respectively.
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fall in groundwater levels has raised concerns about the long-term sustainability of irrigated

agriculture in India (Hanjra and Qureshi, 2010).

In a study on the impact of groundwater access on conflict and poverty, Sekhri (2014)

argues that when the water table falls below a certain level, users with inadequate access to

the technology required to draw water from lower depths find themselves constrained. The

results from this study suggests that deepening groundwater depth has led to more disputes

among the users and rising rural poverty.

The critical state of India’s groundwater resources is not new. Groundwater management

programs in India have traditionally focused on developing new groundwater extraction so-

lutions to solve the problem of access. Continued development of new water infrastructure

without concurrent policies to moderate groundwater extraction has led to the problem

of water scarcity at the aquifer level. There is a growing literature on the importance

of “demystifying the science of aquifers" for the stakeholders to regulate groundwater use

(Van Steenbergen, 2006; Kulkarni, Shah, and Shankar, 2015; Joshi, Kulkarni, and Aslekar,

2019). Van Steenbergen (2006) uses examples from India, Pakistan, Yemen and Egypt to

highlight the effectiveness of self-regulation in moderating groundwater use. Kulkarni, Shah,

and Shankar (2015) argue the understanding of groundwater as a common-pool resource is

indispensable to sustainable development of groundwater. The authors suggest that the com-

plexity and fungibility of groundwater must be factored into the governance policies to allow

for aquifer-based management of the resource. Users often behave myopically due to their

poor understanding of groundwater as a common resource. In absence of proper understand-

ing of resource characteristics and its availability, users are likely to pump groundwater at an

unsustainable rate. A key aspect of this aquifer-based groundwater management, therefore,

is community participation in understanding and managing the common-pool resource.

The knowledge-intensive approach to groundwater governance is often referred to as

participatory hydrological monitoring (PHM). PHM involves building capacity to train the

groundwater users in collecting information on groundwater availability and underlines the
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importance of regulating use based on estimated availability. In India, the Andhra Pradesh

Farmer Managed Groundwater Systems (APFAMGS) intervention is a well-known partici-

patory hydrological monitoring program. The APFAMGS intervention involved equipping

farmers with the necessary training so they can perform data collection, basic analysis and

undertake a crop-water budgeting exercise (Reddy and Reddy, 2020). To date, a number of

researchers, in addition to the funding organization - the Food and Agriculture Organization

of the United Nations - have investigated the extent of impact the APFAMGS program has

had on groundwater levels (FAO, 2010; Verma et al., 2012; FAO, 2013; Reddy, Reddy, and

Rout, 2014). To our surprise, the assessments could not be more different from each other.

While the FAO (2013, 2010) terminal reports conclude that the program had a significant

positive impact on groundwater table, Verma et al. (2012) present deeply concerning reali-

ties of the program. The existing studies do not conclusively show that the intervention had

any favorable impact on groundwater depth during the program period. Two other features

of the various reports and studies stand out. First, many of these studies utilize a small

set of treatment units (one village in case of Reddy, Reddy, and Rout (2014)) or in some

cases district-level data to evaluate the impact of the APFAMGS program. The district-level

approach is problematic because the coverage of the program in project districts is less than

ten percent of the sown area (Reddy and Reddy, 2020). Our study - to our knowledge - is

the first to use a causal-inference approach to assess the impact of the program.

Our study has significant policy implication for a large-scale upcoming groundwater man-

agement program in India. In the beginning of 2020, the government of India signed a $500

million loan agreement with the World Bank to support India’s groundwater sustainability

program (World Bank, 2018). The program known as the Atal Bhujal Yojna or Atal Ground-

water Management Program (AGWM), named after a former prime minister, will cover 78

districts across 8 states grappling with the problem of unsustainable groundwater extrac-

tion. Participatory hydrological monitoring of groundwater by training the stakeholders to

collect and read necessary information on groundwater availability is an integral part of the
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AGWM. In the words of India’s Department of Economic Affairs “The AGWM program

intends to strengthen the institutional framework for participatory groundwater manage-

ment and encourage behavioral changes at the community level for sustainable groundwater

resource management." Through our study on the causal impact of APFAMGS intervention

on depth-to-groundwater in the program region, we offer some warning signs that programs

that involve participatory hydrological monitoring may not be effective. In particular, our

results suggest that purely participatory programs may have little effect on groundwater

reserves.

4.2 Program Background

The Andhra Pradesh Farmer-Managed Groundwater Systems (APFAMGS) program

was preceded the Andhra Pradesh Groundwater Borewell Irrigation Schemes (APWELL)

launched in 1995 in seven drought prone districts in the state of Andhra Pradesh: Ananta-

pur, Chittoor, Kadapa, Kurnool, Mahbubnagar, Nalgonda and Prakasam (Figure 4.1). The

APWELL program was designed to help small holder farmers access irrigation technologies

(FAO, 2013). APWELL covered around 14,000 hectares of irrigated agriculture and involved

over 14,000 farmers from the seven districts in Andhra Pradesh (Garduño et al., 2009). The

project installed community water wells and distribution systems. Prior to the APWELL

implementation, it became clear to the agencies that the sustainability of the borewells to

be provided to the small- holder farmers as part of the program would become a challenge as

groundwater withdrawals outside the APWELL command areas continued to increase (FAO,

2013). It was suggested that self-monitoring of the wells by the users is more viable and

sustainable, and thus the idea of participatory hydrological monitoring was developed.

APWELL’s introduction of micro-irrigation practices was found to have increased ground-

water use efficiency and diversified farming towards less water-consuming crops. The pro-

gram also had a favorable impact on income of the landless (Garduño et al., 2009). The

APWELL program was closed abruptly in 2003. Based on the impact and institutional

evaluation of the APWELL program, a new refined project proposal - Andhra Pradesh
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Figure 4.1: Map Of The APFAMGS Program Area

Framer-Managed Groundwater Systems (APFAMGS) - was developed in 2003. APFAMGS

was written to address groundwater management through crop-water-budgeting, groundwa-

ter monitoring, and informational interventions on good groundwater management.

The Bharati Integrated Rural Development Society (BIRDS) was assigned as the primary
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local agency to oversee the implementation of the APFAMGS program. BIRDS partnered

with six other NGOs - each of these NGOs were responsible for supporting the APFAMGS

program in a number of areas. APFAMGS was launched in the same seven APWELL

drought prone districts of Andhra Pradesh. The APFAMGS intervention built on the AP-

WELL project by strengthening the community based institutions and promoting the use of

technology in the participatory hydrological monitoring process. A hydrological monitoring

network was established by APFAMGS to create a platform for data collection by farmers.

APFAMGS also created a computer-based Habitation Resource Information System for stor-

ing data collected by the farmers at the partner-NGO level. In addition to these systems,

information kiosks were deployed to help farmers understand the impact of their crop choices

on the groundwater level in the aquifer. Using the interactive crop-water kiosk, the farmers

could input their own and other farmers’ crop selection and immediately see the impact of

their selection on the groundwater balance in their hydrological unit.

The APFAMGS Project formally ended in 2009, but many of the key activities such

as hydrological monitoring and preparation of crop-water budgets continue to take place in

several of the APFAMGS hydrological unit even after the FAO withdrew from the project.

4.3 Program Evaluation

We identify the causal effect of APFAMGS on local groundwater reserves, as measured

by both the depth to groundwater from year to year and intra-year differences in the depth-

to-groundwater level. We focus on intra-year differences primarily because of the natural

behavior of groundwater levels in response to the Indian agricultural cycle. There are four

agricultural seasons in Andhra Pradesh: rabi (January - March), pre-monsoon (April - June),

monsoon (July - September), and kharif (October - December). The kharif harvest follows

the monsoon, where surface water is more abundant than in other times of the year. Rabi

crops are typically more drought tolerant or more dependent on irrigation, because outside

of the monsoon rains, precipitation is exceedingly rare. See Figure 4.2. Panel A shows
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average rainfall for Andhra Pradesh.2 Note that because rainfall data is not available for

most of the years of interest in our study, we do not use it for any empirical analysis. We

present it here to showcase typical rainfall throughout the four seasons in Andhra Pradesh.

The grey bars are precipitation totals (average) for Andhra Pradesh, and the approximate

boundaries of the the seasons are overlaid in black. The calendar year follows an awkward

cycle of cropping, rain, and cropping again, during which the groundwater levels in the area

change dramatically. In our analysis, we focus on what we call an agricultural year. We let

the agricultural year start during the monsoon season and end at the next calendar year’s

pre-monsoon season. See the bottom part of Panel A in Figure 4.2. Using the agricultural

year allows us to compare the natural kharif and rabi seasonal pairs that follow a monsoon.

Farmers in the region grow and harvest crops in the kharif and rabi seasons, and use the

monsoon and pre-monsoon seasons to prepare their land or engage in other non-growing

activities.

In Panel B of Figure 4.2, we show the average depth-to-groundwater levels across the

entire program area and across the entire available time period. The depth-to-groundwater

levels are generally highest in the monsoon and kharif seasons. While rain falls mostly

during the monsoon season, there is some temporal lag as surface water replenishes aquifers,

and therefore the groundwater levels remain high during the kharif growing season despite

relatively low levels of rainfall. After the kharif season, groundwater levels consistently fall

for the remainder of the agricultural year as farmers extract water for their operations.

Importantly, we do not observe the timing of the seasonal monsoon, nor do we observe

when the seasonal average groundwater levels were taken. That is, an individual well’s

observation for monsoon-level depth-to-groundwater could be an average of measurements

early or late in the monsoon, and we do not observe the timing of the measurements used

in the provided seasonal average from India WRIS.

