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ABSTRACT 

Protocol Optimization of qPCR for Analysis of the Effects of Antibiotics on Multidrug-Resistant 
Salmonella Populations in Swine 

Megan Babowicz 
Department of Biomedical Sciences 

Texas A&M University 

Research Faculty Advisor: Dr. Keri Norman 
Department of Veterinary Integrative Biosciences 

Texas A&M University 

Antibiotic resistance is a prominent food safety concern. Antibiotics given to food 

animals may promote the development of antibiotic resistance within bacterial populations, 

which then poses a threat to both workers in food animal operations and consumers. A previous 

study was performed which sought to analyze the effects of ceftiofur and chlortetracycline on 

pan-susceptible and multidrug-resistant (MDR) strains of Salmonella in swine. The purpose of 

this study was to optimize protocols for quantitative PCR (qPCR) to detect and quantify 

antibiotic resistance genes, specifically qnrB19 and blaSHV-12, from swine fecal samples. These 

antibiotic resistance genes were chosen in order to uniquely identify the MDR Salmonella strains 

that were used to challenge the swine. The invA gene was also analyzed to determine the total 

number of Salmonella within the fecal samples, allowing for comparison between pan-

susceptible and MDR Salmonella quantities. The protocols created for qnrB19 and blaSHV-12 

were successfully optimized and are ready for use in sample analysis, but further work still 

remains to be done on the protocol for the invA gene. 
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NOMENCLATURE 

MDR   Multi-Drug Resistant 

qPCR   Quantitative PCR 

S. Derby  Salmonella enterica serovar Derby 

S. Senftenberg  Salmonella enterica serovar Senftenberg 

AMR   Antimicrobial resistance 
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1. INTRODUCTION 

1.1 Introduction 

Antibiotics used in food animal operations have been shown to promote antibiotic 

resistance in bacterial strains, which later poses a food safety risk to human consumers and 

operation workers.[1] Antibiotics are used in swine operations to control, prevent, and treat 

disease. Antibiotics commonly used in the swine industry include ceftiofur,[2] chlortetracycline,[3] 

amoxicillin,[4] and enrofloxacin.[5] Antibiotics have been found to promote antibiotic resistance in 

swine, selecting for antimicrobial resistance (AMR) in bacterial strains and promoting their 

growth while eliminating susceptible strains.[6],[7] Use of these antibiotics have been positively 

correlated with increases in AMR genes such as blaCMY, aac(3)-VI, aadA, blaCTX-M, blaTEM, 

blaSHV. tetA, tetC, qepA, qnrB, qnrS, ermA, ermT, cfxA, cepA, cblA, hla, eta, etb.[8],[9],[10],[11],[12] 

By monitoring how these genes are selected for when exposed to antibiotics, we have the ability 

to more accurately predict what kind of food safety risk may be brought about by antibiotic use 

in swine operations. This allows operation workers and veterinarians to make more accurate 

judgement calls in any given situation where antibiotics may be necessitated; the potential harm 

to the operation can be weighed against the potential harm to the workers and consumers. One 

such method of observation is qPCR. 

Quantitative PCR (qPCR) is a form of gene detection that allows the user to observe the 

amplification in real time.[13] While traditional end-point PCR is effective for confirming 

whether or not a gene is present within a sample, qPCR allows for the user to quantify how much 

of the gene is present by seeing how it amplifies compared to standards with known 

quantities.[13] Additionally, it offers much greater discrimination between gene quantities than 
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can be found with end-point PCR, allowing for more precise measurements of gene quantity.[13] 

However, it is limited by factors such as the specificity of its reagents.[13] Primer sequences are 

used to amplify specific regions of the target genome, but if those sequences do not correspond 

to regions specific to that gene and instead correspond to gene sequences found in multiple 

genomes then results may be confounded by an inability to discriminate between products.[13] 

