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Abstract 

The purpose of a risk assessment is to make a decision whether the risk of a given situation is 

acceptable, and, if not, how we can reduce it to a tolerable level. For many cases, this can be done 

in a semi-quantitative fashion. For more complex or problematic cases a quantitative approach is 

required. Anybody who has been involved in such a study is aware of the difficulties and pitfalls. 

Despite proven software many choices of parameters must be made and many uncertainties 

remain. The thoroughness of the study can make quite a difference in the result. Independently, 

analysts can arrive at results that differ orders of magnitude, especially if uncertainties are not 

included. Because for important decisions on capital projects there are always proponents and 

opponents, there is often a tense situation in which conflict is looming.  

The paper will first briefly review a standard procedure introduced for safety cases on 

products that must provide more or less a guarantee that the risk of use is below a certain value. 

Next will be the various approaches how to deal with uncertainties in a quantitative risk assessment 

and the follow-on decision process. Over the last few years several new developments have been 

made to achieve, to a certain extent, a hold on so-called deep uncertainty. Expert elicitation and its 

limitations is another aspect. The paper will be concluded with some practical recommendations. 
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1. Introduction 

Process safety involving hazardous materials can be evaluated only by determining remaining 

risk. As we all have the task to do the utmost to prevent the nasty surprise of a major accident, we 

must perform risk assessments one way or another. Now, in most cases we can rely on situations 

we know, and we can estimate risk magnitudes at least in ranges. In case there are quite a few risk 



sources around, with the aid of a risk matrix we can perform a semi-quantitative assessment on a 

comparative or even an order of magnitude basis, in which we can visually overlook and categorize 

the risk situation. However, difficulty arises when the potential consequences can be catastrophic, 

costly risk reduction becomes an issue, and the case must be considered on a quantitative basis, a 

quantitative risk assessment or QRA, using distributions instead of only ranges for consequence 

and frequency or probability of occurrence. Of course, in such cases the probability of occurrence 

will generally be very low. This constitutes the typical rare event prediction problem. Such cases 

have given rise to endless debates and are the topic of many scientific papers, because experimental 

validation of high impact, low probability risk is virtually impossible. The final result of an 

assessment depends strongly on assumptions and the data used. Depending on what is judged 

reasonable as starting material, different assessors with different background knowledge can come 

to end results that in a quantitative sense can differ by orders of magnitude especially if uncertainty 

is not properly assessed. Regretfully, the practice to discuss uncertainties in studies and to present 

ranges of inaccuracy is essential but still uncommon.  

Due to risk assessment results afflicted with uncertainty, parties with opposing interests have 

been fighting in many forums to get a project accepted or not, and often when it gets into the public 

arena such project becomes a political bone of contention. As Aven and Zio [1] note: “The 

disguised subjectivity of risk assessments is potentially dangerous and open to abuse if it is not 

recognized.” And also: “Precise numbers are used as a facade to cover up what are often political 

decisions”. The work procedure for a risk assessment sounds easy but the execution is usually 

rather problematic and one can easily loose trust in the result. Predicting risk in a given situation 

with many hazards present and with the many possibilities in which a scenario can conditionally 

develop, is in a physical sense, regarding the range of possible consequences, not that simple but 

in probabilities almost impossible. Yet, we are depending on assessments to support optimum 

decision making and weighing of effort against cost. And also, it is not just a specific problem of 

process safety. Risk management in general, whether it is on project planning and execution, 

financial or business, all face the same problem. We want to look into the future, but predictive 

tools are fallible and the prediction results are helpful but uncertain. 

In fact, the problem has two sides: one side is the thoroughness of QRA treatment and 

assessment of uncertainty, and the other is what can we do to validate a result and how much can 

the result of an analyst team, given their capabilities, be trusted.  

In this paper, we shall look at these aspects, and we shall start in Section 2 with an extreme, 

but for certain manufacturers serious case in which a team or company is asked to give more or 

less a guarantee on the frequency of a rare event prediction result. This is related to a product of 

which the user can be killed in the event. In Section 3 we shall briefly review some ways to deal 

with uncertainty in process risk. In Section 4 before reaching a conclusion, we shall indicate in 

what directions we can improve and validate, and we will discuss what can be done to obtain 

greater confidence in view of decision making under uncertainty and policy developing.  

2. The Safety Case trustworthiness 

First the designation “Safety case”: In the U.S. it is used often as an equivalent to ‘Risk assess-

ment’, but that is not fully right. A ‘safety case’ is quite strict following the definition in the U.K. 

Defence Standard (DS 00-56) [2] as ‘‘a structured argument, supported by a body of evidence that 



provides a compelling, comprehensible, and valid case that a system is acceptably safe for a given 

application in a given operating environment”. Although the statement is entirely qualitative, the 

target is in most cases quantitative, and the choice of words does not leave any doubt that it is a 

serious and stringent requirement to satisfy. As a term, ‘safety case’ became known to indicate a 

risk assessment and a report that should convince the competent authorities in the countries around 

the North Sea that the offshore operation is safe. In the U.K., according to HSE, The Health and 

Safety Executive, the Offshore Installations (Safety Case) Regulations 2005 (SCR05) [3] aim to 

reduce the risks from major accident hazards to the health and safety of the workforce employed 

on offshore installations and in connected activities. The regulations implement the main 

recommendations of Lord Cullen's Report of the Public Inquiry into the 1988 Piper Alpha Disaster. 

