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Hydrogen fluoride (HF) is a strong, pervious gas that is a stimulus on the body, respiratory 

system, and skin. HF is widely used in electronics manufacturing as a polisher and disinfectant. 

Interest in HF increased after the HF release accident in Gumi, S. Korea (2012), emphasizing the 

special attention and management needs with respect to this gas.  

In this study, ANSYS FLUENT, a Computational Fluid Dynamics (CFD) program, is used to 

identify the effect of a physical barrier as a mitigation system against HF and Chlorine leaked from 

industrial facilities. In a typical industrial facility, there is a barrier that distinguishes the inside and 

outside of a workplace, but it is not sufficient to prevent hazardous substances from being released 

outside. However, we assumed various physical barrier heights (3 m, 6 m and 9 m) for mitigating 

toxic release and used simulations to analyze them to determine how effectively they decreased 

concentrations offsite. Goldfish experimental data from 1986 were compared to verify the results 

for HF and Jack Rabbit I test data in 2010 for Chlorine. The results show that HF and Chlorine 

concentrations can be further decreased with higher barrier heights and their mitigation 

effectiveness factors were derived. Thus, we can reduce the possibility of offsite exposure to toxic 

gas release using the mitigation system and make the better and more effective emergency plan 

with proper mitigation systems .  
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Ⅰ. Introduction 

Due to the development of high-tech industries such as the semiconductor, LCD, and solar cell 

industries, currently, the amount of toxic gases used in South Korea has been showing increasing 

trends with an annual average increase rate of 39%. In addition, following the Gumi Hube Global 

hydrogen fluoride release accident in 2012, people’s attention to concern about toxic gases 

increased sharply. Furthermore toxic gas accidents account for high ratios of high pressure gas 

accidents to the extent that toxic gas accidents account for approximately 25% of 84 high pressure 

gas accidents that occurred over the last six years and damage caused by those toxic gas accidents 

have been known to be very large. Therefore, the necessity of systems to mitigate the impact of 

toxic gas release accidents has come to the fore. 

In addition, many models are currently utilized to predict toxic gas releases from tanks, 

containers, or pipes in which toxic gases are stored at high pressure. However, those models are 

approaches relying on simple calculation formulas without considering surrounding topography, 

situations, or barriers and have shortcomings of showing too large resultant values in the case of 

long distances while showing too small values in the case of short distances. [1],[2] 

As such, there are many restrictive conditions against considering even surrounding 

environments and situations in accident impact evaluation and more precise accident prediction 

models are required for risk evaluation. In particular, since the impacts of toxic gas releases reach 

very long distances and are greatly affected by various variables such as surrounding topography, 

temperatures, and the effects of winds, CFD (Computational Fluid Dynamics) analysis methods 

that can consider such situations were reviewed. 

Examples of studies on actual gas diffusion, various diffusion modeling applied with CFD, and 

the effects of mitigation systems are as follows. Filippo Gavelli et al. studied the effects of the 

formation of LNG pools according to ground situations through the CFD code Fluent by 

comparing and analyzing the effects of LNG when released on ground surfaces and when released 

on the surface of water and verified that LNG evaporation rates were higher when LNG was 

released on the surface of water.[3] A. Mack et al. analyzed the behavior of heavy gases using 

OpenFoam and verified the results through wind tunnel experiments and Fluent, which is a 

commercial code.[4] In addition, P. Gousseau et al. compared and analyzed the performances of 

the RANS and LES models, which are turbulence models, in predicting pollutant dispersion around 

buildings to find that whereas the RANS model calculated faster compared to the LES model, the 

LES model was more accurate thereby helping the selection of dispersion prediction models 

through a CFD code thereafter.[5] Steven Hanna et al. simulated and studied data from Jack Rabbit 

field tests, which are chlorine release experiments, through the SLAB model.[6] In  particular, 

Robert N. Meroney experimented various heavy gas diffusion mitigation systems to find out 

factors that affect diffusion organized formulas for prediction of the results of diffusion.[7] 

In the present study, the behaviors of hydrogen fluoride and chlorine when released were 

simulated, analyzed, experimented, and verified through Fluent, which is a commercial CFD code, 

and the effects of physical barriers on the behaviors according to the heights of the barriers were 

analyzed. 