Despite this, it remains an efficient tool in the use gene amplification, and is of great use in the 

detection of microbial genetics.[13] 

1.2 Preliminary Swine Trials 

A previous project was performed within the lab wherein 32 swine were challenged 

orally with both pan-susceptible and multidrug-resistant (MDR) strains of Salmonella enterica 

serovar Derby (S. Derby) and intradermally with both pan-susceptible and MDR strains of 

Salmonella enterica serovar Senftenberg (S. Senftenberg). The swine were then treated with 

antibiotics after the bacteria were given time to colonize the swine. Fecal samples were collected 

on every day of the trial and lymph nodes were collected at the end of the trial following 

euthanasia. We hypothesize that the use of antibiotics will decrease the Salmonella population; 

however, the proportion of MDR resistant Salmonella will increase. 

The purpose of this study was to optimize protocols for qPCR analysis of the presence of 

the qnrB19 and blaSHV-12 genes within the fecal samples collected from this previous study to 

detect and quantify the MDR resistant Salmonella challenge strains. A qPCR protocol for the 

invA gene was also optimized to quantify the total amount of Salmonella in the fecal samples.[14] 
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2. MATERIALS AND METHODS 

2.1 Study Design 

In the initial trial, 32 swine were challenged orally with both pan-susceptible and 

multidrug-resistant (MDR) strains of Salmonella enterica serovar Derby (S. Derby) and 

intradermally with both pan-susceptible and MDR strains of Salmonella enterica serovar 

Senftenberg (S. Senftenberg) following a 2 week quarantine period. The S. Derby MDR strain 

uniquely displayed the antimicrobial resistance gene qnrB19 while the S. Senftenberg MDR 

strain uniquely displayed the antimicrobial resistance gene blaSHV-12 (Table 2.1). The animals 

were challenged on Day 1 and Day 3 of the study. Animals were then treated with either 

ceftiofur, chlortetracycline, both antibiotics, or neither antibiotic in order to determine the effects 

of these antibiotics on the presence of pan-susceptible and MDR strains of Salmonella within the 

feces and lymph nodes of the swine. Antibiotic treatments were initiated on Day 5, with ceftiofur 

being given as an intramuscular injection behind the ear at a dose of 2.27 mg/lb, and 

chlortetracycline being given as a top dressing in feed from Day 5 through Day 18 at a dose of 

400g/ton. Fecal samples were collected on every day of the trial until the swine were euthanized 

on Day 19. 
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Table 2.1: Antimicrobial resistance phenotypes and genotypes determined by whole genome sequencing of the four 
Salmonella strains used in the swine challenge study 

 

2.2 DNA Extraction 

DNA extractions of positive control Salmonella isolates for qPCR were performed on the 

QIAcube (Qiagen; Hilden, Germany) utilizing the DNeasy Blood and Tissue Mini Kit (50) 

(Qiagen) plus QIAamp DNA Accessory Set A (Qiagen). Assessment of overall DNA quality was 

performed on the FLUOstar Omega microplate reader (BMG Labtech; Hopkinton, MA) and 

assessed for a 260/280 absorbance value between 1.8 and 2.0. A final DNA concentration for 

each sample was obtained using a Qubit 3 Fluorometer (Thermo Fisher Scientific; Houston, TX). 

The qPCR reactions were all performed using appropriate concentrations of Invitrogen UltraPure 

DNase/RNase Free Distilled Water (Thermo Fisher Scientific), Brilliant III Ultra-Fast SYBR 

Green QPCR Master Mix with Low ROX (Agilent Technologies; Santa Clara, CA) or Brilliant 

III Ultra-Fast Probe Master Mix with Low ROX (Agilent Technologies) (depending on whether 

the protocol calls for a fluorescent probe or not), and the appropriate primer set for each gene 

corresponding to the optimized protocol for each reaction (See below for further details for each 

