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ABSTRACT 

On Modern Offloading Parallelization Methods: A Critical Analysis of OpenMP 

Scott Carlos Carrión 
Department of Computer Science and Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Jeff Huang 
Department  of Computer Science and Engineering 

Texas A&M University 

The very concept of offloading computationally complex routines to a graphics 

processing unit for general-purpose computing is a problem left wide open to the academic 

community, both in terms of application as well as implementation, with several different and 

popular interfaces exploding into popularity within the last twenty years. The OpenMP standard 

is among the elites in this category, standing as a parallelization interface that has stood the test 

of time. The goals that the inquiry presented herein seeks to answer are twofold: Firstly, we aim 

to assess the performance of common sorting algorithms parallelized and offloaded using 

OpenMP, offloaded to NVIDIA GPU hardware, and secondly, to critically analyze the 

programmer experience in using an implementation of the OpenMP standard (again, with 

offloading to NVIDIA GPU hardware) to implement these algorithms. For completeness, the 

empirical analysis contains a comparison to the unparallelized algorithms. From this data and the 

impression of the programming experience, strengths and weaknesses of usage of OpenMP for 

parallelizing and offloading sorting algorithms are derived. After discussing each benchmark in 

depth, as well as the data derived from the parallelized implementations of each, we found that 
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OpenMP’s position as one of the forefront parallel programming standards is well-justified, with 

few, but notable, pitfalls for the average programmer. In terms of its performance in parallelizing 

common sorting algorithms with offloading to NVIDIA GPU hardware, it was found that 

OpenMP fails to deliver viable implementations of the algorithms that are advantageous over 

their single-threaded counterparts, though, this was found not to be the fault of OpenMP, but 

rather, of the inherent nature of offloading to NVIDIA GPU hardware. 
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NOMENCLATURE 

 [GPU  Graphical Processing Unit] 
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1. INTRODUCTION 

In the modern age of high-performance computing, the race for optimization grows ever-

more fervent. As the limits for hardware-driven optimizations are approached, we turn to other 

methods for optimizing computationally complex routines and algorithms. One such method is 

the use of graphical processing units (hereafter GPUs) as accelerators for general-purpose 

computing. Interfaces and implementations for accomplishing this can vary wildly across 

projects. With a number of these offloading solutions bolstered by research from industry 

affiliates and the academic community alike, contributors to these projects, who have the most 

knowledge surrounding their interface, are strongly incentivized to defend and improve their 

project to the very best of their ability. As such, in the ever-advancing field of high-performance 

computing, there exists little in the way of critical, impartial analysis of the contemporary 

interfaces for offloading to graphical processing units. This overall analysis seeks to evaluate one 

of, if not the most popular interfaces for GPU offloading of C/C++ routines: the OpenMP 

standard, with offloading to NVIDIA GPU hardware. Criteria for evaluation include: (1) 

discussion of the programming experience using OpenMP, (2) correctness of output, or 

conformity to the sequential (control) output, for each algorithmic benchmark, and (3) 

performance, as compared to the sequential output. The analysis for each interface concludes 

with an objective assertion of the strengths and weaknesses for the interface. 

1.1 Benchmark Selection 

The benchmark algorithms selected for these analyses are the classical insertion sort, the 

classical selection sort, and the comb sort. Unifying the benchmarks by selecting algorithms that 

all do the same thing (sort values in an array of basic integer primitives) is necessary for the 
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results of the analyses to be attributable only to the selection of parallelization method, rather 

than the algorithms types chosen. Further, the algorithms chosen as benchmarks for this study, 

like most sorting algorithms with time complexity of or similar to 𝑂(𝑛$) tend to make a heavy 

amount of array accesses, even in the average case. This choice was deliberate, as we wish to 

study the performance of NVIDIA GPU offloading via OpenMP in solving problems which are 

memory access intensive.  
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2. METHODS 

OpenMP, according to its own documentation, is “a specification for a set of compiler 

directives, library routines, and environment variables that can be used to specify high-level 

parallelism in Fortran and C/C++ programs.” [1] Practically, OpenMP provides its interface by 

the use of ‘pragmas’: preprocessor directives that specify to the compiler where and how to 

parallelize certain code, chiefly revolving around the identification of ‘parallel regions’, a set of 

instructions the API processes to turn into parallel code during compile-time. For this analysis, 

the LLVM implementation of the OpenMP 4.0 standard, with support for offloading to NVIDIA 

(internally referred to as “nvptx” devices) enabled, is configured to the Clang (version 10.0.1) 

compiler frontend (Figure 2.1, Figure 2.2). 