However, the term also became more generally applied, even according to the meaning the defense 

standard intends. This is to give products that in case of failure could result in death of the user or 

in some type of disaster, confidence that use of the product is safe, e.g., regarding aircraft, 

pacemaker, safety-critical instrumentation and software, et cetera. The above mentioned standard 

DS 00-56 requires evidence based assuring arguments and the confidence in a claim that the system 

is acceptably safe. So, if the claim is that the pacemaker will have a maximum failure rate of 10-

5/yr, the manufacturing company must provide persuading evidence for this claim.  

Sujan et al. [4] in connection to the question whether health care should adopt the concept of 

the safety case, provide more extensive background and development of the safety case and of the 

various industry branches in the U.K., where it has become practice. Meanwhile, the concept has 

become in use also at the U.S. Department of Defense for certain projects and at NASA. 

 

Figure 1. Example of Goal Structuring Notation (GSN Community [5]) for a safety case of a 

SIS control system. Rectangular means Goal, G; a circle is a Solution, Sn; a rhomb is a Strategy, 



S, linking lower goals to a higher one, and connected to an oval being either an oval Assumption, 

A, or Justification, J; finally, the tank like balloons are Comments, C. 

The assurance process is goal based: It sets requirements but does not state how to fulfill these 

requirements. The University of York, U.K., with among others, Tim Kelly, is an important player 

in developing the assurance concept and in organizing a community of interested industry 

members. In 2011 the GSN Community [5] proposed the Goal Structuring Notation (GSN) 

Standard as a means to underpin assurance arguments. The Standard states: “GSN is a graphical 

argumentation notation that can be used to document explicitly the individual elements of any 

argument (claims, evidence and contextual information)”. The definition of an assurance is given 

as: “A reasoned and compelling argument, supported by a body of evidence, that a system, service 

or organisation will operate as intended for a defined application in a defined environment”. 

Further an argument is defined as: “a connected series of claims intended to establish an overall 

claim”. The argumented claim can be qualitative or quantitative and is deemed true or false. An 

example of a GSN graphical structure related to a Safety Instrumented System is given in Figure 

1. The standardized graphical structure serves the communication among the different 

stakeholders. There is much more to GSN than described here, but Figure 1 gives an impression. 

Quite a few companies have adopted GSN.  

A distinction is made between a safety argument and a confidence argument, which is made 

to back the safety argument. The former spells out the asserted arguments for reducing the risk to 

the residual risk level, while the latter presents the reasons why one can have confidence in that 

result. For the safety argument, the ALARP (As Low As Reasonably Practicable) within the 

acceptable range criterion requirements can be used. In a report by Nair et al. [6] an approach is 

described of what is called evidential reasoning to assess the confidence one can achieve in the 

safety argument. This latter concept is why we mention this here, because that is what should 

produce or increase credibility and trustworthiness. The principle is building a hierarchy of 

attributes, which depending on importance can be weighted, while the base level of attributes is 

assessed by an expert on, e.g., a 5-point Likert-scale. By introducing subjective probability as a 

mathematically less strict belief function, an expert can express his/her uncertainty by attributing 

a belief value of say 25% to the highest scale “excellent” and 75% to “good”. The beliefs need not 

sum to 100%, and if the assessor has no knowledge about an attribute, zero is submitted. The belief 

function is the core of the Dempster-Shafer theory of evidence to be further explained in Section 

3. A number of rules have been developed to assimilate the attributes. Nair et al. [6] developed a 

software tool (EviCA = Evidence Confidence Assessor) for guiding a user and aggregating the 

various sub-claims in a coherent final assertion.  

The structure of attributes built for the confidence argument makes a main distinction between 

trustworthiness and appropriateness. Trustworthiness is subdivided into Personnel, 

Process/Techniques, Tool Integrity, Content Compliance, Evidence Past, and a User-Defined 

Trustworthiness Factor. Personnel is further subdivided into Past Knowledge, Competency, 

Independence, Domain Experience, and User-Defined Personnel Factors; Processes/Techniques 

into Past Use, Definition, Peer Review, and User-Defined Processes/Techniques Factor; Tool 

Integrity into Bound Qualification, Standard Qualification, and User-Defined Tool Factor; Content 

Compliance into Scope, Expected structure, and User-Defined Content Compliance Factor. Then, 

the other top factor Appropriateness is sub-divided into Scope, Expected Structure, and User-

Defined Content Compliance Factor. The meaning of these factors is explained in the report of 



Nair et al. [6], and shown in GSN graphs. To mention all that here is to give an impression of the 

thoroughness of the assessment. The report describes the use of a software tool and some examples.  

Besides the mentioned method of Evidential Reasoning there are quite a few other methods 

in use for the same purpose. In a very interesting and elaborate paper by Graydon and Holloway 

[7], an overview of all the techniques in use is presented and a test performed to investigate whether 

a technique can yield a positive assessment of a case in which it would not have been justified. 

Twelve different teams practicing safety case assurance were identified. From these, five applied 

Bayesian networks, six the related methods of Dempster–Shafer Theory, Jøsang’s Opinion 

Triangle, or Evidential Reasoning, and one based on simple weighting, proposed by Yamamoto.  

In case of the Bayesian Belief networks (BBN), various attributes are represented by network 

nodes and the assimilation by edge connections between nodes producing a cause-effect network 

structure. The parent base nodes are fed the attribute subjective belief probabilities, upon which 

the top leaf node produces the confidence degree. However, all five teams applying BBN structure 

of the network calculated the node probability value differently.  

Dempster-Shafer theory not only measures the strength of a belief probability but also the 

plausibility. Jøsang’s Opinion Triangle discerns three dimensions: belief, disbelief, and 

uncertainty, and Evidential Reasoning has been briefly explained above and functions according 

to the Dempster-Shafer theory. Analysts following Yamamoto rate GSN attributes on a five-point 

Likert scale from strongly unsatisfied to strongly satisfied and assess the overall confidence in the 

claim by means of weighted averages. 

