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ABSTRACT 

Novel Semi-Automatic Method to Optimize Multi-Lamp High Flux Solar Simulators 
 
 

Arshad Mohamed Ali, Mohammed Hassan, and Safeer Hafeez 
Department of Chemical Engineering 

Texas A&M University at Qatar 
 
 

Research Advisor: Dr. Konstantinos Kakosimos 
Department of Chemical Engineering 

Texas A&M University at Qatar 
 
 

Research Advisor: Dr. Mohammed Al-Hashimi 
Department of Science 

Texas A&M University at Qatar 
 
 

For multi-lamp high flux solar simulators (HFSS), it is often difficult to obtain a required 

flux distribution by manipulating the lamp position of multiple lamps at once. Each lamp has 

three degree of freedom. Thus manual optimization can be tedious for human operators. Thus, 

this project aims to create a semi-automatic method to determine the optimal location of the 

lamps to give the required flux distribution. A convolutional neural network is used to develop a 

mathematical model that performs the above function. 

 At the same time, an automated method to collect data from the HFSS was devised. 

Furthermore, an in-house algorithm to characterize the irradiance was developed. Since large 

amount of data was required, an optical simulator called TracePro was used to generate the data 

for training as well as validation. This project serves as proof of concept of using machine 

learning to optimize HFSS. In the long term, the proposed methodology is expected to facilitate 

initial deployment of the HFSS. It will also assist on the dynamic control of reactor conditions 

i.e. emulating variable overcast or daily sunlight variability. 
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NOMENCLATURE  

 

HFSS  High Flux Solar Simulator 

TAMUQ Texas A&M University at Qatar 

GS  Grey Scale 

CNN  Convolutional Neural Network 

CCD  Charge Coupled Device 

RMSE  Root Mean Squared Error 
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CHAPTER I 

INTRODUCTION 

 

The rapid industrial growth of the world coupled with high population growth has led to a 

rise in greenhouse gas emissions. Consequently, one of the challenges facing engineers is using 

cleaner sources of energies for industries and the like. One such source of energy is solar energy. 

Solar energy is abundantly available and is cleaner than conventional energy sources such as 

fossil fuels. However, solar energy has its own associated challenges. Firstly, the energy is of 

low density (1 kW/m2) and so must be collected so that it can be used for high energy 

applications. Furthermore, weather conditions interfere with solar energy availability. As a 

result, testing concentrators, photo catalysts, etc. can be a time-consuming endeavor in places 

with erratic weather. Thus, solar simulators are an important tool to overcome these limitations 

for conducting solar energy research. 1,4,5 

Solar simulators typically consist of multiple light sources coupled with ellipsoidal or 

parabolic reflectors. These reflectors concentrate light to a predefined focal plane. The advantage 

of solar simulators is you can concentrate the light to regions of different areas on the focal 

plane. In this way, one can control the incident flux on equipment such as reactors placed on the 

focal plane. The flux output of solar simulators can range from 30 to 100 kW/m2. 5 Furthermore, 

solar simulators do not rely on weather conditions giving researchers more flexibility.  

A major use of solar simulators is to test photo catalysts such as TiO2. Such catalysts can 

be used for applications such as waste-water treatment.6 Another application of solar simulators 

is for advanced aging of materials. In accelerated aging, information from experiments at high 

levels of accelerating variables such as temperature or radiation is used to obtain long term 
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performance of material at lower levels of accelerating variables.7 Finally, due to the energy 

output of the simulators, high temperatures can also be attained. Thus, such simulators are also 

apt to for high temperature research applications such as catalyst development. 

To reach high flux intensities, solar simulators often have multiple source-reflector pairs. 

The HFSS at TAMUQ consists of seven Xe-arc light sources coupled with ellipsoidal reflectors. 

The light sources have 49 kW electrical power and are capable of delivering a minimum of 20 

kW thermal power to a focal area in the range of 2-100 cm diameter. To obtain different peak 

fluxes and different focal areas, the sources are to be moved in the X, Y and Z direction which 

means three degrees of freedom per source. As a result, this can be a tedious process especially 

when all seven lamps are used.  

Thus, this project aims to create a semi-automatic method to determine the optimal 

location of the lamps to give the required flux and illuminated region. The use of convolutional 

neural networks is proposed to develop a mathematical model that outputs the lamp positions 

based on a required flux map. However, to develop a neural network, large amount of data is 

required. As a proof of concept, data is generated from the optical simulator TracePro and used 

to train the network. In parallel, an automated method to collect data from the HFSS is devised. 

The data is treated using an in-house algorithm. The algorithm is based on flux mapping method 

from literature. This data collection method is developed for future development of this 

methodology. 

The proposed methodology is expected to facilitate initial deployment of high flux solar 

simulator. It will also assist on the dynamic control of reactor conditions i.e. emulating variable 

overcast or daily sunlight variability. 
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Literature Review 

A brief literature review on solar simulators and machine learning was conducted. The 

results of this review is summarized below. 

Solar Simulators 

Several multi-lamp HFSSs have been built around the world. One of the first large 

simulators was designed and built in Switzerland by researchers working at the Paul Scherrer 

Institute (PSI). The design objective of this 10 lamp HFSS was to maximize the amount of 

radiant energy transferred to the target plane. This was determined by calculating the fraction of 

electrical power supplied to the lamp that is incident as radiant power on the target surface. The 

analysis for this design was conducted using a Monte-Carlo ray tracing software to determine the 

optimal reflector shape for a specific focal length. The target was placed at the second focal point 

of the ellipsoidal reflector. The researchers determined a maximum transfer efficiency of 34% 

for the optimal reflector. A mean flux incident on a 6 cm diameter target at the focal point was 

predicted to be 5.9 MW/m2 for the 10 lamp array. However, the prototype performance exceeded 

these predictions, with mean flux values exceeding 6.8 MW/m2.8  

A 45 kW, 18 lamp HFSS was recently built collaboratively by researchers from 

Australian National University (ANU) and Ecole Polytechnique Fédérale de Lausanne (EPFL). 

Leveque et. al. have documented an experimental and numerical characterization method for this 

simulator. Raw images of the target obtained using a CCD camera were corrected for dark 

current, normalized by the exposure time and calibrated with heat flux measurements to create 

radiative flux maps. The measured peak flux was around 21.7 MW/m2 for the 18 lamp array. 

