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Abstract

We consider observational studies with data spread over two files. One file includes

the treatment, outcome, and some covariates measured on a set of individuals, and

the other file includes additional covariates measured on a partially intersecting set

of individuals. In absence of direct identifiers, researchers typically estimate causal

effects in two stages: construct a linked database with probabilistic record linkage, then

apply causal estimators on the linked data. This approach does not take advantage

of relationships among the variables to improve the linkage quality. It also does not

propagate uncertainty from imperfect linkages to the causal inferences. We address

these shortcomings via a Bayesian joint modeling framework for simultaneous causal

inference and probabilistic record linkage. The Markov chain Monte Carlo sampler

generates multiple plausible linked data files as byproducts. We use these datasets for

multiple imputation inferences with two causal estimators, one regression-adjusted and

the other unadjusted, based on propensity score overlap weights. Using simulations

and data from the Italian Survey on Household Income and Wealth, we show that the

joint model with both estimators can improve the accuracy of estimated treatment

effects compared to analogous two stage procedures. Supplementary material contains

additional details about the causal estimators and additional simulation results.
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1 Introduction

In many settings, researchers may be able to enhance the validity of causal inferences by

using covariate information that is available across two databases. For example, in a causal

study of a health intervention, a researcher with access to study subjects’ health records may

seek to account for additional causally-relevant covariates by linking subjects to their records

in educational or financial databases. Similarly, in a causal study of a policy intervention, a

researcher may seek to link study subjects from some survey to their records in administrative

databases. These examples illustrate the scenario of interest in this article: one file contains

the outcome variable, the treatment status and some causally-relevant covariates for a set of

study subjects, and a different file contains additional causally-relevant covariates on some

subset of the study subjects and other individuals.

When perfectly measured unique identifiers like social security numbers or patient IDs

are available in both files, it is reasonably straightforward to link individuals across the

files. However, often researchers do not have access to such direct identifiers. They may be

missing from one or both files, or they may not be available due to privacy restrictions. In

such situations, researchers have to link the files based on indirect identifiers, such as names,

birth dates and address information. To do so, many researchers turn to probabilistic record

linkage methods, often based on variants of the framework developed by Fellegi and Sunter

(1969), which we review in Section 2.2.

Typically, researchers perform causal inference with linked files in a two-stage process, i.e.,

probabilistic record linkage is used to construct a single file comprising linked records, and

then causal inference carried out on the linked file. This two-stage approach has two main

drawbacks. First, the record linkage step does not take advantage of relationships among

the variables in the two files. Several authors (e.g., Gutman et al., 2013; Dalzell and Reiter,

2018; Steorts et al., 2018; Tang et al., 2020) have shown that leveraging these relationships

in fact can improve the quality of the linkages. Second, the two-stage framework does not
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propagate uncertainty arising from imperfect linkages to the causal inferences.

In this article, we address these shortcomings with a Bayesian joint modeling framework

to perform simultaneous causal inference and probabilistic record linkage. To fix ideas, let

File B contain the outcome variable, treatment status and some causally-relevant covariates

on a set of individuals. Let File A contain an additional set of causally-relevant covariates

measured on a different set of individuals, some of whom are in File B and some of whom

are not. We specify models for (i) the conditional distribution of the outcome variable given

the treatment status and all covariates, which we refer to as the outcome model, (ii) the

conditional distribution of the treatment status given all covariates, which we refer to as the

propensity score model, and (iii) the conditional distribution of the covariates in File B given

the covariates in File A, which we refer to as the covariate model. We couple these with a

probabilistic model for the unknown linkage statuses, i.e., which record pairs are links and

which are not. We estimate the model using a Markov chain Monte Carlo (MCMC) sampler,

which results in many draws of plausibly linked data files. In each plausibly linked dataset,

we estimate the treatment effect using some causal estimator and combine the results using

multiple imputation (Rubin, 1987). For the sake of illustrating this joint modeling approach,

we estimate a weighted average treatment effect (WATE, Hirano et al., 2003) using the

propensity score overlap weights of Li et al. (2018). These have appealing features for causal

inference, which we summarize in Section 2.1. We note that analysts could replace the

overlap weights estimators with any other causal estimator.

Our work contributes to existing methods for simultaneous record linkage and statistical

inference (e.g., Scheuren and Winkler, 1993; Lahiri and Larsen, 2005; Chipperfield et al.,

2011; Tancredi and Liseo, 2011; Kim and Chambers, 2012; Gutman et al., 2013; Ventura

and Nugent, 2014; Dalzell and Reiter, 2018; Sadinle, 2018; Solomon, 2019; Tancredi et al.,

2020; Tang et al., 2020), though none of these works consider causal inference as the analysis

goal. Heck Wortman and Reiter (2018) present a version of simultaneous causal inference

and record linkage. They use point estimates of average causal effects from propensity score

stratification to determine the thresholds at which record pairs are declared links in a Fellegi
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and Sunter (1969) algorithm. They do not use relationships among the variables to determine

the record pairs to consider as possible links in the first place, which our approach does.

Guha et al. (2020) propose a model for Bayesian causal inference and record linkage when

the treatment and all covariates reside in one file and the outcome in another. This different

setting demands different model specification tasks; for example, one need not include the

propensity score model nor the covariate model as components of a joint model. Additionally,

their framework relies on a fully Bayesian approach to causal inference, estimating an average

treatment effect by imputing counterfactual outcomes from the outcome model. Thus, both

the causal inference and record linkage quality are highly dependent on the quality of the

fit of the outcome model. In contrast, we apply causal estimators based on balancing scores

like the overlap weights, which reduces sensitivity to the fit of the outcome model.

The remainder of this article is organized as follows. In Section 2, we review the causal

inference and probabilistic record linkage procedures that form the basis of the methodology.

In Section 3, we present the joint model for simultaneous causal inference and probabilistic

record linkage. Here, we also describe the regression-adjusted estimator exploiting overlap

weights, which we believe itself has not appeared previously in the literature. In Section 4,

we present results of simulation studies comparing the joint model to two-stage approaches.

In Section 5, we illustrate the methodology using partially simulated data based on an Italian

household survey to assess the effect of debit card possession on household spending. Both

sets of simulation results demonstrate the potential of the joint model to improve on the

two-stage approaches in terms of both record linkage quality and causal inference accuracy.

Finally, in Section 6, we conclude with a discussion.

2 Background on Causal Inference and Record Linkage

We first define a few key concepts and assumptions related to the causal inference procedures

in Section 2.1. We describe the Bayesian probabilistic record linkage model that we utilize

in Section 2.2.
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2.1 Causal Inference: Overview of the Weighted Average Treat-

ment Effect and Propensity Score Overlap Weights

For any unit in the study population, let x represent its p × 1 vector of covariates. Let

z ∈ {0, 1} represent a binary treatment, where z = 1 and z = 0 indicate assignment to

the treatment and control conditions, respectively. Each unit has two potential outcomes

(Rubin, 1974), one under each value of the treatment. Let y(1) and y(0) be the potential

outcomes for the individual when z = 1 or z = 0, respectively. For any unit, we observe

only one of y(1) and y(0). Thus, the observed outcome for any unit can be written as

y = zy(1) + (1− z)y(0).

We make the following assumptions:

1. Stable unit treatment value assumption (SUTVA): The SUTVA contains two sub-

assumptions, no interference between units (i.e., the treatment applied to one unit

does not affect the outcome for another unit) and no different versions of a treatment

(Rubin, 1974).

