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Abstract 

 

Most of the current research in flame propagation and deflagration-to-detonation transition (DDT), 

including large and small-scale experiments, have analyzed the influence of obstacles uniformly 

distributed on the explosion severity. These uniform conditions are characterized by constant 

obstacle spacing, shape and blockage ratio (BR), and may not represent very well the layout of 

actual industrial facilities. Therefore, the objective of this study was to investigate the effects of 

varied BR in the peak overpressure and flame acceleration. A systematic analysis was conducted 

by varying layout parameters on a regular basis to examine what conditions favor the highest 

overpressure and minimal run-up distance when DDT is observed. Experiments were performed 

in a closed pipe with 38 mm internal diameter and an overall length to diameter ratio (L/D) equal 

to 73. The arrangement between two obstacles in the test vessel was varied in terms of blockage 

ratio (increasing, decreasing and equal) and obstacle distance (1D, 2D, and 3D). From the 

conditions tested, the increasing blockage ratio has a more significant impact on the overall 

maximum pressure and the DDT run-up distance. 
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1. Introduction  

 

Understanding flame propagation and explosion characteristics of flammable mixtures is 

crucial for industrial explosion protection of power plants and chemical plants. From the practical 

point of view, safety professionals work towards estimating flame speeds and maximum 

overpressure build-up for a wide range of industrial releases scenarios. This information 
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is later used to support safety design decisions and protective measure specifications. Defining the 

entire spectrum of plausible scenarios is not a straightforward task, it must address all affecting 

parameters including release locations, mixture concentration, the volume of flammable cloud, 

equipment density and disposition, and ignition position. This problem can be simplified by 

identifying and ranking conditions that are likely to lead to more severe explosion cases.  

 

For several years it has been known that the presence of obstructions can give rise to substantial 

overpressure during combustion of premixed flammable gases[1, 2] . Therefore, researchers have 

proposed empirical correlations[3, 4] and numerical codes [5-7] to account for obstruction 

characteristics (equipment density and spacing) during explosion modeling analysis. Despite their 

usefulness, the majority of these methods were validated against uniform obstruction conditions 

that were far from the non-ideality encountered in industrial facilities. Such uniformity can be 

characterized by multiple obstacles with similar shapes and blockage ratio, distributed at equally 

spacing inside a combustion chamber, and may not be very representative on the actual industrial 

facilities layout.  

 

To put into perspective, the authors created an obstacle complexity index (OCI) that can be 

estimated based on four factors: obstacle shape, BR, obstacle spacing, and uniformity. The 

following expression can be used to quantify OCI:  

 

𝑂𝐶𝐼 =∏𝐹𝑖

4

𝑖=1

 

  

Where  

𝐹𝑖 = [1,3] 
 

Table 1. Value for obstacle factor (𝐹𝑖 ) based on test conditions. 

Factor Value  

(𝑭𝒊) 
  

Obstacle  

Shape  

  

Obstacle  

Spacing  
Blockage 

 Ratio  
Number of 

different obstacles  

1  
Tests 

without obstacles  

Tests 

without obstacles  

Tests 

without obstacles  

Tests 

without obstacles  

2  

Round obstacles 

(orifice plates and 

cylinders)  

Tests with equally 

spaced obstacles  
Continuous BR  At least 2  

3  
Obstructions 

with sharp edges  

Tests with varied 

obstacle spacing  
Varied BR  More than 2  

  

 

Table 1 contains more detail on each factor value. Figure 1 shows the relationship between 

the flammable mixture volume and OCI of experiments listed in the literature. It can be observed 

that most of the industrial explosions are located in the upper-right quadrant, which represents the 

high complexity and large volume region; whereas the majority of the work on the literature are 

placed on the lower quadrants, including small and large volume regions with the exception of 



limited tests with propane and methane mixtures[8, 9]. In the later cases, authors analyzed the 

efficiency of venting panels on explosion mitigation inside obstructed enclosures simulating 

offshore installations. Although insightful observations on the effects of obstacle congestion in 

large-scale tests were obtained, only three distinct sets of layout displacement were studied giving 

limited conclusions on the influence of obstacle orientation and geometry.   
 