Ⅱ. CFD Simulation 

2.1. Simulation Tool 



Recently, in foreign countries, the frequency of use of CFD Simulations has been increasing for 

more precise analyses of accidental releases of inflammable gases or toxic gases from industrial 

facilities, equipment, and devices used to handle those gases. CFD programs can analyze the 

possibility of accidents over time as well as in relation to surrounding topography so that the results 

of analysis can be closer to reality. Currently, the FLACS (Flame Acceleration Simulator) of 

GexCon and the FLUENT of ANSYS are representative programs suitable for accident impact 

evaluation. In the present study, the latter one, FLUENT 13.0 of ANSYS Co. was used.  

The FLUENT is a representative fluid flow analysis program dedicated to flow analyses that 

can analyze the entire area of flows including not only incompressible flows but also compressible 

flows and transonic flows. In addition, it can analyze diverse physical and chemical phenomena 

such as laminar flows, turbulence, heat transfer issues, chemical reaction issues, multiphase flow 

issues. Therefore, it is used in all sectors of flow analyses such as process design, product design, 

etc. and this program is highly reliable. In addition, GAMBIT 2.4.6, a dedicated grid generation 

program, was used in the modeling of surrounding topography. [8] 

 

2.2 Actual experiment used in verification (Field test)  

2.2.1 Hydrogen fluoride release experiment (Goldfish test) 

The experiments modeled after the Goldfish test, which is a large scaled hydrogen fluoride 

release experiment conducted in Frenchman, Nevada in 1986 by Amoco Oil Company and 

Lawrence Livermore National Laboratory. In the experiments pressurized liquid HF was released 

at a height of 1 m from the ground and hydrogen fluoride was released three times under different 

conditions. The conditions used in individual experiments are as shown in Table 1 below. The 

experiments were conducted without any surrounding topography other than the experimental 

apparatuses with a scenario to release a 4-inch diameter line from a 5000 gallon tank. The 

concentrations of the released gases were measured using concentration sensing sensors at points 

300 m, 1000 m, and 3000 m away from the release hole in the direction of release[9][10]. 

Table 1. Condition values of Goldfish test 

Test Spill Rate, 

gal/min 

HF Tank 

Temp., 

℃ 

HF Tank 

Pressure, 

psig 

Duration, 

Sec. 

Wind, 

m/s at 

2 m 

Centerline Concentration, 

ppm, at 

300 m 1000 m 3000 m 

1 469.2 40 111 125 56 25473 3098 411 

2 175.1 38 115 360 4.2 19396 2392 - 

3 171.6 39 117 360 5.4 18596 2492 224 

 

 

2.2.2 Chlorine release experiment (Jack rabbit test) 

The chlorine release experiment was conducted in Dugway Proving Ground in Utah in 2010 

with support by the Department of Homeland Security Transportation Security Administration and 

is called Jack Rabbit Test. The release space was an approximately 2 m deep and 50 m diameter 

dug area and experimental substances were released at a height of 2 m from the ground toward the 



ground. In Jack rabbit test, not only chlorine but also many other substances such as ammonia 

were released and sensors were arranged in circles at various distances (25, 50, 100, 30 0, and 500 

m etc.) to measure the concentrations of the substances. In the test, 1 or 2 tons of chlorine was 

released at each of diverse wind speeds ranging from 1.6 m/s to 6.2 m/s as shown in  Table 2 

below.[11][12] 

Table 2. Condition values of Jack rabbit test 

Test 

number 

Total mass 

released (kg) 

Total 

released 

duration (s) 

Q (kg/s) 

Wind 

speed at 

2 m 

(m/s) 

x (m) 

Max 

concentration 

(ppm) 

5 2000 240 8.33 1.6 

25 58600 

50 27800 

100 13500 

300 3410 

500 2030 

6 2000 57 35.09 6.2 

25 55600 

100 9780 

300 1100 

500 330 

 

2.3 Numerical analysis model 

2.3.1 Governing equation 

The governing equations of CFD simulations are as shown by equation (1) and equation (2) and 

the conditions are 3D steady state incompressible turbulence flows. 