Monte-Carlo ray tracing software was used to obtain results numerically, which were then 
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calibrated with experimental results. A 4.2% difference between the results has been reported, 

with lamp efficiency of 39.4%.9    

Javad et. al. developed and characterized an adjustable flux solar simulator in Texas 

A&M at Qatar, which was the first of its kind in the Middle East. A 7 kW xenon short arc lamp 

coupled with a truncated ellipsoid reflector was used as the light source. The flux mapping 

method was used to evaluate the performance of the HFSS with the help of a CCD camera and a 

heat flux gage. The performance criteria chosen included flux distribution, temporal instability, 

peak flux and conversion efficiency, among others. The input current to the lamp was adjusted in 

the range of 113-153 A to obtain the minimum and maximum peak flux output, yielding different 

flux distributions. A peak flux of 3.583 MW/m2 was reported at an input current of 153 A with 

conversion efficiency of 47%. The simulator was reported to be capable of adjusting its peak flux 

in the range of 2.074-3.583 MW/m2.3   A list of several other multi-lamp HFSSs is shown in 

Table 1.1,10,11  

  



   
 

9 

Table 1: Summary of HFSS around the World 

Developer Radiative 

Power (kW) 

Efficiency No. of lamps Peak Flux 

(kW/m2) 

Target 

(mm) 

Niigata 

University (TIT) 

133 25.0% 19 >3000 200 

DLR 21 33.3% 10 N.A. 100 cm2 

Minnesota 

University 

9.2 20.2% 7 7300 60 

GIT 6 14.3% 7 >6500 40 

IET 6.4 22.9% 4 N.A. 300 

KTH 19.7 * 23.4% 12 6730* 200 

Swinburne 

University 

12 28.6% 7 927 175 

JFCC 8 10.7% 20 37.7 4000x70d 

Synlight 320 N.A. 149 11000 200x200 

*Ray Tracing Estimations 

 

Overview of Neural Networks 

Convolutional Neural networks are a sub-classification of a broader family of machine 

learning methods called deep learning. Machine learning is using certain statistical models and 

methods to have the machine itself develop a mathematical model that relates the inputs and 

outputs. This is different from traditional programming in the sense, that traditionally users 

develop a mathematical model to obtain the output from the input. Once an model is obtained 

from the ‘machine learning code’, it can be used to guess the output for any input similar to the 
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input used to develop (train) the algorithm.12 This concept is better explained using Figure 1 

below.  

 

Figure 1: Difference between Traditional Programming & Machine Learning 

Thus, machine learning is extremely useful in cases where large number of inputs and 

outputs exists with often complex relationships. Deriving models for such cases can be tedious 

and extremely difficult even. However, machine learning simplifies the process and derives an 

empirical model by using different methods. One such group of methods is called deep learning. 

Deep learning is used for data sets such as images and flux maps which have features such as 

circles. The code learns to correlate the presence and characteristics of these features to the input. 

It can be considered as a pattern recognition software of sorts. 13,14 

One such model within deep learning is the convolutional neural network (CNN) which 

is used primarily with visual imagery due to ease of use. These models derive a mathematical 

model by using several layers between the input and output. Each layer takes information from 

the layer before it and multiplies it by a certain factor called weight and then adds constant called 

a weight. The process is repeated until the output layer is reached. The goal of machine learning 

is to derive weights and biases that convert the input to the output. The weights, biases make up 

the bulk of the empirical mathematical model. 14,15 Figure 2 visually describes what a CNN in a 

simplistic manner. 
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Figure 2: Visual depiction of a CNN 16 

Any neural network can be used for either classification or regression problems. 

Classification models are used to sort data into pre-defined sets. However, regression models are 

used to predict data points outside the current set. 17 Figure 3 below illustrates the difference 

between the two.  

 

Figure 3: Difference between classification and regression problems 18 

A CNN finds the weights and biases by an iterative approach. It guesses weights and 

biases and then finds the error between the guessed output and the actual output provided by the 

user. The goal of any CNN network is to final the global minimum of this error function. This 
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whole algorithm is called gradient descent. Several approaches exist to find this global 

minimum. These are described below:19 

• Stochastic gradient descent: This approach calculates the error for each output and 

updates the model and then moves to the next example. This model is easy to implement 

and may be faster for some cases. However, since it updates the weights and biases for 

every output, it requires huge computing capacity. The process is also noisy as it updates 

for every data point.19 

• Batch gradient descent: This approach calculates the error for each output but updates the 

model when error for all data points have been calculated. One cycle through the training 

set is called an epoch. This method is less computationally intensive and possesses less 

noise than the last method. Since this method leads to a more stable convergence, the 

training may terminate prematurely when it finds a local error minimum rather than a 

global error minimum.19,20 

• Mini-batch gradient descent: This approach splits the training data set into multiple 

subsets. The error for each set is computed and the model is updated after each mini-

batch is run. It is the most common form of approach used in deep learning as it is a 

compromise between the robustness of stochastic descent and the speed/efficiency of 

batch descent.19,20 

Before training any CNN, several hyper parameters need to set/tuned. Hyper parameters 

are parameters that are set before the CNN starts learning. These define the learning process and 

guide it. These are different from parameters. Parameters are properties learnt during the training 

such as weights and biases.21,22 The different hyper parameters that need to be tuned are 

described below: 
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• Learning Rate: Learning rate is the amount by which each weight is updated during the 

training process. It is perhaps the most important hyper-parameter that requires tuning in 

any machine learning code. It controls the speed at which the model learns. A high 

learning rate improves learning speed but may not reach the optimal solution, i.e. Global 

minimum. A small learning rate reduces learning rate but will eventually reach the 

optimal solution (if rate is low enough). Thus, this parameter must be carefully set to 

obtain the optimal solution without taxing the computational resources. 23 

• Mini-Batch size: As explained earlier, mini-batch size is the size of the subsets the main 

data set is divided into. This parameter controls the speed of the learning process 

primarily with a considerable effect on the accuracy as well. 19 

• Epochs: One sweep through the whole data set is called an epoch.20 

• Hidden layers: These are layers that are used to treat the data and obtain the weights and 

biases. Basically, these are layers other than the input and output layer. The main layer 

used here is a convolutional layer which calculates the weights and biases for the model. 

