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Abstract

Clustering of high dimensional tensors with limited sample size has become preva-

lent in a variety of application areas. Existing Bayesian model based clustering of

tensors yields less accurate clusters when the tensor dimensions are sufficiently large,

sample size is low and clusters of tensors mainly reveal difference in their variability.

This article develops a novel clustering technique for high dimensional tensors with

limited sample size when the clusters show difference in their covariances, rather than

in their means. The proposed approach constructs several matrices from a tensor to

adequately estimate its variability along different modes and implements a model-based

approximate Bayesian clustering algorithm with the matrices thus constructed, in place

with the original tensor data. Although some information in the data is discarded, we

gain substantial computational efficiency and accuracy in clustering. Simulation study

assesses the proposed approach along with its competitors in terms of estimating the

number of clusters, identification of the modal cluster membership along with the prob-

ability of mis-classification in clustering (a measure of uncertainty in clustering). We

further establish the effectiveness of our algorithm through applications to a real data

set from a biomedical context.

Keywords: Bayesian statistics; Brain genome expression; Clustering; Chinese restaurant

process; Tensor normal distribution.

1



1 Introduction

In recent times, multidimensional arrays or tensors, which are higher order extensions of

two dimensional matrices, are being encountered in datasets emerging from different disci-

plines including datasets from different brain imaging modalities, multi-omics studies, chemo-

metrics and psychometrics. Statistical analysis of tensor data presents several challenges over

and above multivariate vector-based methods. First of all, due to the high dimensional na-

ture of tensor data, inference from tensors often require a large parameter space. Also, extra

care needs to be exercised to exploit structural information in a tensor object. To address

such challenges for tensor data, a plethora of literature has emerged on tensor decompo-

sition (Chi and Kolda, 2012; Dunson and Xing, 2009; Sun and Li, 2019a) and regressions

with general and symmetric tensors (Zhou et al., 2013; Guhaniyogi et al., 2017; Lock, 2018;

Guhaniyogi and Spencer, 2018; Guha and Guhaniyogi, 2020; Spencer et al., 2020). Most

of these approaches employ low-rank and sparse approximations in the tensor structure to

reduce the number of parameters considerably, and propose novel estimation tools to draw

adequate inference.

This article focuses on clustering of high dimensional tensors into subgroups when tensors

in different subgroups are barely distinguishable in terms of locations (e.g. mean), but

exhibit difference in their correlation structures/variability. Examples of such datasets can

be found in image analysis, financial, and biological processes. FLoss-based algorithmic

approaches for clustering of vectors (Hartigan and Wong, 1979; Banerjee et al., 2004) can

be extended to the clustering of tensors (Huang et al., 2008), offering a simple approach

that is computationally efficient. However, loss-based approaches focuses on the aggregation

and separation of a sample into groups depending on similarities in locations of data, and

hence is not useful in applications of our interest. Moreover, there is no way to account

for clustering uncertainty in these methods. In contrast with algorithmic clustering, model-

based clustering exploits the entire data distribution for clustering, hence is relatively less

affected by the fact that locations of the tensors are similar. For more background, see

Fraley and Raftery (2002); Müller et al. (2015) for overviews of model-based clustering. In

clustering the tensor observations under the model-based clustering framework, one simple
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solution would be to vectorize the tensor object followed by unsupervised clustering of these

vectors. Such an approach can make use of the wide literature on clustering high dimensional

vector observations (Medvedovic and Sivaganesan, 2002; Zhong and Ghosh, 2003; Raftery

and Dean, 2006; Fröhwirth-Schnatter and Kaufmann, 2008; Pan and Shen, 2007; Wang and

Zhu, 2008; Lee et al., 2013; Oh and Raftery, 2007). However, vectorization ignores the crucial

neighborhood structure of tensor objects. Additionally, vectorization of a K-mode tensor of

dimensions p1× · · · × pK results in a
∏K

k=1 pk dimensional vector. Model-based clustering of

such long vectors often results in inaccurate clustering with each subject assigned to its own

singleton cluster (Celeux et al., 2019). Frühwirth-Schnatter (2006) proposes a specific prior

elicitation criterion to overcome this issue for moderate dimensions. However, calibration

of hyper-parameters may appear to be difficult for large dimensions that we focus in this

article.

The model-based clustering typically assumes each observation to follow a finite/infinite

mixture of distributions. In particular, Gaussian mixture model (GMM) is widely deployed

for clustering of scalar- or vector-valued observations. In the context of clustering higher

order tensors, an ordinary GMM can be extended to mixture of tensor normal distributions,

referred to as tensor normal mixtures (TNM) hereon. The tensor normal distribution ex-

presses the covariance structure of a tensor in terms of covariance structure in every mode of

the tensor, i.e., the covariance of a K-mode tensor is expressed with covariance matrices of

the order p1× p1,..., pK × pK . This eliminates the need to model an unstructured covariance

matrix of the order of p × p, where p =
∏K

k=1 pk for a tensor observation, and instead ex-

presses covariance structure with only
∑K

k=1 pk(pk + 1)/2 elements, leading to a substantial

reduction in the number of parameters required for covariance modeling. Further, the tensor

covariance structure can be suitably exploited to simultaneously cluster observations and

estimate parameters using either expectation maximization (EM) algorithm, its variants (in

the frequentist framework) or Gibbs sampling (in the Bayesian framework) (Viroli, 2011;

Anderlucci et al., 2015; Gao et al., 2020; Mai et al., 2021a). However, a standard Gibbs

sampling algorithm applied to the clustering of high-dimensional tensors presents the ardu-

ous task of sampling the covariance structure in each mode of the high-dimensional tensors

at every iteration. Besides being computationally inefficient, this often results in inaccurate
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estimation of true clusters.

