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ABSTRACT 

Instruction Prefetchers and Cache Replacement Policies 

Alex Christian1 and David Chapa2 

Department of Electrical and Computer Engineering1 

Department of Electrical and Computer Engineering2 

Texas A&M University 

Research Faculty Advisor: Paul V. Gratz 

Department of Electrical and Computer Engineering 

Texas A&M University 

Processing speeds are determined by how many instructions per cycle (IPC) a CPU can 

execute. However, the CPU’s clock cycle and the number of cores are only one factor for a CPUs 

performance. A key bottleneck that restricts processor speeds is memory. When the processor runs 

an instruction that requires a memory access into a lower-level cache or main memory due to a 

miss in the first-level instruction cache, the latency of the access lowers the processing speed. To 

avoid these misses and reduce latency, hardware methods such as cache replacement policies and 

instruction prefetching have been designed to achieve a higher IPC resulting in a speedup while 

using the same physical hardware. Cache replacement policies attempt to keep the most useful 

data in the cache so that the processor does not need to stall while waiting on an access to main 

memory. The instruction cache is the first place the processor looks when it needs the next 

instruction, so having the correct instructions already in the cache produces a speedup. Instruction 

prefetching attempts to avoid latency from main memory access times by predicting future 

instructions correctly and fetching them at the right time.  
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The purpose of this research is to combine instruction prefetchers and cache replacement 

policies to produce a higher speedup. By surveying a collection of instruction prefetchers and last-

level cache replacement policies on a trace-based simulator, speedups for each prefetcher and 

policy were determined. After determining initial speedups, cache replacement policies were 

modified to be used on the instruction cache instead of the last-level cache, creating a combination 

instruction prefetcher and cache replacement policy to improve the processor speed-up. 

Additionally, we explore utilizing prefetch metadata in the cache replacement policy to improve 

performance. In this paper, we will discuss the speedup effects of combining certain instruction 

prefetchers and cache replacement policies in the L1I cache.  
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NOMENCLATURE 

BRRIP  Bimodal Re-reference Interval Prediction  

CESG    Computer Engineering & Systems Group  

CFG    Control Flow Graph  

ChampSim   ChampSim is a trace-based simulator for a microarchitecture study. 

CPU    Central Processing Unit  

DRRIP   Dynamic Re-reference Interval Prediction  

GB    Gigabytes  

IPC    Instructions per Cycle  

KB   Kilobytes 

KPC   Kill the Program Counter [9] 

LIME    Less is More  

LRU    Least Recently Used  

RAS    Return Address Stack, used to predict a return address from a function call 

RDIP  RAS Directed Instruction Prefetching, generates signature from current 

RAS and associates cache miss with that signature, and prefetches caches 

according to signatures 

RRIP    Re-reference Interval Prediction  

RRPV   Re-Reference Prediction Value  

SHCT    Signature History Counter Table  

SHiP    Signature-based Hit Predictor  

SRRIP   Static Re-reference Interval Prediction 
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Stream Prefetcher  uses a stream buffer that captures addresses of cache misses and a certain 

number of subsequent addresses so it can prefetch subsequent addresses of 

an already missed instruction line. Ex: Block A misses, stream buffer fills 

with A+1, A+2, A+3, ..., A+K by prefetching, then delivers those when 

requested by L1 Cache 

Transitive Closure the set of nodes that can be traversed to from a starting node, or can be the 

shortest path between two nodes 
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1. INTRODUCTION 

1.1 Purpose 

Over time, processor speeds have exponentially increased while staying efficient in power 

consumption. However, processing speeds have become bottlenecked by the speed of memory. 

Accesses into main memory take a long time because main memory is a large data storage. The 

electrical characteristics of large data storages result in higher read times, so finding the data the 

instruction calls for in main memory takes a lot longer than it would in a smaller data storage. 

Main memory is also far away from the processors, causing longer latency while sending messages 

to and from the processor and main memory. Because of this latency, modern processors use a 

hierarchy of smaller in size memory storages called caches to reduce memory access latency [4]. 

The caches located closest to the processors hold the least amount of data so that they can have the 

fastest access times. Developers of CPUs use this structure to help decrease latency and help bring 

out the best in their high-speed processing cores. By holding data that will be needed in caches, 

the speed of processing an instruction can be magnitudes faster than looking for the data in main 

memory. There are two areas that our research will focus on regard to caches: replacement policies 

and instruction prefetching. 

