
Change Management: Why change management?

Slide 1

Howdy! In this video, we attempt to answer the question: Why change management?

Slide 2

Change management procedures can add structure and control to the development and management
of large software systems as they move from development to implementation and during operation. In
this module, change management refers to a standard methodology for performing and recording
changes during software development and system operation. The methodology defines steps that
ensure that system changes are required by the organization and are properly authorized, documented,
tested, and approved by management. Sometimes, the term configuration management is considered
synonymous with change management and, in a more limited manner, version control or release
control.

The term change management is often applied to the management of changes in the business
environment, typically as a result of business process reengineering or quality enhancement efforts. The
term change management as used in this module is directly related to managing and controlling
software development, maintenance, and system operation. Configuration management is the
application of change management principles to configuration of both software and hardware.

Slide 3

To manage the system development and maintenance processes effectively, you need discipline and
structure to help conserve resources and enhance effectiveness. Change management, like risk
management, is often considered expensive, nonproductive, unnecessary, and confusing—basically, an
impediment to progress. In some implementations, it is all of these things. But, it doesn’t have to be!
Like risk management, change management can be scaled to control and manage the development and
maintenance of systems effectively.

Change management should be used in all phases of a system’s life: development, testing, quality
assurance, and production. Short development cycles, such as those used in Agile software
development, have not changed the need for an appropriate amount of management control over
software development, maintenance, and operation. In fact, short turnaround times make change
management more necessary, because once a system goes active in today’s service-oriented
architecture environments, it often cannot be taken offline to correct errors—it must stay up and online
or business will be lost and brand recognition damaged.

The Sarbanes-Oxley Act of 2002, officially entitled the Public Company Accounting Reform and Investor
Protection Act of 2002, was enacted to help ensure management establishes viable governance
environments and control structures to ensure accuracy of financial reporting. Section 404 outlines the
requirements most applicable to information technology. Change management is an essential part of
creating a viable governance and control structure and is critical for compliance with the Sarbanes-Oxley
Act.

Slide 4

A Change is the addition, modification or removal of anything that could have an effect on IT Services.
For example, the modification to a module to implement a new capability.

Generally speaking, there are two kinds of changes: standard and emergency.

A Standard Change is a pre approved change that is low risk, relatively common and follows a procedure
or work instruction.
For example, each month finance must make a small rounding adjustment to reconcile the General
Ledger to account for foreign currency calculations.

An Emergency Change is a change that must be introduced as soon as possible.
For example, to resolve a major incident or implement a security patch. The change management
process will normally have a specific procedure for handling emergency changes.

Slide 5

Here are just a few scenarios that exemplify the need for appropriate change management policy and
for procedures over software, hardware, and data:

The developers can’t find the latest version of the production source code. Change management
practices support versioning of software changes.

A bug corrected a few months ago mysteriously reappears. Proper change management ensures
developers always use the most recently changed source code.

Development team members overwrote each other’s changes. Today’s change management tools
support collaborative development.

A programmer spent several hours changing the wrong version of the software. Change management
tools support viable management of previous software versions.

Just about anyone with experience in software development or system operations can relate to these
and similar scenarios. However, each of these scenarios can be controlled, and impacts mitigated,
through proper change management procedures.

Slide 6

Thank you and take care.

Change Management: Separation of Duties

Slide 1

Howdy! In this video, we discuss separation of duties, which is key to change management.

Slide 2

A foundation for change management is the recognition that involving more than one individual in a
process can reduce risk.

Good business control practices require that duties be assigned to individuals in such a way that no one
individual can control all phases of a process or the processing and recording of a transaction.

This is called separation of duties (also called segregation of duties).

It is an important means by which errors and fraudulent or malicious acts can be discouraged and
prevented.

Separation of duties can be applied in many organizational scenarios because it establishes a basis for
accountability and control.

Proper separation of duties can safeguard enterprise assets and protect against risks.

The specific segregation of duties should be documented, monitored, and enforced.

Slide 3

A well-understood business example of separation of duties is in the management and payment of
vendor invoices. If a person can create a vendor in the finance system, enter invoices for payment, and
then authorize a payment check to be written, it is apparent that fraud could be perpetrated because
the person could write a check to himself for services never performed. Separating duties by requiring
one person to create the vendors and another person to enter invoices and write checks makes it more
difficult for someone to defraud an employer.