Salmonella 

strains Phenotype Genotype 

Senftenberg 

B58HEB1.1 

Pan-

susceptible aph(3')-I 

Senftenberg 

A40HEB1.1 MDR 
aac(6'), aac(6')-I, aac(6')-IIc, aadA, aph(3')-

I, blaSHV, blaTEM, cat, dfrA, ere(A), strA strB sul1, sul2, tet(A), tet(D) 

Derby 

A1CEB1.1 

Pan-

susceptible  

Derby C79C1 MDR aadA, qnrB, sul1, tet(A) 
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primer set). Standard curve dilutions and qPCR reactions were prepared in the QIAgility 

(Qiagen) or prepared by hand. The final reaction was performed using the AriaMx Real-time 

PCR System (Agilent Technologies). Final data analyses were performed using the AriaMx 

software (Agilent Technologies). The standard curves were analyzed for R2, slope, and 

efficiency values. The accepted range values for these are -3.58 to -3.10, 90% to 110%, and 

>0.99 for slope, efficiency, and R2 respectively.[15] 

2.3 qnrB19 Primer Set 

The qnrB19 primer set was generated through the use of IDT’s PrimerQuest program. 

The gene[16] was copied in and the 2 Primers + Probe option was selected in order to generate a 

primer set with probe for increased specificity. 

The qnrB19 reactions were performed using 5-5.6 µL of water (Thermo Fisher 

Scientific), 10 µL of Brilliant III Ultra-Fast Probe Master Mix with Low ROX (Agilent 

Technologies), 0.5-2.5 µL of both the forward and reverse qnrB19 primer sets (Table 2.2) (IDT) 

(concentration 5µM), 0.4-1 µL of the qnrB19 probe (Table 2.2) (IDT) (concentration 1-5µM), 

and 2 µL of DNA template per reaction. Different concentrations and quantities of the primers 

were assessed to determine the optimal concentration. The reactions were performed in duplicate 

by hand with 4.0 µL of template and 36.0 µL of Master Mix which was then hand-mixed and 

separated into 20 µL reactions for analysis. 

Table 2.2: The qnrB19 forward and reverse primer and probe sequences 

qnrB19 Forward Primer Sequence 5´- CGA CGT TCA GTG GTT CAG AT -3´ 

qnrB19 Reverse Primer Sequence 5´- CCT AAC TCC GAA TTG GTC AGA T -3´ 

qnrB19 Probe Sequence 5’ - /56-FAM/AA TGT GTG A/ZEN/A GTT TGC 
TGC TCG CC/3IABkFQ/ -3´ 
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Reactions in the AriaMx (Agilent Technologies) were performed utilizing the 

Quantitative PCR – Fluorescence Probe program beginning with 3 minutes at 95°C to initiate the 

reaction, followed by 40 repeating cycles of 5 seconds at 95°C followed by 10 seconds at an 

annealing temperature ranging from 55°C to 70°C (different temperatures were tested) with 

measurements taken following each amplification cycle. Different annealing temperatures were 

assessed to determine the optimal temperature. 

2.4 blaSHV-12 Primer Set 

The primer sets were previously generated by a graduate student within the lab through 

use of IDT’s PrimerQuest program. 

The blaSHV-12 reactions were performed using 2-3 µL of water (Thermo Fisher Scientific), 

10 µL of Brilliant III Ultra-Fast SYBR Green QPCR Master Mix with Low ROX (Agilent 

Technologies), 2.5-3.0 µL of both the forward and reverse blaSHV-12 primer sets (Table 2.3) 

(IDT) (concentration 5µM), and 2 µL of DNA template per reaction. Different quantities of the 

primers were assessed to determine the optimal concentration. The reactions were performed in 

duplicate by hand with 4.0 µL of template and 36.0 µL of Master Mix which was then hand-

mixed and separated into 20 µL reactions for analysis. 

