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ABSTRACT

Vacuum Energy in General Power Wall Models

Agam Shayit
Department of Computer Science and Engineering

Department of Physics and Astronomy
Texas A&M University

Research Faculty Advisor: Dr. Stephen Fulling
Department of Mathematics

Texas A&M University

Research Faculty Advisor: Dr. Vivek Sarin
Department of Computer Science and Engineering

Texas A&M University

In the study of vacuum energy and the Casimir effect, it proves convenient to model the

parallel conducting plates by a “soft” wall of the form v(z) = zα rather than the standard Dirichlet

wall. This model, for instance, does not violate the principle of virtual work under regularization,

unlike the naive Dirichlet model.

In previous research, the soft wall model was formalized for a massless scalar field, and

expressions for the corresponding stress tensor were derived. Using these expressions, the energy

density and pressure were calculated inside and out of the wall for the linear and quadratic walls,

for which exact solutions exist.

The limit of interest is α � 1, which corresponds to the Dirichlet wall. Since a closed

form expression for the Green function of the field equation cannot be found for α > 2, one must

approximate it in order to use the previously derived expressions for the stress tensor.

In this thesis, we conclude this research project. Using high order WKB and perturbation
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expansions of the associated Green function, we develop a robust approximation scheme in the

regime where neither is valid. This approximation matches both expansions to an appropriate

order in their domain of validity.

We apply the developed scheme to the sextic soft wall and use it to compute the stress

tensor inside the cavity for various conformal parameters. The consistency of the results is verified

by checking known conservation laws and reproducing the energy density for the quadratic wall.

To further verify our results, we compare the approximated stress tensor to a numerical

counterpart, which is obtained by discretizing the separated field equation. To maximize accuracy

and efficiency, we develop a customized numerical stiff linear boundary value solver which exploits

key properties of the field equation. This solver is implemented in two different ways, which

prioritize the concurrency of the solution process and the accuracy of the output.
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1. INTRODUCTION

1.1 The Casimir Effect

The Casimir effect in Quantum Field Theory refers to the attractive force between the

boundaries of a cavity in vacuum. This attractive force is induced by the energy gradient resulting

from the modification of the normal modes of the quantum field inside the cavity. The existence

of this force entails that the expectation value of the quantum field is nonzero in vacuum. This

force was first derived by Casimir in [1] for an electromagnetic field and perfect conductor. Many

later works, such as [2], [3], and [4], simplify Casimir’s model by replacing the EM field and the

conductor with a scalar field and Dirichlet boundary conditions.

In order to produce physical results in models in quantum field theory, one must regularize

them first. This is most commonly done by imposing an ultraviolet cutoff, which prevents subtrac-

tion of infinite quantities. Since the scalar field with Dirichlet boundary conditions ("hard wall")

model was shown in [5] to violate the principle of virtual work under ultraviolet cutoffs, it is un-

suitable for contemporary analysis of phenomena in Casimir physics. Since the Casimir force is

dominant in small scales, its analysis under a physically consistent model may aid in the discovery

of new fundamental forces of nature. In this paper, we restrict our analysis to a single massless

scalar field. This quantum field is denoted by φ.

1.2 The Soft Wall Model

To overcome the violation of the principle of virtual work under regularization, it was

proposed in [6] and [7] to replace the ideal Dirichlet wall with the "softer" counterpart

v(z) = zα α ∈ N (1.1)

Unlike the Dirichlet wall, the soft wall was shown to uphold the principle of virtual work under

ultraviolet cutoffs (see [8]). This makes the model consistent with contemporary physics and

suitable for a modern analysis of the Casimir effect.
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In previous research ([8], [9], [10]), the soft wall model was developed for a massless scalar

field. The reduced Green function of the field equation inside the wall was derived in [7] as

gκ(z) =
1

w

(
F (z)G(z)− F (z)2G(0)−G′(0)/κ

F (0)− F ′(0)/κ

)
(1.2)

Here, κ > 0 is the analytically continued frequency parameter, z is the displacement along the

axis perpendicular the wall, and w is the Wronskian of F (z), G(z), which are solutions of the

differential equation

− ∂2y

∂z2
+
(
κ2 + v(z)

)
y = 0 (1.3)

such that F decays at positive infinity and G is linearly independent of F . Although the solutions

F (z), G(z) also depend on κ, this dependence is usually suppressed in the notation.

By normalizing the boundary conditions of F (z), G(z) to be

G(0) = 0 G′(0) = 1 F (0) = 1 (1.4)

(1.2) was simplified to

gκ(z) = F (z)G(z) + γ(κ)F (z)2

γ(κ) =
1

κ− F ′(0)

(1.5)

As shown in [9], the vacuum expectation value 〈φ2〉 is given by I [gκ(z)] and the scalar δ,

where

I [h(κ)] ≡ 1

2π2

∫ ∞
0

dκ κ2h(κ)
sinκδ

κδ
(1.6)

Expressions for the components of the corresponding renormalized stress tensor within the

wall were also derived (see (5.11) in [9]). These expressions involve terms of the form

I

[
κaf(z)

∂b (gκ(z)− g̃κ(z))

∂zb

]
=

1

2π2

∫ ∞
0

dκ κa+2f(z)
∂b (gκ(z)− g̃κ(z))

∂zb
sinκδ

κδ
(1.7)
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where a, b ∈ {0, 2}, the function f(z) is either a constant or the soft wall potential (1.1), and g̃κ(z)

is the asymptotic behavior of the Green function. The last is given in (3.1) in [9] as

g̃κ(z) =
α2zα (zα − 4κ2) + 4αzα (zα + κ2) + 32z2 (zα + κ2)