In Panel C of Figure 4.2, we show the proportion of wells that have rising intra-year
2The average is provided directly by India WRIS, but the average is filtered to include only districts in

the treatment and control areas.
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groundwater levels by comparing the monsoon season with the other three seasons. There is

a clear pattern (that can also be seen in Panel B). Between the monsoon and kharif seasons,

groundwater is generally being replenished. Then groundwater levels begin to fall, and about

half of wells have groundwater levels that are slightly lower than in the monsoon season. By

the pre-monsoon season, a large majority of wells have groundwater levels lower than in the

monsoon season.

Groundwater levels fluctuate throughout the agricultural year, following the natural hy-

drological cycles of the area. See Figure 4.3. Panel A shows the depth-to-groundwater levels

for wells within the APFAMGS treated area and control wells outside the treatment area,

in logged meters. Prior to the start of APFAMGS in 2006, the treated and control wells

followed similar booms and busts cycles. After 2006, they appear to continue to follow each

other closely until 2014 when there is a slight divergence where the depth to groundwater

actually increases (the opposite of the intended effect) for treated wells compared to control

wells. We empirically test whether the average depth-to-groundwater is different between

the two groups before and after 2006 below. Because of the natural fluctuations in ground-

water levels, we are primarily interested in the intra-year changes in groundwater levels.

Panels B-D in Figure 4.3 show the difference (in logged meters) between the monsoon and

other seasons depth-to-groundwater levels in absolute value. For example, a value of 0.5 in

Panel B of Figure 4.3 indicates a difference of e0.5 = 1.65 meters between the monsoon and

kharif depth-to-groundwater levels. A large value for this difference measure suggests severe

fluctuation between seasons, while a small value suggests little fluctuation. We hypothesize

that if natural rainfall fully recharges an aquifer and farmers over-pump from the aquifer

during the cropping seasons, the difference in groundwater levels between the seasons would

be large. Meanwhile, more conservative pumping would likely result in a smaller difference

in depth-to-groundwater during the year. Indeed, there appears to be evidence of this in

Panels B-D in Figure 4.3. The seasonal differences in depth-to-groundwater for treatment

and control groups is similar prior to 2006, but sometime after APFAMGS, the treated wells

72



Figure 4.2: Seasonal Rainfall And Groundwater Levels In Andhra Pradesh

Source: India WRIS. Note that rainfall data is not available prior to 2014. Groundwater
data is not available in monthly increments. In Panel B, the average and standard deviations
are presented.

appear to show a smaller (however slight) seasonal differences in depth-to-groundwater. This

is particularly visible in the difference between the solid and dashed lines in Panels C and

D: the rabi and pre-monsoon seasons. We empirically test whether the seasonal difference

in depth-to-groundwater is different between the treatment and control groups before and

after 2006 below.
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Figure 4.3: Groundwater Levels In Program Area

Source: Groundwater data from India WRIS
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4.3.1 Empirical Model

Let d0it be some distance-to-groundwater outcome (either depth or intra-year difference

in depth) for a unit i not exposed to APFAMGS at time t, and d1it be the same measure for

i when exposed to APFAMGS. We use the following identifying assumptions in a difference-

in-differences framework:

E[d0it|αi, τt, Tit] = E[d0it|αi, τt] (4.1)

The identifying assumption states that the distance outcome is independent of treatment

status Tit after conditioning on unit and time fixed-effects. This is a common identifying

assumption for two-way fixed-effect models, and while there are established problems with

two-way fixed effects models when treatment time varies across units (see, for example,

Goodman-Bacon (2018) for a thorough treatment of the problems), we assume APFAMGS

was initiated simultaneously across the program areas.3 We therefore avoid the pitfalls of

differential treatment times across units and the subsequent bias of the treatment effect.

As explained in the previous section, we are more interested in the intra-year difference in

depth-to-groundwater between the monsoon and other seasons. Our identifying assumption

for this intra-year measure is identical to equation 4.1: the outcome of interest is independent

of treatment status conditional on unit and time fixed effects. Note that the intra-year

difference in groundwater depth is defined as:

dit = dMit − dSit (4.2)

where dMit is the depth-to-groundwater for unit i in agricultural year t during the monsoon

season M , and dSit is the same measure for any of the three other seasons, S. A positive

value for dit indicates a groundwater level that is higher in the season S than in the monsoon,

and a negative value indicates a groundwater level that is higher in the monsoon than the
3This is an assumption because we do not know with certainty when each program started, nor do we

have a definition of what started means. Programs like APFAMGS start slowly; they are not magical
light-switches.
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season S. Recall from Figure 4.2 that groundwater levels in the kharif season are mostly

higher than in the monsoon, approximately equal between the rabi and monsoon seasons,

and greater in the monsoon than in the pre-monsoon season.

Under identifying assumption 4.1, we estimate the following model:

ln(dit) = αi + τt + δTit + εit, (4.3)

where ln(dit) is the logged outcome variable (depth-to-groundwater or intra-year difference

of depth-to-groundwater) for unit i in agricultural year/season t, αi is a unit-specific fixed

effect, τt is a time fixed effect, and Tit is an indicator for APFAMGS treatment status for

unit i agricultural year/season t.

In equation 4.3, the treatment effect of APFAMGS is captured by δ. We recover several

versions of δ. The two-way fixed effects estimator takes the difference across treatment and

control units of the difference of our outcomes across time. We are able to define the length

of time over which to average the outcome variables. We therefore estimate δ̂5, which is

the average treatment effect using a five year post-treatment window, and δ̂10, which uses a

10-year window. We also estimate a dynamic version which isolates the treatment effect for

each agricultural year after treatment individually. However, as we explain later, because of

our sparse data we are less confident of the dynamic version of the model.

For the average depth-to-groundwater we expect δ < 0 since we expect units in APFAMGS-

treated areas to pump more conservatively than untreated areas, which would increase the

level of the water table and thus decrease the depth-to-groundwater level.

The intra-year difference model is more complicated. Because groundwater almost uni-

formly increases between the monsoon and kharif seasons, we expect treated areas to recharge

faster and thus we expect δ > 0, meaning the recharge difference is larger for treated than

untreated areas. One reason we expect this is because treated areas may seek to conserve

groundwater and stockpile a large reserve for use later in the season. We have no strong
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expectation for the rabi season. We expect δ < 0 during the pre-monsoon intra-year dif-

ference, because this indicates that the treated areas experience less of a seasonal drop in

groundwater levels than untreated areas. Recall that groundwater levels decrease between

the monsoon and pre-monsoon seasons.

4.3.2 Data

Information on groundwater depth comes from the Water Resources Information System

(India-WRIS), an online database managed by the Indian Department of Water Resources,

River Development, and Ganga Rejuvenation. India-WRIS consolidates a variety of water

quality and quantity data from several state and regional agencies. We observe groundwater

monitoring stations across what was then the state of Andhra Pradesh; in 2014 a northeast

section of the state split into its own state known as Telangana. The administrative bodies

of India, in decreasing geographic size are: country, state, district, mandal, blocks/villages.

APFAMGS was administered in 63 internally-defined hydrological units across 9 mandals in

Andhra Pradesh and Telangana, but there is potential for substantial geographic spillovers.

The program was a combination of education workshops and technical assistance, and farmers

from outside the APFAMGS program area could have attended parts of the program and

enjoyed some benefits from improved groundwater management.

In an ideal setting, we would observe groundwater levels and other characteristics for

every unit (e.g. farm) across every season for a number of years before and after treatment.

In reality, while we observe some groundwater levels for some wells for some years, there

are substantial holes in our data. We therefore take two approaches to estimation. First,

we accept the missing data and estimate a two-way fixed effects model with an unbalanced

panel. Second, we create a fine grid of points across the landscape and use the spatial

interpolation technique known as kriging to first estimate groundwater levels for every grid

point for every year, and then estimate a two-way fixed effects model using the grid points

as opposed to the sparse well-level observations. We describe the kriging approach in the

next section.
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4.3.3 Spatial Interpolation

As in many settings, we face sparse spatial-temporal data. The field of geostatistics

has developed an approach to interpolating missing data that is governed by some spatial-

temporal process (Calder and Cressie, 2009; Matheron, 1963). The approach is known as

kriging. Specifically, let there be some set of spatial data Z(·) defined at points s. For

example, we observe groundwater levels across Andhra Pradesh for a set of wells, S =

{s1, s2, ..., sS}. Our goal is to predict the groundwater level Z(s0) for some unobserved point

in space, s0. Let Z(s) = Y (s)+ε(s), where Y (s) is some process with mean E[Y (s)] = µY (s)

and mean-zero error E[ε(s)] = 0. Further, let the covariance between two points si and sj

for the Y (s) process be CY (si, sj) = cov(Y (si), Y (sj)). Then, we predict Ŷ (s0) as

Ŷ (s0) = µY (s0) + c̃Y (s0)
′Σ−1Z(Z − µY ), (4.4)

where µY (s0) is the expected value of Y (·) at the unobserved point, c̃Y (s0) is the covariance

between Y (s0) and Z, and Z and µY are observed for each point s ∈ S. The matrix ΣZ

is the variance-covariance matrix of CY (si, sj). See Calder and Cressie (2009) for a more

detailed explanation of the kriging process and the above notation.

Kriging can proceed to predict values for, say, groundwater levels according to equation

4.4 if we observe CY (si, sj) and the variance of the ε(s). However, both are latent. We

therefore use a variogram which estimates the covariance function according to the distance

between any two points.

