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Machine Learning

Computer Algorithms that improve with “experience”
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Do we have labeled data? (review)

« Supervised

— Can train on data with labeled instances of normal vs anomaly
classes

— Not very common

* Semisupervised
— Labeled instances for only normal data

» Unsupervised
— No labeled data
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Two key problems

* Classification
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* Regression

Two key problems

Training Data
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Classification vs Regression

 Classification
— Map input to discrete value Z‘T i) 7 Yi)/n
— Data is unordered
— Evaluate by # of correct classifications

* Regression
— Map input to continuous value S (fF(Xs) - Yo)2/n
— Data is ordered
— Evaluate by root mean squared error
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Regression Example

Online

Store

Monthly E-
commerce Sales

(in 1000 s)
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Regression Example

1000 1
Online Monthly E- Online Advertising
Store commerce Sales Dollars (1000 s) a0 -

(in 1000 s)
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Jupyter Notebook

« See RegressionExample.ipynb for more examples, including with
Gaussian functions
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Classification

« Support Vector Classifier
— Finds hyperplane(s) to split data
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H, does not separate the classes.
H> does, but only with a small margin.
Hy separates them with the maximal
margin.
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SVC margin

* Find hyperplane with largest margin
— Sometimes you allow some samples to be miscategorized

Figure 2: Optimal separating hyperplane with maximum margin
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SVC Kernels

« Sometimes data isn’t linearly separable
— Use kernel function to map to linearly separable feature space

nE ¢ - ; s - 2 - e
Figure 3: Mapping of non-linear separable training data from R? into R?

®(F) = (22, V2x 15, 22)7. (19)

Taking the equation for a separating hyperplane Eq.(1) into account we get
a linear function in F*:

BT B(F) = w2 + wov2z, 1y + wyzd = 0. (20)
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SVC Kernels

« Sometimes data isn't linearly separable

— Use kernel function to map to linearly separable feature space

Type of Kernel

Inner product kernel

K(Zf. o), i=1,2,...,] N

Comments

Polynomial Kernel

Craussian Kernel

Sigmoid Kernel

Kernels for Sets

Spectrum Kernel for

strings

K(Z, i) = fl'.r'.{..:"; — r;i‘}”!

K(Z, &) = tanh(gdd; +0)

W

Ko x) = £y 152 Kl o))

count number of substrings in

COIIon

Power p and threshold £
is specified a priori by
the user

Width o2 is specified a
priori by the user
Mercer's Theorem  is
satisfied only for some
values of n and #
Where k(x;, .rj.] is a ker-
nel on v]t'}uv]][h in the
sets X, X

It is a kernel, since it is
a dot product between
vectors of indicators of
all the substrings.

Table 1: Summary of Inner-Product Kernels [Hay98]
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SVC Notebook

« Jupyter Notebook SVC_Example.ipynb has
examples of SVC
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Principal Component Analysis

* Fast and flexible way to reduce dimensionality of data
(e.g. our faces)

— Computes eigenvectors of the data’s covariance matrix
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Principal Component Analysis
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PCA Notebook

* Jupyter Notebook PCA_Example.ipynb has example of
PCA, and the same data with an ISOMAP (http://www-
clmc.usc.edu/publications/T/tenenbaum-Science2000.pdf)
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Bayesian Classifier

P(Y|X)P(x)
P(Y)

* If we have a bunch of independent Ys, t
— P(Class|Y1,Y2,..Yn) «< P(Class) [\ P(Yi

* S0 we guess a class by just picking the
probability!

« Bayes Theorem P(X|Y) =

ern.
Class)

niggest
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Nalve Bayesian Classifier

n
P(Class|Y1,Y2,..Yn) «< P(Class) 1_[ P(Yi|Class)
i=1
* Need a probability distribution to compute
P(Yi|Class)
— Gaussian, compute mean and variance for each
class 2

(= pig
1 —_—

p(z=v|Ck) = <
2?1'0":;2:

2
ﬁn:rk
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Multinomial Bayesian Classifier

 Use multinomial distribution instead, useful for
data with “counts” (e.g. word counts in text)



COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Nalve Bayesian Summary

» Good for well-separated categories
» Good for high dimensional data

* Good when naive assumptions match
(iIndependence, distributions)

» Create fast, explainable models
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Multinomial Bayesian Notebook

« Jupyter notebook Multinomial Naive Bayes.ipynb with
Multinomial Naive Bayes
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Scikit TF-IDF

(Number of times term w appears in a document)

TP = (Total number of terms w in the document)
IDE. = Io Total number of documents
w1~ 98 Number of documents with term w in it