Slide 4

Information technology (IT) organizations should design, implement, monitor, and enforce appropriate
separation of duties for the enterprise’s information systems and processes.
Today’s computer systems are rapidly evolving into an increasingly decentralized and networked
computer infrastructure.
In the absence of adequate IT controls, such rapid growth may allow exploitation of large amounts of
enterprise information in a short time.
Further, the knowledge of computer operations held by IT staff is significantly greater than that of an
average user, and this knowledge could be abused for malicious purposes.

Slide 5

Some of the best practices for ensuring proper separation of duties in an IT organization are as follows:

Separation of duties between development, testing, QA, and production should be documented in
written procedures and implemented by software or manual processes.

Program developers’ and program testers’ activities should be conducted on “test” data only. They
should be restricted from accessing “live” production data. This will assist in ensuring an independent
and objective testing environment without jeopardizing the confidentiality and integrity of production
data.

End users or computer operations personnel should not have direct access to program source code. This
control helps lessen the opportunity of exploiting software weaknesses or introducing malicious code
(or code that has not been properly tested) into the production environment either intentionally or
unintentionally.

Functions of creating, installing, and administrating software programs should be assigned to different
individuals. For example, since developers create and enhance programs, they should not be able to
install it on the production system. Likewise, database administrators should not be program developers
on database systems they administer.

All accesses and privileges to systems, software, or data should be granted based on the principle of
least privilege, which gives users no more privileges than are necessary to perform their jobs. Access
privileges should be reviewed regularly to ensure that individuals who no longer require access have had
their access removed.

Formal change management policy and procedures should be enforced throughout the enterprise. Any
changes in hardware and software components (including emergency changes) that are implemented
after the system has been placed into production must go through the approved formal change
management mechanism.

Slide 6

Managers at all levels should review existing and planned processes and systems to ensure proper
separation of duties. Smaller business entities may not have the resources to implement all of the
preceding practices fully, but other control mechanisms, including hiring qualified personnel, bonding
contractors, and using training, monitoring, and evaluation practices, can reduce any organization’s
exposure to risk. The establishment of such practices can ensure that enterprise assets are properly
safeguarded and can also greatly reduce error and the potential for fraudulent or malicious activities.

Slide 7

Change management practices implement and enforce separation of duties by adding structure and
management oversight to the software development and system operation processes.
Change management techniques can ensure that only correct and authorized changes, as approved by
management or other authorities, are allowed to be made, following a defined process.

Slide 8

Thank you and take care.

Change Management: Elements of Change Management

Slide 1

Howdy! In this video, we discuss elements of change management.

Slide 2

Change management has its roots in system engineering, where it is commonly referred to as
configuration management.

Most of today’s software and hardware change management practices derive from long-standing
system engineering configuration management practices.

Computer hardware and software development have evolved to the point that proper management
structure and controls must exist to ensure the products operate as planned.

Issues such as the Heartbleed and Shellshock incidents illustrate the need to understand configurations
and change.

Slide 3

Terminology may differ between perspectives, but there are four general phases of change
management: Identification, control, status accounting, and auditing

Slide 4

Configuration identification is the process of identifying which assets need to be managed and
controlled. These assets could be software modules, test cases or scripts, table or parameter values,
servers, major subsystems, or entire systems. The idea is that, depending on the size and complexity of
the system, an appropriate set of data and software (or other assets) must be identified and properly
managed. These identified assets are called configuration items or computer software configuration
items.

Related to configuration identification, and the result of it, is the concept of a baseline. A baseline
serves as a foundation for comparison or measurement. It provides the necessary visibility to control
change. For example, a software baseline defines the software system as it is built and running at a
point in time. As another example, network security best practices clearly state that any large
organization should build its servers to a standard build configuration to enhance overall network
security. The servers are the configuration items, and the standard build is the server baseline.

Slide 5

Configuration control is the process of controlling changes to items that have been baselined.
Configuration control ensures that only approved changes to a baseline are allowed to be implemented.
It is easy to understand why a software system, such as a web-based order entry system, should not be
changed without proper testing and control—otherwise, the system might stop functioning at a critical
time. Configuration control is a key step that provides valuable insight to managers. If a system is being
changed, and configuration control is being observed, managers and others concerned will be better
informed. This ensures proper use of assets and avoids unnecessary downtime due to the installation of
unapproved changes.

