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Abstract 

 

The Process Industry has an established practice of crediting IPLs (Independent Protection Layers) 

to meet risk reduction targets as part of LOPA (Layer of Protection Analysis) studies.  Often the 

risk targets are calculated to be on the order of 1E-4 per year or lower.  Achieving the risk target 

on paper is one thing, but what is missing from the LOPA calculation is a statement of the 

confidence in the result.  LOPA is an order-of-magnitude method, however, this only reflects the 

tolerance of error, not the tolerance of uncertainty.  It is often stated that LOPA uses generic credits 

that are conservative, thereby implying the LOPA result should be conservative.  By itself this 

statement is dubious because the generic data used in LOPA did not originate from the facility for 

which the statistical inferences are being made (which for frequentist-based statistics makes the 

inference invalid).  Worse, when conservative credits are multiplied together to produce a rare-

event number, does the conservative property emerge from the combination? 

There is no way to answer this question without performing IPL Validation (i.e., ensuring the IPL 

will function when needed).  However, IPL Validation and related Safety Life-cycle methods (e.g. 

functional safety assessments and cyber-security audits related to barrier integrity) are purely 

qualitative and have no apparent relation to the quantitative risk target.  There is a need therefore, 

to bridge the qualitative results of IPL validation with the quantitative result of the associated 

LOPA calculation, as a way to establish a site-specific confidence level in the risk target we are 

trying to achieve. 

This is where Bayes’ Theorem comes in.  Bayes’ Theorem is an epistemological statement of 

knowledge, versus a statement of proportions and relative frequencies.  It is therefore a method 

that can bridge qualitative knowledge with the rare-event numbers that are intended to represent 

that knowledge. 

Bayes’ Theorem is sorely missing from the toolbox of Process Safety practitioners.  This paper 

will introduce Bayes’ Theorem to the reader and discuss the reasons and applications for using 
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Bayes in Process Safety related to IPLs and LOPA.  While intended to be introductory (to not 

discourage potential users), this paper will describe simple ExcelTM based Bayesian calculations 

that the practitioner can begin to use immediately to address issues such as uncertainty, 

establishing confidence intervals, properly evaluating LOPA gaps, and incorporating site specific 

data, all related to IPLs and barriers used to meet LOPA targets. 
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Disclaimer 

The following paper is provided for educational purposes. While the authors have attempted to 

describe the material contained herein as accurately as possible, it must be understood that 

variables in any given application or specification can and will affect the choice of the engineering 

solution for that scenario. All necessary factors must be taken into consideration when designing 

hazard mitigation for any application. aeSolutions and the authors of this paper make no warranty 

of any kind and shall not be liable in any event for incidental or consequential damages in 

connection with the application of this document. 

 

1 Introduction 

If probability is a measure of uncertainty, then inference is used to make a statement of how 

accurate that probability is.  Statistics is the tool by which we make inferences.  Of course, an 

inference itself is subject to the same kind of analysis concerning its accuracy.  And this is how 

we arrive at different kinds of statistics, namely, Frequentist and Bayesian. 

That there exist different kinds of statistics may come as a surprise to many Process Safety 

practitioners, as most of us have never given much thought to the inferences implied in the numbers 

we use.  We excel as Probability Calculators.  This paper is asking you to become a Probability 

Thinker, which is much more important. 

We use many numbers in Process Safety associated with predicting the likelihood of catastrophic 

events (e.g., failure rates, demand rates, incident rates, probability of failure, probability of 

ignition, etc.).  Very rarely do we think about how good (i.e., trustworthy) the numbers are. 

The LOPA calculation presents a unique case in statistical inference.  It is neither practical nor 

ethical to determine rare event frequencies of catastrophic accidents by experiment [1].  Instead, 

the rare event frequency must be inferred.  And it is actually worse than this, because several 

inferences must be made to arrive at the calculated LOPA number (i.e., each of the individual 

probabilities of failure are themselves an inference).  And it is actually still worse than this, because 

the data I am using for the inferences are not from my plant.  In this paper, I am interested in my 

own situation, not everyone else’s. 