Our specific approach is as follows: we use the observed spatial-temporal data to fit a

variogram model to predict the covariance in groundwater levels between any two points

according to their distance from each other. We then lay a grid of points over the study

area, where each grid point is 11.1km (0.1 degrees) away from its nearest four neighbors. We

then use the variogram model to predict the groundwater levels for each grid point in space.

We then repeat this process for each year to arrive at a balanced panel of groundwater levels
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across the entire study area for each season-year.

See Figure 4.4 for a demonstration of the benefit of the krigging process. In Panel A,

we show the observed measurements for the 2004 rabi cropping season. In Panel B, we

show the krigged data for the grid overlaid on the program area. Krigging affords us a

substantial increase in sample size, but comes at an obvious cost: the dependent variable in

our two-way fixed effects model is a predicted value. Fortunately, krigging is a much more

sophisticated process than simple interpolation based on, say, nearest-neighbor matching.

Nonetheless, krigging results in smooth spatial predictions and is thus not suited for strong

spatial discontinuities or anomalies. Since groundwater also does not exhibit strong spatial

discontinuity, we assume krigging captures the true but otherwise unobserved groundwater

levels across our study area.

Figure 4.4: Depth To Water Table, Observed Versus Krigged Data

Recall our empirical model for estimating the effect of APFAMGS on depth-to-groundwater:

ln(dit) = αi+ τt+ δTit+ εit, where ln(dit) is the logged depth-to-groundwater (in meters) for

well i at time t and δ captures the effect (in percentage terms) of APFAMGS on depth-to-
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groundwater. In the krigging setting, we use the observed data to make spatial interpolations

across a grid covering the study area. Let Yit = ln(dit) be the true observed value. When we

use krigged values, we are actually estimating the following model:

Ỹit = αi + τt + δTit + εit + vit, (4.5)

where

Ỹit = Yit + vit. (4.6)

That is, we observe some measurement error in the dependent variable of our two-way fixed

effects model.4 Measurement error in the dependent variable of a linear model does not effect

affect consistent estimation of the desired treatment effect, provided the error vit in equation

4.6 is uncorrelated to Tit in equation 4.3 (Wooldridge, 2010). We provide some evidence of

no correlation in a cross-validation exercise.

We do not observe real groundwater levels for any of the grid points from the krigging

approach. However, we perform a cross-validation test of the krigging process to both test

the size of prediction error and correlation to treatment status. Specifically, we isolate real

well-level observations of groundwater levels for each season in each year. We then randomly

select two-thirds of the data for training, and one-third for testing. We train a krigging

model on the training data set, and predict groundwater levels for each season on the testing

set. We then take the difference between the predicted and real values of the test data set

to understand both the size and distribution of the error, vit.

See Figure 4.5 for a map of the prediction error of the krigging process. We use the year

2006 as an example here, though results are similar across all years. Mean, median, and 90th

percentile prediction errors (in meters) for the cross-validation are presented in Table 4.1. On
4Note that this measurement error does not effect consistent identification of our causal model, but the

standard errors in our main model are larger than they would be without measurement error, because of the
presence of vit. The measurement error, vit is naturally unobserved, making a correction to the standard
errors in our OLS model impossible. We know that there is measurement error which increases the size of
the standard errors in our OLS model, but we do not know the magnitude of that increase.
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Figure 4.5: Depth To Water Table, Krigging Measurement Error

average, the krigged depth-to-groundwater levels are off by approximately 2 meters across

all four seasons. This roughly corresponds to a measurement error of 23 - 31% depending

on the season. The size of the error is concerning. Recall that the cross-validation error is

a measure of vit. The relatively large size of vit does not prevent consistent estimation of δ

(the treatment effect of APFAMGS). However, as vit increases, the probability of making a

type II error in our statistical inference increases. That is, the large measurement error we

81



observe in cross-validating the krigging process suggests that in our difference-in-differences

estimator may lead us to an insignificant treatment effect that might be significant in reality.

Table 4.1: Krigging Cross-Validation Summary Statistics

Rabi Kharif Pre-Monsoon Monsoon
Mean Error (m) 2.03 2.17 1.87 2.04
Median Error (m) 1.60 1.67 1.55 1.62
90th Percentile Error (m) 3.32 3.77 3.03 3.43
Median Error (%) 30.68 31.21 22.98 26.10
corr(vit, Tit) 0.023 0.049 0.038 0.008

(0.717) (1.453) (1.203) (0.225)
Note:
t-statistic from Pearson’s product-moment correlation in parentheses
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In the final step of the cross-validation process, we test the correlation between mea-

surement error vit and treatment status of a well Tit. So long as the two measures are

uncorrelated, we can recover a consistent treatment effect of APFAMGS on groundwater

levels using krigged data. The last row of Table 4.1 reports the Pearson’s product-moment

correlation measure, with the t-statistic for the hypothesis of zero correlation in parentheses.

We fail to reject zero correlation across all seasons, suggesting the measurement error is

uncorrelated with treatment status of a well.

We therefore are comfortable using krigged data to measure the treatment effect of AP-

FAMGS on groundwater levels, though we are wary of the relatively large measurement

error and the implication large measurement error has on the probability of making a type

II error. Insignificant treatment effects may be truly insignificant or the result of sampling

or prediction error.
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4.4 Results

We first estimate the average treatment effect of APFAMGS on the average annual depth-

to-groundwater across a five and ten year window. The five year window uses data only from

the first five years after the program, and the ten year window uses data only from the first

ten years after the program. Results are presented in Table 4.2. Using the krigged data,

we find that APFAMGS-treated areas experienced average depth-to-groundwater levels that

were approximately 4.5% lower than untreated areas (i.e. higher water tables). The ten year

average effect is dampened to approximately 1.9%, although neither effect is statistically

different from zero. We find a smaller average effect for the five year window using the raw

data, and a slightly positive effect for the ten year window. The estimated treatment effects

using the raw data are again not statistically different from zero.5

Next we explore the intra-year differences in depth-to-groundwater. The intra-year dif-

ference in depth-to-groundwater is the difference between the monsoon average depth-to-

groundwater and another season’s average depth-to-groundwater. We calculate these sea-

sonal differences between the monsoon season and the kharif and rabi cropping seasons and

the pre-monsoon season. Results for are shown in Table 4.3. Using the krigged data, we find

that the difference in groundwater levels between the monsoon and kharif season are 9% and

9.8% smaller in APFAMGS-treated areas than untreated areas, using a five and ten year

post-treatment window respectively. Using only the raw data, we find a 16.1% reduction

in the kharif seasonal difference using a five year window, and a 14.4% reduction in the

difference using a ten year window.

The negative coefficient for the kharif seasonal difference coupled with the fact that

groundwater levels rise between the monsoon season and kharif season means that AP-

FAMGS treated areas experience less recharge than untreated areas. The negative coefficient

is the opposite of our a priori expectation.
5In an alternate specification we find some significant effects when we expand the treatment area to allow

for spatial spillovers. However, the results are sensitive to the size of the expanded area, and we are not
aware of the extent or magnitude of spatial spillover of the APFAMGS program
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Table 4.2: Effect Of APFAMGS On Annual Depth To Groundwater

Five-Year Effect Ten-Year Effect
(1) (2)

Krigged Data
δ̂ −0.045 −0.019

(0.043) (0.033)
Observations 2,430 3,078
R2 0.001 0.0002
F Statistic 1.906 0.435

Raw Data
δ̂ −0.011 0.016

(0.066) (0.031)
Observations 1,929 2,357
R2 0.00001 0.00002
F Statistic 0.018 0.040
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We find no intra-year differences between the monsoon and rabi cropping seasons. Rabi

groundwater levels are, on average, similar to monsoon groundwater levels, as shown in

Figure 4.2.

Using the raw data, we find that the difference between monsoon and pre-monsoon

groundwater levels is 21.6% and 16% lower for APFAMGS areas compared to untreated areas,

using a five and ten year treatment window respectively. The negative coefficient coupled

with the fact that groundwater levels fall between the monsoon and pre-monsoon seasons

means that APFAMGS areas experience a less severe groundwater draw-down compared to

untreated areas.

In our final specification, we estimate the effect of APFAMGS on the seasonal differential

depth-to-groundwater using dynamic treatment effects. In the dynamic specification, we

estimate a treatment effect for each agricultural year separately, instead of taking an average
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Table 4.3: Effect Of APFAMGS On Intra-Year Depth To Groundwater

Kharifa Rabia Pre-Monsoona

(1) (2) (3)

A: Krigged Data, Five-Year Window

δ̂ −0.090∗∗ 0.022 −0.030
(0.039) (0.045) (0.042)

Observations 2,430 2,430 2,430
R2 0.001 0.0001 0.0002
F Statistic 3.329∗ 0.177 0.397

B: Krigged Data, Ten-Year Window

δ̂ −0.098∗∗∗ 0.003 −0.034
(0.037) (0.040) (0.037)

Observations 3,078 3,078 3,078
R2 0.002 0.00000 0.0002
F Statistic 5.191∗∗ 0.003 0.684

C: Raw Data, Five-Year Window

δ̂ −0.161∗∗ −0.167 −0.216∗

(0.079) (0.103) (0.112)
Observations 2,278 2,214 2,046
R2 0.001 0.001 0.001
F Statistic 1.344 1.523 2.565

D: Raw Data, Ten-Year Window

δ̂ −0.144∗ −0.112 −0.160∗∗

(0.074) (0.093) (0.078)
Observations 2,889 2,730 2,581
R2 0.001 0.0004 0.001
F Statistic 1.351 0.823 1.743

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
aDifference between the monsoon season and the labeled season
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across the pre- and post-treatment years. That is, we estimate:

ln(dit) = αi + τt + δtTit + εit, (4.7)

which is identical to our main equation 4.3, except we now estimate a treatment effect, δ̂t

for each year after APFAMGS started.