Graydon and Holloway [7] analyzed all 12 methods in detail and applied on each a counter-

example inspired by the example used by the authors describing the assurance technique. In all 

cases a counterexample could be identified in which the technique’s output was implausible, and 

hence, the technique proved to be not fully trustworthy. Detailed results can be found in a NASA 

report (Graydon and Holloway [8]). This result does not mean that the techniques used are wrong, 

but as Graydon and Holloway concluded the techniques are imperfect. It only shows how difficult 

it is to prove decisively an assessment result of the occurrence probability of a rare event to be 

below a certain low value. Instead, we should focus on estimating the credibility of an occurrence 

probability less than a selected acceptably low value. 

3. Treatment of process and plant risk uncertainty 

Over the years much has been learned on risk assessment and how to treat uncertainty, but 

relatively little of the new learning has become common practice. This year a special issue of the 

journal of Safety Science on the topic of Risk Analysis Validation and Trust in Risk Management 

will appear. The present authors contributed an article entitled: “Risk assessment: What is it worth? 

Shall we just do away with it, or can it do a better job?” (Pasman, Rogers, Mannan [9]). Of course, 

the answer to the rhetoric question is “yes”, but it takes an effort. We shall briefly summarize the 

findings.  

First, a positive note about consequence analysis, which has been much improved in methods 

and performed within widened applications. Yet, there is still uncertainty. MKOPSC accomplished 

much learning through fundamental work in outflow and boiling of cryogenics, such as LNG, but 



prediction of evaporation rate in a given case is still not a clear-cut task. A few other examples: 

calculation of dispersion of cloud by means of different 3-D computational fluid dynamics models 

gave for a number of aspects an improvement over previous integral models, but for good 

confidence the spread in results for a given case obtained using different codes is still too large. 

The low wind speed condition, in which most damage effect is possible, requires more attention. 

Although more and more is known about the BLEVE phenomenon, we would like to know more 

about the details of time and effect distribution of this physical explosion behavior, also in view 

of decision making during emergency response action. There has been much progress made in 

knowledge about vapor cloud explosion, and now it is understood that given certain conditions a 

large flammable cloud can detonate; further development of models is required. Finally, the 

number of probit relations on various effect phenomena describing probability of extent of damage 

is still growing and expanding also with respect to domino effects. Unfortunately, including 

uncertainty ranges in results is also in consequence analysis still uncommon. 

However, the most serious problems in risk assessment are posed by hazard identification, 

scenario definition, and failure rate data. On invitation and in cooperation with Prof. Cameron 

and colleagues in Australia a review has been written about problems and perspectives regarding 

HAZID methods (Cameron et al. [10]). Due to the many possibilities something can go wrong, 

scenario completeness for a given plant is not easy to achieve and certainly not the assurance the 

scenarios identified are complete. But, adoption of a system approach and use of computerization 

are the way to achieve a more comprehensive hazard identification and possible scenarios for a 

socio-technical system representing an operational plant and its organization.  

Failure rate uncertainty is an old problem. Although some data bases are available, applicable 

data are scarce and conditions of failure badly defined, so that the well-developed framework of 

equations describing availability cannot be used to its full potential. Lack of willingness out of fear 

to public exposure and legal consequence hinders cooperation with respect to failure rate data and 

impedes progress. Risk assessment pioneers and proposers of the triplets of risk analysis: scenario 

- failure frequency – consequence (𝑠, , 𝑥), Kaplan and Garrick [11], recognized already in 1981 

the uncertainty problem, and launched the probability density of frequency concept. If data are 

collected on the failure frequency of an equipment one can build a distribution 𝑝() and find an 

average, median, and variance. Data are scarce, especially when it concerns a particular brand and 

type of equipment. In fact, one can apply this reasoning also on scenario and consequence. Kaplan 

and Garrick therefore proposed the Bayes theorem stating that prior distribution multiplied by a 

likelihood distribution of new evidence while normalizing the product to a maximum probability 

of unity, yields a posterior distribution. Bayes theorem allows inclusion of data from similar 

equipment and plants, hence not strictly data from the same population. The uncertainty the Bayes 

model aggregates will be expressed again in the variance and shape of the posterior. Now, more 

than three decades later we are teaching and applying the principle, but its use in actual practice of 

process safety is still very reluctant, yet it is needed now more than ever. An example how it works, 

is given in the Appendix.  

For the rare event frequency, Kaplan and Garrick [11], already in 1981 much advanced in 

thinking, mentioned the multiple-stage use of the Bayes theorem, formally called Hierarchical 

Bayesian Analysis (HBA). Suppose following a certain initiating event (IE), one can notice an 

alert, or barrier functioning, or a failure that could have been developed to a serious accident, but 

thanks to safeguarding or another mechanism the accident didn’t materialize. Suppose further, that 



as indicators one can record over a certain period of, e.g., 20-30 years the number of these 

precursors and their corresponding end states. If both indicators and end-states are specific for the 