This article tackles the problem from a different point of view. In particular, we focus

on a set of observations from multiple populations all of which follow tensor normal dis-

tributions with the same mean but different covariances. Rather than directly clustering

these observations using model-based clustering that presents challenges described earlier,

we adopt a two-step approach. As a first step, we construct a set of matrices, referred to

as the “transformed features,” from each tensor. These transformed features are designed

to estimate variability of a tensor along different modes. We show that when p1, ..., pK are

large, the transformed features provide abundant information on the mode-specific covari-

ance matrices of a TN distribution, thereby turning curse of dimensionality into a blessing.

In the second step, a Bayesian mixture model on transformed features is employed to clus-

ter observations. The proposal makes use of difference between clusters in their covariance

structure, and at the same time avoids drawing Markov Chain Monte Carlo (MCMC) sam-

ples for high dimensional covariance parameters from tensor normal distributions, resulting

in straightforward computation even with large tensor dimensions. Moreover, we provide

clustering uncertainty in terms of mis-classification probabilities.

In the similar spirit as ours, Ieva et al. (2016) developed a novel covariance-based clus-

tering algorithm exploiting the distance between covariances for multi-variate and functional

data. Their approach is based on the crucial assumption that there are two groups/clusters,

while we do not need to specify the number of clusters. Hallac et al. (2018) proposed a

method for multivariate time-series data to segment and cluster. While this approach can

be used for the tensor clustering, they assume a Toeplitz structure for the covariance ma-

trix. In contrast, our proposed approach is applicable to the general structure of the tensor

covariance matrix induced by the tensor normal distribution.

Rather than clustering tensors using the mixture of tensor normal distributions, there is a

literature regarding K-means clustering on low-rank approximation of tensors. For example,

a class of methods assume tensor decomposition of the mean of the tensor normal distribu-

tion, followed by minimization of the total squared Euclidean distance of each observation

mean to its cluster centroid (Sun and Li, 2019a). While the low-rank approximation is widely

adopted in tensor data analysis, this approach typically work on identifying clusters through
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centers of their distributions, and is thus less suitable for our purpose. Our goal is also very

different from the literature on bi-clustering and co-clustering methods. Lee et al. (2010);

Tan and Witten (2014) develop bi-clustering methods that simultaneously group features

and observations into clusters. Extensions of the feature-sample bi-clustering for vector ob-

servations are known as the co-clustering or multiway clustering problems (Jegelka et al.,

2009; Chi et al., 2020; Wang and Zeng, 2019), where each mode of the tensor is clustered

into groups. Our problem is different from these works in that our sole goal is to cluster the

observations.

Rest of the article evolves as follows. In section 2 we provide a brief introduction of model

based clustering and describe our approach for clustering tensors with covariance estimators.

Posterior computation from the model is described in Section 3. Empirical evaluations with

simulation studies and a real data analysis are presented in Sections 4 and 5, respectively.

Finally, we conclude in Section ?? with an eye towards the future work.

2 Covariance-Based Bayesian Tensor Clustering

This section begins with defining notations related to tensors. The Bayesian model-

based clustering approach is then briefly discussed in its full generality in the context of

tensor observations. We then describe the covariance-based two-step clustering approach in

the context of high dimensional tensor observations.

2.1 Notations

We begin with a quick review of some tensor notations and operations which will be

subsequently used. A more detailed review can be found in Kolda and Bader (2009).

Consider the K-way tensor (also known as K-mode or K-th order tensor) T ∈ Rp1×...×pK

with its (i1, ..., iK)-th element denoted by Ti1,...,iK . When K = 1, the tensor reduces to a

vector and when K = 2, the tensor is a matrix. The vec(T) operator applied to a tensor T

stacks elements into a column vector of dimension p =
∏K

k=1 pk with Ti1,...,iK mapped to the

j-th entry of vec(T), for j = 1 +
∑K

k=1(ik − 1)
∏k−1

k′=1 pk′ .

A fiber is the higher order analogue of a matrix row and column, and is defined by fixing

every index of the tensor but one. A k-mode fiber is a pk-dimensional vector obtained by
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fixing all other modes except the k-th mode. For example, a matrix column is a mode-1 fiber

and a row is a mode-2 fiber. There are p/pk such k-mode fibers for T each with dimension

pk × 1. The k-mode matricization of a tensor transforms a tensor into a matrix T(k) ∈

Rpk× p
pk , where T(i1,...,iK) mapping to (ik, j)-th element of the matrix, where j =

∑
k′ 6=k(ik′ −

1)
∏

k′′<k′,k′′ 6=k pk′′ . The k-mode product of a tensor T ∈ Rp1×...×pK and a compatible matrix

A ∈ RJ×pk , will result in a tensor T×k A ∈ Rp1×...×pk−1×J×pk+1×...pK , where each element is

the product of mode-k fiber of T multiplied by A. Notice that this operation reduces to the

usual matrix product for a 2-way tensor and to the inner product for a 1-way tensor. Finally,

for a list of matrices A1, . . . ,AK with compatible sizes Ak ∈ RJk×pk we define the product

T× [A1, . . . ,AK ] = T×1 A1×2 . . .×K AK ∈ RJ1×...×JK . Thus, when A1, . . . ,AK are square

matrices, the resulting tensor is of the same dimension as T. In what follows, we will use

|| · ||F to denote the Frobenius norm of the tensor T given by ||T||F :=
√∑

i1,...,iK
T 2
i1,...,iK

.