Results for this specification using the raw data are shown in Table 4.4. When we isolate

the treatment into yearly indicators, we see that the benefits of APFAMGS are not consistent

over time. Rather, the benefits oscillate from year to year. The estimated signs of the

coefficients are generally negative, consistent with the average treatment effects presented

above. However, the average treatment effect appear to be driven by the 2006 and 2009

agricultural years, and to a lesser extent the 2007 and 2014 pre-monsoon seasons.

The dynamic treatment effects again suggest that APFAMGS areas experience less

groundwater recharge between the monsoon and kharif seasons, and less groundwater draw-

down between the monsoon and pre-monsoon seasons.

4.5 Discussion

Participatory hydrological monitoring programs aim to educate groundwater users about

the nature of aquifers and its key properties. The users are trained to monitor the ground-

water levels and base their extraction decisions based on the estimated groundwater balance.

The APFAMGS intervention in seven drought prone districts of Andhra Pradesh and Telan-

gana in India is an example of a participatory hydrological monitoring program. A previous

regional program (APWELL) established in 1995 increased the use of irrigation and thus

increased the pressure on groundwater reserves for the area. APFAMGS was enacted to help

conserve groundwater reserves by encouraging optimal groundwater extraction.

In this study, we utilize well-level data on groundwater to understand the causal impact

of the APFAMGS intervention on depth-to-groundwater and seasonal variation in depth-

to-groundwater in the program area. While the initial evaluations by the funding agency
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Table 4.4: Intra-Year Effects, Dynamic, Raw Data

Kharifa Rabia Pre-Monsoona

(1) (2) (3)

δ̂2006 −0.392∗∗∗ −0.335∗∗ −0.222
(0.150) (0.141) (0.144)

δ̂2007 0.394 −0.009 −0.385∗

(0.303) (0.268) (0.213)
δ̂2008 −0.144 −0.102 −0.066

(0.197) (0.174) (0.221)
δ̂2009 −0.413∗∗∗ −0.334∗ −0.253

(0.130) (0.199) (0.454)
δ̂2010 −0.038 0.232 0.176

(0.188) (0.245) (0.115)
δ̂2011 −0.142 0.024 0.200

(0.114) (0.143) (0.139)
δ̂2014 −0.156 0.009 −0.216∗∗

(0.141) (0.161) (0.088)
δ̂2015 0.036 −0.262

(0.204) (0.188)
Observations 2,889 2,730 2,581
R2 0.004 0.002 0.003
F Statistic 1.175 0.610 0.756

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
aDifference between the monsoon season and the labeled season
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- Food and Agriculture Organization - regard the program as a success, some of the later

analyses have raised concerns regarding the voluntary no-incentive nature of the program.

Reddy, Reddy, and Rout (2014) suggest that participatory programs are more effective when

supplemented with supply side interventions such as construction of injection wells. In a

survey by Reddy, Reddy, and Rout (2014), several personnel associated with the APFAMGS

programs expressed concern about the no-regulation no-sanction policy of the APFAMGS

intervention. In the absence of a compulsory regulation, farmers are left on their own to

decide whether or not they follow the procedures of the program.

Reddy, Reddy, and Rout (2014) argue that the gains from APFAMGS program are

largely limited to large-scale farmers who own wells. The most recent long-term assessment

of the APFAMGS program (Reddy and Reddy, 2020) suggests that treatment villages are

more resilient to drought risks primarily because farmers in the treated region are more

aware of the groundwater situation and sustainable management. The intervention has

supposedly led to a significant increase in communities capacity to understand and apply

crop diversification and improved irrigation practices. Importantly, the study suggests that

an integrated approach that combines building knowledge capacity with economic incentives

and regulation is required to make participatory hydrological monitoring.

In our study, we find that APFAMGS has very little effect on average groundwater levels,

but had some success at changing the seasonal variation in groundwater levels. Specifically,

we find that APFAMGS-treated areas experience less seasonal groundwater recharge after

the seasonal rains and less groundwater draw-down after the cropping seasons than untreated

areas. While we expected greater levels of recharge and less draw-down, we speculate that the

consistent monitoring of groundwater levels removes information asymmetry on groundwater

levels and encourages groundwater extraction in times of plenty and conservation in lean

times.

We use well-level data to estimate the causal effect of the program, and we also use spatial

interpolation (krigging) to expand our ability to measure the effect of the program. The
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krigging process allows us to observe a more balanced panel of treated wells, but ironically

likely reduces our statistical power. In cross-validating the krig-predicted groundwater levels

across the program area, we find an average measurement error of nearly 30%. While the

measurement error does not affect the consistency of our causal estimates, it does affect the

efficiency. The insignificant results we find using krigged data therefore should be interpreted

cautiously: we are not confident that insignificant results are actually insignificant or just a

type-II error.

Better data availability, particularly in groundwater levels and rainfall, would improve

this work. Having more frequent and more spatially diverse measurements of groundwater

would allow us to more accurately identify the causal effect of APFAMGS.

Using the best data available on groundwater levels in the region, we find no strong

evidence that APFAMGS had any effect on average groundwater levels, but some sporadic

success in decreasing seasonal variation in groundwater levels. Participatory hydrological

monitoring programs such as APFAMGS have, by design, no real economic incentives to

participate. While theory suggests that these types of programs should reduce individuals’

groundwater extraction rates and thus increase groundwater reserves availability, we find

that APFAMGS had modest effects and policy makers should be wary of extending costly

participatory programs without stronger evidence of benefits.
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5. SUMMARY AND CONCLUSION

This research estimates the benefits of improving soil and water quality characteristics,

and the effect of a groundwater management program on groundwater levels. I find that

anglers are willing to pay more for long-term changes in water quality than short-term

changes. This intuitive result is novel and important as the use of panel data in recreational

demand modeling becomes more popular. I find that farmers in central Texas value the

increase in water infiltration much more than the increase in organic matter associated with

the adoption of no-till. This result is robust to all sub-samples and groups of farmers in the

area and may be a local phenomenon or perhaps a function of how soil quality characteristics

are measured and communicated. Further research is needed to understand the reasons why

there is such a divergence in the willingness-to-pay between the two measures.

I also find that APFAMGS - a participatory groundwater management program - had

no effect on average groundwater levels, but upon further inspection did result in treated

areas withdrawing more groundwater in times of plenty and less groundwater in lean times.

Nonetheless, the effect was driven by a few select years and for most years the program had

no effect even on these intra-year measurements of groundwater.

This research would be useful to policy makers interested in making good economic

decisions. There is an entire class of non-market benefits (the value of changing long-term

conditions) that I show can and should be included in the accounting of general costs and

benefits when considering environmental policy.

The USDA Natural Resource Conservation Service (NRCS) works extensively with farm-

ers to provide technical and financial assistance, and ultimately helps farmers decide whether

or not to engage in conservation practices. While the costs of conservation are easy to calcu-

late, benefits are less so. The second essay of this work provides some evidence that farmers

are willing-to-pay for increases in some soil quality characteristics.

These essays, in their novelty, open more doors than they close. The first essay demands
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more attention on the difference between willingness-to-pay for short- and long-term changes.

The results should be tested in a more data-rich setting, and across a variety of settings.

The mechanism for the difference is likely the way anglers perceive water quality, which

could be tested more directly to provide more support for the results. The second essay

produces significantly different willingness-to-pay estimates between two characteristics, and

further research is needed to identify the cause of these differences. If the estimated benefits

are sensitive to the way information is presented to farmers, then more care should be

taken in finding the best way (i.e. the best linking indicators) to communicate technical

measurements to farmers who are making large financial decision. From the perspective of the

USDA, the discrete choice experiment should be replicated in a variety of agricultural settings

to understand the heterogeneity in value; farmers in Iowa may value very different soil

attributes than farmers in Texas. Understanding how the benefits of soil improvement change

across operations could help the USDA fine-tune their approach to technically and financially

assisting farmers. Finally, the new participatory groundwater management program intended

for Mahahrashtra in India should strive for richer data in monitoring the success or failure

of the program. Understanding the pumping behavior of individual farmers, for example,

could vastly improve our understanding of the effectiveness of these types of participatory

programs.

