
ON MODERN OFFLOADING PARALLELIZATION METHODS: A

CRITICAL ANALYSIS OF OPENMP

An Undergraduate Research Scholars Thesis

by

SCOTT CARLOS CARRIÓN

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Jeff Huang

May 2021

Major: Computer Engineering (Computer Science Track)

Copyright © 2021. Scott Carlos Carrión.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

I, Scott Carlos Carrión, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT ... 1

DEDICATION.. 3

ACKNOWLEDGEMENTS .. 4

NOMENCLATURE ... 5

1. INTRODUCTION .. 6

1.1 Benchmark Selection ... 6

2. METHODS ... 8

3. RESULTS ... 10

3.1 Performance and Correctness Assessment ... 10
3.2 Critical Analysis of Programming Experience ... 16

4. CONCLUSION ... 18

REFERENCES ... 19

APPENDIX A: TESTING HARDWARE SPECIFICATIONS .. 20

1

ABSTRACT

On Modern Offloading Parallelization Methods: A Critical Analysis of OpenMP

Scott Carlos Carrión
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Jeff Huang
Department of Computer Science and Engineering

Texas A&M University

The very concept of offloading computationally complex routines to a graphics

processing unit for general-purpose computing is a problem left wide open to the academic

community, both in terms of application as well as implementation, with several different and

popular interfaces exploding into popularity within the last twenty years. The OpenMP standard

is among the elites in this category, standing as a parallelization interface that has stood the test

of time. The goals that the inquiry presented herein seeks to answer are twofold: Firstly, we aim

to assess the performance of common sorting algorithms parallelized and offloaded using

OpenMP, offloaded to NVIDIA GPU hardware, and secondly, to critically analyze the

programmer experience in using an implementation of the OpenMP standard (again, with

offloading to NVIDIA GPU hardware) to implement these algorithms. For completeness, the

empirical analysis contains a comparison to the unparallelized algorithms. From this data and the

impression of the programming experience, strengths and weaknesses of usage of OpenMP for

parallelizing and offloading sorting algorithms are derived. After discussing each benchmark in

depth, as well as the data derived from the parallelized implementations of each, we found that

2

OpenMP’s position as one of the forefront parallel programming standards is well-justified, with

few, but notable, pitfalls for the average programmer. In terms of its performance in parallelizing

common sorting algorithms with offloading to NVIDIA GPU hardware, it was found that

OpenMP fails to deliver viable implementations of the algorithms that are advantageous over

their single-threaded counterparts, though, this was found not to be the fault of OpenMP, but

rather, of the inherent nature of offloading to NVIDIA GPU hardware.

3

DEDICATION

To my friends, family, and colleagues who supported me during this inquiry: Dr. Jeff Huang,

Gang Zhao, Sadie Preece, Betty Carrión, Leylia Rico CVA, LCpl Elijah Rico USMC, Asani

Holmes, Liliana Hernández, and, last but certainly not least, Sayani Shah.

4

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisor, Dr. Jeff Huang, my colleague, Gang Zhao, and

the rest of the origin-oriented programming lab for their guidance and support throughout the

course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University an invaluable experience.

The data analyzed for On Modern Offloading Parallelization Methods: A Critical

Analysis of OpenMP were produced Scott Carlos Carrión as original research. The analyses

depicted in ON Modern Offloading Parallelization Methods: A Critical Analysis of OpenMP

were conducted by Scott Carlos Carrión and are presented herein.

 All other work conducted for the thesis was completed by the student independently.

Funding Sources

Undergraduate research was supported by Dr. Jeff Huang at Texas A&M University.