2.2 Bayesian Model-based Tensor Clustering Approach

Let Ti be a tensor valued observation in T , T ⊆ Rp1×···×pK , for i = 1, ..., n. Let C =

{C1, ..., Cn(C)} be a partition of n observations into n(C) disjoint sets, i.e., |C| = n(C). Typical

Bayesian models for clustering are based on posterior distributions of the form

π(C|T1, ..,Tn) ∝ π(C)
n(C)∏
h=1

[∫ ∏
i∈Ch

f(Ti|Θh)π(Θh)dΘh

]
= π(C)

n(C)∏
h=1

m({Ti : i ∈ Ch}), (1)

where f(Ti|Θh) denotes the likelihood for a tensor observation belonging to the h-th cluster

with the cluster-specific model parameter Θh and π(Θh) corresponds to the prior distribution

on the parameter Θh. The quantity m({Ti : i ∈ Ch}) =
∫ ∏

i∈Ch f(Ti|Θh)π(Θh)dΘh denotes

the marginal distribution of tensors belonging to the h-th cluster which is typically not

obtained in a closed form. Alternatively, the partition can be described through cluster

labels for n observations given by c = (c1, ..., cn)′, so that ci = h, if and only if i ∈ Ch, for

i = 1, ..., n. Irrespective of the representation, our interest only lies in the induced partition

C rather than the labels on the indicators c = (c1, ..., cn)′.

A natural choice for the likelihood f(Ti|Θh) appears to be a tensor normal distribution,
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denoted as TN(Mh,Σ1,h, ...,ΣK,h), and is given by

f(Ti|Mh,Σ1,h, . . . ,ΣK,h) = (2π)−
p
2

{
K∏
k=1

|Σk,h|
− p

2pk

}
exp

(
−1

2

∥∥∥(Ti −Mh)× [Σ
− 1

2
1,h , . . . ,Σ

− 1
2

K,h]
∥∥∥2

F

)
,

(2)

where Mh is the mean/center of the tensor normal distribution, and Σk,h is a pk × pk

dimensional positive definite matrix, also referred to as the covariance matrix for the k-

th mode. We consider a scenario where the observed tensors in the sample are barely

distinguishable in terms of their means. Thus, we make the following crucial assumption:

Assumption A: Different clusters of tensors only vary in terms of their covariance structure

and not in their means. Thus, without loss of generality, Mh = 0 for all h = 1, .., n(C).

According to the likelihood specification in (2) and Assumption A, Θh corresponds to the

collection of covariance matrices for all modes, i.e., Θh = {Σ1,h, . . . ,ΣK,h}.

Notably, the distributional form of f(Ti|Θh), as given in (2), does not yield a closed

form integral for the marginal distribution in (1). The common practice is to begin with

the distribution (Ti|Θh, ci = h) ∼ f(Ti|Θh) and develop a Gibbs sampler to draw posterior

samples of c along with Σk,h’s, for all k = 1, ..., K and h = 1, ..., n(C). However, when

p1, ..., pK are large, Gibbs sampling of covariance matrices Σk,h’s results in inferential in-

accuracy related to clustering, as well as computational challenges, as demonstrated in our

detailed empirical investigation in Section 4. Next section develops an approximate Bayesian

clustering algorithm that offers remedies to both these challenges simultaneously.

2.3 A Covariance-Based Bayesian Tensor Clustering Approach

To avoid complications due to model based clustering of high-dimensional tensor obser-

vations, we propose a twos-step Bayesian clustering approach of tensors. In summary, our

approach first extracts important features of high dimensional tensors to adequately estimate

the covariance structure along different modes, followed by model-based clustering of these

features. To elaborate on it, let A(Ti) be the set of extracted features from tensor Ti which

will be referred to as transformed features (TF) hereon. The transformed features are care-

fully chosen to estimate variability of the tensor normal distribution in each mode. Section
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2.4 details out a specific choice of such transformed features. While the exact distribution of

A(Ti) is determined by the tensor normal specification given in (2), we focus on a reasonable

approximation of the distribution for A(Ti) in our goal to cluster these transformed features.

Let f̃(A(Ti)|Θ̃h, Θ̃a) be the approximated distribution of A(Ti) in the h-th cluster, with

Θ̃h as its h-th cluster-specific parameter and Θ̃a an auxiliary lower dimensional parameter

common across all clusters. Let π̃h(Θ̃h) and π̃a(Θ̃a) denote the prior distribution of Θ̃h and

Θ̃a, respectively, for h = 1, ..., H. We choose f̃(·) and π̃h(·) to ensure closed form marginal

distribution of m̃({A(Ti) : i ∈ Ch}|Θ̃a) =
∫ ∏

i∈Ch f̃(A(Ti)|Θ̃h, Θ̃a)π̃h(Θ̃h)dΘ̃h.

With closed form marginals for TFs in each cluster, the posterior distribution of clusters

and the auxiliary parameters is given by,

π(C, Θ̃a | A(T1), ...,A(Tn)) = π(C)π̃a(Θ̃a)

n(C)∏
h=1

m̃({A(Ti) : i ∈ Ch}|Θ̃a), (3)

where π(C) denotes the prior on partitions. In the absence of real prior information about

the items, we will assign positive prior probability to every possible partition. In the in-

terests of computational convenience, we might be attracted to prior models on partitions

for which posterior simulation methods are fully developed. While the nonzero prior on

partitions can be induced by Dirichlet processes (Ferguson, 1973; Antoniak, 1974; Gopalan

and Berry, 1998), an explicit prior on partitions can also be derived from an infinite or a

finite mixture model representation of the distribution of A(Ti) after integrating out the

weights of the mixing components. With the posterior distribution of partitions given in (3),

the computation proceeds through a Chinese restaurant sampler described below (Lau and

Green, 2007).

1. Initialize: Choose an initial partition C(0). Common options are either to set singleton

clusters or to put all observations in the same cluster.

2. Obtain s-th iterate of C: To obtain s-th iterate of the partition C(s) do:

(a) Initialize the Partition: Set C = C(s−1), and let C = {C1, . . . , Cn(C)}.