In short, these essays should make regulatory decisions more complicated for policy

makers.
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APPENDIX A

APPENDIX FOR CHAPTER 1

Table A.1: Alternate Specifications: First Stage Using “Most-Often”

(1) (2) (3) (4) (5) (6) (7)

Travel Cost -0.0116*** -0.0153*** -0.0244*** -0.0116*** -0.0118*** -0.0106*** -0.0114***
(0.000571) (0.000772) (0.000969) (0.000576) (0.000615) (0.00172) (0.000626)

Dissolved Oxygen -0.113 -0.114 -0.0610 -0.129* -0.0965 -0.0898 -0.0209
(0.0776) (0.0775) (0.0959) (0.0775) (0.0862) (0.217) (0.0914)

pH 1.040*** 1.067*** 0.764** 1.052*** 0.905*** 1.374 0.813***
(0.255) (0.253) (0.321) (0.256) (0.273) (1.002) (0.291)

Specific Conductance -0.293** -0.299** -0.488** -0.294** 0.161 -0.454 -0.312**
(0.131) (0.129) (0.218) (0.132) (0.254) (0.348) (0.141)

Transparency 0.195 0.235 0.255 0.204 0.0607 2.452*** 0.256
(0.193) (0.194) (0.247) (0.194) (0.201) (0.731) (0.212)

Observations 179691 179691 41742 177730 117450 4629 146537
AIC 6223.3 6156.3 3517.4 6162.8 5127.9 424.3 5142.5
Log-likelihood -2903.6 -2870.1 -1550.7 -2873.4 -2430.0 -135.2 -2363.2

*p<0.1, **p<0.05, ***p<0.01
Notes: Standard errors in parentheses. Specifications/columns:
1. Most-often base model
2. Alternate travel cost specification
3. Distance of ≤ 150 miles
4. Only including anglers who reported 1 trip or more
5. Lakes only
6. Rivers only
7. Drop 2001 survey
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Table A.2: Alternate Specifications: First Stage Using “Typical-Trip”

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Travel Cost -0.00609*** -0.00792*** -0.0163*** -0.00633*** -0.00605*** -0.00697*** -0.00934*** -0.00812*** -0.00745***
(0.000222) (0.000288) (0.000648) (0.000235) (0.000233) (0.000837) (0.000442) (0.000441) (0.000530)

Dissolved Oxygen 0.102* 0.102* -0.0170 0.0550 0.137** 0.272** -0.0865 0.133 -0.101
(0.0586) (0.0588) (0.0768) (0.0607) (0.0654) (0.138) (0.0736) (0.0818) (0.0702)

pH 0.537*** 0.554*** 0.505* 0.751*** 0.585*** -1.063 0.434* 0.458 0.494**
(0.204) (0.203) (0.260) (0.210) (0.223) (0.819) (0.256) (0.285) (0.244)

Specific Conductance -0.311*** -0.315*** -0.405*** -0.341*** 0.116 -0.523*** -0.207* -0.123 -0.309***
(0.107) (0.107) (0.155) (0.115) (0.179) (0.200) (0.115) (0.152) (0.118)

Transparency 0.316*** 0.331*** -0.151 0.276** 0.317*** 0.646 0.125 0.191 0.113
(0.112) (0.112) (0.219) (0.111) (0.115) (0.418) (0.164) (0.177) (0.159)

Observations 262103 262103 50981 244541 170402 7478 192926 133043 68824
AIC 11978.2 11906.3 5394.1 11035.3 10061.8 821.7 7380.1 5742.0 7013.5
Log-likelihood -5781.1 -5745.2 -2489.0 -5309.7 -4896.9 -332.8 -3482.1 -2663.0 -3298.8

*p<0.1, **p<0.05, ***p<0.01
Notes: Standard errors in parentheses. Specifications/columns:
1. Base Model
2. Alternate travel cost specification
3. Distance of ≤ 150 miles
4. Only including anglers who reported 1 trip or more
5. Lakes only
6. Rivers only
7. Drop 2001 survey
8. Day-trips only
9. Distance error (calculated - reported) of ≤ 100 miles
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Table A.3: Alternate Specifications: Second Stage Using “Typical-Trip”

Panel A: Without Regional Fixed Effects
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dissolved Oxygen -0.0486 -0.0419 -0.0234 0.131 0.320 -0.265 0.0516 0.232 -0.0204
(0.551) (0.559) (0.566) (0.525) (0.790) (0.711) (0.544) (0.486) (0.567)

pH 4.473** 4.558** 3.737* 4.137** 1.022 5.630* 3.265* 6.041*** 3.553*
(1.908) (1.941) (1.922) (1.878) (2.886) (3.054) (1.915) (2.046) (1.894)

Specific Conductance -1.788** -1.793** -1.689** -1.778*** -0.652 -2.057*** -1.619** -2.123*** -1.784**
(0.692) (0.698) (0.702) (0.667) (1.068) (0.729) (0.646) (0.721) (0.691)

Transparency 3.042*** 3.065** 3.455*** 3.033*** 1.775 4.154** 2.904*** 2.429* 3.166***
(1.166) (1.184) (1.229) (1.131) (1.373) (2.027) (1.100) (1.249) (1.143)

Constant -33.08** -33.91** -27.18** -32.01** -13.88 -39.41* -24.46* -46.90*** -30.00**
(13.02) (13.27) (12.88) (12.79) (18.80) (21.38) (13.31) (13.72) (13.20)

Observations 198 198 197 198 126 72 198 198 198
R2 0.089 0.088 0.085 0.090 0.020 0.128 0.081 0.086 0.085
Adjusted R2 0.070 0.069 0.066 0.071 -0.012 0.076 0.061 0.067 0.066

Panel B: With Regional Fixed Effects
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dissolved Oxygen -0.0924 -0.0879 -0.302 0.0594 0.490 -0.365 -0.186 -0.148 0.0774
(0.650) (0.660) (0.688) (0.611) (0.792) (0.875) (0.654) (0.569) (0.655)

pH 5.841* 5.911* 7.105** 5.916** 4.727 1.248 7.297** 10.32*** 5.540*
(2.984) (3.035) (3.104) (2.965) (4.921) (4.140) (3.165) (3.192) (2.931)

Specific Conductance -1.677* -1.673* -1.206 -1.619* -1.179 -0.308 -1.086 -1.458 -2.017**
(0.986) (0.993) (1.022) (0.973) (1.377) (1.396) (0.896) (1.054) (0.958)

Transparency 2.826** 2.845** 3.105** 2.795** 3.359** -0.0691 2.816** 2.129 2.620**
(1.259) (1.277) (1.345) (1.237) (1.526) (2.619) (1.247) (1.303) (1.225)

Constant -50.19** -50.76** -50.17** -52.77** -50.76 -20.45 -65.24** -90.24*** -62.92**
(25.31) (25.63) (25.30) (24.98) (36.76) (33.38) (27.28) (27.00) (26.49)

Observations 193 193 192 193 121 72 193 193 193
R2 0.157 0.156 0.151 0.155 0.179 0.360 0.163 0.173 0.174
Adjusted R2 0.048 0.047 0.040 0.046 0.024 0.091 0.054 0.066 0.068

*p<0.1, **p<0.05, ***p<0.01
Notes: Standard errors in parentheses. Specifications/columns:
1: Typical-trip base model
2: Alternate first stage travel cost
3: Distance of ≤ 150 miles
4: Only including anglers who reported 1 trip or more
5: Lakes only
6: Rivers only
7: Drop 2001 survey
8: Day-trips only
9: Distance error (calculated - reported) of ≤ 100 miles
Regional fixed-effects control for a site’s major river basin.
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Table A.4: Alternate Specifications: Second Stage Using “Most-Often”

Panel A: Without Regional Fixed Effects
(1) (2) (3) (4) (5) (6) (7)

Dissolved Oxygen 0.0628 0.0669 0.265 0.129 0.102 1.039 -0.00116
(0.513) (0.548) (0.530) (0.507) (0.820) (0.648) (0.587)

pH 2.672 2.914 2.665 2.558 1.636 -2.900 3.714
(1.977) (2.126) (2.083) (1.989) (3.067) (2.734) (2.254)

Specific Conductance -1.956*** -2.044*** -1.887*** -1.973*** -1.466 -1.281 -1.656**
(0.689) (0.733) (0.718) (0.683) (1.166) (0.805) (0.751)

Transparency 2.945** 3.082** 4.069*** 2.732** 2.477* -1.781 3.206**
(1.220) (1.300) (1.303) (1.203) (1.466) (2.155) (1.369)

Constant -19.31 -21.43 -22.08 -18.79 -12.75 10.16 -30.39*
(13.44) (14.48) (14.00) (13.48) (20.02) (19.62) (15.58)

Observations 198 198 197 198 126 71 198
R2 0.079 0.075 0.097 0.075 0.043 0.068 0.068
Adjusted R2 0.059 0.056 0.078 0.056 0.012 0.011 0.049

Panel B: With Regional Fixed Effects
(1) (2) (3) (4) (5) (6) (7)

Dissolved Oxygen -0.106 -0.116 -0.0599 -0.0757 0.156 1.501* -0.408
(0.596) (0.637) (0.624) (0.590) (0.744) (0.808) (0.708)

pH 6.308** 6.721** 7.032** 6.440** 8.344* -5.750 9.388**
(3.056) (3.284) (3.219) (3.047) (4.976) (4.585) (3.702)

Specific Conductance -1.991** -2.065** -1.922* -1.916** -2.398 -1.847 -0.982
(0.955) (1.014) (1.041) (0.967) (1.463) (1.765) (1.068)

Transparency 3.415** 3.582** 3.915*** 3.162** 4.168*** -3.816 3.453**
(1.319) (1.403) (1.372) (1.308) (1.555) (3.614) (1.509)

Constant -54.04** -57.83** -60.88** -55.79** -72.21* 30.63 -85.15***
(25.55) (27.38) (26.82) (25.53) (37.77) (36.90) (31.44)

Observations 193 193 192 193 121 71 193
R2 0.162 0.159 0.207 0.154 0.237 0.260 0.150
Adjusted R2 0.053 0.050 0.104 0.044 0.094 -0.057 0.040

*p<0.1, **p<0.05, ***p<0.01
Notes: Standard errors in parentheses. Specifications/columns:
1: Most-often base model
2: Alternate first stage travel cost
3: Distance of ≤ 150 miles
4: Only including anglers who reported 1 trip or more
5: Lakes only
6: Rivers only
7: Drop 2001 survey
Regional fixed-effects control for a site’s major river basin.
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APPENDIX B