Slide 6

Configuration status accounting consists of the procedures for tracking and maintaining data relative to
each configuration item in the baseline. It is closely related to configuration control. Status accounting
involves gathering and maintaining information relative to each configuration item. For example, it
documents what changes have been requested; what changes have been made, when, and for what
reason; who authorized the change; who performed the change; and what other configuration items or
systems were affected by the change.

Returning to our example of servers being baselined, if the operating system of those servers is found to
have a security flaw, then the baseline can be consulted to determine which servers are vulnerable to
this particular security flaw. Those systems with this weakness can be updated (and only those that
need to be updated). Configuration control and configuration status accounting help ensure that
systems are more consistently managed and, ultimately in this case, the organization’s network security
is maintained. It is easy to imagine the state of an organization that has not built all servers to a
common baseline and has not properly controlled its systems’ configurations. It would be very difficult
to know the configuration of individual servers, and security could quickly become weak.

Slide 7

Configuration auditing is the process of verifying that the configuration items are built and maintained
according to the requirements, standards, or contractual agreements. It is similar to how audits in the
financial world are used to ensure that generally accepted accounting principles and practices are
adhered to and that financial statements properly reflect the financial status of the enterprise.

Configuration audits ensure that policies and procedures are being followed, that all configuration items
(including hardware and software) are being properly maintained, and that existing documentation
accurately reflects the status of the systems in operation.

Configuration auditing takes on two forms: functional and physical. A functional configuration audit
verifies that the configuration item performs as defined by the documentation of the system
requirements. A physical configuration audit confirms that all configuration items to be included in a
release, install, change, or upgrade are actually included, and that no additional items are included—no
more, no less.

Slide 8

Thank you and take care.

Change Management: Implementing Change Management

Slide 1

Howdy! In this video, we discuss implementing change management.

Slide 2

I have heard from others that change management just gets in the way and is a headache to deal with. I
understand that. There are a lot of processes that can feel that way, but, when implemented properly
and followed consistently, result in higher quality work. Security processes tend to feel the most
unnatural, I have found. This is why the principle of psychological acceptability is so important. If it sucks
to use, people just won’t use it and any security benefit it would have had is either nulled or, worse,
subverted into a vulnerability. So, with that being said, effective change management requires structure
and discipline. But, that does not mean implementing and adhering to a change management system
has to be a headache. Or, maybe it does and you should just play a quick game of would-you-rather.
Would you rather have headache or no head?

Slide 3

This figure illustrates a sample software change management flow appropriate for medium to large
projects. It can be adapted to small organizations by having the developer perform work only on her
workstation (never on the production system) and having the system administrator serve in the
buildmaster function. The buildmaster is usually an independent person responsible for compiling and
incorporating changed software into an executable image.

The figure also shows that developers never have access to the production system or data. It
demonstrates proper separation of duties between developers, QA and test personnel, and production
and therefore a distinct separation exists between development, testing and QA, and production
environments. This workflow is for changes that have a major impact on production or the customer’s
business process. For minor changes that have minimal risk or impact on business processes, some of
the steps may be omitted.

Slide 4

An example change management workflow proceeds as follows:

1. The developer checks out source code from the repository to the development system.
2. The developer modifies the code and conducts unit testing of the changed modules.
3. The developer checks the modified code into the repository.
4. The developer notifies the buildmaster that changes are ready for a new build and testing/QA.
5. The buildmaster creates a build incorporating the modified code and compiles the code.
6. The buildmaster notifies the system administrator that the executable image is ready for

testing/QA and the system administrator moves the executables to the test/QA system.
7. QA tests the new executables.
8. If the tests are passed, test/QA notifies the manager. If tests fail, the process starts over. On

success, the changes are merged into the trunk (main code branch).
9. Upon manager approval, the latest version is deployed to the production environment.

Slide 5

What happens if, in the middle of a change, something goes wrong? There should be a plan for that
scenario, as it will almost inevitably happen at least once. One of the key elements of a change plan is a
comprehensive backout plan. If, in the course of a planned change activity in production, a problem
occurs that prevents going forward, it is essential to have a backout plan to restore the system to its
previous operating condition.