Table 2.3: The blaSHV-12 forward and reverse primer sequences 

blaSHV-12 Forward Primer Sequence 5´- ATA AGA CCG GAG CTA GCA AAC -3´ 

blaSHV-12 Reverse Primer Sequence 5´- GGC GTA TCC CGC AGA TAA AT -3´ 

 

Reactions in the AriaMx (Agilent Technologies) were performed utilizing the 

Quantitative PCR – DNA Binding Dye Including Standard Melt program beginning with 3 

minutes at 95°C to initiate the reaction, followed by 40 repeating cycles of 5 seconds at 95°C 
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followed by 10 seconds at temperatures ranging from 60°C to 65°C (different temperatures were 

tested) with measurements taken following each amplification cycle. Different annealing 

temperatures were assessed to determine the optimal temperature. Following the amplification 

cycles the reactions were returned to 95°C for 1 minute, cooled to 55°C for 30 seconds, and 

returned to 95°C for 30 more seconds in order to generate a melting curve. Data was collected 

along the temperature increase from 55°C to 95°C. The melting curve was analyzed to ensure 

that only a singular product was generated. If all generated products displayed the same melting 

curve, then it can be assumed that all generated products were of the same substance, if not 

concentration. 

2.5 invA Primer Set 

The invA reactions were performed using 4.6-5 µL of water (Thermo Fisher Scientific), 

10 µL of Brilliant III Ultra-Fast Probe Master Mix with Low ROX (Agilent Technologies), 1 µL 

of both the forward and reverse invA primer sets[8] (Table 2.4) (concentration 0.5µM), 0-0.4 µL 

of probe[8] (Table 2.4) (concentration 0.5µM), and 2 µL of DNA template per reaction. The 

reactions were performed in duplicate and at a 1.1X quantity to account for pipetting error within 

the QIAgility (Qiagen), resulting in final preparations consisting of 4.4 µL of template and 39.6 

µL of Master Mix which was then briefly hand-mixed and separated into 20 µL reactions by 

hand for analysis. 
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Table 2.4: The invA forward and reverse primer and probe sequences[17] 

invA_176_F Forward Primer Sequence 5´- CAA CGT TTC CTG CGG TAC TGT -3´ 

invA_291_R Reverse Primer Sequence 5´- CCC GAA CGT GGC GAT AAT T -3´ 

invA_FAM_208 Probe Sequence 5´- /56-FAM/CTC TTT CGT CTG GCA TTA 
TCG ATC AGT ACC A/3IAbRQSp/ -3´ 

 

Reactions in the AriaMx (Agilent Technologies) were performed utilizing the 

Quantitative PCR – Fluorescence Probe program beginning with 3 minutes at 95°C to initiate the 

reaction, followed by 40 repeating cycles of 5 seconds at 95°C followed by 10 seconds at 60°C 

with measurements taken following each amplification cycle. 

Two runs were performed using differing control template DNA in order to test if 

detected issues were resultant from the reagents used. A third test was run using the Quantitative 

PCR – DNA Binding Dye Including Standard Melt program beginning with 3 minutes at 95°C to 

initiate the reaction, followed by 40 repeating cycles of 5 seconds at 95°C followed by 10 

seconds at 60°C with measurements taken following each amplification cycle. Following the 

amplification cycles the reactions were returned to 95°C for 1 minute, cooled to 65°C for 30 

seconds, and returned to 95°C for 30 more seconds in order to generate a melting curve. 
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3. RESULTS 

3.1 qnrB19 gene Protocol Optimization 

Multiple protocols were tested for the qnrB19 gene (Table 3.1), including protocols 

utilizing qnrB19 primers previously generated in the lab using IDT’s PrimerQuest system 

(unpublished). When no adjusting of annealing temperatures or primer concentration succeeded 

in eliminating negative control amplification, the current set of primers were generated with a 

fluorescent probe to improve specificity (Table 2.2). Testing for primer concentration involved 

multiple trials run simultaneously, with 1 µL of primers and probe providing the most optimized 

results. The average annealing temperature for the primers and probe was calculated to 58°C, and 

proved to be the best temperature when testing of other temperatures yielded poorer results. 

