COMPUTER SCIENCE
& ENGINEERING

TEXAS A&M UNIVERSITY

T

JSTAP: Malicious JavaScript Detection

Dr. Martin “Doc” Carlisle

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Premise

* Find malicious JavaScript
— Bitcoin mining
— Abuse browser vulnerabilities

— Perform static analysis with abstract syntax trees
and random forests

« Static analysis means we don’t run the code at all

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Static Analyses ()

« Abstract Syntax Tree
— Derived from grammar of programming Ianguage

while return
An abstract syntax tree for the following code for the Euclidean condy
algorithm: =\ 1
compare varlable
body name: a
while b # @
if a > b vanable conslant St
name: b value: 0
a :=a-b
else CO”dM if-body else-body
h o b = = compare
return a op: >

L/ X /\ /\

ariable variable |variabl bin op variable|
‘name a name: b name: a op: - name: b
variable variable variable variable

name: a name: b name: b name: a

TEXAS A&M UNIVERSITY

COMPUTER SCIENCE
H & ENGINEERING

Static Analyses (ll)
» Control Flow Graph
— Shows program flow (calls, selection, loops)

(a)
Some CFG examples: o

(a) an if-then-else

(b) a while loop

(c) a natural loop with two exits. e.g.

{g
while with an if.._break in the middle; o .
non-structured but reducible
(d) an irreducible CFG: a loop with two (|
entry points, e.g. goto into a while or 1 1
for loop

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Static Analyses (lll)

* Program Dependence Graph

— Includes data and control dependencies
« A=B*C
« D=A*E+1 (this depends on the prior statement)

« if (A) then
— B=C*D (this depends on value of A)
» endif

& ENGINEERING

M

COMPUTER SCIENCE

TEXAS A&M UNIVERSITY

JavaScript tokens

x.1f
var y
1f (x

i
—_—

14 =

1) {d

= ¥}

Listing 1: JavaScript code example

Table 1: Lexical units extracted from the code of Listing 1

Token Value | Token Value | Token Value
Identifier X Numeric 1 Punctuator)
Punctuator . Punctuator ; Punctuator |
Keyword if Keyword if Identifier d
Punctuator = Punctuator Punctuator =
Numeric Identifier X Identifier v
Punctuator Punctuator . Punctuator
Keyword var Keyword if Punctuator |}
Identifier v Punctuator ==

Punctuator = Mumeric 1

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

JavaScript example

| x.1f = 1;
var y = 1;
1f (x.1f == 1) {d = y;}

Listing 1: JavaScript code example

COMPUTER SCIENCE
& ENGINEERING

TEXAS A&M UNIVERSITY

JavaScript example

.

™]|
True
— s
i‘ﬁ:n‘mr‘;x & 11-:> l:l;‘.> C:-Enrmixpnaium-:j | W ariabie De claration | | HinckS e ment |

e
r
:nhrr;ﬁ:-rq\ "".ucr-ﬁa I T — "Jr:?uﬁ“ ¥ariabe Declaratr E'lpm;ﬁ_m
____ S - o — - ——p——
[
|

|]-'II.I

. 1
. - S — : -
il z @m.r-:r Gmul{i) 1 (:_'nm C.._L:r._ =) A maarme NER pres 3::}

* ata

x af 1 ¥ ’::?h:ﬁr IC;I_muli:r 1]

Figure 3: AST of Listing 1 extended with control flow (red
dotted edges) and data flow (blue dashed edges)

Listing 1: JavaScript code example

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

N-grams

« Simple way to analyze token sequences

« Example with n=3

ID = ID + NUM — { (ID = ID),(= ID +),(ID + NUM) |,

SET a.b to "x" — { (SET a.b to),(a.b to "x") |.

COMPUTER SCIENCE
M | & ENGINEERING

TTTTTTTTTTTTTTTTTT

JSTAP n-grams (1)

* Depth-first pre-order traversal of AST

* For CFG, also traverse AST, but only nodes linked by
control flow edge.

— Traverse sub-AST for each node with control flow once
« Similar for PDG, considering data flow

* Independent n-grams for tokens, AST, CFG, PDG-Data
Flow and PDG-Control Flow

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

JSTAP n-grams (ll)

« Set n=4 (experimentally)

» Use chi-squared test to check for correlation, keep %%>6.63
(confidence of 99%)

— Lets us throw away a lot of n-grams

Table 2: Number of relevant features per module

Tokers A ST CFG PING-DIEG PG

i, s &0z 11,05k 1B 105 17,997 24,706
valug MFLE 65,15 3696l 15566 44375

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

JSTAP dataset

« 131,448 malicious JavaScript files

— German Federal Office for Info Security
— Hynek, DNC, GeeksOnSecurity, Virus Total

« 141,768 benign files

— Top 10,000 Tranco websites

—JS from Exchange 2016 and Team Foundation Server 2017
e So obfuscation isn’t confused with maliciousness

COMPUTER SCIENCE
H ‘ & ENGINEERING

TTTTTTTTTTTTTTTTTT

JSTAP Classifier Training

» Select 10,000 malicious and benign randomly for training
— Additional 5,000 of each for validation

* Repeat 5 times and average detection results

COMPUTER SCIENCE
H ‘ & ENGINEERING

TTTTTTTTTTTTTTTTTT

An interesting claim

 Fass et al. “For this reason, AUC and F-measure would
be heavily biased by the composition of our test sets”

« Fawsett "ROC curves have an attractive property: they
are insensitive to changes in class distribution. If the
proportion of positive to negative instances changes in a
test set, the ROC curves will not change.”