Other layers include the pooling layer which reduces the spatial size of the data from a 

previous layer to reduce computation speed and control overfitting. 20,24 

• Filter size: Each layer scans the input image in the form of a moving matrix called a 

filter. All the values inside the filter are multiplied by a weight matrix followed by 

addition of the bias. The size of this filter is another crucial and important hyper 

parameter. If the filter is too big it may miss may minute features in the image and see 

more general features. Thus, filter sizes are kept small to better see the features. 24 

• Filter number: The number of filters within a layer are neurons that connect to the same 

area on the previous layer. Having more filters can allow for a better fit for the model. 
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Since many hyper parameters exist to control overfitting, large filter number are chosen 

to obtain the correct model. Even if the number of filters are larger than the optimal 

value, it does not negatively affect training. However, if it is lower than the optimal 

value, it can impair the training process.20,24 

• Stride: The stride is the rate at which the filter moves across the image. Typically small 

strides are used to capture more of the features.24 

• Momentum: When weights are updated after an epoch, the weights are often based on the 

exponential weighted average of the prior updates. The weightage of the prior updates is 

called momentum. It is designed to speed up learning. It helps direct the learning in one 

direction.23 

• Weight decay regularization coefficient: A regularization coefficient is added to control 

overfitting. This factor controls the learning capacity of the software. A common method 

is the L2 regularization.20  

There exist some other hyper-parameters such as sparsity of activation, neuron non-linearity and 

others within specific hidden layers. However, these are not typically changed. There does not 

exist any one certain way to find the values. These parameters are typically found by using trial 

and error. However, there exist heuristics from experimentation or experience that limit the 

interval of search.  The methodology adopted in this project is described in the methodology 

section. 
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CHAPTER II 

SETUP & METHODOLOGY 

 

High Flux Solar Simulator Setup 

The HFSS consists of seven 6000W Xe short arc lamps manufactured by Osram. The 

setup is designed to provide energy in excess of 4000 kW/m2 on 20x20 cm area. The radiation is 

concentrated on a 60mm diameter target at a focal distance of 3m, achieving temperatures in 

excess of 2000°C. The Xe lamps were chosen as their emission spectrum closely resembled solar 

spectrum. The spectrum emitted by these lamps is also more stable and continuous despite 

voltage variations making them easier to work with. 1 These lamps are placed within highly 

polished ellipsoidal reflectors coated with Al and SiO2 for reflectance and protection. Each lamp-

reflector combination is equipped with its own fan for cooling air and 3D maneuvering 

mechanism for lamp positioning. The whole ‘Sun in the Box’ setup is equipped with an air 

handling unit and an air duct system to cool the unit when more than four lamps were active. The 

setup also had several sensors installed into it as safety precautions to protect users from hazards 

such as exposure to high flux, temperature, etc. For example, the system cannot be operated 

unless the doors to the HFSS are closed and locked. The system also had an emergency 

shutdown when system temperature crossed a pre-specified threshold. The exterior of the HFSS 

solar simulator as created in SolidWorks is shown in Figure 4 below. A picture of the seven 

lamps can be seen in Figure 5 below. 
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Figure 4: Isometric View of Solar Simulator 

 

Figure 5: Picture of the HFSS interior  

A Lambertian target (25x25 cm) is mounted on a XYZ slider in front of the seven lamps. 

A Lambertian target was used as it ensures light is reflected equally in all directions. Thus, the 

target appears equally bright irrespective of viewing angle. As a result, the camera used to 

monitor the target can be placed at any angle.  The XYZ slider movement has an accuracy of up 

to 0.1mm in the all three directions. This allowed for precise control of the location of the target 

Enclosure 

Air Ducts 

Lamp Blocks 

Roll Doors 
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to generate the required data for flux characterization. A heat flux gage (radiometer) was located 

at the center of the lambertian target. The gage measured incident flux by measuring the output 

voltage of the gage. This output voltage was used to determine the incident flux using a 

calibration curve. The calibration was performed by the gage manufacturers at the start of the 

experiment. The flux was calibrated to reliably measure up to 4850 kW/m2. The Lambertian 

target and flux gage were both water cooled. Thermocouples were placed on the back of the 

Lambertian target as well as water inlet and outlet. The thermocouples were placed to ensure that 

the target does not overheat and that the cooling water is at the desired temperature. A sketch of 

the target by Jawad et. al is shown in Figure 6 below.  

 

Figure 6: Schematic illustration of lambertian target 3 

An 8 bit charged-coupled device (CCD) camera was used capture images of the 

Lambertian target. The CCD camera had a neutral density filter to protect the camera from the 

high flux reflected at it. The CCD camera was placed at an angle and thus the images required 

perspective correction as described in methodology below.  

Data collection hardware was installed in the space between the grey walls shown in 

Figure 4. The hardware consisted of DAQ modules to collect temperature and flux readings. A 
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Galil controller was installed to move the Lambertian target. All of these modules interfaced 

with a LabVIEW program described briefly in the methodology.  

Methodology 

The methodology is broadly divided into three categories. These are automated 

acquisition of large amount of data, flux characterization, neural network training/ application. 

These are described in more detail below. 

Data Acquisition 

Flux characterization and neural network training requires the collection of a large 

amount of specific data. For flux characterization, flux values across the target on different axes 

along with 30 or more images are needed. This collection can be tedious as the incident flux 

drops in an exponential manner as one moves away from the target. Thus, close to the target, the 

flux measurements are collected at small increments of distances (such as 0.25mm) to capture as 

much data as possible as described later on. This can lead to collection of 80 data points or more 

in one axis alone. On the other hand, neural network training requires the above mentioned flux 

data and corresponding images at several different lamp positions. This process is highly tedious 

and prone to error for human operators and can be forbiddingly time consuming when collecting 

data for multiple lamps. Thus, an automated LabVIEW program (VI) was developed to collect 

the flux data, images and move the target without the need for human oversight. The overall 

program structure was based on state machine architecture with tab control for different states. It 

was combined with the use of shared variables and subVIs to modularize the program. The user 

can program the distance intervals the slider has to move from the default position in x, y and z 

direction along with the number of data sets to be taken in each interval. Sequential structure 
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programming was used to achieve this. Thus, the system can automatically collect all the data 

associated with one lamp position. 

 The flux was collected in three intervals in the x and y axis. For the first 1 cm from the 

center in the positive x direction, the flux measurements were collected every 0.25 mm. For the 

next 2 cm, the flux was collected every 0.5 mm. For the next 3 cm, data was collected at every 2 

mm. For the remaining length, flux measurements were collected every 2 mm. The same method 

was applied to the negative x direction and both positive and negative y direction. X and Y axis 

were both measured to check for spatial non-uniformity and allow for redundant verification for 

the characterization. This resembled the work done by Jawad et. al. 3 This particular method of 

data collection was chosen as flux dropped rapidly as one moved away at the center. The drop 

was steepest closest to the center. Thirty flux measurements at a rate of one sample per second 

were collected at every target position and averaged. Thirty data points were chosen to minimize 

standard deviation.  Similarly, 40 images were taken at the following exposures and averaged. 