 

 

 

 

 

The term  in the above equation of motion is defined as follows. 

 

 

 

 

 in equation (3) is a turbulence viscosity coefficient that can be inferred through dimensionless 

analysis of high Reynold’s number flows. When the turbulence energy generation rate and 

dissipation rate are assumed to be almost in equilibrium,  is expressed as follows. 

 ------------------------------- (1) 

 --- (2) 

 ----------------- (3) 



 

 

 

 in the above equation is a coefficient determined by the turbulence model and K and  are 

turbulent kinetic energy and turbulent energy dissipation respectively determined by the K-  

model. The standard k-epsilon model that is the most commonly used was used for the simulation 

and the SIMPLE algorithm was used as a scheme for coupling of speed and pressure. [13] 

 

2.3.2 Grid 

The grids necessary for the simulations were generated using the dedicated grid generation 

program GAMBIT 2.4.6 and the Mesh Volume was formed by generating polygonal cells using 

the Tet/Hybrid tab. The subject fluid was simulated as a mixture of air and toxic gases. In the first 

simulation that simulated Goldfish test, the total area of a space sized 3500 * 250 * 500 ㎥ was 

analyzed by modeling a half of the total area and using symmetric conditions for the symmetric 

plane because the left and right of the release point are symmetric. A 0.5 m thick barrier was 

installed vertically at a distance of 100m in the x direction from the release hole. In addition, the 

sizes of grids closer to the release hole were made smaller. The total number of grids slightly varied 

with the height of the barrier. In the case of 9 m barrier, 3,835,599 grids were used. 

In the second simulation that simulated Jack rabbit test, the entire size of the space was set to 

2500 * 500 * 500 ㎥. The location and size of the barrier were set to be the same as the first 

simulation and the sizes of grids closer to the release hole were made smaller as with the first 

simulation. The total number of grid used in the case of 9 m barrier was 5,779,184. Figure 1 below 

shows the Goldfish test simulation grids. 

  
Figure 1. The topography and grids of the Goldfish test simulation (left, FLUENT), the topography and grids 

of the Jack rabbit test simulation (right, GAMBIT) 

 

 

 -------------------------- (4) 



Ⅲ. Result and discussion 

3.1 Comparison with the experiments and verification 

3.1.1 Comparison between values obtained through Goldfish test and the simulation and the effect 

of the mitigation barrier 

The values obtained through the simulation were compared with actual experimental values to 

secure the reliability of the FLUENT simulation. The experimental values from test 1 already 

shown in Table 1 above were used for the comparison. Through the comparison, the results as 

shown in Figure 2 could be obtained. Table 3 shows direct numerical comparison. The 

experimental values and the values from the FLUENT simulation showed relatively large 

differences at the first point but the error rates were found to be within 50% at points farther than 

1000m from the release hole. Therefore, it can be seen that the simulation result values and the 

experiment values had similar tendencies. 

 

Figure 2. Comparison between values measured in Goldfish test and in the simulation 

 

Table 3. Comparison of Hydrogen Fluoride concentration at 300, 500 and 3000 m (The shaded column 

contains a value with an error rate not within the range of 50% ~ 200%.) 

 
Concentration (ppm) 

Test value Simulation value 

Distance (m) 

300 25473 9849 

1000 3098 3427 

3000 411 251 

After securing the reliability of the FLUENT simulation, condition change simulations were 

conducted to see the relationship between barrier heights and mitigation effects according to 

distances. In the simulations, 3 m, 6 m, and 9 m barriers were installed one at a time at a point 

100m away from the release point in the x direction. Figure 3 is a graph that shows concentrations 

in relation to distances and barrier heights not only indicating that the barrier has mitigating effects 
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but also indicating that the effects increased as the barrier height increased. Table 4 below shows 

the values of the concentrations of hydrogen fluoride and mitigation rates according to the heights 

of the mitigation barrier at certain points shown in the graph in Figure 3.  

