
Detecting Organized e-Commerce Fraud

Dr. Martin “Doc” Carlisle

eCommerce Fraud

• Obtain physical goods through deception

– Amazon, e-Bay, etc.

• 3-5% of online orders, $50B revenue

• Want to cancel bad orders, but not good ones!

– Authors say this is $100B in losses

Organized eCommerce Fraud

• Limited time, several orders to limited geographical area

• Zalando (largest online apparel retailer in Europe) lost €18.5M
in one quarter in 2015 to this

Method

• Unsupervised categorical clustering

– “recursive agglomerative clustering”

• Specifically designed for this problem

• Creates small clusters

• Samples to process large # of orders in less time

– Two outputs

• A1 – orders to screen

• A2 – orders to automatically cancel

Fraud Detection Pipeline

Claimed Benefits

• Expect frauds to be clustered more than legitimate orders

• Several orders are easier to analyze than isolated ones

Order attributes

• Customer Acust (9 attributes): related to the electronic identity

of the customer, e.g., email address, IP address, etc.

• Delivery Adel (3 attributes): related to the means used for
order delivery, e.g, pickup point, delivery type, etc.

• Shipping Aship (7 attributes): related to identity and location

(address) of the person receiving the order.

• Payment Apay (11 attributes): related to payment method,

e.g., bank transfer, credit card suffix, etc.

• Billing Abill (7 attributes): related to identity and location

(address) of the person paying the order.

Difficulties

• Imbalanced attribute cardinality

– Prevents numerical encoding of attributes

• Imbalanced classes

– Fraud to legit is about 1:50

• No ground truth for campaigns

• Scale of data

– 100,000s of orders per day– hard for clustering algs

Requirements

• Generate small clusters

– Fraud campaign is 10s-100s of orders

• Minimize cluster impurity

– Don’t combine legit and fraud

• Maximize clustered fraud

– Singleton frauds aren’t caught by this method

• Min execution time

– Few hours tops

Agglomerative Clustering

• Bottom-up approach

• Place each order in singleton cluster

• Combine clusters with smallest distance until all are linked

– Distance between clusters is via “linkage”

• Single linkage is min distance between any two points in each cluster

• O(n2) – doesn’t scale well

Adding sampling

• Random sample of reference elements clustered

• Remaining ones are assigned to initially formed clusters

– Distance computations not n x n, but |samples| x n

– E.g. number of samples is O(log(n))

Recursive Algorithm

• Split large clusters into smaller ones with SampleClust

• For “small enough” do AggloClust

Split large cluster into

possibly many, then

do Recursion

It didn’t split, maybe

try harder

It didn’t split, but not

too big to brute force

Agglomerative for smaller

ones

Running time

• All AgloClusts are constant time (fixed size max)

• SampleClust is O(nlog(n)) and this might happen n times recursively!

– O((nlog(n))^n) – yuck!

– But this doesn’t really happen

Computation Time

Clustering results (15000)

How far apart are they?

• Hamming weight computes weighted sum of how many

attributes differ

• They weight by number of possible values of each

attribute with sigmoid and max difference of 3x

Results (I)

Results (II)

What went wrong

We investigated further the characteristics of legitimate orders

that our label propagation technique incorrectly identified as fraud.

We computed the ratio of these orders that belong to four legitimate

categories namely, (1) fully and (2) partially returned to the retailer

(where a customer does not pay for all items and returns some of

them), (3) partly unpaid (where items in the order remain unpaid

while delivered) and (4) canceled by the customer. We observed

that 94.7% of the false positives that degrade the Precision of label

propagation belong to one of these four categories. The majority

of the false positives (63.9%) are returned orders while 24.3% are

partly unpaid orders.

Survey of Data Mining/ML Cyber

Intrusion Detection

Dr. Martin “Doc” Carlisle

ML/DM approaches (review)

• Unsupervised

– Find patterns in unlabeled data

• Semi-supervised

– Portion of data labeled

• Supervised

– All data labeled

Data Mining/ML Process

Metrics (review)

Metrics (review)

• Accuracy: (TP+TN)/(TP+TN+FP+FN)

– What overall percent did you get right?

– When classes unbalanced you can get high accuracy by always choosing 1 class

• Precision or Positive Predictive Value (PPV) : TP/(TP+FP)

– What percent of my positives are real?

• Recall/Sensitivity/True Positive Rate/Detection Rate: TP/(TP+FN)

– How percent do I catch?