2. Strong ignorability : Strong ignorability stipulates that (y(0), y(1)) ⊥ z|x for all units,

i.e., there is no confounded effect in treatment assignment, and that 0 < P (z = 1|x) <

1, i.e., the probability of assigning treatment is positive for every unit.

We also utilize propensity scores, defined as e(x) = P (z = 1|x), i.e., the probability

of being assigned a treatment given the covariate x. As shown by Rosenbaum and Rubin

(1983), the treatment assignment is independent of x given e(x) under SUTVA and strong

ignorability. Propensity scores are used in a variety of causal estimators, including matching,

stratification, inverse probability weighting, and overlap weighting, as we do here.

To compare outcomes under treatment and control, we first define the conditional average

controlled difference for a given x,

τ(x) = E[y|z = 1,x]− E[y|z = 0,x]. (1)
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Under strong ignorability, we have E[y(z)|x] = E[y|x, z], so that τ(x) in (1) becomes the

average treatment effect conditional on x, i.e., τ(x) = E[y(1)− y(0)|x].

To complete the definition of the causal estimand, we average τ(x) over some distribution

of x. The choice of the distribution corresponds to the region of the covariate space for the

target population of interest. For example, if one seeks to estimate the effect of the treatment

on the treated, the relevant covariate distribution is for treated cases. In this article, we follow

Li et al. (2018) and consider the overlap population, which is the population with the most

overlap in covariate values for the treatment and control groups.

Let f(x) be the marginal density of the covariates, defined with respect to a base mea-

sure ∆(x). Li et al. (2018) show that, for many populations typically of interest in causal

inference, the distribution of the covariates in the target population can be represented as

g(x) = f(x)t(x). For example, t(x) = e(x) when the target population comprises the

treated subjects, and t(x) = 1 when the target population is the entire study. Using this ex-

pression, causal estimands for different target populations can be expressed as special cases

of the WATE,

τ =

∫
τ(x)t(x)f(x)∆(dx)∫
t(x)f(x)∆(dx)

. (2)

We use τO to represent the WATE for the overlap population.

For any unit i in a study with n units, let w1i = t(xi)/e(xi), and let w0i = t(xi)/(1 −

e(xi)). A consistent estimator of τ for any target population is

τ̂ =

∑n
i=1w1iziyi∑n
i=1 w1izi

−
∑n

i=1w0i(1− zi)yi∑n
i=1 w0i(1− zi)

. (3)

For the overlap population, we set t(x) = e(x)(1− e(x)). The resulting estimator for τO

is the estimated average treatment effect for the overlap population, given by

τ̂O =

∑n
i=1(1− e(xi))ziyi∑n
i=1(1− e(xi))zi

−
∑n

i=1 e(xi)(1− zi)yi∑n
i=1 e(xi)(1− zi)

. (4)

The overlap weights are attractive in causal studies. They are bounded, as 0 < e(xi) < 1),
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and thus τ̂O is not affected by extreme weights. Compared to the common practice of

truncating weights or discarding units, the overlap weights are continuously defined and

avoid arbitrary choices of cutoffs for inclusion in the analysis. Under mild conditions, the

overlap weights leading to τ̂O minimize the asymptotic variance of the estimators of the form

in (3) within the class of balancing weights (Li et al., 2018).

Li et al. (2019) derive a closed form variance estimator of τ̂O using the empirical sandwich

method. Let

τ̂O,1 =

∑n
i=1(1− e(xi))ziyi∑n
i=1(1− e(xi))zi

(5)

τ̂O,0 =

∑n
i=1 e(xi)(1− zi)yi∑n
i=1 e(xi)(1− zi)

. (6)

The variance estimator is given by (nθ̂)−2
∑n

i=1 Î
2
i , where θ̂ =

∑n
i=1 e(xi)(1− e(xi))/n and

Îi = zi(yi − τ̂O,1)(1− e(xi))− (1− zi)(yi − τ̂O,0)e(xi)− (zi − e(xi))Ĥ
′
Ê
−1
xi (7)

Ĥ =
n∑
i=1

[zi(yi − τ̂O,1) + (1− zi)(yi − τ̂O,0)] e(xi)(1− e(xi))xi/n (8)

Ê =
n∑
i=1

e(xi)(1− e(xi))xix′i/n. (9)

We use τ̂O as a representative causal estimator to show the advantages of joint causal inference

and probabilistic record linkage framework. We also employ a regression-adjusted causal

estimator based on overlap weights, which we describe in Section 3.2.

2.2 Record Linkage

We develop methodology for bipartite record linkage scenarios (Sadinle, 2017). Under this

setting, each individual is recorded at most once within each file, i.e., no file contains any

duplicates. Let File B comprise nB records, for which we measure the outcome, treatment

status and pB causally-relevant covariates. Let File A comprise nA records, for which we

measure only a set of pA additional causally-relevant covariates not in File B. We assume that
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some of the same individuals are in File A and File B. Both files include a set of imperfect

linking variables that can be used to link records from File A and File B. Without loss of

generality, we assume that nA ≥ nB. Finally, let p = pA + pB.

For any individual i, let x
(A)
i = (x

(A)
i,1 , . . . , x

(A)
i,pA

)′ and x
(B)
i = (x

(B)
i,1 , . . . , x

(B)
i,pB

)′ be the

values of the covariates that are present in File A and File B, respectively; and, let yi be the

observed outcome and zi be the treatment status. We directly observe x
(A)
i for all records

in File A, but not (x
(B)
i , yi, zi). Likewise, we directly observe (x

(B)
i , yi, zi) for all records in

File B, but not x
(A)
i .

Following Sadinle (2017), we introduce d = (d1, . . . , dnB)′ for the records in File B to

encode a particular linkage of the two files. Specifically, for any record j in File B, let

dj =

 i, if record i in File A and record j in File B is a match

nA + j, if record j in File B has no match in File A.

In the context of bipartite matching, we enforce dj 6= dj′ for any j 6= j′.

Suppose we have F imperfect linking variables, also referred to as fields. For each pair

of records (i, j) in File A×File B, we define an F -dimensional vector γij = (γ1,ij, . . . , γF,ij)
′,

where γf,ij is the score reflecting the similarity in the field f for the record pair. Here, we

use binary comparisons, i.e., γf,ij = 1 when the records i and j have the same value of field

f , and γf,ij = 0 otherwise. One can also use ordered comparisons with multiple levels to

capture the strength of agreement in the fields, which can be especially useful for string fields

like names.

Probabilistic record linkage is most effective when (i) records that refer to the same

entity have similar values for most linking variables, and (ii) records that refer to different

entities have very different values for most linking variables. When these are not the case,

for example, the amount of recording error in the files is large, the record linkage task may

be practically infeasible.

Following Fellegi and Sunter (1969) and related literature, we assume that γij is a random

realization from a mixture of two distributions, one for true links and the other for nonlinks.