(b) Loop through every observation:
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i. Remove observation A(Ti) from the partition: Remove i-the observation

from the partition C to obtain a new partition

C−i = {C1,−i, ..., Cn(C−i),−i}.

ii. Assign observation i: Either assign the i-th observation to a new cluster, that

is update C to C = {C1,−i, ..., Cn(C−i),−i, {i}} with probability proportional to:

m̃(A(Ti)|Θ̃a)×
π({C1,−i, ..., Cn(C−i),−i, {i}})
π({C1,−i, ..., Cn(C−i),−i})

, (4)

or, assign the i-th observation to the existing j-th cluster Cj,−i, that is update

C to

C = {C1,−i, ..., Cj,−i ∪ {i}, . . . , Cn(C−i),−i} with probability proportional to:

m̃({A(Ts) : s ∈ {{i} ∪ Cj,−i}}|Θ̃a)

m̃({A(Ts) : s ∈ Cj,−i}|Θ̃a)
×
π({C1,−i, ..., Cj,−i ∪ {i}, . . . , Cn(C−i),−i})

π({C1,−i, ..., Cn(C−i),−i})

(5)

(c) Set the partition C(s): After updating C, going through every observation, set

C(s) = C.

3. Sample the s-th iterate of Θ̃a: Draw s-th iterate of Θ̃a from its full conditional distri-

bution derived from (3).

Notably, steps (a)-(c) involve marginal distribution of TFs which are available in closed form

by our assumption. In fact, the algorithm bypasses updating high dimensional parameters

at any step, which leads to rapid mixing of the Markov Chain. Since the algorithm uses

transformed features A(Ti) of the tensor Ti, the clustering accuracy is naturally dependent

on the choice of these features. Next section describes specific choice of TFs which leads to

desirable clustering performance for tensors, as discussed in the simulation studies.
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2.4 Transformed Features and Their Distributions

This section discusses the specific choice of transformed features A(T) and the approx-

imate distribution f̃(A(T)|Θ̃h, Θ̃a) of the transformed features used in this article. For

clustering of high dimensional tensors, we propose to work with the collection of trans-

formed features given by A(Ti) = {pk
p

Ti,(k)T
′
i,(k) : k = 1, ..., K}, where Ti,(k) is the k-th

mode matrix of the tensor Ti. Therefore, given a k-way tensor observation Ti of dimension

p =
∏K

i=1 pi, we extract a collection of K matrices of sizes p1 × p1, . . . , pK × pk, which will

suitably capture the covariance structure of the observed tensor, as described by the lemma

below.

Lemma 2.1 Let Ti ∼ TN(0,Σ1, . . . ,ΣK) and A(Ti)
(k) = pk

p
Ti,(k)T

′
i,(k). Assume that for

all k = 1, ..., K, (i) pk
p
→ 0 (ii) pk

p
tr(⊗k′ 6=kΣk′)→ wk and (iii)

p2k
p2

∑
l,r{⊗k′ 6=kΣk′}l,r → 0, for

all l, r = 1, ..., p/pk, where {⊗k′ 6=kΣk′}l,r denotes the (l, r)th entry of the matrix ⊗k′ 6=kΣk′.

(i)-(iii) together imply that {A(Ti)
(k)}l,r → {Σk}l,rwk, where wk is a constant.

The proof of Lemma 2.1 is provided in the supplementary material. While high-dimensional

tensors pose challenges in the ordinary clustering approaches due to the need to estimate

high dimensional covariance matrices for different modes, higher tensor dimensions appear

to be ”blessings” for our approximate tensor clustering approach, as revealed in Lemma 2.1.

In fact, the result implies that under regularity conditions, as the tensor dimensions grow,

the transformed features converge to mode-specific covariance matrices upto a scale factor,

recovering their shapes and orientations.

Some discussions on assumptions (i)-(iii) is warranted. Assumption (i) is a mild one only

guaranteeing growth of tensor along every dimension. Assumptions (ii) and (iii) restrict

the growth of the elements in the covariance matrices of the data generating tensor normal

distribution. In particular, when Σk is an identity matrix of dimension pk × pk, (ii) and (iii)

are trivially satisfied with wk = 1 for all k = 1, ..., K. Broadly, the conditions (ii) and (iii)

assumes sparsity in the mode-specific covariance matricesnwhich turn out to be a crucial in

dictating the clustering performance of the approach.
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2.4.1 The TF Distribution and Prior On Parameters

To cluster tensors with the transformed features introduced in the previous section, we

employ cluster-specific normal means model on the upper triangular entries of A(Ti)
(k) in

all clusters and for all modes k = 1, ..., K. More specifically, the (l, r)-th entry of A(Ti)
(k)

is modeled as

{A(Ti)
(k)}l,r

ind.∼ N(θ
(k)
l,r,h, σ

2), for i ∈ Ch, θ(k)
l,r,h ∼ N(θ0, σ

2/φ), l < r. (6)

(6) appears to be an approximation to the actual distribution of TFs under the tensor

normal specification of Ti, when tensor dimensions are large. In fact, when i ∈ Ch and

Ti ∼ TN(0,Σ1,h, ..,ΣK,h), {A(T)(k)}l,r is approximately distributed as normal by central

limit theorem as pk/p→ 0.

The specification of (6) leads to a close form marginal distribution of A(Ti) in each

cluster conditional on the auxiliary parameters Θ̃a = (σ2, φ)′ by integrating out cluster

specific parameters Θ̃h = (θ
(k)
l,r,h : l < r)′. More specifically,

m̃
(
{{A(Ti)

(k)}l,r : i ∈ Ch}|φ, σ2
)

=
(
2πσ2

)−nh
2

[
φ

nh + φ

] 1
2

exp

{
− 1

2σ2

([∑
i∈Ch

(
{A(Ti)

(k)}l,r − {Ā(T)
(k)
Ch }l,r

)2
]

+ φ
(
{ ¯A(T)

(k)

Ch }l,r − θ0

)2
)}

,

(7)

where nh = |Ch| is the number of samples belonging to the h-th cluster Ch and {Ā(T)
(k)
Ch }l,r =

1
nh+φ

(∑
i∈Ch{A(Ti)

(k)}l,r + φθ0

)
. The marginal distribution of A(T1), ...,A(Tn) conditional

on the auxiliary parameters σ2 and φ is of the form

m̃
(
A(T1), ...,A(Tn)|φ, σ2

)
=

n(C)∏
h=1

∏
i∈Ch

K∏
k=1

∏
1≤l<r≤pk

m̃
(
{{A(Ti)

(k)}l,r : i ∈ Ch}|φ, σ2
)
, (8)

where the form of m̃
(
{{A(Ti)

(k)}l,r : i ∈ Ch}|φ, σ2
)

is obtained from (7).

