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ABSTRACT 

 

Cube satellites (CubeSats) present a unique platform for monitoring localized 

processes anywhere within the Earth’s surface or atmosphere using novel data analysis 

techniques. Areas of interest can be targeted at certain times on an on-demand basis by 

storing the CubeSat constellation onboard the International Space Station (ISS). CubeSats 

equipped with adequate sensors and data analytics capabilities can create an autonomous 

characterization surveillance method for the phenomena of interest. CubeSats are 

advantageous over conventional satellites for remote monitoring because of their reduced 

costs and higher simplicity due to the availability of commercially-off-the-shelf 

components. The work presented in this thesis contributed to the eventual deployment of 

the CubeSat surveillance system by laying down a basis for the overall methodology. 

The CubeSat surveillance system focuses on phenomena of immediate interest 

divided into three categories surrounding the nuclear fuel cycle; vehicles, facilities and 

infrastructural emergencies, and construction/mining events of interest. To observe the 

phenomena, a constellation of 3U and 6U CubeSats deployed from the ISS with adequate 

components was chosen. The constellation achieves inter-satellite communications 

through additional satellite network relays and ground communications through a network 

of ground stations. To adequately observe the phenomena, four different sensor 

configurations were identified: panchromatic/multispectral in the visible and near-infrared 

spectrum, multispectral in infrared spectrum, hyperspectral in infrared spectrum, and 

multispectral in ultraviolet spectrum. While a panchromatic/multispectral sensor 
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configuration has CubeSat flight heritage at the required spatial resolutions, the other three 

sensor types need future development to meet signature and system requirements. Once 

each sensor onboard the CubeSat system collects data on a target of interest, the onboard 

computers apply the machine learning based characterization methodology to identify 

phenomena. Four surrogate datasets containing representative simplified “images” were 

created for each sensor type to train the characterization methodology. A convolutional 

neural network was applied to each dataset and they produced recall rates for the 

phenomena between 89.7% - 99.3% and precision rates between 92.3% - 99.9%. Each 

phenomenon’s presence probability from each network is then combined into a final 

characterization solution for a target area. The thesis also discusses the applications of the 

CubeSat surveillance methodology for microreactor deployment. 
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1. INTRODUCTION  

This thesis presents the work done towards the development of a multi-modal 

global surveillance methodology for predictive and on-demand characterization of 

localized processes using cube satellite (CubeSat) platforms. This surveillance system 

onboard miniature satellites called CubeSats presents a highly mobile monitoring platform 

with access to any point on the globe at times of interest [1]. Equipping CubeSats with 

appropriate sensors and data analytics capabilities provides the capability of characterizing 

phenomena on the Earth’s surface or atmosphere on an on-demand basis. The novelty of 

this monitoring system is highlighted in the development of the deep learning techniques 

for data analytics. CubeSats prove advantageous over other surveillance platforms, such 

as drones, because they can target areas of interest anywhere in the world in a short amount 

of time. When compared to larger, conventional surveillance satellites, CubeSats present 

a much lower cost due to their size, increased simplicity, and use of commercially-of-the-

shelf (COTS) components [2,3]. As this novel monitoring methodology is developed 

under the Department of Nuclear Engineering at Texas A&M University, the functionality 

of the CubeSat system is applied to a nuclear surveillance use example. This paper does 

not aim to reinvent any currently existing satellite observation methods for nuclear 

safeguards verification. 

Currently, organizations like the International Atomic Energy Agency (IAEA) and 

the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) 

along with various space agencies and commercial companies use satellite imagery for 

safeguards verification as made possible under the Additional Protocol (INFCIRC/540) of  
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the Non-Proliferation Treaty (NPT) [4,5]. Approved in 1997, the Additional Protocol 

increased the previously established safeguards measures and expanded them to all NPT 

States regardless of their Nuclear Weapon State status [4]. Through this expansion of 

safeguards measures, the use of commercial satellite imagery was introduced for verifying 

nuclear materials and facilities are not used for clandestine military activities. Satellite 

imagery can be used to aid in planning of future inspection activities, to verify information 

provided by States, to identify undeclared activities, and to observe any changes in 

activities at facilities along the nuclear fuel cycle [6]. The IAEA’s Satellite and Imagery 

Laboratory employs the use of commercial geostationary satellites thousands of 

kilometers away from the surface of the Earth to collect images of nuclear facilities [7]. 

Some satellites previously used for image collection include the IKONOS-2 and EROS-

AI satellites [7]. In recent years, swarms of small satellites (SmallSats) and CubeSats, 

from companies such as Planet Labs, have also provided valuable images for the 

verification of nuclear safeguards [8]. The work accomplished in this thesis is similar to 

currently used CubeSat systems for nuclear surveillance, but it applies a novel deep 

learning-based data analytics methodology. 

The work in this paper establishes the foundation for a CubeSat surveillance 

system by developing a base design methodology for the system’s capabilities with a focus 

on its data analytics capabilities. The CubeSat surveillance system features a series of 

different satellites, each equipped with different sensors capable of distinguishing 

phenomena of interest. The necessary components and design processes needed for the 

successful development of a CubeSat are explored and analyzed in this thesis. Different 
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architecture scenarios were considered for the CubeSat surveillance system. A 

constellation, or multiple satellite, configuration was chosen, mainly for the increased 

characterization accuracy that comes from multiple satellites since a single CubeSat can 

only house one to two types of sensors. Communications between each CubeSat in the 

system will be achieved through a secondary satellite system further away from the Earth 

acting as a relay for the transmissions. Through collaboration with the launch provider, 

NanoRacks LLC, the future CubeSat system will be placed onboard the International 

Space Station (ISS) for deployment. Storing the satellite constellation onboard the ISS 

allows for it to reach any point of interest on the globe within two to three days maximum 

[9]. Once the CubeSat system is deployed, the satellites adopt the same orbit as the ISS 

for the remainder of their lifetime, allowing them to carry out on-demand surveillance. 

The signature requirements for detection for each phenomenon the system aims to observe 

are explored to formulate a final recommendation on the different types of sensors needed 

for the surveillance system. Once each sensor onboard the CubeSat system collects data 

on a target of interest, the onboard computers will apply the machine learning based 

characterization methodology developed in this paper before transmitting information to 

ground stations on the surface. Having these data analytic capabilities within the 

architecture of the satellites allows for quicker characterization of potentially time-

sensitive phenomena and alleviates strains on data transmissions to ground stations. The 

characterization methodology developed in this thesis is trained on simplified surrogate 

datasets representative of the recommended sensor data types. 
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1.1. Phenomena of Interest 

The first step in developing a surveillance system is identifying what type of 

phenomena are of interest for observation. Defining the phenomena and their 

characteristics will determine everything else about the surveillance system, like the type 

of sensors needed and the physical CubeSat architecture. As mentioned, the use example 

for the CubeSat surveillance system focuses on general aspects of nuclear surveillance. In 

other words, observe objects or process near facilities in the nuclear fuel cycle, as seen in 

Figure 1, that indicate the presence of unapproved activities. After careful analysis of a 

CubeSat’s capabilities once in orbit, as will be discussed in later sections of this thesis, a 

CubeSat surveyor is better suited for observing phenomena of immediate interest on a 

short-term periodic or on-demand basis. Once deployed at Low Earth Orbit (LEO), a 

CubeSat’s orbit will decay completely within one to two years, after which the satellite 

will reenter the atmosphere [10]. Also, due to a lack of resources on board a CubeSat, like 

propulsion systems, it cannot maintain a perfect orbit throughout its lifetime. Once a 

CubeSat is launched and adopts its orbit, it will slowly start deforming [10]. A deformed 

orbit means that a CubeSat will still pass over all locations of interest on the planet, but 

just at different rates [11,12]. Therefore, precise periodic surveillance on a long-term basis 

is better suited for the currently used geostationary, large satellites.  