8



We have

γij|(dj = i)
iid∼ g(θm), γij|(dj 6= i)

iid∼ g(θu), (10)

where θm = (θ1,m, . . . , θF,m)′ and θu = (θ1,u, . . . , θF,u)
′ are parameters specific to each mixture

component. Following common practice in probabilistic record linkage, for computational

convenience we posit conditional independence across fields to compute,

g(θm) = P (γij|dj = i) =
F∏
f=1

P (γf,ij|dj = i) =
F∏
f=1

θ
γf,ij
f,m (1− θf,m)1−γf,ij (11)

g(θu) = P (γij|dj 6= i) =
F∏
f=1

P (γf,ij|dj 6= i) =
F∏
f=1

θ
γf,ij
f,u (1− θf,u)1−γf,ij . (12)

To specify a prior distribution on d with the constraint dj 6= dj′ for any j 6= j′, we

follow a construct used in the bipartite record linkage literature (e.g., Fortini et al., 2002;

Larsen, 2010; Sadinle, 2017). Let I(E) represent the indicator for an event E . We assume

I(dj ≤ nA) ∼ Ber(π), where π represents the proportion of matches expected a priori as a

fraction of the smaller file. We assume π ∼ Beta(απ, βπ). Marginalizing over π, the total

number of matches between File A and File B, given by oAB(d) =
∑nB

j=1 I(dj ≤ nA), is

distributed according to a Beta-binomial (nB, απ, βπ) distribution.

Conditional on the knowledge of which records in File B have a match, we assume all

possible bipartite matchings are equally likely. The final form of the prior distribution of d,

marginalizing over π, is given by

P (d|απ, βπ) =
(nA − oAB(d))!

nA!

B(oAB(d) + απ, nB − oAB(d) + βπ)

B(απ, βπ)
, (13)

where B(·) denotes the Beta function, and B(απ, βπ) = Γ(απ)Γ(βπ)
Γ(απ+βπ)

. The choice of the hyper-

parameters απ and βπ provides prior information on the number of intersections between the

two files. Finally, the parameters θf,m and θf,u follow i.i.d. Beta(a, b) distributions for all

f = 1, . . . , F . We discuss the specific choices of απ, βπ, a and b in Section 3.1.
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3 Bayesian Joint Model for Causal Inference and Record

Linkage

We now present a Bayesian joint modeling framework for simultaneous causal inference and

probabilistic record linkage. We begin by presenting the model in general form, followed by

an illustrative model specification for normally distributed data.

The joint model requires sub-models relating the outcomes, treatment indicator, and

covariates in File B to the covariates in File A. The contribution to the likelihood of a

record in File B changes depending on whether it is linked to a record in File A, or not.

For any record j in File B linked to a record i in File A, we specify the joint distribution

of (yj, zj,x
(B)
j |x

(A)
i ) through an outcome model, a propensity score model and a covariate

model, while for a record j in File B not linked to any record i in File A, we specify

the joint distribution of (yj, zj,x
(B)
j ). For the outcomes, for any record j in File B linked

to record i in File A, we specify the conditional distribution, yj|(x(A)
i , zj,x

(B)
j ) denoted as

f1(yj |x(A)
i , zj,x

(B)
j ,θym). For any record j in File B that does not have a link in File

A and hence missing x
(A)
i , we write yj|(x(B)

j , zj) as f2(yj |x(B)
j , zj,θyu). Similarly, for the

treatment indicator, for any record j linked to some record i, we model the propensity score

with g1(zj |x(B)
j ,x

(A)
i ,θzm). We model the propensity score for any non-linked record j with

g2(zj|x(B)
j ,θzu). In typical applications, g1(·) and g2(·) are logistic or probit regressions.

Finally, we use h1(x
(B)
j |x

(A)
i ,θxm) to represent the conditional distribution of x

(B)
j |x

(A)
i when

record j links to record i, and h2(x
(B)
j |θxu) to represent the marginal distribution of x

(B)
j

when record j is not linked to any record in File A.

Let y = (y1, . . . , ynB)′ and z = (z1, . . . , znB)′ be the nB × 1 vectors of outcomes and

treatment indicators for the records in File B. Let X(A) = [x
(A)′

1 : · · · : x(A)′
nA ]′ be a nA × pA

dimensional matrix of covariates in File A, and X(B) = [x
(B)′

1 : · · · : x
(B)′
nB ]′ be a nB × pB

dimensional matrix of covariates in File B. For any record j in File B, the contribution to
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the joint likelihood function is given by

LABj =

 f1(yj|x(A)
i ,x

(B)
j , zj,θym) g1(zj|x(A)

i ,x
(B)
j ,θzm) h1(x

(B)
j |x

(A)
i ,θxm), when dj = i

f2(yj|x(B)
j , zj,θyu) g2(zj|x(B)

j ,θzu) h2(x
(B)
j |θxu), when dj 6= i, for all i.

(14)

Thus, the joint likelihood incorporating the contributions from (14) and the linkage model

in (10) and (11) is

L(θym,θzm,θxm,θyu,θzu,θxu,θm,θu,d|{γij : 1 ≤ i ≤ nA, 1 ≤ j ≤ nB},y, z,X(A),X(B)) ∝

∏
(i,j):
dj=i

LABj
∏
j:dj 6=i
∀i

LABj
∏
i,j

{ F∏
f=1

θf,m
γf,ij(1− θf,m)1−γf,ij

}I(dj=i)

×

{
F∏
f=1

θf,u
γf,ij(1− θf,u)1−γf,ij

}I(dj 6=i)


I(dj 6= dj′ , whenever j 6= j′). (15)

The posterior distribution of the parameters can be obtained from

L(θym,θzm,θxm,θyu,θzu,θxu,θm,θu,d|{γij : 1 ≤ i ≤ nA, 1 ≤ j ≤ nB},y, z,X(A),X(B))×

P (d|απ, βπ)×
F∏
f=1

θf,m
a−1(1− θf,m)b−1 ×

F∏
f=1

θf,u
a−1(1− θf,u)b−1×

Π(θym,θzm,θxm,θyu,θzu,θxu). (16)

This modeling strategy is sufficiently general to incorporate several choices of f1, f2, g1, g2,

h1, and h2. For the sake of illustration, we present a specific choice of these distributions in

the sections below. We also use this model in the empirical investigations.

3.1 Illustrative Specification

We now illustrate the general modeling strategy with specific choices of f1, f2, g1, g2, h1, and

h2. We also discuss the prior distributions and the choices of hyper-parameters that we use

throughout the simulations.
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3.1.1 Outcome Models, Propensity Score Models and Covariate Models

For the outcomes, we assume linear regressions for f1 and f2, such that

yj = α(0)
ym + zjα

(1)
ym + x

(A)′

i α(2)
ym + x

(B)′

j α(3)
ym + εj, εj ∼ N(0, σ2

m) (17)

for records with links, and

yj = α(0)
yu + zjα

(1)
yu + x

(B)′

j α(2)
yu + εj, εj ∼ N(0, σ2

u) (18)

for records without links. As noted previously, we do not have the x
(A)
i for the non-links.

For the propensity score model, we assume logistic regressions for both g1 and g2 with

Pr(zj = 1|x(A)
i ,x

(B)
j ,θzm) =

exp(α
(0)
zm + x

(A)′

i α
(1)
zm + x

(B)′

j α
(2)
zm)

1 + exp(α
(0)
zm + x

(A)′

i α
(1)
zm + x

(B)′

j α
(2)
zm)

, θzm = (α(0)
zm,α

(1)′

zm ,α
(2)′

zm )′

(19)

for records with links, and

Pr(zj = 1|x(B)
j ,θzu) =

exp(α
(0)
zu + x

(B)′

j α
(1)
zu )

1 + exp(α
(0)
zu + x

(B)′

j α
(1)
zu )

, θzu = (α(0)
zu ,α

(1)′

zu )′ (20)

for records without links.