The round points in red represent the capabilities of the current facility based on previous works 

[10, 11]. Even though the mixture volume is considerably lower than the ones experienced during 

an industrial explosion, our aim to towards understanding in more detail how 

obstacle characteristic play a role in turbulent combustion propagation and detonation onset. For 

that purpose, it is fundamental to conduct experiments in a controllable test environment. The data 

generated by this work can be used for validation purposes of current numerical models.   

 

 
Figure 1. Variation of obstacle complexity index with flammable mixture volume 

2. Experimental Details   

Experiments were carried out in a horizontal tube with a length of 2.77 m and a 38-mm internal 

diameter, as shown in Figure 2. The tube is closed at both ends, and ignition was via a low-voltage, 

automotive glow plug operated at 10 A positioned centrally at the left-endplate. An 

expansion volume is located at the end-wall opposed to the ignition point, enabling the use of 

multiple spacers with different widths. A spacer with 25.4-mm width was maintained during all 
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tests to minimize disturbances from reflected shocks propagating ahead of the flame. The pressure 

was recorded at seven different locations along the tube (P1 to P7) using piezoelectric pressure 

transducers, PCB 113B22, with a measurement range of 34.5 MPa, a rise time smaller than 1 μs, 

and a resonance frequency ≥ 500 kHz. Data were recorded using a PC oscilloscope board 

(GaGeScope) at a sampling rate of 1 MS/s.  

 

 

 
Figure 2. Schematic of the detonation tube utilized during experiments (left side) and the expansion 

volume located at endwall (right side) 

 

All tests were conducted at ambient temperature, roughly 20°C. Stochiometric hydrogen/oxygen 

mixtures were prepared by the method of partial pressures in a separate mixing tank and left 

overnight. Two ring-shaped obstacles with 5-mm thickness were used during each test, with the 

first obstacle fixed at a distance of 80 mm from the ignition point. The arrangement between 

obstructions in the test vessel was changed in terms of blockage ratio (increasing, decreasing, and 

equivalent) and obstacle separation distance (38, 76, and 114 mm). Table 2 summarizes all 

conditions tested in this study. A full factorial design was conducted, resulting in 27 different 

experimental conditions. Each experimental condition was repeated at least three times.  Figure 3 

depicts obstacle shapes and displacement inside the tube during experiments.   
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Table 2. Summary of Experimental Conditions 

Variable 

  
Level 1 

  

Level 2  Level 3 

1st Obstacle BR  25% 40% 80% 

2nd Obstacle BR 25% 40% 80% 

Obstacle Spacing  38 mm  76 mm  114 mm  

  

 

Figure 3. Illustration of the obstacles inserted inside the detonation tube. 

3. Results and Discussion 
 

3.1. Facility Characterization  
 

A facility characterization study was performed with the tube emptied to analyze flame 

propagation without the presence of obstacles at initial pressure ranging from 30 to 300 Torr. 

Figure 4 shows the variation of the maximum shock wave speed (on the left) and the DDT time 

(on the right) with initial pressure. It can be observed that mixtures with initial pressure above 60 

Torr experienced DDT whereas mixtures below 50 Torr did not ignite. Another interesting 

observation is the reduction in time when DDT was first identified in the facility – DDT time.   

 

Figure 5 and 6 depict the overpressure profile with time along the tube at 50 and 150 Torr, 

respectively. Both cases experienced  a leading shock wave traveling toward the right-end plate 

are observed, indicating an initial flame acceleration. For 150 Torr, a rapid transition to detonation 

takes place in the second half of the tube (between P10 and P13) creating overpressures around 4 

bars. At 50 Torr (Figure 5), the precursor shock velocity remained above the sound speed at the 

reactants (540 m/s) but below the sonic velocity on the combustion products (~1,000 m/s). This is 

the characteristics of the “choke regime” [12]. Although flame arrival time was not measured 

directly, it can be inferred from the leading shock velocity profile that flame speed was near the 

local sound speed. The increase in shock velocity in the first half of the tube indicates that a flame 

front is propagating jointly behind the pressure front, forming a flame-shock structure.   