Metrics (review)

• Negative Predictive Value(NPV): TN/(TN+FN)
– What percent of negative classifications are correct?

• Specificity or TN Rate: TN/(TN+FP)
– What percent of negatives are marked correctly?

• FP Rate: FP/(TN+FP)
– What percent are false positives?

Metric Tradeoff (Review)

• ROC captures tradeoff between false positives and recall

– FP on x-axis, recall/sensitivity on y-axis

Multi-class metrics

• Overall accuracy

• Class detection rate

• Class FP rate

Intrusion Detection Data

• Packet Level Data

– TCPDUMP

– Wireshark

– …

Intrusion Detection Data

• NetFlow Data

– Orig Cisco

– …

Public Data Sets

• DARPA 1998, 1999
– Note this paper in 2016Q2!

– 1998: 9 weeks of data with attack simulations
• 7 weeks training, 2 weeks testing

• DoS, User to Root (U2R), Remote to Local (R2L), Probe/Scan

– 1999: 5 weeks
• 3 weeks training, 2 testing

• More attacks (exfiltration)

• KDD Cup Challenge 1999
– Based on DARPA 1998

• Similar to netflow data

Public Data Sets

• DARPA 2000

– DoS https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-

detection-scenario-specific-datasets

https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets

Methods (I)

• Neural Networks

– Cannady:

• 10000 events, 3000 simulated by Internet Scanner and Satan

• 93% accuracy

– Lippmann and Cunningham

• Analyzed telnet sessions

• 80% detection with 1 false alarm per day

Methods (II)

• Neural Networks (cont’d)

– Bivens et al

• DARPA 1999 added time windows

• Predicts 100% of normal behavior

• Some attacks not predicted

• FAR (False Alarm Rate) 76%

Methods (III)

• (Fuzzy) Association Rules

– IF (Bread AND Butter) → Milk (not fuzzy)

– IF (X is A) → (Y is B) (A,B fuzzy sets)

Methods (IV)

• Association Rule Mining

– Brahmi

• DARPA 1998

• E.g. (IF (service AND src_port AND dst_port AND num_conn) THEN

attack_type) (4 dimensional)

• 6 dimensional rules rates 99, 95, 75, 87% for DoS, Probe, U2R, R2L

• Explainable- creates attack signatures

Methods (V)

• Association Rule Mining (cont’d)

– Tajbakhsh et al

• KDD 1999 data

• Clustering approach

• Association hyper-edge

– {a,b} if average confidence of (a → b and b → a) is greater than 98% (with 50%

confidence)

• 100% accurate with 13% False Positive

– Authors seem to get confused between recall and accuracy at this point

Methods (VI)

• Bayesian Network

– Nodes are values of random variables

– Edges are relationships between

Bayesian Network for IDS

Bayesian Net Methods (I)

• Livadas et al

– IRC data 4 months at Dartmouth

– Simulated data

– 93% precision, false positive 1.39%

– Naïve Bayes and C4.5 had higher precision (97%) and higher

FP (1.47 and 8.05%)

Bayesian Net Methods (II)

• Kruegel et al

– OS Kernel calls

– 75% accuracy 0.2% FAR, 100% accuracy 0.1% FAR

• Again authors seem to confuse accuracy with precision

• Benferhat et al.

– DoS, no numeric results

Clustering Methods

• Simple Logfile Clustering Tool (SLCT) by Hendry/Yang

– Parameter M – percent of fixed features the cluster contains

• 0 means everyone in on cluster

• 100% means everyone in own cluster

• M=97% yielded detection of 98% of attacks with 15% FAR

• Can detect new attacks

SLCT (cont’d)

• Once you have clusters, are they attack or normal?

– Evaluated based on % of times “words” appeared in normal vs.

attack

SLCT Results

Authors posit some poor

results from too few instances

of attack in data

Methods (VII)

• Decision Trees (e.g. C4.5, ID3)

– Kruegel and Toth used these to show data from 1999 DARPA

could be processed faster than Snort rules

• Average 40.3% faster with 150 snort 2.0 rules– even more with full set

of 1581 rules

– EXPOSURE

• DNS classification

– Detected 98.5% of bad domains with FAR of 0.9%

– Also detected 3117 new malicious domains!