Given the CubeSat’s orbital restrictions and motivations for the project, 

phenomena of interest for the surveyor were selected. There are many possible situations 

and events that occur around the world which indicate suspicious activity near facilities of 

the nuclear fuel cycle. For example, the presence of increased construction activities at an 
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enrichment facility which were not approved by regulatory committees, or a terrorist 

organization steeling a radioactive isotope and transporting it by truck. A variety of 

possible scenarios translates to a diversity of objects and processes which the CubeSat 

system must successfully observe. Therefore, the example phenomena of interest chosen 

for the CubeSat surveillance system developed in this thesis are automobiles, airplanes, 

nuclear facilities, infrastructural emergencies, construction activities, and mining 

activities. It is important to mention that these phenomena pertain to the use example of 

the monitoring system for nuclear surveillance and not a complete list of phenomena of 

interest for actual safeguards verifications processes. The importance of surveilling these 

phenomena along with their specific parameters for observation are discussed in the next 

few subsections. It is important to specify the parameters characterizing the phenomena 

to facilitate in the autonomy and sensor selection of the CubeSat system. Instead of 

transmitting all its raw data to a ground station for human processing after each 

observation, the CubeSat’s data analytics capabilities will autonomously conduct the 

characterization of the retrieved data before sending it to the surface. Defining specific 

parameters for phenomena beforehand determines the types of sensors needed which then 

specify the type of data the characterization methodology is trained on. By training on an 

adequate surrogate data set, the methodology will learn the necessary features from the 

data given to characterize a phenomenon in future data. Therefore, the parameters listed 

in the following subsections for the phenomena of interest are used to inform the sensor 

selection for the surveillance system. 
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Figure 1. Each step of the nuclear fuel cycle. 

 

1.1.1. Vehicles of Interest 

The detection of automobiles can be of great importance while surveilling facilities 

in the nuclear fuel cycle. An increase in the number of cars at facilities can indicate to the 

occurrence of suspicious activity, or the surveillance of a vehicle with stolen radioactive 

material can prove beneficial for the appropriate authorities. There are many parameters 

that aid in the identification of a car, such as size, speed, temperature, and emissions. For 

size, there is a variety of different types of vehicles, all with different dimensions. Table 

1 and Table 2 separate automobiles into two categories, passenger vehicles and 

commercial vehicles. For Table 1, the maximum and minimum values are recorded for 

each dimension. The maximum values reflect those of big “passenger vans”, which have 

the biggest dimensions out of all passenger vehicles, and the minimum values reflect those 

of “city cars”, which have the smallest dimensions [13]. These dimensions are for all 
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available new vehicle models in Europe [13]. For Table 2, the maximum values from the 

US Federal Size Regulations on commercial motor vehicles are seen for each dimension 

[14]. The minimum values for the dimensions of commercial motor vehicles can be taken 

as the maximum values for passenger vehicles. Vehicle speeds also depend greatly on the 

type of vehicle, as well as the type of road, weather conditions, and human nature. Figures 

2 and 3 show the average speed recorded in 2012 in Great Britain for different types of 

vehicles on different types of roads [15]. Temperature readings can also help detect the 

presence of automobiles. The average operating temperature of a passenger vehicle is 90-

105°C, while the surface temperatures are marginally lower [16]. As for emissions, 

automobiles produce CO2, CH4, CO, N2O, and HFCs during operation [17]. Both petrol 

and diesel engines produce the same kinds of emissions, but at different amounts. Petrol 

engines produce more CO2 and CO, while diesel engines produce more N2O and other 

nitrogen oxides. Given these four parameters of size, speed, temperature, and emissions, 

a CubeSat surveillance system could detect automobiles from LEO. 

Table 1. The maximum and minimum dimensions for new passenger vehicles in 

Europe. 

Dimension Value 

Height 1.41 m – 2.12 m 

Length 2.70 m – 5.40 m 

Width 1.48 m – 2.07 m 
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Table 2. The maximum dimensions for commercial vehicles under US Federal Size 

Regulations. 

Dimension Value 

Height 4.27 m 

Length 

13.72 m for buses 

14.63 m for semitrailers not including the cabin 

17.38 m for semitrailer-trailer not including the cabin 

Width 2.6 m 

Figure 2. The average free flow speeds for different vehicles on different types of 

highways in 2012 in Great Britain. 
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Figure 3. The average free flow speed for different vehicles on different types of city 

roads in 2012 in Great Britain. 

As for airplanes, the CubeSat could monitor highjacked airplanes, or crash 

landings, for example. Like automobiles, there are many different types of aircraft with 

different dimensions. There are various commercial airplane manufacturers which 

produce different types of airplane models with varying parameters. For example, Boeing 

manufactures 17 different versions of its 737 model alone [18]. For military aircraft, 

designs vary greatly from country to country. Even within a single country, there exist 

different types of aircraft designed for different operations. Therefore, the parameters for 

the most common and for the biggest commercial aircraft were recorded, the Boeing 737-

800 and Airbus A380-800. Also, the parameters for the most recognizable and for one of 

the biggest US military aircraft were recorded, the F-16 Fighting Falcon and C-5M Super 

Galaxy. The parameters included for the aircraft are size, operating altitude, cruising 
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speed, and engine exhaust temperature. Table 3 shows the size, operating altitude, cruising 

speed, and engine take-off exhaust temperatures for the most common type of passenger 

plane, the Boeing 737-800 [18,19,20]. Table 4 shows the size, operating altitude, cruising 

speed, and engine idle exhaust temperatures for the Airbus A380-800, the biggest 

passenger plane currently in operation [21,22,23]. Table 5 shows the size, operating 

altitude, top speed, and engine full thrust exhaust temperatures for the US Air Force F-16 

Fighting Falcon [24,25]. Table 6 shows the size, operating altitude, and cruising speed for 

the C-5M Super Galaxy, which is one of the biggest aircraft used by the US Air Force 

[25,26].  

Table 3. The size, operating altitude, and cruising speed for the Boeing 737-800. 

Parameter Value 

Length 39.47 m 

Height 12.55 m 

Wingspan 35.79 m 

Cabin Width 3.76 m 

Max Flight Level 12496.8 m 

Cruise Speed 949.513 km/h 

CFM56-7 Engine Take-off Exhaust 

Temperatures 

38-850°C
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Table 4. The size, operating altitude, and cruising speed for the Airbus A380-800 

and the engine exhaust temperatures for the two types of engines the model can use. 

Parameter Value 

Length 72.73 m 

Height 24.17 m 

Cabin Height 8.41-8.56 m 

Wingspan 79.8 m 

Cabin Width 7.14 m 

Max Flight Level 13136.88 m 

Cruise Speed 1049.58 km/h 

TRENT 900 Engine Take-off Exhaust 

Temperatures 

40-956°C

Table 5. The size, operating altitude, and cruising speed for the F-16 Fighting 

Falcon. 

Parameter Value 

Length 14.8 m 

Height 4.8 m 

Wingspan 9.8 m 

Max Flight Level 15000 m 

Cruise Speed 2414.016 km/h 

F100-PW-229 Engine Full Thrust Exhaust 

Temperatures 

37-1760°C

Table 6. The size, operating altitude, and cruising speed for the C-5M Super 

Galaxy. 