IE, these data can be used for rare event frequency prediction. The data can be even from the sector 

as a whole instead of own plant only. In such case an event tree representing the possible physics 

of the phenomena should be developed. This tree branching out following a particular IE links the 

sequence of successive at the branch points observable events in the tree (e.g., vibration, corrective 

maintenance, smoke, alarm), to counted precursor end states of damage (e.g., no damage, trip, 

small leak, large leak and emergency shutdown, fire, disastrous explosion), which also can be 

expressed in monetary loss values. The observed number of end state occurrences of each type 𝑖, 
𝑛𝑖 in a given time, 𝑡 with an average occurrence rate estimator, 𝑛𝑖/𝑡 = 𝑖 can be modeled, e.g., as 

a Poisson distribution, which is an exponential function: 𝑒𝑥𝑝(−𝑖𝑡){(𝑖𝑡)𝑛𝑖/𝑛𝑖!}. Each type 𝑖 will 

have a different but related sector source. The source-to-source variability for 𝑖 is modeled in the 

first stage of a two-stage HBN with an aggregated Poisson likelihood for 𝑖 and a prior gamma 

distribution, (𝑖|𝐸) =  ∬ 1 (𝑖|𝐸,, )3(,  |𝐸)dd  conjugate to Poisson, i.e. mathema-

tically compatible and producing a posterior gamma distribution. In this equation  and  for the 

second stage of the HBN are so-called hyper-parameters assumed to be independent. Given as a 

worst case of no prior information on  and  at all, a uniform distribution representing an 

uninformative hyperprior, but preferably when any information is available with an informative 

hyperprior, for example an expert estimate, the theorem will produce a posterior in  and .  

This posterior will be based too on the evidence of 𝑛 and 𝑡, which instead of fixed values are 

now functions of  and . In the second step for a particular precursor type a predictive density 

for 𝑖 is derived as (𝑖|𝐸) =  ∬ 1 (𝑖|𝐸,, )3(,  |𝐸)dd, in which  is a gamma 

probability distribution, and 𝐸 is evidence. The solutions to the equations are obtained by 

WinBUGS software based on the Markov-Chain Monte-Carlo technique. The result takes account 

of the variability among sources, and by taking data of a specific plant in the sector via a 

conventional Bayesian update the plant specific 𝑖,𝑠𝑝 are found. Also, the aggregate of the posterior 

means, the 𝑖,𝑠𝑝, for each tree sequence yields the IE frequency, while the ratios resolve the branch 

probabilities of the event tree. Given later new evidence, the Bayes theorem can further update the 

rate. If, as usual the case, the same end-state, e.g., a trip, can be reached via different branches of 

the tree a different route has to be followed. On demand the top events are binomial success or 

failure. Their numbers can be derived from the end state ones, while IE is the sum of all numbers. 

Then, the estimator is 𝑝̂𝑗 = 𝑛𝑗/𝑛𝐼𝐸. For binomial distributed variables, the hyper-parameters are 

assumed to be beta-distributed, where beta is conjugate to binomial. The further calculation 

proceeds similarly to the above. The event tree can also be modeled as a Bayesian network. The 

principle has been demonstrated the last few years in a few papers (Yang et al. [12] and [13]; 

Khakzad et al. [14]), which line out further possibilities and applications. 

Uncertainties with respect to possible scenarios, and consequence estimates also deserve 

much attention. If a bowtie is constructed, and even better a Bayesian network using a bowtie as a 

starting point, and input parameter uncertainties are specified, these uncertainties will be 

propagated throughout the network, and the effect on the spread of the risk result can be 

determined. The uncertainties can be specified either, e.g., as variance of truncated normal 

distribution of an input parameter or as a uniform or flat distribution, indicating only an expected 

interval. In fact, uncertainty analysis can be conducted also as sensitivity analysis by finding out 

which variables, parameters, and uncertainties have the largest effect on the final result. 



A considerable number of major accidents occurred according to scenarios that had been 

excluded before as improbable. Usually it is cost of measures that drives the decision and the large 

uncertainty margin of the probability of occurrence. Yet, the larger the potential consequence, the 

lower a failure event probability or frequency of occurrence should be. Nuclear power plants are 

the best-known example. The Fukushima board was warned and knew that in case of high tsunami, 

the reactors would be threatened. So, how can we make good decisions in risk management, or 

rather how to make optimum decisions under uncertainty? Much has been written about the topic 

and methods have been proposed in relation to economics and investment decision. More 

specifically relevant to industrial risk there are rigorous methods applying probabilities, others 

based on approximate reasoning, and finally using only expert knowledge. In all, background 

knowledge and belief play a role. Most rigorous is the Bayesian approach just mentioned, which 

can also make use of subjective probability as input. The latter is the kind of probability one would 

quote when asked how likely it will rain tomorrow. The Bayes model is not biased by preferences, 

and it analyzes evidence from events but not the events themselves. Bayes is the most coherent 

and effective method to analyze information about events, propagate the uncertainties, and support 

evidence based reasoning and decisions with estimated uncertainties. If cost factors are introduced 

in a Bayesian network, the annual average expected loss can be calculated and be part of business 

decision-making. (Pasman and Rogers [15]). 

Less rigorous but still close to Bayesian belief functionality and known for managing 

uncertainty is the Dempster-Shafer method. In fact, the Evidential Reasoning described in Section 

2 is an example of it (Zeng et al. [16]; Nair et al. [6]). The method is about degrees of belief and 

subjective probability and as a method of approximate reasoning that is suited in cases of 

conflicting or confusing evidence when the rigorous Bayesian method does not offer a solution. 

Shafer’s 1976 contribution [17] is to distinguish your subjective probability estimate of how 

reliable an expert is in general, and his/her degree of belief whether a certain event or issue occurs. 

The degree of belief the event/issue does not take place, can be a value smaller than the difference 

of occurrence probability, and can even be set to be zero, meaning only that the expert did not have 

a reason why the event or issue should not occur. The gap between 1 and the sum of both 

probabilities for occur & not occur, is called ignorance, which discerns it from probability theory 

where it is always 0. Occurrence plausibility is 1 minus belief of non-occurrence. Degree of belief 

in evidence is analogous to mass, 𝑚 assigned to probability. Now, there could be related but 

independent evidence in the environment, e.g., amplifying what the expert states, or there is 

another independent expert statement, who even in part may contradict that of the first one. 