However, negative control amplification persisted, leading to questions about how much 

contamination was present within the work space.  
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Table 3.1: All primer/probe quantities, concentrations, and annealing temperatures tested and their resultant R2, 
slope, and efficiency values. Those rows without R2, slope, and efficiency values were positive control tests. The 
rows marked in red were from a previous primer set that did not produce viable results. This primer set was run 

with SYBR Green (Agilent Technologies) rather than a probe and was run on the Quantitative PCR – DNA Binding 
Dye Including Standard Melt program. The rows marked in black were from the primer set and probe which 

produced optimized results. The highlighted row contains the optimized results. 

Forward/Reverse 

Primers (µL/ 

µM) 

Probe (µL/ 

µM) 

Annealing 

Temperature 

(°C) 

R2 Slope Efficiency 

(%) 

2.5/5 N/A 60 N/A N/A N/A 

2.5/5 N/A 60 0.997 -3.142 108.1 

2.5/5 N/A 60 0.984 -2.828 125.7 

2/5 N/A 60 0.991 -2.840 125.0 

1.5/5 N/A 60 0.996 -2.787 128.5 

1/5 N/A 60 0.991 -2.670 136.9 

1/5 N/A 65 0.998 -3.137 108.3 

1/5 N/A 70 0.193 -0.818 1568 

0.5/5 N/A 65 0.997 -2.879 122.5 

1/5 N/A 62 0.996 -2.697 134.8 

1/5 N/A 65 0.998 -2.733 132.3 

1/5 N/A 62 0.996 -2.691 135.3 

1/5 N/A 62 0.992 -2.933 119.3 

1/5 N/A 65 0.997 -2.773 129.4 
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Table 3.1: Continued 

Forward/Reverse 

Primers (µL/ 

µM) 

Probe (µL/ 

µM) 

Annealing 

Temperature 

(°C) 

R2 Slope Efficiency 

(%) 

0.5/5 N/A 65 0.993 -2.779 129.0 

0.5/5 N/A 55 N/A N/A N/A 

1/5 1/5 58 N/A N/A N/A 

1/5 0.4/5 58 N/A N/A N/A 

1/5 1/1 58 N/A N/A N/A 

1/5 0.4/1 58 N/A N/A N/A 

1/5 1/5 58 N/A N/A N/A 

1/5 1/5 60 N/A N/A N/A 

1/5 1/5 55 N/A N/A N/A 

1/5 1/5 58 N/A N/A N/A 

1/5 1/5 58 0.996 -2.993 115.8 

1/5 1/5 60 N/A N/A N/A 

1/5 1/5 58 0.992 -2.796 127.9 

1/5 1/5 62 N/A N/A N/A 

1/5 1/5 58 N/A N/A N/A 

1/5 1/5 58 N/A N/A N/A 

1/5 1/5 58 0.980 -3.180 106.3 

1/5 1/5 58 0.999 -3.137 108.3 
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The final protocol which produced the most optimized results (Figure 3.1) for this primer 

set was established as 5 µL of water (Thermo Fisher Scientific), 10 µL of Brilliant III Ultra-Fast 

Probe Master Mix with Low ROX (Agilent Technologies), 1 µL of both the forward and reverse 

qnrB19 primer sets (Table 2.2) (IDT) (5µM), 1 µL of the qnrB19 probe (Table 2.2) (IDT) (5µM), 

and 2 µL of DNA template per reaction. The reactions were performed in duplicate by hand due 

to concerns about potential contamination originating from within the QIAgility (Qiagen). 