APPENDIX FOR CHAPTER 2

B.1 Full Willingness-to-Pay Estimates

Table B.1: Marginal Willingness-To-Pay By Model/Group: Conditional Logit

Model/Group Water Infiltration Organic Matter High Compactiona Medium Compactiona

Base Model 58.40 0.79 -88.26 -28.60
(42.27, 74.53) (0.57, 1.02) (-110.78, -65.75) (-37.66, -19.55)

Low Rental Rate 41.23 0.64 -72.02 -18.70
(21.33, 61.12) (0.34, 0.94) (-101.54, -42.51) (-29.95, -7.44)

Medium Rental Rate 50.06 0.52 -54.87 -19.72
(29.49, 70.63) (0.26, 0.78) (-76.93, -32.81) (-31.15, -8.28)

High Rental Rate 94.35 1 -110.87 -32.55
(29.31, 159.38) (0.23, 1.77) (-189.58, -32.17) (-60.2, -4.9)

Conventional-till 49.62 0.54 -70.20 -19.99
(33.75, 65.49) (0.34, 0.74) (-90.47, -49.93) (-28.38, -11.6)

No-till/Strip-till 104.09 1.94 -152.25 -53.26
(16.72, 191.46) (0.32, 3.56) (-281.6, -22.89) (-101.47, -5.04)

Future Operator: Self 60.95 0.75 -75.23 -29.30
(40.21, 81.68) (0.47, 1.03) (-100.48, -49.98) (-40.89, -17.72)

Future Operator: Someone Else 36.45 0.55 -78.65 -19.08
(13.05, 59.85) (0.23, 0.87) (-114.18, -43.12) (-32.49, -5.67)

Future Operator: Uncertain 42.39 0.69 -93.65 -25.94
(11.58, 73.19) (0.27, 1.11) (-144.46, -42.85) (-43.89, -7.98)

Topography: Flat 88.45 1.30 -133.33 -47.33
(28.28, 148.62) (0.37, 2.23) (-225.42, -41.24) (-62.61, -12.05)

Topography: Sloped 52.05 0.69 -79.63 -23.36
(34.86, 69.24) (0.46, 0.92) (-102.96, -56.29) (-32.69, -14.04)

Soil-Apathetic Class 85.47 0.63 -79.95 -31.70
(27.76, 143.17) (0.07, 1.18) (-139.77, -20.14) (-58.2, -5.21)

Soil-Conscious Class 111.97 1.48 -141.52 -56.74
(14.98, 208.97) (0.17, 2.79) (-263.59, -19.45) (-109.19, -4.28)

Moderate Class 56.13 0.58 -69.34 -20.61
(33.85, 78.41) (0.31, 0.86) (-96.43, -42.25) (-32.1, -9.12)

Uninformed Class 33.62 0.94 -82.64 -21.36
(3.46, 63.79) (0.37, 1.52) (-132.25, -33.03) (-39.52, -3.21)

Note: 95% confidence intervals in parentheses.
aWillingness-to-pay to move to low compaction
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Table B.2: Marginal Willingness-To-Pay By Model/Group: Mixed Logit

Model/Group Water Infiltration Organic Matter High Compactiona Medium Compactiona

Base Model 73.49 0.72 -78.84 -28.19
(-52.90, 199.89) (-0.13, 1.56) (-177.05, 19.38) (-40.18, -16.19)

Low Rental Rate 52.94 0.59 -64.91 -19.65
(-43.73, 149.61) (-0.04, 1.22) (-156.9, 27.08) (-33.99, -5.31)

Medium Rental Rate 56.44 0.50 -54.30 -20.23
(-34.61, 147.49) (-0.16, 1.15) (-121.7, 13.11) (-38.34, -2.13)

High Rental Rate 100.30 0.83 -89.00 -29.56
(-71.68, 272.29) (-0.78, 2.44) (-236.78, 58.79) (-56.40, -2.71)

Conventional-till 59.96 0.52 -63.04 -22.18
(-59.45, 179.36) (0.09, 0.95) (-146.47, 20.39) (-32.6, -11.76)

No-till/Strip-till 80.02 1.29 -111.45 -40.31
(-103.37, 263.41) (-0.41, 3) (-246.09, 23.19) (-81.89, 1.26)

Future Operator: Self 67.44 0.71 -66.59 -27.50
(-62.81, 197.70) (-0.19, 1.61) (-154.55, 21.37) (-40.22, -14.77)

Future Operator: Someone Else 41.74 0.56 -73.56 -19.63
(-54.86, 138.34) (-0.25, 1.36) (-161.04, 13.91) (-36.51, -2.75)

Future Operator: Uncertain 83.47 0.57 -88.91 -30.64
(-67.43, 234.36) (-0.61, 1.74) (-198.05, 20.23) (-68.31, 7.03)

Topography: Flat 105.70 1.20 -96.20 -41.13
(-115.76, 327.17) (-0.55, 2.96) (-250.21, 57.80) (-92.98, 10.72)

Topography: Sloped 63.68 0.63 -73.63 -24.92
(-49.68, 177.04) (-0.15, 1.40) (-165.84, 18.59) (-36.29, -13.54)

Soil-Apathetic Class 85.86 0.58 -69.16 -31.10
(-63.77, 235.49) (0.00, 1.16) (-157.11, 18.8) (-55.91, -6.3)

Soil-Conscious Class 99.00 1.07 -107.25 -45.02
(-76.43, 274.43) (-0.45, 2.60) (-242.34, 27.84) (-78.97, -11.08)

Moderate Class 64.94 0.53 -71.33 -22.48
(-41.90, 171.77) (-0.45, 1.50) (-159.84, 17.19) (-36.60, -8.36)

Uninformed Class 45.63 0.77 -74.64 -23.90
(-88.4, 179.66) (-0.62, 2.17) (-177.12, 27.84) (-44.26, -3.54)

Note: 95% confidence intervals in parentheses.
aWillingness-to-pay to move to low compaction
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B.2 Survey Refinement

The initial survey instrument was developed in late 2018 and early 2019 using information

from focus groups and cognitive interviews with local farmers and students. Pilot physical

surveys were distributed on June 18th and June 20th, 2019, and the online survey was dis-

tributed via Qualtrics1 beginning on August 9th, 2019. Across both surveys, we received 42

usable responses (14 from the physical survey, 28 from the online survey). Select summary

statistics are presented in Table B.3. The average respondent farmer from the pilot sample is

approximately 50 years old, and has approximately 25 years of experience in farming. Most

farmers manage more rented acres than owned acres.

Table B.3: Pilot Survey Summary Statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Age 42 50.4 16.3 23 36 62.5 84
Years Farming 42 24.9 17.1 4 10 41.5 57
Acres Owned 39 957.1 1,826.0 0.0 130.0 670.0 7,995.0
Acres Rented 35 2,238.8 2,394.8 0.0 315.0 3,925.0 8,000.0

Farmers in the pilot sample engage in a variety of tillage practices. Most (approximately

43%) are engaged in neither strip- nor no-till practices. Approximately 23% of respondents

were engaged in strip-till only, and the same proportion was engaged in no-till only. The

remaining 11% have used both strip- and no-till on their operation. Using the pilot survey

responses, we estimate a basic conditional logit model. Specifically, we assume the indirect

utility Vijt associated with respondent i choosing field j at time t is defined as:

Vijt = αj +X ′
jtβ, (B.1)

1https://www.qualtrics.com
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where αj is a dummy variable equal to one if alternative j is Field A or Field B, and zero if

alternative j is the opt-out option. The matrix Xjt contains information for the four chosen

attributes of the choice experiment: water infiltration, organic matter, compaction, and

rental rate. Compaction is the only categorical variable, with three levels: high, medium,

and low. During the estimation process, the low compaction level is set as the base (omitted)

category. Results of the pilot survey conditional logit are presented in Table B.4. The sign

of each estimated coefficient is as expected; as water infiltration and organic matter increase

for a field, the probability of selecting that field increases, ceteris paribus. High and medium

compacted fields are less likely to be chosen compared to to low compacted field, ceteris

paribus. Finally, as the rental rate of a field increases, the probability of selected that field

decreases.

Table B.4: Pilot Survey Conditional Logit Estimation Results

(1)
ASC 0.308

(0.489)
Water Infiltration 8.304∗∗∗

(1.470)
Organic Matter 0.398∗∗∗

(0.098)
High Compactiona −1.294∗∗∗

(0.239)
Medium Compactiona −0.280∗

(0.165)
Price −0.012∗∗∗

(0.005)

AIC 609.4
Observations 1,084
Log Likelihood −298.688

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
aOmitted base category: low compaction
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After estimation of the conditional logit, take several steps to improve the final survey

design, First, we suspected our pivot on the price variable was too small. In the new design,

we increase the size of the pivot from $5 to $10. Second, we use the estimated coefficients

in the pilot study as priors, and develop a D-optimal survey design. We use the dcreate

package in Stata 14.1 (Hole, 2015) which maximizes the D-efficiency of the survey design.