While Section 2.3 outlines a number of possibilities for the choice of the prior distribution

on partitions, we have adopted the prior on the partitions induced from the Dirichlet Process.
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Following Lau and Green (2007), the prior distribution on the partition C under such a

specification assumes the form,

π(C|φ) = φn(C)+1 Γ(φ)

Γ(n+ φ)

n(C)∏
h=1

Γ(nh), (9)

with the prior being dependent on the auxiliary parameter φ. Following the Chinese Restau-

rant analogy, (9) implies that the probability of assigning a new customer to a new table is

proportional to φ a priori. The prior specification is completed by setting an inverse-gamma

prior on σ2, σ2 ∼ IG(aσ, bσ) and a discrete uniform prior on φ taking values φ1, ..., φF each

with probability 1/F .

2.5 Point Estimation and Uncertainty Quantification in Cluster-

ing

While we will explore the posterior distribution of partitions through MCMC-based sam-

pling algorithms (see Section 3 for details of posterior computation), it is worth understand-

ing the point estimate of partitions induced by our approach. Although several alternatives

exist (e.g., Medvedovic et al. (2004); Lau and Green (2007); Fritsch et al. (2009)), maximum

a posteriori (MAP) estimation provides a particularly natural and simple choice. Unfortu-

nately, the maximum a posteriori clusters are not available in closed form from our approach;

thus we study some profile properties of partitions by fixing the auxiliary parameters σ2 and

φ. In particular, from (8), the MAP estimate of clustering is obtained by minimizing the

following objective function with respect to clusters C1, ..., Cn(C) and their centers.

n(C)∑
h=1

K∑
k=1

∑
1≤l<r≤pk

{∑
i∈Ch

||{A(Ti)
(k)}l,r − {Ā(T)

(k)
Ch }l,r||

2 + φ
(
θ0 − {Ā(T)

(k)
Ch }l,r

)2
}

(10)
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With little algebra, equation (10) can be rewritten as

n(C)∑
h=1

K∑
k=1

∑
1≤l<r≤pk

{∑
i∈Ch

||{A(Ti)
(k)}l,r − {Ā(T)

(k)
Ch,0}l,r||

2 +
nhφ

nh + φ

(
θ0 − {Ā(T)

(k)
Ch,0}l,r

)2
}
,

(11)

where {Ā(T)
(k)
Ch,0}l,r = 1

|Ch|
∑

i∈Ch{A(Ti)
(k)}l,r. Notably, the objective function in (11) bears

close connection with the objective function of regularized k-means clustering for high di-

mensional objects (Sun et al., 2012). Since the upper triangular vectors of A(Ti) are high-

dimensional, regularized k-means clustering is more suitable for cluster analysis than the

ordinary k-means clustering. In fact, in an ordinary k-means clustering, the observations

from the same cluster tend to lie symmetrically at the vertices of a regular simplex, and the

distance between observations from different clusters is determined by the cluster difference

relative to the data dimension. Consequently, if the cluster difference is relatively small

compared with the diverging data dimension, the ordinary k-means clustering based on the

Euclidean distance will operate in a degenerate fashion, assigning all the observations to the

same cluster. In contrast, a regularized k-means clustering shrinks high dimensional obser-

vations to a lower-dimensional subspace while simultaneously performing cluster analysis,

which is more suitable in our context.

One of the advantages of probabilistic model-based clustering is that it offers uncertainty

quantification along with point estimate of clusters. Recall that the partitioning set C can

be equivalently expressed in terms of cluster membership indices c = (c1, ..., cn)′ for the

data points, where each ci = h ⇔ i ∈ Ch. In principle, the uncertainty of clustering can

be expressed through posterior probabilities P (ci = h|Data), but these are affected by the

label-switching phenomenon (Stephens, 2000). For this reason, one typically focuses on the

co-clustering matrix G (Fritsch et al., 2009), whose entries Gi,i′ are such that Gi,i′ = P (ci =

ci′ |Data), for i, i′ ∈ {1, ..., n}. The G matrix can be used to identify which pair of units are

more certain/uncertain to belong to the same cluster.
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3 Posterior Computation

With likelihood and prior distributions specified as in Section 2.4.1, the full posterior

distribution of partitions and auxiliary variables is given by,

p(C, φ, σ2|A(T1), ...,A(Tn)) ∝ m̃
(
A(T1), ...,A(Tn)|φ, σ2

)
× φn(C)+1 Γ(φ)

Γ(n+ φ)

n(C)∏
h=1

Γ(nh)

× βασσ
Γ(ασ)

(σ2)−ασ−1 exp

(
−βσ
σ2

)
.

The posterior computation proceeds following the general algorithm described in Section 2.3

with simplifications due to the prior structure. Specifically, the probability of assigning the

i-th observation to a new cluster, described in (4), reduces to

m̃(A(Ti)|φ, σ2)× φ.

On the other hand, the probability of being assigned to the existing j-th cluster Cj,−i, de-

scribed in (5), takes the form

m̃ ({A(Ts) : s ∈ {i} ∪ Cj,−i}|φ, σ2)

m̃ ({A(Ts) : s ∈ Cj,−i}|φ, σ2)
× |Cj,−i|.

