
Machine Learning

Dr. Martin “Doc” Carlisle



Machine Learning

Computer Algorithms that improve with “experience”



Do we have labeled data? (review)

• Supervised

– Can train on data with labeled instances of normal vs anomaly 

classes

– Not very common

• Semisupervised

– Labeled instances for only normal data

• Unsupervised

– No labeled data



Two key problems

• Classification



Two key problems

• Regression



Classification vs Regression

• Classification

– Map input to discrete value

– Data is unordered

– Evaluate by # of correct classifications

• Regression

– Map input to continuous value

– Data is ordered

– Evaluate by root mean squared error



Regression Example



Regression Example



Jupyter Notebook

• See RegressionExample.ipynb for more examples, including with 

Gaussian functions



Classification

• Support Vector Classifier

– Finds hyperplane(s) to split data 



SVC margin

• Find hyperplane with largest margin

– Sometimes you allow some samples to be miscategorized



SVC Kernels

• Sometimes data isn’t linearly separable

– Use kernel function to map to linearly separable feature space



SVC Kernels

• Sometimes data isn’t linearly separable

– Use kernel function to map to linearly separable feature space



SVC Notebook

• Jupyter Notebook SVC_Example.ipynb has 

examples of SVC



Principal Component Analysis

• Fast and flexible way to reduce dimensionality of data 

(e.g. our faces)

– Computes eigenvectors of the data’s covariance matrix



Principal Component Analysis



PCA Notebook

• Jupyter Notebook PCA_Example.ipynb has example of 

PCA, and the same data with an ISOMAP (http://www-

clmc.usc.edu/publications/T/tenenbaum-Science2000.pdf)



Bayesian Classifier

• Bayes Theorem 𝑃 𝑋 𝑌 =
𝑃 𝑌 𝑋 𝑃(𝑋)

𝑃(𝑌)

• If we have a bunch of independent Ys, then:

– 𝑃 𝐶𝑙𝑎𝑠𝑠 𝑌1, 𝑌2,…𝑌𝑛 ∝ 𝑃(𝐶𝑙𝑎𝑠𝑠)ς𝑖=1
𝑛 𝑃(𝑌𝑖|𝐶𝑙𝑎𝑠𝑠)

• So we guess a class by just picking the biggest 

probability!



Naïve Bayesian Classifier

𝑃 𝐶𝑙𝑎𝑠𝑠 𝑌1, 𝑌2,…𝑌𝑛 ∝ 𝑃(𝐶𝑙𝑎𝑠𝑠)ෑ

𝑖=1

𝑛

𝑃(𝑌𝑖|𝐶𝑙𝑎𝑠𝑠)

• Need a probability distribution to compute 

𝑃(𝑌𝑖|𝐶𝑙𝑎𝑠𝑠)

– Gaussian, compute mean and variance for each 

class



Multinomial Bayesian Classifier

• Use multinomial distribution instead, useful for 

data with “counts” (e.g. word counts in text)



Naïve Bayesian Summary

• Good for well-separated categories

• Good for high dimensional data

• Good when naïve assumptions match 

(independence, distributions)

• Create fast, explainable models



Multinomial Bayesian Notebook

• Jupyter notebook Multinomial_Naive_Bayes.ipynb with 

Multinomial Naïve Bayes



Scikit TF-IDF



Decision Trees

• Repeatedly split space with hyperplane



Decision Tree

• Not usually so easily explainable, may get strange 
behavior of automatically generated



Random Forests
Create many trees to reduce such oddities - every decision tree is trained by first 

applying principal component analysis (PCA) on a random subset of the input features



Random Forests

• Revisit digits in Jupyter Notebook Random_Forests.ipynb



K-Means Clustering

• Partition n observations into k clusters each belonging to 

nearest mean

1. Select k “means”

2. Partition

3. Update means

4. Repeat 1-3 until converge



K-Means Clustering

• Not necessarily optimal (depends on selection of initial “means”)