• 1/120 s 

• 1/1000 s 

• 1/1250 s 

• 1/2000 s 

Flux Characterization 

Characterization for a solar simulator setup includes determining parameters such as 

temporal instability, spatial non-uniformity, peak flux and flux density distribution. As part of 

this project, peak flux and flux density distribution were determined as they were considered 

most pertinent to the project. However, the data collected can be used to find other parameters if 

the need arises. Characterization was done using the flux mapping method. This method allows 
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for determination of the flux distribution without direct measurement with high accuracy. The 

method correlates the radiative incident flux values to the grayscale values of the pictures taken 

of the target. The grayscale value is a representation of the brightness of a pixel in a grayscale 

image. After characterization, each pixel value corresponds to a specific incident radiation flux. 

Normally, one or multiple lamps can be characterized at once. For our testing of the 

method, only the central lamp of the setup was used. 

Image Processing 

An 8 bit CCD camera is used to collect pictures of the target. Multiple pictures at 

different exposure times were collected. All the subsequent image treatment is done on 

MATLAB. The images at each exposure are first turned into matrices to be averaged and remove 

some of the noise caused by the camera. Additional image processing involves implementing a 

projective transformation algorithm to reorient the distorted images taken by the camera. This is 

done to eliminate the effect of taking the pictures at an angle and give the correct shape of the 

target. The final averaged image of each exposure is shown in Figure 7. 

 

Figure 7: Images at different exposures 
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The information in the images is increased through taking the weighted average of the 

different exposure images based on exposure time using equation 1 shown below. 

 
Normalized image(i, j) = �

Pn(i, j)
texpo,n

N

n=1

 
(1) 

Where Pn(i, j) = GS value of the pixel (i,j) in the image with exposure n  

texpo      = exposure time. 

The result is a single image with information from all exposures as shown in Figure 8.  

 

Figure 8: Weighted average taken from four exposures 

The flux gauge had a diameter of 2.525 cm. Thus, greyscale values within a square of 

similar area were averaged to correlate to the flux values. This square was moved at the same 

rate the flux gage was moved. Figure 9 represents an example of the area that would be averaged 

to determine the pixel value at the origin. 
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Figure 9: Method for averaging greyscale values corresponding to different flux measurements 

To obtain a characterization curve, the greyscale values were plotted against the incident 

flux and a straight line of best fit was used to obtain the curve. This correlation is then used in 

MATLAB code to create a flux map of the incident flux on the target. Thus, the flux map 

presents the distribution of the incident flux on the complete target. The advantage of this 

method is that a few measurements in one or two axes can define the flux across the whole 

target. Furthermore, images of the target can be used as an indication of the incident flux without 

direct measurement of flux on the target. 

TracePro Simulation 

A Monte-Carlo ray tracing software called TracePro was used in order to aid in the 

development of the machine learning algorithm. Its main purpose was to provide a proof of 

concept that could later be applied on the actual setup using experimentally obtained data. The 

use of this software allowed for rapid data acquisition, when compared to experimentally 

obtained data. This meant that a large amount of data could be generated rapidly which could 

then be used in the training and testing phases in the development of the neural network model.  

The first step in using TracePro is developing and defining the geometry of the setup. 

This includes defining the geometry of reflectors, the lamps array and the target. This was done 
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on SolidWorks, using the exact dimensions of the actual setup. An image of the setup designed 

on SolidWorks and imported into TracePro is shown in Figures 10 and 11. 

 

Figure 10: Front view of lamp array    Figure 11: Side view of lamp array 

 

The setup modelled in TracePro is exactly the same as the actual setup in all ways except 

one-the light source. Initial effort was made to model the light source as close to the real one as 

possible. An arc was also modeled between the anode and cathode of the lamp to simulate the 

light generated when the light is switched on based on brilliance data provided by OSRAM. 25,26 

The lamp depiction provided by the manufacturer is shown in Figure 12 while the lamp created 

in Solidworks is shown in Figure 13. 

     
   

Figure 12: Depiction of lamp geometry provided by OSRAM25 
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Figure 13: Lamp geometry created on SolidWorks 

As shown in Figure 12 & 13, the geometry was complicated which slowed down 

TracePro simulations. Since modelling the lamp is outside the scope of the research, a simpler 

approach was taken. In order to design the source with reasonable accuracy, literature review 

was conducted on arc lamps. A detailed product description published by the lamp manufacturer 

(OSRAM) was used to make the assumptions about the light source. As seen in Figure 14, the 

first 4 layers with highest brilliance (200, 150, 100 & 75 kcd/cm2) along with the plasma ball 

emit approximately 94% of the light that is produced in the arc. 26 The plasma ball alone 

accounted for 50% of the light that is produced in the arc. 3 These layers can be approximated to 

form a sphere with a diameter of approximately 5 mm. Therefore, keeping this approximation in 

mind along with the actual dimensions of the setup, the light source is modelled as a sphere with 

a diameter of 5 mm. The lamp was placed at the focal point which is 9 cm from the base of the 

reflectors. The focal point was taken as the origin for data generation purposes. As per product 

specifications, the arc lamp has a flux of 6 kW and produces light with a wavelength of 500 nm. 

The radiation from the source was also assumed to be lambertian in nature.  
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Figure 14: Brilliance distribution in the arc of a xenon lamp 26 

Finally, the reflector and target surface properties had to be defined to be able to start 

simulations. The reflectors were defined as perfect reflectors with specular reflectance of 0.92. 

The target was assumed to be lambertian and also a perfect absorber with dimensions of 25x25 

cm. It should be noted that the dimensions of the target were skewed very slightly when the 

geometry was imported from SolidWorks into TracePro. Nevertheless, this did not affect the 

results.  

Simulations can now be run to obtain peak flux and flux distribution plots at the target at 

varying lamp source positions. It should be noted that simulations were run with only one lamp 

activated in order to reduce the simulation time as a large number of simulations had to be run to 

obtain the data required for neural network training. Thus, macros were programmed within 

TracePro using the language ‘Scheme’ to obtain data automatically. The lamp source was moved 

relative to the origin in 0.25 mm intervals for 10 mm. The directions the lamp was moved in is 

shown in Figure 15 below. The lamp was moved in positive and negative X,Y and Z directions 

as well as all binary combinations of the three axes. The diagonal movements were done at an 

angle of 45 degrees. A large data set (721 flux distributions) was taken to allow for a good 

variety of data available for the neural network training. 