This paper takes the position that Bayesian inference is the correct statistical tool to use for making 

process safety decisions regarding catastrophic rare events in my plant.  It is the most consistent 

and rational method to update current beliefs about safe operation, as new data and evidence 



trickles in.  It is the best we can do in a complex changing operating environment, where we can’t 

afford to wait even 10 years to gather enough data to use Frequentist based methods. 

There is one more question to answer before we get started.  Does any of this matter?  In other 

words, why do we need a different type of statistics to describe the rare event frequency?  There 

is a simple answer.  An inference on the LOPA number for a given rare event is one of the most 

(arguably the most) important Leading Indicator in your plant.  On paper, calculated with generic 

data, the LOPA calculation is “only the starting point” (as someone once brilliantly but unwittingly 

said).  Paired with Bayes’ methods, the LOPA inference is the best plant-specific statement of how 

safely you are operating with respect to that potential hazard. 

 

2 Frequentist vs. Bayesians.  Why Process Safety Practitioners should be Bayesians. 

Most of us reading this paper have been educated in Frequentist based statistics, learning concepts 

such as the Law of Large Numbers, Maximum Likelihood Estimate, hypothesis testing, etc.  

Frequentist based statistics assumes that the relative frequency of an event (i.e., how many times 

an event occurs over the sample space) is the same as the probability of the event occurring.  

Unfortunately, this assumption only applies to situations where many identical trials can be 

repeated (mathematically defined as infinity, but colloquially known as “in the long run”), with 

well-defined outcomes (think games of chance where the odds are known in advance), and where 

a “true” fixed parameter value can be assumed to exist in the population (e.g., average height of 

males versus females taking Calculus 101 for Fall 2019, at Texas A&M). 

For reasons to be discussed, these concepts are not useful to the Process Safety practitioner 

attempting to quantify rare event frequencies.  Ultimately this affects our ability to make good 

decisions regarding risk reduction allocation, as well as having confidence that we are truly 

operating safely.  At a more basic level, Frequentist based statistics is the wrong math to use when 

making inferences about rare events that haven’t happened yet in my plant. 

First, a rare event is a one-off (i.e., a single-case probability).  There is no meaningful interpretation 

of a rare event occurring many times in my plant “in the long run” (one event is too many).  Second, 

in Process Safety, the odds of the rare event outcome are not known in advance.  A common 

gimmick sometimes seen at trade shows is to roll several 10-sided dice (“LOPA dice”) to make an 

analogy to the probability of all barriers failing (or being failed) at the same time.  This is 

misleading, because in Process Safety we do not know in advance what dice we are gambling 

with!  Third, the Frequentist concept of “identical” trials is not valid to Process Safety, because of 

the complexity of our systems (e.g., human and organizational) that change with time.  Related to 

this is the Frequentist notion of a “true” or fixed parameter value (e.g., probability of failure, 

initiating event frequency, rare event frequency, etc.) describing the population.  These parameters 

are not fixed (because over time the population changes). For example, there is not a “true” average 

probability of failure on demand for a safety interlock (because the systematic interactions of these 

safety interlocks are constantly in flux, resulting in the total PFD of the system never remaining 

constant, meaning you can never have a true fixed average).  Process Safety parameters are not 



point values, they are random variables that change with time.  Bayesian statistics provides the 

correct interpretation for this. 

Contrast the Frequentist interpretation of probability to that of the Bayesians.  Bayes’ Theorem 

(also known as Bayes’ Rule) provides the likelihood of occurrence for one-off events (e.g., the 

first roll of the dice with unknown bias, the next task, the next operation, the next demand).  Bayes’ 

probability is not defined by long-run averages.  In Bayes’ Rule, qualitative Knowledge (e.g., 

validation) of a process can be used to quantify the uncertainty of our assumptions about said 

process (e.g., the reliability of a barrier).  It helps us quantify the odds of the safety dice before we 

throw them.  The mechanism to do this is the Bayesian Prior.  Bayes’ Rule works with sparse data, 

treats parameters as random variables (not fixed point values), and provides a way to update a 

parameter as new evidence (data) is gathered (as opposed to waiting ad infinitum to pool enough 

data to make a valid Frequentist inference).  Bayes’ rule is also able to account for information 

that may not be showing up in your data. 