A common “feature”, so to speak, of many operating system updates is the inability to go back to a
previous version. This is fine provided that the update goes perfectly, but if for some reason it fails, what
then? For a personal device, there may be some inconvenience. For a server in production, this can have
significant business implications.

The ultimate in backout plans is the restoration of a complete backup of the system. Backups can be
time consuming and difficult in some environments, but the spread of virtualization into the enterprise
provides many more options in configuration management and backout plans. For code projects,
keeping a copy of the last working build, even a complete history of all previous production builds, is
cheap and easy.

Slide 6

Thank you and take care.

Change Management: The Purpose of the Change Control Board

Slide 1

Howdy! In this video, we discuss the purpose of the change control board.

Slide 2

To oversee the change management process, most organizations establish a change control board
(CCB). In practice, a CCB not only facilitates adequate management oversight, but also facilitates better
coordination between projects. The CCB convenes on a regular basis, usually weekly or monthly, and can
be convened on an emergency or as-needed basis as well.

The CCB’s membership should consist of development project managers, network administrators,
system administrators, test/QA managers, an information security manager, an operations center
manager, and a help desk manager. Others can be added as necessary, depending on the size and
complexity of the organization.

Slide 3

This figure shows the process for implementing and properly controlling hardware or software during
changes. The CCB uses standard documents, such as change requests, in concert with business
schedules and other elements of operational data, with a focus on system stability.
The CCB also ensures that all elements of the change policy have been complied with before approving
changes to production systems.

Slide 4

A system problem report (SPR) is used to track changes through the CCB. The SPR documents changes
or corrections to a system. It reflects who requested the change and why, what analysis must be done
and by whom, and how the change was corrected or implemented. Most large enterprises cannot rely
on a paper-based SPR process and instead use one of the many software systems available to perform
change management functions.

This example shows a paper-based SPR, it contains all the elements of change management: it describes
the problem and who reported it, it outlines resolution of the problem, and it documents approval of
the change.

Slide 5

This figure shows the entire change management process and its relationship to incident management
and release management.

As you can see, change management is happening continuously throughout the incident and release
management processes, from the initial report and ticket creation, through escalation, assessment,
resolution, and ticket close out.

Slide 6

One key benefit of adequate change management is the assurance of code consistency and integrity.
Whenever a modified program is moved to the production source-code library, the executable version
should also be moved to the production system.
Automated change management systems greatly simplify this process and are therefore better controls
for ensuring executable and source-code integrity.
Remember that at no time should the user or application developer have access to production source
and executable code libraries in the production environment.

In today’s networked environment, the integrity of the executable code is critical.
A common hacking technique is to replace key system executable code with modified code that contains
backdoors, allowing unauthorized access or functions to be performed.
Executable code integrity can be verified using host-based intrusion detection systems.
These systems create and maintain a database of the size and content of executable modules.
Conceptually, this is usually done by computing a secure hash of the executable modules and storing the
results in a database. The operation is performed on a regular schedule against the executable modules,
and the results are compared to the database to identify any unauthorized changes that may have
occurred to the executable modules.

Slide 7

Thank you and take care!

Change Management: The Capability Maturity Model Integrations

Slide 1

Howdy! In this video, we discuss the Capability Maturity Model Integration for development.

Slide 2

The Capability Maturity Model Integrations (CMMI) are an important set of process models. They were
developed at Carnegie Mellon University’s Software Engineering Institute (SEI). SEI created three
capability maturity model integrations: The Capability Maturity Model Integration for Acquisition
(CMMI-ACQ), The Capability Maturity Model Integration for Development (CMMI-DEV), And the
Capability Maturity Model Integration for Services (CMMI-SVC). We’ll look at CMMI-DEV, which is
representative of the three models.

One of the fundamental concepts of CMMI-DEV is configuration or change management, which provides
organizations with the ability to improve their software and other processes by providing an
evolutionary path from ad hoc processes to disciplined management processes

Slide 3

The CMMI-DEV defines five maturity levels:

Level 1: Initial – At maturity level 1, processes are generally ad hoc and chaotic. The organization does
not provide a stable environment to support processes.