COMPUTER SCIENCE
& ENGINEERING

TEXAS A&M UNIVERSITY

JSTAP Results

=3
= 100

=1
11, 4H 11L.UH
1
.16 | VRS T T
Ahl
ih.04 ~ 1, i .
0,92 POG-OPT £ g.an POG-DFG
PG : PLa
.00 .
I'H IFH

w [TPE o
il

Thilk

Figure 4: Accuracy comparison with the ngrams approach Figure 5: Accuracy comparison with the walue approach

TEXAS A&M UNIVERSITY

COMPUTER SCIENCE
H & ENGINEERING

JSTAP vs others

1.0M1

Lh.tRH

(1,556

0.9

0,52

Accuracy (ITPR or TR

Cujo
MR tirkiens
[ast
N TOrams ast
Zozzle
 value ast

Figure 6: Accuracy comparison between related work and
our improved corresponding implementations

090
™R

Cujo: 4-grams better than 3-grams, and random forest better than SVM
Zozzle: all nodes (not just exprs and var decls), random forest vs naive Bayes
JAST: do not simplify but use y? test to reduce size of feature space

TEXAS A&M UNIVERSITY

COMPUTER SCIENCE
H & ENGINEERING

JSTAP results

* Two step process

* First phase

— Unanimous voting, classifies 93% of data with 99.73%
accuracy

« Second phase

— Unanimous voting, classifies 6.5% of data with accuracy
still over 99%

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Evasion techniques

« Add more benign features
« Copy malicious into larger benign file

COMPUTER SCIENCE
& ENGINEERING

TEXAS A&M UNIVERSITY

Y

Malware Detection by Extreme
Abstraction

Dr. Martin “Doc” Carlisle

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Premise

* Find malicious Windows EXEs by abstract execution
— Less precise than virtualization or emulation

COMPUTER SCIENCE
H & ENGINEERING

Why dynamic analysis

* Malware writers deliberately obfuscate to defeat static
tools

— Example: GozNym runs trivial infinite loop In thread, then
suspends thread and overwrites code with jump to previously
dead code

0x190178c: eb fe jmp @x100178c
@x100178e: fe —--

@x100178f: ff ff --

@x1901791: 6a bc push @xbc

(a) A trivial infinite loop

@x100178c: b8 00 20 7e @4 mov eax, Ox47c0000
0x1001791: ff e0 jmp eax

(b) Loop after being overwritten

Figure 1: Obfuscation by overwriting seven bytes

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Dynamic Analysis pitfalls

« Easy to detect you are in a debugger, VM, or running Anti-
VIrus

— Query registry
— IsDebuggerPresent
— VM specific instructions

* Do long delay in hopes simulator will give up and go away

0x4017c@: mov esi, dword ptr [ebp-0x26]
@x4017c3: mov esi, dword ptr [esi]
@x4017c5: xor esi, edi

0x4017c7: 1inc edi

0x4017c8: cmp esi, @x909090990

@x4017ce: Jjne 0x4@17co

Figure 2: A long delay loop

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Extremely Abstract OS

» Over-approximation has more behaviors than system S,
under-approximation has fewer

— If over-approximation does no evil, great!
— If under-approximation does, then boo!

COMPUTER SCIENCE
& ENGINEERING

TEXAS A&M UNIVERSITY

Extremely Abstract OS

Sample or bundle

Dynamic Analysis

Emulator || Extremely abstract OS Multiple paths
Lightweight

Windows | Exception | Multi- Anti-anti- symbols /
API handling | threading | research time models

Analysis result

Figure 4: An extremely abstract operating system

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

TAMALES features

« X86 emulator

* Abstract Windows

— Most routines return random result and ignore params
e Over 100,000 API calls from 150 DLLs
« Strcpy, memmove work as expected
« Some file read/write and registry read/write
« Network Is abstract

— Rdtsc — time-stamp counter handled specially
— Cpuid — handled specially

* Runs on Linux (just in case....)