Scikit-Learn

14+n
1+df(t)

e IDF(t) = log +1
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Decision Trees
* Repeatedly split space with hyperplane

Survival of passengers on the Titanic

gender

male female

age survived
0.73; 36%

95<age age<=95
» <

died :
017, 61% SWsp
3 <= sabsp s:bsp 3

died survived
002, 2% 089, 2%
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Decision Tree

* Not usually so easily explainable, may get strange
behavior of automatically generated
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Random Forests

Create many trees to reduce such oddities - every decision tree is trained by first
applying principal component analysis (PCA) on a random subset of the input features

Random Forest Simplified

Instance
Random Forest _— ," N T
-~ . SR
el g > q/ ’ \\s

q/ O O ,\\ \ ’g/ \\Q \} "R g" P gf k
Sb3bdbdd dddb oo RX odo‘db

Tree-1 Trcc 2 Tree-n

Class-A Class-B Class-B

|

If\lajmil_\-\'oling :

Final-Class
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Random Forests

* Revisit digits in Jupyter Notebook Random_ Forests.ipynb
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K-Means Clustering

nearest mean
1. Select k “means”

2.
3.
4.

Partition
Update means

Repeat 1-3 until converge

Iteration #14
sl 0 0.2 03

Convergence of k-means
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K-Means Clustering

* Not necessarily optimal (depends on selection of initial “means”)
« Must know # of clusters in advance
« Might also require mapping to new space
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K-Means Clustering

* Reuvisit digits in Jupyter Notebook
K_Means_Clustering.ipynb

» Uses t-distributed Stochastic Neighbor Embedding
(TSNE) to visualize high-dimensional data

— converts affinities of data points to probabilities (Gaussian joint
probabilities)
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Gaussian Mixture Models

« Extends k-means
— K-means has a lack of flexibility in cluster shape
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Gaussian Mixture Models

* Extends k-means
— K-means has a lack of flexibility in cluster shape
— K-means lacks probabilistic cluster assignment
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Gaussian Mixture Models

1. Choose starting “means”

2. Repeat until convergence
— For each point, find probability in each cluster

— For each cluster, update location and shape based on all data
points, using weights




COMPUTER SCIENCE
H ‘ & ENGINEERING

TTTTTTTTTTTTTTTTTT

Gaussian Mixture Modeling

* Reuvisit digits in Jupyter Notebook
Gaussian_Mixture Model.ipynb, now using Kernel
Density Estimation

— Uses mixture of one Gaussian per point
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Neural Networks

Neural Networks are a machine learning

technique fashioned after a mathematical model
of a brain neuron

xon lermina

Myelinated axon
- Y >

Ih—pAuts

Neuron and myelinated axon, with signal flow from inputs at o
dendrites to outputs at axon terminals
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A “neuron”

Inputs Output
X’1
y
X

Red multiplied by weights
Orange is an “activation function”
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Activation function

* One example is sigmoid
_ f(X) = !

1+e™% =
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Creating a “network”

« A multi-layer architecture of neurons

Input Layer Hidden Layer Output Layer

* Possibly many hidden layers
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At a neuron
* Weights for each input
Input Layer Hidden Layer Output Layer

* H,=sigmolc
* H,=sigmolc

* O,=sigmoid

(W11 X W1 57X))
(W5 *X1+W,,*X)
(Wol*h1+W02*h2)
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Output layer

* We can have a neuron for each category, and we want 1
for yes, O for no

* Now we can go backwards with partial derivatives to
update weights using the chain rule

OL _ 0L Oyped O ﬁ
Jwi  Oyped . Oh1  Owy
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Updating weights

* We then update weights with a “learning rate”

oL

o

w) ¢ W] — N
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Good and bad news

« Good news! We don’t need to know anything about partial differentials —
pytorch will do this all for us

« Bad news! Picking a correct architecture, learning rate can be hard (and is
a huge search space)
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Speeding things up with a GPU

« GPUs offer data-parallelism
— This can make NN operations *much* faster
« BUT
— You have to explicitly put things on the GPU
— Copying to/from the GPU Is expensive
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PyTorch
Useful for doing neural networks on a GPU

Tensor = NumPy ndarray, but can be on a GPU
Device = place a tensor lives (CPU, or CUDA [GPU]J)

WARNING!
« Copying an array to/from the GPU Is expensive!