By researching how performance in processing speeds is affected by cache replacement 

policies in conjunction with instruction prefetching policies in the L1I cache, a field not yet 

explored thoroughly, we hope to discover relationships between the policies that help improve the 

accuracy of cache hits to improve processing speeds. 
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1.2 Cache Replacement Policies 

Cache replacement policies are used to determine what data is held within a cache. Because 

the space available in caches is more limited compared to main memory to ensure low access 

times, keeping the data that will be used frequently inside the cache will increase the hit percent 

on memory searches and is very important and a main area of research to increase processing 

speeds. Cache replacement policies are tasked with the question of: “When a new line is to be 

inserted into the cache, which line should be evicted to make space for the new line?” [6]. Thus, 

replacement policy determines the contents of the cache. 

Replacement policies are not the only way of improving the cache hit rate, the rate at which 

an access into memory successfully finds the data needed in the cache, there are two other methods 

of increasing this rate. One of the other methods of increasing hit rate is increasing the cache’s 

size. By having more data in the cache, we effectively increase the likelihood that the data needed 

is found in the cache. The problem with this method is the increase in access time as the computer 

must search through more data to find if the data needed is found in the cache. The other method 

to increase hit rate is increasing the cache’s associativity however this method increases power 

consumption. Because of the downsides the other methods have, we look at replacement policies 

to make caches a lot more efficient without changing their size or associativity. [6] The question 

then becomes: what is the most efficient replacement policy? There are many areas in which 

replacement policies have area for improvement, such as using branch target buffers to make 

policies predictive among other areas [1], but in this paper we will look at how pairing existing 

policies with instruction prefetchers can improve processing speeds. 
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1.3 Instruction Prefetchers 

Instruction misses occur when the processor seeks a target instruction and the instruction 

cache does not have the instruction already loaded. These misses stall the processor pipeline and 

decrease processor performance by reducing the number of instructions per cycle [4]. Instruction 

prefetching is a way to reduce the number of cache misses in a processor’s instruction caches. 

Hardware within the processor can predict which instructions will need to be read by the processor 

before it tries to access them, which reduces the overall latency of instruction cache miss accesses. 

A working prefetching mechanism must correctly predict the address of a memory access, 

correctly predict when to issue a prefetch, and correctly place the prefetched data in the cache [3]. 

An instruction prefetcher needs to correctly find the right instruction at the right time so it can be 

executed without any additional miss latency. Many modern workloads involve complex programs 

with large instruction sets, making instruction prefetching vital in reducing the overall number of 

instruction stalls in a processor [3]. 

1.4 Combining Instruction Prefetchers and Cache Replacement Policies 

Instruction prefetchers and cache replacement policies are both ultimately speculating 

about future memory usage and are each limited by their respective algorithms and hardware to 

try to guess which memory will be used in the future. Typically, instruction prefetchers do not 

communicate with cache replacement policies, and cache replacement policies do not interact with 

instruction prefetchers. Prior work has explored holistically combining data prefetching with cache 

replacement into a system that is greater than the sum of its parts [9], but in this research we explore 

the idea of using existing instruction prefetch metadata from the instruction prefetcher within an 

L1I cache replacement policy to improve the combined system’s performance more than having 

them work independently.   
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2. METHODS 

2.1 Tools and Resources 

2.1.1 ChampSim 

ChampSim, a trace-based computer microarchitecture simulator, was used to test and 

measure speedup on a single core processor using varying parameters, architectures, and traces. 

ChampSim runs instruction sets (traces) on a simulated processor with the option to choose a 

branch predictor, L1I prefetcher, L1D prefetcher, L2C prefetcher, LLC prefetcher, LLC 

replacement policy, and the number of CPU cores. The simulation process involves compiling a 

binary from input parameters, simulating the binary with a chosen trace and number of 

instructions, and checking the output file for results after the simulation concludes. The version of 

ChampSim that is being used is that of late 2020 and early 2021. 

2.1.2 CESG Cluster 

Simulations were run using the Computer Engineering & Systems Group cluster. 

Specifically, the four high performance compute nodes were heavily used for large simulations.  

2.1.3 Python 

Python3 was used to automate parts of the simulation process for ease. Python scripts were 

used to run simulations on different cores and to scrape key metrics like Instructions Per Cycle 

from the result files. 