3

64z2 (zα + κ2)7/2
(1.8)

As will be evident in the next sections, it is instructive to break up the integral (1.7) by employing

a cutoff parameter Λ and defining the operators

IΛ [h(κ)]] ≡ 1

2π2

∫ Λ

0

dκ κ2h(κ)
sinκδ

κδ

JΛ [h(κ)] ≡ 1

2π2

∫ ∞
Λ

dκ κ2h(κ)
sinκδ

κδ

(1.9)

The components of the stress tensor within the wall were computed exactly in [9] for the

linear and quadratic walls using (1.5). These correspond to the only values of α for which exact

solutions of (1.3) can be expressed in closed-form.

In order to study the Casimir effect under the soft wall model, the renormalized stress

tensor should be computed for α � 1. From (1.1), it is clear that when α is large, the soft wall

approximates the Dirichlet wall, under which the Casimir effect was originally derived.

Since the solutions of (1.3) do not have closed-form expressions for α > 2, we must ap-

proximate F (z), G(z) for all κ ∈ [0,∞) in order to compute terms of the form (1.7).

In the next section, we develop approximations to the solutions F (z), G(z) of (1.3) for

arbitrary values of α. We then use the resulting approximations, together with (1.5) and (5.11) in

[9] to compute the renormalized stress tensor inside the cavity for α = 6.

6



2. APPROXIMATING THE GREEN FUNCTION ANALYTICALLY

The task at hand is to generate valid approximations to gκ(z) and ∂2
zgκ(z), and therefore to

F (z) and G(z), for all κ ∈ [0,∞). To do this, we generate approximations applicable to various

κ regimes. The combination of these approximations yields a piecewise function approximating

F (z) and G(z) for all κ > 0. To verify the correctness this approximation, we generate numerical

solutions to (1.3) subject to the boundary conditions (1.4) and compare the results.

2.1 Perturbation Theory

In order to approximate the solutions F (z), G(z) of (1.3), and therefore gκ(z), for small

values of κ, we apply perturbation theory to generate their power series expansions. The solutions

are approximated by partial sums of these series. Much of the process to obtain the coefficients of

these series is described thoroughly in Sec. III of [8]. However, only the first order perturbative

expansions were computed there, which are insufficient for our purposes.

For the perturbative approximation to be usable as a part of a sufficiently accurate piecewise

approximation, it must be carried to a rather high order. This is done by applying (3.12) of [8] and

use the natural recursive generalization of (3.8) in [8]

Fn(z) =
1

W (i, k)

(
k(z)

∫ z

0

i(a)Fn−1(a) da+ i(z)

∫ z

0

k(a)Fn−1(a) da

)
Gn(z) =

1

W (i, k)

(
k(z)

∫ z

0

i(a)Gn−1(a) da− i(z)

∫ z

0

k(a)Gn−1(a) da

) (2.1)

where F0(z), F1(z), G0(z), G1(z) were already computed in [8]. The power series representing the

desired solutions are then given by

F (z) =
∞∑
i=0

Fi(z)κ2i G(z) =
∞∑
i=0

Gi(z)κ2i (2.2)

The coefficients were evaluated numerically for 2 ≤ n ≤ 30, yielding the perturbations Fκ�1(z)

and Gκ�1(z) of order 30.

7



The resulting approximation of the Green function for small κ is obtained by plugging them

into (1.5)

gκ�1(z) = Fκ�1(z)Gκ�1(z) + γκ�1(κ)Fκ�1(z)2

γκ�1(κ) =
1

κ− F ′κ�1(0)

(2.3)

For accuracy purposes, we do not approximate (∂2
zgκ(z))κ�1 by differentiating (2.3) directly. In-

stead, we differentiate (1.5) twice and obtain

∂2
zgκ(z) = G(z)F ′′(z) + 2F ′(z)G′(z) + 2γ(κ)

(
F (z)F ′′(z) + F ′(z)2

)
+ F (z)G′′(z) (2.4)

Since F (z), G(z) are solutions of (1.3), their second derivative is known, and we obtain

(∂2
zgκ(z))κ�1

2
= F ′κ�1(z)G′κ�1(z) + γκ�1(κ)

(
F ′κ�1(z)2 + Fκ�1(z)2

(
κ2 + v(z)

))
+

+ Fκ�1(z)Gκ�1(z)
(
κ2 + v(z)

) (2.5)

in terms of Fκ�1(z), Gκ�1(z) and their first derivatives only.

2.2 The WKB Approximation

For large values of either κ or z, the sought-after solutions are well approximated by an

asymptotic series. The WKB approximations of the decaying and growing solutions of (1.3), as

well as the dominant part of (1.2), were recorded in (A3) and (A5) in [9] as

y±(z) =
e±

∫ z dt[q0(t)+q2(t)+q4(t)+...]√
q0(z) + q2(z) + q4(z) + . . .

F (z)G(z)

w
≈ 1

2

1

q0(z) + q2(z) + q4(z) + . . .

(2.6)
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If we take our basis functions to be

F̂κ�1(z) =
e−

∫ z dt[q0(t)+q2(t)+q4(t)+...]√
q0(z) + q2(z) + q4(z) + . . .

Ĝκ�1(z) =
e+

∫ z dt[q0(t)+q2(t)+q4(t)+...]