COMPUTER SCIENCE
AlM | & ENGINEERING
® TEXAS A&M UNIVERSITY

Another unigue case
« SetErrorMode

X =Y
can be implemented (directly by the malware writer or more prob-
ably by an obfuscating compiler) as follows:

SetErrorMode(y);
X = SetErrorMode(arbitrary_value);

* Since malware writers do this, must implement for real

AL}

COMPUTER SCIENCE
& ENGINEERING

TTTTTTTTTTTTTTTTTT

More malware functions

* WriteProcessMemory
* CreateRemoteThread
* NtQueueApcThread

* NtMapViewOfSection

(for code Injection)

COMPUTER SCIENCE
H ‘ & ENGINEERING

TTTTTTTTTTTTTTTTTT

And more special cases

 Return value of O IS success

» Esoteric API called with bad params then checking error
code (they have to chase down each individually, so a
path to thwart)

COMPUTER SCIENCE
H ‘ & ENGINEERING

TTTTTTTTTTTTTTTTTT

Multiple Paths

* Typically, use symbolic execution
— SAT solver finds values needed to explore paths
— Expensive, path explosion

 TAMALES just takes both paths
— Explodes really bad

TEXAS A&M UNIVERSITY

COMPUTER SCIENCE
H & ENGINEERING

Preventing Explosions

Samples \7
3
\/

Abstract Analysis (weak) # Classifier 1

undecided

Abstract Analysis (stronger) ® Classifier 2

undecided

Malicious

Beni gn stract Analysis (strongest) Classifier N

Figure 5: Architecture of TAMALES

Add more paths at each layer. Two thresholds, one to say benign, one malicious

M | & ENGINEERING

COMPUTER SCIENCE

TTTTTTTTTTTTTTTTTT

Feature Extraction for ML

Entropy of code/data sections

Discrepancy between checksum header and PE
Imported functions

Count of API functions and x86 instructions

Count of exceptions and types, network connections,
strings

Ratio of API functions imported to called and static vs
dynamic strings

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

More features

e Suspicious
— Checking for debugger
— Obfuscation
— Jumping into middle of API
— Overwriting header or part of API function
— Directly accessing OS structures
— Creating an intentionally infinite loop

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Yet more features

* Almost certainly bad
— Malicious URLSs
— Encrypting/deleting files not created by sample
— Overwriting Windows DLLs

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

More n-grams!

« 1-, 2-, 3-, and 4-grams of API calls
» 1-grams of x86 instructions

« 1-, 3-, and 6-grams of informative, suspicious,
malicious features

COMPUTER SCIENCE
H ‘ & ENGINEERING

TTTTTTTTTTTTTTTTTT

And numeric stuff

 # of Internet access attempts

 Number of unique URLS

» Connection attempts with non-standard ports
» Reputation score of target host

AL}

COMPUTER SCIENCE
& ENGINEERING

TTTTTTTTTTTTTTTTTT

Data Cleaning

 Remove features that are always the same
» Scale all to [0,1]
» Feature select using information gain

* Yields 3500 features

COMPUTER SCIENCE
AlM | & ENGINEERING
® TEXAS A&M UNIVERSITY

Random Forest Classifier

» 1,600 decision trees
— Max depth 150
— Up to 200 features per split

Table 1: PE files distribution

Benign Malware Total (%)

Training set 113,162 116,807 229,969 (70%)
Test set 49 254 49310 98,564 (30%)

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Classification

» Two layer funnel
— Layer 1 — single path, 1 minute timeout
— Layer 2 — 4 paths, timeout 1 minute

e Set FPR t0 0.1%

TEXAS A&M UNIVERSITY

COMPUTER SCIENCE
H & ENGINEERING

ROC curve

0)
100.0% . . FPR 0.1%
et TPR 99.11%
97.5% |
o 95:0%
I
T 92.5%
Let)
2
2 90,0%
&
o B87.5% . :
2 Table 3: Classification funnel sample count
© 8s.0%
82.5% — 1Path Layer# Execution paths Samples (%)
E === 4 Path
80-0% 0% 0.1% 0.2% 0.4% 0.6% 0.8% 1.0% 1 1 94,845 (96.2%)
False Positive Rate 2 4 3,719 (3.8%)
Total 98,564 (100%)

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

How does packing go?

« Packed a bunch of benign stuff and saw what TAMALES said

Table 4: PE packing experiment results

Dataset Packer Samples Predicted malware (%)
DS1 Unpacked 13,000 0 (0%)
DS2 UPX 12,154 120 (0.98%)
DS3 VMProtect 11,783 518 (4.39%)
DS54 Themida 9,592 582 (6.06%)

COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

TAMALES on Malware families

* Used system to classify into families with Decision Trees

Table 5: Malware family classification results of most com-
mon families

Label # Malware family Samples in test set Accuracy
1 allaple 9195 99.98%
2 dinwod 4575 99.83%
3 wvirut 4213 96.14%
4 browsefox 2380 99.58%
5 parite 2012 99.02%
6 ramnit 1823 93.11%
7 multiplug 1437 99.93%
8 upatre 1187 98.02%
9 mira 1138 99.91%

10 loadmoney 864 98.86%
11 unknown 742 72.11%
12 linkular 714 100.00%
13 linkury 659 99.70%
14 elex 646 98.48%
15 onlinegames 511 85.17%

16 wajam 502 99.80%

	06_01_JSTAP_Javascript
	06_02_Malware_Detect_Extreme_Abstraction