80mm 

190mm 

Spacing  

P1 

Obstacle geometries  

BR=80%  BR=40%  BR=25% 

Obstacle displacement  



 

Figure 4. Variation of the maximum shock wave speed (on the left) and the DDT time (on the 

right) with initial pressure. 

 

Figure 5. Pressure results obtained for a stoichiometric hydrogen-oxygen mixture initially at 50 

Torr and with the tube emptied. Pressure is normalized by side-on pressure measured (MPa) 

multiplied by 50 and added the pressure sensor distance (m). 

 

On the other hand, the mixture initially at 150 Torr demonstrates an entirely different behavior. 

An early acceleration creates a series of sonic waves traveling towards the right-endplate. Then, a 

rapid transition to detonation takes place in the second half of the tube (between P10 and P13). 

Even though DDT was not expected given the size of the internal tube diameter, the preceding 

waves increase the initial temperature of reactant mixture, increasing the reactivity of the mixture 

and propensity to detonation onset. 
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Figure 6. Pressure results obtained for a stoichiometric hydrogen-oxygen mixture initially at 150 

Torr and with the tube emptied. Pressure is normalized by side-on pressure measured (MPa) 

multiplied by 2 and added the pressure sensor distance (m). 

The facility characterization study showed that fast deflagrations and DDT are observed at the 

current set-up, The next section contains the results for the mixture at 150 Torr. Experiments with 

50 and 100 Torr were completed, but at the current stage data analysis is still in progress and, 

therefore, will not be shown in this report.   

3.2. Results for H2 + O2 mixtures at 150 Torr  

After confirming that DDT is possible even with the absence of obstacles, experiments were 

carried out to investigate the effects of varied blockage on the explosion characteristics. As 

expected, deflagration-to-detonation transition was observed in all 27 experimental cases, but at 

different locations. Figure 7 shows the variation of maximum overpressure at the first sensor (P1) 

with average BR. Similar to the uniform condition case, Pmax increases as averaged BR changes 

from 0 to 60 %, most likely due to higher turbulence intensities. Then as BR changes to 80%, 

momentum losses become significant leading to a reduction in  Pmax. One interesting observation 

is for the case of 40%-80% BR separated at 76 mm (2 internal diameters), in which detonation 

occurred before P1, reducing the run-up distance considerably. A possible explanation for the early 

detonation onset can be the reflection of the shock induced by the obstacle in the confinement wall 

as reported by Obara et al. [13]. Another reason could be the accumulation of multiple Mach stems 

generated by local explosions triggered by turbulent jet combustion near the confinement walls; 

this accumulation process creates stronger shocks that can trigger a detonation in hot-spots via 

shock focusing [14].  Currently, the absence of optical windows limits our ability for a detailed 

understanding of mechanisms behind detonation onset for this particular case.  However, this 

behavior is very intriguing given that DDT was achieved using only two obstacles.  
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Figure 7. Variation of maximum overpressure with average BR at first pressure sensor (P1) in the 

wake of second obstacle. 

 

In overall, four general propagation behaviors were identified (see Fig. 8) based on the time 

between the leading wave and the onset of DDT. In case I, a preceding wave continuously 

accelerates until it reaches a final speed near the Chapman-Jouguet detonation. This case can be 

further divided into two, I-A and I-B. The former, as mentioned earlier, consists of a strong shock 

that is created in the wake of the second obstacle and is detected early by sensor P1 or P3 located 

at 190 mm and 460 mm from the 1st obstacle, respectively. Since the detonation onset occurs 

earlier, there is no sign of retonation propagating backward towards the ignition point. In the case 

of I-B, DTT takes place within the second half of the tube near the leading shock front. For 

combustion type II, a shock wave is formed and accelerated up to speeds of 1500 m/s in the first 

half of the tube and later decelerated to final speeds around 800 m/s towards the closed end. The 

leading wave is not strong enough to ignite the mixture via shock compression and, as a result, the 

onset of DDT takes places after it passes. This behavior is typical for conditions when detonation 

onset occurs on the turbulent flame brush [15].  Case III is very similar to case II; however, in Case 

III, two major pressure waves are observed before the transition to detonation.  The fact that the 

second pressure front is accelerating indicates that a flame-shock structure is formed and that 

detonation takes place after the flame passes. Gaathaug et al. [14] reported a similar phenomenon 

that was caused due to shock accumulation resulting from multiple local explosions.  In case IV, 

on the other hand, numerous pressure waves are formed and travel near the sonic velocity in the 

medium; this indicates a slow flame acceleration followed by a sudden transition that takes place 

towards the end of the tube.  
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Figure 8. Representation of the four different types of combustion propagation behaviors 

identified. 

