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ABSTRACT

The neural code has prompted many questions in pure mathematics concerning how much

topological data can be stored combinatorially. The question of whether one can determine the

convexity of a neural code is particularly prominent. In this dissertation, we provide new tools

toward answering this question. First, we introduce a related object called the factor complex, and

show how it encodes a property of the neural code called max-intersection-completeness. Second,

we introduce a new type of nonconvex phenomenon called a wheel, and show how to read it

combinatorially.
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1. INTRODUCTION

In 1971, John O’Keefe discovered a group of neurons in the hippocampus of a rat that had a

distinctive function. Each of these neurons, which would later be called place cells, had a relation-

ship with a certain region of physical space, such that the neuron would fire if and only if the rat

was currently in that specific region [1]. To the exclusion of any other activity in the brain, even

the connections of that place cell with other neurons, one could determine the rat’s presence in the

region (called a receptive field) solely on the neuron’s firing.

This discovery prompted a flurry of new activity in pure mathematics, creating the area of

neural codes [2][3][4][5][6][7][8][9][10]. A rat (or more generally a mammal, as later work found

place cells in mammals besides rats) does not just have one place cell for a specific location. Often

an area will have several different receptive fields with their own corresponding place cells. These

receptive fields are not necessarily disjoint from another; indeed, one may have different place

cells firing simultaneously as the mammal moves into an intersection of their fields. Thus from a

collection of place cells for a particular location, one can create a set of codewords that record the

different ways the neurons’ fields overlap. Each codeword is a binary string of 1’s and 0’s, with a 1

as the ith digit meaning that the ith neuron is firing, and 0 as the ith digit indicating otherwise. The

set of all these codewords, called the neural code, is thus a record of all the possible combinations

of firings of the place cells.

What motivates the interest in neural codes from mathematics is the question of how much

information about the receptive fields these codes contain. Clearly, the code details the various

intersections of the receptive fields, but can something be said about the topological properties of

the receptive fields? In particular, can we determine if a neural code encodes whether the receptive

fields are convex? The question of convexity comes from experimental data, which describes the

receptive fields using points on a map of a location, with each point representing an occurrence of a

place cell firing. The contours of the point map for a specific place cell are convex, suggesting that

receptive fields are also convex. Furthermore, there is no strict cutoff between the area in which a
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place cell fires and the area in which it does not. Rather, the majority of firings is concentrated in

the interior of the observed receptive field, with firings decreasing in frequency as one approaches

the boundary. Thus, all the neural codes recorded in the lab appear to be for collections of convex,

open receptive fields. Are these codes a special class of elements from the set of collections of

binary strings? And if so, can we determine whether a collection of binary strings belongs to this

class? That is, by examining the strings of 1’s and 0’s of a code, can we determine whether it

is possible to put down a collection of convex open sets, in R2, R3, or even arbitrary Rd, whose

realization would be that code?

The question as to which codes are convex is nontrivial. Just as the experiments of O’Keefe

and others show the existence of such neural codes with convex open realizations, so too are there

collections of binary strings for which such a realization is impossible. Previous work has been

successful in classifying many codes as convex [10], as well as ruling out convexity for many

others [9][6]. However, there is still a large number of codes yet to be classified as either convex or

nonconvex. In this dissertation, we make a contribution to solving the problem of convexity in two

ways. First, we show how a certain property that guarantees convexity, called max-intersection-

completeness, can be found in certain algebraic and combinatorial objects related to the neural

code. Second, we introduce a new phenomenon, called a wheel, the presence of which in a code

forbids convexity.

This dissertation is organized as follows: In Chapter 2, we introduce the concepts and ob-

jects related to neural codes, as well as review prior results. Chapter 3 pertains to irreducible,

decomposable, and pure neural codes. The next two chapters discuss our main results. Chapter 4

details an object we call the factor complex, and explains how it helps determine max-intersection-

completeness. Chapter 5 introduces the wheel. Finally, we review our work and explore possible

future directions in Chapter 6.
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2. BACKGROUND

Neural codes have a biological inspiration. Mammals have certain neurons, known as place

cells, that correspond with certain regions of physical space [1]. Whether or not a place cell fires

depends on whether the mammal is currently in that place cell’s corresponding region, called a

receptive field. Thus, the layout of the receptive fields gives rise to a collection of certain combi-

nations of neurons firing, which we call the (biological) neural code. In mathematics, the neural

code has prompted questions into how topological and geometric information about a space can

be stored in combinatorial data. Mathematicians generalize the receptive fields into subsets Ui of

Rd and replace the firing neurons with Boolean variables i, where i denotes inclusion or exclu-

sion in Ui. Thus the (mathematical) neural code C is the set of all possible firing combinations of

place cells for a mammal with given receptive field placement U = {Ui}. That is, C encodes the

intersections of the Ui’s.

It is natural to ask whether we can get C from a U when the elements of U have certain proper-

ties. For instance, one can find a realization for any C if there are no restrictions on the properties

of the Ui [2, Lemma 2.1]. However, there might be no such realization if we require each Ui to be

open and connected. As an example, consider the code C0 = {∅,12,13}, where if we require each

Ui to be open, then U2 and U3 necessarily form a disconnection of U1. In another case, there might

be a realization where each Ui is open and connected, but not when each Ui is closed and convex.

Convexity, in particular, has been the main focus in the research on neural codes. C is open

convex if it has a realization U , where each Ui is open and convex. Similarly, C is closed convex

if it has a realization where each Ui is closed and convex. (For this dissertation, I will focus

only on open convexity. Thus, for the sake of brevity, assume “convex” means “open convex”

unless specifically stated otherwise.) Perhaps the biggest breakthrough has been the introduction

of methods showing how this purely geometric property, convexity, can be read from the purely

combinatorial information of the code C.
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2.1 The Neural Code as a Mathematical Object

Definition 2.1.1. A code on n neurons is a subset C ⊆ 2[n], where [n] = {1,2, . . . , n}. Elements of

C are codewords, and a maximal codeword is a codeword that is maximal with respect to inclusion

among codewords of C.

Remark 2.1.2. Alternatively, we may describe a code on n neurons as a collection of binary strings

of length n:

C ⊆ {0,1}n.

The codewords are the individual binary strings. The equivalence between a codeword c ∈ 2[n] and

a codeword c ∈ {0,1}[n] is

i ∈ c ∈ 2[n] ⇐⇒ xi = 1 for c ∈ {0,1}n,

where xi is the ith digit of c as a binary string. For example, if c = {2,3} is a codeword of a code

on 3 neurons, then its representation as a binary string would be 011.

We will default to considering C as a subset of 2[n] for this dissertation, although there will be

occasions where it makes more sense to consider the codewords as binary strings.

One final note concerning notation: when describing a codeword c ∈ 2[n], we will eschew the

set notation. For example, instead of describing a code as C = {∅,{1},{2,3},{1,2,3}} we will

instead write it as C = {∅,1,23,123}

Definition 2.1.3. A realization of a code C in Rd is a collection U = {Ui}ni=1 of subsets of some

X ⊆ Rd such that c ∈ C if and only if

(∩i∈cUi) ∖ (∪j∈[n]∖cUj) ≠ ∅.

A realization is a realization of open sets if each Ui is open, and a realization of closed sets if

each Ui is closed. (Recall that unless stated otherwise, a realization is assumed to be open.)

4



The set (∩i∈cUi) ∖ (∪j∈[n]∖cUj) is the atom of c in the realization U . We denote Uσ ∶= ∩i∈σUi,

and, by convention, U∅ ∶=X .

Intuitively, we have that U is a realization of C on n neurons if and only if for each c ∈ 2[n], we

have that c is a codeword if and only if there is some point that is contained in precisely those Ui

for which i ∈ c, and none other.

Definition 2.1.4. If the sets U1, U2, . . . , Un are convex, then U is a convex realization of C. Codes

that possess convex realizations are known as convex codes.

Remark 2.1.5. All codes in this article are assumed to contain the empty codeword ∅, and thus

we may always assume that X = Rd. Whether or not a code contains ∅ does not affect convexity,

[8, Remark 2.19].

U1

U2

U3

U4 U5U6

codeword 4

codeword 12

codeword 2356

Figure 2.1: Realization of the code in Example 2.1.6. Each receptive field Ui is the region enclosed
by the labeled ellipse. For illustration, the atoms of three codewords have been shaded and labeled.

Example 2.1.6. Consider the code

C = {2356,123,235,236,12,14,23,1,2,4,∅},

5



which per Remark 2.1.2 can equivalently be described as

C = {011011,111000,011010,011001,110000,100100,011000,100000,010000,000100,000000}.

Figure 2.1 shows one possible realization of C in R2. Here, the receptive fields are the interiors of

the ellipses. As examples, the areas corresponding to codewords 4, 12, and 2356 have been filled

in gray. As one can observe from the realization, C is a convex code.

Example 2.1.7. The code D = {∅,12,13} is not convex. As an informal proof, consider a realiza-

tion U = {U1, U2, U3} of D. We have that U2 and U3 form a disconnection of U1, thus U1 cannot be

convex.

2.2 The Simplicial Complex of a Neural Code

Recall that an abstract simplicial complex ∆ on n vertices is a subset of 2[n] that is closed

under inclusion. That is, if τ ⊆ σ and σ ∈ ∆, then τ ∈ ∆ as well. An element σ of ∆ is called a face,

and those faces that are maximal in ∆ with respect to inclusion are called facets. The dimension

dim(σ) of a face σ is ∣σ∣ − 1, and the dimension of ∆ is max{dim(σ) ∣ σ ∈ ∆}. If for every facet

F of ∆ we have dim(F ) = dim(∆), then ∆ is pure. Lastly, if σ is a face of ∆, then the link of σ

in ∆ is the simplicial complex

Lkσ(∆) ∶= {τ ∈ ∆ ∣ σ ∩ τ = ∅ and σ ∪ τ ∈ ∆}.

Links are usually written as Lk∆(σ), rather than Lkσ(∆); however, we follow the notation of [9].

Previous work in classifying convex and nonconvex codes makes extensive use of the simplicial

complex ∆(C):

Definition 2.2.1. Let C ⊆ 2[n] be a code on n neurons. The simplicial complex ∆(C) of C is the

smallest simplicial complex containing C. That is,

∆(C) = {σ ⊆ [n] ∣ σ ⊆ c for some c ∈ C}.

6



Example 2.2.2. The simplicial complex of C from Example 2.1.6 is (nonempty codewords of C in

bold)

∆(C) = {2356,123,235,236,256,356,12,13,14,23,25,26,35,36,56,1,2,3,4,5,6,∅}.

Its facets are 2356 and 123, the maximal codewords of C. In fact for any C the facets of ∆(C)

are precisely the maximal codewords of C.

The significance of ∆(C) is that it is the nerve of any realization U of C:

Definition 2.2.3. Let U = {U1, . . . , Un} be a collection of subsets of Rd. The nerve N (U) of U is

the simplicial complex on n vertices such that for σ ∈ 2[n], we have

σ ∈ N (U) if and only if ⋂
i∈σ
Ui ≠ ∅.

Thus, given a code C on n neurons and its simplicial complex ∆(C), for each σ ∈ 2[n] we can

describe the intersection ⋂i∈σ Ui from any realization of C in one of three ways:

(1) σ /∈ ∆(C) means ⋂i∈σ Ui is empty,

(2) σ ∈ ∆(C) ∖ C means ⋂i∈σ Ui is nonempty but covered by the Uj’s for j /∈ σ, and

(3) σ ∈ C means ⋂i∈σ Ui is nonempty and not covered by the other Uj’s.

Every simplicial complex ∆ provides two sets of faces used to classify those codes C for which

∆(C) = ∆.

Definition 2.2.4. Let ∆ be a simplicial complex, and let σ ∈ ∆.

• σ is a max-intersection face if there exist facets F1, F2, . . . , Fs such that σ = ⋂st=1Ft.

• σ is a mandatory face if the link Lkσ(∆) of σ in ∆ is not contractible.

• The code that consists only of the facets and mandatory faces of ∆ is the minimal code

Cmin(∆) of ∆.

7



Remark 2.2.5.

• Every mandatory face is also a max-intersection face [9, Corollary 4.6]. However, not every

max-intersection face is a mandatory face [9, Example 2.2].

• Previous work does not use the term “mandatory faces”; when introduced in [9] they were

called “mandatory codewords”. We prefer using “faces” instead of “codewords” since we

are considering the objects as belonging to a simplicial complex ∆, but not necessarily a

neural code C.

• We say that a code containing all of its max-intersection faces is max-intersection-complete.

We say that a code is intersection-complete if the intersection of any codewords of C, not

just those of the maximal ones, is contained in C [9].

From the max-intersection and mandatory faces of ∆, we can classify as either convex or

nonconvex a significant number of those codes C for which ∆(C) = ∆.

Proposition 2.2.6. Let C be a code on n neurons, and ∆(C) its simplicial complex.

(i) [10, Theorem 1.2] If C contains every max-intersection face of ∆(C), then C is convex.

(ii) [9, Theorem 1.3] If C does not contain every mandatory face of ∆(C), then C is not convex.

Note the significance that Proposition 2.2.6 holds for the minimal code Cmin(∆) of ∆: for any

C such that ∆(C) = ∆, if Cmin(∆) /⊆ C, then C is not convex.

Remark 2.2.7. The importance of Cmin(∆) is not just limited to determining nonconvexity. There

is a monotonicity result for convexity of codes: if C and D are codes on n neurons with C ⊆ D

and ∆(C) = ∆(D), then C convex implies D convex [10, Theorem 1.3]. As a result, proving that

Cmin(∆), the smallest code of ∆ with all the mandatory faces, is indeed convex shows that any

code of ∆ with all the mandatory faces is convex.
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The reason why a missing mandatory face causes nonconvexity comes from a phenomenon

known as a local obstruction, introduced in [9] and [11]. Codes with local obstructions are known

to be nonconvex [9].

Definition 2.2.8. Let C be a code on n neurons, and assume that C is realized by a collection

U = {Ui}ni=1 of open subsets of some Rd. A local obstruction of C is a pair (σ, τ) of nonempty,

disjoint subsets of [n] such that

Uσ ⊆⋃
j∈τ
Uj

and the link Lkσ(∆(C)∣σ∪τ) is not contractible.

Proposition 2.2.9. [9, Lemma 3.6] If C is convex, then C has no local obstructions.

A missing mandatory face is a type of local obstruction. Indeed, if σ is a face of the simplicial

complex ∆ such that Lkσ(∆) is not contractible, then (σ, [n]∖σ) is a local obstruction for any code

C for which σ /∈ C and ∆(C) = ∆. Furthermore, any face σ of ∆(C) with Lkσ(∆) not contractible

must be a max-intersection face due to the following result:

Proposition 2.2.10. [9, Corollary 4.6] Let σ ∈ ∆ be nonempty. If σ is not an intersection of facets

of ∆, then Lkσ(∆) is a cone and hence contractible.

However, what about those local obstructions (σ, τ) where Lkσ(∆(C)∣σ∪τ) is not contractible,

with ∆(C)∣σ∪τ ⊊ ∆(C)? Is it possible that a code C can contain all the faces of ∆(C) whose link

(in ∆(C)) is not contractible, yet still contain such an obstruction? The answer is no:

Proposition 2.2.11. [9, Proposition 4.8] A code C has no local obstructions if and only if σ ∈ C for

every σ ∈ ∆(C) such that Lkσ(∆) is noncontractible.

This is because if a code C has a local obstruction, then C must have a local obstruction

(σ, τ) where σ is a missing mandatory face. The essential idea is that if Lkσ(∆(C)∣σ∪τ) is non-

contractible, then for v /∈ σ∪τ either Lkσ(∆(C)∣σ∪τ∪{v}) or Lkσ∪{v}(∆(C)∣σ∪τ{v}) is non-contractible.