Parameter Value 

Length 75.3 m 

Height 19.8 m 

Wingspan 67.9 m 

Max Flight Level with a 605000 lb load 10363.2 m 

Cruise Speed 870.7 km/h 
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1.1.2. Facilities and Infrastructural Emergencies of Interest 

A key objective in the surveillance of the nuclear fuel cycle is the detection and 

characterization of facilities. The presence of a fuel fabrication facility in a remote and 

unauthorized location may be confirmed by the CubeSat surveillance system. Observing 

the facilities’ building dimensions is a clear indicator of their presence. Since nuclear 

facilities of interest are likely to feature multiple buildings of different sizes and shapes, 

the surveillance system characterization methodology can focus more on typical features 

corresponding to certain facilities, like unique buildings or building layout. The 

Portsmouth Gaseous Diffusion Plant in Ohio among others were used as a reference the 

types of buildings and their dimensions at different nuclear facilities for the phenomena 

in this surveillance use example. Table 7 and 8 list the building dimensions for the biggest 

and smallest buildings of relevance for the Portsmouth Plant, the X-333 process building 

and X-600 steam plant, respectively [81]. Overall, building characteristics at all the plants 

in Figure 1 are of importance for the CubeSat surveillance system. 

 

 

Table 7. The X-333 process building dimensions at the Portsmouth Gaseous 

Diffusion Plant. 

Parameter Value 

Length 443.8 m 

Width 295.7 m 

Height 25.0 m 

 

 

 

 

 



 

13 

 

Table 8. The X-600 steam plant dimensions at the Portsmouth Gaseous Diffusion 

Plant. 

Parameter Value 

Length 59.8 m 

Width 30.3 m 

Height 21.9 m 

 

 

 

Structural fires and blackouts are two infrastructural emergencies that can pose a 

risk to human life if they happen at facilities along the nuclear fuel cycle. Fires or power 

outages at facilities could lead to the release of radioactive material to the environment. It 

is important to observe such events to provide adequate information on the situation to the 

appropriate authorities. Structural fires could be detected by the CubeSat system by 

looking at their temperature, gas emissions, and aerosol indices and optical depth. Fires 

which include structural materials burn at temperatures between 350-1200°C [27,28]. It is 

important for the CubeSat system to also make the distinction between structural fires and 

natural disasters. The temperatures of forest fires average at 800°C while the temperatures 

of lava flow and volcanic plumes range between 600-1200°C [29,30]. Although the sizes 

of structures vary, forest fires and volcanic eruptions generally take up a much larger 

surface area. As mentioned, the presence of structural fires could be detected by looking 

at its emissions when it burns. Gas emissions from structural fires include CO2, CH4, and 

NOx, which come mainly from typical building materials [31]. These are the same gases 

as are emitted from forest fires; however, structural fires will also include the emissions 

of anything else within the structure that is burned, releasing additional types of gases that 

are not found in wildfires. Structural fire emissions can be distinguished easily from 

volcanic events on the other hand, since volcanic eruptions produce high amounts of SO2 
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and no CH4 or NOx [30]. Apart from indicating incendiary events in structures, the same 

method of detecting gas emissions could point to other issues at facilities, for example a 

methane leak. Another method of detecting structural fires from space is looking at aerosol 

measurements from the smoke. The aerosol index could be used to compare the 

measurements of the level of aerosols present at the time of measurement versus the 

aerosol levels of a clean atmosphere [32]. An aerosol optical depth measurement could 

also be done, where a value of 0.5 and above indicates the presence of enough aerosols in 

the atmosphere to start blocking the sun [33]. As for blackouts, they could be detected by 

observing the absence of visible light, which is in the wavelength range of 400-700 nm. 

They could also be detected by an absence of thermal radiation, which has a typical 

bandwidth within 3-14 µm for most detectors [34]. 

1.1.3. Construction and Mining Events of Interest 

The last phenomena that the CubeSat surveillance system will be observing for 

this use example are construction and mining activities. The presence or increase in both 

activities at facilities along the nuclear fuel cycle can indicate non-compliance of 

international safeguards. The CubeSat could alert to the unauthorized expansion of 

enrichment facilities by observing the presence of construction activities, for example. 

Also, observing the presence of mining could indicate malicious intent of a State 

attempting to acquire more nuclear material. Both phenomena have similar parameters for 

identification, such as the presence of equipment, temperature signatures, and gas 

emissions. Mining activities also include parameters like the presence of blasting agents 

and the mine surface area. For construction and mining equipment, Appendix A includes 
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tables with parameters for fifteen common vehicles that could be used for both activities 

[35,36,37,38,39,40,41,42,43,44,45,46,47]. The fifteen most common types of equipment 

are excavators, telehandlers, dragline excavators, bulldozers, tower cranes, compactors, 

trenchers, loaders, graders, pavers, wheel tractor scrapers, backhoes, feller bunchers, 

dump trucks, and pile boring equipment [35]. Table 9 shows an example of the information 

listed in Appendix A for the equipment. The temperature readings for both activities 

depend on the type of equipment and tools present. The CAT C4.4 ACERT engine in the 

CAT 320GC medium-sized excavator runs at a top tank temperature of 108°C [48]. 

Temperatures during any construction process involving concrete can reach up to 65°C 

[49]. The temperature of MIG welders can run anywhere between 6000-24000°C [50,51]. 

As for gas emissions, both activities produce CO2, CH4, N2O, C2H2, and on rare occasions 

HFCs, PFC, and SF6 from vehicle emissions, building materials, and onsite electricity 

consumption [52].  Mining activities also produce silica dust, which are quartz, 

cristobalite, or tridymite that makeup soil, granite, sand, and other minerals, and 

radioactive materials such as radon, 230Th, 226Ra, and all their decay products [53,54]. 

Unlike most construction activities, mining uses blasting agents to break open rock. The 

most common blasting agents used are nitroglycerine dynamite, and ANFO, which is a 

mixture of ammonium nitrate fertilizer and fuel oil [55]. Nitroglycerine dynamite explodes 

at 218°C and releases heat at 5000°C [56]. Another unique parameter for mining activities 

is the size of the mines. From above the Earth’s crust, only open pit mines are visible. 

They usually have a surface area of 50-100 acres, which is the size of typical uranium 

deposits [55]. Open pit mines usually have a depth of 0-152.4 m [55]. Underground mine 
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networks are not usually visible from above the surface, but they reach depths of 91.44-

304.8 m [55]. Since both construction and mining activities consume a lot of on-site 

electricity, the same methods for detecting the presence or absence of blackouts could be 

applied to detecting construction or mining. 

 

 

Table 9. The parameters for the identification of an excavator. The values come 

from the CAT 320 GC medium-sized excavator. 

Dimension Value 

Height to Top of Cab 2.96 m 

Length 9.53 m 

Width 3.17 m 

Track Length 3.27 m 

 

 

 

1.2. Application to Microreactor Surveillance 

Although the main use example of the CubeSat surveillance system developed in 

this thesis includes phenomena of interest for nuclear surveillance, a smaller example is 

also explored in which the methodology is applied to the monitoring of microreactors. In 

a direct application, some of the methodology for sensors and data analytics developed for 

the CubeSat system can be applied to the monitoring of microreactor systems installed in 

remote locations. In an indirect application, the deep learning-based data analytics 

methodology can be adapted to different monitoring methods for microreactors. 

While current power reactors in operation produce electricity at a magnitude of 

thousands of megawatts electric (MWe), microreactors are defined as units that produce 

less than 20 MWe [57]. According to the Department of Energy, microreactors are not 

representative of a certain fuel type or coolant, but instead have three main features: 
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factory fabrication, transportability, and self-regulation [57]. One major disadvantage of 

current light water reactor (LWR) designs is their lengthy construction costs and high 

capital costs. Microreactors aim to eliminate these issues in the nuclear industry by having 

all their components built, assembled, and integrated into a small unit at a factory that can 

then be transported to and installed at a different location. Due to the small size of the 

overall unit, the reactor could easily fit on the back of a truck and be taken to remote 

communities or military bases where there is not enough space or resources to allow for a 

conventional LWR or other power generation sources. Once on-site, microreactors would 

ideally self-regulate by requiring little maintenance, few to no operators, and feature a 

long core life.  