• Must know # of clusters in advance

• Might also require mapping to new space



K-Means Clustering

• Revisit digits in Jupyter Notebook 

K_Means_Clustering.ipynb

• Uses t-distributed Stochastic Neighbor Embedding 

(TSNE) to visualize high-dimensional data

– converts affinities of data points to probabilities (Gaussian joint 

probabilities)



Gaussian Mixture Models

• Extends k-means

– K-means has a lack of flexibility in cluster shape



Gaussian Mixture Models

• Extends k-means

– K-means has a lack of flexibility in cluster shape

– K-means lacks probabilistic cluster assignment



Gaussian Mixture Models

1. Choose starting “means”

2. Repeat until convergence

– For each point, find probability in each cluster

– For each cluster, update location and shape based on all data 

points, using weights



Gaussian Mixture Modeling

• Revisit digits in Jupyter Notebook 

Gaussian_Mixture_Model.ipynb, now using Kernel 

Density Estimation

– Uses mixture of one Gaussian per point



Neural Networks

Dr. Martin “Doc” Carlisle



Neural Networks

Neural Networks are a machine learning 

technique fashioned after a mathematical model 

of a brain neuron



A “neuron”

Red multiplied by weights

Orange is an “activation function”



Activation function

• One example is sigmoid

– f(x) = 
1

1+𝑒−𝑥



Creating a “network”

• A multi-layer architecture of neurons

• Possibly many hidden layers



At a neuron

• Weights for each input

• H1=sigmoid(w11*x1+w12*x2)

• H2=sigmoid(w21*x1+w22*x2)

• O1=sigmoid(wo1*h1+wo2*h2)



Output layer

• We can have a neuron for each category, and we want 1 

for yes, 0 for no

• Now we can go backwards with partial derivatives to 

update weights using the chain rule



Updating weights

• We then update weights with a “learning rate”



Good and bad news

• Good news! We don’t need to know anything about partial differentials –

pytorch will do this all for us

• Bad news! Picking a correct architecture, learning rate can be hard (and is 

a huge search space)



Speeding things up with a GPU

• GPUs offer data-parallelism

– This can make NN operations *much* faster

• BUT

– You have to explicitly put things on the GPU

– Copying to/from the GPU is expensive



PyTorch

Useful for doing neural networks on a GPU

Tensor = NumPy ndarray, but can be on a GPU

Device = place a tensor lives (CPU, or CUDA [GPU])

WARNING! 

• Copying an array to/from the GPU is expensive!

• You have to think about where you want 
computation to happen!



Jupyter Notebook

Go to Pytorch_Intro.ipynb at Google colab

https://colab.research.google.com/



Sample NN

• See Colab notebook for First_NN



Convolutional Neural Nets

• Aim for shift, scale and distortion invariance

– Local receptive fields

– Shared weights

– Sub-sampling



Local receptive fields
• Extract elementary visual features

– Oriented edges

– End points

– Corners

• Also, avoid explosion of weights! (224x224 image with 3 colors has 

150,528 features)



Shared weights

• Detect same features at all possible locations in the input



Subsampling

• Reduces sensitivity to distortion

• Finds features relatively placed



Jupyter Notebook for CNN

• https://github.com/erykml/medium_articles/blob/master/Co

mputer%20Vision/lenet5_pytorch.ipynb

• Ienet5_pytorch.ipynb (Google Colab and Jupyter

Notebook)

• Note speed difference

• Note use of torch.no_grad()

• conda install torchvision -c pytorch

https://github.com/erykml/medium_articles/blob/master/Computer%20Vision/lenet5_pytorch.ipynb


Train/Validate/Test

• Ideally, we split data into 3 parts

• Train

– Use this to train the model and update weights

• Validate

– Use this to prevent over-training

– Don’t train, but evaluate hyper-parameters (learning rate, # of 
epochs, etc.)