 

Fig 2.1: Excerpt of unparallelized code (from Comb Sort)  
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Fig 2.2: Excerpt of parallelized code (from Comb Sort) 

 

Parallelization of all algorithms proceeded in a very similar fashion for all benchmarks: A 

parallelizable region, typically the principal loop of the algorithm, was identified, necessary 

clauses for the directive itself were chosen, and the procedure within the loop was modified to 

adhere to constraints introduced by making use of OpenMP to offload to NVIDIA GPU 

hardware (Figure 2.2). These limitations are discussed more in depth as results, rather than as 

methods, further in this paper. 
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3. RESULTS 

3.1 Performance and Correctness Assessment 

We present a summary of the runtimes and a subsequent assessment of the performance 

of the OpenMP with GPU offloading implementation of each sorting algorithm below. Timing 

was performed using the C++ Standard Template Library’s “chrono” header; specifically, the 

high-resolution clock function. [2] 

 

 

Figure 3.1.1: Visualization of Runtime Data, Comb Sort Benchmark 
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Figure 3.1.2: Visualization of Runtime Data, Insertion Sort Benchmark 

 

Figure 3.1.3: Visualization of Runtime Data, Selection Sort Benchmark 
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Table 1: Tabulation of Runtime Data, Comb Sort Benchmark 

Problem Size (number of 
variables to sort) 

Unparallelized Runtime 
(seconds) Parallelized Runtime (seconds) 

500 0.00087095 0.338751 
1000 0.00425457 0.859901 
1500 0.00798661 1.56521 
2000 0.0145872 2.26183 
2500 0.0228375 3.28348 
3000 0.0340949 4.12054 
3500 0.0485203 5.03266 
4000 0.0640665 6.80713 
4500 0.0785111 7.89892 
5000 0.101147 9.00309 
5500 0.122659 10.8212 
6000 0.147471 12.0028 
6500 0.175818 13.9048 
7000 0.203775 16.1392 
7500 0.2392 17.4568 
8000 0.306832 20.203 
8500 0.33647 22.0007 
9000 0.394711 24.3303 
9500 0.42936 26.2551 

10000 0.459501 29.1987 
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Table 2: Tabulation of Runtime Data, Insertion Sort Benchmark 

Problem Size (number of 
variables to sort) 

Unparallelized Runtime 
(seconds) Parallelized Runtime (seconds) 

500 0.00017906 0.0847266 
1000 0.00069509 0.0970685 
1500 0.00154835 0.103393 
2000 0.0041255 0.117554 
2500 0.0076305 0.121126 
3000 0.00875286 0.123181 
3500 0.0154178 0.120294 
4000 0.0144519 0.132609 
4500 0.0245274 0.140412 
5000 0.0263155 0.147926 
5500 0.0241156 0.158625 
6000 0.0434787 0.151437 
6500 0.0499099 0.145052 
7000 0.0602627 0.171638 
7500 0.0708219 0.171523 
8000 0.0764472 0.192152 
8500 0.0514324 0.195133 
9000 0.0580327 0.202965 
9500 0.109895 0.221672 

10000 0.123627 0.216779 
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Table 3: Tabulation of Runtime Data, Selection Sort Benchmark 

Problem Size (number of 
variables to sort) 

Unparallelized Runtime 
(seconds) Parallelized Runtime (seconds) 

500 0.00141071 0.162085 
1000 0.00623467 0.363855 
1500 0.0144788 0.667205 
2000 0.0221421 1.11537 
2500 0.0215338 1.67583 
3000 0.049337 2.35043 
3500 0.0511447 3.17589 
4000 0.0745646 4.11176 
4500 0.0984962 5.18284 
5000 0.0890428 6.35998 
5500 0.133128 7.66194 
6000 0.159177 9.08676 
6500 0.192901 10.6228 
7000 0.216681 12.3384 
7500 0.246795 14.2102 
8000 0.337477 16.1617 
8500 0.309093 18.2221 
9000 0.352515 20.4817 
9500 0.384044 22.8153 