The mitigation effectiveness define by equation (5). 

 

 

* CNo,x is concentration without barrier at x meter 

* Cy,x is concentration of y meter barrier at x meter 

 

 

Figure 3. Concentration distribution according to barrier height about Goldfish test 

 

Table 4. Values of the concentrations (upper) of hydrogen fluoride and mitigation rates (lower) according to 

barrier heights at certain distances in Goldfish test 

` Concentration (ppm) 

 
at 100 m 

from the barrier  

at 500 m 

from the barrier  

at 1000 m 

from the barrier  

No barrier 11800 4303 2394 

3 m barrier 7880 2967 1241 

6 m barrier 4738 1778 679 

9 m barrier 1308 1437 379 
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𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 (%) =
𝐶𝑁𝑜,𝑥−𝐶𝑦,𝑥

𝐶𝑁𝑜,𝑥
× 100

 
--- (5)

 



 

 Mitigation effectiveness (%) 

 
at 100 m 

from the barrier 

at 500 m 

from the barrier 

at 1000 m 

from the barrier 
Average 

3 m barrier 33.22 31.05 48.16 37.48 

6 m barrier 59.85 58.68 71.64 63.39 

9 m barrier 88.92 66.60 84.17 79.90 

 

3.1.2 Comparison between values from Jack rabbit test and the simulation and the effects of the 

mitigation barrier 

As with the Goldfish test simulation, the reliability of the Jack rabbit test simulation was secured 

through comparison with experimental values. The experimental values from JR 1 test 5, 6 shown 

in Table 2 presented above were used for the comparison. Since wind speeds have large effects on 

toxic gas concentration values according to distances, the data from the two tests conducted at 

different wind speeds were simulated with a view to securing higher reliability. However, Jack 

rabbit test was simulated not by releasing the gas at the experimental release point but by setting a 

model in which the entire recessed ground were used as a release hole where chlorine gas would 

evaporate referring to the paper published by Hanna et al.[x]  

The results are presented in Figure 4 below as graphs and in Table 5 as numerical values. The 

test 5 simulation generally shows similar results with a small difference at the 500 m point. Unlike 

test 5 simulation, test 6 simulation showed smaller values than experimental values at points close 

to the release hole and larger than experimental values at points far from the release hole. 

Table 5. Comparison of Chlorine concentration at 25, 50, 100, 300 and 500 m (The shaded columns contain 

values with error rates not within the range of 50% ~ 200%.) 

0

10000

20000

30000

40000

50000

60000

0 200 400 600

C
o
n
ce

n
tr

a
ti
o
n
 (

p
p
m

)

Distance (m)

test5 simulation

0

10000

20000

30000

40000

50000

60000

0 200 400 600

C
o
n
ce

n
tr

a
ti
o
n
 (
p
p
m

)

Distance (m)

test6 simulation

Figure 4. Comparison between values measured in Jack rabbit tests and values measured in the simulation 



 

 

Concentration (ppm) 

Actual test #5 
Simulation for 

test 5 
Actual test #6 

Simulation for 

test 6 

Distance (m) 

25 58600 58118 55600 36431 

50 27800 18495   

100 13500 10926 9780 14098 

300 3410 2075 1100 2590 

500 2030 856 330 755 

 

As with the Goldfish test simulation, condition change simulations were conducted to see the 

relationship between barrier heights and mitigation effects according to distances. In the 

simulations, 3 m, 6 m, and 9 m barriers were installed one at a time at a point 100m away from the 

release point in the x direction as with the Goldfish test simulation. Figure 5 shows concentrations 

in relation to distances and barrier heights with a graph. Table 6 below shows the values of the 

concentrations of chlorine and mitigation rates according to the heights of the mitigation barrier at 

certain points shown in the graph in Figure 5.  