Dempster’s 1968 combination rule [18] enables fusing belief functions, e.g., 𝑚1.and 𝑚2, and is 

written as follows: 

𝑚1 ⊕ 𝑚2(𝑍) = (
1

𝐾
) ∑ 𝑚1(𝑋)𝑚2(𝑌);      𝐾 = 1 −  ∑ 𝑚1(𝑋)𝑚2(𝑌)

𝑋⋂𝑌=∅𝑋⋂𝑌=𝑍
 

𝑋⋂𝑌 = 𝑍 includes all those elements that 𝑋 and 𝑌 have in common, while ⊕ means summing 

the products of intersecting terms at the right side of the equation. 𝐾 is a normalization factor and 

has the value 1 for the example that follows below. The new mass represents consensus as it 

consists of the agreement parts of the inputs and not the disagreement ones. A simple example is 

the following. A question is whether in a given plant situation a critical event can occur or not. An 

expert, thought to be highly reliable, estimates it as possible with 75% chance. A second expert, 

also renowned, considering modernization estimates the possibility only 30%. The combination 

rule for Expert 1 OR Expert 2 assuming independence of experts produces 1 - (1 - 0.75)(1 - 0.30) 

= 0.83 degree of support that the event is possible (unity minus the product of the non-assigned 



beliefs of the two experts, that is what they have in common, yields new belief). It can be 

performed with three elements or more, e.g., there had been an accident 20 year ago or not, and 

did the expert know that, but it quickly becomes complicated to formulate the problem correctly. 

In any case, the Dempster-Shafer method can also be used to generate imprecise data, for example, 

for a fault tree analysis (Curcurù et al. [19]). 

Several other methods have been proposed always with inputs from experts to at least obtain 

an expectation. Zadeh’s Fuzzy logic, on which there exists a wealth of literature, with its 

membership functions has been used extensively, but it has the fundamental shortcoming that in 

the last step, the defuzzification to obtain a so-called crisp value, all uncertainty information is 

deleted and an unjustified and illusory feel of certainty can arise. The Analytic Hierarchy Process, 

also much in use, is based on preferences and is not suitable for engineering decision making. 

Hazelrigg [20] explains the reasons.  

Expert elicitation is not a simple matter, and there has been quite some discussion. Bolger and 

Rowe [21] discussed with respect to the classical method, the best way “to calibrate” the experts, 

the problems of unreliability, and the aggregation of expert opinion by weighting, called 

mathematical aggregation, and alternatively behavioral aggregation. In the latter, experts in a 

group with a facilitator attempt in rounds of deliberation and voting to move toward and come to 

a consensus. Cooke [22] with a long-time experience in expert elicitation and Bayesian statistical 

result treatment (see Pasman, Rogers [23]), wrote a critique on the Bolger and Rowe paper. The 

focus of the critique is on the calibration and type of weighting: equal weighting or differential, 

also called performance weighting, of which Cooke is a proponent. (In their response, Bolger and 

Rowe [24] stress that it had been their intention to discuss the advantage of behavioral aggregation 

over equal weighting and not to discuss performance weighting!)  

Petri net is attractive for random, safety critical timing problems, but it is rather effort 

intensive, because the software requires additional detailed programming. 
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Figure 2. Taxonomy of uncertainties according to Cox [25] after an original by Walker et al. 

[26] 

When knowledge is lacking (epistemic) deep uncertainty is most problematic. Cox [25] 

provides guidance with the scheme given in Figure 2. First, a taxonomy of degrees of uncertainty 

and lack of knowledge makes clearer where deep uncertainty starts. If in the setting of a Level 1 

risk management, decisions must be made on alternative risk reducing measures, what Cox calls 

acts, the usual approach is to weigh consequences in (dis-)utility terms against acts, which in the 

end will mean investment. This is called the Subjective Expected Utility, or SEU decision theory. 

The model of the system is defined and validated. In the decision, probability, e.g., due to 

parameter value uncertainty is taken into account besides consequences, act options, and the utility. 

This approach will still work in case of Level 2 uncertainty. 

Table 1. Ten methods for decision making under uncertainty after Cox [25]. From top to bottom 

methods become more rigorous due to increasing uncertainty in depth. 

Method Model generation Optimization/Adaptation Combination 

Expected utility/SEU theory One model specified 
Maximize expected utility (over 

all acts in the choice set, A) 
None 

Multiple priors, models, or 

scenarios; robust control, 

robust decisions 

Identify multiple priors (or 

models, or scenarios, etc.) 

e.g., all models close to a 

reference model (based on 

relative entropy) 

Maximize the return from the 

worst-case model in the 

uncertainty set 

Penalize alternative models 

based on their 

dissimilarity to a 

reference model 

Robust optimization 

Use decisionmaker's risk 

attitude, represented by a 

coherent risk measure, to 

define the uncertainty set 

Optimize objective function 

while satisfying constraints, 

for all members of uncertainty 

set 

None 

Average models 
Use multiple predictive (e.g., 

forecasting) models 
None 

Simple average or weighted 

majority 

Resampling 

Create many random subsets 

of original data and fit a 

model to each 

Fit models using standard (e.g., 

least squares, maximum 

likelihood) statistical criteria 

Create empirical distribution 

of estimates 

Adaptive boosting (Adaboost) 
Iteratively update training data 

set and fit new model 

Reweight past models based on 

predictive accuracy 

Use weights to combine 

models 

Bayesian model averaging 

(BMA) 

Include all models that are 

consistent with data based 

on likelihood 

Condition model probabilities on 

data 

Weight models by their 

estimated probabilities 

Low-regret online decisions 

Set of experts, models, 

scenarios, etc. is given, 

{M1, M2,…., Mn} 

Reduce weights of models that 

make mistakes 

Weighted majority or 

selection probability 

Reinforcement learning (RL) 

for MDPPs: UCRL2 

Uncertainty set consists of 

confidence region around 

empirical values 

Approximately solve Bellman 

equations1) for most optimistic 

model in uncertainty set to 

determine next policy 

Update from episode to 

episode based on new 

data 



Model-free reinforcement 

learning (RL) for MDPs: 

SARA 

No model used (model-free 

learning) 

Approximately solve Bellman 

equations1) for unknown 

model 

Update value estimates & 

policies based on new 

data 

1) Bellman dynamic programming equation is optimization by dynamic programming for solving a complex 

problem by breaking it down into a collection of simpler subproblems and storing solutions. 