2.1.4 The 1st Instruction Prefetching Championship 

Instruction Prefetcher models from The 1st Instruction Prefetching Championship were 

used in this research. The purpose of this competition was to compare different instruction 

prefetching algorithms that had a fixed storage budget of 128 KB.  
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The prefetchers from this competition were simulated to observe processor speedup, 

modified to fit under a storage size of 32 KB and simulated again, and then combined with cache 

replacement policies for the purpose of producing a higher speedup.  

2.1.5 The 2nd Cache Replacement Championship 

Cache replacement policies from the Texas A&M hosted replacement championship were 

used in this research. The purpose of this competition was to create cache replacement policies to 

improve IPC speeds is the L2 cache. The policies were built to work on an old and modified version 

of ChampSim. 

The policies from this competition were modified to work with the newest version of 

ChampSim as well as to work on the L1I cache. 

 

2.2 Individual Simulations 

2.2.1 Cache Replacement Policies 

The cache replacement policies used in this research were modified to work with the newest 

version of ChampSim, which involved modifying the functions and algorithms that were meant to 

work with a specific version of ChampSim while keeping the policies working as intended. These 

modifications needed to be made to ensure that the policies would be able to work in conjunction 

with the instruction prefetching policies also used in this research. 

Additionally, all the replacement policies and prefetchers need to work on the L1I cache 

for the scope of this research, so all the replacement policies needed to be modified to be able to 

work in the L1I cache. 

All the cache replacement policies will use LRU as a baseline for measuring speedup as it 

is one of the most basic replacement policies used in today’s computing environment. 
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2.2.1.1 Bélády’s Min 

The Bélády’s Min algorithm is meant to be the optimal cache replacement policy that 

reduces the amount of cache miss rate to the lowest value possible. The algorithm is built on the 

idea that the cache holds information that will be used soon and evicts data that will not be used in 

the near future. Bélády’s Min will provide some insight as to improvements that could be done to 

LRU to improve the combination policies in the L1I cache. Bélády’s algorithm is used as a 

foundation for many other cache replacement policies as it is theoretically the ideal policy. 

2.2.1.2 LRU [7] 

LRU stands for Least Recently Used. LRU is usually a baseline in terms of replacement 

policies because of its relatively simple algorithm. LRU decides what data is held within the cache 

by looking at what data has been least recently used and replaces it with data that has been used 

by the current instruction. The idea behind this policy is that if data was used recently it will most 

likely be used again, so housing it in the cache will speed up the next time it is needed.  

2.2.1.3 SHiP [15] 

SHiP stands for Signature-based Hit Predictor. SHiP uses a signature table to predict what 

data will receive cache hits in the future. By using a signature table, SHiP can use a counter method 

to keep track of the frequency use of all the cache’s data so that it can evict and add data that will 

be more likely to be used soon, to avoid cache misses. 

2.2.1.4 SRRIP [7] 

SRRIP stands for Static Re-reference Interval Prediction and is based off the policy named 

RRIP that uses a linked list of sorts to hold data that will most likely be referenced soon. SRRIP 

also holds a counter that informs the updates of the cache, this counter is called the RRPV (Re-

Reference Prediction Values). The head of the list in the cache that is believed to be referenced 
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soon holds a 0 in the RRPV while the tail consists of data that is believed to be used long in the 

future, which has an RRPV equal to the max RRPV. The linked list allows for the near-future 

predicted data, the head of the list, to be accessed as quickly as possible. When a hit occurs, the 

data that was accesses has its RRPV set to 0 as it is expected to be re-referenced soon. When a 

miss occurs, all RRPVs are incremented and the first 3 in the list, starting from the head, is replaced 

by the new data and set with an RRPV of the max RRPV minus 1. This method avoids the pitfall 

of evicting the newest data only because it is at the tail of the list. 

2.2.1.5 DRRIP [7] 

DRRIP stands for Dynamic Re-reference Interval Prediction. DRRIP is based on RRIP 

similar to SRRIP as it dynamically chooses between two RRIP based replacement policies to avoid 

issues like scanning, bursts of references to memory that reference memory that was predicted to 

be referenced long into the future, creating long access times within the cache. and thrashing, the 

overuse of a computer’s virtual memory, that are often pitfalls for replacement policies. DRRIP 

chooses between SRRIP and BRRIP (Bimodal Static Re-reference Interval Prediction) to avoid 

these pitfalls when possible. Based on the workload the processor is undergoing DRRIP decides 

what policy would yield the best cache hit rate. 