Finally, we use a multivariate normal regression for the conditional distribution of x
(B)
j |x

(A)
i

when dj = i, i.e., the covariate model, so that

x
(B)′

j = η′xm + x
(A)′

i Bxm + εij, εij ∼ N(0,Σxm), (21)

where Bxm is a pA × pB dimensional matrix, ηxm is a pB-dimensional vector and Σxm is a

pB × pB covariance matrix. For records without links, we assume x
(B)
j follows a multivariate

normal distribution with mean µxu (a pB-dimensional vector) and covariance matrix Σxu (of
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dimension pB × pB).

3.1.2 Prior distributions and Choice of Hyper-parameters

In this illustrative model specification and in our simulation studies, we assign all regression

coefficients in the outcome model and in the propensity score model i.i.d. N(0,1) prior dis-

tributions. We assign σ2
xm and σ2

xu i.i.d. Inverse-Gamma (aσ, bσ) priors. For the covariate

model, we set a priori Π(Bxm,Σxm) = Π1(Bxm|Σxm)Π2(Σxm), where Bxm|Σxm follows a

matrix normal distribution MNpA,pB(0, I,Σxm) and Σxm follows an IW(ν, I) prior, where

IW(ν, I) denotes an Inverse-Wishart prior with parameters ν and the identity matrix. The

prior specification is completed by assigning an IW(ν, I) prior on Σxu. We set a = b = 1,

aσ = bσ = 1, απ = βπ = 1, ν = 10. The choice of aσ = bσ = 1 leads to Inverse-Gamma

prior distributions which are sufficiently non-informative, while απ = βπ = 1 ensures equal

prior probabilities for a pair of records being a link or a non-link. The value of ν = 10

implies that the prior distributions on Σxm and Σxu are sufficiently concentrated around

the identity matrix. Moderate perturbations of these hyperparameters lead to practically

indistinguishable results in our simulation studies.

Summaries of the posterior distribution cannot be computed in closed form. However,

the full conditional distributions for all the parameters are available. For the illustrative

model, they correspond to standard families. Thus, posterior computation can proceed

through a MCMC algorithm. Details of the full conditional distributions are provided in the

supplementary material.

The MCMC sampling also offers inferences on the record linkages. For j = 1, . . . , nB,

let (d
(1)
j , . . . , d

(L)
j ) be the L post burn-in MCMC iterates of dj. For each j, we empirically

estimate P (dj = q|−) using the proportion of post burn-in samples where dj takes the

value q, i.e., P̂ (dj = q|−) = #{l : d
(l)
j = q}/L, for q ∈ Jj = {1, . . . , nA, nA + j}. When

1 ≤ q∗ = argmaxq∈Jj P̂ (dj = q|−) ≤ nA, we conclude that the record q∗ in File A is the

most likely match for the record j in File B; denote this d̂j = q∗. On the other hand, when

q∗ = nA + j, we conclude that most likely record j in File B does not match to any record in
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File A. In addition to posterior modes, our framework can estimate the posterior probability

of linkage between any record pair. See Sadinle (2017) for further discussion of using the

posterior probabilities to determine links.

3.2 Incorporating the Overlap Weights Estimator

The plausibly linked files also provide means to estimate a WATE. When each record in File

B has a link in File A, the WATE is defined over the full study population in File B. When

some records in File B do not have links in File A, the WATE is defined over a subset of the

study population in File B, which becomes the target population. Specifically, we define the

target population as the overlap population among records that can be linked. Using the

notation in Section 2.1, the WATE for this target population, which we denote as τO,linked,

can be obtained by letting t(x) = e(x)(1−e(x))a(x) in (2), where a(x) = 1 when the record

corresponding to covariate x is linkable and a(x) = 0 when it is not linkable. This can be

a reasonable target population for causal inferences based on File A and File B, as it is the

only set of individuals for which we could observe their full set of outcomes, treatments, and

covariates.

An important question, however, is when we can generalize τO,linked to treatment effects

for broader populations. Here, we focus on generalizing to τO, which is based on the full

overlap population based on File A. This is the subset of records in File A that results from

applying the overlap weights defined in Section 2.1, but computed with the full x for all

individuals. Of course, in our setting we do not observe the full overlap population, as we

can know x only for linkable records. However, we can generalize τO,linked = τO when the

distribution of the full set of x is the same for linkable and non-linkable records; that is,

g(x) when a(x) = 1 is the same as g(x) for the full overlap population. A special case of

this scenario arises when all records in the full overlap population are linkable. We also can

generalize τO,linked = τO in the case where τ(x) = τ for all x in File A. Of course, as with

any observational study, generalizing treatment effects beyond the study population requires

additional assumptions, such as constant treatment effects for all individuals (Hill, 2011).
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We focus our attention here on scenarios where τO,linked = τO and discuss estimators for

τO,linked. For the l-th MCMC iterate after burn-in, let M(l) indicate the indices of record

pairs in File A and File B that are linked, i.e., M(l) = {(i, j) : d
(l)
j = i, i ≤ nA}. Let

(θ(l)
ym,θ

(l)
zm,θ

(l)
yu,θ

(l)
zu) be the l-th post burn-in iterate of (θym,θzm,θyu,θzu). For the l-th

iteration, we first compute an estimate of the propensity score for all observations in File B

that are matched with some observation in File A. Specifically, if (i, j) is a matched pair,

then the estimated propensity score for the (i, j)th pair is given by ê
(l)
i,j = e(x

(A)
i ,x

(B)
j ,θ(l)

zm).

Following (4), define the lth post burn-in iterate of τ̂O as

τ̂
(l)
O =




∑
(i,j)∈M(l)

(1− ê(l)
i,j)zjyj∑

(i,j)∈M(l)

(1− ê(l)
i,j)zj

−


∑
(i,j)∈M(l)

ê
(l)
i,j(1− zj)yj∑

(i,j)∈M(l)

ê
(l)
i,j(1− zj)


 . (22)

We compute (τ̂
(1)
O , . . . , τ̂

(L)
O ) and use τO =

∑L
l=1 τ̂

(l)
O /L as the point estimator of τO. To

estimate the variance of τO, we use multiple imputation formulae with all L iterates (Hu

et al., 2013), computing

V̂ar(τO) =
1

L

L∑
l=1

U
(l)
O +

(
1 +

1

L

)
1

L− 1

L∑
l=1

(τ̂
(l)
O − τO)2. (23)

Here, each U
(l)
O is computed using (7), plugging in the values from the l-th iterate in the

expression. Assuming large L, inferences are based on a normal distribution with mean τO

and variance V̂ar(τO).

As noted previously, the generality of the joint modeling framework allows analysts to

use a causal estimator of their choice with the plausibly linked data files. For the purposes

of illustrating this flexibility, we now present a regression-adjusted estimator based on the

overlap weights. As this estimator has not been discussed previously in the literature, we

discuss some of its properties in the supplementary material.