Methods (VIII)

• Ensemble Learning

– Use multiple weak learners to build a strong one

• E.g. Random forest – create decision trees from randomly

picked attributes

Ensemble Learning Results (I)

• Zhang et al

– Outlier detection + classifier (Random Forest)

– KDD 1999

– 1.92% error with 0.01% FAR on original

• Gharibian and Ghorbani

– Random Forest

• Accuracies 97%, 76%, 5%, 35% for DoS, Scan, R2L and U2R

Ensemble Learning Results (II)

• Mukkamala et al

– 3 neural nets with majority voting

– DARPA 1998 data 80% attacks

– 99.71%, 99.85%, 99.97%, 76% and 100% for Normal,

Scan, DoS, U2R, R2L

• Bilge et al DISCLOSURE

– Random Forests on netflow

• True positive 65%, False positive 1%

Methods (IX)

• Genetic Algorithms/Programming

– Evolutionary process

– GA on bit strings, crossover and mutation simple

– GP trees/programming blocks- more complex

Genetic Algorithm Results (I)

• Li

– DARPA IDS

– Chromosome contained source/dest IP addr & port, duration,

protocol, # of bytes each direction, state of connection

– Fitness function weights some parts more than others

– No accuracy provided

Genetic Algorithm Results (II)

• Khan

– KDD 1999 data subset

– Used principal component analysis to identify 8 attributes

to focus on

– Population of 10 individuals, 1 chosen to classify

– Accuracy 93.45%, FAR 10.8% normal

– Accuracy 94.19%, FAR 2.75% attack

• Accuracy => Precision?

Genetic Programming Results (III)

• Abraham et al

• Linear Genetic Programming, Multi-

Expression Programming and Gene

Expression Programming

• DARPA 1998 IDS

• FAR from 0 to 5.7%

Genetic Programming Results (IV)

• Hansen et al

• Homologous

crossover to prevent

program growth

• KDD 1999 subset

– Better on subset, but

maybe not on whole?

Genetic Programming Results (V)

• Subset DARPA IDS (1 day)

– Training: 1000 connection records, 8 attack types

– Test: 1 day, 10 attack types

• 10000 runs of GP – average reported

– FAR 0.41%, Detected 57%

• Best detects 100% with FAR 1.4-1.8%

Methods (X)

• Hidden Markov Models

– Set of states with transition probabilities

Hidden Markov Models

• Often number of states is guessed and states have no

discernable meaning

• Wikipedia (Baum Welch) chicken egg example

– Guess two states

– Don’t know initial state, probabilities of switching states, or

probability of laying eggs in either state

HMM cont’d

• Guess everything!

• Now look at observations

– N, N, N, N, N, E, E, N, N, N

– Resulting transitions

• NN, NN, NN, NN, NE, EE, EN, NN, NN

HMM cont’d

• Do math to update matrices based on observations,

repeat until converges

HMM Results (I)

• Ariu et al

– DARPA 1999 dataset

– Multiple HMM classifiers

– Area under ROC curve 0.915 to 0.976

– FP rate 0.1%, detects 85%

– FP rate 0.01%, detects > 70%

HMM Results (II)

• Joshi and Phoha

– 5 states, 6 observation symbols

– All states interconnected

– Used Baum-Welch method to estimate parameters

– KDD 1999, 5 of 41 features

– Recall 79%

Methods

• Inductive Learning

– Repeated Incremental Pruning to Produce Error Reduction

(RIPPER)

– Separate and Conquer approach

• Create rule that covers a maximal set of examples (e.g. # password

guesses > 5)

• Remove all those correctly labeled from the dataset

• Repeat until training set empty, or stopping criteria met

– Competes with C4.5 Decision Trees

Incremental Reduced Error Pruning

Initialize E to the instance set

Until E is empty do

Split E into Grow and Prune in the ratio 2:1

For each class C for which Grow contains an instance

Use basic covering algorithm to create best perfect rule for C

Calculate w(R): worth of rule on Prune

and w(R-): worth of rule with final condition omitted

If w(R-) < w(R), prune rule and repeat previous step

From the rules for the different classes, select the one thatʼs

worth most (i.e. with largest w(R))

Print the rule

Remove the instances covered by rule from E

Continue

RIPPER mods

Order classes according to increasing prevalence

(C1,....,Ck)

find rule set to separate C1 from other classes

IREP(Pos=C1,Neg=C2,...,Ck)

remove all instances learned by rule set

find rule set to separate C2 from C3,...,Ck

...