   
 

26 

 

Figure 15: Lamp movement directions 

The plots were obtained by plotting irradiance against position and smoothing the 

resulting image and setting the number of pixels to 20 on the plot display options. 

Convolutional Neural Networks   

As part of developing the machine learning code, several key decisions had to be made, 

from type of machine learning method used to the gradient descent method to the value of 

various hyper parameters. The methodology behind these decisions is explained in more detail 

below. 

First, deep learning neural networks were used as they were most apt working with data 

with features (corners, circles, etc.) such as the flux maps used in this project. Within deep 

learning the CNN was chosen due to their wide use with visual imagery. Typically, CNN models 

are used for classification purposes. However, the goal of this project was regression, since 

coordinates for any flux map not in the collected data set had to be predicted. Thus, it was 

decided to modify a typical CNN with a regression layer at the end.   

The mini-batch gradient descent method was used due to it wide use within the deep 

learning community as well as its distinct advantages over other methods outlined in the 

literature review. The hyper parameters were either determined by trial and error or set from 

heuristics obtained from literature. The trial and error was done by looking at the training mini-
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batch loss and root mean squared error (RMSE). The mini-batch loss is the error across each 

mini-batch. RMSE is the overall representation of the fit of a regression line fit to the data and 

thus is a measure of the overall error function. 27 Thus, to obtain the correct model, these 

variables were monitored to minimize them. At the same time, the computational time was also 

monitored and attempts to minimize it were also made. The effect of the hyper parameters was 

considered to be independent. 20  The rationale behind choosing intervals for trial and error or the 

value of each hyper-parameter is described briefly below. 

The learning rate can either be the same throughout the process or it can drop slowly 

throughout the process (‘adaptive’). This allows to use a larger running rate at the start of 

training and decrease it as training progresses to fine tune the final model. This decreases 

computational time as at the start of the training process, errors are large, thus larger learning 

rates are required. If the adaptive method is used, the initial learning rate, learning rate drop 

factor and drop period need to be configured. The initial learning rate is the most important 

factor because if it is too large, the training will never converge and if it is too small, it will 

converge after a long time. Thus, this parameter was determined through trial and error. The 

typical range of this factor is 10-6 to 1. The drop factor is by what multiple is the learning rate 

dropped after a specified epoch drop period. These factors are not as crucial since if the learning 

drop rate drops too fast it will slow down the process but it will not give wrong values. Thus, this 

values were left to the user’s discretion to modify to speed up the learning process. The user 

modified these parameters depending on the system being used as well as number of epochs and 

data set size. A powerful system would allow for a larger drop rate at smaller drop intervals and 

vice versa. 20,23 
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The mini-batch size was set to be a fraction of the total number of data used for training. 

This would allow for integer number of batches with equal sizes. Of the 721 points, 620 points 

were randomly used for each run. 620 points were chosen to reduce the computing load. The 

remaining 101 points were used after the final training for additional accuracy metric described 

below. All the 721 points were randomized to remove any biases before feeding it to the machine 

learning code. Since only 620 points were used, the testable mini-batch sizes were few. The 

batch sizes tested were 20, 31, 62, 124, and 155. Batch sizes smaller than 20 were not tested as 

that would slow down the computation excessively. Batch sizes above 155 would transform the 

system into a batch gradient descent system.19 The number of iterations within each epoch is 

defined as the total batch dived by the number of mini batches. Thus, minibatch size also 

impacted number of iterations within each epoch. 

The main hidden layer used in the code was convolutional layer and the ReLU layer. The 

convolutional layer contains the neurons and calculates the weights and biases. It is the most 

important layer. The number of layers was manipulated as well as the filter size and number of 

filters within the layers. Four or more layers were used based on heuristics. The filter sizes of 2, 

3, 4 and 5 were tried since small filters generally give better results. The number of filters were 

varied from 5 to 20. A stride size of 1 was used as it is the recommended value. 24 

The ReLU layer is a linear activation that outputs the input if it is positive, else it outputs 

a zero. As a result, it is frequently used between convolutional layers especially in CNNs among 

many other networks as it also overcomes the vanishing gradient problem in many models. 28 

Thus, ReLU layer was used after each convolutional layer to improve performance. Zero-

padding was not used since the flux maps are large and there are no features near the edge of the 
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maps. Thus, even if values near the edge are not read, it would not affect the training process. 

Other layers such as pooling are being phased out and thus were not used. 29  

A momentum value of 0.9 was used as it is the most common value used for training. 14 

Furthermore, the effect of this factor is less compared to the other factors and hence was not 

determined through trial and error. L2 regularization was used to control the overfitting with the 

MATLAB default value of 0.0001. 27 This value was not to be changed unless overfitting was 

found at the end of the training process. 

Once all optimal hyper parameters were obtained, the model was allowed to train for a 

larger epoch period of 100 epochs on the 620 data points. The final network was used to predict 

the coordinates of the remaining 101 images. The predicted and test coordinates were compared 

with two accuracy metrics. These were the Asum and Athreshold. The equations for the first is shown 

in equation 2 below. 

 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 = [�𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�,�𝑎𝑎𝑎𝑎𝑎𝑎�𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

− 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�,�𝑎𝑎𝑎𝑎𝑎𝑎�𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�] 

(2) 

Where 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,  𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = coordinates predicted by the train network  

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = coordinates obtained from TracePro for testing.  

The second accuracy was based on an acceptable threshold for error in each coordinate. 

The Athreshold was a three column vector (x, y, z accuracies) of the percentage of predictions 

whose error was below an acceptable threshold. Since this is the first attempt at machine 

learning, the acceptable threshold was set at a moderate value of 1.  

Finally, for further validation, three predicted coordinates from the CNN were taken and 

corresponding flux maps were obtained. Then, the original flux map used to predict the 

coordinates were compared to the new flux maps. This was done since it was possible that 
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different X, Y and Z combinations can give very similar flux maps. This was considered as 

additional validation for the trained network. The error between the two flux maps was computed 

by subtracting the two flux maps and normalizing it to the largest error present in the map.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

31 

CHAPTER III 

RESULTS & DISCUSSION 

 

The results of flux characterization process, TracePro simulations and convolutional 

neural network training are explained below. 