In this way, the local obstruction “bubbles up” through increasingly larger simplicial complexes

until finally ∆(C)∣σ∪τ = ∆(C).
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We stress this “bubble up” result and its proof idea for two reasons. The first is computational:

with this result the number of links one must check to verify the existence of a local obstruction

decreases dramatically. Secondly, the result explains how local obstructions interact with the the-

ory of max-intersection faces. If local obstructions prevent convexity while containment of all the

max-intersection faces guarantee convexity, then the presence of a local obstruction must also pre-

vent containment of all the max-intersection faces. We will make use of this reasoning when we

introduce our own nonconvex phenomenon in Chapter 5.

With the results on the containment of max-intersection faces or the non-containment of manda-

tory faces respectively confirming or forbidding convexity, we may now classify a broad swathe

of codes. The frontier of convex codes, therefore, lies in analyzing those codes C that contain all

of the mandatory faces of ∆(C) but not all of the max-intersection faces. For the sake of brevity

I will use the term undecided codes to refer to these codes. There are both convex and nonconvex

examples of undecided codes. The following is an undecided code that turns out to be convex:

Example 2.2.12 (A code that is convex but not max-intersection-complete). The following code is

not max-intersection-complete, as 1 = 123 ∩ 134 ∩ 145 is missing:

C = {123,134,145,13,14,∅} .

However, C is convex, as shown in [9, Figure 3c].

Example 2.2.13 (A non-convex code with no local obstructions). The following code was the first

example found of a nonconvex code with no local obstructions [12, Theorem 3.1]:

C⋆ = {2345,123,134,145,13,14,23,34,45,3,4,∅} .

Note that C⋆ contains all of the mandatory faces of ∆(C⋆): The intersections of the maximal

codewords are 23, 34, 45, 13, 14, 1, 3, 4, and ∅, each of which – except 1 – is a codeword of C⋆.

However, 1 is not mandatory, as ∆(C⋆) has facets 2345, 123, 134, and 145, and so the link of 1 in
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∆(C⋆) is the following path graph, which is contractible:
2 3 4 5

Despite containing all its mandatory codewords, C⋆ is nonconvex [12].

2.3 Neural Ideals

It is also possible to represent a neural code algebraically, as a specific ideal called the neu-

ral ideal, which was first used in [2]. To introduce this ideal, we first give a definition for the

complement of a neural code:

Definition 2.3.1. Let C be a code on n neurons. The complement of a code C on n neurons is the

code

C′ ∶= 2[n] ∖ C. (2.1)

Remark 2.3.2. To make C′ well-defined, we require that each neuron 1, . . . , n appears in at least

one codeword of C. For example, if C = {∅,1,2,23}, we must consider it to be a code on 3 neurons,

and not a code on n ≥ 4 neurons, with neurons 4, . . . , n trivial.

The neural ideal is a type of ideal known as a pseudomonomial ideal. We denote by F2 the field

with two elements, and let R = F2[x1, . . . , xn] = F2[x].

Definition 2.3.3.

• A pseudomonomial is a polynomial ∏i∈σ xi∏j∈τ(1 − xj) ∈ R, where σ, τ ⊆ [n] are disjoint.

A pseudomonomial ideal is an ideal generated by pseudomonomials.

• If c ∈ 2[n], the pseudomonomial

φc ∶=∏
i∈c
xi ∏

j∈[n]∖c
(1 − xj) (2.2)

is called the indicator polynomial of c.

Recall from Remark 2.1.2 that we may consider the codeword c as a binary string of length

n. If we think of the binary strings as the elements of Fn2 , then the indicator polynomial φc is the

11



unique polynomial φ ∈ R satisfying

φ(d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if c = d

0 if c ≠ d.

Definition 2.3.4. The neural ideal JC of a code C is the (pseudomonomial) ideal generated by the

indicator polynomials of its non-codewords; in symbols,

JC ∶= ⟨φc ∣ c ∈ C′⟩.

Note that, since the generators of JC are precisely those indicator polynomials for all c /∈ C

the zero-set of JC is C. While JC is not the vanishing ideal IC of C, the two ideals have a close

relationship. If B ⊆ R is the ideal generated by the Boolean relations x2
i − xi, i = 1, . . . , n, then

IC = JC+B [2, Lemma 3.2]. However, since x2
i −xi will vanish on any element of Fn2 , B ⊆ IC for any

code C. Thus we may think of JC as the “nontrivial” part of the vanishing ideal of C. Furthermore,

since there is a one-to-one correspondence between C and JC , the code and its neural ideal contain

the same information.

Remark 2.3.5. The set of pseudomonomial ideals and the set of neural ideals are the same. It

is clear from the definition that every neural ideal is a pseudomonomial ideal, and for any pseu-

domonomial ideal J one can find a code C for which J = JC [13, Theorem 2.1].

When describing a neural ideal, we frequently describe it using a specific generating set called

the canonical form:

Definition 2.3.6. Let J ⊆ R be a pseudomonomial ideal.

• A pseudomonomial in J is minimal if it is minimal with respect to divisibility among all

pseudomonomials in J .

• The canonical form of J is the set CF(J) of all minimal pseudomonomials of J .
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The canonical form of a pseudomonomial ideal is a generating set for the ideal [2]. How-

ever, it is important to note that in general, the canonical form and the generating set of indicator

polynomials from Definition 2.3.4 are not the same.

Example 2.3.7. Consider the code C = {∅,2,3,12,13}, which can be alternately represented as

{000,010,001,110,101} with the codewords as binary strings. The complement code is C′ =

{1,23,123} ({100,011,111} as binary strings). Thus, the neural ideal of C is

JC = ⟨x1(1 − x2)(1 − x3), x2x3(1 − x1), x1x2x3⟩,

and the canonical form is CF(JC) = {x1(1 − x2)(1 − x3), x2x3}.

The neural ideal JC has a unique irredundant decomposition

JC =
g

⋂
h=1

Ph, (2.3)

where each Ph is a pseudomonomial ideal that is prime [2, Proposition 6.8]. In particular, JC is a

radical ideal. We remark that a pseudomonomial ideal P is prime if and only if it is of the form

P = ⟨{xi ∣ i ∈ σ} ∪ {(1 − xj) ∣ j ∈ τ}⟩ for σ, τ disjoint subsets of [n]. (2.4)

2.4 Boolean Intervals

Pseudomonomials are significant in that they represent Boolean intervals of 2[n]. Given c ⊆ d ⊆

[n], the Boolean interval between c and d is

[c, d] ∶= {w ∈ 2[n] ∣ c ⊆ w ⊆ d}.

Definition 2.4.1. Let C be a code. The intervals of C are the Boolean intervals contained in C. The

maximal intervals of C are the intervals of C that are maximal with respect to inclusion.
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Example 2.4.2 (Example 2.3.7, continued). For the code C = {∅,2,3,12,13}, the maximal inter-

vals are [∅,2], [∅,3], [2,12], and [3,13].

Given C, the pseudomonomials of JC tell us what the intervals of the complement code C′ are.

We have that [c, d] ⊆ C′ if and only if ∏i∈c xi∏j/∈d(1 − xj) ∈ JC [2, Lemma 5.7].

2.5 Polarization and Squarefree Monomial Ideals

Let S = F2[x1, . . . , xn, y1, . . . , yn] = F2[x, y].

The idea of using yi to encode 1 − xi is well known (see, for instance, [14, 15]). In the context

of neural ideals, the following construction was introduced in [16].

Definition 2.5.1.

• The polarization of a pseudomonomial φ =∏i∈σ xi∏j∈τ(1 − xj) ∈ R is

P(φ) ∶=∏
i∈σ
xi∏

j∈τ
yj ∈ S.

• If J ⊆ R is a pseudomonomial ideal, the polarization of J is the ideal in S obtained by

polarizing the pseudomonomials in the canonical form of J , that is,

P(J) ∶= ⟨P(φ) ∣ φ ∈ CF(J)⟩ ⊆ S.

Note that the polarization of a pseudomonomial ideal is a squarefree monomial ideal in S,

that is, an ideal generated by monomials that are not divisible by the squares of the variables (so

P(J) is radical). We recall the relationship between squarefree monomial ideals and simplicial

complexes:

Definition 2.5.2. Let ∆ be a simplicial complex on [n], and let K be a field. The Stanley–Reisner

ideal of ∆ is

I(∆) ∶= ⟨∏
i∈σ
xi ∣ σ ∉ ∆⟩ ⊆ K[x1, . . . , xn].

14



The ideal I(∆) is radical, with prime decomposition

I(∆) = ⋂
σ∈Facets(∆)

⟨xi ∣ i ∉ σ⟩. (2.5)

It follows that ∆ can be recovered from I(∆). In fact, (2.5) can be used to conclude that any

squarefree monomial ideal is the Stanley–Reisner ideal of some simplicial complex. It is a fact

that I(∆(C)) is generated by the monomials in CF(JC) [2, Lemma 4.4].

Example 2.5.3 (Example 2.4.2, continued). For C = {∅,2,3,12,13}, the simplicial complex ∆(C)

has two facets, 12 and 13. The corresponding Stanley–Reisner ideal is I(∆(C)) = ⟨x2x3⟩, which

is generated by the unique monomial in the canonical form CF(JC) = {x1(1−x2)(1−x3), x2x3}.

Remark 2.5.4. As noted above, the ideals that are associated to codes (the neural ideal JC , the

ideal I(∆(C)), and the factor ideal FI(C), to be introduced in Chapter 4) are radical ideals, that

is, they can be expressed as intersections of prime ideals. We emphasize that the sets of associated

primes, minimal primes, and primary components of a radical ideal all coincide.

However, it is important to note that there is in general not a one-to-one correspondence be-

tween the prime ideals of a pseudomonomial ideal J and its polarization P(J). This is because

while a polarized ideal could have a prime containing both xi and yi, the “depolarized” counter-

part to this prime would be ⟨1⟩, as it would contain both xi and 1 − xi. As an example, consider

J = ⟨x1x2, (1 − x1)x3⟩, whose polarization is P(J) = ⟨x1x2, x3y1⟩. We have that the minimal

primes of P(J) are ⟨x1, x3⟩, ⟨x1, y1⟩, ⟨x2, x3⟩, and ⟨x2, y1⟩, but J has only three minimal primes:

⟨x1, x3⟩, ⟨x2, x3⟩, and ⟨x2, (1 − x1)⟩,

We conclude the section on polarization with a remark on notation. When constructing the

Stanley-Reisner complexes of squarefree monomial ideals in S = F2[x, y], we will use

{1, . . . , n,1, . . . , n} as a vertex set, with the understanding that xi corresponds to i and yi corre-

sponds to i. If B ⊆ [n], we denote B ∶= {i ∣ i ∈ B}. In particular,

[n] = {1, . . . , n} and [n] ∪ [n] = {1, . . . , n,1, . . . , n}.
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We always use overline notation to denote subsets of [n]; this is justified, as any subset of [n] is

of the form B for some B ⊆ [n].
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3. REDUCIBLE, DECOMPOSABLE, AND PURE CODES

In this chapter, we outline three families of neural codes. In Section 3.1, we review the family of

reducible codes introduced in [7]. In Section 3.2 we present a new family, called the decomposable

codes, and use results from [10] to show how one can analyze them for convexity. Both the

reducible and the decomposable families can be thought of as codes with extraneous structure.

That is, a realization of such a code C can be obtained by building up from a realization of a

simpler code D. Thus, the question of convexity for C on n neurons can be answered by solving

the question for a code D on m neurons, with m ≤ n. Lastly, Section 3.3 covers the family of pure

neural codes, those codes for which the maximal codewords have k many neurons.

In what follows, we use the following definition: let C be a code on n neurons, and σ a subset

of [n]. The restricted code C∣χ is {c ∩ χ ∣ c ∈ C}. If U = {U1, . . . , Un} is a realization of C, then we

let U ∣χ denote the realization {Ui}i∈χ of C∣χ.

Lemma 3.0.1. Let C be a code on n neurons, and let χ ⊆ [n]. If C is convex, then the restricted

code C∣χ is also convex.

Proof. If {Ui}i∈[n] is a convex realization of C, then {Ui}i∈χ is a convex realization of C∣χ.

3.1 Reducible Codes

The following terminology, introduced by Jeffs [7, §3], captures the case of a superfluous

neuron. From [7] we have the following definition:

Definition 3.1.1. Let C be a code on n neurons, and let σ ⊆ [n]. The trunk TkC(σ) of σ in C is the

set of all codewords containing σ: TkC(σ) ∶= {c ∈ C ∣ σ ⊆ c}.

From the trunk we can then define what it means for a neuron to be redundant, and a code to

be reducible.

Definition 3.1.2. Let C be a code on n neurons.
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(1) A neuron i is redundant in C if there exists σ ⊆ [n] with i /∈ σ such that Tk({i}) = Tk(σ).

(2) A neuron i is trivial in C if i is not in any codeword of C, that is, TkC({i}) = ∅.

(3) The code C is reduced if it has no redundant neurons and no trivial neurons.

We say that a code is reducible if it is not reduced.

The following result follows directly from [7, Theorem 1.3 and Lemma 3.11]:

Proposition 3.1.3. Let C be a code on n neurons. Assume j is a redundant neuron of C. Then C is

convex if and only if the restricted code C∣[n]∖{j} is convex.

Concretely, Proposition 3.1.3 is proven as follows. The forward implication is Lemma 3.0.1.

Conversely, one obtains a convex realization of C from a convex realization of C∣[n]∖{j} by setting

Uj ∶= Uσ (where Tk({i}) = Tk(σ)). Essentially, the intuition for a redundant neuron is that its

receptive field will always coincide with an intersection of receptive fields of some other neurons.

3.2 Decomposable Codes

The reducible codes introduce an extraneous neuron i in that the boundary of its receptive field

Ui is contained in the boundaries of the other receptive fields. However, what about the case where

the boundary of the receptive field does not intersect any of the other receptive fields’ boundaries?

U1

U2U3 U4

Figure 3.1: Realization of the code C = {∅,1,2,3,12,13,24,123}
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As an example, consider the code C = {∅,1,2,3,12,13,24,123}, a realization of which is

given in Figure 3.1. Note that the boundary of U4 does not intersect the boundary of any other

Ui. Indeed, 4 is not a redundant neuron, since TkC(4) = {24}, and the only σ ∈ ∆(C) for which

TkC(σ) = {24} is σ = 24, but 4 ∈ σ. While C is not a reduced code, one can construct a realization

of C by taking a realization of {∅,1,2,3,12,13,123} and placing U4 in the interior of U2. It is this

type of simplification that we are generalizing in introducing the family of decomposable codes.

We call such a code C decomposable since the idea is to decompose C into two smaller codes C1

and C2. Thus, a convex realization of C, if it exists, can be obtained by “embedding” a convex

realization of C1 into that of C2 (see Theorem 3.2.4). Accordingly, we introduce the following

definition.

Definition 3.2.1. Let C be a code on n neurons. Then C is decomposable if there exist disjoint

subsets ϕ,ψ ⊊ [n] with ϕ ≠ ∅ such that:

(i) ψ ∈ C, and

(ii) every c ∈ C that contains at least one neuron of ϕ has the form c = ϕ̃ ∪ ψ for some ϕ̃ ⊆ ϕ.

We call C∣ϕ the embedded code and C∣[n]∖ϕ the ambient code. Also, ψ is the ambient codeword.

Example 3.2.2. The code C with a realization given in Figure 3.1 is decomposable, with φ = {4}

and ψ = {2}.