Level 2: Managed – At maturity level 2, processes are planned and executed in accordance with policy.
The projects employ skilled people who have adequate resources to produce controlled outputs; involve
relevant stakeholders; are monitored, controlled, and reviewed; and are evaluated for adherence to
their process descriptions.

Level 3: Defined – At maturity level 3, processes are well characterized and understood, and are
described in standards, procedures, tools, and methods. These standard processes are used to establish
consistency across the organization.

Level 4: Quantitatively Managed – At maturity level 4, the organization establishes quantitative
objectives for quality and process performance and uses them as criteria in managing projects.
Quantitative objectives are based on the needs of the customer, end users, organization, and process
implementers. Quality and process performance is understood in statistical terms and is managed
throughout the life of projects.

Level 5: Optimizing – At maturity level 5, an organization continually improves its processes based on a
quantitative understanding of its business objectives and performance needs. The organization uses a
quantitative approach to understanding the variation inherent in the process and the causes of process
outcomes.

Change management is a key process to implementing the CMMI-DEV in an organization. For example, if
an organization is at CMMI-DEV level 1, it probably has minimal formal change management processes
in place. At level 3, an organization has a defined change management process that is followed
consistently. At level 5, the change management process is a routine, quantitatively evaluated part of
improving software products and implementing innovative ideas across the organization. For an
organization to manage software development, operation, and maintenance, it should have effective
change management processes in place.

Slide 4

Change management is an essential management tool and control mechanism.
Segregation of duties ensures that no single individual or organization possesses too much control in a
process, which helps prevent errors and fraudulent or malicious acts
The elements of change management—configuration identification, configuration control, configuration
status accounting, and configuration auditing—coupled with a defined process and a change control
board, will provide management with proper oversight of the software lifecycle.
Once process and management oversight exists, the company can use CMMI-DEV to move from ad hoc
activities to a disciplined software management process.

Slide 5

Thank you and take care!

Change Management: Environments

Slide 1

Howdy! In this video, we discuss the Dev, Test, Staging, and Production environments.

Slide 2

Within a modern environment, there are multiple, separate environments designed to isolate
development, test, and production functions. These are primarily to prevent accidents arising from
untested code ending up in production. These environments are segregated by access control lists and
hardware to prevent users from accessing multiple different levels of the environment. For moving the
code between environments, special accounts that can access both are used to avoid contamination.

Slide 3

The development system is one that is sized, configured, and set up for developers to develop
applications and systems. Development hardware does not have to scale like production and does not
need to be as responsive as production HW used in production. To avoid headaches, the development
platform ought to be of the same type of system as the production environment. After code is
developed, it is moved to a test system. Modern development practices have begun incorporating test
into development. The model of developers developing then testers testing, throwing the code back and
forth over a wall between different teams, is inefficient. Nonetheless, whoever is testing, whenever they
test, it is done in a test environment, NOT in the dev environment.

Slide 4

The test environment is one that fairly closely mimics the production environment.
It has the same versions of software, down to patch levels, and the same sets of permissions, file
structures, and so on.

The test environment may not scale like production, but, from the perspective of the
software/hardware footprint, it will look exactly like production.
The purpose of the test environment is to enable a system to be fully tested prior to being deployed into
production.

Slide 5

The staging environment is an optional environment. It is commonly found when there are multiple
production environments. After passing testing, the system moves into staging. It can then be deployed
to the different production systems. The primary purpose of staging is as a sandbox between testing and
production. One method of deployment is a staged deployment where software is deployed to part of
the enterprise and then the process is paused to watch for unforeseen problems. If there are no
problems, deployment continues to update more and more production systems. This helps to limit the
impact of errors that are only revealed once in production (which is also why the test environment tries
to be as similar to production as possible).

Slide 6

Production is the environment where the systems work with real data, doing the real business that the
real system is supposed to really perform.
This is an environment where there are by design virtually no changes, except as approved and tested
through the system’s change management process.

Slide 7

Thank you and take care.

Change Management: Secure Baseline

Slide 1

Howdy! In this video, we introduce baselining.

Slide 2

To secure the software on a system effectively and consistently, you must take a structured and logical
approach.

This starts with an examination of the system’s intended functions and capabilities to determine what
processes and applications will be housed on the system.