 

Figure 5. Concentration distribution according to barrier height about Jack rabbit test 
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Table 6. Values of the concentrations (upper) of chlorine and mitigation rates (lower) according to barrier 

heights at certain distances in Jack rabbit test  

 Concentration (ppm) 

 
at 100 m 

from the barrier 

at 500 m 

from the barrier 

at 1000 m 

from the barrier 

No barrier 2916 645 262 

3 m barrier 1261 282 142 

6 m barrier 1115 250 130 

9 m barrier 995 229 116 

 

 Mitigation rate (%) 

 
at 100 m 

from the barrier 

at 500 m 

from the barrier 

at 1000 m 

from the barrier 
Average 

3 m barrier 56.76 56.28 45.80 52.95 

6 m barrier 61.76 61.24 50.38 57.79 

9 m barrier 65.88 64.50 55.73 62.03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2 Changes in flows over time at the barrier 

After identifying that the barrier has mitigating effects according to its heights, toxic gas 

diffusion flows over time were examined for a 9 m barrier, which is the highest in the simulation. 

Hydrogen fluoride diffusion flows were examined at 0.1, 0.5, 1.0, 2.0, 5.0, and 10 s and the results 

are as shown in Figure 6. Chlorine diffusion flows at 10, 30, 60, 180, 300, 600 s are shown in 

Figure 7. Through the figures, it can be seen that when toxic gases being diffused ran into the 

barrier, the flows began to move laterally instead of moving forward thereby diffusing the toxic 

gas faster leading general reduction in the concentration of the toxic gas. Consequently, the range 

of ERPG-2 concentrations will relatively decrease when a toxic gas accident has occurred and the 

range of occurrence of damage will also decrease. When an accident has occurred, along with 

reduction in the range of occurrence of damage, securing the time to evacuate is also an important 

issue. When there is a barrier, the forward diffusion flow speed will decrease when the diffusion 

flows have run into the barrier so that the time to evacuate can be secured. 

 

Figure 6. Distribution of the concentrations of ERPG - 2 in hydrogen fluoride over time (0.1, 0.5, 1.0, 2.0, 5.0 

and 10 s) at the 9 m barrier 



 

Figure 7. Distribution of the concentrations of ERPG - 2 in chlorine over time (10, 30, 60, 180, 300 and 600 s) 

at the 9 m barrier 

 

 

 

 



Ⅳ. Discussion 

Through the present study, it could be seen that higher physical barriers exert larger effects. In 

the case of hydrogen fluoride, 3 m, 6 m, and 9 m barriers showed mitigation effects of 

approximately 37%, 63%, and 80% respectively and in the case of chlorine, 3 m, 6 m, and 9 m 

barriers showed mitigation effects of approximately 53%, 58%, and 62% respectively. Therefore, 

the mitigation effects increased considerably along with increases in barrier heights in the case of 

hydrogen fluoride but did not increase very much along with increases in barrier heights in the 

case of chlorine although barrier per se had mitigation effects. This is considered attributable to 

differences in the specific gravity of the two substances, wind speeds, or in release modeling 

between the two simulations as hydrogen fluoride was horizontally released in the form of jet while 

chloride was vertically evaporated from the puddle. In the present study, many constraint 

conditions were assumed. First, in the tests, the toxic substances were released in two phases; 

liquid phase and gas phase. In both tests, the ratios of liquid substances were quite high as the ratio 

of liquid phase substances was approximately 80% while the ratio of liquid phase substances was 

approximately 20%. However, in the simulations, the entire substances were implemented as gas 

phase substances so that the toxic gases were released with very large momentum at the release 

point. Therefore, larger turbulence should have been formed and the results should have been 

affected. Furthermore, solar radiation and humidity were not considered. Therefore, the reactions 

of hydrogen fluoride with high reactivity with water were not considered and this is considered to 

have affected the results substantially. In addition, although analyses conducted through multiple 

experiments can improve reliability, in the present study, only one experiment was conducted. 

Therefore, the effects of mitigation systems will be verified with diverse substances and 

experiments and various mitigation systems currently in use or being studied will be examined 

later with a view to helping the construction of guidelines for effective facility layouts and design. 
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