Example 3.2.3. The code C = {2356,123,235,236,12,14,23,1,2,4,∅} from Example 2.1.6 is

decomposable, where ϕ = {5,6}, ψ = {2,3}. Indeed, the codewords c ∈ C intersecting ϕ are

235 = {5} ∪ ψ, 236 = {6} ∪ ψ, and 2356 = {5,6} ∪ ψ. Recall the realization U of C depicted in

Figure 2.1.

Note that U can be obtained by first drawing a realization of C∣[n]∖ϕ = {∅,1,2,4,12,14,23,123}

and then placing a realization of C∣ϕ = {∅,5,6,56} inside the atom of the ambient codeword 23.

We saw in Example 3.2.3 that a realization of C was obtained by placing a realization of the

embedded code inside the atom of the ambient codeword. We also saw in Figure 3.1 the visual
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intuition into how a decomposable code can be broken down into or constructed from its embedded

code and ambient code. However, there is an important concern over whether we can embed the

embedded code in the ambient code. Given the ambient codeword ψ, is it true that there will

always be some realization of the ambient code for which the atom of the ambient codeword Aψ

has nonempty interior? While in general this is not known, we do know the answer for codes with

6 or fewer neurons. Theorem 3.2.4, the main result of this section, states that for a decomposable

code on up to 6 neurons, there exists a realization where the embedded code can be embedded

in the atom of the ambient codeword. As this work on decomposable codes was undertaken to

better understand the results of Chapter 5 on 6-neuron codes, we halted our efforts after obtaining

Theorem 3.2.4.

Theorem 3.2.4. Suppose that C is a decomposable code on up to 6 neurons with embedded code

C∣ϕ and ambient code C∣[n]∖ϕ. Then C is convex if and only if C∣ϕ and C∣[n]∖ϕ are convex.

The proof of Theorem 3.2.4, which appears at the end of this section, requires us to know the

idea of nondegeneracy introduced by Cruz et al. [10, §2]. Indeed, condition (i) of the following

definition will guarantee that, for a decomposable code, the atom of the ambient codeword ψ has

full dimension, and hence we can place within it a realization of the embedded code.

Definition 3.2.5. [10, Definition 2.10] For a collection U = {Ui}ni=1 of subsets of Rd, consider the

following properties:

(i) For all σ ⊆ [n], the set (∩i∈σUi) ∖ (∪j∈[n]∖cUj) is either empty or top-dimensional, i.e., every

nonempty intersection with an open subset of Rd has nonempty interior.

(ii) For all nonempty σ ⊆ [n], we have ⋂i∈σ ∂Ui ⊆ ∂(⋂i∈σ Ui).

Then U is top-dimensional if condition (i) holds, and is nondegenerate if both (i) and (ii) hold.

We say that a code C is top-dimensionally convex (respectively, nondegenerately convex) if it

has a convex realization U = {Ui}ni=1 that is top-dimensional (respectively, nondegenerate).
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Proposition 3.2.6. Suppose that C is a decomposable code with embedded code C∣ϕ and ambient

code C∣[n]∖ϕ. If C∣ϕ is top-dimensionally convex and C∣[n]∖ϕ is convex, then C is convex.

Proof. Assume that C∣ϕ is top-dimensionally convex and C∣[n]∖ϕ is convex. Relabel the neurons so

that ϕ = {1,2, . . . , k} and [n] ∖ ϕ = {k + 1, k + 2, . . . , n}. Let V = {Vi}ki=1 be a convex realization

for C∣ϕ andW = {Wi}ni=k+1 a top-dimensional convex realization for C∣[n]∖ϕ. We may assume that

both V andW are realizations in Rd, for some d. (Indeed, every realization U in some Rd1 can be

elevated to a realization in Rd1+d2 by taking the product of each Ui in U with (0,1)d2 .)

As W is top-dimensional and ψ is a codeword of C, there exists an open ball B in Rd that is

strictly contained in the atom for the codeword ψ. Also, recall that we may assume that every Vi

in the realization V is contained in an open ball B̃ in Rd (cf. [8, Remark 2.19]). Let F ∶ B̃ → B be

the scaling bijection between the two balls (which preserves convexity and is a homeomorphism).

By construction, {F (Vi)}ki=1 ∪ {Wi}ni=k+1 is a convex realization of C.

In light of Proposition 3.2.6, we need only show that convexity and top-dimensional convexity

are equivalent for codes on up to 5 neurons (see Proposition 3.2.12 below), and then Theorem 3.2.4

will follow. To prove Proposition 3.2.12, we need the following two results on nondegenerate

convexity, the first of which follows directly from the results of Cruz et al. [10, Proposition 4.3

and Lemma 3.1]:

Lemma 3.2.7. Every max-intersection-complete code is nondegenerately convex.

Proof. [10, Proposition 4.3 and Lemma 3.1] give an explicit construction of an open convex real-

ization of a max-intersection-complete code. One can verify that this realization is also nondegen-

erate.

The following result is also, in essence, due to Cruz et al. [10]:

Lemma 3.2.8 (Monotonicity of top-dimensional and nondegenerate convexity). Let C be a code

on n neurons, and let D be a code such that C ⊆ D ⊆ ∆(C).

(i) If C is top-dimensionally convex, then D is also top-dimensionally convex.
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(ii) If C is nondegenerately convex, then D is also nondegenerately convex.

Proof. Both (i) and (ii) follow directly from the proof of Theorem [10, Theorem 1.3], if we can

add the following assertion to the statement of [10, Lemma 3.1]: “Also, if U is top-dimensional,

then V can also be chosen to be top-dimensional”. Indeed, the proof of [10, Lemma 3.1] directly

accommodates this additional assertion once we add the assertion (which is worded identically to

the prior one) to [10, Lemma A.7]: “Also, if U is top-dimensional, then V can also be chosen to

be top-dimensional.” The proof of this assertion is achieved by starting from the proof of [10,

Lemma A.7], replacing the two occurrences of the word “non-degenerate” with “top-dimensional”

and then deleting the final sentence of that proof.

In light of Lemma 3.2.8, to show top-dimensional convexity for convex codes on up to 5 neu-

rons, we can proceed one simplicial complex ∆ at a time: it suffices to check that Cmin(∆), the

minimal code of ∆, is top-dimensionally convex. (Recall Definition 2.2.4 for Cmin(∆).)

However, there is one simplicial complex for which a different approach must be taken, namely,

the simplicial complex of the non-convex code C⋆ (with no local obstructions) from Example 2.2.13:

∆(C⋆) = the simplicial complex with facets 2345, 123, 134, 145 . (3.1)

Note that Cmin(∆(C⋆)) = C⋆. Part (ii) of the next result clarifies which codes with simplicial

complex (3.1) are convex, while part (i), which is due to Goldrup and Phillipson [17], pertains to

all other simplicial complexes on 5 vertices.

Remark 3.2.9. The code C⋆ has importance beyond classification of codes on 5 neurons. It is the

code from which we will generalize the wheel object in Chapter 5.

Proposition 3.2.10 (Convexity of 5-neuron codes). Let ∆ be a connected simplicial complex on 5

vertices.
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(i) If ∆ is non-isomorphic to the simplicial complex (3.1), then the code Cmin(∆) is top-dimensionally

convex.

(ii) If ∆ is the simplicial complex (3.1), then a code C with simplicial complex ∆(C) = ∆ is top-

dimensionally convex if and only if C contains at least one of the following codewords: 1,

234, and 345.

Proof. (i) If Cmin(∆) is max-intersection-complete, the result follows from Lemma 3.2.7. By [17,

Theorem 3.1] (in that article, an isomorphic copy of Cmin(∆(C⋆)) is given the name “C4”), all

remaining minimal codes other than Cmin(∆(C∗)) have convex realizations depicted in [17, Ap-

pendix B]. These realizations are easily seen to be top-dimensional.

(ii) We first prove⇐. The code C⋆∪{1} is max-intersection-complete and thus, by Lemma 3.2.8,

is nondegenerately convex. The code C⋆ ∪ {234} is top-dimensionally convex: such a realization

will appear in the forthcoming work of Magaña and Phillipson [18]. The code C⋆ ∪ {345} is also

top-dimensionally convex: after relabeling the neurons via the permutation (25)(34), the resulting

code is the earlier code C⋆∪{234}. Thus, by Lemma 3.2.8(i), every code C with simplicial complex

∆(C) = ∆ that contains 1, 234, or 345 is convex.

Finally, the contrapositive of⇒ follows directly from Proposition 5.2.13.

Remark 3.2.11. Proposition 3.2.10(ii) implies that C⋆ ∪ {1}, C⋆ ∪ {234}, and C⋆ ∪ {345} are

the minimal (with respect to inclusion) convex codes with neural complex equal to ∆(C⋆). This

corrects an error in [12, Remark 3.5], where it was asserted that C⋆ ∪ {234,345} is such a minimal

convex code.

Next, we show that convexity and top-dimensional convexity are equivalent for codes on up to

5 neurons.

Proposition 3.2.12. Let C be a code on 5 or fewer neurons. Then C is convex if and only if C is

top-dimensionally convex.

Proof. The direction ⇐ holds by definition. For ⇒, let C be a convex code on n neurons, where

n ≤ 5. If n ≤ 4, then [9, Proposition 1.7], which states that a code with n ≤ 4 neurons is max-
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intersection-complete if and only if it is convex, and Lemma 3.2.7 imply that C is nondegenerately

convex.

Now assume n = 5. If the neural complex ∆(C) is non-isomorphic to ∆(C⋆), the simplicial

complex shown in (3.1), then the result follows from Proposition 3.2.10(i) and Proposition 3.2.7(i).

The only remaining case, therefore, is when ∆(C) is isomorphic to ∆(C⋆). By relabeling neurons,

if necessary, we may assume that ∆(C) = ∆(C⋆). As C is convex, then by Proposition 3.2.10((ii)),

the code C contains at least one of the codewords 1, 234, and 245. We saw in the proof of Proposi-

tion 3.2.10((ii)) that C is top-dimensionally convex. This completes the proof.

We can now prove our main result.

Proof of Theorem 3.2.4. The implication⇒ follows from Lemma 3.0.1, and⇐ is immediate from

Propositions 3.2.6 and 3.2.12.

3.3 Pure Neural Codes

We now turn to the family of pure neural codes. Unlike the reducible or decomposable codes,

the pure codes are not instances of a simple code disguised with extra complexity, but rather an

interesting variety of codes with properties not applicable to all codes.

Definition 3.3.1. A neural code C is pure if its neural complex ∆(C) is pure, that is, every facet of

∆(C) has the same dimension.

Next, we show that for pure codes of low or high dimension, being convex is equivalent to

being max-intersection-complete, and thus is easy to check. For a discussion of the algorithmic

aspects of checking whether a code is max-intersection-complete, see [19, §6].

Theorem 3.3.2. Let C be a code on n neurons. If C is pure of dimension 0, 1, n − 2, or n − 1, then

the following are equivalent:

(i) C is convex,
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(ii) C has no local obstructions, and

(iii) C is max-intersection-complete.

Proof. The implications (iii)⇒ (i)⇒ (ii) follow from Propositions 2.2.6 and 2.2.9.

The implication (ii) ⇒ (iii) holds for dimension 0 (trivially, as by assumption ∅ ∈ C), dimen-

sion 1 (this follows easily from [20, Theorem 1.3]), and dimension n−1 (by [9, Lemma 2.5]). Now

assume that C is pure of dimension n − 2 and has no local obstructions.

Let F1, F2, . . . , Fm be distinct facets of ∆(C) (with m ≥ 2); we must show that σ ∶= ⋂mj=1Fj is a

codeword of C. As C has dimension n−2, there exist distinct i1, i2, . . . , im such that Fj = [n]∖{ij}

(for every j). Thus, σ = [n] ∖ {i1, i2, . . . , im}.

We now claim that every facet of ∆(C) that contains σ is one of the Fj . Suppose F is such a

facet.

As ∆(C) is pure, F = [n] ∖ {i} for some i. Then i /∈ σ, and so i ∈ {i1, i2, . . . , im}. Therefore,

i = ij (for some j = 1, . . . ,m) and thus F = Fj .

The claim implies that the facets of Lkσ(∆(C)) are precisely the sets

Fj ∖ σ = {i1, i2, . . . , ij−1, îj, ij+1, . . . , im}, for j = 1, . . . ,m.

Thus, Lkσ(∆(C)) is the hollow simplex on m vertices (that is, it contains all possible faces on the

m vertices except the top face) and so is not contractible (recall that m ≥ 2). Thus, as C has no

local obstructions by assumption, we have σ ∈ C, and so (ii)⇒ (iii) holds.

The analogous result for pure codes of dimension 2 or n−3 (or any dimension in between) does

not hold. In fact, we have already seen examples of such codes. One is the code from Example

2.2.12, which is a convex code on n = 5 neurons that fails to be max-intersection-complete; this

code is pure and of dimension n − 3 = 2. Another example is the code in Example 5.2.10, which is

pure of dimension 2, has no local obstructions, and is non-convex.

25



4. THE FACTOR COMPLEX AND MAX-INTERSECTION-COMPLETE CODES*

The fact that the neural ideal JC of a code C retains all the information about C (due to the one-

to-one correspondence between JC and C) has prompted investigations into how one can discover

properties of C just from exmaining JC . In Curto et al., the authors discovered a signature for a

code to be intersection-complete in JC [21, Theorem 1.9]. They then asked whether there is such

an algebraic signature for a code to be max-intersection-complete.

In this chapter we answer the question posed by the authors of [21]. Our main result, Theo-

rem 4.0.1 below, gives a characterization for when a code is max-intersection-complete in terms of

the canonical form of its neural ideal and the Stanley–Reisner ideal I(∆(C)) of its simplicial com-

plex ∆(C). Recall the definitions of max-intersection-completeness and intersection-completeness

(Remark 2.2.5), the canonical form of a neural ideal (Definition 2.3.6), and the Stanley-Reisner

ideal (Definition 2.5.2).

Theorem 4.0.1. A code C on n neurons is max-intersection-complete if and only if for every non-

monomial φ in the canonical form of the neural ideal of C, there exists i ∈ [n] such that

(i) every associated prime of I(∆(C)) that contains xi also contains φ, and

(ii) (1 − xi) ∣ φ.

The proof of Theorem 4.0.1 makes use of a new combinatorial object, the factor complex of

a code. This factor complex, which is closely related to the polar complex introduced in [16],

is a simplicial complex that, like the neural ideal but unlike ∆(C), captures all the combinatorial

information in a code C. The proof uses the factor complex as a stepping stone to the neural ideal.

First, we show how to determine max-intersection-completeness of C from its corresponding factor

complex. From there, we translate these conditions for max-intersection-completeness found in

the factor complex into conditions found in the neural ideal. However, it is not required that

*Reprinted with permission from "Neural codes and the factor complex" by Alexander Ruys de Perez, Laura
Matusevich, and Anne Shiu, 2020. Advances in Applied Mathematics, 114, 101977, Copyright 2019 Elsevier Inc.
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one first understand the signature for max-intersection-completeness in the factor complex to be

able to state the corresponding signature in the neural ideal. One may think of a neural code, its

neural ideal, and its factor complex as three equivalent worlds for storing information about the

neural code. We show how to translate a feature about the neural code, such as what the maximal

codewords are, into the language of any of these three worlds. Therefore, as a bonus, we will also

show how to determine whether a code is intersection-complete directly from its factor complex

(Theorem 4.1.6). Indeed, we expect in the future that the factor complex may help us understand

more properties of neural codes.