As a best practice, anything that is not required for operations should be removed or disabled on the
system.

Then all the appropriate patches and configurations should be applied to protect and secure it.

This becomes the system’s secure baseline.

Slide 3

Terminology may differ between perspectives, but there are four general phases of change the process
of establishing software’s base security state is called baselining and the resulting product is a security
baseline that allows the software to run safely and securely.
When it comes to security, software and hardware can be interdependent and so must be considered
together.
Once a particular SW+HW combination has been baselined, similar systems can be configured with the
same baseline to achieve the same level of security.
Uniform baselines are critical in large-scale operations because maintaining separate configurations and
security levels for many machines is very resource intensive.

Slide 4

After administrators have finished patching, securing, and preparing a system, they often create an
initial baseline configuration.
This represents a secure state for the system or network device and a reference point for the software
and its configuration.
This information establishes a reference that can be used to help keep the system secure by establishing
a known-safe configuration.
If this initial baseline can be replicated, it can also be used as a template when similar systems and
network devices are deployed.

Slide 5

Thank you and take care.

Change Management: Sandboxing

Slide 1

Howdy! In this video, we briefly discuss sandboxing in relation to change management.

Slide 2

Sandboxing refers to the quarantine or isolation of a system from its surroundings.

It has become standard practice for some programs with an increased risk surface to operate within a
sandbox, limiting the interaction with the CPU, memory, and other processes, which prevents aberrant
behavior from affecting the OS or other programs on the system.

With respect to change management, sandboxing is useful for the configuration control and auditing
phases.

Virtualization and containers can be used as a form of sandboxing with respect to an entire system.

You can build a VM or container, test something inside it, and, based on the results, make a decision
with regard to security, stability, or whatever concern was present.

This is not a foolproof method because it is possible for malware to detect that they are in a VM or a
container and choose not to misbehave while being watched so closely. So, a solution which is
becoming quite popular is to run all applications in their own sandboxes.

Slide 3

Thank you and take care.

Change Management: Integrity Measurement

Slide 1

Howdy! In this video, we briefly introduce integrity measurement for change management.

Slide 2

Integrity measurement is the measuring and identification of changes to a specific system away from an
expected value.

From the simple changing of data as measured by a hash value to the TPM-based integrity measurement
of the system boot process and attestation of trust, the concept is the same: securely store a hash or
other keyed value representing expected behavior, and then at the time of concern, take a
measurement and calculate the appropriate function and compare the two values. If the values
mismatch (or are too far apart), then something bad probably happened and the system might not be in
a safe state.

In the case of a TPM-mediated system, where the TPM chip provides a hardware-based root of trust
anchor, the system is specifically designed to calculate hashes of a system and store them in the
Platform Configuration Register (PCR). This register can be read later and compared to a known or
expected value. If the values differ, that means there is a trust violation. Certain BIOSs, UEFIs, and boot
loaders can all work with the TPM chip in this manner, providing a means of establishing a trust chain
during system boot. This is useful for the configuration audit phase of change management.

Slide 3

Thank you and take care.

	Transcript_cybr201_M15_T01_Why_change_management
	Change Management: Why change management?
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

	Transcript_cybr201_M15_T02_Seperation_of_Duties
	Change Management: Separation of Duties
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	Transcript_cybr201_M15_T03_Elements_of_change_management
	Change Management: Elements of Change Management
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	Transcript_cybr201_M15_T04_Implementing_Change_Management
	Change Management: Implementing Change Management
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

	Transcript_cybr201_M15_T05_Purpose_of_the_change_control_board
	Change Management: The Purpose of the Change Control Board
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Transcript_cybr201_M15_T06_CMMI
	Change Management: The Capability Maturity Model Integrations
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

	Transcript_cybr201_M15_T07_Environments
	Change Management: Environments
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Transcript_cybr201_M15_T08_Secure_Baseline
	Change Management: Secure Baseline
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

	Transcript_cybr201_M15_T09_Sandboxing
	Change Management: Sandboxing
	Slide 1
	Slide 2
	Slide 3

	Transcript_cybr201_M15_T010_Integrity_Measurement-2
	Change Management: Integrity Measurement
	Slide 1
	Slide 2
	Slide 3