• Test

– Use only on final model run



Recurrent Neural Network

• Connections have temporal sequence

• Useful for applications where context is useful for 

prediction

– Handwriting recognition (unlike zipcodes, we have a good 

sense what comes “afte”)

– Speech recognition



Long short-term memory (LSTM)

• “Forgets” part of previously stored memory and adds new 

data

• Cell gets cell and hidden state from previous timestep, 

input from current timestep

• Output is part of hidden state



LSTM



Example

• Password generator

– conditional-char-rnn.ipynb



Password Guessing with Neural 

Networks

Dr. Martin “Doc” Carlisle



Modeling Password Guessing

How can we help users pick good 

passwords?

• Simulate password-guessing algorithms

• Reject passwords that will be guessed 

quickly 



Modeling Password Guessing

Issue:

• We want to do this fast and without using 

lots of storage

• Ideally in a browser



PCFGs

• Use context free grammars to model passwords

– Template structure (e.g. 6 letters then 2 digits)

– Pick probability of structure and the probability of each terminal 

symbol



Markov Models

• Predict probability of next character based on 

previous characters

– 6-gram with additive smoothing



Mangled Word Lists

• Think “leetifying” a password 

– E.g. P@ssw0rd

• Maybe adding digits, etc.



Neural Network guesser

Similar to Markov model, predict next character based on context



Turn probability to guess #

• Enumerate all passwords who probability is 

above threshold via beam search

• Use Monte Carlo simulations to guess



Beam Search

• Expand most promising node

– Optimization of best-first search to reduce memory use

– Greedy algorithm

– Not optimal



Monte Carlo Simulations

• Monte Carlo methods vary, but tend to follow a particular 

pattern:

– Define a domain of possible inputs

– Generate inputs randomly from a probability distribution over 

the domain

– Perform a deterministic computation on the inputs

– Aggregate the results



Estimating Pi

• Draw a square, then inscribe a quadrant within 
it

• Uniformly scatter a given number of points over 
the square

• Count the number of points inside the quadrant, 
i.e. having a distance from the origin of less 
than 1

• The ratio of the inside-count and the total-
sample-count is an estimate of the ratio of the 
two areas, π/4. Multiply the result by 4 to 
estimate π.



Design Choices

• 1000 LSTM cells, Recurrent Neural Network

– 1.5 weeks to train on larger data set (2016)

• Train in backwards order

– Guess “d” from “rowssap” vs. “passwor”

• With 10 characters of context

• Model 2000 tokens (letters, syllables)

– Model upper vs. lower separately



Design Choices

• Transference learning

– Train with all passwords in set, then freeze lower 

levels of model

– Retrain with only passwords that fit pw policy



Sending to browser!

• Quantize weights (up to 3 decimal digits)

• Fixed point encoding (save space)

– 5.0 and 5.0 with precision of 0.005 is -1000 to 1000 with 

precision of 1

• ZigZag encoding 0,-1,1,-2,2,….

• Lossless compression

• Bloom filter word list (2 million most frequent passwords)

– Top 10, top 100, etc.



Bloom filters

• Space-efficient probabilistic data structure

• Tests set membership 

– Can have false positives, but not false negs

• Hash several times with k independent hashes

– If all 1s, is in there!

• 9.6 bits/element



Training data

• Password Guessability Service

– RockYou! & Yahoo leaked passwords

– Web2, Google web, inflection dictionary

– 33 million passwords, 5.9m natural language words

• PGS++

– 105 million passwords



Testing Data

• Mechanical Turk

• 000webhost



Results



Results



de Castro et al

• Example of a nice undergrad student project

– Implements Mellicher et al with some simplifications

– Shows understanding of LSTM, Monte Carlo simulation

– Performs an experiment and discusses results

– Compares their results to ZXCVBN


	03_01_Machine_Learning
	03_02_Neural_Networks
	03_03_Password_Guessing_with_Neural_Networks