We finish this chapter by describing how Theorem 4.0.1 improves the computational time for

determining whether a code is max-intersection-complete. There are two naive methods of deter-

mining max-intersection-completeness: (1) checking whether all intersections of maximal code-

words are contained in C and (2) checking whether for each σ ∈ ∆(C) ∖ C, the intersection cσ of

all maximal codewords of C which contain σ, is not equal to σ. As the runtime of either method

is exponential on the number of neurons, neither of these two methods is practical for analyzing

codes on n neurons as n gets large. From Theorem 4.0.1 we now have a method to check the max-

intersection-completeness of C from the canonical form of JC . This method is an improvement on

the previously mentioned naive methods in that instead of checking each individual missing face of

∆(C), the canonical form method checks entire Boolean intervals of missing faces at once. How-

ever, there is a caveat: we assume that one knows the canonical form of JC , a piece of information

that is not needed by the naive methods.

4.1 Main Results Concerning the Factor Complex

In this section we introduce a new combinatorial tool to study neural codes: the factor com-

plex (Definition 4.1.1), and state our four main results. Theorems 4.1.3 and 4.1.4 summarize the

relationships between codes, their factor complexes, and their related ideals (neural ideals and

Stanley–Reisner ideals). These results are used to prove Theorems 4.1.6 and 4.1.7, which charac-

terize intersection-complete codes and max-intersection-complete codes in two ways: combinato-

rially and algebraically.
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Definition 4.1.1. Let C be a code on n neurons, and recall the primary decomposition of the neural

ideal JC given in Chapter 2. The factor ideal of C is obtained by polarizing the components of JC ,

namely,

FI(C) ∶=
g

⋂
h=1

P(Ph).

The factor complex ∆∩(C) of C is the simplicial complex on [n] ∪ [n] whose Stanley–Reisner

ideal is FI(C). (Recall Remark 2.5.4: FI(C) ⊆ S = F2[x1, . . . , xn, y1, . . . , yn], while ∆∩(C) is on

vertices {1, . . . , n,1, . . . , n}, with the correspondence being xi ↔ i and yi ↔ i.) A face of ∆∩(C)

is defective if it contains neither i nor i for some i ∈ [n] (we think of the lack of i and i as a defect,

or flaw); faces that are not defective are called effective. We say that B ⊆ [n] is a prime-set of

∆∩(C) if [n]∪B ∉ ∆∩(C), and B is furthermore minimal if B is minimal with respect to inclusion

among prime-sets. Lemma 4.2.5 gives the reason why we chose this terminology.

Example 4.1.2 (Example 2.5.3, continued). For C′ = {1,23,123}, the neural ideal decomposes as

follows:

JC′ = ⟨(1−x1)(1−x3), (1−x1)(1−x2), x2(1−x3), x3(1−x2)⟩ = ⟨x2, x3, 1−x1⟩∩⟨1−x2, 1−x3⟩.

The factor ideal is therefore

FI(C′) = ⟨x2, x3, y1⟩ ∩ ⟨y2, y3⟩,

and so the two facets of the factor complex ∆∩(C′) are 123 and 1231 (both are effective). The

minimal prime-sets of ∆∩(C′) are {2} and {3}.

Theorem 4.1.3 (Codes, factor complexes, and neural ideals). Let C be a code on n neurons, and

C′ its complement code defined in (2.1). The following two maps are bijections:

{pseudomonomials in JC′} ← {intervals in C} → {effective faces of ∆∩(C)}

∏i∈c xi∏j∈[n]∖d(1 − xj) ↤ [c, d] ↦ d ∪ [n] ∖ c

Moreover, every facet of ∆∩(C) is effective, and the following are equivalent:
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(1) [c, d] is a maximal interval in C,

(2) ∏i∈c xi∏j∈[n]∖d(1 − xj) ∈ CF(JC′), and

(3) d ∪ [n] ∖ c is a facet of ∆∩(C).

Theorem 4.1.4 (Codes, factor complexes, and Stanley–Reisner ideals). Let C be a code on n neu-

rons, with complement code C′ and factor complex ∆∩(C). The following two maps are bijections:

{minimal primes of I(∆(C))} ← {maximal codewords of C} →
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

minimal prime-sets

of ∆∩(C′)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⟨xi ∣ i ∈ [n] ∖M⟩ ↤ M ↦ [n] ∖M

The proofs of Theorems 4.1.3 and 4.1.4 are postponed until Sections 4.2.1 and 4.2.2, respec-

tively.

Example 4.1.5 (Example 4.1.2, continued). According to Theorem 4.1.3, the facets 123 and 1231

of ∆∩(C′) correspond to the two maximal intervals of C′, [1,1] and [23,123], respectively, and

also to the two pseudomonomials in CF(JC), namely, x1(1 − x2)(1 − x3) and x2x3, respectively.

Similarly, Theorem 4.1.4 implies that the minimal prime-sets {2} and {3} of ∆∩(C′) corre-

spond to the minimal primes ⟨x2⟩ and ⟨x3⟩ of I(∆(C)) = ⟨x2x3⟩ and also to the maximal code-

words 13 and 12 of C.

The following result translates the algebraic characterization of intersection-complete codes

from [21] into a new combinatorial criterion.

Theorem 4.1.6 (Intersection-complete codes). Let C be a code on n neurons with neural ideal JC ,

and let C′ be the complement code of C with factor complex ∆∩(C′). The following are equivalent:

(1) C is intersection-complete,

(2) every pseudomonomial ∏
i∈σ
xi ∏

j∈τ
(1 − xj) in CF(JC) satisfies ∣τ ∣ ≤ 1, and

(3) every facet F of ∆∩(C′) satisfies ∣F ∩ [n]∣ ≥ n − 1.
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Proof. The equivalence between 4.1.6 and 4.1.6 is [21, Theorem 1.9]. By Theorem 4.1.3, ∏
i∈σ
xi ∏

j∈τ
(1−

xj) belongs to the canonical form of JC if and only if F = [n] ∖ τ ∪ [n] ∖ σ is a facet of ∆∩(C′).

Thus, the condition ∣τ ∣ ≤ 1 is equivalent to ∣F ∩ [n]∣ ≥ n−1, and so 4.1.6 is equivalent to 4.1.6.

The following result is an expanded version of Theorem 4.0.1.

Theorem 4.1.7 (Max-intersection-complete codes). Let C be a code on n neurons with neural

ideal JC , and let C′ be the complement code of C with factor complex ∆∩(C′). The following are

equivalent:

(1) C is max-intersection-complete,

(2) for every facet F of ∆∩(C′) that does not contain [n], there exists i ∈ [n] such that

(i) every minimal prime-set of ∆∩(C′) that contains i also contains some j such that j ∉ F ,

and

(ii) i ∉ F ,

(3) for every φ ∈ CF(JC) that is not a monomial, there exists i ∈ [n] such that

(i) every minimal prime of I(∆(C)) that contains xi also contains φ, and

(ii) (1 − xi) ∣ φ.

Proof. We begin by proving (2)⇔(3). By Theorem 4.1.3, φ =∏i∈c xi∏j∈[n]∖d(1−xj) ∈ CF(JC) if

and only if F = d ∪ [n] ∖ c is a facet of ∆∩(C′). Furthermore, φ is a non-monomial exactly when

d /⊇ [n], if and only if F does not contain [n]. Thus, by inspection of φ and F , (2)(i) is equivalent

to (3)(i), and so we need only show (2)(ii)⇔(3)(ii).

By Theorem 4.1.4, the prime ideal P = ⟨xj ∣ j ∈ B⟩ is associated to I(∆(C)) if and only if B

is a minimal prime-set of ∆∩(C′). Thus, xi ∈ P exactly when i ∈ B. Next, it is straightforward to

check that P contains φ =∏i∈c xi∏j∈[n]∖d(1−xj) if and only if B ∩ c ≠ ∅. As φ corresponds to the

facet F = d ∪ [n] ∖ c of ∆∩(C′), it follows that P contains φ if and only if j ∉ F for some j ∈ B.

This concludes the proof of (2)⇔(3).
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We set up notation needed to prove (1)⇔(2). Let B1,B2, . . . ,Bu be the minimal prime-sets of

∆∩(C′). By Theorem 4.1.4, the maximal codewords of C are m1 = [n] ∖B1, . . . ,mu = [n] ∖Bu.

We claim that (2) is equivalent to the following:

(2’) for every facet F of ∆∩(C′) that does not contain [n],

([n] ∖ ⋃
v∈HF

Bv) /⊆ F, (⋆)

where

HF ∶= {v ∈ [u] ∣ Bv ⊆ F}.

Indeed, (⋆) states that there exists i ∈ [n] such that i ∉ F and i is not in any minimal prime-set

Bv ⊆ {1,2, . . . , n} for which Bv ⊆ F . This latter condition exactly matches (2)(ii). Hence, our

claim holds, and we may complete this proof by showing (1)⇔(2’).

(⇐) We prove the contrapositive. Suppose that the intersection of maximal codewords c =

⋂
v∈V

mv (for some ∅ ≠ V ⊆ [u]) is not in C, that is, c ∈ C′. By Theorem 4.1.3, c ∪ [n] ∖ c is a face of

∆∩(C′). Note that

[n] ∖ c = [n] ∖ ⋂
v∈V

mv = ⋃
v∈V

[n] ∖mv = ⋃
v∈V

Bv. (4.1)

Let F be a facet of ∆∩(C′) containing c∪[n] ∖ c. It follows from (4.1) that F contains the union of

minimal prime-sets ⋃
v∈V

Bv, which implies that F does not contain [n] (as, otherwise, eachBv∪[n]

is contained in F and hence is a face of ∆∩(C′), contradicting the fact thatBv is a prime-set). Since

F ⊇ [n] ∖ c = ⋃
v∈V

Bv, we have that V ⊆HF . Therefore, [n] ∖ ⋃
v∈HF

Bv ⊆ [n] ∖ ⋃
v∈V

Bv = c, where the

equality comes from (4.1). We conclude that F is a facet of ∆∩(C′) not containing [n] such that

([n] ∖ ⋃
v∈HF

Bv) ⊆ c ⊆ (c ∪ [n] ∖ c) ⊆ F .

(⇒) Suppose C is max-intersection-complete. Let F be a facet of ∆∩(C′) that does not contain

[n]. Set c ∶= [n] ∖ ⋃
v∈HF

Bv. Our goal is to show that c /⊆ F .

We accomplish this by proving two facts. First, that c ∪ [n] ∖ c is not a face of ∆∩(C′), and

second, that [n] ∖ c = ⋃
v∈HF

Bv. The first fact implies that c ∪ [n] ∖ c /⊆ F and the second yields
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[n] ∖ c ⊆ F . Our desired relation c /⊆ F will then follow.

For the first fact, recall that [n] ∖Bv =mv. Therefore,

c = [n] ∖ ⋃
v∈HF

Bv = ⋂
v∈HF

[n] ∖Bv = ⋂
v∈HF

mv,

so c is the intersection of maximal codewords. As C is max-intersection-complete, c ∈ C, and thus

c /∈ C′. Now Theorem 4.1.3 implies that c ∪ [n] ∖ c /∈ ∆∩(C′).

For the second fact, [n] ∖ c = [n] ∖ ([n] ∖ ⋃
v∈HF

Bv) = ⋃
v∈HF

Bv = ⋃
v∈HF

Bv.

Example 4.1.8 (Example 4.1.5, continued). The code C = {∅,2,3,12,13} is neither intersection-

complete nor max-intersection-complete (as 1 = 12 ∩ 13 ∉ C). We can read this information from

Theorems 4.1.6 and 4.1.7, as follows. For non-intersection-completeness, this can be seen in two

ways: first, the pseudomonomial x1(1 − x2)(1 − x3) is in the canonical form of JC , and, second,

the intersection of the facet 123 with 123 has size 1, rather than 2 or 3.

For non-max-intersection-completeness, recall that the minimal prime-sets of ∆∩(C′) are {2}

and {3} (equivalently, the minimal primes of I(∆(C)) are ⟨x2⟩ and ⟨x3⟩). Now, 123 is a facet

of ∆∩(C′) that does not contain 123, but for i ∈ {1,2,3}, either part (2)(ii) of Theorem 4.1.7 is

violated (when i = 2,3) or part (2)(i) is violated (when i = 1). Alternatively, CF(JC) contains the

non-monomial x1(1−x2)(1−x3), but for i ∈ {1,2,3}, either part (3)(ii) of Theorem 4.1.7 is violated

(when i = 2,3) or part (3)(i) is violated (when i = 1). Thus, C is not max-intersection-complete.

4.2 Factor Complexes, Neural Ideals, and Codes

In this section, we prove Theorems 4.1.3 and 4.1.4.

4.2.1 Proof of Theorem 4.1.3

We wish to prove that the following maps are bijections:

{pseudomonomials in JC′}
α←Ð {intervals in C} βÐ→ {effective faces of ∆∩(C)}

∏i∈c xi∏j∈[n]∖d(1 − xj) ↤ [c, d] ↦ d ∪ [n] ∖ c
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The fact that α is a bijection is straightforward from [2, Lemma 5.7]. To show that β is a bijection,

we need to better understand the factor ideal and factor complex of C.

Lemma 4.2.1. Let C be a code with neural ideal JC , and let φ be a pseudomonomial. Then φ ∈ JC

if and only if P(φ) ∈ FI(C).

Proof. Recall the decomposition JC = ⋂gh=1Ph from (2.3). Hence, φ ∈ JC if and only if φ ∈ Ph

for all h. Given the form (2.4) of each component Ph, it is straightforward to check that φ ∈ Ph is

equivalent to P(φ) ∈ P(Ph). Thus, as FI(C) = ⋂P(Ph), the desired result follows.

Our next results shows how to use the factor complex of a code to read off its codewords.

Lemma 4.2.2. Let C be a code on n neurons. Then c ∈ 2[n] is a codeword of C if and only if

c ∪ [n] ∖ c is a face of ∆∩(C).

Proof. By [2, Lemma 3.2], c ∈ C if and only if φc =∏i∈c xi∏j∉c(1 − xj) ∉ JC . This is equivalent to

P(φc) ∉ FI(C) by Lemma 4.2.1. Since FI(C) is the Stanley–Reisner ideal of ∆∩(C), we have that

P(φc) ∉ FI(C) exactly when c ∪ [n] ∖ c is a face of ∆∩(C), which concludes the proof.

We now extend Lemma 4.2.2 to show how to extract the intervals of C from its factor complex.

Lemma 4.2.3. (Interval-Face Correspondence) Let C be a code on n neurons, and let c, d ∈ 2[n].

Then [c, d] ⊆ C if and only if d ∪ [n] ∖ c is a face of ∆∩(C).

Proof. (⇐) Suppose d∪[n] ∖ c is a face of ∆∩(C), and letw ∈ [c, d]. Thenw∪[n] ∖w ⊆ d∪[n] ∖ c

is a face of ∆∩(C) and thus w ∈ C by Lemma 4.2.2.

(⇒) We now assume that d ∪ [n] ∖ c is not a face of ∆∩(C) and show that [c, d] is not an

interval of C. As FI(C) is the Stanley–Reisner ideal of ∆∩(C), the decomposition (2.5) implies

that the ideal

⟨{xi ∣ i /∈ d ∪ [n] ∖ c} ∪ {yj ∣ j /∈ d ∪ [n] ∖ c}⟩ = ⟨{xi ∣ i ∈ [n] ∖ d} ∪ {yj ∣ j ∈ c}⟩
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is not associated to FI(C), and therefore the following ideal is not associated to JC:

⟨{xi ∣ i ∈ [n] ∖ d} ∪ {(1 − xj) ∣ j ∈ c}⟩. (4.2)

Thus, as CF(JC) is a generating set for JC , there exists a pseudomonomial φ =∏i∈σ xi∏j∈τ(1−xj)

in CF(JC) that is not in the ideal (4.2), and so σ ⊆ d and τ ⊆ [n] ∖ c. Note that the indicator

pseudomonomial φc∪σ is in JC , as it is divisible by φ. We conclude that σ ∪ c ∈ [c, d] ∖ C, and so

[c, d] /⊆ C.