Reactions were prepared in total to 4.0 µL of template and 36.0 µL of Master Mix which was 

then hand-mixed and separated into 20 µL reactions for analysis. Reactions were performed in 

the AriaMx (Agilent Technologies) utilizing the Quantitative PCR – Fluorescence Probe 

program. The final PCR thermal profile began with 3 minutes at 95°C to initiate the reaction, 

followed by 40 repeating cycles of 5 seconds at 95°C followed by 10 seconds at 58°C with 

measurements taken following each amplification cycle. 
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Figure 3.1: The qnrB19 optimized standard curve and amplification plots for the optimized protocol 

3.2 blaSHV-12 gene Protocol Optimization 

Multiple protocols were tested for the blaSHV-12 gene (Table 3.2), with primer 

concentration beginning at 2.5 µL and an annealing temperature of 60°C, which resulted in near 

ideal results upon the first run. However, negative control amplification proved to be an issue, 

and so further adjustment of primer concentrations and annealing temperatures was performed. 

However, none of these temperatures produced as clean of results as the initial ones tested, and 

none were successful in eliminating negative control amplification. As such, the same stricter 

cleaning protocols were implemented for the blaSHV-12 primers as were used for the qnrB19 

primers which also resulted in the successful generation of a standard curve by hand with the 

blaSHV-12 primer set.  
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Table 3.2: All primer quantities, concentrations, and annealing temperatures tested and their resultant R2, slope, 
and efficiency values. Those rows without R2, slope, and efficiency values were positive control tests. The row 

marked with a * are the values gathered from a single curve rather than a duplicate curve like all other trials. This 
was due to a pipetting error that occurred during the experiment and resulted in one complete and one incomplete 

standard curve. Only the results from the complete standard curve are recorded here. The highlighted row contains 
the optimized results. 

Forward/Reverse 

Primers (µL/ 

µM) 

Annealing 

Temperature 

(°C) 

R2 Slope Efficiency (%) 

2.5/5 60 N/A N/A N/A 

2.5/5 60 0.997 -3.173 106.6 

2.5/5 65 0.996 -3.054 112.5 

2.5/5 60 N/A N/A N/A 

* 2.5/5 60 0.999 -3.569 90.6 

2.5/5 60 0.996 -3.328 99.8 

2.5/5 60 0.998 -3.266 102.4 

3/5 60 0.980 -3.504 92.9 
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The final protocol which produced the most optimized results (Figure 3.2) for this primer 

set was established as 3 µL of water (Thermo Fisher Scientific), 10 µL of Brilliant III Ultra-Fast 

SYBR Green QPCR Master Mix with Low ROX (Agilent Technologies), 2.5 µL of the forward 

and reverse blaSHV-12 primers (5µM) (IDT), and 2 µL of DNA template per reaction. The 

reactions were performed in duplicate by hand due to concerns about potential contamination 

originating from within the QIAgility (Qiagen). Reactions were prepared to a total of 4.0 µL of 

template and 36.0 µL of Master Mix which was then hand-mixed and separated into 20 µL 

reactions for analysis. Reactions were performed in the AriaMx (Agilent Technologies) utilizing 

the Quantitative PCR – DNA Binding Dye Including Standard Melt program. The final PCR 

thermal profile began with 3 minutes at 95°C to initiate the reaction, followed by 40 repeating 

cycles of 5 seconds at 95°C followed by 10 seconds at 60°C with measurements taken following 

each amplification cycle. 
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Figure 3.2: The blaSHV-12 primers optimized standard curve, amplification plots, and melt curve 

3.3 invA gene Protocol Optimization 

In testing of the invA gene, no standard curve was successfully generated with the primer 

and probe sets using the conditions previously published.[x] However, upon testing of the qPCR 

product through the use of a gel electrophoresis, product was detected in the positive control 

samples, with no product detected in the negative control samples (Figure 3.3). 