2
√
q0(z) + q2(z) + q4(z) + . . .

(2.7)

and compare F̂κ�1(z)Ĝκ�1(z) to (2.6), we immediately conclude that their Wronskian is unity.

Since (1.2) holds for any decaying and growing basis functions, plugging in F̂κ�1(z), Ĝκ�1(z)

yields:

gκ�1(z) =
1

2 (q0(z) + q2(z) + q4(z) + . . .)
+
γ̂(κ)e−2

∫ z dt[q0(t)+q2(t)+q4(t)+...]

q0(z) + q2(z) + q4(z) + . . .

γ̂(κ) =
Ĝκ�1(0)− Ĝ′κ�1(0)/κ

F̂κ�1(0)− F̂ ′κ�1(0)/κ

(2.8)

As shown in [11], the local functionals qn may be obtained from a recurrence relation. (In

practice, we used a slightly different form of the recursion, found in [12].) The recurrence relation

can be solved in a bottom-up manner using dynamic programming. With this approach, the local

functionals q1, . . . , qn can be computed in polynomial time.

The first 16 terms were kept in the prefactor of the rational term in (2.8), and the sub-

dominant term was taken to have 3 terms in the exponential and two in the prefactor, as in a 4th

order Fröman approximation (see [9] p. 16). The term γ̂(κ) was then computed by plugging in

the 4th order Fröman approximations of F̂κ�1(z) and Ĝκ�1(z) and taking the limit as z → 0. For

computational feasibility, gκ(z)κ�1 is expanded as an asymptotic series of order 15. The second

derivative of the Green function is approximated as

(
∂2
zgκ(z)

)
κ�1

= ∂2
z (gκ(z)κ�1) (2.9)

9



2.3 The Intermediate Regime

Equipped with the approximations of the last two sections, we wish to approximate the

Green function for values of κ that are too large for the perturbative expansion to be usable, but are

not large enough for the WKB approximation to be valid. This process naturally contains arbitrary

elements which are rooted in trial and error. These ambiguities are unavoidable, and are ultimately

justifiable by the results they yield.

In past attempts, the Green function was approximated by low order perturbative and WKB

expansions in the extreme regimes. These approximations were matched by an interpolating spline

on the boundary of the intermediate regime.

Another approach, which was tried by Tommy Settlemyre, is to construct a Padé approxi-

mant that matches the perturbative and WKB expansions at 0 and∞ up to a given order. The order

of the Padé approximant was chosen to be low enough to yield a pole-free approximant.

While these attempts produced insufficient approximations, they developed ideas that pre-

pared the ground for the method developed here. In this section, we modify these methods and

combine them into a sufficiently accurate approximation scheme for the Green function and its

second derivative in the intermediate κ regime.

To approximate the Green function in the intermediate κ regime for a fixed z = z0, we

pick arbitrary endpoints κL0 , κR0 , κL2 , κR2 for gκ(z) and ∂2
zgκ(z), respectively. The interpolating

splines will be constructed in the intervals defined by the endpoints. The general form of the splines

was chosen to match that of the dominant term in (2.8)

gκ≈1(z0) =
n∑
i=1

Ai
κi

(2.10)

(
∂2
zgκ(z0)

)
κ≈1

=
n∑
i=1

Bi

κi
(2.11)
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The coefficients {Ai}, {Bi} were selected to satisfy the conditions (2.12) for all m = 0, . . . , n−2
2

∂mκ gκ≈1(z0)

∣∣∣∣
κL0

= ∂mκ gκ�1(z0)

∣∣∣∣
κL0

∂mκ
(
∂2
zgκ(z0)

)
κ≈1

∣∣∣∣
κL2

= ∂mκ
(
∂2
zgκ(z0)

)
κ�1

∣∣∣∣
κL2

∂mκ gκ≈1(z0)

∣∣∣∣
κR0

= ∂mκ gκ�1(z0)

∣∣∣∣
κR0

∂mκ
(
∂2
zgκ(z0)

)
κ≈1

∣∣∣∣
κR2

= ∂mκ
(
∂2
zgκ(z0)

)
κ�1

∣∣∣∣
κR2

(2.12)

The endpoints and the order of the splines were chosen by trial and error to make the

matrix defining (2.12) as well-conditioned as possible. The endpoints were also chosen to be

within the range of validity of their corresponding regime. The spline gκ≈1(z0), shown in Fig. 2.1,

was constructed using κL0 = 1.5, κR0 = 9. The spline (∂2
zgκ(z0))κ≈1, shown in Fig. 2.2, was

constructed using κL2 = 1.8, κR2 = 12. Both splines were taken to be of order n = 10.

0 2 4 6 8 10
κ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g

Figure 2.1: The first 31 terms of the perturbative expansion (2.3) (in green), the 15th order asymp-
totic series of the first 16 terms of the WKB approximation (2.8) (in purple), and the spline (2.10)
(in red dashes) for α = 6 and z = 0.01. The black dots mark κL0 = 1.5, κR0 = 9. The perturbative
expansion clearly diverges as κ grows, while the WKB approximation is accurate for moderate
values of κ. Since the terms in the WKB series often change sign, the partial sum (in purple) has a
"wiggle".
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2 4 6 8 10 12
κ

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.05
∂
z

2g

Figure 2.2: The first 31 terms of the perturbative expansion (2.5) (in green), the 15th order asymp-
totic series of the first 16 terms of the WKB approximation (2.9) (in purple), and the spline (2.11)
for α = 6 and z = 0.01. The black dots mark κL2 = 1.8, κR2 = 12. The perturbative expansion
clearly diverges as κ grows, while the WKB approximation is accurate for larger values of κ.