2.2.1.6 SHiP++ [16] 

SHiP++ is a proposed enhancement to SHiP that won at the 2nd Cache Replacement 

Championship, with the highest speed-up of all entered policies. The policy proposed five 

enhancements to the original SHiP. The first enhancement involves inserting data into the cache 

that is typically referenced along with data that was just referenced by a recent instruction. This 

data is also maintained with a counter to ensure that it is not evicted immediately after not being 

used. The second enhancement was made to the SHCT, the table that holds the memory addresses 
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for the data in the cache is held, to weigh cache hits and evictions similarly to avoid cache misses 

in the future. The third enhancement is improving the writeback awareness of the policy. Because 

writebacks are often not re-referenced, evicting them sooner rather than latter will help with unused 

memory in the cache. The fourth enhancement is adding special signatures to prefetched data so 

that the policy can make a distinction and learn the behavior of prefetched data. The fifth 

enhancement again deals with prefetched data. The policies treat the counters on the prefetched 

data differently to ensure that the policy can learn how to use the data. 

2.2.1.7 Less Is More (LIME) [14] 

LIME adopts Bélády Trainer’s algorithm but does not use certain aspects of the algorithm 

that were deemed unnecessary. LIME uses the history of cache hits and accesses to assess what 

will be inserted into the cache. LIME samples 20 random sets of instructions and filling the cache 

based on the findings. The Bélády algorithm focuses on looking into history to see what data is 

typically re-referenced and chooses to occupy the cache with that data and evict the rest. LIME 

keeps the load and store algorithm aspects of the Bélády algorithm while abandoning many of the 

other features. 

2.2.2 Instruction Prefetchers 

2.2.2.1 Preliminary Simulations 

All competition prefetchers listed below were simulated under their competition 

parameters on a single core processor with a bimodal branch predictor and no other prefetchers or 

cache replacement policies. Simulations were done using 50 unique traces that included server and 

client workloads with a 50 million instruction warmup to populate the tables in the prefetcher 

hardware followed by 50 million test instructions. 
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Next, all prefetchers were modified to fit under a budget of 32 KB to match more realistic 

microarchitecture storage space. 

2.2.2.2 EIP (Entangling Instruction Prefetcher) [12] 

The Entangling Instruction Prefetcher uses tables to track the time it takes between a 

demand access instruction call and when the block arrives in the L1I cache. Next, it uses this 

timestamp to check its instruction table to find which source instruction needed the missed 

destination instruction. It then entangles the source and destination instructions and records an 

entry in the entangled table so that in the future it can prefetch the destination instruction each time 

its source instruction is executed or prefetched. 

To fit within a 32 KB size, the Entangled Table which tracks which instructions are 

entangled was reduced from 113 KB to 14 KB. EIP was then simulated again with the same 

conditions as before. 

2.2.2.3 FNL+MMA (Footprint Next Line and Multiple Miss Ahead Prefetcher) [13] 

The FNL+MMA prefetcher combines two prefetcher concepts with complimentary 

prefetching tradeoffs. The Footprint Next Line prefetcher prefetches sequential next instruction 

lines by associating cache blocks to each other using a Touched Table and a WorthPF Table. The 

Touched Table tracks whether a cache block has been touched recently by a demand access, while 

the WorthPF table is a 2-bit entry that tracks which lines are worth prefetching. These tables track 

cache blocks that trigger demand accesses of up to the next 5 cache blocks. The multiple miss 

ahead prefetcher overcomes the sequential limitation of the FNL prefetcher using a special cache 

called the Instruction Shadow cache, which is a tag-only table that tracks only demand accesses. 

When the MMA prefetcher sees that both a cache block N is typically the Nth miss after block 1 

AND block N misses the instruction cache, it associates them in the Miss Prediction Table. The 
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MMA then prefetches block N any time it calls block 1 because it has associated the two blocks. 

The prefetcher in the competition used FNL5+MMA9 which means it prefetches up to 5 next lines 

and has an MMA with an ahead distance of 9 blocks.  

To reduce the FNL+MMA size to 32 KB, three tables were reduced to a quarter of their 

original size. The Touched and WorthPF Tables were reduced from 8 KB and 16 KB to 2 KB and 

4 KB, respectively. The Miss Ahead Prediction Table, which tracks associated addresses to be 

prefetched was reduced from 71 KB to 18 KB. 