Although microreactors present a very attractive solution for clean energy 

production in remote communities, their designs still present some issues. The biggest 

problem that must be overcome for the success of microreactors is ensuring the secure 

self-regulation or autonomy of the design. The most attractive feature for microreactors, 

remote operation, is also their biggest weakness given current regulations. Current reactor 

plants around the world have various security and safeguard measures implemented to 

help ensure global safety. Microreactors, on the other hand, cannot allow for such 

measures to be in place if they are operating in remote or potentially dangerous locations. 

For this reason, the strategies developed for global surveillance onboard the CubeSat 

system developed in this paper can be easily transitioned to create a solution for the 

microreactor monitoring issue. Like with the CubeSat platform, a system of sensors could 

be utilized in coordination with data analytics and artificial intelligence algorithms to 
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ensure the safety and security of microreactors in operation. Unlike the CubeSat 

surveillance system though, a global monitoring system for microreactors can also take 

advantage of on-the-ground sensors. Although there is a benefit to quickly observe and 

take measurements from LEO, accurate measurements of microreactor operation from 

ground sensors are needed in addition to increase the robustness of the monitoring system 

whose subject can pose a giant risk if it were to fall in the wrong hands. For example, 

sensors connected with the correct data analytics algorithms measuring the reactor’s 

thermal profile and neutron flux could alert to a scenario where spent fuel was stolen from 

the microreactor. Although this example highlights a worst-case scenario for microreactor 

operations, it is not very probable since most microreactor designs feature integrated 

systems where all the components are installed inside the same containment unit. A more 

likely scenario, however, is the theft of an entire microreactor. Observing the presence or 

absence of a microreactor in its installation site can easily be achieved through a CubeSat 

surveillance system in LEO. 

1.3. Thesis Objectives 

As mentioned, the work in this paper establishes a foundation for a CubeSat-based 

surveillance platform for on-demand characterization of local phenomena. To reiterate, 

the aim of this thesis is to develop a methodology to characterize and identify diverse 

phenomena of interest among diverse objects in heterogeneous data sets for a nuclear 

surveillance use example. This overall goal of the thesis will be accomplished through the 

completion of the following objectives: 
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1. Development and compilation of representative surrogate data sets. 

2. Conceptual development of a methodology for heterogeneous data analytics. 

3. Illustrative applications of the methodology. 

 

Although the work in this thesis does not culminate in the construction of an actual 

CubeSat system, the fulfillment of the objectives mentioned above will establish the 

mission goals and a base design architecture for the eventual physical development of the 

satellites and the data analytics methodology. The first objective of this thesis will prepare 

the data analytics structure of the CubeSat system for the recognition of the phenomena 

of interest. As with any artificial intelligence or machine learning problem, an adequate 

dataset is needed to successfully train the computer model so that it can be applied to new 

datasets. In other words, the CubeSat system must know what characteristics a 

phenomenon possesses prior to recognizing it. The surrogate dataset also aims at 

replicating the diversity in data a system with multiple different sensors collects. The 

second objective establishes the method which the CubeSat system will use for analyzing 

phenomena based on the data set constructed by the previous objective. Using the diverse 

types of data as input, the data analytics capabilities make predictions on the kind of 

phenomena the CubeSat system is observing. The final objective of this thesis elaborates 

on the applications of the work accomplished in the first two objectives. It illustrates how 

the data analytics model developed can be implemented in a realistic scenario. Before the 

completion of these objectives, extensive considerations were made about the orbital 

mechanics of the CubeSat system, satellite architectures and scenarios, and sensor 

selection for the system. It is important to maintain these considerations in mind as they 

can present limitations to the work accomplished under the three listed objectives. The 
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kind of data the CubeSat system can collect once deployed depends on the type of sensors 

onboard the satellites, and the sensors’ capabilities for data collection depend on the 

satellites’ architecture and behavior in orbit. 

1.4. Thesis Overview and Methodology Development 

To accomplish the objectives under this thesis, the paper is separated into eight 

total sections which explain in detail the work completed for the CubeSat-based 

surveillance system. Section 1 of this thesis serves as the paper’s introduction. It presents 

the motivations behind developing the CubeSat surveillance system for the 

characterization of phenomena, and it describes in detail the different kinds of phenomena 

of interest for the specific use case. Defining these phenomena is the first step in 

developing the rest of the system. With the subjects of surveillance established, the system 

can be designed to meet surveillance needs for accurate characterization. This section also 

introduces the applications the CubeSat surveillance methodology can have towards 

implementing a monitoring system for microreactors, and it closes out by stating the thesis 

objectives and this thesis overview. Section 2 assesses the capabilities of a CubeSat-based 

surveillance platform. A definition for typical physical CubeSat architectures is provided, 

the satellite design process is explored, and the orbital mechanics for a CubeSat during 

deployment and orbit are analyzed. Simulations of a CubeSat orbit were accomplished 

using the NASA’s General Mission Analysis Tool (GMAT) software. Section 2 provides 

evidence that a CubeSat serves as a feasible platform for a global surveillance system. 

Section 3 continues the analysis of the CubeSat platform by exploring different system 

architectures. Justifications are made for the use of a satellite constellation instead of a 
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single satellite, and the ideal communication options for the system were specified. The 

section also defines the specific CubeSat deployment scenarios by developing an 

algorithm for calculating the CubeSats’ deployment times. Section 4 branches away from 

satellite architecture considerations by defining the types of sensors needed for the 

surveillance system. The sensor selection in this section is accomplished by first analyzing 

the surveillance requirements for observing the phenomena of interest defined in Section 

1. Then, sensor requirements for observing the signatures and current technological 

capabilities are explored. Section 5 introduces the creation of the surrogate dataset for the 

characterization methodology by considering the sensor recommendations made in the 

previous chapter. The dataset aims at developing simplified versions of satellite images 

which can be used to create a general characterization algorithm. Also, the section 

introduces the concept of machine and deep learning and the importance of using adequate 

data. Section 5 accomplishes the first objective defined for this thesis. Section 6 then 

expands on the work in Section 5 by discussing the development of the characterization 

methodology. The methodology’s architecture, its optimization processes, and training are 

all defined. The results of the characterization methodology on the surrogate dataset are 

listed in this section. Also, a final illustrative application combining all the topics covered 

in this thesis is described. Section 6 completes the final two objectives defined for the 

thesis. Section 7 explores the possible applications of the methodologies developed for the 

CubeSat surveillance system for the monitoring of microreactors. Finally, Section 8, 

concludes all the efforts accomplished in this thesis and makes considerations for future 
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work. Figure 4 illustrates the design methodology used to develop the final CubeSat 

surveillance system concept in this thesis. 

 

 

 

 
Figure 4. The design process used to develop the methodology for the CubeSat 

system. 

 



23 

 

 

2. CUBESAT-BASED SURVEILLANCE PLATFORM CAPABILITY ASSESSMENT 

As seen in the previous section, various goals for the CubeSat surveillance system 

were defined. The CubeSat system must successfully observe multiple kinds of 

phenomena around the world to contribute to the surveillance of the nuclear fuel cycle. As 

previously stated, using CubeSats as a surveillance platform can allow for global coverage 

of phenomena on an on-demand basis in very little time. CubeSats are also an attractive 

option over other surveillance platforms due to their reduced cost and simplicity. 

Therefore, an important next step in the development of the method in this thesis is to 

assess the viability of a CubeSat system as a platform. This section will first provide a 

more specific definition of a cube satellite and explore its capacities for supporting a 

surveillance platform. Next, a summary of a general CubeSat design process is explored 

for facilitating future design since the work in this thesis only develops a method for the 

CubeSat surveillance system. To close out the section, a CubeSat’s orbital capabilities in 

low Earth orbit (LEO) are examined through modelling. 