We can now better understand the facets of ∆∩(C).

Lemma 4.2.4. Let C be a code on n neurons. Every facet of ∆∩(C) is effective.

Proof. By (2.5), the facets of ∆∩(C) correspond to associated primes of FI(C), which are polar-

izations of associated primes of JC . Since the latter primes cannot contain both x` and 1 − x`, it

follows that the former primes cannot contain both x` and y`, which concludes the proof.

Proof of Theorem 4.1.3. By [2, Lemma 5.7], the map α is a bijection, and the correspondence

between minimal pseudomonomials and maximal intervals follows from the fact for any two in-

tervals M1 and M2 of C, we have M1 ⊆M2 if and only if α(M2) ∣ α(M1). By Lemma 4.2.3, plus

the fact that effective faces have the form d ∪ [n] ∖ c for some c ⊆ d, the map β is also a bijec-

tion. Lemma 4.2.4 states that all facets of ∆∩(C) are effective, and thus for each facet F we have

F = β(M) for some interval M of C. The correspondence between facets and maximal intervals

then follows from the fact that for intervals M1 and M2 of C, we have M1 ⊆ M2 if and only if

β(M1) ⊆ β(M2).
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4.2.2 Proof of Theorem 4.1.4

We wish to show that the maps

{minimal primes of I(∆(C))} γ←Ð {maximal codewords in C} δÐ→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

minimal prime-sets

of ∆∩(C′)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⟨xi ∣ i ∈ [n] ∖M⟩ ↤ M ↦ [n] ∖M

are bijections. The main step is to understand the relationship between the prime-sets of ∆∩(C′)

and the associated primes of I(∆(C)).

Lemma 4.2.5. Let C be a code on n neurons with complement code C′. A subset B ⊆ [n] is a

prime-set of ∆∩(C′) if and only if ⟨xi ∣ i ∈ B⟩ contains I(∆(C)). Consequently, B is a minimal

prime-set of ∆∩(C′) if and only if ⟨xi ∣ i ∈ B⟩ is a minimal prime of I(∆(C)).

Proof. By definition, B is a prime-set of ∆∩(C′) if and only if [n] ∪ B is not a face of ∆∩(C′).

Equivalently, every facet of ∆∩(C′) of the form F = [n] ∪ [n] ∖ c satisfies B ∩ c ≠ ∅. By Theo-

rem 4.1.3, F = [n] ∪ [n] ∖ c is a facet of ∆∩(C′) if and only if the monomial ∏i∈c xi belongs to

CF(JC). Also, B ∩ c ≠ ∅ if and only if ∏j∈c xj ∈ ⟨xi ∣ i ∈ B⟩. Now the result follows, because the

monomials in CF(JC) generate I(∆(C)).

Proof of Theorem 4.1.4. The map γ is a bijection, by (2.5) and the fact that maximal codewords

of C are facets of ∆(C), and I(∆(C)) is its Stanley–Reisner ideal. Given that γ is a bijection,

Lemma 4.2.5 shows that δ ○ γ−1 is a bijection, and so, δ is a bijection, completing the proof.

4.3 The Factor Complex and the Polar Complex

In this section, we explore the relationship between the factor complex and the polar complex

introduced in [16]. For a code C, the polar complex, denoted by ∆P(C), is the simplicial complex

whose Stanley–Reisner ideal is P(JC), the polarization of the neural ideal of C. The ideal P(JC)

is the polar ideal of C.
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We first show in an example that the polar and factor complexes associated to a code are, in

general, not the same.

Example 4.3.1. For the complement code C′ = {1,23,123} from Example 4.1.8, we polarize the

neural ideal JC′ = ⟨(1 − x1)(1 − x3), (1 − x1)(1 − x2), x2(1 − x3), x3(1 − x2)⟩ to obtain the polar

ideal

P(JC′) = ⟨y1y3, y1y2, x2y3, x3y2⟩ = ⟨x2, x3, y1⟩ ∩ ⟨y2, y3⟩ ∩ ⟨x3, y1, y3⟩ ∩ ⟨x2, y2, y3⟩.

It follows that the set of facets of the polar complex ∆P(C′) is {123,1231,122,133}. Thus, the

polar complex has 2 more facets than the corresponding factor complex (recall Example 4.1.2).

On the other hand, the polar ideal and the factor ideal (and their corresponding complexes)

share many features. A first observation is that P(JC) ⊆ FI(C) by construction and Lemma 4.2.1.

Furthermore, Lemma 4.2.1 is valid when we replace FI(C) by P(JC) [16, Theorem 3.2], and

consequently Lemma 4.2.2 holds for ∆P(C). Lemma 4.2.3 also is valid for ∆P(C) [16, Corollary

5.2].

As Example 4.3.1 illustrates, FI(C) strictly contains P(JC) in general. A larger ideal makes

for a smaller simplicial complex. The following result explains the relationship between ∆∩(C)

and ∆P(C).

Proposition 4.3.2. For every code C, the factor complex ∆∩(C) is the subcomplex of the polar

complex ∆P(C) whose facets are the effective facets of ∆P(C).

Proof. Lemma 4.2.4 states that all facets of ∆∩(C) are effective, and P(JC) ⊆ FI(C) implies that

∆∩(C) ⊆ ∆P(C). So, it suffices to show that every effective facet of ∆P(C) is a face of ∆∩(C). By

[16, Corollaries 5.2 and 5.3], the effective facets of ∆P(C) are of the form d ∪ [n] ∖ c where [c, d]

is a maximal interval of C. Now apply Lemma 4.2.3.

The key difference between the factor complex and the polar complex of a code is that the

latter can have defective facets. While these facets hold useful information about quotient codes,
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as shown in [16], the structure of the smaller factor complex is more convenient for our purposes

here.

4.4 Computational Considerations

The main result of this chapter, Theorem 4.0.1, gives a new method for checking whether a code

is max-intersection-complete (Algorithm 1 below). In this section we provide an infinite family F

of codes for which this method is more efficient at checking max-intersection-completeness than

the natural brute-force approaches.

In order to analyze the runtime of our proposed algorithm, we write it explicitly below. Cor-

rectness follows directly from Theorem 4.0.1 and the correspondence between maximal codewords
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of C and minimal primes of I(∆(C)) in Theorem 4.1.4.
Algorithm 1: Checking Max-Intersection-Completeness

input:

1. C, a neural code on n neurons

2. Cmax, the list of the maximal codewords of C

3. CF(JC), the canonical form of the neural ideal of C

output: True if C is max-intersection-complete and False otherwise

initialize Min(I(∆(C)) = ∅;

for (FIRST LOOP) c ∈ Cmax do
Add ⟨{xi ∣ i ∈ [n] ∖ c}⟩ to Min(I(∆(C));

end

for (OUTER LOOP) non-monomial φ ∈ CF (JC) do

for (MIDDLE LOOP) s such that (1 − xs)∣φ do

for (INNER LOOP) P ∈ Min(I(∆(C)) do

if xs ∈ P and no xr ∈ P divides φ then
Go back to MIDDLE LOOP (next iteration of loop, or – if none – end loop);

end

end

Go back to OUTER LOOP (next iteration of loop, or – if none – end loop);

end

return False;

end algorithm

end

return True;

end algorithm

Remark 4.4.1. We point out that Algorithm 1 requires CF(JC) as part of its input, but the brute-

force methods below do not. For this reason, a complete runtime analysis of Algorithm 1 requires
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knowing the complexity of computing canonical forms, which is not currently well understood.

The canonical form algorithm given in [22] is easily seen to be exponential in the number of neu-

rons. A faster procedure for finding CF(JC) would be very desirable, and would have implications

beyond this chapter.

We now define F to be the family of all neural codes C satisfying the following properties:

(i) The number of maximal intervals of C′ is at most n, the number of neurons of C.

(ii) There exists a maximal interval [c, d] of C′ with d ≠ [n] and ∣d ∖ c∣ = n/2.

(iii) There exists a maximal interval [a, [n]] of C′, where a contains n/2 neurons.

(iv) For every maximal interval of C′ that has the form [b, [n]], if a ≠ b then a ∩ b = ∅.

(v) C′ contains at most log2(n) maximal intervals of the form [b, [n]].

Note that F is infinite, since the number of neurons has not been fixed. We emphasize that

a code C ∈ F is given as the maximal intervals of C′. This information is equivalent to knowing

CF(JC). Thus, for codes in F, the issue raised in Remark 4.4.1 is avoided. Finally, F contains

infinitely many max-intersection-complete codes, and infinitely many codes that are not max-

intersection-complete, as shown in the following two examples.

Example 4.4.2 (Family of max-intersection-complete codes). Let n ≥ 4 be even. Define D′n to

be the union of the Boolean intervals Ml = [1,12⋯(n2 + 1)] and ML = [12⋯(n2 ),123⋯n], and

define Dn to be the code on n neurons whose complement code is D′n. We will show that Dn is

max-intersection-complete and in F. The maximal codewords of Dn are 234⋯n, 134⋯n, 124⋯n,

. . . , 1234⋯(n2 − 2)(n2 )(n2 + 1)⋯n, and 1234⋯(n2 − 2)(n2 − 1)(n2 + 1)⋯n. Thus any intersection of

maximal codewords of Dn must contain n (and thus is not contained in Ml) and does not contain

at least one of 1,2,3, . . . , (n2 ) (and thus is not contained in ML). Thus no intersection of maximal

codewords is contained in D′n, and so Dn is max-intersection-complete.

Furthermore, Dn ∈ F since D′n
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• has only two maximal intervals, so Dn satisfies (i),

• contains Ml, so Dn satisfies (ii),

• contains ML, so Dn satisfies (iii),

• and has no maximal intervals of the form [b, [n]] besides ML, so Dn satisfies both (iv) and

(v)).

Hence F contains an infinite family of max-intersection-complete codes.

Example 4.4.3 (Family of non-max-intersection-complete codes). Let n ≥ 4 be even. Define Ml

and ML as in Example 4.4.2, and define E ′n to be the union of Ml, ML, and {34⋯n} (the last being

a Boolean interval consisting of only a single codeword). Let En be the code on n neurons whose

complement code is E ′n. One can verify that En ∈ F in the same manner as for Dn in Example

4.4.2. Like in the case with Dn, the maximal codewords of En are 234⋯n, 134⋯n, 124⋯n, . . . ,

1234⋯(n2 −2)(n2 )(n2 +1)⋯n, and 1234⋯(n2 −2)(n2 −1)(n2 +1)⋯n. However, the intersection of the

maximal codewords 234⋯n and 134⋯n is 34⋯n, which belongs to E ′n and hence not in En. Thus

En is not max-intersection-complete.

We compare Algorithm 1 to two brute-force methods for checking max-intersection-completeness:

Brute Force 1: Take all possible intersections of maximal codewords of C, and check whether

all are contained in C.

Brute Force 2: For every σ ∈ C′, compute cσ, the intersection of all maximal codewords of C

that contain σ. Then check whether cσ = σ.

Proposition 4.4.4. For every code C in F, Brute Force 1 and Brute Force 2 are exponential in the

number of neurons, while Algorithm 1 is sub-exponential in the number of neurons.

Proof. We begin by showing that the number of maximal codewords of any C ∈ F is at least n/2

and at most nlog2(n). Recall that these maximal codewords are in bijection with the minimal primes
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of I(∆(C)) (Theorem 4.1.4), and also that

I(∆(C)) = ⟨{xσ ∣ [σ, [n]] a maximal interval of C′}⟩. (4.3)

(Recall that for σ ⊆ [n], we use the notation xσ to denote the monomial ∏i∈σ xi.) Note that 4.3 is

true since I(∆(C)) = ⟨{xσ ∣ σ /∈ ∆(C)}⟩. We have that [σ, [n]] ⊆ C′ if and only if no c ∈ C contains

σ, which in turn holds if and only if σ /∈ ∆(C). The fact that we only need to consider σ when

[σ, [n]] is maximal follows from the fact that if xσ ∣xτ , then σ ⊆ τ , and thus [τ, [n]] ⊆ [σ, [n]].

The monomial generators of I(∆(C)) in (4.3) satisfy the following:

(∗) there is a generator xa of degree n/2 (from condition (iii)),

(∗∗) if xb ≠ xa is a generator of I(∆(C)), then gcd(xa, xb) = 1 (from condition (iv)), and

(∗ ∗ ∗) there are at most log2(n) generators (from condition (v)).

We calculate the upper bound by observing that every minimal prime P of I(∆(C)) has a

generating set GP ⊆ {x1, x2, . . . , xn}, with every monomial in (4.3) divisible by at least one xi ∈

GP . It follows that the number of ways to choose some divisor xi from each generator of I(∆(C))

is an upper bound on the number of minimal primes. This upper bound is the product of the degrees

of the monomial generators of I(∆(C)), which in turn is bounded above by nNmon , where Nmon is

the number of monomials in CF (JC). By (∗∗∗) there are at most log2(n) such monomials, so the

number of minimal primes – and thus the number of maximal codewords of C – is at most nlog2(n).

For the lower bound, we first note that by (∗) there is a monomial generator xa of I(∆(C)) that

has degree n/2. If I(∆(C)) = ⟨xa⟩, then I(∆(C)) has n/2 minimal primes. If I(∆(C)) strictly

contains ⟨xa⟩, then let P̃ be a minimal prime of the following nonzero ideal:

Ĩ ∶= ⟨xb ∣ [b, [n]] is a maximal interval of C′ and b ≠ a⟩ ⊆ I(∆(C)).

For every xi that divides xa, we claim that Pi = ⟨xi⟩ + P̃ is a minimal prime of I(∆(C)). By

construction, Pi contains I(∆(C)). If Q ⊊ Pi is another prime monomial ideal, either xi /∈ Q or
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there exists xj ∈ P̃ ∖Q. In the first case, condition (∗∗) implies that xa /∈ Q. In the second case,

by (∗∗) and the fact that P̃ is a minimal prime of Ĩ , it follows that Ĩ /⊆ Q. In both cases Q does

not contain I(∆(C)), and consequently Pi is a minimal prime of I(∆(C)). As a distinct minimal

prime Pi = ⟨xi⟩ + P̃ arises from each of the n/2 divisors xi of xa, the number of minimal primes –

and also the number of maximal codewords of C – is at least n/2.

Having found the upper and lower bounds on the number of maximal codewords of a code

C ∈ F, we now use these bounds to analyze the brute-force methods and Algorithm 1.

As there are at least n/2 maximal codewords, Brute Force 1 checks at least 2n/2 intersections

of maximal codewords, and so is exponential in the number of neurons.

Next, Brute Force 2 checks whether each codeword of C′ is contained in each maximal code-

word of C. So, the runtime will be at least the number of codewords of C′ times the number of

maximal codewords of C. There are at least n/2 maximal codewords and, by condition (ii), at least

2n/2 elements of C′. Thus, the runtime is at least (n/2) ∗ 2n/2, and so is exponential in n.