Suppose we have a model for the outcome; for illustrative purposes, we use the model in

15



(17). Let the mean function of the outcome under the model, evaluated at the l-th MCMC

iterate of the parameters, be µ̂
(l)
i,j(ζ) = µ(zj = ζ,x

(A)
i ,x

(B)
j ,θ(l)

ym), where ζ = 0, 1, represent

control and treatment, respectively. For example, with a linear regression as the outcome

model, the mean function is the predicted value of the outcome using the linked data and

parameter estimates in iteration l. For any linked record pair (i, j) at the l-th iteration, the

residual for the fitted outcome model is R̂
(l)
i,j = yj − µ̂(l)

i,j(zj,x
(A)
i ,x

(B)
j ,θ(l)

ym). The regression-

adjusted estimator for the l-th iteration is defined as

τ̂
(l)
O,r =

{∑
(i,j)∈M(l)(1− ê(l)

i,j)zjR̂
(l)
i,j∑

(i,j)∈M(l)(1− ê(l)
i,j)zj

−
∑

(i,j)∈M(l) ê
(l)
i,j(1− zj)R̂

(l)
i,j∑

(i,j)∈M(l) ê
(l)
i,j(1− zj)

}

+

∑
(i,j)∈M(l)

(
µ̂

(l)
i,j(1)− µ̂(l)

i,j(0)
)
ê

(l)
i,j(1− ê

(l)
i,j)∑

(i,j)∈M(l) ê
(l)
i,j(1− ê

(l)
i,j)

. (24)

We compute (τ̂
(1)
O,r, . . . , τ̂

(L)
O,r) and use τO,r =

∑L
l=1 τ̂

(l)
O,r/L as the new estimator of τO.

To estimate the variance of τO,r, we use multiple imputation and compute

̂Var(τO,r) =
1

L

L∑
l=1

U
(l)
O,r +

(
1 +

1

L

)
1

L− 1

L∑
l=1

(τ̂
(l)
O,r − τO,r)

2. (25)

We derive U
(l)
O,r as an empirical sandwich variance estimator based on the theory of M-

estimation. To save space, we present the expression for U
(l)
O,r and its derivation in the

supplementary material. We use normal-based inferences for τO with mean τO,r and variance

̂Var(τO,r).

3.3 Useful Modeling Simplifications

Using all the conditional distributions in (14) offers a path to take advantage of as much

information as possible from File A. However, it may be convenient to assume that variables

in File B are independent of subsets of variables in File A to simplify model specification and

reduce computational overhead. The goal of modeling the relationships among the study

variables in File B and File A is to enhance the quality of the probabilistic record linkage.
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Once we obtain links, these models are largely irrelevant, as we apply a causal estimator

on each plausibly linked file. Thus, it is possible for the conditional distributions to be

mis-specified yet still useful, as we now describe.

One simplification is to set the outcome y to be conditionally independent of x(A). Effec-

tively, this eliminates the contribution of the model for y|x from (14). Thus, analysts who

make this assumption need not specify a model for y when obtaining draws of (d
(1)
j , . . . , d

(L)
j ),

for j = 1, . . . , nB. This accords with the “design-first” philosophy of causal inference (Ru-

bin, 2008), which argues that one should avoid using the outcomes when manipulating the

covariates, such as when computing propensity scores or linking records. Using the frame-

work with this simplification still can improve linkage quality. For example, if one can find

covariates in File B that are highly correlated with some function of the variables in File A,

the joint model will be able to use that information to improve linkage accuracy.

Another simplification is to assume x(B) is independent of x(A). This eliminates the

contribution from the model for x(B)|x(A) from (14) and hence eliminates the need to model

this conditional distribution. When pB or pA is large, or when the covariates in File B have

complicated distributions, this simplification can reduce modeling and computational effort

substantially. Alternatively, analysts may be able to posit covariate models for fewer than pB

and pA variables. Again, as the goal of the joint model is solely to augment the probabilistic

record linkage model with information to assist in linking records, such simplifications still

can provide benefits, even if they are based on faulty assumptions.

As with any model specification, it is good practice to check the quality of model fit.

This can be challenging, particularly for relationships of variables across the two files. One

possibility is to use pairs known a priori to be certain links, when such pairs are available. For

example, one can estimate the posited outcome, propensity score, and covariate models on

these certain links, and perform the usual model checking procedures to arrive at reasonable

models. These certain links also could be used to identify variables across the two files

that have strong relationships, so as to suitably discard variables in File A that offer little

information about the variables in File B. When an adequate number of certain links are
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not available for model checking, one can use record pairs that have very high probability

of being links according to standard probabilistic record linkage algorithms such as that of

Fellegi and Sunter (1969).

Another model checking tool is to generate replicate datasets from the joint model using

draws of model parameters (Fosdick et al., 2016). Analysts can compare results from these

replicates to those in the observed data, akin to posterior predictive model checking. For ex-

ample, one could examine the replicated and observed distributions of the outcome variable;

if they are dissimilar in appearance, it suggests the outcome model might be improved.

4 Simulation Studies

We illustrate the performance of the joint modeling strategy using repeated sampling simula-

tions. We also compare the performance of the joint model to the performance of estimators

based on a two stage approach. For simplicity, we assume that both files have the same num-

ber of covariates and that all covariates are important in the outcome and the propensity

score models. We present additional simulations in the supplementary material where data

are generated assuming that the two files have different number of predictors (i.e., pA 6= pB)

and both the propensity score and outcome models include unimportant predictors.

4.1 Simulated Data Generation

We work with the RLdata10000 data from the R package RecordLinkage (Sariyar and Borg,

2010). These data comprise an artificial population of 10000 records with birth years, birth

months, birth dates, first names and last names. Among these, there are 1000 individuals

for whom the values of these variables have been duplicated and then randomly perturbed,

introducing errors into these potential linking variables.

The RLdata10000 data do not include covariates, treatments, or outcomes. We generate

values of these for each of the 9000 unique individuals in the RLdata10000 file. In particular,

for each individual k, we generate p = 4 covariates, (x1,k, x2,k, x3,k, x4,k) as follows. We sample
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(x1,k, x2,k)
′ from a bivariate normal distribution with mean zero, marginal variance 1 for each

component, and covariance ρ(0) = 0.2. Here and for all parameters to follow, the superscript

0 emphasizes that the parameter value is from the true data generating mechanism. For

each simulated x1,k and x2,k, we generate (x3,k, x4,k)
′ from a bivariate normal distribution

with mean (x1,k, x2,k), marginal variance 1 for each component, and correlation also equal to

ρ(0). This represents a modest amount of correlation among the predictors.

We simulate each individual’s binary treatment assignment zk from a Bernoulli distribu-

tion such that

P (zk = 1|xk) =
eα

(0)
0 +

∑p
l=1 α

(0)
l xl,k

(1 + eα
(0)
0 +

∑p
l=1 α

(0)
l xl,k)

, (26)

where (α
(0)
0 , α

(0)
1 , α

(0)
2 , α

(0)
3 , α

(0)
4 ) = (1, 1.5,−1, 2,−3). We generate each individual’s outcome

yk from

yk = β
(0)
0 +

p∑
l=1

β
(0)
l xl,k + β

(0)
C zk + εk, εk

i.i.d.∼ N(0, σ(0)2), (27)

where (β
(0)
0 , β

(0)
1 , β

(0)
2 , β

(0)
3 , β

(0)
4 ) = (1,−1, 2,−3,−2). We consider σ(0)2 ∈ {1, 4, 16}. These

correspond to R2 values of (.95, .82, .55), respectively. Thus, we can evaluate the performance

of the methods under differing strength of association among the outcomes and the remaining

variables. Since (27) implies τ(x1,k, x2,k, x3,k, x4,k) = β
(0)
C , we have τO,linked = τO = 5.