2.1. CubeSat Description and Specifications 

A big advantage for the use of CubeSats in this novel surveillance system instead 

of traditional satellites is their relatively low cost and ease of construction. CubeSats are 

simple enough in design that teams at universities should be able to develop their own 

satellites for their own scientific research, like the work being done for this thesis. There 

are many commercially-of-the-shelf (COTS) components available for CubeSats that 

facilitate the development of these systems by inexperienced teams [2]. As will be 

discussed later in this section, the CubeSats in this surveillance systems are not limited to 
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only the use of COTS components. There are multiple resources available that can aid any 

team in the development of their own CubeSats [2,3,59]. These resources outline step-by-

step the processes necessary to constructing an operational satellite.  

A CubeSat is defined as a miniature satellite of size 10 cm x 10 cm x 10 cm with 

a weight of around 1.33 kg as can be seen in Figure 5. This 10 cm cube is defined as a 1U 

CubeSat. Depending on the requirements of the mission and its necessary hardware, 

CubeSats can also take the shape of 2U, 3U, 6U, or even 12U, as can be seen in Figure 6. 

When taking previous CubeSat missions under consideration, it was found that 1U and 2U 

formfactors do not have enough space available within their structure to support the 

necessary sensors and hardware for Earth observation. To allow for the installation of 

high-resolution sensors on the CubeSats, the 3U and 6U form factors were considered. 

Due to the complexity of the various phenomena of interest for surveillance by this 

CubeSat system, more than one sensor is required to collect sufficiently diverse data for 

characterization. Since a CubeSat can only feature one to two onboard sensors because of 

their size, a single satellite is not sufficient for this surveillance system. Instead, a group 

of CubeSats, or a constellation, will form the system for the surveillance platform. 

Although the number of sensors was the biggest factor in selecting the number of satellites 

for the surveillance system, Section 3 compares the two system architecture scenarios in 

further detail. These multiple satellites can be launched from the ISS at the same time and 

will all adopt the same orbit for the rest of their lifetimes. Having numerous satellites 

allows the surveillance system to include multiple sensors and even have a certain level 

of redundancy with some sensors in case of failure.  
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Due to the diversity of sensors and their resolution requirements, the CubeSat 

constellation shall be made up of both 3U and 6U CubeSats. Although 3U CubeSats create 

less costs in development and launch, 6U CubeSats can house high-resolution sensors that 

exceed 3U dimensions. There also exists the possibility of developing unique sensors for 

surveillance in future work for this CubeSat system in order to meet resolution and size 

restrictions with either form factor. 

 

 

 
Figure 5. The dimensions of a 1U CubeSat. 
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Figure 6. The different CubeSat formfactors. 

 

 

 

Whenever CubeSats communicate to the surface, they utilize Radio Frequency 

(RF) transmission. Typical CubeSat transmissions operate in the VHF band, which is 30-

300 MHz, in the UHF band, which is 300-3000 MHz, in the S-band, which is 2.0-4.0 GHz, 

and in the X-band, which is 8-12 GHz [2,78]. Most CubeSat missions take advantage of 

the UHF region for their RF communications since they have faster transmission rates 

than VHF, use less power than S-band or X-band signals. Signals in the UHF band are 

also easier and cheaper to license than S-band or X-band, which cuts time and costs in the 

CubeSat design process. Since most CubeSat mission deployed to date have mainly been 

experimental missions, they also did not need to take advantage of the higher security that 

comes from S-band or X-band transmissions. Due to their larger bandwidth, data sent 

through S-band or X-band can be easily encrypted. A typical UHF transceiver operates at 

up to 19.2 kbps, a typical S-band transceiver operates at 20 Mbps or higher and a typical 
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X-band transceiver operates at 150 Mbps [76,77,82]. Due to the nature of this CubeSat 

surveillance mission, the system will utilize signals in the S-band for uplinks and signals 

in the X-band for downlinks. Since the phenomena of interest for the CubeSat system 

involve emergency situations, the much higher communications speeds provided by S-

band and X-band signals allow for faster transmission of time sensitive data. The higher 

security through encryption in the S and X-bands also provide an attractive advantage for 

the surveillance system. Utilizing two distinct frequencies for transmitting and receiving 

means that each CubeSat in the system will need an S-band receiver and an X-band 

transmitter instead of having just one transceiver. This S and X-band communications 

configuration also utilizes a lot more power than a UHF transceiver. In order for the 

transmitter and receiver power requirements to not interfere with sensor operations during 

observation, an adequate power duty cycle needs to be developed that accounts for the 

power consumption from all the components versus the power generation from the solar 

panels. 

When considering CubeSats as a platform for a surveillance system, it important 

to recognize their lack of propulsion systems. CubeSats instead feature systems that can 

allow for rotation of the satellite while in orbit. Propulsion systems are usually out of the 

scope of most CubeSat developers due to their complexity, and since CubeSats are usually 

deployed from the International Space Station (ISS), they can pose a threat to the crew 

and ISS systems and hardware [3]. CubeSats, instead, can be rotated within orbit with 

either passive control systems, magnetorquers, or control mass gyros (CMG). Passive 

control systems involve using a magnet that takes advantage of the Earth’s magnetic field 
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to always have the satellite facing towards the surface. An advantage of using passive 

systems is its simplicity and avoidance of power and software allocation. The issue with 

passive control systems, however, is a lack of precision in the satellite’s orientation, which 

is a very necessary requirement for the level of Earth observation this surveillance system 

aims to reach [61]. Magnetorquers include magnets that can align with the magnetic field 

which allow for a CubeSat to rotate in any direction. They do not include any moving 

parts, which is advantageous for maintaining the integrity of the satellite. The most 

commonly used magnetorquers involve a tightly wound coil around a permalloy rod [62]. 

When a voltage is applied to the coil, a magnetic field is created, allowing the CubeSat to 

align itself with the Earth’s magnetic field. CMGs feature a small mass that spins, creating 

enough angular momentum to rotate the CubeSat in any direction. These masses are 

usually in the form of momentum wheels or reaction wheels [62]. Although the wheels 

within a CMG provide a very high degree of orientation, or attitude, control precision, 

they can reach a limit of degradation after continued use. Some control systems, like the 

one proposed in [62], feature a combination of both magnetorquers and CMGs for high 

precision in attitude control and a longer lifetime. For this CubeSat surveillance system, 

an accurate and robust attitude control system is desired. Therefore, a system like the one 

proposed in [62] will be used. 

Power supply systems also play a major role in analyzing a CubeSat’s capability 

as a surveillance platform. Only sensors that fall under the power constraints for a CubeSat 

can be considered. Due to ISS safety restrictions, a typical CubeSat power supply produces 

80 Wh [3]. There have existed special cases in the past which have included larger power 
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outputs, but they present a greater risk to the ISS and its crew.  However, developing 

power supplies in-house with a larger power output may be necessary to accommodate 

certain sensors. The power system onboard a CubeSat includes several components: 

batteries, a power distribution unit, the charging circuit, and the solar arrays. A typical 

3U/6U CubeSat solar pannel features 6-7 solar cells [63]. Each solar cell in a panel can 

produce ~1 W of power. Multiple panels can be connected via deployable solar arrays, 

allowing each array to contain 16-20 cells. The CubeSats for this system will feature two 

solar arrays, each containing 20 cells. Since the two arrays in conjunction produce 40 W 

of power, it would take two hours to charge a completely empty 80 Wh power supply. An 

adequate power duty cycle for each CubeSat must be developed that determines when 

each satellite component can operate to always have enough power available in the 

satellite. The high-power consumption components, like the transmitter, receiver, and 

sensor, should ideally not operate at the same time or while the solar panels charge the 

system. Taking the CubeSat’s power output capabilities into consideration aid in sensor 

selection in future sections and an example duty cycle can be seen in Section 4. 