For Algorithm 1, the First Loop iterates over the maximal codewords of C (of which there are

at most nlog2(n)), and the runtime of each iteration is at most n. So, the runtime of the First Loop

is O(n1+log2(n)). The runtime for the subsequent part of the algorithm is the product of the number

of iterations of the Outer Loop, the number of iterations of the Middle Loop, and the runtime of

the Inner Loop. Since the Outer Loop iterates over a subset of CF(JC), by Theorem 4.1.3 and

condition (i) there are at most n such iterations. Since the Middle Loop iterates over the neurons,

there are at most n iterations of this loop. Finally, the Inner Loop iterates over the number of

minimal primes of I(∆(C)), of which there are at most nlog2(n). Checking to see if xs is in some

minimal prime P takes at most n steps (one must check each generator of P ) and checking to see

if any xr ∈ P divides φ takes at most n2 steps (one must compare each generator of P with each

divisor of φ). Thus the runtime of Inner Loop is at most n3+log2(n). We conclude that the combined

runtime of the Outer, Middle, and Inner Loops is O(n5+log2(n)), which, it is straightforward to

check, is sub-exponential in n.
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5. WHEELS

Remark 5.0.1. Throughout this chapter, unless explicitly stated otherwise, “convex” means “open

convex”. In particular, when we say that a code is nonconvex, we mean that it does not have a

realization of open convex sets. It is possible that the code has a realization of closed convex sets.

Recall that from a simplicial complex ∆, Proposition 2.2.6 classifies a significant number of

codes C for which ∆(C) = ∆. However, this theory leaves unclassified those codes which contain

all the mandatory faces but not all the max-intersection faces. Classifying such codes is nontrivial,

as there are both convex (Example 2.2.12) and nonconvex (Example 2.2.13) examples.

In this chapter we introduce a new phenomenon that forbids convexity, even in codes that

contain all their mandatory codewords. We show that this phenomenon – which we call a wheel –

captures all nonconvex codes (with no local obstructions) on up to 5 neurons (Theorem 5.4.1). We

also give combinatorial criteria for possessing a wheel, which we use to classify many codes on six

neurons. As an application, we show how these combinatorial criteria reveal a code that answers a

question posed by Chen, Frick, and Shiu [8]: a code that is nonconvex, has no local obstructions,

and has simplicial complex of dimension two.

The outline for this chapter is as follows: in Section 5.1 we define the wheel. Sections 5.2

and 5.3 give combinatorial criteria for wheels and other results that allow us to search computa-

tionally for wheels. In Section 5.4, we use the combinatorial criteria, along with our knowledge

of reducible and decomposable codes from Chapter 3, to search for wheels in two families of

6-neuron codes: the pure codes and the codes with 7 or fewer maximal codewords.

5.1 Wheels

Definition 5.1.1. Let C be a code on n neurons, and let U = {U1, U2, . . . , Un} be a realization of C.

A tupleW = (σ1, σ2, σ3, τ) ∈ (2[n])4 is a wheel of the realization U if it satisfies:

W(i) Uσj ∩Uσk = Uσ1 ∩Uσ2 ∩Uσ3 ≠ ∅ for all 1 ≤ j < k ≤ 3,

W(ii) Uσ1 ∩Uσ2 ∩Uσ3 ∩Uτ = ∅,
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W(iii) ifUτ andUτ∩Uσj are convex for j = 1,2,3, then there exists a line segment whose endpoints

lie one in Uσ1 ∩Uτ and the other in Uσ3 ∩Uτ , that also meets Uσ2 ∩Uτ .

The sets σ1, σ2, and σ3 are the spokes, their union σ1 ∪ σ2 ∪ σ3 is the hub, and τ is the rim. The

tupleW is a wheel of the code C if it is a wheel of every realization of C.

We remark that W(iii) immediately implies the following useful condition:

W(iii)○ Uσj ∩Uτ ≠ ∅ for j = 1,2,3.

Remark 5.1.2. In the above definition, the spokes Uσ1 and Uσ3 seem to play a different role than

Uσ2 , but this is not really the case. A more symmetric way of stating W(iii) would be to ask for

a line segment that intersects all three sets Uσj ∩ Uτ , for j = 1,2,3. We have adopted the current

numbering convention to simplify the writing in some of the proofs below.

The wheel is in fact a generalization of the nonconvexity from Example 2.2.13. In the next

section, we show that for the nonconvex code C⋆ from this example, every realization has a wheel.

See Proposition 5.2.13.

Wheels are relevant because they forbid convexity:

Theorem 5.1.3. Let U be a realization of a code C. If U has a wheel, then U is not a convex

realization. Consequently, if C has a wheel, then C is nonconvex.

Proof. Let (σ1, σ2, σ3, τ) be a wheel of the realization U = {Ui}ni=1 of C in Rd, and assume by

contradiction that U is convex. Let L be the line segment from W(iii). Since Uτ is convex, L ⊆ Uτ .

The sets Uσi , for i = 1,2,3, are convex and open. Condition W(i) implies that L intersects

Uσ1 ∩ Uσ2 ∩ Uσ3 by [12, Lemma 3.2]. As L ⊆ Uτ , it follows that Uσ1 ∩ Uσ2 ∩ Uσ3 ∩ Uτ ≠ ∅, which

contradicts W(ii).

The geometric intuition behind the proof of Theorem 5.1.3 (and the reason for our chosen ter-

minology) is that in a realization that has a wheel (σ1, σ2, σ3, τ), the Uσi’s force Uτ to be nonconvex

by bending Uτ around their intersection Uσ1∪σ2∪σ3 . See Figure 5.1.
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Uσ1 Uσ3

Uσ2

Uτ

Figure 5.1: Conceptual picture of a wheel: If Uσ1 , Uσ2 , and Uσ3 are convex, then Uτ “bends around”
Uσ1 ∩Uσ2 ∩Uσ3 and so is nonconvex.

Remark 5.1.4 (Open vs. closed sets). Recall from Remark 5.0.1 that Theorem 5.1.3 only applies

to open convexity. Indeed, while wheels prevent codes from being open convex, it is the case that

some codes with wheels can still be closed convex. For instance, the code Example 2.2.13 has a

closed convex realization given in [10].

Remark 5.1.5 (Relation to sunflowers). Wheels are closely related to ideas in recent work of

Jeffs [6]. As a start, in a realization that has a wheel, the sets Uσ1 , Uσ2 , and Uσ3 form what Jeffs

calls a 3-petal sunflower.

Jeffs uses sunflowers to construct an infinite family of nonconvex codes C2,C3, . . . [6, Definition

4.1]. We show in Example 5.1.6 that C2 contains a wheel. The codes Cm, form ≥ 3, have sunflowers

withm+1 petals. Our criteria for detecting wheels (see Section 5.2.2) have not yet been generalized

to such higher-dimensional cases, where, instead of a line intersecting the 3 petals of a sunflower,

a (d−1)-dimensional hyperplane intersects d+1 petals (cf. [6, Theorem 1.1]). Indeed, we checked

that the codes Cm, for small m ≥ 3, do not have the combinatorial wheels introduced in the next

section. We expect that all Cm, for m ≥ 3, lack wheels; however, checking condition W(iii) is

difficult.

Example 5.1.6. The following code was introduced by Jeffs [6, Definition 4.1]:

C2 = {1236,234,135,456,13,23,4,5,6,∅} .
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This code is nonconvex [6, Theorem 4.2] and is in fact minimal with respect to a certain partial

order among all nonconvex neural codes (relabeling the neurons via the permutation (1,4,2,6,3,5)

yields the code C0 in [7, Theorem 5.10]). We will see that C2 contains the wheel (5,6,4,3) (see

Example 5.2.6).

5.2 Combinatorics of Wheels

Definition 5.1.1 introduces wheels using realizations because it is convenient for proving non-

convexity. That being said, the true goal of this chapter is to obtain nonconvexity criteria in terms

of C and ∆(C), in a similar way to how Man(∆(C)) is used to determine whether C has local

obstructions [9, Corollary 4.3].

It turns out that conditions W(i), W(ii), and W(iii)○ from Definition 5.1.1 can be restated com-

binatorially, and depend only on the code C and not on the specific realization U (Proposition 5.2.3

below). The geometric condition W(iii), however, is more subtle. Nevertheless, we are able to

provide combinatorial criteria which imply the existence of wheels in every realization of C (see

Section 5.2.2). It is an open problem to recast W(iii) completely in combinatorial terms, or show

that no such characterization exists.

It will be convenient to use the notion of trunks introduced in Definition 3.1.1.

5.2.1 Combinatorial Versions of W(i), W(ii), and W(iii)○

We start with a useful technical result.

Lemma 5.2.1. Consider a code C on n neurons, a realization U = {Ui}ni=1 of C, and subsets

ϕ,ψ1, ψ2, . . . , ψr ⊆ [n]. Then Uϕ ⊆ ⋃rt=1Uψt if and only if TkC(ϕ) ⊆ ⋃rt=1 TkC(ψt).

Proof. (⇒) Suppose Uϕ ⊆ ⋃rt=1Uψt . Let c ∈ TkC(ϕ), that is, ϕ ⊆ c ∈ C. (We must show that ψs ⊆ c

for some 1 ≤ s ≤ r.) We have that

Uc ⊆ Uϕ ⊆
r

⋃
i=1

Uψt , (5.1)

where the first containment is given by ϕ ⊆ c and the second containment is by hypothesis. Next,
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c ∈ C implies Uc ∖ (⋃i/∈cUi) ≠ ∅. Combining this inequality with (5.1) yields Uψs ∖ (⋃i/∈cUi) ≠ ∅

for some s, which implies that ψs ⊆ c.

(⇐) Assume TkC(ϕ) ⊆ ⋃rt=1 TkC(ψt), that is, ϕ ⊆ c ∈ C implies ψs ⊆ c for some s. Let

p ∈ Uϕ; we must show that p ∈ Uψs for some s. Define c = {i ∈ [n] ∣ p ∈ Ui}. By construction,

p ∈ Uc ∖⋃i/∈cUi; so, c ∈ C. Also by construction (of p and c), ϕ ⊆ c. Hence, by hypothesis, there

exists s such that ψs ⊆ c. So, p ∈ Ui for all i ∈ ψs. In other words, p ∈ Uψt .

We are now ready to combinatorially recast part of Definition 5.1.1.

Definition 5.2.2. A tupleW = (σ1, σ2, σ3, τ) ∈ (∆(C))4 is a partial wheel of a code C if it satisfies

the following conditions:

P(i) σ1 ∪ σ2 ∪ σ3 ∈ ∆(C), and TkC(σi ∪ σj) ⊆ TkC(σ1 ∪ σ2 ∪ σ3) for every 1 ≤ j < k ≤ 3,

P(ii) σ1 ∪ σ2 ∪ σ3 ∪ τ /∈ ∆(C), and

P(iii)○ σj ∪ τ ∈ ∆(C) for j = 1,2,3.

Proposition 5.2.3. Let C be a code on n neurons, and letW = (σ1, σ2, σ3, τ) ∈ (∆(C))4. Using the

notation from Definition 5.2.2, the following equivalences hold:

(1) W satisfies W(i) (respectively W(ii), W(iii)○) for some realization U of C.

(2) W satisfies W(i) (respectively W(ii), W(iii)○) for all realizations U of C.

(3) W satisfies P(i) (respectively P(ii), P(iii)○).

Proof. The fact that ∆(C) is the nerve of every realization of C directly implies the equivalences

involving W(ii) and W(iii)○. For the equivalences involving W(i), use Lemma 5.2.1 with r = 1,

ϕ = σi ∪ σj , and ψ = (σ1 ∪ σ2 ∪ σ3).

5.2.2 Combinatorial Wheels

Our next goal is to give (combinatorial) criteria in terms of C and ∆(C) that imply the existence

of wheels (and therefore nonconvexity of C). We introduce three such criteria for a wheel, and
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name the wheel based on which criterion it satisfies: sprocket, wire wheel, or wheel frame (see

Propositions 5.2.5, 5.2.9, and 5.2.12).

Definition 5.2.4. A sprocket of a code C is a partial wheel (Definition 5.2.2)W = (σ1, σ2, σ3, τ) of

C that in addition satisfies:

S(iii) There exist ρ1, ρ3 ⊆ [n] such that:

S(iii)(1) TkC(σj ∪ τ) ⊆ TkC(ρj) for j = 1,3,

S(iii)(2) TkC(τ) ⊆ TkC(ρ1) ∪ TkC(ρ3), and

S(iii)(3) TkC(ρ1 ∪ ρ3 ∪ τ) ⊆ TkC(σ2).

The following result shows that sprockets are wheels.

Proposition 5.2.5 (Every sprocket is a wheel). Let C be a code on n neurons andW = (σ1, σ2, σ3, τ) ∈

(2[n])4 a quadruple that satisfies W(iii)○ (or equivalently P(iii)○).

IfW satisfies condition S(iii) from Definition 5.2.4, thenW satisfies W(iii). In particular, ifW

is a sprocket of C, thenW is a wheel of C. Consequently, if C has a sprocket, then C is nonconvex.

Proof. We must show that S(iii) and P(iii)○ together imply W(iii). Using Lemma 5.2.1, we see

that S(iii) is equivalent to the following condition in terms of covers:

G(iii) There exist ρ1, ρ3 ⊆ [n] such that in every realization U = {Ui}ni=1 of C,

G(iii)(1) Uσj ∩Uτ ⊆ Uρj for j = 1,3,

G(iii)(2) Uτ ⊆ Uρ1 ∪Uρ3 , and

G(iii)(3) Uρ1 ∩Uρ3 ∩Uτ ⊆ Uσ2 .

To complete the proof, we now show that G(iii) and P(iii)○ imply W(iii).

Let U be a realization of C such that Uτ and Uτ ∩ Uσj are convex for j = 1,2,3. Then, for

j = 1,3, condition P(iii)○ and the definition of nerve imply the inequality here:

∅ ≠ (Uσj ∩Uτ) ⊆ Uρj ,
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and the containment follows from G(iii)(1). So, for j = 1,3, there exist pj ∈ Uσj ∩Uτ ⊆ Uρj . As p1

and p3 are in the convex set Uτ , so is the line segment, denoted by L, between p1 and p3:

L ⊆ Uτ ⊆ (Uρ1 ∪Uρ3) , (5.2)

and the second containment is by G(iii)(2). Thus, the (connected) set L is covered by the nonempty

sets Uρj ∩L, which are open in the subspace topology of L. So,

∅ ≠ (Uρ1 ∩Uρ3 ∩L) ⊆ (Uρ1 ∩Uρ3 ∩Uτ) ⊆ Uσ2 ,

where the containments are by (5.2) and G(iii)(3), respectively. It follows that L meets Uσ2 ∩ Uτ ,

and so W(iii) holds.

Note that in the previous proof, we showed that every line segment whose endpoints are one in

Uσ1 ∩Uτ and the other in Uσ3 ∩Uτ meets Uσ2 ∩Uτ . This is, on its face, stronger than W(iii), which

requires the existence of only one such line segment.

To explain the terminology, a sprocket is a toothed wheel, such as the gear wheel on a bicycle;

we imagine the sets Uρ1 and Uρ3 as overlapping links in a roller chain set on a sprocket.

Example 5.2.6 (A code with a sprocket). Recall the code C2 = {1236,234,135,456,13,23,4,5,6,∅}

from Example 5.1.6. We show that W = (σ1, σ2, σ3, τ) = (5,6,4,3) is a sprocket, where ρ1 = 13

and ρ3 = 23. First, σ1 ∪ σ2 ∪ σ3 = 456 ∈ ∆(C), and TkC(σi ∪ σj) = {456} = TkC(456) for all

1 ≤ i < j ≤ 3. So P(i) holds. Next, σ1 ∪ σ2 ∪ σ3 ∪ τ = 3456 ∉ ∆(C), so P(ii) is satisfied. Also,

σ1 ∪ τ = 35, σ2 ∪ τ = 36, and σ3 ∪ τ = 34 are all faces of ∆(C); this verifies P(iii)○.

To satisfy S(iii), set ρ1 = 13 and ρ3 = 23.