Ck remains as default class

RIPPER results

• Lee et al

– DARPA 1998 telnet connections

– 38 attacks, 14 in test only

– New attack detected 5.9% to 96.7% of the time

– Old attacks detected 60% to 97%

RIPPER results

• Fan et al

– DARPA 1998 data set

– Artificial anomaly generator

– 94% detection with 2% FAR (too big for packets)

Methods (XI)

• Naïve Bayes

– Conditional probabilities

– Optimal if features conditionally independent (not likely)

– Panda and Patra

• KDD 1999, FAR 3% detection rate 90-99%

– Amor et al

• KDD 1999, detection rates 97%, 96%, 9%, 12%, 88%. FAR ? (< 3 %)

Methods (XII)

• Sequential Pattern Mining

– Find statistically relevant patterns in sequenced data

(e.g. with timestamps)

– Li et al

• Discover multi-stage attack patterns

• DARPA 1999 and DARPA 2000 datasets

• Detected 93% of attacks in 20 seconds

• 84% in another scenario

Methods (XIII)

• Support Vector Machine (SVM)

– Split points using hyperplanes with max distance between

hyperplane and data points

– Best when # of features is high

– When non-separable, add “cost” for overlapping data points

– Can use kernel to linearize data

SVM Results (I)

• Li et al

– RBF kernel (radial basis function)

– KDD 1999 data set

– 19 of 41 features used

– 98% accuracy overall (53% for U2R)

– Subset of training set (ant colony optimization)

SVM Results (II)

• Amiri et al

– Random sample of 7000 instances (from 5M) for each of 5

classes

– Mutual information to reduce features

• If there is lots of mutual info between X and Y, maybe we don’t need Y

– 5 classifiers per category

– 99% on 4 of 5 classes, 93% on U2R

SVM Results (III)

• Hu et al

– Basic Security Module portions of DARPA 1998

– 75% detection no false alarms, 100% with 3% FAR

Enhanced SVM

• Shon and Moon

1. create profile of normal with Self-Organized Feature Map

(SOFM)

2. Packet filter with passive TCP filtering (PTF) to reject

incomplete or non-compliant traffic (looking for normal)

3. Use genetic alg to extract optimized info from raw

packets

4. Use temporal flow for data preprocessing

SOFM

Enhanced SVM Results

Training-Resistant Anomaly Detection

System

Dr. Martin “Doc” Carlisle

Premise

• Probably need unsupervised learning to solve IDS

• Training attack

– Malicious actors may inject traffic to “teach” the IDS to accept

dangerous as normal

• Detect by considering input at multiple time resolutions

Related Work

• Clustering algorithms do unsupervised learning to detect

anomalous behavior

• Mimicry attack

– Attempt to evade IDS by stealth

• Yen and Reiter – monitor similar behavior of hosts across

network

– Only for malware spread, not targeted attack

Mimicry attack in Library Calls

• Original attack vs. mimic one

Attack Scenarios

• DoS

• Brute Forcing

• Network Scans

• Routing attacks

• Worms

Detecting these

• Measure between pairs of hosts

– Number of bytes/time period

– Average packet size

– # of concurrent connections

– Pause since last packet

Attack Scenarios

• DoS

Training Attacks

Stealthy Training Attacks

IDS Techniques (I)

• Threshold and metric
– Fixed: requires human effort, unable to adapt

– Average and variance: have difficulty with
inhomogeneous data

• Subject to training attack

IDS Techniques (II)

• Stream clustering

Proposed IDS

• Alert raised when new cluster created

Detecting Training Attack (I)

• Deploy clones of IDS with different parameters

• Slow evolution appears as deletion/creation of cluster

Detecting Training Attack (II)

Detecting Stealthy Training Attack

• Classic training attack moves clusters

• Stealthy one enlarges them

• To detect, add another instance of IDS on size of clusters

of actual IDS

Evaluation

• Interestingly, authors used Forensic exercises as datasets

– Digital Corpora M57 patents

• Exfiltration of data from corporate network

– Digital Corpora Nitroba University

• Email harassment scenario

• And 4SICS geek lounge SCADA network capture

– But they added artificial attack traffic to it

Network attack detection

Training attack detection

Stealthy Attack Evaluation

	05_01_Detecting_Organized_Ecommerce_Fraud
	05_02_Survey_Data_Mining_v2
	05_04_Training_Resistant_Anomaly_Detection