2.2.2.4 D_JOLT (Distant Jolt Prefetcher) [11] 

The Distant Jolt Prefetcher combines a long-range prefetcher that predicts far away 

instructions with high coverage, a short-range prefetcher, and a fallback prefetcher that predicts 

instructions in the near future with high accuracy. The long and short-range prefetchers use 

variations of RDIP. They use a RAS to predict return addresses from function calls. The fallback 

prefetcher is a stream prefetcher that will prefetch later after the short and long-range prefetchers 

fail to predict addresses and cause cache misses. 

2.2.2.5 Barça (Branch Agnostic Region Searching Algorithm) [8] 

The Branch Agnostic Region Searching Algorithm treats cache blocks and block groups as 

nodes on a graph. By tracking block traversal during control flow as edge weights, the algorithm 

can later find candidates to prefetch using probabilities calculated by the product of edge weights 

and a depth-limited DFS. This algorithm is branch agnostic because it determines prefetches from 

the control flow demand fetches to different block regions. 

To reduce Barça’s storage overhead, the CFG data structure was reduced from 104KB to 

26KB, bringing the total size to 32.48KB. 
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2.2.2.6 PIPS (Prefetching Instructions with Probabilistic Scouts) [10] 

The Prefetching Instructions with Probabilistic Scouts algorithm uses the concept of a 

control flow graph and treats each memory line as a node and each probability of traversal from 

one node to the next as an edge. Next, “scouts” are sent out to explore the graph by traversing 

according to probabilities stored in a table called the Line History Table. The scouts prefetch 

memory lines when they encounter their corresponding nodes during path traversal. After a certain 

number of steps, the scouts die, and new scouts are sent out from the front of the line which is the 

current instruction. 

2.2.2.7 MANA (Microarchitecting an Instruction Prefetcher) [2] 

The Microarchitecting an Instruction Prefetcher algorithm tries to illustrate how choosing 

metadata carefully and microarchitecting the metadata storage can result in a small prefetcher with 

a high speedup. This prefetcher is different from other modern prefetchers such as RDIP, Shotgun, 

and PIF because it avoids the large storage overhead those prefetchers all have. The algorithm 

creates spatial regions for cache lines and stores them as entries in a set associative table. Each 

region points to its successor in another table entry, and MANA issues prefetches for each region’s 

successors. 

2.2.2.8 TAP (Temporal Ancestry Prefetcher) [5] 

The Temporal Ancestry Prefetcher uses a control flow graph by approximating cache lines 

as nodes and finding transitive closures between those nodes. The TAP algorithm runs alongside 

next line prefetchers. Temporal prefetching tries to predict future cache misses using an ancestry 

table that tracks old cache misses and enters them as descendants of instruction addresses. On any 

cache access, the TAP algorithm prefetches the descendants of the current instruction in the 

program counter. The ancestry table uses weight values to determine how far into the ancestry 
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table to go to find descendants. These weight values are scaled with algorithm performance, 

meaning weights are tempered when cache blocks are evicted without being executed or 

incremented when they are useful.  

2.3 Combined Simulations 

2.3.1 Prefetchers 

The prefetchers were ported to work with a development branch of ChampSim that 

supports changing cache replacement policies in the L1I cache. Unfortunately, the Entangling 

Instruction Prefetcher was not able to be ported over and is left out of future simulations. 

Additionally, the development branch of ChampSim uses LRU in the L1I cache by default, which 

means that the new baseline for speedup is no prefetcher with an LRU cache replacement policy 

in the L1I cache. 

2.3.2 Cache Replacement Policies 

ChampSim does not originally support a change in the working cache replacement policy 

for any caches other than the last level cache (LLC). By modifying the code of the developmental 

branch of ChampSim we were able to introduce different cache replacement policies apart from 

the default LRU. Moving the replacement policies to the L1I cache meant that the policies would 

be working on a smaller sized cache than the typical lower level data caches that the policies 

typically run in.  

2.3.3 Simulations 

Simulations were run by varying the instruction prefetcher and cache replacement policies 

on the L1I cache, using the same traces as in prior simulations and keeping other parameters 

constant. Simulations will consist of the top three instruction prefetchers, FNL-MMA, Barça, and 
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PIPS, after their size reduction and all the tested cache replacement policies, LRU, SRRIP, DRRIP, 

SHiP, SHiP++, and LIME.  