Thus Chinese restaurant process assigns an observation into an existing cluster or to a new

cluster depending on the size of the existing clusters, parameter φ and similarity of the

customers (observations) already in a cluster with the new observation.

Finally, the full conditional distribution to sample σ2 in step 3 of the algorithm is given

by IG(aσ|−, bσ|−) distribution with the values of aσ|− and bσ|− are given by

aσ|− = aσ +

n
K∑
k=1

pk(pk − 1)

2

bσ|− = bσ +

n(C)∑
h=1

K∑
k=1

∑
1≤l<r≤pk

[∑
i∈Ch

(
{A(Ti)

(k)}l,r − {Ā(T)
(k)
Ch }l,r

)2

+ φ
(
{ ¯A(T)

(k)

Ch }l,r − θ0

)2
]

2
.
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φ is sampled in each iteration from a discrete uniform distribution taking values φf with

probability proportional to m̃ (A(T1), ...,A(Tn)|φf , σ2) × φ
n(C)+1
f

Γ(φf )

Γ(n+φf )
, for f = 1, ..., F .

We fix F = 20 throughout our empirical investigation.

4 Numerical Illustration

This section studies the clustering performance of our proposed Bayesian Tensor Cluster-

ing (BTC) approach vis-a-vis its competitors. To study all competitors under various data

generation schemes, we simulate n = 100 tensors T1,...,Tn from a finite mixture of tensor

normal models with H mixing components given by

Ti ∼
H∑
h=1

πhTN(0,Σ1,h, ...,ΣK,h),
H∑
h=1

πh = 1. (12)

The data generation scheme ensures that the tensors in different cluster differ only in their

variability. Further, each simulated tensor is assumed to have K = 3 modes of dimensions

p1 = 10, p2 = 20 and p3 = 30. While our approach is scalable for a much bigger tensor size,

we kept the tensor dimensions moderate in simulations to aid its comparison with the full

Bayesian model-based clustering approach, discussed later. The probability of inclusion in

every mixture component is taken to be identical πh = 1/H, resulting in clusters of similar

size. The precision matrices Σ−1
k,h for the covariance structure are generated as sparse matrices

to introduce complex conditional independence structure between the tensor cells following

the popular literature on graphical models (Rothman et al., 2008; Liu and Martin, 2019;

Cai et al., 2011). More specifically, each sparse matrix of dimension pk × pk, k = 1, ..., K, is

generated following the steps described below.

1. A symmetric edge matrix E is generated. Where each of diagonal entry is equal to 1

with probability α and 0 otherwise. And all the diagonal elements are equal to 0.

2. A matrix D = E/2+δI where I is the identity and δ is chosen so that D has a condition

number of pk. Note that α determines the sparsity level.

3. The final matrix is obtained sampling from a G-Wishart distribution with degrees of

freedom equal to pk + 3 and scale matrix equal to D.
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In generating the true covariance matrices for different modes, the parameter α is used to

control sparsity of the covariance matrices. We consider seven simulation cases by varying

the number of clusters H and the sparsity of random precision matrices α, given by,

(a) Case 1: H = 3, α = 0.1, (b) Case 2: H = 4, α = 0.1,

(c) Case 3: H = 3, α = 0.2, (d) Case 4: H = 4, α = 0.2,

(e) Case 5: H = 3, α = 0.3, (f) Case 6: H = 4, α = 0.3,

(g) Case 7: H = 4, α = 0.4.

The simulation results will develop understanding of how the interplay between number of

clusters and the sparsity in the covariance matrices affects performance of the competitors.

4.1 Competitors and Metrics of Evaluation

As a competitor to our approach, we employ a few popular frequentist tensor cluster-

ing approaches; a static version of the Dynamic Tensor Clustering algorithm (DTC) (Sun

and Li, 2019b) and Doubly-Enhanced EM algorithm (DEEM) proposed for tensor mixture

models (Mai et al., 2021b). While our Bayesian approach allows simultaneous model-based

determination of cluster number and composition of each cluster, both of these frequentist

clustering techniques fix the number of clusters before implementing the clustering. In the

simulation studies, we implement both DTC and DEEM by fixing the number of clusters

at the truth. Although this leads to somewhat unfair comparison for BTC, it is nonethe-

less instructive to investigate its performance vis-a-vis these competitors. Finally, we also

employ (12) after fixing the true number of clusters and the true values of Σk,h’s for each

tensor normal mixture component. This competitor is referred to as the Oracle Bayesian

tensor clustering approach, where the only parameters left to estimate are the weights of the

mixture components. Oracle is generally expected to perform better than all the approaches

and is used to assess the loss in performance due to various approximations in our approach.

Notably, Oracle competitor is only available for simulation studies.

To assess inference on clusters from BTC, we look at (i) the point estimate of cluster

membership indicators denoted by ĉ, and (ii) a heatmap of the posterior probability of any

two samples belonging to the same cluster, or the co-clustering matrix G with the (i, j)th

entry P (ci = cj|Data) (which provides a measure of the uncertainty associated with the
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clustering). An empirical estimate of the co-clustering matrix G can be obtained from the

post burn-in MCMC samples of the cluster membership indices c. With the information on

true cluster configuration in simulation studies, we evaluate the quality of point estimate of

clustering using the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) of the posterior

cluster configurations with respect to the known cluster configuration. The ARI evaluates the

agreement in cluster assignment between two cluster configurations. It ranges between −1

and 1, with larger values indicating more agreement between cluster configurations. Notably,

ARI is only available for simulation studies where the true clusters are known.