 

However, if model uncertainties arise, Cox identified obstacles that will hamper applying 

SEU. Model and model parameter uncertainty will cause uncertainty about what acts are best, 

because consequences, scenario probabilities, utility parameter values, and preferences are 

uncertain. For these cases of deep uncertainty Cox discusses ten tools, which may lead to better 

understanding and decision making even when the risk model is uncertain. The ten tools of so-

called robust risk analysis are summarized in a table, here reproduced as Table 1, and from the top 

towards the bottom suited for Level 1 to Level 4 uncertainty. Robust risk analysis means that based 

on available knowledge and data a number of models/scenarios is generated, which shall be 

improved and optimized as far as possible and then in some way combined. Such a combination 

can be performed according to a combination rule: weighting or voting. In Cox [25] each method 

is discussed in more detail and a few examples are presented of general nature risks, such as climate 

change. 

 

 

Figure 3. KUUUB factor example adapted from Fenton and Neil [27]. 



Not the same as the Bayesian model mentioned in Table 1 but related, is the Bayesian network 

method based on estimates of ‘knowns’ and more or less ‘unknowns’, called the KUUUB factor 

described by Fenton and Neil [27], see Figure 3. KUUUB is an acronym for Known-Unknown, 

Unknown-Unknown, and Bias. An adapted example is a company, in which the financial losses 

due to undesired risk events of an activity A for the current year are not precisely known yet, but 

are estimated as a truncated normal distribution with mean 20 and variance 10. It is asked to make 

an estimate for next year’s budget in view of two new activities, B and C. Hence, there are three 

risk scenarios, called Key Risk Indicators (KRIs). These are expressed as probability of degrees of 

improvement or of degradation trend on a 7-point scale. KRI A is the known product line with 

existing risk (weight 2.5); KRI B is an identical line manufacturing a new product with different 

hazardous properties (weight 1.8) and KRI C is a new high hazard plant (weight 1.0). The 

distribution of KRI C is conditional on the precursor indicators of a previous test run. By 

multiplying the weighted mean distribution estimate, 𝐸, of the three KRI trend scenarios with a 

Delta distribution, , a KUUUB adjusted estimate is obtained: 𝐾𝐵 =   ∙ 𝐸.  Delta parameter-

values expressing degrees of uncertainty are conditional on each trend qualification according to 

Table 2. The parameters are selected based on experienced expert judgment. The crux is that Delta 

is partitioned per trend qualification from major improvement to major degradation. Each partition 

is modeled as a truncated normal distribution (TND) with mean, variance, upper and lower bound. 

If there is no change the  -value collapses to unity (or zero for variance). The compound Delta 

emerges as a distribution as shown in Figure 3.  

Table 2. Delta truncated normal distribution (TND) parameter values conditional on trends  

Trends  \  TND 

parameters: Mean Variance Lower Upper 

Major improvement 0.1 0.2 0.1 1 

Substantial improvement 0.5 0.1 0.1 1 

Improvement  0.7 0.1 0.1 1 

No change  1 0 1 1 

Degradation  2 4 1 10 

Substantial degradation 5 4 1 10 

Major 

degradation  8 2 1 10 

 

The KUUUB adjusted projected loss distribution is less steep than the current losses, because 

due to uncertain degradation significant probability density mass is drawn into a long uncertainty 

tail increasing probability of unexpected upsets and greater losses! The indicator node represents 

aggregated indicators of interdependent socio-technical characteristics, such as emergent behavior 

and organization resilience, which correspond to changes in thickness of the uncertainty tail. When 

organization resilience is increased, such as by strengthening the safety culture, the uncertainty tail 

becomes progressively thinner and low frequency-high consequence events become less likely. 

The KUUUB model uncertainty tail can therefore be considered a high-level indicator for the 

viability of the socio-technical organization.  

4. Practical measures to validate risk assessment, and to increase confidence 

A first possible practical measure is validation of models. Initiated in Europe, 2015, the 

project SAPHEDRA aims to evaluate and validate consequence models to be used in risk 



assessment. For an overview of projects and partners, see SAPHEDRA [28]. Meanwhile, the 

number of work packages of example applications has been increased to seven. Model evaluation 

protocols for consequence models should follow an established structure of pre-evaluation tasks, 

scientific assessment, user-oriented assessment, verification (checking computer implementation 

of the model), validation (comparison with experimental results), sensitivity and uncertainty 

analysis, and post evaluation tasks. A first result regarding gas/vapor dispersion models was 

published in SAPHEDRA HSE [29]. The investigation has reviewed various existing protocols 

and written recommendations for the structure of a future protocol. 

A second effort would be to follow-up the maturity model developed in 2014 by Rae et al. 