I don’t think there is much controversy is stating that Process Safety practitioners should be 

Bayesians.  That said, a traditional Hardware Reliability person (e.g., Safety Instrumented System 

purists) may be resistant to accepting Bayesian thinking.  I suppose if you could strip the human 

element from and focus purely on the hardware widget, if you could doggedly collect data on said 

widget from your plant over several decades, ignoring the fact that the samples separated in time 

may not be “identical” (a requirement of Frequentist methods), then eventually you could use 

Frequentist methods to calculate whatever parameter you need.  However, this is not what you 

need.  You need the parameter now.  And this is just one parameter of many that you need to 

reliably infer the rare event frequency for your plant.  Bayesian methods are the only logical and 

rational way to get there. 

Another way to describe the difference between Frequentists and Bayesians is to look at what they 

mean when they use the word “Uncertainty” (a qualitative English word) [2]. 

To the Frequentist, uncertainty is due to the underlying randomness (i.e., aleatory) of a known but 

indeterminate outcome.  Think of a gaming die, precision manufactured, with equal probability of 

landing on each of 6 sides (i.e., unbiased).  When rolled with sufficient force in open space (a 

necessary qualifier because there are tricksters that can deterministically flip coins and roll die to 

a desired outcome), you don’t know which side it will land on, but you know the odds in advance, 

or you could determine the odds by rolling the die unlimited times (assuming the edges of the die 

do not wear which would change the outcome).  This interpretation has very limited application in 

process safety for the reasons discussed above. 

To a Bayesian, uncertainty is associated with our degree of ignorance.  The more we know about 

a process, the less uncertainty there is.  Take the die example above.  Instead of being handed an 

unopened package labelled “gaming die,” say you found a die on the sidewalk leading to a Bingo 

gaming room, and you had no knowledge of its inherent bias.  Further suppose you forgot to bring 

your lucky die with you, and so you needed to quickly and reliably estimate the bias of the die by 

rolling it a few times (think periodic proof-test) on the sidewalk, and that if you used a noticeably 

biased die in the game room, you would be thrown out (or worse).  This, is Process Safety. 



Figure 1 attempts to compare Frequentist and Bayesian interpretations of Uncertainty on a scale 

representing typical Process Safety systems and processes related to quantification of Barrier 

performance. 

 

Figure 1.  Frequentist vs. Bayesian Interpretation of Uncertainty related to systems and processes 

that affect parameters used to calculate Barrier performance.  A significant part of Barrier 

performance resides in the Subjective Uncertainty portion of the scale.  ETTO = Efficiency 

Thoroughness Trade-offs [3] (e.g., “unknown knows”, i.e., things we should know but don’t, or 

things we know but refuse to acknowledge may be a problem). 

 

3 How Bayes’ Rule works 

Bayes’ Theorem (also known as Bayes’ Rule) is a simple formula for updating current beliefs 

based on new evidence (data, quantitative and qualitative) as it trickles in.  Contrast this to 

Frequentist methods, which require a large pool of data all at once, to make a valid inference.  

Depending on the parameter of interest (e.g., initiating event frequency) this could take decades to 

collect enough data to be “statistically significant” (i.e., 95% confidence level), using Frequentist 

methods. (A corollary issue is how Frequentist methods update the “true” parameter value when 

new data/ evidence is collected.  This is the Frequentist “magic” alluded to in Fig. 2.) 

Knowledge is “belief justified.”  So when we talk about “beliefs” in this context, we are describing 

a degree of knowledge. 

What are the “beliefs” we are trying to validate.  Those related to LOPA include for example, 

“I believe the initiating event frequency is x.” 

“I believe the probability of failure on demand is x.” 