Flux Characterization 

Data was collected using an automated LabVIEW system. While the system was able to 

collect the flux data at user-specified intervals and increments, the system could not change the 

lamp position. The code used to move the lamp motors was locked and thus, needed more time 

for reprogramming which put it out of the period of this project. Nonetheless, the system collects 

the data for one lamp position in a time efficient manner. It can reduce the time period of time 

collection from 3 hours to 1 hour per lamp position by removing the human operator. The data 

obtained from this program for one lamp position close to the lamp focus was treated using the 

in-house algorithm. The calibration curve obtained is shown in Figure 16 below. 

 

Figure 16: Characterization Curve for one lamp 
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 As seen from Figure 16, the characterization curve obtained is linear with a high R-

squared value of 0.99. This matches experiments done earlier by Jawad et. al.3 Thus, this 

confirms the accuracy of the in-house algorithm developed to average the greyscale values and 

create a calibration curve. Figure 17 shows the flux map obtained by using the characterization 

curve to transform the weighted average greyscale image in Figure 8. 

 

Figure 17: Flux map generated by applying characterization curve to Greyscale Image 

 The flux map shown in Figure 17 has concentric circle profiles. This result is also 

expected when the lamp is placed near the focal point of the reflector. Thus, the proposed system 

to generate flux map/ coordinate data sets is functional. However, the system is limited by the 

time it requires to collect one data set (~1 hours). Thus, to generate a large data set of 620 or 

images as used in this training would require 620 hours which is extremely difficult given that 

the experiment cannot be run unattended and requires a human operator to move the lamp 

position after each data set is collected. Thus, another time-efficient alternative is to use 

TracePro data for training and experimental data for validation and re-training.  
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TracePro Simulation 

 Some selected flux maps obtained from the TracePro simulation are shown in Figure 18, 

19 as well as Appendix A. Maps with a highly concentric nature as well as distorted nature were 

picked. This was done to better understand what coordinates or combinations thereof introduces 

distortion into the flux maps. Random distortions in the flux map would make CNN training 

difficult. Thus, if such randomly distorted flux maps are not required in real-life experimentation, 

such coordinates could be avoided from the sample data. 

         

Figure 18: Flux distribution at target with source at (0, 0.25, 0)                Figure 19: Flux distribution at target with source at (0,       
g                                                                                                                                                                       8.25, -8.25) 

As seen in the above figures and figures in Appendix A, moving away from the focal 

point introduces random distortions into the system. However, in Figure 19, majority of the flux 

still retains its concentric nature albeit at a different position. The z-direction has the greatest 

effect on the flux map distortion. This is expected since movement in the z-direction focuses and 

defocuses the lamp. Thus, it changes the amount of energy that reaches the lamp much more than 

any parameter.  
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Convolutional Neural Network Training 

Several of the aforementioned hyper parameters were determined via experimentation 

once the type of neural network model was selected. The results of these will be discussed in this 

section. 

Learning rate  

The ideal initial leaning rate is determined through obtaining the mini-batch RMSE for 

different learning rates and plotting it against the number of iterations. For the different leaning 

rates, the leaning rate drop factor is kept at 0.2 for every epoch for a total five epochs and a mini-

batch size of 31. The results for four different learning rates is shown in Figure 20.  

 
Figure 20: Comparison of training loss for different learning rates over 5 epochs 

In Figure 20, the training RMSE for the learning rate of 3.5x10-5 is seen to be the most 

stable with less oscillation in comparison to the remaining rates. Although the RMSE for the 

4x10-5 learning rate is not the lowest at some iterations, it is reasonably close to the minimum 

value at each dip. Additionally, at the peaks, the 3.5x10-5 has the lowest RMSE by a great 
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margin. Overall, the learning rate of 3.5x10-5 has consistently a low RMSE with respect to the 

other three learning rates and was therefore chosen for further testing. 

For further learning rate comparison, the training loss of the same rates is plotted against 

the iteration as shown in Figure 21.   

 
Figure 21: Comparison of training RMSE for different learning rates over 5 epochs 

The training loss shown in Figure 21 shows the rate of 3.5x10-5 to have the largest 

oscillatory behavior compared to the other graphs. Also the peaks of 3.5x10-5 coincide with the 

troughs of the other learning rates. Nevertheless, it can be seen that the learning rate 3.5x10-5 

drops to the lowest training loss in comparison to the remaining rates while its highest training 

loss is close to the rest. The only exception seen is that of 4.0x10-5 learning rate where it drops 

unexpectedly at 80 iteration and ends at 100 iteration with a slightly lower training loss than the 

3.5x10-5 rate. The steep drop can been seen as an outlier that doesn’t follow the general trend and 

the slight difference at the end still leaves the 3.5x10-5 rate as the best option.    
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In the subsequent testing of the remaining hyper-parameters, the learning rate of 3.5x10-5 

is used based on the results discussed above.  

Mini-batch size  

The training loss and training RMSE were recorded and plotted against number of epochs 

as well as against number of iteration to compare performance of the model for five possible 

mini-batch sizes. These graphs are plotted against epochs and iterations because varying the 

mini-batch size varies the number of iterations per epoch. For example, smaller mini-batch size 

results in more iterations for the same number of epochs. Therefore, in order to have comparable 

results and make an informed decision, these training criterion are plotted against number of 

epochs as shown in Figures 22 & 23 and against iterations as shown in Figures 24 & 25.   

 

 

Figure 22 Comparison of training loss for different mini-batch sizes over 10 epochs 

As seen in Figure 22, the mini-batch sizes of 31 and 62 eventually provide the smallest 

training loss. A mini-batch size of 62, however, drops the training loss at a faster rate initially 

and converges to approximately the same final value of around 11.  
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Figure 23 Comparison of training RMSE for different mini-batch sizes over 10 epochs 

It is observed in Figure 23 that a mini-batch size of 62 drops faster and converges to a 

lower value when compared to the trend for mini-batch size of 31. Therefore, the performance of 

mini-batch sizes of 62 and 31 are quite similar, with mini-batch size of 62 performing slightly 

better. 

 

Figure 24: Comparison of training loss for different mini-batch sizes over 10 epochs worth of iterations 
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Figure 24 shows that a mini-batch size of 31 oscillates around two values but it clearly 

approaches a value lower than that achieved by a mini-batch size of 61. Therefore, given enough 

epochs, the model would have approached a much lower value of training loss.  