[30]. These authors consider Quantitative Risk Assessment (QRA) to be an engineering method, 

which means QRA must be evaluated by scientific methods that include being judged on its 

usefulness and cost effectiveness. For being true the latter demands that an expensive, elaborate, 

time-consuming QRA shall lead to safer systems with fewer and less costly upsets. This can be 

turned around: if QRA could be trusted, the safety of a system can be judged. The aim of 

developing the maturity model is to have guidance to discern an acceptably good QRA from a bad 

QRA. To make the distinction Rae et al. [30] analyzed a large variety of possible flaws in a QRA. 

They classified QRA flaws in four levels, followed by a further extensive breakdown of numbered 

flaws in tables and discussed in special sections. The content of the tables will be briefly 

summarized here: 

Level 1 - Unrepeatable: the record/report/description/documentation is incomplete, and it is not 

possible to reconstruct the assessment. This appears as failure to describe adequately source 

material, uncertainties, scope, and objectives/evaluation criteria, methods applied, while 

conclusions and recommendations are ambiguous, incomplete, and when required, are not 

quantified. 

Level 2 - Invalid: the effects of flaws in the assessment are larger than the underlying uncertainties 

in the events investigated, hence “the noise is larger than the signal”. This flaw is with respect 

to the source data and assumptions. Data can be flawed or available data are not used. In 

identifying scenarios, external effects, human, organizational, and software failures are not 

considered. This holds too for non-normal operations, while causal pathways analyzed are 

incomplete. Further, there is mismatch between assessment and reality, e.g., by wrong 

assumptions, incorrect application of models and data, and lack of internal consistency of 

assumptions and models. Then, in the evaluation of results acceptance criteria, such as ALARP, 

are not correctly applied, costs are not correctly calculated, and alternatives are not considered. 

Conclusions can be misleading and limitations and uncertainties are not reported. Overall, the 

analysis is not well conducted: stakeholders and experts may not have been consulted, results 

may be unrealistic or even worked to an acceptable result, there was no peer review, and the 

analysis was performed on the wrong issue. 

Level 3 – Valid but inaccurate: Rigor in selecting data is insufficient: available generic and specific 

data of better quality have not been used, selection and rejection rules/considerations have not 

been described; historical data were used without scrutiny of applicability, human and software 

errors estimates were wrongly determined, expert elicitation was not according strict procedure. 

Next, are various kinds of errors in applying the models, the use of probabilistics, and 

performing the calculations. Uncertainties have been given insufficient attention, uncertainties 

have been inadequately characterized or were not well expressed. Conclusions and 



recommendations are inadequately discussed in view of context, assumptions, model, and data 

limitations. 

Level 4 – Accurate but challengeable: A risk assessment to be tested is in the first place with 

respect to disputable data sources, their selection, relative weights, extrapolation, and 

interpretation. To be insufficient in scientific knowledge on a large variety of aspects, such as 

assumptions, failure/damage mechanisms, uncertainties of observations, and lacking in scope 

of existing studies compared to what is needed. 

Exceeding level 4 one would achieve an ideal assessment. The maturity model was tested by 

the authors for completeness by searching literature on errors in risk assessments, further by 

checking nine peer reviews from different sources involving very different risks, and by their own 

experience. Realism was tested by making an inventory of the flaws identified in the peer reviews 

demonstrating that each flaw occurs. Appropriateness was verified by investigating that flaws at 

level 1 will effectuate that checking flaws at level 2 does not make sense anymore, etc. At the 

higher levels, an experienced analyst can still make use of the results in a limited way. The maturity 

models can be used also as a roadmap for research on improvement. 

 

Figure 4. Lathrop and Ezell [31] representation of activities in the three domains of risk 

analysts, their professional community and the risk assessment users. The highlighting of the 

boxes of Culture of Analyst Quality and Third-Party Review is by the present authors, because 

these elements are considered as most essential in the whole process. 



 

Figure 5. The risk assessment and decision-making process according to the International 

Risk Governance Council (IRGC, 2005 [32]) with at the right-hand side the risk appraisal part 

starting with the analysis and separately at the left-hand side the management/decision-making 

part, but all connected through communication.  

As a third practical measure once a study is finished, the risk assessment (RA) report should 

be scrutinized and commented by an independent expert organization for a peer review, and given 

a second opinion on recommendations. Recently, Lathrop and Ezell [31] made a strong plea for 

such a step and presented a flow scheme of the assessment process, as shown in Figure 4. They 

also proposed tests for the various elements and described possible shortfalls. On a detail level, 

the above maturity model of Rae et al. [30] can serve as guidance to locate flaws. However, as we 

can learn from the experiences with the ‘safety case’ result assurances described in Section 2, 

nothing can be guaranteed; it is only that credibility can be increased.  

As a final measure, the recommendations of the International Risk Governance Council 

(IRGC) [31] for the assessment and decision-making process of high-risk projects should be 

remembered and applied, see Figure 5. These require from the start good communication among 

all stakeholders, and within a Risk Governance program just as Lathrop and Ezell [31] based on 

their experience recommend, strict separation of the analyst from the decision maker to reduce 

bias and encourage deliberation of all relevant information. 

Based on all of the above it is clear that conducting a risk assessment study by itself is only 

half the work, determining confidence limits and building trustworthiness cost at least the same 

amount of effort.  