“I believe the frequency of this rare event occurring is x.” 

In each case the belief is typically the parameter of interest we are making an inference on.  You 

could also call the belief the hypothesis. 

The genius of Bayes’ Rule comes in two ideas. 

1. Use of a Prior probability (or probability distribution) representing our initial belief “prior 

to” the collection of evidence (data).  Frequentists do not use a Prior. 



2. Inference in the correct direction, that is, of the parameter given (that we know) the data.  

Frequentists make the opposite inference, that is, of the data given (that we know) the 

parameter.  But we don’t know the parameter, that is what we are trying to find! 

Section 5 will develop these two ideas more fully. 

Bayesian inference infers probability directly from data (via the Prior).  Frequentist inference 

assumes the (long-run) relative frequency is probability.  Firstly, a specific plant/ facility often 

doesn’t have long-run frequency data related to process safety events (or, it would take decades to 

gather).  Second, to make the assumption valid (i.e., that relative frequency is probability), 

complex techniques are needed, that often remain hidden to the user.  Which leads to the potential 

for abuse of the methods.  Figure 2 shows this schematically. 

 

 

Figure 2.  Bayesian inference is superior to Frequentist inference because it infers probability 

directly, versus Frequentist inference which requires tests and comparisons to hypothetical 

samples that may not be real.  Because of the hidden complexity, Frequentist methods are open to 

abuse, as recently cited by the American Statistical Association [4]. 

 

A theorem is a mathematical statement that has been proven to be true.  The mechanics of 

computing probabilities using Bayes’ Theorem are described in Figures 3 and 4 [5]. 

 



 

Figure 3.  A Bayesian engine in simplified form.  Prior belief is the starting point typically based 

on calculations using generic data and initial audits and assessments.  As the Bayes engine runs, 

the confidence in the Posterior result increases.  The Posterior is an inference on the future, i.e., 

between the Prior and the next update. 

 

 

Figure 4.  Bayes’ Rule.  Bayes’ Rule works with both probabilities or probability distributions.  

Frequentist methods stop at the Likelihood term and then subject it to a “p-value” test on the data 

assuming the parameter is true.  This is the opposite inference we need.  Calculating the value of 

the denominator determines the complexity of implementing Bayes, ranging from ExcelTM based 

discrete methods, to Markov Chain Monte Carlo (MCMC) computational methods. 

 

4 Process Safety, Bayes, and the Problem of Induction 

Little is known about Thomas Bayes.  He was a Presbyterian minister trained in theology and 

mathematics at the University of Edinburgh.  As a Presbyterian, he was an English Dissenter (from 

the Church of England) and as such faced persecution.  His intertwining of theology and 



mathematics to answer big theological questions based in mathematics such as, “what is the 

conditional probability Jesus rose from the dead given eyewitness testimony?” helped lead him to 

his famous rule, which was published a few years after his death (c. 1761). [6] 

Although Bayes never could definitively prove that “God exists,” or that “Jesus rose from the 

dead,” Bayes’ rule was seen at the time (and today) as a credible challenge to answer David 

Hume’s famous Problem of Induction (i.e., the Future is only knowable when it occurs, at which 

time it has already become the Past).  The Problem of Induction even today is still unsolved.  

Bayes’ Posterior is an attempt to glimpse the Future.  Frequentist methods have no ability to do 

this, relying solely on looking at the Past (data). 

A lot of Process Safety practice involves trying to glimpse the Future.  Think about Leading 

Indicators.  They are not intended to be backward looking (we already know the Past), rather what 

we need is an indication of where we are today and where we are headed tomorrow.  In this way 

too, Leading Indicators are an answer to the Problem of Induction. 

Similarly, the probabilistic calculations we make to infer a rare event frequency are meant to be 

forward looking.  What good would it be to make a statement only on the Past (data)?  We care 

about tomorrow.  Don’t confuse inductive inference as being a prediction.  It is a statement of how 

trustworthy a prediction is. 

All that said, the Bayesian Prior is a key component to making the inference.   