We construct File A and File B by putting subsets of records into two files. Every record

in File A has measured (x1, x2), and every record in File B has measured the outcome,

treatment, and (x3, x4). Both files include three imperfect linking variables: birth year, birth

month and birth date. We do not use the first names and last names in these simulations,

reflecting the common setting where names are unavailable. When string fields like names

are used for linking, one can construct comparison vectors from metrics like the Jaro-Winkler

or the Levenshtein similarity measure (Jaro, 1989). For ease of simulation, we set the sizes

of File A and File B to be nA = nB = 1000, although the method does not require nA = nB.

In any simulation, we randomly sample a subset of the 1000 individuals with duplicates.
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We put these records in File A and their duplicates in File B. The number of these intersecting

individuals is denoted by nAB, which is varied to be 200, 500, or 800. In this way, we can

evaluate the performance of the methods under different amounts of intersecting records. For

the remaining (nA−nAB) records in File A, we randomly choose (nA−nAB) records from the

8000 individuals without duplicates, discarding their treatments, outcomes, and x(B), and

keeping only x(A) and the linking variables. To ensure that the non-intersecting records of

File A and File B correspond to different individuals, we set aside these (nA − nAB) records

from the 8000 records. To add the remaining (nB − nAB) records to File B, we randomly

choose (nB − nAB) records from the remaining (8000− nA + nAB) records, discarding x(A),

and keeping the treatments, outcomes and x(B), along with the linking variables.

When estimating the models, we let the MCMC chains run for 2000 iterations. We

discard the first 1500 as burn-in, and draw inference on both the causal effects and record

linkages based on the post burn-in iterates. We assess convergence of the Markov chains

by observing the trace-plots of 10 randomly chosen parameters from the outcome and the

propensity score models for the linked and unlinked data, which show satisfactory mixing.

The average effective sample size for all parameters of the outcome model is 307 (out of 500

iterates).

We compare the performance of the joint model with estimators from a two-stage model

as follows. First, we fit the bipartite Bayesian record linkage model from Section 2.2 without

using the covariates, treatments, or outcomes. Each of the L post burn-in samples of d

corresponds to a plausibly linked database. In each plausibly linked database, we compute

the maximum likelihood estimates (MLEs) of the coefficients in the outcome and propensity

score models, which we substitute into (22) and (24). As the two-stage point estimates, we

compute τO =
∑L

l=1 τ̂
(l)
O /L and τO,r =

∑L
l=1 τ̂

(l)
O,r/L. We also estimate their variances based

on (23) and (25). Since this model links the files without using information on the outcomes,

treatments, and covariates, comparisons with it reveal if the sharing of information between

the record linkage and study variable models offers benefits.

We compare the performances of the joint and two-stage models in terms of both causal
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inference and record linkage using 100 replications. For linkage quality, we compute the

precision and the recall in each of the 100 replications. Following the notation in Section 2.2

and Section 3, in any replication, let d̂ be the point estimate of d = (d1, . . . , dnB)′. The

precision is the proportion of links that are actual matches. Let Aj = {d̂j = dj, d̂j ≤ nA}.

The precision is defined as
∑nB

j=1 I(Aj)/
∑nB

j=1 I(d̂j ≤ nA). The recall is the proportion of

actual matches that are determined as links,
∑nB

j=1 I(Aj)/
∑nB

j=1 I(dj ≤ nA). A perfect record

linkage procedure would result in precision and recall equal to one.

To assess the quality of the causal inferences, we report the averages and empirical

standard deviations of τO and τO,r over the 100 replications for both the joint and the

two-stage models. We also present the empirical coverage rates of multiple imputation 95%

confidence intervals (based on 100 replications) for each of these estimators. Finally, we

present the results for the causal estimators applied to the subsets of records that are true

links, i.e., when we have perfect record linkage. This provides baseline results to assess how

much accuracy is lost from imperfect linkages. As an extra benefit, it also allows us to assess

the properties of the regression-adjusted overlap weights estimator and its variance estimator

in settings where record linkage is not needed.

4.2 Simulation Results

The first three rows of Table 1 display the averages of the precision and recall over 100 repli-

cations of each of the three intersection scenarios with σ(0)2 = 1. In these three scenarios,

we observe a modest increase in precision and a sharp increase in recall as the number of

intersecting records increases for both the joint and the two-stage models. The joint model

dominates the two-stage model, with higher average precision and recall in all three simula-

tion scenarios. The differences in average recall are substantial and grow with the number of

intersecting records in the two files. Evidently, the joint model uses the relationships among

the variables in the two files to learn more accurately which records should be paired, as the

linkage variables are not sufficient by themselves to identify pairs as accurately.

The improved performance of the joint model over the two-stage model in terms of record
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Percentage of Precision Recall Precision Recall
Intersection σ(0)2 (Joint) (Joint) (Two-stage) (Two-stage)

20 1 0.78 0.69 0.75 0.56
50 1 0.87 0.81 0.77 0.62
80 1 0.87 0.94 0.77 0.78
80 4 0.77 0.87 0.77 0.78
80 16 0.76 0.86 0.77 0.78

Table 1: Simulated average precision and recall values for the joint and the two-stage models
over 100 replications of each scenario. Scenarios vary the number of intersecting records in
the two files or the outcome model variance σ(0)2. All Monte Carlo standard errors are 0.008
or less.

linkage has a positive impact on the estimation of the causal effect. The first three rows of

Table 2 display properties of τO and τO,r over the 100 replications of the three scenarios for

both joint and two-stage models. Table 2 also displays properties of these estimators when

applied to the perfectly linked records. For both estimators, the joint model accurately

estimates the true causal effect τO = 5 in all scenarios, with greatest deviation for the

scenario with only 20% intersection between two files. In contrast, the two-stage model

significantly underestimates the causal effect in all three scenarios. The joint model has

smaller empirical standard deviations than the two-stage model. The empirical standard

deviations also reveal the cost of imperfect linkages. They are higher for the joint model

and two-stage model than for the analysis with the perfectly linked data. As expected, the

empirical standard deviations decrease as the percentage of intersection between two files

increases. Finally, the empirical standard deviations are consistently higher for τO compared

to τO,r, suggesting benefits to using the regression-adjusted estimator.

We next vary the signal to noise ratios for the outcome model. Specifically, we consider

σ(0)2 ∈ {4, 16} in (27). Here, we perform simulation studies only for the 80% intersecting

records scenario, as this scenario gives each model its best chance to perform effectively.

The last two rows of Table 1 present the average precision and recall values corresponding to

the higher outcome model variances. Comparing the third row of Table 1 with the last two

rows, we find that the precision and recall values decline for the joint model as the regression
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Percentage of τO τO,r

Intersection σ(0)2 Joint Two-stage Perfect Joint Two-stage Perfect
20 1 4.58 (0.58) 3.42 (0.61) 4.86 (0.49) 4.78 (0.36) 3.51 (0.48) 4.95 (0.32)
50 1 4.92 (0.43) 3.84 (0.49) 5.05 (0.34) 4.92 (0.20) 3.81 (0.28) 4.96 (0.17)
80 1 4.93 (0.23) 3.97 (0.29) 5.07 (0.27) 4.96 (0.17) 3.99 (0.24) 5.02 (0.09)
80 4 4.89 (0.36) 3.91 (0.40) 4.93 (0.37) 4.88 (0.30) 3.88 (0.35) 4.98 (0.27)
80 16 4.64(0.39) 3.64(0.48) 4.78(0.46) 4.68(0.35) 3.67(0.40) 4.76(0.34)

Table 2: Simulated averages and standard deviations (in parentheses) of τO and τO,r for the
joint and the two-stage models, as well as the causal inferences based on the perfectly linked
data. Scenarios vary the numbers of intersecting records in the files or the outcome model
variance σ(0)2. Results in each scenario are based on 100 replications. Monte Carlo standard
errors, obtained by dividing each empirical standard deviation by 10, are all less than .08.

variance increases. As the predictive power of the covariates weakens, the outcome model

offers increasingly less information about the correct linkages. For the two stage model, the

average precision and recall values are unchanged (other than by small Monte Carlo errors)

when changing the outcome model variance. This is expected, since the record linkage in the

two-stage model is done independently of the outcomes, treatments, and covariates. Overall,

under both variance values, the joint model exhibits better performance than the two-stage

model in terms of recall and similar performance in terms of precision.