4.2 Simulation Results

Table 1 provide insights into the point estimates of the cluster structure by displaying the

discrepancy between the true and the estimated clusters. BTC shows excellent clustering

accuracy under all cases with ARI being close to 1. However, as sparsity of tensors decreases

BTC tends to mis-classify a fraction of the data points, leading to a drop of ARI to 0.67

for α = 0.4 and further deteriorating with higher values of α. The deterioration in perfor-

mance can be attributed to the fact that with decreasing sparsity, the transformed features

may not be able to provide an accurate estimation of the tensor covariance structure, as

noted in Lemma 2.1. Further, BTC essentially clusters high-dimensional transformed fea-

tures and sparsity or any low-dimensional structure favors high-dimensional clustering (Sun

et al., 2012). While DEEM is supplied with the true number of clusters, it often clubs mul-

tiple clusters to a single cluster which naturally yields an under-estimation in the number of

clusters and consequently, a drop of ARI values. Table 1 shows that the clustering accuracy

of DEEM plummets when true number of clusters in the data increases, though sparsity

does not seem to have any major impact on the clustering performance of DEEM. Can you

give an explanation?. Note that DTC clusters based on the low-rank decomposition of the

mean structure of each tensor which is not conducive in capturing in the present scenario,

since data generating clusters mainly differ in terms of their variability. In fact, the tensors

simulated from (12) are not likely to be approximated well by a low-rank decomposition,

which presumably leads to the less satisfactory performance of DTC. In contrast, the ”gold

standard” Oracle is provided with the true covariance structure of the tensors as well as the
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Table 1: Adjusted Rand Index (ARI) for competitors (BTC, DTC, DEEM, Oracle) for
different simulation configurations.

Cases α H BTC DEEM DTC Oracle

1 0.1 3 0.94 0.53 0.05 0.98
2 0.1 4 1.00 0.32 0.37 1.00
3 0.2 3 0.96 0.65 0.13 0.97
4 0.2 4 1.00 0.39 0.32 1.00
5 0.3 3 0.99 0.79 0.11 0.99
6 0.3 4 1.00 0.62 0.30 1.00
7 0.4 4 0.67 0.38 0.31 0.94

true number of clusters; hence it demonstrates ARI close to 1 in every simulation. Interest-

ingly, for higher degree of sparsity in the simulated tensors, the clustering performance of

BTC and Oracle are practically indistinguishable.

The uncertainty in clustering is displayed using the heat maps of posterior probabilities

of pairs of subjects belonging to the same cluster, or the co-clustering matrix. Figures 1 and

2 show co-clustering matrices for all competitors (except DTC) under all the simulation sce-

narios. Since DTC only offers point estimate of clusters, co-clustering matrix corresponding

to DTC is not available. To facilitate visualization in Figures 1 and 2, subjects are ordered

according to their true cluster configurations in the heatmap. In cases 1-6, BTC successfully

recovers the true cluster structure, with little uncertainty associated with the estimator.

With decreasing sparsity, the clustering performance deteriorates as demonstrated by case

7. However, even in case 7, where the BTC framework falls short of recovering the true

cluster structure, we find less uncertainty in the cluster estimation. As discussed before,

DEEM often produces less accurate clusters, though it does so with a very little uncertainty.

Oracle also recovers true clusters with very little uncertainty. In general, BTC appears to

be a competitive clustering approach when tensors are sparse. Importantly, unlike existing

model-based tensor clustering approaches, high dimensionality of tensors is a blessing rather

than a curse for BTC as with high dimensions, the transformed features can more accurately

recover the true covariance matrices. This offers crucial advantage to BTC in neuroscietific

applications where high resolution tensors are routinely collected.
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Figure 1: Heatmap of the posterior probability of any two samples belonging to the same
cluster. For the cases with H = 4.
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5 EEG Data Application

We illustrate performance of BTC using a dataset on EEG signals for 58 children aged

25 to 126 months with autism spectrum disorder (ASD). For each subject, EEG signals were

sampled at 500 HZ for two minutes from a 128-channel HydroCel Geodesic sensor Net. EEG

recordings were collected during an ‘eyes-open’ paradigm in which bubbles were displayed

on a screen in a sound-attenuated room to subjects at rest. More details related to pre-

processing and data acquisition can be found at Scheffler et al. (2019). The EEG data for
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Figure 2: Heatmap of the posterior probability of any two samples belonging to the same
cluster. For the cases with H = 3.
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each subject is interpolated down to a standard 10− 20 system 25 electrode montage using

interpolation as discussed in Perrin et al. (1989), producing 25 electrodes with continuous

EEG signal. We obtained spectral density estimates on the first 38 seconds of artifact free

EEG data, across subjects, using the Fast Fourier Transform described in Welch (1967) with

two second Hanning windows and 50 percent overlap. We further restrict our data to the

alpha spectral band (Ω = (6Hz, 14Hz)) which due to the sampling scheme has a frequency

resolution of 0.25Hz resulting in 33 functional grid points. Finally, we normalize this band

to a unit area to better facilitate comparisons across electrodes and subjects. As a result we
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end up with 58 two-way tensors (or matrices) of dimensions 25× 33.

Prior evidence suggests patients with autism spectrum disorder (ASD) can be clustered

based on EEG recordings with substantial heterogeneity in cluster-specific mean and co-

variance structures ?. In a previous analysis of our motivating alpha spectral density EEG

data, ? found a common alpha spectral mean structure across ASD patients 2-12 years old.

However, patients exhibited substantial heterogeneity in terms of alpha spectral dynamics

across the scalp. Thus, in this application, it is of interest to determine if ASD patients

cluster in terms of patterns of variation rather than mean structure as most unsupervised

approaches consider. Potential subgroups with cluster-specific covariances can be investi-

gated for links to observed characteristics such as age, gender, or verbal and non-verbal

intelligence quotients (VIQ and NVIQ, respectively).