2.4 Modifying Combination Policy 

2.4.1 Purpose 

Without modifications to the prefetchers or cache replacement policies, the results of the 

combination policies showed no improvement over the LRU combination baselines. We attempted 

to reduce interference between the prefetchers and cache replacement policies by having them 

communicate. Communication between data prefetchers and the last-level cache has been explored 

in KPC [9], but as far as we are aware communication of prefetch metadata between an instruction 

prefetcher and L1I cache replacement policy has not been researched. We aimed to choose a 

prefetcher and cache replacement policy combination that should have been promising according 

to individual simulation results and contained pre-existing functionality that could be exploited 

with little additional overhead for an improved speedup. The Barça prefetcher was the second best 

prefetcher in individual testing, and SRRIP was the best tested cache replacement policy according 

to simulations in the L1I. Since Barça generates probability values for each of its prefetches and 

SRRIP utilizes a modifiable RRPV value in its algorithm, this combination was also conducive to 

adding communication between the prefetcher and cache replacement policy. 

2.4.2 Barça-SRRIP Combination 

As part of its prefetching algorithm, Barça traverses and prefetches nodes on a weighted 

control flow graph and assigns probabilities to each prefetch. As part of its algorithm, Barça tracks 

traversal between block regions as graph edges for which it assigns weights equivalent to the 

number of times it was traversed. The weights of edges originating at a given node are used to 

determine a probability that one of those edges will be traversed, meaning Barça has readily 



19 

 

available probability metadata for each of its prefetches. As Barça issues depth first searches into 

the graph, it adds blocks from each region it encounters into a list of prefetch candidates, only 

deciding to prefetch candidates that meet a certain probability threshold. SRRIP utilizes an RRPV 

for each cache line to promote cache lines on hits (decreasing RRPV) and demote them on misses 

(increasing RRPV), evicting cache lines with the highest RRPV value when a new line must be 

placed. 

Our implementation attempts to utilize Barça’s prefetch probabilities within a modified 

SRRIP algorithm to assign low confidence prefetches with higher RRPVs and higher confidence 

prefetches with lower RRPVs. We wanted to allow higher probability prefetches to stay in the 

cache slightly longer to reduce the likelihood that they are removed from the cache before they are 

used. We used an iterative approach to find an algorithm that was most helpful in providing a 

higher speedup.  

Figure 2.4.2.1 depicts the use of confidence values to assign RRPVs to each prefetch, and 

how the proposed algorithm would handle evictions. Using the algorithm, data0 was able to stay 

within the cache despite being the least recently used prefetch when compared to the other 

prefetches. By assigning RRPVs based on the confidence value, the cache is more likely to hold 

prefetches who are more likely to be used in the cache longer than those who have a less likely 

chance of being used. 
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Incoming   

Prefetch 

Confidence 

Value 

Hit/Miss Way0 Way1 Way2 Way3 

data0 90% Miss Data:  

RRPV: 3 

Data:  

RRPV: 3 

Data:  

RRPV: 3 

Data:  

RRPV: 3 

data1 30% Miss Data: data0 

RRPV: 0 

Data:  

RRPV: 3 

Data:  

RRPV: 3 

Data:  

RRPV: 3 

data2 67% Miss Data: data0 

RRPV: 0 

Data: data1 

RRPV: 2 

Data:  

RRPV: 3 

Data:  

RRPV: 3 

data3 45% Miss Data: data0 

RRPV: 0 

Data: data1 

RRPV: 2 

Data: data2 

RRPV: 1 

Data:  

RRPV: 3 

data2 67% Hit Data: data0 

RRPV: 0 

Data: data1 

RRPV: 2 

Data: data2 

RRPV: 1 
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3. RESULTS 

3.1 Individual Simulations 

3.1.1 Cache Replacement Policies 

Figure 3.1.1. shows the speedups of the tested cache replacement policies on the L1I cache. 

Based on the results we see that the current highest speedup is held by SRRIP and DRRIP. 

Additionally,  both SHiP and SHiP++ lost performance in terms of speedup over LRU on the L1I 

cache. The complexity of some of the replacement policies lend themselves more towards working 

on the LLC, a larger sized cache. Having to work with such a small cache, SHiP and SHiP++ are 

unlikely to fully utilize their signature-based hit prediction system making it so that they do not 

evict the proper instructions when the cache needs to add something into the cache, decreasing the 

overall usefulness of the L1I cache creating lower IPCs. 