5

NOMENCLATURE

 [GPU Graphical Processing Unit]

6

1. INTRODUCTION

In the modern age of high-performance computing, the race for optimization grows ever-

more fervent. As the limits for hardware-driven optimizations are approached, we turn to other

methods for optimizing computationally complex routines and algorithms. One such method is

the use of graphical processing units (hereafter GPUs) as accelerators for general-purpose

computing. Interfaces and implementations for accomplishing this can vary wildly across

projects. With a number of these offloading solutions bolstered by research from industry

affiliates and the academic community alike, contributors to these projects, who have the most

knowledge surrounding their interface, are strongly incentivized to defend and improve their

project to the very best of their ability. As such, in the ever-advancing field of high-performance

computing, there exists little in the way of critical, impartial analysis of the contemporary

interfaces for offloading to graphical processing units. This overall analysis seeks to evaluate one

of, if not the most popular interfaces for GPU offloading of C/C++ routines: the OpenMP

standard, with offloading to NVIDIA GPU hardware. Criteria for evaluation include: (1)

discussion of the programming experience using OpenMP, (2) correctness of output, or

conformity to the sequential (control) output, for each algorithmic benchmark, and (3)

performance, as compared to the sequential output. The analysis for each interface concludes

with an objective assertion of the strengths and weaknesses for the interface.

1.1 Benchmark Selection

The benchmark algorithms selected for these analyses are the classical insertion sort, the

classical selection sort, and the comb sort. Unifying the benchmarks by selecting algorithms that

all do the same thing (sort values in an array of basic integer primitives) is necessary for the

7

results of the analyses to be attributable only to the selection of parallelization method, rather

than the algorithms types chosen. Further, the algorithms chosen as benchmarks for this study,

like most sorting algorithms with time complexity of or similar to 𝑂(𝑛$) tend to make a heavy

amount of array accesses, even in the average case. This choice was deliberate, as we wish to

study the performance of NVIDIA GPU offloading via OpenMP in solving problems which are

memory access intensive.

8

2. METHODS

OpenMP, according to its own documentation, is “a specification for a set of compiler

directives, library routines, and environment variables that can be used to specify high-level

parallelism in Fortran and C/C++ programs.” [1] Practically, OpenMP provides its interface by

the use of ‘pragmas’: preprocessor directives that specify to the compiler where and how to

parallelize certain code, chiefly revolving around the identification of ‘parallel regions’, a set of

instructions the API processes to turn into parallel code during compile-time. For this analysis,

the LLVM implementation of the OpenMP 4.0 standard, with support for offloading to NVIDIA

(internally referred to as “nvptx” devices) enabled, is configured to the Clang (version 10.0.1)

compiler frontend (Figure 2.1, Figure 2.2).

Fig 2.1: Excerpt of unparallelized code (from Comb Sort)

9

Fig 2.2: Excerpt of parallelized code (from Comb Sort)

Parallelization of all algorithms proceeded in a very similar fashion for all benchmarks: A

parallelizable region, typically the principal loop of the algorithm, was identified, necessary

clauses for the directive itself were chosen, and the procedure within the loop was modified to

adhere to constraints introduced by making use of OpenMP to offload to NVIDIA GPU

hardware (Figure 2.2). These limitations are discussed more in depth as results, rather than as

methods, further in this paper.

10

3. RESULTS

3.1 Performance and Correctness Assessment

We present a summary of the runtimes and a subsequent assessment of the performance

of the OpenMP with GPU offloading implementation of each sorting algorithm below. Timing

was performed using the C++ Standard Template Library’s “chrono” header; specifically, the

high-resolution clock function. [2]

Figure 3.1.1: Visualization of Runtime Data, Comb Sort Benchmark

0
5

10
15
20
25
30
35

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

R
un

tim
e

(s
ec

on
ds

)

Problem Size (number of variables to sort)

Problem Size vs Runtime

Unparallelized Implementation Parallelized Implementation

11

Figure 3.1.2: Visualization of Runtime Data, Insertion Sort Benchmark

Figure 3.1.3: Visualization of Runtime Data, Selection Sort Benchmark

0

0.05

0.1

0.15

0.2

0.25

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

R
un

tim
e

(s
ec

on
ds

)

Problem Size (number of variables to sort)

Problem Size vs Runtime

Unparallelized Implementation Parallelized Implementation

0

5

10

15

20

25

30

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

R
un

tim
e

(s
ec

on
ds

)

Problem Size (number of variables to sort)