2.4 The Approximated Green Function

As evident in Figs. 2.1 and 2.2, the spline (2.11) spans a larger region than (2.10). There-

fore, accuracy issues with the second derivative arise when approximating small quantities such as

the pressure. This is resolved by using the approximations (2.4), (2.9) and (2.11) in conjunction

with a 2-point Padé approximant.

The 2-point [`/m] Padé approximant of a function f(κ), as described in [13], is the rational

function P`(κ)/Qm(κ) whose power series matches f(κ) as much as possible at two given points.

As shown in Sec. IV of [13], the matching requirements yield linear constraints on the coefficients

of P`(κ) and Qm(κ). These equations are solved to determine the approximant P`(κ)/Qm(κ).

We construct the 2-point [`/m] Padé approximant of ∂2
zgκ(z) at κ = 0,∞ from the pertur-

bation expansion (2.4). Since the Green function behaves as a rational function asymptotically, we

may represent it as the series expansion of the dominant term of (2.8) in powers of 1/κ. This series

can be differentiated twice with respect to z to yield the asymptotic behavior of ∂2
zgκ(z). The Padé

approximant will match the behavior of this differentiated series at κ =∞.
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The Padé approximant of ∂2
zgκ(z) will have poles (as a function of κ), near which the other

approximations will be used. (Here, "near" was arbitrarily defined to satisfy |κ− κpole| < 0.15.)

Overall, we obtain a piecewise approximation to the Green function and its second derivative

ĝκ(z0) ≡


gκ(z0)κ�1 κ < κL0

gκ(z0)κ≈1 κL0 ≤ κ ≤ κR0

gκ(z0)κ�1 κ > κR0

|κ− κpole| ≥ 0.15 =⇒ ∂̂2
z gκ(z0) ≡ [16/16] Padé approximant of ∂2

zgκ(z)

|κ− κpole| < 0.15 =⇒ ∂̂2
z gκ(z0) ≡


(∂2
zgκ(z))κ�1 κ < κL2

(∂2
zgκ(z))κ≈1 κL2 ≤ κ ≤ κR2

(∂2
zgκ(z))κ�1 κ > κR2

(2.13)

The terms of the form (1.7) are then approximated using the operators (1.9) as

Î
[
∂bz [g − g̃]

]
≡ lim

δ→0

(
I12

[
∂̂bz gκ(z)

]
− I12

[
∂bz g̃κ(z)

]
+ J12

[(
∂bz gκ(z)

)
κ�1
− ∂bz g̃κ(z)

])
(2.14)

Due to the defined behavior of (2.13) in the large κ region, Î is insensitive to the choice of the

cutoff parameter, as long as Λ > κR0 , κR2 . Therefore, we arbitrarily take Λ = 12.
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3. APPROXIMATING THE GREEN FUNCTION NUMERICALLY

3.1 Discretization

To determine the accuracy of the analytical approximation (2.13), we compute the solutions

of (1.3) numerically. Since the coefficient multiplying y in (1.3) is unbounded, the differential

equation is stiff. This makes the use of ordinary numerical algorithms prone to errors, and therefore

unsuitable for our purposes. While specialized stiff numerical solvers exist (such as MATLAB’s

ode15s), their general-purpose design makes them rather inefficient for our purposes. These solvers

are also designed to integrate initial value problems, rendering them useless for finding F (z).

To avoid these issues, we develop a stiff numerical boundary value problem solver tailored

to our needs. Unlike general-purpose ODE solvers, our solver will exploit the linearity of (1.3).

We discretize the quantities composing (1.3)

~z =



z0

z1

...

...

zm+1


~v =



v (z0)

v (z1)

...

...

v (zm+1)


~y =



y0

y1

...

...

ym+1


~yin =



y1

y2

...

...

ym


(3.1)

where v(z) is the soft wall of (1.1). We denote the uniform interval width by h ≡ zi+1 − zi.

Since the values y0, ym+1 are known at the boundary points z0, zm+1, we solve (1.3) in the

domain [z1, · · · , zm]. With this goal in mind, we seek a discretization of the differential operator

acting on the left hand side of (1.3) which yields m equations for the m unknowns [y1, · · · , ym].

The second derivative is approximated by the 6th order centered finite difference formula ([14],

[15]) for points sufficiently inside the interval
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∀ 2≤i≤m−1 :
∂2y

∂z2

∣∣∣∣
zi

≈ 2yi−3 − 27yi−2 + 270yi−1 − 490yi + 270yi+1 − 27yi+2 + 2yi+1

180h2
(3.2)

Although the centered difference approximation is the most accurate, it cannot be used at

z1, z2, zm−1, zm, since these points are not surrounded by 3 other points from both sides. For

these points, we use the 6th order skewed finite difference formulae ([14], [15])

∂2y

∂z2

∣∣∣∣
z1

≈ 126y0 − 70y1 − 486y2 + 855y3 − 670y4 + 324y5 − 90y6 + 11y7

180h2

∂2y

∂z2

∣∣∣∣
z2

≈ −11y0 + 214y1 − 378y2 + 130y3 + 85y4 − 54y5 + 16y6 − 2y7

180h2

∂2y

∂z2

∣∣∣∣
zm−1

≈ [−2, 16,−54, 85, 130,−378, 214,−11] · [ym−6, ym−5, . . . , ym, ym+1]

180h2

∂2y

∂z2

∣∣∣∣
zm

≈ [11,−90, 324,−670, 855,−486,−70, 126] · [ym−6, ym−5, . . . , ym, ym+1]

180h2

(3.3)

The portion of the operators (3.2), (3.3) independent of the boundary conditions y0, ym+1 can be

combined into the m×m matrix

D2
z =

1

180h2



−70 −486 855 −670 324 −90 11 0 · · · 0

214 −378 130 85 −54 16 −2 0 · · · 0

−27 270 −490 270 −27 2 0 0 · · · 0

2 −27 270 −490 270 −27 2 0 · · · 0

0 2 −27 270 −490 270 −27 2 · · · ...
... . . . . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...