Then for S(iii)(1), we have

TkC(σ1 ∪ τ) = TkC(35) = {135} ⊆ {13,135} = TkC(13) = TkC(ρ1) and

TkC(σ3 ∪ τ) = TkC(34) = {234} ⊆ {23,234} = TkC(23) = TkC(ρ3).
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For S(iii)(2), we have

TkC(τ) = TkC(3) = {1236,234,135,13,23} = {1236,135,13} ∪ {1236,234,23}

= TkC(13) ∪ TkC(23) = TkC(ρ1) ∪ TkC(ρ3).

Lastly, for S(iii)(3), we have

TkC(ρ1 ∪ ρ3 ∪ τ) = TkC(123) = {1236} ⊆ {1236,456,6} = TkC(6) = TkC(σ2).

Thus, S(iii) is satisfied, and so (5,6,4,3) is a sprocket of C2.

However, not every wheel is a sprocket.

Example 5.2.7 (A wheel that is not a sprocket). Consider the code

CTL = {123,145,245,246,346,24,45,46,1,2,3,∅} ,

and considerWTL = (1,2,3,4), which we will later show is a wheel (Proposition 5.2.10). We claim

thatWTL is not a sprocket. We show this by proving there is no eligible pair ρ1 and ρ3.

Suppose for contradiction that ρ1 and ρ3 satisfy S(iii). The codewords 145 and 346 contain,

respectively, σ1∪τ = 14 and σ3∪τ = 34, so S(iii)(1) implies that ρ1 ⊆ 145 and ρ3 ⊆ 346. Next, 24 is

a codeword that contains τ = 4, so, by S(iii)(2), we have ρ1 ⊆ 24 or ρ3 ⊆ 24. The above constraints

imply that ρ1 ⊆ {4} or ρ3 ⊆ {4}. Hence, ρ1 ∪ ρ3 ∪ τ = ρ1 ∪ ρ3 ∪ {4} is a subset of 145 or 346, and

so TkC(ρ1 ∪ ρ3 ∪ τ) contains 145 or 346. However, neither 145 nor 346 is in TkC({2}) = TkC(σ2),

contradicting S(iii)(3).

ThusWTL is not a sprocket of CTL.

Definition 5.2.8. Let C be a code. A wire wheel of C is a tupleW = (σ1, σ2, σ3, τ) satisfying P(i)

and P(ii), such that

• τ /∈ C,
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• Lkτ(∆(C)) is a tree,

• ∣σi ∖ τ ∣ = 1 for i = 1,2,3, and

• the unique path in the tree Lkτ(∆(C)) between σ1 ∖ τ and σ3 ∖ τ contains σ2 ∖ τ .

The intuition behind this name is that wire wheels have thin spokes.

Proposition 5.2.9. Wire wheels are wheels. In particular, if C has a wire wheel, then it is noncon-

vex.

Note that if C is a code and τ ∈ ∆(C) ∖ C is such that Lkτ(∆(C)) is one-dimensional, then

Lkτ(∆(C)) is contractible if and only if it is a tree. Thus, if Lkτ(∆(C)) is not a tree then C has

a local obstruction and so is nonconvex. Our interest in Proposition 5.2.9 is that it provides a

situation when there is no local obstruction, but the code is still nonconvex.

Proof of Proposition 5.2.9. Let W = (σ1, σ2, σ3, τ) be a wire wheel of C. By the assumption that

W satisfies P(i) and P(ii), and Proposition 5.2.3, we have thatW satisfies W(i) and W(ii). Thus it

suffices to show thatW satisfies W(iii).

Relabel the neurons, if necessary, so that σ` ∖ τ = {`} for ` = 1,2,3. Now let U = {Ui}ni=1 be a

realization of C such that Uτ and Uτ ∩Uσj are convex for j = 1,2,3. Note that since {`}∪τ = σ`∪τ

for ` = 1,2,3, we have that Uσ` ∩Uτ = U` ∩Uτ . Thus it suffices to show that there is a line segment

from a point in U1 ∩Uτ to a point in U3 ∩Uτ that meets U2 ∩Uτ .

First, as 1,3 ∈ Lkτ(∆(C)), the sets U1∩Uτ and U3∩Uτ are nonempty, so let L be a line segment

from a point in one set to a point in the other. The endpoints of L are in the convex set Uτ and

so L is contained in Uτ . As τ ∉ C, the line segment L is covered by the relatively open intervals

Uj ∩ L, where j ∈ Lkτ(∆(C)). Additionally, as the link is one-dimensional, these intervals have

only pairwise intersections. Hence, for each such interval Uj ∩ L that is nonempty, there exists a

point pj that is in that interval and no other intervals. We conclude that the intersection patterns of

the intervals correspond to a path in the link, which by assumption contains the vertex 2. Hence,

the desired point p2 in Uj ∩L exists.
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The method used in the proof of Proposition 5.2.9 is called order-forcing, and is described

further in [23].

Here we present an application of wheels, in particular wire wheels, in answering a question

prompted by previous work on neural codes. A 3-sparse code is a code for which the neural

complex has dimension at most 2. Recently, the authors of [8] asked whether every 3-sparse code

with no local obstructions, is convex. (The answer is “yes” for codes on up to 5 neurons [9, 17].)

The following result answers this question in the negative, by providing an example of a code on 6

neurons that has a wire wheel.

Proposition 5.2.10. There is a nonconvex 3-sparse code with no local obstructions.

Proof. Recall the code CTL ∶= {123,145,245,246,346,24,45,46,1,2,3,∅} from Example 5.2.7.

Here we use the notation TL to stand for “tree link”.

The maximal codewords have length 3, so dim(∆(CTL)) = 2. The max-intersection faces are

∅,1,2,3,4,24,45, and 46. With the exception of 4, all of these intersections are codewords of CTL.

While 4 /∈ C, the link Lk{4}(∆(CTL)) is the following path, which is contractible:
1 5 2 6 3

Thus, by Proposition 2.2.11, the code CTL has no local obstructions.

Consider WTL ∶= (σ1, σ2, σ3, τ) = (1,2,3,4). First, WTL satisfies P(i), as 123 ∈ ∆(CTL) and

TkCTL(σi ∪ σj) = {123} = TkCTL(σ1 ∪ σ2 ∪ σ3) for 1 ≤ i < j ≤ 3. Next, σ1 ∪ σ2 ∪ σ3 ∪ τ = 1234 ∉ CTL,

so P(ii) also holds. Finally, we already saw that the link Lk{4}(∆(CTL)) is a path (and thus a tree) in

which the unique path from vertex (σ1∖τ) = 1 to (σ3∖τ) = 3 passes through the vertex (σ2∖τ) = 2.

HenceWTL is a wire wheel, and so Proposition 5.2.9 implies that CTL is nonconvex.

Recall that in Definition 5.1.1 we distinguished between the wheel of a code and the wheel

of a realization. The definition of wheel of a code requires the tuple under consideration to be a

common wheel of every realization of the code. However, for proving that certain codes are not

convex, this is too strong a requirement. Indeed, it suffices to show that every realization has a

wheel, which may vary from one realization to another. Accordingly, we now introduce a different

kind of combinatorial wheel, which by Proposition 5.2.12 implies nonconvexity using this more
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flexible approach.

Definition 5.2.11. Let C be a code on n neurons and ∆(C) its neural complex. A triple (σ1, σ3, τ) ∈

(2[n])3 is a wheel frame of C if it satisfies the following conditions:

F(i) σ1 ∪ σ3 ∈ ∆(C), and for all ω ⊆ σ1 ∪ σ3 such that

(1) neither ω ⊆ σ1 nor ω ⊆ σ3, and

(2) ω ∪ τ ∈ ∆(C),

it follows that TkC(σ1 ∪ ω) ⊆ TkC(σ1 ∪ σ3) and TkC(σ3 ∪ ω) ⊆ TkC(σ1 ∪ σ3),

F(ii) τ ∪ σ1 ∪ σ3 /∈ ∆(C).

F(iii) σ1 ∪ τ ∈ ∆(C) and σ3 ∪ τ ∈ ∆(C),

F(iv) σ1 ∩ σ3 = ∅ and TkC(τ) ⊆ ∪i∈σ1∪σ3TkC({i})

Proposition 5.2.12 (Wheel frames generate wheels). Let (σ1, σ3, τ) be a wheel frame of a code C

on n neurons. Then, for every realization U of C, there exists σ2 ⊆ [n] such that (σ1, σ2, σ3, τ) is a

wheel of U . In particular, codes with wheel frames are nonconvex.

Proof. Let U = {Ui}ni=1 be a realization of C. Our first task is to construct σ2. First consider the

case when Uτ and Uτ ∩ Ui are convex for all i ∈ [n]. As ∆(C) is the nerve of U , F(ii) and F(iii)

imply that Uσ1∪τ and Uσ3∪τ are disjoint, nonempty sets. Let p1 ∈ Uσ1∪τ and p3 ∈ Uσ3∪τ , and let L

denote the line segment with endpoints p1 and p3. Then L ⊆ Uτ , as p1, p2 ∈ Uτ and Uτ is convex.

We claim that there exists some p2 ∈ L between p1 and p3 such that p2 /∈ Uσj for j = 1,3. Set

Lj = L∩(⋃i∈σj Ui) for j = 1,3. By F(iv), we have that Uτ (and thus L) is covered by {Ui}i∈σ1∪σ3 , so

that L = L1∪L3. Both L1 and L3 are relatively open subsets of the connected set L, and L1, L3 ≠ ∅

(because p1 ∈ L1 and p3 ∈ L3), so it follows that L1 ∩L3 ≠ ∅. We conclude that there exist i1 ∈ σ1,

i3 ∈ σ3, and p2 ∈ L such that p2 ∈ Ui1 ∩Ui3 . We remark that i1 ∈ (σ1∖σ3) and i3 ∈ (σ3∖σ1) because

σ1 ∩ σ3 = ∅, as required by F(iv). Let σ2 ∶= {i1} ∪ {i3}.
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In the remaining case, define σ2 as follows. Note that σ1 ⊈ σ3 and σ3 ⊈ σ1, as otherwise F(ii)

and F(iii) do not both hold. So, pick i1 ∈ (σ1∖σ3) and i2 ∈ (σ3∖σ1), and then set σ2 ∶= {i1}∪{i3}.

We now claim thatW = (σ1, σ2, σ3, τ) is a wheel of U .

First, by construction, W satisfies W(iii). To complete the proof, we will show that W also

satisfies P(i) and P(ii) (recall Proposition 5.2.3).

For P(i): By construction σ2 ⊆ σ1∪σ3. Therefore, σ1∪σ2∪σ3 = σ1∪σ3, and so σ1∪σ2∪σ3 is in

∆(C) (due to P(i)) and Tk(σ1∪σ3) ⊆ Tk(σ1∪σ2∪σ3). It remains only to show that TkC(σi∪σ2) ⊆

TkC(σ1 ∪ σ2 ∪ σ3) for i = 1,3. We verify this by applying F(i) with ω = σ2, as follows. We already

saw that σ2 ⊆ (σ1∪σ3). Also, σ2 ⊈ σ1 and σ2 ⊈ σ3 hold, because i3 ∈ (σ2∖σ3). i1 ∈ (σ2∖σ1). Lastly,

since p2 ∈ Uσ2 ∩ Uτ we see that Uσ2 ∩ Uτ ≠ ∅, and so (as ∆(C) is the nerve of U) σ2 ∪ τ ∈ ∆(C).

Thus, by F(i), the desired trunk containments hold. Hence,W satisfies P(i).

Finally,W satisfies P(ii) because of F(ii), since σ2 ⊆ σ1 ∪ σ3 implies τ ∪ σ1 ∪ σ3 = τ ∪ σ1 ∪ σ2 ∪

σ3.

We end this section by showing that the code C⋆ from Example 2.2.13 has a wheel frame.

Proposition 5.2.13 (C⋆ has a wheel frame). Let C⋆ be the code from Example 2.2.13. If D is a code

such that

(1) C⋆ ⊆ D ⊆ ∆(C⋆) and

(2) D does not contain any of the following codewords: 1, 234, and 245,

then D contains a wheel frame and thus is nonconvex. In particular, C⋆ has a wheel frame.

Proof. Assume D satisfies (5.2.13) and (5.2.13). It follows that ∆(D) = ∆(C⋆).

We will show that (σ1, σ3, τ) = (23,45,1) is a wheel frame. It is straightforward to check that

conditions F(iii) and F(ii) hold. Condition F(iv) is also easy to check (here, the assumption 1 ∉ D

is used). Finally we consider F(i). The only set ω ⊆ (σ1 ∪ σ3) = 2345 for which ω ⊈ σ1 = 23,

ω ⊈ σ3 = 45, and ω ∪ τ = ω ∪ {1} ∈ ∆(C⋆) is the set ω = 34. The trunk conditions in F(i), namely,

TkC(σ1 ∪ ω) ⊆ TkC(σ1 ∪ σ3) and TkC(σ3 ∪ ω) ⊆ TkC(σ1 ∪ σ3), are now readily seen to hold, as

(respectively) 234 ∉ D and 345 ∉ D.
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5.3 Narrowing Down the Search for Wheels

In the process of analyzing C for a wheel, one would naturally ask whether it is necessary to

look at every quadruple of faces in ∆(C). Fortunately, at least for the case of wheels satisfying the

above criteria, the answer is no. In this section, we show how one can narrow down the search.

First, we show that none of the σi’s can contain one another, and, at least in the case of sprockets,

τ must not be a codeword of C. Second, taking inspiration from the work of [9] showing that every

local obstruction “bubbles up” to a max-intersection face, we show that in a code with a sprocket,

the sprocket will ‘‘bubble up” to a wheel where the rim is a missing max-intersection face of ∆(C).

5.3.1 Non-Wheels

Here we present several cases where a quadruple (σ1, σ2, σ3, τ) cannot satisfy one of the com-

binatorial criteria introduced in the previous section. Before proceeding, we must warn that these

conditions do not necessarily mean that the quadruple cannot be a wheel; they just mean that the

quadruple will not satisfy any of the above criteria.

First, when checking for sprockets, one need only check those quadruples (σ1, σ2, σ3, τ) where

τ /∈ C.

Proposition 5.3.1. SupposeW = (σ1, σ2, σ3, τ) is a sprocket. Then τ /∈ C.

Proof. Suppose for a contradiction thatW is a sprocket of C, but τ ∈ C. By assumption there exist

ρ1 and ρ3 by whichW satisfies S(iii).

Since τ is a codeword, TkC(τ) contains τ . Hence, by S(iii)(2), at least one of TkC(ρ1) or

TkC(ρ3) contains τ . By symmetry, we may assume that τ ∈ TkC(ρ1).

By P(iii)○ and Proposition 5.2.3 there exists a codeword c such that c ∈ TkC(σ3 ∩ τ). Then by

S(iii)(1) we have c ∈ TkC(ρ3), and thus c ∈ TkC(ρ3 ∪ τ).

Since τ ∈ TkC(ρ1), we have that ρ1 ⊆ τ , and thus ρ1 ∪ ρ3 ∪ τ = ρ3 ∪ τ . Therefore, c ∈ TkC(ρ1 ∪

ρ3 ∪ τ), and so by S(iii)(3) it follows that c ∈ TkC(σ2).

Thus c ∈ TkC(σ2) ∩TkC(σ3) = TkC(σ2 ∪ σ3). Then P(i) implies that c ∈ TkC(σ1 ∪ σ2 ∪ σ3). But

then c ∈ TkC(σ1 ∪ σ2 ∪ σ3) ∩ TkC(τ) = TkC(σ1 ∪ σ2 ∪ σ3 ∪ τ), contradicting P(ii).
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The next proposition states that in order for a quadruple (σ1, σ2, σ3, τ) to be a wheel, no spoke

may be contained in another spoke. Note that this proposition is more broadly applicable than any

other result in this section. It does not apply specifically to any criterion. In fact, any wheel, even

one not satisfying any of the sufficient criteria in this chapter, must satisfy this condition.