 

Figure 25: Comparison of training RMSE for different mini-batch sizes over 10 epochs worth of iteration 

A similar trend is observed in Figure 25 as that in Figure 24. Furthermore, literature 

review suggests that for many applications, a batch size of 31 is optimal. Therefore, based on 

these results as well as literature review, a mini-batch size of 31 is best and was used in the final 

model. 30 

Number of convolutional layers 

 For the testing of the number of convolutional layers, the leaning drop rate of 0.75 at each 

epoch for a total of 10 epoch and a mini batch size of 31 is used. In total, five different number 

of layers were tested to determine the best. The minimum number of layers possible is found to 

be four as lower number of layers result in infinite training loss and training RMSE. The 

remaining number of layers are 5-9 layers. However, it was found from the results obtained that 

the training loss and training RMSE for six or more layers is the same. This is expected due to 
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comparison purposes, six layers is treated as a representative of higher number of layers. Figure 

26 shows a comparison between four, five, six and seven layers in terms of training loss at each 

iteration. 

 

Figure 26 Comparison of training loss for different number of layers over 10 epochs 

The plot of six layers cannot be seen in Figure 26. This is because the plot of seven layers 

is perfectly eclipsing the plot of 6 layers. Thus indicating that both have the same values. The 

training loss of the four and five layers are both consistent and overlapping for the most part. 

After 60 iteration, four layers is seen to be slightly better than six layers with a lower training 

loss. However, the biggest drop in training loss is exhibited by the five layers.  

Figure 27 shows a comparison of training RMSE as a function of iteration for four, five, 

six and seven layers. 
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Figure 27: Comparison of training RMSE for different number of layers over 10 epochs 

In Figure 27 six and seven layers can be seen to completely eclipse each other due to the 

exact equal values while four layers is almost completely overlapping with the two. This trend is 

similar to Figure 26. Five layers are shown to have the largest drop in training RMSE and the 

lowest possible value. 

The trends in Figure 26 and Figure 27 are similar and indicate that five layers is the ideal 

number of layers to use.  

Filter size 

 The optimal filter size was determined by analyzing the effect of four different filter sizes 

on the training loss and mini-batch RMSE, and the plots for these are displayed in Figures 28 & 

29 below. The data for filter size of 5 is not displayed because it diverged to infinity in both 

cases. Thus only filter sizes of 2, 3 and 4 are compared.  
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Figure 28: Comparison of training loss for different filter sizes over 10 epochs 

In Figure 28, it is observed that filter sizes of 2 and 3 provide very close performance 

after 150 iterations. However, the training loss drops at a faster rate for filter size of 2 and even 

converges to a slightly lower final value than that of 3. 

 

Figure 29 Comparison of training RMSE for different filter sizes over 10 epochs 
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A similar trend as Figure 28 is observed in Figure 29, where a filter size of 2 eventually 

converges to the lowest training RMSE value. As expected, a smaller filter size results in the best 

performance. Therefore, a filter size of 2 was used in the final model.    

Number of filters 

 The number of filters were manipulated and the corresponding training loss as well as 

training RMSE across iterations is shown in Figure 30 and 31 respectively below. Any number 

of filters below 5 gave NaN error (numerical overflow error which signifies lack of any possible 

convergence). 

 

Figure 30: Comparison of training loss across 100 iterations for different number of filters 

  From Figure 30, it can be seen that 5 filters give sub-par performance. The performance 

increases as the number of filters is increased. The improvement in training loss from 15 to 20 

filters is minimal. 20 filters reaches a lower training loss faster than 15 filters. However, 15 

filters is too computationally intensive as 15 filters takes 693 seconds compared to 433 seconds 

for the same number of epochs. Thus, a value in between 10 and 15 was picked and tested. 
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Twelve filters gives a final performance similar to 15 and 20 filters after 100 iterations. To 

confirm that 12 filters is optimal, Figure 31 can be analyzed. 

 

Figure 31: Comparison of training RMSE across 100 iterations for different number of filters 

 Looking at RMSE, it is clear that 12 filters give performance very close to 14 and 20 

filters but at a lower computational requirement. Thus, 12 filters was chosen as the optimal 

number of filters for this particular case. 

Validation of Final Model 

The CNN was trained using the aforementioned hyper parameters for 100 epochs to 

allow for reasonable convergence to be achieved. The model resulting from this final training 

was then used for validation. The accuracy metrics (Asum and Athreshold) were obtained for the final 

set of data and are shown in Table 2 below. 

Table 2: Accuracy metrics for final validation test 
 

x y z 
Asum 25.04 31.07 289.02 

Athreshold 89% 87% 30% 
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As seen from Table 2, the accuracy in the x and y directions is great but the accuracy in 

the z direction is much poorer. This result is most likely because the effect of the movement in 

the z-direction on the flux map is much more significant than the effect of x and z direction as 

mentioned earlier. Thus, the method sampling data needs to be updated to better reflect the 

sensitivity of the z coordinate on the flux map. One method is to generate more data for 

coordinates where the z direction changes while the x and y direction remains the same.   

For further validation, 3 of the trained model’s 101 predictions of lamp coordinates were 

used to obtain flux distribution maps from TracePro and were then compared against the flux 

maps for the actual coordinates those predictions were made for. The following 3 coordinates 

were randomly selected for the validation.  

Table 3: Validation coordinates 

Test 
# 

 
x y z 

1 
Test Coordinate 3.25 -3.25 0.00 

Predicted 
Coordinate 

3.27 -3.74 -1.89 

2 
Test Coordinate 0.00 0.00 -8.75 

Predicted 
Coordinate 

-0.01 -0.04 -1.09 

3 
Test Coordinate 0.00 -5.50 5.50 

Predicted 
Coordinate 

0.34 -5.78 1.34 

 

Test #1 

As seen in Table 3, the prediction made by the model is quite accurate for the x and y 

coordinate. The z coordinate prediction is off by around 1.9 mm. Figures 32 & 33 below are used 

to determine the error in the prediction by analyzing the flux distribution maps of the actual and 

predicted coordinates.  
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        Figure 32: Flux distribution of actual coordinates                 Figure 33: Flux distribution of predicted coordinates 

Figures 32 & 33 show that the prediction made by the model accurately matches the 

actual flux map in terms of the flux distribution. The error in the peak flux was calculated to be 

approximately 148 kW/m2. To better visualize the difference between actual and predicted flux 

maps, a plot of the error was created by subtracting the flux values of actual map from the 

predicted map. The relative error plot for this lamp arrangement is shown in Figure 34 below. 