10000 0.400469 25.3819 
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 It can be clearly seen in the tables and derived visualization figures that in no 

instance does an offloaded implementation of any of the benchmark algorithms does any marked 

improvement occur, though all results were correct. For the comb sort benchmark, the runtime 

for the parallelized version appears to increase with size almost linearly, and was eminently 

outperformed by the unparallelized control implementation (Table 1, Figure 3.1.1). The 

parallelized implementation of the insertion sort benchmark saw the greatest degree of 

comparability to its unparallelized counterpart, but was still outperformed to a considerable 

degree for all problem sizes (Table 2, Figure 3.1.2). Finally, much like the comb sort benchmark, 

the runtime of the parallelized implementation of the selection sort benchmark increased in a 

nearly linear fashion, and, again, it is clear that the parallelized implementation was 

outperformed by the unparallelized implementation (Table 3, Figure 3.1.3). These results can be 

attributed to the overhead related to two circumstances that arise in offloading that do not arise in 

the unoptimized, single-threaded implementation of the benchmark algorithms. Firstly, swapping 

the positions of values in the constituent array must be an atomic operation; that is, a directive 

must be made to OpenMP to treat the swap as a critical section, thus dramatically reducing the 

performance of the parallelized algorithm. Secondly, in order for the device (GPU) to be able to 

carry out the procedure of each algorithm, after dividing up the work among its many teams of 

threads, frequent, synchronized, and expensive two-way (or ‘to-from’) mapping is necessary to 

produce correct output. The latency associated with two-way mapping in a procedure where 

heavy memory access is a requisite necessarily diminishes the optimization potential for 

offloading of sorting algorithms in general [3]. 
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3.2 Critical Analysis of Programming Experience 

For all algorithms tested, this method of abstraction proved relatively simple, although in 

some cases, refactoring the code to some degree such that an easily identifiable parallel region 

exists can be beneficial. Use of the interface maintains a much higher-level management of 

threads, teams of threads, and mapping of memory to the device. In terms of user-end 

informativeness, however, OpenMP leaves much to be desired. If some runtime error occurs, 

whether it be a signal being raised by the device, or by the host, there is very little information 

presented to the programmer. Not only is configuration of the LLVM/Clang 10.0.1 compiler and 

infrastructure a tedious manual process of hardware specification that leaves much room for 

error, but, additionally, for the machine tested, attempting to create a debug build of the compiler 

does not emit error details in the vast majority of cases when such a runtime error occurs. Most 

of the time, it was found, the dreaded “Libomptarget fatal error 1: failure of target construct 

while offloading is mandatory” error, which is the only information output upon one of these 

aforementioned failures, is not due to a shortcoming of the implementation of the interface. 

Rather, it is a shortcoming of the CUDA language itself. OpenMP, as implemented in the LLVM 

project, successfully and correctly generates CUDA code for the device (GPU) to execute in 

accordance with the standards of the C/C++ language as well as the OpenMP 4.0 standard. 

However, it was found experimentally that many known libraries, including the C++ standard 

library (as implemented for the host compiler, Clang, that is, not libcu++ [4]), are not supported 

by CUDA. Both CUDA and OpenMP fail to communicate this information to the programmer. 

Another instance of this same error occurs when attempting to use a variable that is not mapped 

on the device within a parallel region. Like before, no documentation surrounding this cryptic 
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behavior, nor its potential causes, could be located. These lessons were learned by low-level 

investigation, and vast amounts of time-consuming trial and error. 

While it is surprisingly difficult to debug OpenMP as an API, the implementation and 

parallelization of the routines proved remarkably simple to develop, with the API’s clauses 

providing similarly straightforward logical extensions where necessary. OpenMP’s ability to 

work with the compiler to interpret how variables should be mapped (i.e shared or private), how 

iterations within the parallel region should be distributed, and the seamless integration with the 

system’s native threading interface (in the case of the Texas A&M High Performance Research 

Supercomputer, POSIX threads) ought to be duly recognized as well. 
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4. CONCLUSION AND FUTURE WORK 

Among the elite of parallelization offloading methods, the OpenMP standard holds firm 

as one of the best in terms of its interface, with some debugging difficulties which are rendered 

inconsequential in the face of the sheer advantages that it provides the programmer over 

traditional, ‘manual’ parallelization. After analyzing the performance of algorithms offloaded to 

NVIDIA GPU hardware via the LLVM Clang 10.0.1 implementation of the OpenMP standard, it 

was found that using OpenMP to offload memory access intensive, computationally complex 

sorting algorithms is generally not viable, due almost exclusively to the inherent overhead 

associated with offloading and frequent two-way mapping. With these findings in mind, we hold 

that as an interface, OpenMP excels on the whole, and sorting algorithms are poorly parallelized 

via offloading due to their inherent intensive memory access. 