As mentioned previously, many CubeSats in orbit today were launched from the 

ISS. The ISS was chosen as a launch platform for the CubeSats in this project for a variety 

of reasons. First, the launch provider collaborating on this project, NanoRacks, has their 

CubeSat launcher on the ISS. A graphic of their launcher can be seen in Figure 7 and 

Figure 8 [64]. The second reason for utilizing the ISS deals more with its orbital features. 

Given a CubeSat’s restrictions on propulsion systems, its orbit cannot be changed to 

accommodate a certain target on the Earth’s surface. Therefore, the CubeSat surveillance 
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system will have to be deployed at an orbit that allows it to eventually visit any point of 

interest on the surface. The ISS’s orbit inclination of 51.6° means it can cover any point 

on the Earth between 51.6° N and 51.6° S in latitudinal coordinates, where most of the 

planet’s population is located [9]. As can be seen from Figures 7 and 8, when a CubeSat 

is launched from the ISS, it is angled downwards and backwards from the front of the 

space station [64]. The spring system from the launcher gives the CubeSat enough velocity 

to avoid any collision with the ISS. Even though the CubeSat is launched away from the 

ISS, the launch velocity is not enough to overcome its initial momentum from when it was 

still docked on the ISS. Any CubeSats deployed from the ISS adopt the same orbit as the 

ISS, allowing for them to cover the same area. The ISS has a period of 92.8 min and can 

reach any point on the Earth within its inclination in around two to three days [9]. Having 

this type of orbit for a surveillance system is greatly advantageous as it would allow for 

quick access to any point of interest. When it is said that the CubeSat adopts the same orbit 

as the ISS, it is meant that the CubeSat adopts the same ephemeris data for the epoch time 

of when the satellite is launched. Once the CubeSat is in its orbit, it will slowly start 

deforming away from that of the ISS for a couple of reasons. First, the ISS regularly uses 

propulsion systems to maintain its orbit to fight against the effects of gravity and 

atmospheric drag, and as was mentioned earlier, a CubeSat is unable to use propulsion 

systems. Second, the difference in surface area and mass of the CubeSat, known as the 

ballistic coefficient, causes the CubeSat’s orbit to decay at a quicker rate than that of the 

ISS [10]. The CubeSat orbital period becomes faster than that of the ISS because of its 

smaller semi-major axis of the elliptical orbit from launch. As the orbit decays, the semi-
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major axis slowly gets smaller, which keeps increasing the orbital period [11,12]. Since a 

CubeSat is unable to regularly correct its orbit, its lifetime is usually around one to two 

years before it reenters the atmosphere [10]. Even though a CubeSat’s orbit starts deviating 

from the ISS orbit, it will still cover the same amount of space as the ISS, just at a different 

rate. Another advantage for using the ISS as a launch platform is its ability to allow for 

“stash and deploy” methods. Unlike some other launch providers, a CubeSat on board the 

ISS can wait for its deployment until it is near an area of interest. This capability allows 

for the on-demand surveillance feature offered by this CubeSat platform. 

 

 

 
Figure 7. The NanoRacks CubeSat launcher attached to the ISS and its direction of 

deployment for the CubeSats. Reprinted with permission from [64]. 
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Figure 8. A Close-up of the NanoRacks ISS launcher and a cone showing 

deployment trajectory. Reprinted with permission from [64]. 

 

 

 

2.2. Satellite Design Process 

Although the work in this thesis culminates in only a methodology for the CubeSat 

system, this subsection explores the process needed for the development of a mission 

ready satellite. Like with a typical CubeSat project, the design process for this CubeSat 

surveillance system is less complicated and expensive than for conventional satellites. The 

major factor contributing to the ease of designing a CubeSat is the availability of 

commercially off the shelf (COTS) components [2,3]. These COTS components allow 

design teams to concentrate on the payload and the final assembly of the CubeSat instead 

of having to design a transmitter from scratch, for example. The CubeSats for the 

surveillance system in this work have the capability of using COTS components for certain 

aspects of the satellite architecture, like onboard circuitry and solar arrays. However, due 

to the nature of this novel surveillance system, not all the components needed for the 
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CubeSat constellation can be purchased as COTS and would need to be developed in 

house. The determination of the use of COTS for this surveillance systems spurs from the 

needs and constraints for observing the phenomena of interest described in the previous 

section. For the CubeSats in the surveillance system to receive information on the various 

parameters characterizing certain phenomena, as stated in Section 1, a myriad of sensors 

must be placed onboard the satellite constellation which might not be commercially 

available. For example, an optical imager with a spatial resolution of a few meters could 

be used to identify the dimensions of construction vehicles. As is stated in Section 4, 

COTS imagers small enough to fit in the desired 3U form factor for the satellites in this 

surveillance system do not have the spatial resolution necessary [74]. However, the work 

in [68], for example, aims at developing an optical imager which fits inside a 3U CubeSat 

but can deploy from the satellite once in orbit in order to achieve spatial resolution of 

about 1.5 m from LEO, which is sufficient to identify construction vehicles. The kinds of 

sensors considered for use with this CubeSat system are discussed in Section 4, but the 

development of unique sensors for the platform is beyond the scope of this work. For the 

purposes of exploring the design process for the CubeSats in this surveillance system for 

this section, it is assumed that the sensors, or payloads, chosen will fit inside the CubeSat 

and allow for enough space for the other necessary components. 

The rest of this subsection will explore the major steps and considerations needed 

for the design of this CubeSat surveillance system. There are multiple helpful resources 

available from different organizations, like NASA, that provide teams with guidelines and 

steps for the development of a CubeSat [2,3,59]. Using these guidelines, a more specific 
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definition for the satellites in this surveillance system is reached, but the work in this thesis 

does not aim at completing the design steps outlined in the guidelines. To illustrate how a 

CubeSat might look like for the surveillance system, multiple comparisons are made to 

the qbee50-LTU-OC (SE01) CubeSat which was part of the QB50 constellation deployed 

on 17 May 2017 [2,75]. The steps described in this subsection are merely the highlights 

of the CubeSat design process and does not intend to replace or replicate any of the very 

helpful design guides previously mentioned [2,3,59]. 

2.2.1. Getting Started 

When beginning any CubeSat mission, the first things that need to be 

accomplished are developing a concept for the CubeSat and securing funding. It is easier 

to meet all necessary deliverables for producing a final CubeSat if there is always a goal 

in mind. Having a specific purpose for the CubeSat will determine what kind of hardware 

and licensing is necessary. As has been stated multiple times throughout this thesis, the 

objective for the CubeSats in this surveillance system is the characterization of phenomena 

of interest for nuclear fuel cycle surveillance. To recognize the phenomena specified in 

Section 1, various sensors are needed on board the CubeSat constellation. Therefore, the 

Cubesat architectures must allow for the functionality of such sensors and have the 

necessary equipment for data processing. When the design process begins for the CubeSat 

surveillance system, there needs to be extensive communication and collaboration 

between the CubeSat developer and the launch provider. A launch provider, like 

NanoRacks, is an organization that has the resources to place a CubeSat in orbit once it is 

completed. Within the developer team, specific tasks and responsibilities need to be 
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defined clearly for each team member. Appropriate delegation of tasks will ensure the 

success of developing the CubeSat(s). Once the design process for the CubeSat system 

begins, it is important to maintain a detailed timeline as many different aspects of the 

process should be developed simultaneously. For example, the CubeSat communications 

capabilities might affect the development of ground stations, and vice-versa. Testing and 

inspection of satellite components must also occur concurrently with the CubeSat 

development. As a comparison of what other CubeSat design processes look like, Figure 

9 shows a timeline for the SE01 CubeSat mission’s design process [2]. As can be seen, 

there are many different tasks needed to be completed for the successful development of 

a mission ready CubeSat, most of which happen simultaneously. The different tasks 

mentioned in the example timeline are described in the rest of this subsection. These same 

steps will be taken during the design process of the CubeSat surveillance system, but they 

will most likely not be the same duration. Factors like design, inspection, integration, 

programming, and testing will take longer to complete simply because the CubeSat 

surveillance system features multiple satellites instead of only one. Also, the task timeline 

assumes that the payloads, or sensors, for the CubeSats are fully developed or purchased 

and ready for integration. 
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Figure 9. The timeline for the SE01 CubeSat Mission. 