A separate test was run using a generalized fluorescent material rather than a fluorescent 

probe which did result in amplification detection (Figure 3.4). 
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Figure 3.3: Gel electrophoresis of the invA gene positive control test, well 1 is the DNA ladder used for control, 
wells 2 and 4 are replicate PCR products containing the positive control (DNA from S. Senftenberg) and wells 3 and 

5 are replicate PCR products containing the negative control, water 
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Figure 3.4: Positive test control amplification of two invA positive samples (ATCC 700720, a40heb1.1) utilizing a 
general fluorescent material rather than the fluorescent probe 

3.4 Discussion 

The standard curves generated for qnrB19 and blaSHV-12 both display results within 

acceptable ranges for further data analysis. Therefore, these results are applicable to sample 

testing and will provide acceptable standards against which to compare samples, allowing for 

gene quantification within samples. 

As no standard curve has yet been successfully generated for invA, this protocol cannot 

yet be utilized in sample testing. Possible options for further optimization are discussed in 

section 4.2. 

The primary issue which occurred over the course of both the qnrB19 and blaSHV-12 

protocol optimization process was negative control amplification. Over the course of both trials, 
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primer annealing temperatures were adjusted to see if doing so could either eliminate the 

negative control amplification entirely or push it to a point where it could be cut off from the 

final results. The standard cycle count for the qPCR programs used was 40, but if the standards 

could be fully amplified (brought to a plateau) before then, then the remaining cycles would be 

extraneous data and could be removed. If negative control amplification could be pushed to this 

region then it would become negligible, but this was not achieved. This showed some promise, 

with the negative control amplifying later in both trials, but also had negative effects on the R2, 

slope, and efficiency values of the generated standard curves, pushing the values beyond the 

acceptable ranges. The accepted range values for these are -3.58 to -3.10, 90% to 110%, and 

>0.99 for slope, efficiency, and R2, respectively.[15] The individual dilutions of the standard curve 

also changed with the temperature adjustments, with standards amplifying later or earlier 

depending on the direction of adjustment, but never separating the lower standards from the 

negative control to a point where the negative control could be cut off. 

The R2 value indicates how well the data points fit to the linear regression generated by 

the software based off of the data set, indicating how uniform the dilutions were in the reaction. 

The ideal value is 1, indicating a perfect fit and complete uniformity across the dilutions. The 

slope is the slope of the linear regression calculated from the data set, with the ideal slope being -

3.3, but values within the accepted range being used for publication. The efficiency indicates 

how much of the reaction amplified in early amplification cycles continued to amplify in 

subsequent cycles, with the ideal being 100% indicating that all the reaction continued.[15] 

The eventual solution to eliminating amplification of the negative control was a stricter 

cleaning protocol, with heavy decontamination of both work surfaces and tools used during the 

experiments. These surfaces were decontaminated with the use of DNA Away (Thermo Fisher 



23 
 

Scientific) and 70% ethanol (100% ethanol from Sigma-Aldrich; St. Louis, MO; combined with 

deionized water). The surface would be thoroughly coated with DNA Away (Thermo Fisher 

Scientific), left to sit for 10-15 seconds, and then wiped down. Subsequently, the surface would 

be sprayed down with ethanol (Sigma-Aldrich) and wiped immediately after. The DNA Away 

(Thermo Fisher Scientific) would eliminate any amplicons which may contaminate the negative 

control and the ethanol (Sigma-Aldrich) would remove the DNA Away (Thermo Fisher 

Scientific) to prevent degradation of the experiment. Materials used in the experiment were also 

replaced before the final protocols were created, both to reduce the risk of contamination and 

ensure that all materials utilized were fresh and would remove any error brought on by their 

degradation over time. While this protocol helped to reduce amplification within the QIAgility 

(Qiagen), some inconsistency still remained, leading to concerns about aerosols or amplicons 

present in parts of the machine not cleanable during normal operation. This led to the production 

of a standard curve by hand using the same cleaning protocol in order to reduce the chance of 

contamination. These modifications resulted in successful results for generating standard curves 

for both qnrB19 and blaSHV-12 that were free of negative control amplification and had R2, slope, 

and efficiency values within the acceptable ranges for publication. 