Problem Size vs Runtime

Unparallelized Implementation Parallelized Implementation

12

Table 1: Tabulation of Runtime Data, Comb Sort Benchmark

Problem Size (number of
variables to sort)

Unparallelized Runtime
(seconds) Parallelized Runtime (seconds)

500 0.00087095 0.338751
1000 0.00425457 0.859901
1500 0.00798661 1.56521
2000 0.0145872 2.26183
2500 0.0228375 3.28348
3000 0.0340949 4.12054
3500 0.0485203 5.03266
4000 0.0640665 6.80713
4500 0.0785111 7.89892
5000 0.101147 9.00309
5500 0.122659 10.8212
6000 0.147471 12.0028
6500 0.175818 13.9048
7000 0.203775 16.1392
7500 0.2392 17.4568
8000 0.306832 20.203
8500 0.33647 22.0007
9000 0.394711 24.3303
9500 0.42936 26.2551

10000 0.459501 29.1987

13

Table 2: Tabulation of Runtime Data, Insertion Sort Benchmark

Problem Size (number of
variables to sort)

Unparallelized Runtime
(seconds) Parallelized Runtime (seconds)

500 0.00017906 0.0847266
1000 0.00069509 0.0970685
1500 0.00154835 0.103393
2000 0.0041255 0.117554
2500 0.0076305 0.121126
3000 0.00875286 0.123181
3500 0.0154178 0.120294
4000 0.0144519 0.132609
4500 0.0245274 0.140412
5000 0.0263155 0.147926
5500 0.0241156 0.158625
6000 0.0434787 0.151437
6500 0.0499099 0.145052
7000 0.0602627 0.171638
7500 0.0708219 0.171523
8000 0.0764472 0.192152
8500 0.0514324 0.195133
9000 0.0580327 0.202965
9500 0.109895 0.221672

10000 0.123627 0.216779

14

Table 3: Tabulation of Runtime Data, Selection Sort Benchmark

Problem Size (number of
variables to sort)

Unparallelized Runtime
(seconds) Parallelized Runtime (seconds)

500 0.00141071 0.162085
1000 0.00623467 0.363855
1500 0.0144788 0.667205
2000 0.0221421 1.11537
2500 0.0215338 1.67583
3000 0.049337 2.35043
3500 0.0511447 3.17589
4000 0.0745646 4.11176
4500 0.0984962 5.18284
5000 0.0890428 6.35998
5500 0.133128 7.66194
6000 0.159177 9.08676
6500 0.192901 10.6228
7000 0.216681 12.3384
7500 0.246795 14.2102
8000 0.337477 16.1617
8500 0.309093 18.2221
9000 0.352515 20.4817
9500 0.384044 22.8153

10000 0.400469 25.3819

15

 It can be clearly seen in the tables and derived visualization figures that in no

instance does an offloaded implementation of any of the benchmark algorithms does any marked

improvement occur, though all results were correct. For the comb sort benchmark, the runtime

for the parallelized version appears to increase with size almost linearly, and was eminently

outperformed by the unparallelized control implementation (Table 1, Figure 3.1.1). The

parallelized implementation of the insertion sort benchmark saw the greatest degree of

comparability to its unparallelized counterpart, but was still outperformed to a considerable

degree for all problem sizes (Table 2, Figure 3.1.2). Finally, much like the comb sort benchmark,

the runtime of the parallelized implementation of the selection sort benchmark increased in a

nearly linear fashion, and, again, it is clear that the parallelized implementation was

outperformed by the unparallelized implementation (Table 3, Figure 3.1.3). These results can be

attributed to the overhead related to two circumstances that arise in offloading that do not arise in

the unoptimized, single-threaded implementation of the benchmark algorithms. Firstly, swapping

the positions of values in the constituent array must be an atomic operation; that is, a directive

must be made to OpenMP to treat the swap as a critical section, thus dramatically reducing the

performance of the parallelized algorithm. Secondly, in order for the device (GPU) to be able to

carry out the procedure of each algorithm, after dividing up the work among its many teams of

threads, frequent, synchronized, and expensive two-way (or ‘to-from’) mapping is necessary to

produce correct output. The latency associated with two-way mapping in a procedure where

heavy memory access is a requisite necessarily diminishes the optimization potential for

offloading of sorting algorithms in general [3].