We apply the approximate tensor clustering framework of BTC to the collection of this 58

tensors. Since the BTC approach is mainly designed to address clustering of tensors which

are similar in their centers but show difference in variability, it is instructive to investigate

if the EEG dataset exhibits such a structure. While it is hard to verify such an assumption

in high dimensional objects, two separate exploratory analyses are presented to investigate

this issue on this dataset. As part of our first exploratory analysis, we compute principal

Components of the data matrices and present a plot for the first two principal components

(see Figure 3), which account for 42.39% of the total variability in the observations. No

clustering of the first two principle components is apparent here, with the first two principal

components for observations are smoothly distributed instead of being clustered in groups.

While this offers no guarantee, one might expect that a meaningful cluster difference in the

location of the observations would become apparent here.

To investigate this issue further, we vectorize each 25 × 33 tensor to a long vector of

825 co-ordinates and perform k-means clustering separately on each of these co-ordinates. If

several of the coordinates show similar clustering pattern, then one might intuitively expect

that there is a meaningful difference in the cluster means. We compute the similarity of

coordinate clustering by computing the ARI of every coordinate cluster against every other

coordinate cluster, resulting in a possible
(

825
2

)
ARI values. We perform this analysis for

k-means with k = 2, 3, 4 and 5 clusters. Table 2 presents the 5th, 25th, 50th, 75th and
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Figure 3: Observations visualizations: we present the first two principal components after
performing Principal Component Analysis.
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95th percentile values for ARI corresponding to k = 2, 3, 4, 5. The results demonstrate the

distribution of the ARI is concentrated around 0 for all choices of k, offering no evidence

that a significant number of coordinates results in similar clusters. K−means clustering with

higher values of k leads to even lower degree of concordance between clustering of samples

along different dimensions.

Table 2: Summary statistics of the coordinate clustering similarity computed by ARI.

Means 5th 25th Median 75th 95th
percentile percentile percentile percentile

k = 2 -0.06940 -0.023240 -0.003562 0.06126 0.2623
k = 3 -0.02938 -0.010196 0.015847 0.06482 0.1857
k = 4 -0.02837 -0.005866 0.019221 0.05750 0.1400
k = 5 -0.02692 -0.003716 0.018981 0.05024 0.1162

With the preliminary exploration indicating no difference in clusters in terms of mean,

we proceed to identify clusters with differences in their variability using BTC. BTC shows

rapid convergence and is run for 400 iterations, out of which first 100 is used as burn-in

and inference is based on post burn-in iterates. The posterior distribution of the number
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of clusters in Figure 4b shows a clear mode at 3, indicating three clusters among subjects.

The co-clustering matrix shown in Figure 4a indicates four clusters with a high degree of

uncertainty in the cluster membership for elements in the first two clusters. Indeed, the

result indicates that the elements in the second cluster are often included as part of the first

cluster in post burn-in iterates, which is consistent with the posterior mode of the number of

clusters being identified as three. In Figure 4c we observe that the posterior distribution of φ

in our approximate Bayesian clustering approach concentrates around 1, which is equivalent

to using a Chinese restaurant approach with a person already seated in each table.

To demonstrate the stability of clusters in the post burn-in iterations, we plot (Figure 5)

ARI of clusters in any two successive post burn-in iterations. The plot indicates that most

of the partitions in successive iterations are identical or have high overlaps. The nominal

degree of fluctuations in the ARI stems mainly from the fact that elements in the second

cluster are entirely part of the first cluster in many of the iterations.

We further investigate the three clusters identified by BTC. The three clusters include

30, 25 and 3 subjects. The groups are contrasted across four covariates measured on the

sample: gender, age, VIQ, and NVIQ. The three clusters varied significantly with respect to

NVIQ (p-value = 0.021) and borderline significance with respect to VIQ (p-value = 0.065).

These results seem driven largely by the third cluster which only contains three subjects. If

we remove this cluster, there are no more significant contrasts. Ultimately, an unsupervised

tensor clustering analysis is inherently exploratory, and the identified clusters form the basis

of identifying ASD phenotypes of interest by fitting a sophisticated cluster specific model.

Since the size of the tensors in the EEG data application is smaller than the simulation

studies, they allow fitting a full Bayesian mixture model analysis of the data using matrix

normal distributions with zero mean as mixture components. This approach also clusters

tensors based on their variability, but without any approximation as in BTC. The Bayesian

mixture modeling approach should ideally offer better clustering performance than DTC,

since DTC is essentially a clustering technique that clusters tensors based on the difference

in their centers. As the true model parameters are not available for the real data, we are

unable to present the Oracle. Figure 6 presents co-clustering matrices for the full Bayesian

implementation for a mixture of k = 3, 4, 5 matrix normal distributions. The figure demon-
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Figure 4: Cluster structure for EEG data on 58 ASD children.
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Figure 5: ARI of each partition with respect to the previous partition throughout the 300
MCMC iterations sequentially.

0 50 150 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

A
R

I

strates unsatisfactory performance of the full Bayesian clustering approach , showing only

one cluster. This is somewhat expected based on the performance of DEEM in the simula-

tion studies. DEEM is a frequentist analogue to the Bayesian mixture model and it is found

to underestimate the true number of clusters under all cases in the simulation study. Impor-

tantly, even with a full Bayesian implementation, the complexity of the real data combined

with a moderate sample size, makes the clustering results from the full Bayesian mixture

model of matrix normal distributions practically useless in our real data. Furthermore, the
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BTC approximation is computationally less expensive than the full Bayesian mixture model,

as presented in Table 3.

Figure 6: Cluster structure for EEG data on 58 ASD children using a full Bayesian mixture
of matrix normals.
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Table 3: Runtime (in seconds) for 400 iterations for BTC and Full Bayesian implementation
for K = 5, 4, 3 for ASD data.

Method Runtime (secs)

BTC 148.10
Full Bayesian k = 5 341.20
Full Bayesian k = 4 271.03
Full Bayesian k = 3 211.72
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