* You have to think about where you want
computation to happen!
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Jupyter Notebook

Go to Pytorch_Intro.ipynb at Google colab

https://colab.research.google.com/
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Sample NN

« See Colab notebook for First. NN
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Convolutional Neural Nets

« Aim for shift, scale and distortion invariance
— Local receptive fields
— Shared weights
— Sub-sampling

C3: . maps 16@10x10
C1: fealure maps S4: 1. maps 16{@5x5

INFUT BE2Ex28
32x32 82: 1. maps C5: layer .
rr 0 E layer f_:IHEI.ITF"UT

e

| Fullcunrllec:tiun | (Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose welghts are constrained to be identical.
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Local receptive fields
» Extract elementary visual features
— Oriented edges
— End points
— Corners

* Also, avoid explosion of weights! (224x224 image with 3 colors has
150,528 features)

C3: 1. maps 16@10x10
C1: feature maps 54: {. maps 16{@5x5

INFUT BE2Ex28
52 f. maps CE: layer .
50 F,Bi layer qlﬁl.lTF"UT

b G 14x14 rrr l"rr
|T_ r

r

| Full conection | Gaussian conn ections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architeciure of LeNei-5, a Convolutional Neural Network, here for digits recognition. Each plane is a {eature map, i.e. a set of units
whose welghts are constrained to be identical.
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Shared weights

* Detect same features at all possible locations in the input

C3 . maps 168@10x10
INPUT c1: ﬁlzuﬂm maps S4: 1. maps 16{@5x5

2
a2xaz 6@ 52: 1. maps

| Fullcunrllec:tiun | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose welghts are consirained to be identical.
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Subsampling

* Reduces sensitivity to distortion
* Finds features relatively placed

C3: . maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT BE2Ex2E
32x32 C5: layer pg. layer OUTPUT
120 a4 10

| Fullcmrllec:tiun | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose welghls are constrained to be identical.
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Jupyter Notebook for CNN

 https://github.com/erykml/medium _articles/blob/master/Co
mputer%20Vision/lenets pytorch.ipynb

* lenet5 pytorch.ipynb (Google Colab and Jupyter
Notebook)

* Note speed difference
* Note use of torch.no_grad()
» conda install torchvision -c pytorch
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Train/Validate/Test

* |deally, we split data into 3 parts
* Train

— Use this to train the model and update weights
» Validate

— Use this to prevent over-training

— Don't train, but evaluate hyper-parameters (learning rate, # of
epochs, etc.)

* Jest
— Use only on final model run
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Recurrent Neural Network

« Connections have temporal sequence

» Useful for applications where context is useful for
prediction

— Handwriting recognition (unlike zipcodes, we have a good
sense what comes “afte”)

— Speech recognition
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Long short-term memory (LSTM)

* “Forgets” part of previously stored memory and adds new
data

* Cell gets cell and hidden state from previous timestep,
Input from current timestep

« Output Is part of hidden state
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LSTM

h

Simple LSTM cell (source: https://towardsdatascience.com/recurrent-neural-networks-and-
Istm-4b601dd822a5)
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Example

» Password generator
— conditional-char-rnn.ipynb
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Password Guessing with Neural
Networks

Dr. Martin “Doc” Carlisle
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Modeling Password Guessing

How can we help users pick good
passwords?

« Simulate password-guessing algorithms

* Reject passwords that will be guessed
quickly
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Modeling Password Guessing

Issue:

* We want to do this fast and without using
lots of storage

* |deally in a browser
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PCFGS

» Use context free grammars to model passwords
— Template structure (e.g. 6 letters then 2 digits)

— Pick probabillity of structure and the probabillity of each terminal
symbol



COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Markov Models

* Predict probability of next character based on
previous characters

— 6-gram with additive smoothing
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* Think “leetifying” a password
- E.g. P@sswOrd
Maybe adding digits, etc.
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Mangled Word Lists

Ooooo0ooooofdoooo a

UNCOMMON
" ORDER
(B"g'sg'm"”) UNTL‘WN
Trou bf{%d or &é
|
ORP Remmmons | MNERAL
- PUNCTURTION

( YOU (AN AOD A FEW FORE Bs To -
HWW”M THE FRCT THAT THiE oooa
15 ONLY ONE OF A FW CoMmON FORMATS)

2= 3 pAvs AT
1000 GUESSES /<EC

(MWBLEW OV A WEAK REMATE.
WED SERVICE. YES, CRACKING A STOLEN

DIFRCOLTY To GLESS:

EASY

WAS IT TROMBONE? NO,
TROUBADOR, AND ONE OF
THE Os WAS A ZERQ?

\
AND THERE WARS
SOME SYMBOL... ™

!