0 · · · 0 0 2 −27 270 −490 270 −27

0 · · · 0 −2 16 −54 85 130 −378 214

0 · · · 0 11 −90 324 −670 855 −486 −70



(3.4)

The matrix (3.4) can fully represent the finite difference operators by adding the appropriate

boundary terms to the elements corresponding to the second derivative at z1, z2, z3, zm−2, zm−1, zm.

15



This is easily done by adding a constant vector to (3.4)

∀ 1≤i≤m :
∂2y

∂z2

∣∣∣∣
z=zi

=
(
D2
z ~yin +~b

)
i
+O(h6)

~b =
1

180h2



126y0

−11y0

2y0

0

...

0

2ym+1

−11ym+1

126ym+1



(3.5)

Denoting Am ≡ −D2
z + diag(~v), we discretize (1.3) as

(
Am + κ2Im×m

)︸ ︷︷ ︸
Lm

~yin = ~b (3.6)

Since the rows of Lm correspond to conditions on the solution at distinct points, they are

linearly independent, and Lm is nonsingular. Therefore, the boundary conditions y0, ym+1 (which

define~b) uniquely determine the solution of (3.6), as intended.

After the solutions F,G are computed, the numerical Green function gnum(z) is immediately

obtained from (1.5). In order to use (2.4) and compute ∂2
zgnum(z), we will compute F ′, G′, and

repeat the procedure of (2.5). The first derivatives are computed from the appropriate centered and

skewed 6th order finite difference formulae (see [14], [15]).
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3.2 Boundary Conditions

To solve for F (z), we approximate the decaying behavior by taking a sufficiently large

value of zm+1, and demanding that F (zm+1) effectively vanishes. Using (2.7), we conclude that

zm+1 = 10 can be taken to be the interval endpoint for our purposes.

Since both conditions for G(z) in (1.4) are given at z = 0, we cannot solve for it using

(3.6) directly. However, we can solve a related boundary value problem, obtain the solution G, and

deduceG(z) from it. SinceG(z) is defined to be exponentially increasing, we enforce the boundary

condition G(0) = G(0) = 0, and guess a larger boundary condition for G at a reasonable endpoint

zm+1, as shown in Table 3.1. The function G(z)

G
′
(0)

clearly satisfies the initial conditions in (1.4), and

must coincide with G(z) from uniqueness arguments.

Table 3.1: Summary of the boundary conditions used to solve (3.6).

function z0 y0 zm+1 ym+1

F 0 1 10 0

G 0 0 2 1

3.3 Solution Techniques

So far, we assumed that κ is fixed, and developed a method to solve for the basis functions

F (z), G(z). Since our goal is to compute integrals of the type IΛ[g], which are defined in (1.9),

the process described above must be repeated for all values κ ∈ K ≡ {κ1, . . . , κn} in the desired

range. The size of the range, n, depends on the cutoff parameter Λ and the desired interval width

∆κ. These parameters directly affect the accuracy of of the numerical integration.

Naively, the system (3.6) can be solved by banded Gaussian elimination for all κ ∈ K

in O(nm), since bandwidth � m (see [16] p. 177). In this section, we develop two alternative

approaches that take the special properties of Lm into account, and analyze their performance.
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3.3.1 Solution by Eigenvalue Decomposition

A key property of (3.6) is that Lm is obtained from a κ-dependent diagonal shift of the fixed

diagonalizable operator Am. In situations where n is sufficiently large, it becomes economical to

solve the system by computing its eigenvalue decomposition. Such decomposition allows us to

obtain solutions for (3.6) by matrix multiplications alone. When n is large, the matrices involved

can be multiplied efficiently using a GPU device.

Once we compute the eigenvalue decomposition Am = V DV −1, the inverse of a diagonal

shift by κ2 is easily obtained as

L−1
m =

(
Am + κ2Im×m

)−1
=
(
V
(
D + κ2Im×m

)
V −1

)−1
= V

(
D + κ2Im×m

)−1
V −1 (3.7)

The inverse of the shifted diagonal matrix is obtained by taking the reciprocals of its diagonal

entries, which is easily done in O(m).