 

Figure 3.1.1. IPCs and Speedups for all Cache Replacement Policies tested on the L1I Cache 
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3.1.2 Instruction Prefetchers 

The simulation of instruction prefetchers from the IPC1 in Figure 3.1.2. show that the top 

performing prefetchers were EIP, FNL+MMA, and D_JOLT. 

 

Figure 3.1.2. Speedups across Competition Prefetchers on 50 Traces 
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Figure 3.1.3. Storage Overhead for Unmodified and Reduced Prefetchers 
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Figure 3.1.4. Unmodified and Reduced Prefetcher Speedups 
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because the individual simulations were compared to a baseline with no L1I cache replacement 

policy whereas the baseline in Figure 3.2.1. uses LRU for the L1I cache replacement policy. Since 

the combination simulations were normalized against a system with no prefetcher and LRU in the 

L1I cache, their speedups are lower than they were in Figure 3.1.4. because those values were 

normalized against a system with no prefetcher and no cache replacement policy in the L1I cache. 

 

Figure 3.2.1. Combined Prefetcher and Cache Replacement Policy Speedups 
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modification to alter the RRPVs of prefetches by demoting the cache line if a prefetch causes a 

cache hit. The speedup of the modified combination showed a small improvement over the 

combination with no communication, and the IPC was lowered in the model with prefetch hit 

demotion.  

 

Figure 3.3.1. Results from the Barca-SRRIP Modifications 
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with LRU, not with any of the other cache replacement policies being tested.  Lastly, despite 

providing a slight speedup over LRU in the case of no prefetcher, SRRIP and DRRIP performed 

worse than LRU when combined with instruction prefetchers, indicating that the cache 

replacement is interfering with the prefetched instructions. 

The results also show that naively combining instruction prefetchers and cache replacement 

policies in the L1I cache does not yield significant improvement and can even lead to a reduction 

in performance. Because the L1I cache is so small, both the instruction prefetcher and the cache 

replacement policy have to mesh well together to ensure that the cache is holding the proper 

instructions and evicting the instructions it no longer needs. If the two policies do not work well 

together by evicting the data/instructions that the other policy needs, we end up with a situation 

like the combination policy of Barça-LIME. Barça-LIME had a decrease in performance when 

compared to LIME without a prefetcher. This situation shows that not all combination policies will 

yield an increase in performance when compared to the instruction prefetchers or cache 

replacement policies on their own. 

To improve performance using combination policies we propose the use of modified 

combination policies that pass along prefetch metadata from the instruction prefetcher to the cache 

replacement policy. This modification allows for informed updates by the cache replacement 

policy based on the information gathered by the instruction prefetcher. In the next section, we will 

analyze the results from the modified Barça-SRRIP combination policy, where we passed prefetch 

confidence values from Barça to inform the updates made to the cache by SRRIP. 

3.5 Analysis of Modifying the Barça-SRRIP Combination Policy  

The modified Barça-SRRIP combination policy did not provide a significant speedup over 

the version without communication between Barça and SRRIP. The final speedup was minimal 
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despite iteratively tweaking the probability thresholds for RRPV assignments. However, because 

a speedup was achieved, as minimal as it was, a conclusion can be drawn about modified 

combination policies that send prefetch metadata from the instruction prefetcher to the cache 

replacement policy. If the algorithm for the cache replacement policy is optimized in a way that 

best works with the instruction prefetcher and can have informed cache updates based on prefetch 

metadata, a higher speedup can be achieved.  
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4. CONCLUSION 

Our research explored the idea of combining two common techniques, instruction 

prefetching and cache replacement policies, to improve processor performance. The initial 

combination results in Figure 3.2.1. did not show that any specific kind of instruction prefetcher 

or cache replacement policy naturally worked well together when naively combined. It is likely 

that the LRU combinations produced the highest speedup simply because the other cache 

replacement policies, which were designed to work on the last level cache, were hindered by the 

small size of the L1I cache and could not make full use of their algorithms.  

We next worked to try to utilize preexisting instruction prefetch metadata from an 

instruction prefetcher, Barça, to inform prefetch placement in a cache replacement policy, SRRIP, 

to improve the performance of the overall system. In Figure 3.3.1., the results show that the 

introduction of communication between the instruction prefetcher and cache replacement policy 

did yield a speedup over the system where the two techniques worked independently. It is likely 

that with algorithmic improvement and fine tuning, this combination system could be improved 

even more. This research demonstrates a proof of concept that performance can be gained with 

communication between these performance techniques.  
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