 

Figure 34: Relative error between actual and predicted flux map at (3.25, -3.25, 0) 

Figure 34 shows that the error between actual flux map and the predicted one is small for 

the outer region and quite large for the central region. In this case, all predicted coordinates are 
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close to test coordinates since test coordinates are closer to 0. Smaller test coordinates imply 

lesser distortion which implies higher guess accuracy. 

Test #2:  

For the second test, the x and y coordinate predictions were very accurate, but again, the 

prediction for z coordinate was quite poor. Comparison of Figures 35 & 36 further shows the 

accuracy of the prediction made by the model.  

        

      Figure 35: Flux distribution of actual coordinates                              Figure 36: Flux distribution of predicted coordinates 

Figures 35 & 36 show that the prediction made by the model poorly matches the actual 

flux map in terms of the flux distribution as well as the peak flux. The error in the peak flux was 

calculated to be approximately 1193 kW/m2. The relative error plot for this test is shown in 

Figure 37 below. 
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Figure 37: Relative error between actual and predicted flux map at (0, 0, -8.75) 

Figure 37 shows that the error between actual flux map and the predicted one is large in 

the center due to the dark spot in the actual flux map, leading to the large negative error. The 

error is also quite large in the surrounding region due to the large radius of bright spot in actual 

flux map, leading to a large positive error. Overall, the relative error between the actual flux map 

and the predicted one is large for this particular lamp arrangement.  It is also interesting to note, 

that the z-coordinate is -8.75 for the test case which would greatly increase the distortion in the 

test flux map. The increased distortion due to the z-coordinate most likely leads to the poor 

predictions of the z-coordinate by the trained network. There is otherwise no significant error in 

the other two coordinates. 

Test #3: 

For the third test, the x and y coordinate predictions were reasonably accurate, but again, 

the prediction for z coordinate was poor. Comparing flux maps in Figures 36 & 37 further shows 

the accuracy of the prediction made by the model.  
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    Figure 38: Flux distribution of actual coordinates    Figure 39: Flux distribution of predicted coordinates 

As can be seen in Figure 38 & 39, the model predicts the general flux distribution fairly 

accurately. The error in the peak flux was calculated to be approximately 125 kW/m2. The 

relative error plot for this test is shown in Figure 40 below. 

  

 

Figure 40: Relative error between actual and predicted flux map at (0, -5.5, 5.5) 

Figure 40 shows that the error between actual flux map and the predicted one is small for 

the outer region and quite large for the central and its surrounding region. The negative error is 

large due to the bright spot in predicted flux map and the positive error is due to the more spread 
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out flux distribution in the actual flux map. In this case, the y and z coordinates are not close to 

10 mm, which gives better testing performance.  

Thus from all the above tests it is clear that the CNN predicts some cases well and some 

cases poorly. The main difference between the great and poor predictions is the z coordinate. 

Thus, the z-coordinate prediction of the trained network still needs to be improved as suggested 

by the accuracy metric in Table 2. This lends further credibility to the assertion that machine 

learning can be used to predict lamp coordinates for a given flux map.  
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CHAPTER IV 

CONCLUSION 

 

The automated LabVIEW system developed to collect data reduced collection time from 

3 hours to 1 hour for each flux map-coordinate pair. However, this data collection time is still 

large and can be greatly reduced if the calibration curve can be used to convert raw CCD images 

to flux map. The in-house algorithm based on taking greyscale weighted average of multiple 

exposure images and using it within the flux mapping method gave excellent results. The 

calibration curve obtained from this method displayed highly level of linearity.   

From, the TracePro simulation it can be concluded that flux maps shape is in the form of 

concentric circles when lamp source is close to the focal point. As the source is moved away, the 

flux maps become more distorted with great distortion noticed near the end of the range tested 

(10 mm) in all directions. The effect of the movement in the z-direction is much greater than the 

impact of movement in x or y direction. 

The convolutional neural network was determined to be a good tool to address the 

problem proposed in this thesis. Similarly, the choice of mini batch gradient descent was also 

confirmed to be a good choice. The accuracy metrics used for final validation of the trained 

network displayed an excellent accuracy for x and y coordinate guesses. However, the guesses 

were found to be poor for the z coordinate. The error in z coordinate is most likely due to the 

higher effect of the z coordinate on the flux map shape which necessitates a different sampling 

method to improve accuracy of coordinate prediction. 

 The optimal hyper parameters for training the convolutional neural network for this case 

were determined. These hyper parameters are listed below: 
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• Learning rate: 3.5x10-5 

• Learning rate drop rate: 0.75 

• Mini-batch size: 31 

• Number of convolutional layers: 5 

• Filter size: 2 

• Number of filters: 12 

• Stride: 2 

• Momentum: 0.9 

• Regularization: L2 regularization 

Despite significant error in z coordinate guesses, the overall success of the trained 

network in the x and y coordinate validate the initial hypothesis. Thus, neural networks can be 

used to predict lamp coordinates in multiple lamp high flux solar simulators. 
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CHAPTER V 

RECOMMENDATIONS FOR FUTURE WORK 

 

Based on the work done so far, some recommendations for future work in this field are 

summarized below: 

• A more time-efficient method of collecting experimental data-sets to train the 

convolutional neural network need to be developed. These could be based on using 

the calibration curve to transform images from multiple lamp positions into respective 

flux maps. Data collection would be reduced to taking images which greatly reduce 

data collection time. Thus, the calibration curve needs to be tested for several lamp 

positions to confirm if one calibration curve can be used for several lamp positions. 

• Use experimental data for validation of the trained network and for retraining the 

network. 

• Increase the number of training epochs using more powerful computing systems such 

as supercomputers.  

• Further investigate the reason for higher error in z coordinate predictions. Possible 

parameters to play with is increasing or decreasing the number of samples which 

move in the Z direction. 

• Collect more data for coordinates closer to or greater than 10mm in x, y and z 

direction to better train for image distortion. 

• Check the utility of other popular programming languages such as python for 

developing a network training code. Languages such as python have a larger 

dedicated community which may improve the code development experience. 
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APPENDIX 

 

Selected TracePro Flux Maps 

1. Position: (0, 0, 0.5) 

 

2. Position: (0, 0, -1.75) 
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3. Position: (0, 0.75, -0.75) 

 

4. Position: (-0.75, 0, 0.75) 
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5. Position: (0, 0, -5.25) 

 

6. Position: (0, -5.25, 0) 
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7. Position: (5.25, 0, 0) 

 

8. Position: (10, 0, 0) 
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9. Position: (0, 0, -10) 

 

10. Position: (0, 9.5, -9.5) 

 

 