The last two rows of Table 2 present the simulation results for τO and τO,r in these

scenarios with larger outcome model variances. The joint model continues to estimate the

causal effect accurately, although with increased standard deviations, as expected. In com-

parison, the two-stage model continues to underestimate the causal effect. For these two

larger values of σ(0)2, the empirical standard deviations for τO,r trend smaller than those for

τO.

We next turn to the coverage rates for the multiple imputation 95% confidence intervals.

For the joint model, in all but the 20% intersection scenario, the intervals based on τO

cover in 100% of the replications; the 20% intersection scenario has a coverage of 99%.

The consistent over-coverage occurs because, in these simulations, the distribution of τ̂O

across the 100 replications is platykurtic rather than normally distributed. The coverage

rates for the intervals based on τO,r for the five scenarios are (91%, 96%, 98%, 99%, 99%) for
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the scenarios with, respectively, 20% intersection, 50% intersection, 80% intersection and

σ(0)2 = 1, 80% intersection and σ(0)2 = 4, and 80% intersection and σ(0)2 = 16 scenarios. In

contrast, the intervals for the two-stage approach demonstrate substantial under-coverage,

never rising above 41%. For both estimators, the intervals based on τO tend to be wider

than those based on τO,r. Finally, for both estimators, the lengths of the intervals decrease

steadily as overlap between the two files increases, reflecting reduced uncertainty in linkages.

The simulation results for the perfectly linked data also offer insight into the accu-

racy of the variance estimators for τ̂O and τ̂O,r. For the five scenarios, the coverage rates

when using τO based on the perfectly linked data are (97%, 97%, 96%, 98%, 98%), respec-

tively. And, the coverage rates when using τ̂O,r based on the perfectly linked data are

(95%, 96%, 96%, 97%, 98%), respectively. As shown in the supplemental material, the vari-

ance estimators for τ̂O and τ̂O,r for the perfectly linked data offer reasonable estimates of

the true variances, which results in close-to-nominal coverage rates. For the perfectly linked

data, the intervals based on τ̂O again tend to be wider than those based on τ̂O,r.

4.3 Illustrative Performances Under Model Simplifications

We assess the performance of the joint model under the two modeling simplifications sug-

gested in Section 3.3.

1. Strategy I: The fitted covariate model assumes that x
(B)
j is independent of x

(A)
i for

every linked pair of records i and j.

2. Strategy II: The fitted outcome model assumes that yj is independent of x
(A)
i given

x
(B)
j for every linked pair of records i and j.

We continue to generate the simulated data from the full model without any simplifications,

using the scenarios with σ(0)2 = 1 described in Section 4.1.

Table 3 summarizes the properties of the record linkages under each simplification. The

joint model generally maintains its advantage over the two-stage model on both precision and

recall, especially for scenarios with a higher intersection between the two files. However, the
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Percentage of Precision Recall Precision Recall
Strategy Intersection (Joint) (Joint) (Two-stage) (Two-stage)

20 0.74 0.63 0.75 0.56
I 50 0.83 0.68 0.77 0.60

80 0.88 0.91 0.77 0.78
20 0.76 0.64 0.75 0.55

II 50 0.77 0.72 0.76 0.61
80 0.82 0.84 0.77 0.78

Table 3: Summary of record linkage properties for simulations with simplifications for out-
come and covariate models. Results are simulated average precision and recall over 100
replications. All Monte Carlo standard errors are 0.014 or less.

precision and recall values for the joint model tend to be lower than those in the first three

rows of Table 1, reflecting the loss in accuracy for using incorrect, simplifying assumptions.

As evident in Table 4, this results in increased bias for estimating the causal effect, whether

using τO or τO,r. Notably, τO,r again tends to estimate τO more accurately than does τO.

Under the joint model, the multiple imputation 95% confidence intervals using τO cover

100% of the replications in all three simulation scenarios when using Strategy I. The cov-

erage rates when using τO and Strategy II are (100%, 93%, 89%) corresponding to the

(20%, 50%, 80%) intersection scenarios. The coverage rates when using τO,r and Strategy I

are (82%, 84%, 84%) corresponding to the (20%, 50%, 80%) intersection scenarios. For Strat-

egy II, these coverage rates are (99%, 89%, 90%). Apparently, the bias induced by the model

simplifications is substantial enough to produce less than nominal coverage rates. However,

these coverage rates are still much higher than those for the two-stage models.

5 Illustration with Constructed Causal Study of Debit

Cards

To illustrate the Bayesian joint model further, we follow the approach used by Guha et al.

(2020) and generate a record linkage scenario for an observational study of the causal effect

of possession of debit cards on household consumption. As we use the same survey as Guha
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Percentage of τO τO,r

Strategy Intersection Joint Two-stage Perfect Joint Two-stage Perfect
20 4.51 (0.98) 3.38 (0.94) 5.39 (0.68) 4.62 (0.42) 3.48 (0.80) 5.23 (0.27)

I 50 4.60 (0.46) 3.62 (0.52) 4.94 (0.31) 4.72 (0.27) 3.71 (0.45) 4.93 (0.09)
80 4.84 (0.30) 3.89 (0.31) 5.14 (0.24) 4.83 (0.20) 3.84 (0.28) 5.09 (0.07)
20 5.27 (0.61) 3.46 (0.69) 5.24 (0.35) 5.14 (0.56) 3.46 (0.67) 5.12 (0.15)

II 50 5.30 (0.19) 3.73 (0.38) 4.91 (0.14) 5.15 (0.16) 3.79 (0.34) 4.97 (0.11)
80 5.26 (0.18) 3.74 (0.19) 5.15 (0.14) 5.14 (0.13) 3.75 (0.20) 5.04 (0.05)

Table 4: Summary of causal inference properties for simulations with simplifications for
outcome and covariate models. Average treatment effects are computed over 100 replications.
Empirical standard deviations of the 100 estimated treatment effects are in parentheses.

et al. (2020), our description of the data closely follows theirs.

5.1 Data Description and Background

We use data from the Italy Survey on Household Income and Wealth (SHIW), which is a

nationally representative survey run by the Bank of Italy once in every two years since 1965,

with the only exception being that the 1997 survey was delayed to 1998. This survey collects

information on various aspects of Italian households’ economic and financial behavior.

We link two files with data collected during the years 1995 and 1998. Some households

participated in both years and some did not. Our target population is the set of households

possessing at least one current bank account but no debit cards before 1995. The treatment

z = 1 if the household (all members combined) possesses one and only one debit card at

1998, and z = 0 if the household does not possess any debit cards at 1998. Households with

more than one debit card are excluded from our sample. As the SHIW data have information

on debit card ownership only at the household level, we assume that the owner of the debit

card is the household head.