Table 3 summarizes the predominant propagation behavior for each condition tested. The most 

robust combustion regime (Case I) occurred for obstructions with a higher blockage in the second 

obstacle (80-80, 40-80, and 25-80). It is reasonable to assume that narrower obstruction gaps may 

generate faster and stronger shocks as the flame front passes the solid obstruction. This strong 

shock can ultimately lead to detonation onset. Another important aspect is the distance between 

the obstacle and the ignition point — longer spacing results in faster flames before reaching the 

obstacle surface.  For instance, cases with higher BR closer to ignition (80-40 and 80-25) resulted 

mostly combustion type III, in which leading shock front was significantly lower.   

Table 3. Summary of prevailing propagation conditions for obstacle characteristic 

  Obstacle Spacing  

Blockage 

Distribution 

Average 

ABR 
1D 2D 3D 

80-80 80% II I-B I-B 

80-40 60% III III I-B 

40-80 60% II I-A I-A 

80-25 53% III III III 

25-80 53% I-B I-B I-B 

40-40 40% III II II 

40-25 33% III III II 
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25-40 33% II III III 

25-25 25% III II III 

No obstacle  0% IV IV IV 

 

Another interesting observation is that obstacle pairs with the same average blockage ratio resulted 

in distinct combustion characteristics, especially when BR variation was more abrupt. For instance, 

comparing the results from the obstacle pair 40-80 with its equivalent on average blockage (but 

transposed), 80-40, one may observe that the increasing obstruction leads to a stable detonation 

within the first three sensors (see Figure 9). Conversely, in the decreasing blockage case, DDT 

takes place mostly within the second half of the tube (after P4), and it is preceded by two major 

pressure waves. Similar conclusions were obtained for obstacle pairs 80-25 and 25-80.  Contrarily, 

obstacle pairs with smoothers changes in BR (40-25, 25-40) in general did not demonstrate 

significant differences in behavior.  

 

Figure 9. Comparison between obstacle pairs with an equivalent average blockage ratio. 

Based on this study, we can conclude that the obstacle order does affect flame propagation and 

explosion severity for such high sensitivity mixture. This effect is more significant when a high 

degree of obstruction is present. For instance, for the 60% average BR case, the run-up distance 

was much shorter when 80% BR obstacle was locater after the 40% BR obstacle. Conversely, 

switching the obstruction displacement to 80-40 lead to longer run-up distances. This indicates 

that obstruction geometry should be considered when more than one obstruction shape is present 

and that looking only at the average BR may lead to underestimated results. The authors 

acknowledge that this is a preliminary result and further analysis will be conducted to investigate 

the isolated impact of obstacles with varied BR and similar shapes as well as obstacles with distinct 

shapes but identical BR.  
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4. Concluding Remarks 

Experiments on flame propagation and DDT were carried out in stoichiometric, premixed 

hydrogen-oxygen mixtures at 150 Torr in a closed tube with two obstacles of varying 

configuration. Round-shaped obstacles with three different blockages (25%, 40%, and 80%) were 

used, and the arrangement between the obstacles was changed in terms of blockage distribution 

(increasing, decreasing, and equivalent) and obstacle distance (1D, 2D, and 3D). Four distinct 

propagation behaviors were identified based on the time between the leading wave and the onset 

of DDT. From the conditions tested, obstacle pairs with a higher blockage in the second obstruction 

lead to strong combustion. It was observed that obstructions with equivalent blockage resulted in 

distinct propagation characteristics and explosion strength. This study is still in progress, and 

additional experiments will be conducted to understand the mechanisms underlining these different 

behaviors. 
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