Proposition 5.3.2. Suppose W = (σ1, σ2, σ3, τ) is a wheel of a code C. Then σj /⊆ σk for all j, k

with j ≠ k.

Proof. Suppose that W is a wheel of C, and suppose for a contradiction that σj ⊆ σk for some

1 ≤ j, k ≤ 3 with j ≠ k. By W(iii)○ we have that σk ∪ τ ∈ ∆(C). Therefore, there exists some c ∈ C

such that σk ∪ τ ⊆ c, and so it follows from σj ⊆ σk that σj ∪ τ ⊆ c as well. Thus, c contains both

σj and σk, so c ∈ TkC(σj ∪ σk) ⊆ TkC(σ1 ∪ σ2 ∪ σ3), with the containment following from P(i) and

Proposition 5.2.3. But then c ∈ TkC(σ1 ∪σ2 ∪σ3 ∪ τ), so σ1 ∪σ2 ∪σ3 ∪ τ ∈ ∆(C), which contradicts

W(ii).

The significance of Proposition 5.3.2 is its usefulness for algorithms that detect wheels. Specifi-

cally, it decreases the number of triples (σ1, σ2, σ3) one must check for being the spokes of a wheel.

The next result, Proposition 5.3.3, serves a similar, albeit more restricted, purpose in that it gives a

case where the combination of (σ1, σ2, σ3, τ) cannot be a sprocket.

Proposition 5.3.3. SupposeW = (σ1, σ2, σ3, τ) ∈ (2[n])4, C is a code on n neurons, and ρ ⊆ [n] is

such that:

(1) for j = 1,3, we have TkC(σj ∪ τ) ⊆ TkC(ρ),

(2) TkC(τ) ⊆ TkC(ρ), and

(3) TkC(ρ ∪ τ) ⊆ TkC(σ2).

(That is,W satisfies S(iii) via ρ ∶= ρ1 and ρ ∶= ρ3.) ThenW is not a sprocket of C.

Proof. Assume for a contradiction that W satisfies S(iii) when ρ ∶= ρ1 and ρ ∶= ρ3. If W is a

sprocket, then by P(iii)○ there exists a codeword c ∈ C such that c ∈ TkC(σ1 ∪ τ). Thus, by S(iii)(1),
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we have that c ∈ TkC(ρ). So, c ∈ TkC(ρ ∪ τ), and thus by S(iii)(3) we have that c ∈ TkC(σ2).

Furthermore, c ∈ TkC(σ1)∩TkC(σ2) = TkC(σ1∪σ2) ⊆ TkC(σ1∪σ2∪σ3), where the last containment

is from P(i). Hence, c ∈ TkC(σ1 ∪ σ2 ∪ σ3) ∩ TkC(σ1 ∪ τ) = TkC(σ1 ∪ σ2 ∪ σ3 ∪ τ), and thus

(σ1 ∪ σ2 ∪ σ3 ∪ τ) ⊆ c, which contradicts P(ii).

5.3.2 Bubbling Up Property for Sprockets

The next result, like Propositions 5.3.2 and 5.3.3, reduces the number of quadruples that must

be checked for a wheel. This approach, however, is inspired by the theory of local obstructions

from [9]. Recall that a local obstruction guarantees nonconvexity, and to check for local obstruc-

tions of C it suffices to see whether all mandatory faces of ∆(C) are contained in C. While not

every local obstruction is a mandatory face, nonetheless it suffices to check only the mandatory

faces, due to the bubbling up condition stated in Proposition 2.2.11.

In a similar manner, our goal is to restrict the task of searching for wheels from checking all

the quadruples of ∆(C) to just those quadruples that involve at least one max-intersection face of

∆(C). Specifically, we would like to show that if C has a wheel, then C also has a wheel where the

rim is a max-intersection face. Here, we show this is true for sprockets:

Proposition 5.3.4 (Bubble Up Property for Sprockets). Let C be a code. SupposeW = (σ1, σ2, σ3, τ)

is a sprocket. Let τ̃ be the intersection of all maximal codewords of C that contain τ . Then

W̃ = (σ1, σ2, σ3, τ̃) is also a sprocket.

Proof. W̃ satisfies P(i) sinceW also satisfies P(i), and P(i) depends only on σ1, σ2, and σ3.

Next, we show that W̃ satisfies P(ii). The containment τ ⊆ τ̃ implies that (σ1 ∪ σ2 ∪ σ3) ∪ τ ⊆

(σ1 ∪ σ2 ∪ σ3) ∪ τ̃ . Then, from (σ1 ∪ σ2 ∪ σ3) ∪ τ /∈ ∆(C) (becauseW satisfies P(ii)), we have that

(σ1 ∪ σ2 ∪ σ3) ∪ τ̃ /∈ ∆(C).

To show that W̃ satisfies P(iii)○, we must show that σj ∪ τ̃ ∈ ∆(C) for j = 1,2,3. Since W

satisfies P(iii)○, it must be that σj ∪ τ is contained in some codeword cj of C. We may assume that

cj is maximal. Then by construction of τ̃ , it must be that cj contains τ̃ as well. Thus cj contains

σj ∪ τ̃ , and so σj ∪ τ̃ ∈ ∆(C).
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To show that W̃ satisfies S(iii), let ρ1, ρ3 be some ρ1, ρ3 for whichW satisfies S(iii):

• W̃ satisfies S(iii)(1): For j = 1,3, since τ ⊆ τ̃ implies σj ∪ τ ⊆ σj ∪ τ̃ , we have that TkC(σj ∪

τ̃) ⊆ TkC(σj ∪τ) ⊆ TkC(ρj), which, combined with the fact thatW satisfies S(iii)(1), implies

the containment TkC(σj ∪ τ̃) ⊆ TkC(ρj).

• W̃ satisfies S(iii)(2): Since τ ⊆ τ̃ implies Tk(τ̃) ⊆ Tk(τ), we have that Tk(τ̃) ⊆ (Tk(ρ1) ∪

Tk(ρ3)) follows from the fact thatW satisfies S(iii)(2).

• W̃ satisfies S(iii)(3): Since τ ⊆ τ̃ implies that ρ1 ∪ ρ3 ∪ τ ⊆ ρ1 ∪ ρ3 ∪ τ̃ , we have that

Tk(ρ1 ∪ ρ3 ∪ τ̃) ⊆ Tk(ρ1 ∪ ρ3 ∪ τ), which combined with the fact that W satisfies S(iii)(3)

implies that TkC(ρ1 ∪ ρ3 ∪ τ̃) ⊆ TkC(σ2).

Thus W̃ satisfies S(iii) with ρ1 and ρ3, and thus W̃ is a sprocket.

5.3.3 Conjectures

If one is only interested in checking for sprockets, Propositions 5.3.1 and 5.3.4 together reduce

the task to considering only max-intersection faces of ∆(C):

Corollary 5.3.5. Let C be a code. If C has a sprocket, then C has a sprocket W = (σ1, σ2, σ3, τ)

where τ /∈ C but τ is a max-intersection face of ∆(C).

One may observe that searching for sprockets parallels searching for local obstructions, as both

tasks entail examining certain max-intersection faces.

Arising naturally from this observation is the question of whether searching for other types of

wheels also reduces to checking missing max-intersection faces. The results of [10] lead us to

believe that this is indeed the case. Namely, since a wheel of any kind guarantees nonconvexity,

while max-intersection-completeness guarantees convexity, it seems as though a wheel’s existence

in a code C must force the exclusion of some max-intersection face from C. We summarize this

thinking in the following conjecture:
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Conjecture 5.3.6. Let C be a code. If C has a wheel, then C has a wheelW = (σ1, σ2, σ3, τ) where

τ /∈ C but τ is a max-intersection face of ∆(C). Furthermore, the rim of any wheel cannot be a

codeword of C.

5.4 Codes on 5 and 6 Neurons

The combination of wheels and decomposable codes allows us to completely classify all codes

on 5 neurons.(cf. [17, Theorem 3.1]):

Theorem 5.4.1. A code C on 5 neurons is convex if and only if it has no local obstructions and no

wheels.

Proof. (⇒) This implication follows from Proposition 2.2.9 and Theorem 5.1.3.

(⇐) Let C be a code on 5 neurons, and let C∗ be the code from Example 2.2.13. We condition

based on whether ∆(C) is isomorphic to ∆(C∗).

If ∆(C) is not isomorphic to ∆(C∗), then by Proposition 3.2.10 we have that the minimal code

(recall Definition 2.2.4) of ∆(C) is convex. Since C has no local obstructions, C must contain all

its mandatory codewords and thus the minimal code. Therefore, by Lemma 3.2.8, C is convex.

If ∆(C) is indeed isomorphic to ∆(C∗), then C∗ ⊆ C (recall that C∗ is the minimal code of

∆(C∗)). By Proposition 5.2.13 any code containing C∗ but not any of 1, 234, or 345 must have a

partial wheel. Therefore, since C does not have a wheel, C contains at least one of 1, 234, or 345,

and so by Proposition 3.2.10 is convex.

Having shown that wheels – together with local obstructions – completely characterize non-

convexity for codes on up to 5 neurons, we now turn our attention to codes on 6 neurons. Due to

the large number of such codes, we restrict our analysis to two subsets of codes on 6 neurons: (1)

codes with seven or fewer maximal codewords, and (2) codes whose simplicial complex is pure

(recall that a simplicial complex is pure if all of its facets have the same dimension). Also, like the

classification process of [17], for each ∆ we consider only its minimal code CMin(∆). Indeed, when

such a code is convex, then all codes with neural complex equal to ∆ (and no local obstructions)

are convex (recall Remark 2.2.7).
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Surveying the codes with ≤ 7 maximal codewords had promising results, as we found roughly

300 minimal codes to be nonconvex due to a wheel (see Table 5.1). Moreover, wheels completely

characterize nonconvexity for 6-neuron minimal codes with up to four maximal codewords. The

search for minimal codes with pure simplicial complex was less fruitful, as only six such codes

with wheels were found (see Table 5.2).

Table 5.1: Minimal Codes on 6 Neurons with k Maximal Codewords, 4 ≤ k ≤ 7.

Four Five Six Seven
Total 210 691 1578 2578
Red. or Dec. 204 482 528 341
Max-∩ 4 79 399 909
Wheel 2 36 118 159
Unknown 0 94 533 1169

This table gives an analysis of those minimal codes on 6 neurons with at least 3 and no more than 7
maximal codewords. The columns are the codes sorted by the dimension of ∆(C). Total refers to
the total number of minimal codes for which ∆(C) is pure of that dimension. Red. or Dec. is the
number of codes that can be either reduced or decomposed into a code on fewer than 6 neurons.
Of the codes that could not be reduced or decomposed, Max-∩ is the number of codes for which
every max-intersection face is mandatory (implying convexity), while Wheel refers to those codes
that contain a wheel (implying nonconvexity). Lastly, Unknown refers to those codes that do not
belong in any of the first three categories, and so have unknown convex classification.

Our workflow to obtain the tables was as follows. We first used nauty [24] to enumerate all

connected simplicial complexes on 6 vertices (up to isomorphism). Next, we used SageMath

[25] to compute the minimal code of each simplicial complex (see [12, Algorithm 4.1]). Finally,

60



Table 5.2: Pure Minimal Codes on 6 Neurons.

Pure Dim 1 Pure Dim 2 Pure Dim 3 Pure Dim 4 Pure Dim 5
Total 112 2101 150 5 1
Red. or Dec. 51 153 40 4 1
Max-∩ 61 944 32 1 0
Wheel 0 0 6 0 0
Unknown 0 1004 72 0 0

The table gives an analysis of those minimal codes C on 6 neurons whose simplicial complex
∆(C) is pure. The columns are the codes sorted by the dimension of ∆(C). The rows have the
same meaning as they do in Table 5.1.

we classified a given code C by performing the steps in Algorithm 2.
Algorithm 2: Classifying codes on 6 neurons

INPUT: A code C on 6 neurons.

OUTPUT: “Reducible or decomposable”, “Max-intersection-complete”, “Wheel”, or

“Unknown”.

STEPS:

1. Determine whether C is reducible or decomposable. (We saw in Chapter 3 – specifically,

Proposition 3.1.3 and Theorem 3.2.4 – that, in terms of convexity, such codes are equivalent

to codes on fewer neurons.) If not, proceed to the next step.

2. Determine whether C is max-intersection-complete. (Such codes are convex, by

Proposition 2.2.6.) If not, proceed to the next step.

3. Determine whether C has a combinatorial wheel – that is, if it satisfies the criterion from at

least one of Propositions 5.2.5, 5.2.9, and 5.2.12. If not, the convexity status of C is

“Unknown”.

A package containing the scripts used in the Algorithm, as well as data on which specific codes

have wheels and what those wheels are, is available on GitHub (DOI: 10.5281/zenodo.4662199).

Remark 5.4.2 (Codes with up to three maximal codewords). For codes with at most three maximal
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codewords – and any number of neurons – convexity has been fully characterized: such codes are

convex if and only if they have no local obstructions [26]. We therefore do not include codes with

three or fewer maximal codewords in Table 5.1.

We conclude from Table 5.1 and Remark 5.4.2 that for a simplicial complex ∆ on 6 vertices

with up to 4 facets, the minimal code Cmin(∆) is convex if and only if it has no local obstructions

and no wheel. We also see from the table that the number of codes with wheels appears to increase

with the number of maximal codewords – and we already have found wheels in over 300 codes.

Wheels are therefore surprisingly efficient in detecting nonconvexity.

Going forward, there are still many codes whose convexity status is unknown (as seen in Tables

5.1 and 5.2). Moreover, we would like to continue the classification for codes with more maximal

codewords, but this task is currently computationally challenging. Nevertheless, we hope that

results like those in Section 5.3 will make this approach more tractable.
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6. CONCLUSIONS

Our work on the wheel, while shedding more light on the question of which codes are convex,

has raised several questions of its own. To begin, the theory for detecting wheels is not complete.

Unlike with the local obstruction, we do not have any way to guarantee that a code does not

contain a wheel, short of proving the code is convex. Therefore, learning a necessary and sufficient

condition for a wheel is the foremost remaining problem.

However, we should be mindful of other issues that are tangled up in the question of finding

a necessary and sufficient condition for wheels. In the case of the local obstruction, the signature

for the necessary and sufficient condition may be found in the set of max-intersection faces not in

C, which makes sense in light of [10, Theorem 1.2]. As wheels are also a type of nonconvexity,

it should follow that the presence of a wheel must also prevent max-intersection-completeness.

Therefore, we expect that the signature for a wheel in a code will always present itself in the

max-intersection faces. Proving Conjecture 5.3.6 seems the correct starting point for this work.

Another twist concerns adding more spokes in the wheel. Throughout this dissertation, we

have only considered wheels with three spokes, with the condition being that a line in the rim τ

must pass through each spoke. However, there are more complex versions of the wheel that act

in higher dimensions. From [6, Theorem 1.1], the phenomenon holds not just for when there are

three spokes and a line, but d+1 convex sets and a d−1-dimensional hyperplane. From this result,

[6] constructs an infinite family of nonconvex codes with neither local obstructions nor wheels.

Generalizing wheels to include these larger phenomena seems like the natural next step. In fact,

it might be that making this generalization is necessary to finding the necessary and sufficient

condition for wheels. It is possible that when a wheel bubbles up to the set of max-intersection

faces, that what bubbles up is no longer an object with three spokes, but more.

Lastly, we recall that wheels only prevent a code from being open convex. It is possible for a

code to have a wheel and yet still be closed convex. Therefore, we ask if there is a counterpart to

the wheel that, independent of the local obstruction, can guarantee closed convexity.
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