By pre-computing the eigenvalue decomposition V DV −1 of Am and the vector V −1~b, the

system (3.6) can be solved by an element-wise vector multiplication, followed by a matrix multi-

plication. Parallelizing these operations yields the following algorithm:
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Algorithm 1: Solution by Eigenvalue Decomposition
Data: The wall stiffness, the size of the system, the boundary conditions, and the κ range

Result: The discrete solution y(κ, z) ∈ Rn×(m+2) of (3.6) and its first derivative

initialize~b according to (3.5)

initialize D2
z according to (3.4)

~z ← linspace(z0, zm+1,m+ 2)

h← z2 − z1

∀1≤i≤m (~v)i ← (zi)
α // Element-wise power

Am ← −D2
z + diag(~v)

V, ~d← eig(Am) // Am = V diag
(
~d
)
V −1

~u← V −1~b

transfer V, ~d, ~u, and K to the GPU device as sparse arrays

(shifts−1)ij ←
(
di + κ2

j

)−1
// shifts−1 is the matrix containing the

reciprocal of the shifts of the eigenvalues ~d by κ2
j for

all κj ∈ K

(ushifts−1)
ij
← (~u)i (shifts

−1)ij// The jth column of ushifts−1 is the

vector
(

diag
(
~d
)

+ κ2
jIm×m

)−1

~u.

y ← pagefun(×, V, ushifts−1) // Multiply the matrices in parallel

add a column of y0’s to the left and a column of ym+1’s to the right of y

obtain y′ from the appropriate 6th order finite difference formulae

The algorithm above was implemented in MATLAB and executed on a single 28-core GPU

compute node of the HPRC machine Terra. According to [17], each of Terra’s 48 GPU compute

nodes has two Intel Xeon E5-2680 v4 2.40GHz 14-core processors, one NVIDIA K80 Accelerator,

and 128 GB of RAM. All of Terra’s nodes are connected by an Intel OPA-based interconnect.

To solve for F,G, we use the stiffness α = 6 and the boundary conditions in Table 3.1. To

obtain an interval width of h = 10−3, we solve for F with mF = 9999, and G with mG = 1999.
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3.3.2 Low Rank Updates to Symmetric Matrices

Another nontrivial approach to solve (3.6) is to decompose Lm into a sum of a symmetric

positive definite matrix Sm and corrections. This decomposition allows us to solve the system

(Sm + κ2Im×m) ~yin = ~b without pivoting (see [16] p. 180). Since Am is nearly symmetric, we

decompose it into a symmetric matrix and a rank-8 correction

Am = Sm + UV > where Sm is symmetric positive definite and

U,V ∈ Rm×8 have columns

~u1 = ê1, ~v1 =
1

180h2
[0, 486, −855, 670, −324, 90, −11, 0 . . . 0]

~u2 = ê2, ~v2 =
1

180h2
[−214, 0, −130, −85, 54, −16, 2, 0 . . . 0]

~u3 =
1

180h2
[0, 0, 27, −2, 0 . . . 0], ~v3 = ê1

~u4 =
1

180h2
[0, 0, −270, 27, −2, 0 . . . 0], ~v4 = ê2

~u5 =
1

180h2
[0 . . . 0, −2, 27, −270, 0, 0], ~v5 = êm−1

~u6 =
1

180h2
[0 . . . 0, −2, 27, 0, 0], ~v6 = êm

~u7 = êm−1, ~v7 =
1

180h2
[0 . . . 0, 2, −16, 54, −85, −130, 0, −214]

~u8 = êm, ~v8 =
1

180h2
[0 . . . 0, −11, 90, −324, 670, −855, 486, 0]

(3.8)

To solve (3.6), the solution L−1
m
~b should be expressed in terms of S−1

m
~b, the diagonal shift

κ2Im×m, and the rank-8 updates defined in (3.8). To do this, we use the Sherman-Morrison-

Woodbury formula for Lm (see [16] p. 65)

L−1
m
~b =

(
Tm + UV >

)−1~b = T−1
m
~b− T−1

m U
(
I8×8 + V >T−1

m U
)−1︸ ︷︷ ︸

M8

V >T−1
m
~b

Tm ≡ Sm + κ2Im×m

(3.9)

The representation (3.9) reduces the computation to one that requires an 8 × 8 Gaussian

elimination and inversions of Tm, which is symmetric positive definite. The former takes O(1)
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time, while the latter is easily done by a band Cholesky algorithm in O(m), which does not require

pivoting (see [16] p. 180). Since no pivoting is performed in the band Cholesky algorithm, it is

instructive to reverse the order in which we solve forG(z). SinceG(z) is exponentially increasing,

we reorder the unknowns ~yin and the domain ~z descendingly. The reversal results in the largest

diagonal elements of Am occurring at its beginning, yielding a more stable factorization.

Another way to compute the inversions T−1
m efficiently is to use the eigenvalue decompo-

sition method shown in the last subsection. Since Sm is symmetric, its eigenvalue decomposition

is faster to compute than Lm’s. Similarly to algorithm 1, the inversions in (3.9) reduce to ma-

trix multiplications, which can easily be executed in parallel. While our initial implementation of

this process is not competitive, a more thoughtful implementation may improve its performance

significantly.

The use of (3.9) and Cholesky factorization is numerically stable and produces extremely

accurate results. Since our goal is to compute the weighted integrals (1.9), numerical accuracy is

essential. For our purposes and for other applications which prioritize accuracy, the following is

preferable to algorithm 1:
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Algorithm 2: Solution by the Sherman-Morrison-Woodbury formula
Data: The wall stiffness, the size of the system, the boundary conditions, and the κ range

Result: The discrete solution y(κ, z) ∈ Rn×(m+2) of (3.6) and its first derivative

initialize~b according to (3.5)

initialize D2
z according to (3.4)

~z ← linspace(z0, zm+1,m+ 2)

h← z2 − z1

reverse the order of~b, ~z if solving for G(z)