The D-efficiency of a survey design is:

D =


∣∣∣∣∣∣
[

N∑
n=1

J∑
j=1

z′njPnjznj

]−1
∣∣∣∣∣∣
1/K


−1

, (B.2)

where n refers to a respondent, j refers to an alternative, K is the number of explanatory

variables, and

Pnj =
ex

′
njβ∑

j∈J e
x′
njβ

, (B.3)

which, from the conditional logit, is the probability that respondent n chooses alternative j,

and

znj = xnj −
∑
j∈J

xnjPnj. (B.4)

Calculating the D-efficiency of a survey design requires some prior knowledge of β, and is

essentially how efficiently a survey design can identify the prior vector of coefficients. By

substituting our pilot study β̂ for β in equation B.2, we find a matrix xnj of size (N × J) by

K of alternative levels combinations that maximizes the D-efficiency measure.

In maximizing the D-efficiency of the survey design, we also iterate over designs until we

avoid conditions 1 and 2 from above. Further, we iterate until we find a design that has

one dominated alternative to check for preference consistency, as described above. We thus

create a D-efficient design that is not compromised by unrealistic alternative combinations

and allows us to filter out respondents that are likely using some heuristic decision rule rather

than making true utility-maximizing decisions.

Finally, we perform power calculations to determine our target sample size. Specifically,
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we find the minimum sample size N such that:

N >

(z1−β + z1−α)

√∑
γk

/δ

2

(B.5)

where
∑

γk is the kth element of the diagonal of the variance-covariance matrix σγ of prior

estimates δ. The statistical power can be set as 1 − β, the significance level can be set at

α, and then the z−score can be calculated from the normal distribution. This approach to

finding the required sample size is specific to discrete choice experiments, and is outlined

in de Bekker-Grob et al. (2015). This approach finds the minimum required sample size to

identify each coefficient. Thus, for a range of β and α, we find the minimum sample size

required for each coefficient. Results when α = 0.05 and 1 − β = 0.8 are shown in Table

B.5. The limiting variables that may hinder identification are the generic ASC and medium

compaction. While the ASC may be useful, it is not integral to our research question. The

primary coefficients of interest - water infiltration, organic matter, and rental rate - need at

most 18 individuals for identification. Across all the subsamples in our analysis, we have

more than 18 respondents and we are therefore confident of our estimated coefficients.

Table B.5: Required Sample Sizes To Identify Effects

α 1− β ASC Water Infiltration Organic Matter Compaction: High Compaction: Medium Rental Rate
0.05 0.8 91.55 8.13 17.82 9.30 115.08 10.66

B.3 Survey Instrument

The final survey instrument deployed by the National Agricultural Statistics Service in

2020 to farmers in the Brazos River Watershed is provided below.
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1 
 

 

 

 

OMB No.0535-0264 

Approval Expires: 4/30/2022 

Project Code: 779 

Survey ID: 1980 

Version 48 

 
United States 

Department of 

Agriculture 

 
NATIONAL  

AGRICULTURAL 

STATISTICS 

SERVICE 

 

USDA/NASS - Texas 

Southern Plains Region 

PO Box 70 

Austin, TX 78767-0070 

Phone: 1-800-626-3142 

Fax: 1-855-270-2725 

Email: nassrfospr@usda.gov 

 

Please make corrections to name, address, and ZIP Code, if necessary.

According to the Paperwork Reduction Act of 1995, an agency may not conduct or sponsor, and a person is not required to respond to a collection of 

information unless it displays a valid OMB control number. The valid OMB number is 0535-0264. The time required to complete this information 

collection is estimated to average 20 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering 

and maintaining the data needed, and completing and reviewing the collection of information. 

The information you provide will be used for statistical purposes only. Your responses will be kept confidential and any person who willfully 

discloses ANY identifiable information about you or your operation is subject to a jail term, a fine, or both. This survey is conducted in accordance 

with the Confidential Information Protection provisions of Title V, Subtitle A, Public Law 107-347 and other applicable Federal laws. For more 

information on how we protect your information please visit:  https://www.nass.usda.gov/confidentiality. Response is voluntary. 

Why am I being asked to participate in this survey? 

 
Soil health is critical to farm profitability and is a national concern. Yet, there is great uncertainty about 

farmers’ perceptions regarding soil health.  How do you assess the health of the soil on your farm?  How important 

is it to you? What do you do to manage for soil health? 

 

The purpose of this survey is to provide data for the first time about how farmers in your area think about soil health. 

The results of this survey will help researchers understand farmers’ thoughts on soil health, which in turn will be used 

to provide guidance to policy makers on the best ways to achieve state and national soil-health goals. Your 

participation is important and greatly appreciated.  

 

If you have specific questions regarding the content of this survey, please contact Richard Woodward, Professor, 

Dept. of Agricultural Economics, Texas A&M University, 979-845-5864, r-woodward@tamu.edu 

  

Your Farm.  Your Soil. 
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2 
 

Section 1: You and your operation 

Q1 How many years have you been farming? 101 ___________  years 

Q2 How old are you? 102 ___________  years 

Q3 Five years from now, which of the 
following do you think will be most likely?   

103 1   I will still be operating the farm.  

 2   The farm will be operated by one or more relatives  
  (children or other relatives).  

 3   The farm will be operated by a non-related farmer. 

 4   The farm will be converted into non-farm use.  

 5    Do not know. 

Q4 When you eventually stop farming, which 
of the following do you think will be most 
likely?  

104 1    The farm will be operated by one or more relatives  

  (children or other relatives).  

 2   The farm will be operated by a non-related farmer. 

 3   The farm will be converted into non-farm use. 

 4   Do not know. 

Q5 Did/do your parents farm? 
 (If No, skip to Q6) 

105 1   Yes 3 


  No 

a. Are they still farming? 106 1  Yes 3  
No,  
stop farming 

6  
No,  
deceased 

b. Do you currently work with them? 107 1   Yes 3 


  No 

c. Have you ever worked with them? 108 1   Yes 3 


  No 

Q6 Roughly, what share of your household 
income comes from farming? 

109 1  100%     2   75%     3   50%     4   25% or less 

Q7 Roughly, what percent of your working 
time is dedicated to farming?  

110 1  100%     2   75%     3   50%     4   25% or less 

Q8 Total acreage under management 
 111 _____  acres owned  112_____  acres rented 

Q9 Total acreage under management  
 113_____  acres in row crops  114_____  acres in pasture 
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Section 1:  You and your operation (continued) 

Q10 In 2019, how many acres did you plant in 
the following row crops?   

a. Corn  115 _________  acres 

b. Soybean  116 _________  acres 

c. Wheat  117 _________  acres 

d. Cotton  118 _________  acres 

e. Grain Sorghum  119 _________  acres 

f. Other  120 _________  acres 

Q11  In 2019, did you use strip-till on 
any of the row crops that you 
manage? 

121 1   Yes 3 


  No 

Q12  Do you intend to increase or 
decrease your use of strip-till in 
the future? 

122 1   Increase 2   Decrease  3  No Change 

Q13  In 2019, did you use no-till on 
any of the row crops that you 
manage? 

123 1   Yes 3 


  No 

Q14  Do you intend to increase or 
decrease your use of no-till in 
the future? 

124 1   Increase 2   Decrease   3   No Change 

Q15  To what extent do you rely on a 
consultant, like an agronomist 
or entomologist, to help you 
make farm management 
decisions?  

125 1   Extensively 2  Somewhat 
 

 3  Very Little 4   None; I do not use a consultant 
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Section 2:  Details on Base Field 

We would like you to give details on 1 row-crop field that you manage. By “field,” we mean an area that you 
manage as one piece in terms of tillage, planting, and harvesting. Please choose a field that you know well. 

If you do not use no-till or strip-till, please choose a field with which you would be comfortable 
experimenting with alternative management practices. 

If you do use no-till or strip-till, please choose a field on which you might consider switching to 
conventional tillage.  

Give this field a name so it will be easy to remember (for example, “Johnson”) 

Q16 What county is this field located in? 201 ________________  county  

Q17  How many acres are in this field?  202 ________________  acres 

Q18  How many years have you been managing 
this field?  

203  1    0 – 5 years  2  6 – 10 years 
 

 3  11 – 20 years 4  21 + years 

Q19 Is this field owned or rented?  
 (If owned, skip to Q20) 

204  1  Rented     2  Owned 

a.  If rented, is the contract cash or shares?  205  1  Cash   2  Shares 

b. If rented, how likely is it that you will be able 
to renew the lease for the next five years?  

206  1  Very likely  2  Unlikely 
 

 3  Likely  4  Unknown 

Q20  All crop(s) planted in 2019?  

207  1  Corn  2  Soybeans 
 

 3  Wheat  4  Cotton 
 

 5  Sorghum  6  Peanuts 
 

 7  Rice  8  Oats 
 
 9  Other (Specify: ___________________)  

Q21 Which tillage practice did you predominantly 
use on this field in 2019? 

208 1  Conventional-till   2  No-till   
 

     3  Strip-till 

Q22 Of the last 10 years, how many years have 
you used no-till or strip-till on this field? 

209 ________years 
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Section 2:  Details on Base Field (continued) 

Q23 Did you use cover crops on this field in 2019?  
210  1  Yes    3  No 

Q24 Did you use manure on this field in 2019?  
211  1  Yes    3  No 

Q25 What type of irrigation was in the field in 2019?  

212  1  None, Dryland   

 2  Center Pivot or Linear 
 3  Drip Tape 
 4  Furrow  

   5  Other (Specify: _________________)  

Q26 Were there terraces on the field in 2019?  213  1  Yes  3  No   

Q27 What is the general topography of the field?  

214  1  Nearly level (Less than 1%) 
 2  Gently sloping (1-3%) 
 3  Moderately sloping (3-5%) 
 4  Strongly sloping (5-8%) 
 5  Steep (8-12%) 

Q28 Which land type best describes this field?   