This inquiry proved to be quite informative, shoring up the potential for future work 

surrounding the limitations of effective parallelization using offloading to NVIDIA hardware in 

general. Further research into this is a worthy topic of follow-up papers, as it is evidently clear 

that parallelization via offloading, regardless of means or interface, does not necessarily yield an 

optimized implementation in general as compared to a host-parallelized, or, as seen in the results 

presented in this inquiry, even a single-threaded implementation. As explored in this paper, these 

memory access intensive algorithms proved to not be viable for parallelization via offloading, 

but, there are still an extremely diverse range of algorithms and other computationally complex, 

programmatic solutions to vexingly difficult problems for which optimization by means of 

parallelization via offloading has not yet been explored in-depth as it has in this research.  
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APPENDIX A: TESTING HARDWARE SPECIFICATIONS 

All testing for the results presented of the inquiry herein were performed on the Terra 

cluster of the Texas A&M University High-Performance Supercomputer (HPRC), with 

permission. A summary of the specifications follows (see corresponding footnote for cited 

source)1. 

  

                                                
1 TAMU HPRC, “Terra: A Lenovo x86 HPC Cluster,” TAMU HPRC Wiki, 05-Apr-2021. 

[Online]. Available: https://hprc.tamu.edu/wiki/Terra:Intro. [Accessed: 12-Mar-2021].  
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Table A: Hardware Specifications of Compute Nodes in the Terra Cluster 

Table 1 Details of Compute Nodes 

 
General 

64GB 
Compute 

GPU 128 GB 
Compute 

KNL 96 GB (68 
core) 

Compute 

KNL 96 GB (72 
core) 

Compute 

V100 GPU 192 
GB 

Compute 

Total Nodes 256 48 8 8 4 

Processor 
Type 

Intel Xeon E5-2680 v4 
(Broadwell), 2.40GHz, 14-

core 

Intel Xeon Phi 
CPU 7250 
(Knight's 
Landing), 

1.40GHz, 68-
core 

Intel Xeon Phi 
CPU 7290 
(Knight's 
Landing), 

1.50GHz, 72-
core 

Intel Xeon 
Gold 5118 

(Skylake), 12-
core, 2.30 GHz 

Sockets/Node 2 2 2 2 

Cores/Node 28 68 72 24 

Memory/Node 
64 GB 
DDR4, 

2400 MHz 

128 GB 
DDR4, 2400 

MHz 
96 GB DDR4, 2400 MHz 192 GB, 2400 

MHz 

Accelerator(s) N/A 
1 NVIDIA 

K80 
Accelerator 

N/A 
2 NVIDIA 

32GB V100 
GPUs 

Interconnect Intel Omni-Path 
Architecture (OPA) Intel Omni-Path Architecture (OPA) 

Local Disk 
Space 1TB 7.2K RPM SATA disk 220GB 300GB 
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Table B: Memory Limits of Nodes in the Terra Cluster 

Memory Limits of Nodes 

 64GB 
Nodes 

128GB 
Nodes 

96GB KNL Nodes (68 
core) 

96GB KNL Nodes (72 
core) 

Node Count 256 48 8 8 

Number of 
Cores 

28 Cores (2 sockets x 14 
core) 68 Cores 72 Cores 

Memory Limit 
Per Core 

2048 MB 
2 GB 

4096 MB 
4 GB 

1300 MB 
1.25 GB 

1236 MB 
1.20 GB 

Memory Limit 
Per Node 

57344 MB 
56 GB 

114688 MB 
112 GB 

89000 MB 
84 GB 

89000 MB 
84 GB 
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Table C: Details of Login Nodes in the Terra Cluster 

Table 2: Details of Login Nodes 

 No Accelerator Two NVIDIA K80 Accelerator 

Host Names terra1.tamu.edu 
terra2.tamu.edu terra3.tamu.edu 

Processor Type Intel Xeon E5-2680 v4 2.40GHz 14-core 

Memory 128 GB DDR4 2400 MHz 

Total Nodes 2 1 

Cores/Node 28 

Interconnect Intel Omni-Path Architecture (OPA) 

Local Disk Space per node: two 900GB 10K RPM SAS drives 

Notes Each K80 Accelerator has two GPUs 

 