∀1≤i≤m (~v)i ← (zi)
α // Element-wise power

Am ← −D2
z + diag(~v)

initialize Sm, U, V according to (3.8)

forall κ ∈ K concurrently do

R← chol (Sm) // Sm + κ2Im×m = R>R, where R is an upper

triangular matrix

~x← R\
(
R>\~b

)
// the operation \ solves the linear system

using forward and backward substitutions

M8 ← I8×8 + V
(
R\
(
R>\U

))
// see (3.9)

solution← ~x−R\
(
R>\ (UM8\ (V ~x))

)
y(κ, :)← [y0, solution, ym+1]

end

revert~b, ~z, y(κ, :) back to the original order if solving for G(z)

obtain y′ from the appropriate 6th order finite difference formulae

Algorithm 2 was implemented in MATLAB and executed on a single 28-core Terra compute

node with the same input fed into algorithm 1. According to [17], each of Terra’s 256 general

compute nodes has two Intel Xeon E5-2680 v4 2.40GHz 14-core processors and 64 GB of RAM.

Fig. 3.1 shows the performance of both algorithms as a function of n, excluding the cost of

the eigendecomposition. Figs. 3.2-3.4 show the runtime, speedup, and efficiency of algorithm 2.
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Figure 3.1: The running times of algorithm 1 for F , algorithm 2 for F , algorithm 2 for G, and
algorithm 1 for G, from top to bottom. The parallel loop in algorithm 2 was executed with 12
worker threads.
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Figure 3.2: The runtime of algorithm 2 for G (in blue) and F (in orange) as a function of the
number of worker threads for n = 25000
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Figure 3.3: The speedup of algorithm 2 for G (in blue) and F (in orange) as a function of the
number of worker threads for n = 25000
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Figure 3.4: The efficiency of algorithm 2 for G (in blue) and F (in orange) as a function of the
number of worker threads for n = 25000
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3.4 The Numerical Green Function

The resulting solution is well behaved for moderate values of κ, after which it becomes

increasingly inaccurate. This behavior is expected, since (1.3) is stiff, and the error introduced by

the finite difference approximation grows polynomially in κ.

For accuracy purposes, the solutions F,G were obtained from algorithm 2 with n = 25000

and the same parameters as before, namely mF = 9999,mG = 1999. The Green function and

its second derivative, displayed in Figs. 3.5 and 3.6, were computed from these basis functions

according to (1.5) and the equivalent of (2.5).

The terms in (1.7) are computed numerically using the numerical counterpart of (2.14)

Inum
[
∂bz [g − g̃]

]
≡ lim

δ→0

(
I25

[
∂bz gnum(z)

]
− I25

[
∂bz g̃κ(z)

]
+ J25

[(
∂bz gκ(z)

)
κ�1
− ∂bz g̃κ(z)

])
(3.10)

Since the numerical Green function is discrete, the integrals in (3.10) are evaluated by integrating

an interpolating cubic spline over κ for each value of z. The cutoff parameter Λ = 25 reflects the

region where the numerical solution is valid. For values slightly larger than κ = 25, the second

derivative of the Green function starts decreasing. Although minuscule, this behavior is undesirable

and disagrees with the expected qualitative behavior of g′′.
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Figure 3.5: The numerical Green function obtained from algorithm 2 for α = 6 and z = 0.01.
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Figure 3.6: The second derivative of the numerical Green function obtained from algorithm 2 for
α = 6 and z = 0.01. To minimize numerical error, g′′ was calculated from the basis functions and
their first derivatives similarly to (2.5).
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4. APPROXIMATING THE STRESS TENSOR

Using the scheme developed in the last section and equation (5.11) in [9], we approximate

the stress tensor components for α = 6 within the wall. The mass scale µ is taken to be 1.

4.1 The Energy Density

Following the notation introduced in [8], we define β ≡ ξ − 1
4
, where ξ is the conformal

parameter. Plugging the soft wall (1.1) into (5.11) of [9] yields

〈
T 00
〉
R

=
−αzα+2 (α(48β + 3) + 2(α− 1)(12β + 1) log (zα)− 24β − 2)

384π2z4

+
12(α− 2)αβ + 3z2α+4 (2 log (zα)− 1)

384π2z4
+
〈
T 00
〉

[I [g − g̃]]

(4.1)

where the last term is given by (6.3) in [9] as

〈
T 00
〉

[I [g − g̃]] = −
(
I

[
κ2

3
[g − g̃]

]
+ I

[
β∂2

z [g − g̃]
])

(4.2)

We compute this term using Î and Inum defined in (2.14) and (3.10) respectively.
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Figure 4.1: (a) The approximated energy density within the sextic wall obtained from Î .
(b) The numerical energy density within the sextic wall from Inum.
The curves show β = 1/20, 0,−1/12,−1/4, from top to bottom.
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Figure 4.2: (a) The approximated energy density within the sextic wall for large z.
(b) The numerical energy density within the sextic wall for large z.
The energy density clearly changes signs in the large z region.
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Figure 4.3: The approximated energy density for the minimally coupled case (β = −1/4, in black)
and the conformal case for α = 6. The dashed green curves are the corresponding numerical
energy densities.