5. Conclusions 

a. Study results of assessing high consequence-low probability risk of process plant 

installations containing hazardous materials quantitatively suffers commonly from large 

uncertainties that are not generally being modeled and managed. 

b. Trustworthiness and appropriateness arguments can be developed according to the 

approach shown for ‘safety cases’ following the Goal Structuring Notation and evidential 

reasoning method as proposed by Nair et al. [6], although this approach cannot result in an 

absolute guarantee.  

c. Several methods are available to derive failure probabilities given a certain amount of 

evidence. Based on precursor frequency evidence and an event tree, Bayesian methods may 

produce the best estimates of rare event frequencies. A spectrum of alternative methods is 

available to tackle in particular epistemic uncertainty for deep uncertainty cases in which 

knowledge exists. 

d. A few practical measures are summarized to obtain more confidence in risk assessment 

results: For consequence models work is being continued to develop an evaluation 

protocol. According to the work of Rae et al. [30], the RA maturity model gives guidance 

on what kind of flaws can be found in a risk assessment. Further, a peer review can support 

confidence in a RA, while another measure to reduce confirmation bias is to separate 

analyst and decision maker. 

e. Performing a risk assessment is only half the work; determining limits of confidence and 

building trustworthiness arguments is the other half. However, result reliability of a QRA 

is never 1, and the actual value of the reliability in fact unknown, even in case confidence 

limits are provided. Yet, a risk assessment is worthwhile to identify the physical possibility 

of an event with large undesirable consequence, so that decision can be made and 

communicated whether the risk needs to be reduced and how this can be done best. 
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APPENDIX 

Comparison of a conventional frequentist and the Bayesian statistical methods to 

determine failure frequency of, e.g., a pump based on scarce evidence 

Frequentist statistics:  

Suppose a stand-by pump fails 𝑡 = 2 times out of 𝑛 = 10 activations, hence by relative 

frequency of occurrence, mean failure chance estimator 𝑝̂ = 2/10 = 0.2. Assuming binomial failure 

behavior the 𝐹-cumulative distribution function 𝑝𝑙 = {1 + (𝑛 − 𝑡 + 1) 𝑡−1𝐹1−𝛼/2 [2𝑛 − 2𝑡 +

2; 2𝑡]}−1 and 𝑝𝑢 = {1 + (𝑛 − 𝑡){(𝑡 + 1)𝐹1−𝛼/2 [2𝑡 + 2; 2𝑛 − 2𝑡]}−1}−1 , can be applied to calculate 

the lower and upper probability values with 1−𝛼 is interval of, e.g., 90% and 𝐹[𝑓1; 𝑓2] being the 

cumulative 𝐹-distribution with degrees of freedom 𝑓1 nominator, and 𝑓2 denominator, see e.g., 

Modarres et al. [33]. This way the 90% confidence failure limits are found as Pr(0.037 ≤ 0.2 ≤ 

0.51) = 0.9. 

With more observations, the epistemic uncertainty will be reduced and the confidence interval 

will narrow down. 

The Bayesian approach makes use of all information available; subjective or just an estimate, 

and this background knowledge is applied as a prior distribution ℎ(𝑥). However, as in this case 

this knowledge is blank, so ℎ(𝑥) is represented uninformatively by a uniform prior (0, 1) 

distribution, which is equal to a beta(,  ) -distribution with  =  = 1 and mean = /( + ) = 

½. A beta-distribution is a continuous distribution of the probability of a component being intact 

or failed, while it is also conjugate to a binomial distribution. The observed data, 𝑡 = 2 failures out 

of 𝑛 = 10 activations, is a binomial likelihood function 𝑙(𝑡|𝑥).  

The Bayes theorem, which in principle is just 𝑃(𝐴|𝐵)  =  𝑃(𝐵|𝐴) · 𝑃(𝐴)/𝑃(𝐵), with a 

binomial likelihood function and a beta prior distribution produces an updated 𝑥 as a posterior 

beta-distribution: 𝑓(𝑥|𝑡) =
𝑙(𝑡|𝑥)·ℎ(𝑥)

∫ 𝑙(𝑡|𝑥)·ℎ(𝑥)𝑑𝑥
∞

−∞

 . 

http://www.industrialsafety-tp.org/filehandler.ashx?file=14395
http://dx.doi.org/10.1016/j.ssci.2017.04.006
http://www.irgc.org/


Leaving out the constants in the distribution equations, the nominator in the above equation 

can be written as proportional to: 

 𝑥𝑡(1 − 𝑥)𝑛−𝑡𝑥−1(1 − 𝑥)−1 =   𝑥𝑡+−1(1 − 𝑥)𝑛−𝑡+−1. 

The terms at the right side of the equation represent the posterior beta-distribution. In that 

case, applying the equation for the mean of a beta distribution, the point Bayesian estimate is: 

𝑝𝐵 = (𝑡 + )/(𝑡 +  + 𝑛 − 𝑡 + ) , or with  and  = 1, it is (2+1)/(1+10+1) = 0.25. The 

90% Bayesian credible interval can now be calculated making use of the cumulative beta-

distribution as: Pr(𝑝 < 𝑝𝑙) = 𝐼𝑝𝑙
(𝑡 + 1, 𝑛 − 𝑡 + 1) =

𝛼

2
 and Pr(𝑝 > 𝑝𝑢) = 𝐼𝑝𝑢

(𝑡 + 1, 𝑛 − 𝑡 +

1) = 1 −
𝛼

2
 , in which  𝐼 is the cumulative distribution function (cdf) of the beta distribution that 

can be calculated easily using MS Excel. This results in Pr(0.078  0.25  0.47) = 0.9, which is 

narrower but still close to the frequentist confidence interval.  

However, if we have background information, e.g., about similar pumps, but another brand, 

or from the same brand but a different population not allowed to include in the classical statistics, 

this can be used in the Bayesian approach. Suppose in this group 15 failed out-of-100. Assume 

now again a beta-distribution prior, then with a binomial likelihood function 𝑝𝐵 = 

(2+15+1)/(1+10+100+1) = 0.16; and the 90% credible interval  is Pr(0.10  0.16  0.21) = 0.9. 

This range is much narrower than the ones before and lies within the limits found previously. 

 