The final protocols were performed by hand as issues concerning contamination and 

pipetting error within the QIAgility (Qiagen) were raised. In previous trials the machine 

generated differing volumes of product despite being programmed to dispense the same amount 

in each well. The final trials were performed by hand to remove this issue, as although the 

QIAgility (Qiagen) offers greater consistency in results, the need to remove the pipetting errors 

outweighed any human error performing the experiment by hand may generate. 
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The concern of contamination was also raised. Despite thorough decontamination and 

careful handling of products, some negative controls generated within the QIAgility (Qiagen) 

still displayed amplification, while those generated by hand did not. This indicated that either 

aerosols were being generated during the reaction which contaminated results or that some 

amplicons were present in areas that were unable to be reached for cleaning during routine 

operation. As such, performing the experiments by hand also assisted to eradicate this issue. 

The invA gene protocol was not successfully optimized. The primary issue with this gene 

was the lack of detection. Upon completion of the experiment, it appeared that no standard curve 

had been generated, however, upon running the PCR products through a gel electrophoresis, it 

became apparent that product had been produced in the positive controls and no product had 

been produced in the negative controls. This indicated that the issue lay not within the actual 

reaction, but the detection of the reaction’s occurrence. This was further reinforced by the 

presence of product when the trial was later run using a general fluorescent material and 

removing the probe from the reaction, indicating that the probe was the likely issue. As the 

protocol has not been fully optimized yet it cannot be said for sure that this is the problem, but 

current evidence points to this conclusion. 
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4. CONCLUSION 

4.1 Conclusion 

Despite initial difficulties with negative control amplification, sufficiently intense 

cleaning of materials and workspace to remove possible contaminants has proved successful in 

eliminating negative control amplification. In addition, replacing the water for every reaction has 

also ensured that as many possible sources of contamination are removed as is reasonably 

feasible. 

The successful elimination of negative control amplification has resulted in standard 

curve generation with acceptable slope, efficiency, and R2 values for the genes qnrB19 and 

blaSHV-12 which can later be used for sample testing. Protocols have not yet been optimized for 

standard curve generation of the invA gene; however, preliminary results have shown successful 

amplification of positive controls and no amplification of negative controls as is desired. 

4.2 Future Plans 

Future plans include acquisition of a new probe for the invA primer set. It is possible that 

the age of the utilized probes, having been ordered in 2019, may be a contributing factor in the 

failure to detect amplification. If the present fluorescent issue can be explained via the age and 

potential degradation of the current materials then use of a freshly created probe should allow for 

detection of standard curve amplification and resolve the current issue. If the new probe fails to 

fluoresce then a new probe entirely may have to be designed or another alternate route may be 

considered. If the curve fluoresces but is not within acceptable ranges for data analysis the 

protocol may have to be further adjusted. 
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If the fresh invA probe allows for the generation of an acceptable standard curve then 

sample testing for this gene will begin immediately. 

New standard curves for qnrB19 and blaSHV-12 will also be generated to ensure that all 

materials in use are fresh. Assuming the standard curves remain within the previously described 

acceptable ranges, sample testing for these genes will begin immediately. Generation of new 

standard curves for qnrB19 and blaSHV-12 will also confirm the repeatability of the optimized 

protocol. 

In conclusion, the protocols for the qnrB19 gene and blaSHV-12 gene were successfully 

optimized with new primer generation, annealing temperature adjustment, and stricter cleaning 

protocols. The protocol for the invA gene was not optimized, but future plans, such as ordering 

fresh probe, include possible routes for fixing the detection issues. Fecal sample testing will 

begin for the qnrB19 and blaSHV-12 genes as those protocols are already optimized, and sample 

testing for the invA gene will also begin as soon as the protocol is optimized. 
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