The outcome is the monthly average spending of the household on all consumer goods,

measured in the 1998 survey. For data quality control, we delete the observations that have

either negative values of the outcome (monthly spending), unusually high values of monthly

income or ratios of monthly spending to monthly income. The final data file corresponding

to 1998 contains 3088 observations with information on the outcome, the treatment, and
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several covariates, and the final data file corresponding to 1995 contains 582 observations

with information on additional covariates.

Both files contain a common set of variables that we can use as imperfect linking variables.

For this illustration, we use the household head’s gender, birth year, marital status, and

highest educational qualification, the geographical area of residence of the household, the

region and the province in which the household is located, and the number of inhabitants in

the town in which the household is located. The data values for these variables are collected

in each survey year from questionnaires completed by the participants. Hence, linking on

these variables is imperfect, as participants can and do enter different values in the two

surveys. Fortunately, we also have a unique identifier (ID) that we can use to perfectly link

households across years. We use this ID to assess how well the models link observations

in the two files based on the imperfect linking variables described above. Based on the

unique ID, among the intersecting individuals in the two files, there are 190 individuals in

the treatment group (who possess a debit card) and 392 individuals in the control group.

We consider covariates in this study measured in the 1995 survey and the 1998 survey.

The covariates in the 1995 data consist of the monthly average spending of the household

on consumer goods, the net wealth of the household, the household net disposable income,

the monthly average cash inventory held by the household, the average interest rate and the

number of banks in the municipality where the household is located; all values are measured

in 1995. Guha et al. (2020) provide a detailed justification for inclusion of the covariates in

the 1995 survey. The covariates in the 1998 data consist of the number of household income

earners and the age of the head of the household, measured in 1998.

5.2 Results

We implement the joint model following Strategy I described in Section 4.3. In fitting the

model, we let the data from 1995 comprise File B and the data from 1998 comprise File

A, as the data file from 1995 has smaller sample size. This means that the outcome and

treatment are in File A. Although this allocation of variables differs from the presentation
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Precision Recall τ̂O τ̂O,r

Method Mean (SD) 2.5% 97.5% Mean (SD) 2.5% 97.5%
Perfect – – 140.38 (3.36) 74.47 174.84 181.61 (2.81) 165.87 198.33
Joint 0.897 0.876 184.34 (4.66) 50.05 340.31 192.44 (3.67) 162.34 246.19
Two-stage 0.849 0.842 201.18 (4.82) 101.87 364.67 221.36 (3.96) 183.29 272.06

Table 5: Results of the analysis of the SHIW data. Entries include the precision and recall
for linking the 1995 and 1998 files, and the means and multiple imputation 95% confidence
intervals using τ̂O and τ̂O,r (in thousand Italian Liras) for all methods. In the parentheses
are the standard deviations (SDs) corresponding to τ̂O and τ̂O,r.

in Section 3, practically it makes no difference to the model specification. We include both

covariates in 1998 in x(A) and all six covariates in 1995 in x(B). In addition, because gender,

marital status and highest educational qualification of the head of the household could be

important predictors of the outcome, we also include their 1995 values in x(B).

For the outcome model, we use a linear regression of 1998 monthly average spending of the

household on all consumer goods on linear functions of (x(A),x(B)). For the propensity score

model, we use a logistic regression of z on linear functions of (x(A),x(B)). We do not specify

a covariate model. We use the prior hyperparameter values described in the simulation

studies, moderate perturbations of which lead to practically indistinguishable results. We

let the MCMC chains run for 2000 iterations and discard the first 1500 as burn-in, drawing

inferences on both the treatment effect and record linkage based on the post burn-in iterates.

We also include results for the two-stage model and results using the perfectly linked data

for comparisons.

Table 5 presents the precision and recall values, along with the multiple imputation means

and 95% confidence intervals using τ̂O and τ̂O,r (in thousand Italian Liras) for all methods.

Consistent with the simulation results, the joint model offers better precision and recall than

the two-stage model. Using results from the perfect-links model as a benchmark, we find that

the joint model more closely tracks the mean treatment effect estimates from the perfect-

links model than the two-stage model does. This also holds for the 95% confidence intervals,

particularly for τ̂O,r, although the differences arguably are modest. The estimated variance

of τ̂O,r is smaller than the estimated variance of τ̂O across all three methods, reflecting
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the benefits of using the regression-adjusted estimator. It should be noted that the point

estimates from both the joint and the two-stage models differ from those for the perfect-links

model, reflecting the effects of inevitably imperfect linkages.

These results suggest that, on average, the effect of possession of a single debit card for

a household leads to more monthly consumption than households that do not possess any

debit card during the study period. Similar results are presented by Mercatanti and Li (2014)

who show that the possession of debit cards in a household is generally accompanied with

higher levels of income, wealth and education of the members in comparison with households

without debit cards.

6 Conclusion and Future Work

The empirical studies suggest that the Bayesian joint modeling strategy for causal inference

and record linkage can improve the quality of the linkages and the accuracy of the causal

inferences. They also suggest potential benefits of using a regression-adjusted estimator

when applying overlap weights approaches to propensity score inference.

The modeling framework has other advantages. First, it can accommodate missing out-

comes, treatment status or linking variables in the two files. These values can be imputed

from predictive distributions as part of the MCMC algorithms. In such cases, using the

full modeling strategy can be preferable to using a simplification, so as to preserve relation-

ships across variables during imputation. Second, the modeling framework accommodates

any causal estimator, such as those based on inverse probability weighting or matching us-

ing propensity scores. Third, it can accommodate prior information, such as estimates of

relationships among the study variables from other studies or domain knowledge, via speci-

fication of informative prior distributions.

The joint model is computationally intensive, as is generally the case with Bayesian

versions of bipartite probabilistic record linkage in general. In addition to simplifying the

models as discussed in Section 3.3, it may be possible to speed computation by modifying the

estimation algorithms. For example, in large samples, one can approximate the distributions
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of coefficients of binary or other categorical regression models using normal distributions,

thereby simplifying some MCMC steps. Another approach is not to enforce bipartite match-

ing in the Bayesian record linkage model. By allowing duplicate matchings, the linkage steps

can be done for each observation in parallel, thereby speeding computation significantly.

Further, it may be possible to adapt some of the strategies in recent work on scalable record

linkage (McVeigh et al., 2019; Marchant et al., 2021).

In some contexts, analysts may desire to use some variables as linkage variables and as

covariates, as we do in the SHIW analysis. When these variables are recorded identically

across files, this presents no issue for the joint modeling framework. In such cases it makes

sense to view these as blocking variables rather than use them as linkage variables. When

these variables are not recorded identically across files, the path forward to using the joint

model is less clear. We treated the values in one of the files, File A in our SHIW application,

as covariates while using the values in both files as linking variables. Evaluating this approach

as a general strategy in probabilistic record linkage is a topic for future research.

Supplementary Material

Section 1: Introduction to the supplementary material.

Section 2: This section provides full conditional distributions for the joint model described

in Section 3 of the main article.

Section 3: This section states theorems about τ̂O,r as a causal estimator in complete-data

contexts, i.e., a single database has all relevant variables.

Section 4: This section provides proofs of the theorems in Section 3 of the supplementary

material.

Section 5: This section presents the derivation of the asymptotic variance estimator of

τO,r.

Section 6: This section demonstrates performance of the joint and two-stage models in

additional simulations with unequal number of predictors in two files and with unimportant

predictors in the outcome and propensity score models.
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