 

 

 

A very important aspect of the CubeSat design process which must begin at the 

start of the project is the licensing and frequency allocation of the satellite. This is a 

lengthy process that involves application submittals and communicating with regulatory 

commissions and can have an impact on the design of the satellite. If this portion of the 

development process is not completed before the scheduled launch time, the satellites are 

not allowed to launch and there could be even more serious repercussions. Therefore, it is 

recommended that this process is begun around 9 months to a year before the final delivery 

of the CubeSats to the launch provider [3]. In terms of licensing, all sensing systems in 

space require an issued license by the National Oceanic and Atmospheric Administration 

(NOAA) for operation. The process for obtaining a NOAA license begins by filling out 

an initial form which determines if a satellite mission needs a license. Once a need for a 

license is established, the licensing process will commence with NOAA. Once the 

developer team has the license for the CubeSats, frequency allocation can begin next. 

Once a CubeSat is in orbit, it communicates with ground stations by transmitting radio 
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frequency (RF) signals. Federal law requires that all radio frequency transmitters must be 

licensed before operation. The National Telecommunications and Information 

Administration handles all RF licenses for government operated satellites, while the 

Federal Communications Commission (FCC) takes care of any non-government operated 

satellites [59]. As for the FCC, there are three different paths developer teams can take: 

experimental, amateur, and commercial [3]. The type of path depends on the objectives of 

the CubeSat mission. The CubeSats for this surveillance system require an experimental 

license. Most CubeSats deployed by NanoRacks possess this license [3]. One last thing to 

consider for this CubeSat system is how the satellites’ RF operations could interfere with 

the ISS. The Johnson Space Center Spectrum Office can analyze the possibility of 

interference between any satellite’s RF signals and the ISS and should be contacted during 

the design process [3]. For more information on the licensing process, each agency should 

be contacted directly.  

Before the fabrication and integration of the CubeSats begin, adequate facilities 

for the completion of each task must be established, especially for the development of 

non-COTS components. For the integration of components into the final satellites, a 

controlled environment, or cleanroom, is needed for meeting cleanliness protocols and 

avoiding unnecessary damage to the satellites. Adequate facilities are also needed for 

testing the CubeSats’ ability to survive a space-like environment. The different types of 

tests are discussed in further detail later in this subsection. Finally, at least one ground 

station must be established for receiving communications from the CubeSats in orbit. As 

is discussed in Section 3, the CubeSats for the surveillance system in this thesis would 
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feature a network of different ground stations around the globe to increase the rate of data 

transmission during operation. The ground stations would feature antennas for 

communicating with the CubeSats, which vary depending on the type of RF signal the 

CubeSat transmitter operates on. A 2 m antenna would be needed for RF signals in the 

VHF band, which is 30-300 MHz, while only a 70 cm antenna is needed for UHF band 

signals, which are within 300-3000 MHz [2,78]. S-band signals between 2.0-4.0 GHz and 

X-band signals between 8.0-12.0 GHz are also commonly used and would require more 

of a dish or patch shape antenna [2,78]. The CubeSats in this surveillance system operate 

in the S-band region for uplinks and in the X-band region for downlinks to ensure greater 

communications speeds and security. Adequate power generators and computer interfaces 

are also very important to include in ground stations. 

2.2.2. Satellite Components and Fabrication 

As mentioned, the biggest advantage for the development of a CubeSat is its ability 

to use COTS components in its design. By using these types of components, the design 

and integration time of the CubeSat surveillance system can be accomplished quickly. As 

mentioned earlier, not all the components for the CubeSat surveillance system will be 

COTS, which can cause the design process to take longer than other CubeSat missions. In 

general, most CubeSats can be defined to include the following components: at least one 

payload, an onboard computer and data concentrator, a transmitter/receiver system, a 

power supply, an attitude control system, antennas, solar panels, and other external 

appendages [2]. For this CubeSat surveillance system, the components most likely not to 

be obtained commercially are the individual payloads, or sensors, and the power supplies. 
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Although there are multiple power supplies available as COTS, sensors developed in-

house may need compatible power supplies. As for all the other components mentioned, 

it is completely feasible to purchase as COTS for this CubeSat surveillance system and 

should be done so. Table 10 lists all the components the CubeSats for this surveillance 

system should include and their viability to be purchased as COTS. It is important to 

consider at different steps in the design process that all components must be fabricated 

from appropriate materials that can withstand testing and meet the weight restrictions for 

CubeSat design specifications, which are 1.33 kg per 1U of size [2]. 

The first step in the design and integration of the CubeSat surveillance system is 

to determine the satellite’s payload. The payload for the CubeSat, which is entirely 

dependent on the mission objectives, will determine all other aspects of the system. As 

previously stated, the payloads for the CubeSats in the surveillance system are the different 

types of sensors necessary for its observation tasks. Different types of sensors will require 

different sized CubeSat architectures, power supply sizes, transceiver types, and solar 

array sizes. The size of the satellite is something that should be considered concurrently 

with its type of payload. The CubeSat surveillance system will feature both 3U and 6U 

CubeSats. A payload should not be the exact same size as its CubeSat since other 

components also need to be included within the architecture. Depending on the sensor 

sizes, the CubeSats in this surveillance system will most likely feature only one payload 

per satellite. The CubeSat frames which will include all components of the satellites and 

forms their skeleton can be either bought or developed in-house if it meets the CubeSat 
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Design Specifications for the 3U and 6U form factors [58]. For visualization, Figure 10 

shows what a 3U and 6U structure looks like [65]. 

Table 10. A list of CubeSat components for the surveillance system and their COTS 

viability. 

Component COTS viability 

Payload or Sensor Unlikely 

Onboard Computer/Data Concentrator Yes 

Transmitter/Receiver Yes 

Power Supply Likely 

Attitude Control System Yes 

Antennas Yes 

Solar Panels Yes 

Other External Appendages Yes 

Structural Frame Yes 

Figure 10. Structural frames for a 3U and 6U CubeSat. 

Once the payloads for each CubeSat are decided, adequate power systems should 

be chosen. As mentioned previously, typical CubeSat power supplies generate around 80 
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Wh of energy [3]. There have been special cases where this limit has been surpassed, but 

it comes at a higher risk of thermal runaway propagation. Even with power supplies below 

the 80 Wh threshold, tests to ensure its safety must still be conducted. Therefore, the power 

supplies for the CubeSats in the surveillance system will produce 80 Wh. Since the 80 Wh 

threshold is not exceeded, the power supplies can be purchased as COTS. If future work 

on the CubeSat system determines that a sensor with an extremely large power 

requirement is needed, the power supply for the satellite housing such sensor can be 

developed in-house. As mentioned earlier, the CubeSat power systems include batteries, 

a power distribution unit, a charging circuit, and solar arrays. Typical batteries used in 

CubeSat power systems are Panasonic Li-Ion 18650 batteries [66]. When selecting a 

power system, it is also important to consider power output and size requirements for the 

solar arrays. Although most solar arrays can deploy from the CubeSat once in orbit, they 

still cannot exceed CubeSat size requirements since they must be integrated within the 

CubeSat until its launch from the ISS. The CubeSats for this surveillance system will 

feature two solar arrays, each 20 cells producing a total of 40 W [63]. As previously 

mentioned, it will take the two solar arrays two hours to fully charge a completely empty 

80 Wh power supply. As selections for power systems and solar arrays are finalized during 

the design process, it is important to consider the power budget of each component in the 

satellite to assure the CubeSats will indeed have enough power. Section 4 shows an 

example duty cycle for power consumption and generation. 