Diaconis and Skyrms say it best [7], 

“…if you were going to risk a lot on the next few trials, it would be prudent for you to 

devote some thought to putting whatever you Know into your Prior.” 

For process safety, the next “few trials” is referring to the next “day’s” Operation, task, or demand 

on a safety critical function.  And this is the basis of Empirical Bayes.  Using Frequentist methods 

to inform the Bayesian Prior.  Figure 5 shows this graphically. 

 

Figure 5.  Empirical Bayes.  The front-end engineering work becomes an important part of 

selecting the Prior Uncertainty distribution.  Depending on the site data update rate for the function, 

task or operation (i.e., of the inferred parameter), the Prior can dominate for years, or be quickly 

over-taken by the updates. 

 

 



 

5 How to Think like a Bayesian 

Human beings are not good probability calculators.  We have not evolved a probability sense 

organ.  And our use of heuristics (mental short-cuts and other rules-of-thumb applied incorrectly) 

results in systematic bias when making probabilistic estimates.  The Literature is replete with 

examples [8, 9].  The judgements we make in Figure 7 are susceptible to the same. 

Humans are good at collecting relative frequency data on the past (e.g., this event occurred 5 times 

out of 20).  Converting this to a probability of occurrence for the next trial (i.e., the 21st) is what 

Bayes’ rule does [10]. 

Bayes’ rule uses two concepts that can help Process Safety practitioners become better Probability 

Thinkers, apart from using the rule itself.  They are: 

1. Making sure you’re using conditional probability, in the correct direction. 

2. Don’t neglect the Prior, also known as the Base Rate. 

Figure 4 shows that the concept of conditional probability is a key part of Bayes’ rule.  Further, 

Figure 4 shows two conditional probabilities, in opposite directions.  First thing to note is, the 

probabilities are not the same. It depends on what direction you are looking.  Four examples will 

be given. 

Example 1 is from Bayes’ Rule itself. 

P(data | parameter).  “The probability of getting the data given that I know the parameter”.  This 

is the conditional probability used by Frequentists.  It’s in the wrong direction!  You don’t know 

the parameter, that is what you’re trying to find!  Also, Frequentists don’t use a Prior, they neglect 

it. 

Example 2 is from Pop Culture. 

In Season 1 Episode 17 of the Cosby Show (1984), titled “Theo and the Joint,” Cliff and Claire 

find a marijuana cigarette in one of Theo’s text books from school.  They get in a discussion of 

whether or not it is his cigarette, and being in his text book, Claire (the lawyer) is ready to convict.  

But she is getting her conditional probability wrong. 

P(Joint being in Theo’s text book | It’s his Joint).  This is the conditional probability Claire was 

calculating, notice, assuming it’s his joint.  This conditional probability is near 100%. 

P(It’s his Joint | Joint being in Theo’s textbook).  This is the conditional probability Claire should 

have been calculating.  Which is much lower.  As it turns out, it was not Theo’s joint.  A classmate 

had hidden it there when the teacher walked in the classroom.  What Claire was also missing was 

the Prior (her belief before seeing the joint in Theo’s text book, that Theo was a pot smoker). 

This example is typical of many problems seen in the Justice System (answering the wrong 

conditional probability).  Ref [11] gives several good examples. 



Example 3 is from Process Safety.  This one is notorious.  Suppose I have a data trend that shows 

the number of incident or accidents, is trending down-ward.  We are operating safer, right!  Not so 

fast. 

P(Data trend downward | We are operating safer).  This is the conditional probability most people 

answer in this type of situation, which is in the wrong direction. 

P(We are operating safer | Data trend downward ).  This is the correct conditional probability, and 

depends on many factors (e.g. the Prior being one), that may not be reflected in the data. 

Example 4 is whimsical, but one of my favorite.  Study Figure 6. 