215  1  Floodplain/bottomland 

 2  Hilly/upland   

 3  Neither   

Q29 Approximately what percentage of this field is prone 
to flood for more than a day? (0% to 100%) 

 

216 _________% 

Q30 To what extent do you feel that suburban housing 
near the field affects the choices you make on that 
field? 

217  1  No effect 

 2  A slight effect 

 3  A significant effect 

Q31 To what extent do you feel that complaints from 
non-farming residents near the field affect the 
choices you make on that field? 

218 1  No effect 

 2  A slight effect 

 3  A significant effect 
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Section 3:  Soil health of your Base Field 

Q32  The table below lists seven changes in soil health characteristics that some farmers desire. For each of 
these, please check a box to indicate how important this change is to you for your Base Field. 

 
 Very 

Important 
Fairly 

Important Important 
Slightly 

Important 

Not 
Important 

at All 
Don’t 
Know 

a. Increasing water infiltration 301  1  2 
 3 

 4 
 5 

 6  

b. Increasing organic matter 302  1  2 
 3 

 4 
 5 

 6  

c. Decreasing runoff 303  1  2 
 3 

 4 
 5 

 6  

d. Decreasing erosion 304  1  2 
 3 

 4 
 5 

 6  

e. Decreasing bulk density 305  1  2 
 3 

 4 
 5 

 6  

f. Decreasing compaction 306  1  2 
 3 

 4 
 5 

 6  

g. Increasing drainage 307  1  2 
 3 

 4 
 5 

 6  

Q33  For each of the following indicators of soil health listed, please check a box to indicate you believe that 
using no-till or strip-till on your Base Field would increase or decrease the following soil 
characteristics? 

  
Greatly 

Increase Increase Neither Decrease 
Greatly 

Decrease 
Don’t  
Know 

a. Water infiltration 308  1  2 
 3 

 4 
 5 

 6  

b. Organic matter 309  1  2 
 3 

 4 
 5 

 6  

c. Runoff 310  1  2 
 3 

 4 
 5 

 6  

d. Erosion 311  1  2 
 3 

 4 
 5 

 6  

e. Bulk density 312  1  2 
 3 

 4 
 5 

 6  

f. Compaction 313  1  2 
 3 

 4 
 5 

 6  

g. Drainage 314  1  2 
 3 

 4 
 5 

 6  
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Choice 1:  Please identify the option you would choose. 

 Field A Field B 

Neither A nor B 

Water infiltration 
(infiltration into deeply 
wetted soil) 

1 inch of standing water 
absorbs in  

3 hours 

1 inch of standing water 
absorbs in  

5 hours 

Organic matter (%) 1% 2.5% 

Compaction 
Restricts root growth 

partially 
Restricts root growth 

substantially 

Cash rental rate  
($/acre per year) 

$10/acre more expensive 
than typical price 

$10/acre less expensive 
than typical price 

I choose       401 1  2  3  

 

Section 4:  Choices  

In this section we ask 9 questions that are all quite similar. Together with responses from all the other 
respondents, your answers will help us understand how farmers feel about soil health, which will help 
policy makers develop appropriate policies.  
Please answer all 9 questions by checking the box at the bottom of the column you choose.  
 
Suppose you are looking to expand your operation by renting an additional field of land. There are two 
fields on the market.  Both fields are identical to your base field except for: 

 Water infiltration 

 Organic matter 

 Compaction 

 Rental rate 
For both fields, the cash rental agreement would be valid for at least 5 years. In each of the 9 choice 
tables, identify the field you would choose to rent.  

 

Before beginning, please indicate your estimate of the typical cash rental rate for a field like your 
base field:    

400 ___________ ($/acre). 
Refer to this as the “typical price” 
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Choice 2:  Please identify the option you would choose. 

 Field A Field B 

Neither A nor B 

Water infiltration 
(infiltration into deeply 
wetted soil) 

1 inch of standing water 
absorbs in  

3 hours 

1 inch of standing water 
absorbs in  

5 hours 

Organic matter (%) 2.5% 0.5% 

Compaction 
Restricts root growth 

partially 
Does not restrict root 

growth 

Cash rental rate  
($/acre per year) 

$10/acre more expensive 
than typical price 

$10/acre less expensive 
than typical price 

I choose       402 1  2  3  
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Choice 3:  Please identify the option you would choose. 

 Field A Field B 

Neither A nor B 

Water infiltration 
(infiltration into deeply 
wetted soil) 

1 inch of standing water 
absorbs in  

3 hours 

1 inch of standing water 
absorbs in  
10 hours 

Organic matter (%) 0.5% 2.5% 

Compaction 
Does not restrict root 

growth 
Restricts root growth 

substantially 

Cash rental rate  
($/acre per year) 

$10/acre more expensive 
than typical price 

$10/acre less expensive 
than typical price 

I choose       403 1  2  3  
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Choice 4:  Please identify the option you would choose. 

 Field A Field B 

Neither A nor B 

Water infiltration 
(infiltration into deeply 
wetted soil) 

1 inch of standing water 
absorbs in  
10 hours 

1 inch of standing water 
absorbs in  
10 hours 

Organic matter (%) 0.5% 0.5% 

Compaction 
Does not restrict root 

growth 
Restricts root growth 

partially 

Cash rental rate  
($/acre per year) 

$10/acre more expensive 
than typical price 

$10/acre less expensive 
than typical price 

I choose       404 1  2  3  
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Choice 5:  Please identify the option you would choose. 

 Field A Field B 

Neither A nor B 

Water infiltration 
(infiltration into deeply 
wetted soil) 

1 inch of standing water 
absorbs in  

3 hours 

1 inch of standing water 
absorbs in  
10 hours 

Organic matter (%) 1% 2.5% 

Compaction 
Restricts root growth 

partially 
Restricts root growth 

substantially  

Cash rental rate  
($/acre per year) 

$10/acre less expensive 
than typical price 

$10/acre more expensive 
than typical price 

I choose       405 1  2  3  
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Choice 6:  Please identify the option you would choose. 

 Field A Field B 

Neither A nor B 

Water infiltration 
(infiltration into deeply 
wetted soil) 

1 inch of standing water 
absorbs in  

3 hours 

1 inch of standing water 
absorbs in  

5 hours 

Organic matter (%) 2.5% 1% 

Compaction 
Restricts root growth 

partially 
Restricts root growth 

substantially 

Cash rental rate  
($/acre per year) 

$10/acre less expensive 
than typical price 

$10/acre more expensive 
than typical price 

I choose       406 1  2  3  
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Choice 7:  Please identify the option you would choose. 

 Field A Field B 

Neither A nor B 

Water infiltration 
(infiltration into deeply 
wetted soil) 

1 inch of standing water 
absorbs in  
10 hours 

1 inch of standing water 
absorbs in  
10 hours 

Organic matter (%) 0.5% 1% 

Compaction 
Restricts root growth 

substantially 
Restricts root growth 

partially 

Cash rental rate  
($/acre per year) 

$10/acre less expensive 
than typical price 

$10/acre more expensive 
than typical price 

I choose       407 1  2  3  

 

  

123



14 
 

Choice 8:  Please identify the option you would choose. 

 Field A Field B 

Neither A nor B 

Water infiltration 
(infiltration into deeply 
wetted soil) 

1 inch of standing water 
absorbs in  

3 hours 

1 inch of standing water 
absorbs in  

5 hours 

Organic matter (%) 2.5% 1% 

Compaction 
Does not restrict root 

growth 
Restricts root growth 

substantially 

Cash rental rate  
($/acre per year) 

$10/acre more expensive 
than typical price 

$10/acre less expensive 
than typical price 

I choose       408 1  2  3  
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Choice 9:  Please identify the option you would choose. 

 Field A Field B 

Neither A nor B 

Water infiltration 
(infiltration into deeply 
wetted soil) 

1 inch of standing water 
absorbs in  
10 hours 

1 inch of standing water 
absorbs in  

5 hours 

Organic matter (%) 0.5% 1% 

Compaction 
Does not restrict root 

growth 
Restricts root growth 

substantially 

Cash rental rate  
($/acre per year) 

$10/acre less expensive 
than typical price 

$10/acre more expensive 
than typical price 

I choose       409 1  2  3  
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APPENDIX C

APPENDIX FOR CHAPTER 3

Table C.1: Two Way Fixed Effects: Intra-Year Effects, Dynamic, Krigged

Kharifa Rabia Pre-Monsoona

(1) (2) (3)

δ̂2006 −0.091 0.035 −0.053
(0.076) (0.088) (0.081)

δ̂2007 −0.040 0.100 −0.113
(0.072) (0.091) (0.090)

δ̂2008 −0.182∗∗ −0.067 −0.058
(0.085) (0.081) (0.099)

δ̂2009 −0.096 −0.018 0.026
(0.070) (0.085) (0.085)

δ̂2010 −0.039 0.058 0.047
(0.106) (0.070) (0.090)

δ̂2011 −0.098 −0.102 −0.140
(0.078) (0.087) (0.099)

δ̂2013 0.009 −0.068 0.050
(0.087) (0.114) (0.102)

δ̂2014 −0.212∗∗ −0.068 −0.012
(0.107) (0.066) (0.079)

δ̂2015 −0.128 0.152 −0.055
(0.098) (0.204) (0.072)

Observations 3,078 3,078 3,078
R2 0.003 0.002 0.002
F Statistic 1.079 0.642 0.579

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
aDifference between the monsoon season and the labeled season
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