
JSTAP: Malicious JavaScript Detection

Dr. Martin “Doc” Carlisle



Premise

• Find malicious JavaScript

– Bitcoin mining

– Abuse browser vulnerabilities

– Perform static analysis with abstract syntax trees 

and random forests

• Static analysis means we don’t run the code at all



Static Analyses (I)

• Abstract Syntax Tree

– Derived from grammar of programming language



Static Analyses (II)

• Control Flow Graph

– Shows program flow (calls, selection, loops)



Static Analyses (III)

• Program Dependence Graph

– Includes data and control dependencies

• A=B*C

• D=A*E+1 (this depends on the prior statement)

• if (A) then

– B=C*D (this depends on value of A)

• endif



JavaScript tokens



JavaScript example



JavaScript example



N-grams

• Simple way to analyze token sequences

• Example with n=3



JSTAP n-grams (I)

• Depth-first pre-order traversal of AST

• For CFG, also traverse AST, but only nodes linked by 

control flow edge.

– Traverse sub-AST for each node with control flow once

• Similar for PDG, considering data flow

• Independent n-grams for tokens, AST, CFG, PDG-Data 

Flow and PDG-Control Flow



JSTAP n-grams (II)

• Set n=4 (experimentally)

• Use chi-squared test to check for correlation, keep 26.63 

(confidence of 99%)

– Lets us throw away a lot of n-grams



JSTAP dataset

• 131,448 malicious JavaScript files

– German Federal Office for Info Security

– Hynek, DNC, GeeksOnSecurity, Virus Total

• 141,768 benign files

– Top 10,000 Tranco websites

– JS from Exchange 2016 and Team Foundation Server 2017

• So obfuscation isn’t confused with maliciousness



JSTAP Classifier Training

• Select 10,000 malicious and benign randomly for training

– Additional 5,000 of each for validation

• Repeat 5 times and average detection results



An interesting claim

• Fass et al. “For this reason, AUC and F-measure would 

be heavily biased by the composition of our test sets”

• Fawsett “ROC curves have an attractive property: they 

are insensitive to changes in class distribution. If the 

proportion of positive to negative instances changes in a 

test set, the ROC curves will not change.”



JSTAP Results



JSTAP vs others

Cujo: 4-grams better than 3-grams, and random forest better than SVM

Zozzle: all nodes (not just exprs and var decls), random forest vs naïve Bayes

JAST: do not simplify but use 2 test to reduce size of feature space



JSTAP results

• Two step process

• First phase

– Unanimous voting, classifies 93% of data with 99.73% 

accuracy

• Second phase

– Unanimous voting, classifies 6.5% of data with accuracy 

still over 99%



Evasion techniques

• Add more benign features

• Copy malicious into larger benign file



Malware Detection by Extreme 

Abstraction

Dr. Martin “Doc” Carlisle



Premise

• Find malicious Windows EXEs by abstract execution

– Less precise than virtualization or emulation



Why dynamic analysis

• Malware writers deliberately obfuscate to defeat static 

tools

– Example: GozNym runs trivial infinite loop in thread, then 

suspends thread and overwrites code with jump to previously 

dead code



Dynamic Analysis pitfalls

• Easy to detect you are in a debugger, VM, or running Anti-

virus

– Query registry

– IsDebuggerPresent

– VM specific instructions

• Do long delay in hopes simulator will give up and go away



Extremely Abstract OS

• Over-approximation has more behaviors than system S, 

under-approximation has fewer

– If over-approximation does no evil, great!

– If under-approximation does, then boo!



Extremely Abstract OS



TAMALES features

• X86 emulator

• Abstract Windows

– Most routines return random result and ignore params
• Over 100,000 API calls from 150 DLLs

• Strcpy, memmove work as expected

• Some file read/write and registry read/write

• Network is abstract

– Rdtsc – time-stamp counter handled specially

– Cpuid – handled specially

• Runs on Linux (just in case….)



Another unique case

• SetErrorMode

• Since malware writers do this, must implement for real



More malware functions

• WriteProcessMemory

• CreateRemoteThread

• NtQueueApcThread

• NtMapViewOfSection

(for code injection)



And more special cases

• Return value of 0 is success

• Esoteric API called with bad params then checking error 

code (they have to chase down each individually, so a 

path to thwart)



Multiple Paths

• Typically, use symbolic execution

– SAT solver finds values needed to explore paths

– Expensive, path explosion

• TAMALES just takes both paths

– Explodes really bad



Preventing Explosions

Add more paths at each layer. Two thresholds, one to say benign, one malicious



Feature Extraction for ML

• Entropy of code/data sections

• Discrepancy between checksum header and PE

• Imported functions

• Count of API functions and x86 instructions

• Count of exceptions and types, network connections, 

strings

• Ratio of API functions imported to called and static vs 

dynamic strings



More features

• Suspicious

– Checking for debugger

– Obfuscation

– Jumping into middle of API

– Overwriting header or part of API function

– Directly accessing OS structures

– Creating an intentionally infinite loop



Yet more features

• Almost certainly bad

– Malicious URLs

– Encrypting/deleting files not created by sample

– Overwriting Windows DLLs



More n-grams!

• 1-, 2-, 3-, and 4-grams of API calls

• 1-grams of x86 instructions

• 1-, 3-, and 6-grams of informative, suspicious, 

malicious features



And numeric stuff

• # of internet access attempts

• Number of unique URLs

• Connection attempts with non-standard ports

• Reputation score of target host



Data Cleaning

• Remove features that are always the same

• Scale all to [0,1]

• Feature select using information gain

• Yields 3500 features



Random Forest Classifier

• 1,600 decision trees

– Max depth 150

– Up to 200 features per split



Classification

• Two layer funnel

– Layer 1 – single path, 1 minute timeout

– Layer 2 – 4 paths, timeout 1 minute

• Set FPR to 0.1%



ROC curve

FPR 0.1%

TPR 99.11%



How does packing go?

• Packed a bunch of benign stuff and saw what TAMALES said



TAMALES on Malware families

• Used system to classify into families with Decision Trees


	06_01_JSTAP_Javascript
	06_02_Malware_Detect_Extreme_Abstraction