 

Figure 6.  A Twist on the Sunrise Problem from Philosophy. Source: xkcd: A webcomic of 

romance, 

sarcasm, math, and language.  https://xkcd.com/1132/ 

 

P(‘getting’ the data | the sun has exploded).  Similar to Example 1. 

https://xkcd.com/1132/


P(the sun has exploded | the data).  This is the conditional probability you want, and the Bayesian 

knows it!  And again, accounting for the Prior (i.e., a billion+ previous sunrises) should not be 

neglected! 

6 Converting Qualitative Knowledge (Subjective Belief) to a Prior Confidence Level 

Figure 5 shows how it is possible to use quantitative Frequentist methods to inform the Prior 

distribution.  This is possible, because the Frequentist methods themselves incorporate a statement 

of confidence.  For example, SIL Calc standards (i.e., S84/ 61511) require a 70% single-sided 

confidence on the failure rate data used (i.e., 70% confident that the True value falls within the 

upper bound, i.e., equal to or lower than the value used).  Of course, the problem with this is, the 

data is generic, it did not come from my plant.  So with no further information, the actual 

confidence in the number (in my application) is unknown.  Think about that!  Enter the qualitative 

life-cycle methods (i.e., Validation, Assessments, audits, etc.). 

But how do we convert purely qualitative Knowledge (i.e., from Validation, Assessments, audits, 

etc.) into a number that can inform the Prior distribution?  That is the subject of this section. 

Of all the content in this paper, this is the most subjective.  From Figure 1, we are on the far right 

side of the scale, into Operational and Organizational factors for which there is no generic data 

tables to calculate a parameter (as a Prior).  That said, there are factors (or multipliers) from Human 

Reliability science that can offer guidance to scale a parameter off of some base rate.  See for 

example Refs [12, 13, 14, 15, 16].  Still, many operational and organizational factors don’t have 

even a scaling rate, and therefore are purely qualitative. 

The good news is the Bayesian Prior is completely transparent (see Figure 2), such that if you 

don’t agree with my numbers, one, you know it, and two, you can come up with your own that you 

think are better.  Conceptually what we are trying to do is shown in Figure 7. 

 

Figure 7.  Converting Knowledge into a number is an exercise in Subjective Probability.  Site 

data which is quantitative will soon dominate the Prior if the parameter you are making the 

inference on can be easily measured. 



Frequentist Statistics says my confidence increases as the square root of ‘n’ times increase in the 

sample size, e.g., after 4 samples, my confidence level increases by a factor of 2 [9].  If each sample 

is a Bernoulli trial (success/ fail), by the 4th sample my confidence has gone from (for example) 

50% to 75% (see Figure 8). 

 

Figure 8.  An attempt to quantify qualitative Knowledge.  A 50% base confidence represents a 

site’s attempt to meet industry best practices related to PSM including Barrier management, 

derived from lessons learned of high-profile catastrophic accidents.  The number 50% is a purely 

subjective assignment of probability.  It is meant to approximate the confidence in an average. If 

a site were missing a particular segment of best practice, the initial subjective confidence would 

be lower. Each sample represents an assessment or audit, increasing knowledge about the 

parameter of interest.  After 4 samples I’ve reached 75% confidence in the parameter, this 

assuming each sample represents a Bernoulli trial (success/ fail).  FSA = Functional Safety 

Assessment. 

The caveat of Figure 8 is the confidence is increasing for the “knowns” i.e., what you find during 

an assessment.  The same square root of ‘n’ rule does not apply to “unknowns” i.e., what you’re 

not sampling.  Here, confidence increases much more slowly for the absence of findings.  This is 

contributory to the Black Swan problem.  For this reason, the Prior uncertainty distribution should 

always allow for unknowns.  This is a qualitative judgement.  There is no failure data that will 

contain information on a Black Swan event (until it happens, then it’s too late!). 