To evaluate (4.1), the integrals defining Î and Inum were evaluated numerically. The result-

ing energy density in the small and large z regions is shown in Figs. 4.1 and 4.2. Fig. 4.3 further

illustrates the consistency of the approximation and the numerical calculations.
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4.2 The Pressure

Similarly to the energy density, (5.11) in [9] reads

〈T zz〉R =
α2zα+2 − 3z2α+4 (2 log (zα)− 1)− 3(α− 2)α

384π2z4
+ 〈T zz〉 [I [g − g̃]] (4.3)

where the last term is given by (2.13d) in [9] as

〈T zz〉 [I [g − g̃]] = I

[
1

4
∂2
z [g − g̃]

]
− I

[(
κ2 + zα

)
[g − g̃]

]
(4.4)

and is again computed using Î and Inum. As before, the integrals defining Î and Inum were evaluated

numerically.
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Figure 4.4: (a) The approximated pressure within the sextic wall obtained from Î .
The approximated pressure for small z is dominated by the error introduced by the spline in (2.13).
(b) The numerical pressure within the sextic wall obtained from Inum.

As evident in Fig. 4.4, the approximated pressure is inaccurate in the small z regime, despite

being numerically small. Had the range of Fig. 4.4 been restricted to that of Fig. 4.1, the curves

would seem drastically different. In this region, the pressure is significantly smaller than the typical

error of (2.13), rendering its accurate computation unfeasible.
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4.3 Conservation Laws

Since the trace and divergence identities associated with 〈T µν〉R depend on the vacuum

expectation value of φ2, its renormalization must be consistent with the renormalization of the

stress tensor.

In order to avoid a "blow up" at the origin, 〈φ2〉 was renormalized as

〈
φ2
〉
R

= IR [gκ(z)] ≡ I
[
gκ(z)− g(0)

κ (z)
]

+
zα log (zα)

16π2
(4.5)

where g(0)
κ (z) = 1

2
√
zα+κ2

is the zeroth order WKB approximation of the Green function, and the

last term is obtained from the like order terms in (5.2) in [9].

This renormalization allows us to verify the trace identity (shown in Fig. 4.5) and the di-

vergence identity (shown in Fig. 4.6). Since the stress tensor is independent of other coordinates,

∂µ 〈T µν〉R = ∂z 〈T zz〉R, and the divergence is the derivative of the pressure shown in Fig. 4.4.

0.05 0.10 0.15 0.20
z

-0.005

0.000

0.005

0.010
〈Tμ

μ〉R

Figure 4.5: The approximated trace (in green) and the trace anomaly identity (5.10) in [9]
with IR 7→ ÎR (in orange dashes) for α = 6. The curves show β = 1/20, 0,−1/12,−1/4, from
bottom to top. The curves overlap since the equation holds.
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Figure 4.6: The approximated divergence (in green) and−ÎRv′/2 (in orange) for α = 6. According
to (5.8) in [9], the curves should coincide. Since the approximated pressure plot is not smooth, its
derivative was computed by fitting Fig. 4.4(a) into a polynomial of degree α− 1.

4.4 Reproducing the Energy Density for the Quadratic Wall

In order to further verify the approximation (2.13), we reproduce the energy density for the

quadratic wall, which was computed from the exact Green function in [9]. Since the quadratic wall

is significantly "softer" than the sextic wall, the perturbations (2.3), (2.4) and the WKB approxi-

mations (2.8), (2.9) are much closer to each other than shown in Figs. 2.1 and 2.2. Therefore, the

endpoints were chosen to be closer together (κL0 = κL2 = 1, κR0 = κR2 = 2.5).

While the proximity of the endpoints makes the equations for the coefficients of the Padé

approximant underdetermined, it reduces the error of the splines significantly, making the use

of a Padé approximant unnecessary. Therefore, for the purpose of verifying the methodologies

developed in this paper, we omit the Padé approximant from (2.13). Using the approximated

Green function for the quadratic wall, the energy density was calculated from (4.1) and (4.2) as

before.

For comparison purposes, the data associated with Fig. 4 in [9] was obtained from the

authors. Fig. 4.7 clearly demonstrates the consistency of our approximation with the calculation

conducted in [9].
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Figure 4.7: The approximated energy density for α = 2 obtained from Î
for β = 1/20, 0,−1/12,−1/4, from bottom to top (in solid curves).
The dashed green curves are the corresponding energy densities from the data of Fig. 4 in [9].
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5. CONCLUSION

The methodologies developed in this paper successfully generalize the analysis and results

given in [9] to arbitrarily "hard" power walls. Using high order perturbative and WKB expansions,

we approximated the Green function and its relevant derivatives to high accuracy in the small and

large κ regimes.

These approximations were used to interpolate the functions in the intermediate regime.

By constructing a spline that matches the perturbative and WKB expansions at the appropriate

endpoints, we obtained piecewise analytical approximations to the Green function and its second

derivative. These approximations were then used to compute the renormalized stress tensor inside

the sextic wall.

To validate the approximated results, we compared them to their numerical counterparts.

The numerical approximations were obtained by discretizing the equation of motion of the scalar

field φ and solving the resulting matrix equation. The solution process was optimized by utilizing

techniques of numerical linear algebra and parallel computing.

As evident in this work, the approximated stress tensor agrees with its numerical coun-

terpart, indicating its validity. Furthermore, as expected of a consistent approximation scheme,

the approximated stress tensor also satisfies the renormalized trace and divergence identities. To

further assert the validity of the scheme, we reproduced the energy density for the quadratic wall,

which was computed in [9]. Our results agree with the results in Fig. [4] of [9] within reasonable

error.

In future work, we hope to generalize and improve the approximation method in the inter-

mediate κ regime. The current method relies on many arbitrary elements, and may not be valid

for arbitrary values of z. Since the construction of the interpolating spline is the main source of

error in our piecewise approximation, its computation under a more robust scheme will decrease

the discrepancies between the analytical and numerical results.
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