16

3.2 Critical Analysis of Programming Experience

For all algorithms tested, this method of abstraction proved relatively simple, although in

some cases, refactoring the code to some degree such that an easily identifiable parallel region

exists can be beneficial. Use of the interface maintains a much higher-level management of

threads, teams of threads, and mapping of memory to the device. In terms of user-end

informativeness, however, OpenMP leaves much to be desired. If some runtime error occurs,

whether it be a signal being raised by the device, or by the host, there is very little information

presented to the programmer. Not only is configuration of the LLVM/Clang 10.0.1 compiler and

infrastructure a tedious manual process of hardware specification that leaves much room for

error, but, additionally, for the machine tested, attempting to create a debug build of the compiler

does not emit error details in the vast majority of cases when such a runtime error occurs. Most

of the time, it was found, the dreaded “Libomptarget fatal error 1: failure of target construct

while offloading is mandatory” error, which is the only information output upon one of these

aforementioned failures, is not due to a shortcoming of the implementation of the interface.

Rather, it is a shortcoming of the CUDA language itself. OpenMP, as implemented in the LLVM

project, successfully and correctly generates CUDA code for the device (GPU) to execute in

accordance with the standards of the C/C++ language as well as the OpenMP 4.0 standard.

However, it was found experimentally that many known libraries, including the C++ standard

library (as implemented for the host compiler, Clang, that is, not libcu++ [4]), are not supported

by CUDA. Both CUDA and OpenMP fail to communicate this information to the programmer.

Another instance of this same error occurs when attempting to use a variable that is not mapped

on the device within a parallel region. Like before, no documentation surrounding this cryptic

17

behavior, nor its potential causes, could be located. These lessons were learned by low-level

investigation, and vast amounts of time-consuming trial and error.

While it is surprisingly difficult to debug OpenMP as an API, the implementation and

parallelization of the routines proved remarkably simple to develop, with the API’s clauses

providing similarly straightforward logical extensions where necessary. OpenMP’s ability to

work with the compiler to interpret how variables should be mapped (i.e shared or private), how

iterations within the parallel region should be distributed, and the seamless integration with the

system’s native threading interface (in the case of the Texas A&M High Performance Research

Supercomputer, POSIX threads) ought to be duly recognized as well.

18

4. CONCLUSION AND FUTURE WORK

Among the elite of parallelization offloading methods, the OpenMP standard holds firm

as one of the best in terms of its interface, with some debugging difficulties which are rendered

inconsequential in the face of the sheer advantages that it provides the programmer over

traditional, ‘manual’ parallelization. After analyzing the performance of algorithms offloaded to

NVIDIA GPU hardware via the LLVM Clang 10.0.1 implementation of the OpenMP standard, it

was found that using OpenMP to offload memory access intensive, computationally complex

sorting algorithms is generally not viable, due almost exclusively to the inherent overhead

associated with offloading and frequent two-way mapping. With these findings in mind, we hold

that as an interface, OpenMP excels on the whole, and sorting algorithms are poorly parallelized

via offloading due to their inherent intensive memory access.

This inquiry proved to be quite informative, shoring up the potential for future work

surrounding the limitations of effective parallelization using offloading to NVIDIA hardware in

general. Further research into this is a worthy topic of follow-up papers, as it is evidently clear

that parallelization via offloading, regardless of means or interface, does not necessarily yield an

optimized implementation in general as compared to a host-parallelized, or, as seen in the results

presented in this inquiry, even a single-threaded implementation. As explored in this paper, these

memory access intensive algorithms proved to not be viable for parallelization via offloading,

but, there are still an extremely diverse range of algorithms and other computationally complex,

programmatic solutions to vexingly difficult problems for which optimization by means of

parallelization via offloading has not yet been explored in-depth as it has in this research.