7 Bayes’ Rule and LOPA Inference, an Overview. 

Figure 9 and 10 show how we are and are not using the Bayes’ engine to infer the population 

parameter.  Recall from Figure 4 the types of parameters we are interested in for LOPA.  In each 

case, we are concerned with the “right tail” of the distribution, which corresponds to high initiating 

frequency, high probability of failure on demand, etc.  We use a cumulative distribution to make 

a statement that we are equal to or less than a certain value (that corresponds to the confidence we 

want).  In this way, we move decision making from “Pass/ Fail” (as is practiced today), to a degree 

of confidence.  Think of the implications.  The following list represents a potential FAIL of the 

risk target in each case.  Decision making would be improved if we instead looked at how the 

confidence in the desired parameter value has been affected. 

1. I’m off my risk target by a factor of 3. 

Bayes says:  “We don’t need to do anything because my confidence level at that increased 

factor hasn’t changed.” 

2. My risk targets changed an order of magnitude more conservative. 



Bayes says:  “Before we go trigger a massive capital spend to close gaps, let’s evaluate 

how the confidence in meeting the rare event freq. has changed for each scenario.” 

3. My generic SIL calc shows I have a residual gap. 

Bayes says:  “Before I go spend money, I want site specific quantification of said gap.  

Assess and collect data over the year and run a Bayes’ engine.  Then make a decision” 

4. My initiating frequency is higher than assumed in my calculation, but Operations is making 

changes to fix it. 

Bayes says:  “Lower the confidence level in the (assumed) initiating event frequency and 

monitor next year’s operation closely.  Update Bayes’ engine with new data and see where 

we are.” 

5. My Stage 4 FSA (functional safety assessment) found I can’t test this safety function as 

often as I initially assumed. 

Bayes says:  “Redo the SIL calc and input to the Prior. How has the confidence level in the 

target changed?” 

 

 

Figure 9.  What we are NOT doing with Bayes (but you could do). 

 

Figure 10.  What we ARE doing with Bayes. 



Figure 11 is intended to show the big picture of how all this would look.  For each IPL 

(independent protection layer) as well as the initiating event frequency, a Bayes engine can be built 

to perform what we show in Figure 10.  An obvious and easy place to begin is with inferring the 

initiating event frequency.  Generic initiating event frequency data typically used in LOPA is 

wildly inaccurate in many cases.  Often times initiating event rates are much greater than the 

generic 1/10 years.  In other cases, certain demands have never been seen in the history of the 

plant.  You may object by saying, “what’s wrong with using a generic Frequentist based average?”  

Answer:  because you can’t demonstrate you are operating safely based on generic averages.  Also, 

in each case, there are important qualitative insights to be derived from a closer quantitative look 

at the initiating event frequency.  For example, for events happening more frequent than assumed, 

the risk is increased.  Instead of say, once per 10 years, think of rolling the LOPA dice once per 

year instead (add in the element of unknown bias and the situation is worse).  For a more rare 

initiating event, the qualitative take-away is operation’s lack of actual practice with the event, 

decreased situation awareness, and decreased ability to respond when things don’t go as planned 

(e.g., the automated trip doesn’t activate). 

 

Figure 11.  Putting it all together.  Each parameter of the LOPA equation can be inferred using a 

Bayes’ engine.  The result is a cumulative distribution of the rare event frequency, from which the 

single-sided upper confidence limit in the LOPA target can be determined.  This provides a better 

decision making tool than using a single point value with unknown confidence for the site 

application.  As data is gathered and the Bayes’ engines run, confidence in meeting the target will 

increase.  Using Bayesian inference is the most consistent and rational way to incorporate site data 

to update our belief in meeting rare event targets.  This method can be easily implemented in 

ExcelTM (see NUREG-6823 Chapter 6 for details). 

8 Conclusion 

Process Safety practitioners have the choice of using either Frequentist or Bayesian based 

inference methods.  This paper has laid out the case for Bayes.  Ultimately it is about making better 

decisions related to managing rare event scenarios.  The Bayesian interpretation is where we start 

with a Prior informed by engineering design, assessments, and audits, and then update to a 

Posterior when periodic proof-tests, incident reports, continuing audits, etc. are evaluated, and is 



the only rational and consistent way to build confidence as a degree of belief that we are operating 

safely. 
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