DIFFICULTY To REMEMBER:
HARD

cor‘rect horse baﬂa‘g staple

~ 44 BITS OF ENTROPY
oDoooopooooo
ooOooooooooo
10nO0oo
poooooooooo
2™ =550 YERRS AT
1600 GUESSES/seC

DIFAICOLTY T0 GUESS:
HARD

DIFFICOLTY TO REMEMBER:
YOUVE ALREADY
MEMORIZED T

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS To GUESS.




TEXAS A&M UNIVERSITY

COMPUTER SCIENCE
H ‘ & ENGINEERING

Neural Network guesser

Similar to Markov model, predict next character based on context

ofany, Bl & 0D0a1
context ba ] 2 .001 -
_ ,,_"" %rfbln-u —_— I D01 & 00009
‘*—V— - o 0 PoEl- E- 00001
|npu|: i, b0 . & 50 _...p = :::l:.:%.i[zﬂg
O, D | — ENDCD 018
EMC: O o: 008
Context Meural & 07
characiers a0 o Mebwork EMD: 0
D, Ed | —
EMD: O Uppercase
modeling
a0 eo
b, ad —- . A
EMD: O
Output

Figure 1: An example of using a neural network to predict
the next character of a password fragment. The network is
being used to predict a ‘d” given the context ‘ba’. This network
uses four characters of context. The probabilities of each next
character are the output of the network. Post processing on the
network can infer probabilities of uppercase characters.
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Turn probability to guess #

 Enumerate all passwords who probabillity is
above threshold via beam search

* Use Monte Carlo simulations to guess
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Beam Search

* Expand most promising node
— Optimization of best-first search to reduce memory use
— Greedy algorithm
— Not optimal
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Monte Carlo Simulations

* Monte Carlo methods vary, but tend to follow a particular
pattern:

— Define a domain of possible inputs

— Generate inputs randomly from a probability distribution over
the domain

— Perform a deterministic computation on the inputs
— Aggregate the results
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Estimating Pi

Draw a square, then inscribe a quadrant within
it

Uniformly scatter a given number of points over
the square

Count the number of points inside the quadrant,
l.e. having a distance from the origin of less
than 1

The ratio of the inside-count and the total-
sample-count is an estimate of the ratio of the
two areas, /4. Multiply the result by 4 to
estimate 1.

1.0 s

0.8
0.6

0.4 4

0.2 3.

|:||:| | . i _—

0.0

0.2

0.4

= 3000, = 3.1133

0.6

1.0
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Design Choices

1000 LSTM cells, Recurrent Neural Network
— 1.5 weeks to train on larger data set (2016)

* Train in backwards order
— Guess “d” from “rowssap” vs. “passwor’

 With 10 characters of context

* Model 2000 tokens (letters, syllables)
— Model upper vs. lower separately
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Design Choices

* Transference learning

— Train with all passwords In set, then freeze lower
levels of model

— Retrain with only passwords that fit pw policy
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Sending to browser!

* Quantize weights (up to 3 decimal digits)

* Fixed point encoding (save space)

— 5.0 and 5.0 with precision of 0.005 is -1000 to 1000 with
precision of 1

» ZigZag encoding 0,-1,1,-2,2,....
* Lossless compression

* Bloom filter word list (2 million most frequent passwords)
— Top 10, top 100, etc.
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Bloom filters

Space-efficient probabllistic data structure

Tests set membership
— Can have false positives, but not false negs

Hash several times with k independent hashes

—If all 1s, Is In there!
9.6 bits/element

ix.vzl

e
s

e

An example of a Bloom filter, representing the set {x. v, z} . &
The colored arrows show the positions in the bit array that each
set element is mapped to. The element w is not in the set

{x.y. z} , because it hashes to one bit-array position containing
0. For this figure, m = 18 and k = 3.



TEXAS A&M UNIVERSITY

COMPUTER SCIENCE
H & ENGINEERING

Training data

« Password Guessability Service
— RockYou! & Yahoo leaked passwords
— Web2, Google web, inflection dictionary
— 33 million passwords, 5.9m natural language words

e PGS++
— 105 million passwords



COMPUTER SCIENCE
H & ENGINEERING

TEXAS A&M UNIVERSITY

Testing Data

* Mechanical Turk
e 000webhost
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Figure 3: Neural network size and password guessability.
Dotted lines are large networks; solid lines are small networks.
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de Castro et al

 Example of a nice undergrad student project
— Implements Mellicher et al with some simplifications
— Shows understanding of LSTM, Monte Carlo simulation
— Performs an experiment and discusses results
— Compares their results to ZXCVBN
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