19

REFERENCES

[1] OpenMP Architecture Review Board, “OpenMP FAQ,” OpenMP, 01-Jul-2018. [Online].
Available: https://www.openmp.org/about/openmp-faq/#WhatIs. [Accessed: 09-Feb-
2021].

[2] CPPReference Foundation, “std::chrono::high_resolution_clock,” cppreference.com.
[Online]. Available: https://en.cppreference.com/w/cpp/chrono/high_resolution_clock.
[Accessed: 09-Feb-2021].

[3]. Free Software Foundation, “Offloading Support in GCC,” Offloading - GCC Wiki.
[Online]. Available: https://gcc.gnu.org/wiki/Offloading. [Accessed: 26-Feb-2021].

[4] NVIDIA Corporation, “CUDA C++ Standard,” CUDA Toolkit Documentation, 01-Dec-
2020. [Online]. Available: https://docs.nvidia.com/cuda/cuda-c-std/index.html. [Accessed:
09-Feb-2021].

20

APPENDIX A: TESTING HARDWARE SPECIFICATIONS

All testing for the results presented of the inquiry herein were performed on the Terra

cluster of the Texas A&M University High-Performance Supercomputer (HPRC), with

permission. A summary of the specifications follows (see corresponding footnote for cited

source)1.

1 TAMU HPRC, “Terra: A Lenovo x86 HPC Cluster,” TAMU HPRC Wiki, 05-Apr-2021.

[Online]. Available: https://hprc.tamu.edu/wiki/Terra:Intro. [Accessed: 12-Mar-2021].

21

Table A: Hardware Specifications of Compute Nodes in the Terra Cluster

Table 1 Details of Compute Nodes

General

64GB
Compute

GPU 128 GB
Compute

KNL 96 GB (68
core)

Compute

KNL 96 GB (72
core)

Compute

V100 GPU 192
GB

Compute

Total Nodes 256 48 8 8 4

Processor
Type

Intel Xeon E5-2680 v4
(Broadwell), 2.40GHz, 14-

core

Intel Xeon Phi
CPU 7250
(Knight's
Landing),

1.40GHz, 68-
core

Intel Xeon Phi
CPU 7290
(Knight's
Landing),

1.50GHz, 72-
core

Intel Xeon
Gold 5118

(Skylake), 12-
core, 2.30 GHz

Sockets/Node 2 2 2 2

Cores/Node 28 68 72 24

Memory/Node
64 GB
DDR4,

2400 MHz

128 GB
DDR4, 2400

MHz
96 GB DDR4, 2400 MHz 192 GB, 2400

MHz

Accelerator(s) N/A
1 NVIDIA

K80
Accelerator

N/A
2 NVIDIA

32GB V100
GPUs

Interconnect Intel Omni-Path
Architecture (OPA) Intel Omni-Path Architecture (OPA)

Local Disk
Space 1TB 7.2K RPM SATA disk 220GB 300GB

22

Table B: Memory Limits of Nodes in the Terra Cluster

Memory Limits of Nodes

 64GB
Nodes

128GB
Nodes

96GB KNL Nodes (68
core)

96GB KNL Nodes (72
core)

Node Count 256 48 8 8

Number of
Cores

28 Cores (2 sockets x 14
core) 68 Cores 72 Cores

Memory Limit
Per Core

2048 MB
2 GB

4096 MB
4 GB

1300 MB
1.25 GB

1236 MB
1.20 GB

Memory Limit
Per Node

57344 MB
56 GB

114688 MB
112 GB

89000 MB
84 GB

89000 MB
84 GB

23

Table C: Details of Login Nodes in the Terra Cluster

Table 2: Details of Login Nodes

 No Accelerator Two NVIDIA K80 Accelerator

Host Names terra1.tamu.edu
terra2.tamu.edu terra3.tamu.edu

Processor Type Intel Xeon E5-2680 v4 2.40GHz 14-core

Memory 128 GB DDR4 2400 MHz

Total Nodes 2 1

Cores/Node 28

Interconnect Intel Omni-Path Architecture (OPA)

Local Disk Space per node: two 900GB 10K RPM SAS drives

Notes Each K80 Accelerator has two GPUs