For the next steps, the rest of the CubeSats’ components should be acquired and 

integrated into the system. These include the attitude control system, the transmitter, the 
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receiver, its antennas, data concentrator, and onboard computer. As mentioned earlier, 

there are different options available for a CubeSat attitude control system. An attitude 

control system that allows for a wide range in motion with precision is desired for any 

CubeSats which observe the surface of the planet. An attitude control system like the one 

mentioned in [62] best serves the needs for the CubeSats in this surveillance system. In 

terms of power considerations, a typical CubeSat magnetorquer attitude control system 

requires up to 1.2 W during full actuation [80]. A transmitter/receiver configuration should 

be selected that can communicate in the required RF bands, which is determined in part 

by the licenses obtained from the FCC. As mentioned, the CubeSats will transmit X-band 

signals and receive S-band signals for increased speed and security in communications. A 

typical X-band transmitter consumes up to 12 W at maximum operations while a typical 

S-band receiver consumes up to 2 W [77,82]. The data concentrator and onboard computer 

should be adequately programmed to execute the desired mission objectives while the 

CubeSats are in operation. These objectives may include: the operation of the 

payload/sensor, allowing for communication between the satellite and ground stations, 

data processing and storage, etc. Since the main goal for the CubeSat surveillance system 

is to autonomously perform some onboard data processing for characterization before 

transmitting information to ground stations, the CubeSat onboard computers and data 

concentrators must be programmed to store the collected data and run the characterization 

algorithm. The methodology developed in this thesis aims at providing the basis for such 

programming. It is also worth noting that the CubeSats in this system will possess very 

high data storage capabilities in order to not limit data collection of phenomena before the 



 

43 

 

next transmission to ground. Typical onboard computers feature a power consumption of 

400 mW on average [80]. The programming of the CubeSat components must be 

performed simultaneously with the satellite design and fabrication for seamless integration 

and time efficiency. As for the CubeSat antennas, they must be able to deploy from the 

satellite architecture after its launch from the ISS just like with the solar arrays as to not 

cause any issues during deployment. The antennas chosen for the system must be 

compatible with the transmitter and receiver RF signals. In terms of power consumption, 

typical X-band and S-band antennas requires 4 W for maximum RF output [79]. In order 

to utilize and integrate all on-board components of a CubeSat, multiple electronic boards 

are needed. Since CubeSats have very specific size restrictions, their circuit boards follow 

the PC/104 specifications [67]. To avoid issues like outgassing or whisker growing in the 

circuit boards, materials such as brass, zinc, and cadmium should be avoided [2]. 

Outgassing refers to a release of gases and particulates when material is within a vacuum 

environment, and whiskers are thin crystals that form from metals when in vacuum 

conditions and can cause short circuits [2,3]. As for wire insulation within the CubeSats, 

polytetrafluoroethylene (PTFE) or polyolefin (PO) should be used, not any polyvinyl 

chloride (PVC) materials [2]. 

A complete system layout for the SE01 CubeSat can be seen in Figure 11 as an 

example of how all the satellite components can be integrated within the structural frame 

[2]. The structure for the CubeSats in the surveillance system will resemble the SE01 

layout but at a 3U/6U size instead of 2U. The payloads will be larger for the CubeSat 

system satellites, and they will most likely not feature a second payload. In terms of 
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materials for the CubeSat structure, aluminum alloys and austenitic stainless steel are 

typically used. Since the use of steel can create disturbances in the magnetic field, it should 

be used only for mechanical parts or fasteners [2]. During assembly of the satellite, it could 

become necessary to utilize bonding materials. Common types of bonding materials which 

are suitable for a space environment are epoxy, room-temperature vulcanizing silicone, 

and Kapton tape [2].  

 

 
Figure 11. The final configuration for the 2U qbee50-LTU-OC (SE01) CubeSat 

mission. 

 

 

 

Another aspect of the CubeSat design and fabrication process is the inclusion of 

inhibits on the satellite system. Inhibits must be included in the CubeSat architecture to 

prevent the satellite powering on prematurely. An unplanned powering up of the CubeSat 

can create inadvertent RF signals which can interfere with the RF systems of the launch 
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vehicle. In the case of CubeSats deployed from the ISS by NanoRacks, inhibits also help 

mitigate any risk to the crew [3]. For a mechanical implementation, inhibits could take the 

form of rollers or plungers which are in contact with the deployer’s rails. Once a CubeSat 

is launched from the deployer, the inhibits disengage and the satellite is free to turn on. 

For an electrical application, inhibits can take the form of switches on circuit boards. In 

order to minimize a single-point failure, more than one inhibit should be integrated into 

the CubeSat. 

2.2.3. Unique Component Considerations 

Apart from the typical components found on a CubeSat, some missions in the past 

have featured unique components in their design that lead to special considerations. Some 

of these uncommon components with previous flight heritage which can be featured on 

the CubeSats for the surveillance system are higher power transmitters, deployable 

appendages, and lasers. It is important to consider the implication of implementing these 

unique features to the satellites since they may complicate the design and licensing 

process.  

During the design process of the CubeSats, it may prove beneficial that a high-

power transmitter should be integrated into some of the satellites to increase transmission 

speeds. Since typical transmitters already account for most of the power draw, a higher 

power transmitter may require a larger than average power supply. Radio Frequency 

signals present the biggest hazard during a CubeSat mission while on the ISS. The RF 

transmissions from a CubeSat could present a risk to the health of the crew and to critical 

ISS assets. It is extremely important to coordinate with the launch provider from the 
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beginning of the design process to make sure that the CubeSat’s transmitter meets all 

requirements and that it will not come online until after deployment from the ISS. This is 

an example where inhibits in the satellite are crucial for mission success. As previously 

mentioned, the CubeSat surveillance system will use an X-band/S-band 

transmitter/receiver configuration. Although these components have high power 

consumptions, a power supply larger than 80 Wh will not be needed. Through licensing, 

inhibits, and coordination with NanoRacks, the X and S-band CubeSat components will 

be integrated into the satellites to avoid issues with the ISS and its crew. 

Although any CubeSat must comply with the CubeSat Design Specification form 

factors, they can feature components that deploy beyond the CubeSats initial envelope. 

The most common types of deployable appendages featured on the CubeSat surveillance 

system are the solar arrays or sensors that extend from the bottom of the satellite. As 

previously mentioned, some types of imaging sensors might need to deploy and extend 

out of the CubeSat for operation [68]. For solar arrays, it is important to keep in mind that 

they do not have to necessarily deploy from the CubeSat. They can be installed on the 

surface of the satellite. Deployable solar arrays, however, can include a greater number of 

solar cells and power and can be moved to have a better angle for receiving the Sun’s rays. 

As previously mentioned, all CubeSats in the surveillance system will feature deployable 

solar arrays to meet energy needs. Although deployable appendages are completely 

acceptable for a CubeSat, additional considerations must be made. The biggest concern 

with deployable components is that they may become caught by the deployer during 

deployment. These so called “hang fires” could create all sorts of collisions with the ISS 
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and present a danger to the crew [3]. To mitigate such danger, deployment testing is 

performed in coordination with the launch provider to ensure there is no possibility of a 

hang fire. If hang fires are prone to occur, the CubeSat design must be revisited. 

It may become necessary for the CubeSats in the surveillance system as the design 

process begins to feature laser systems for optical communication capabilities or for 

sensors in Earth observation. Like with RF signals, the major concern for laser systems on 

the CubeSats is their interference with the ISS or its crew [3]. Therefore, they must be 

inhibited prior to launch from the ISS. Additional certifications and licenses must also be 

obtained to ensure the legal and safe operation of laser systems once in orbit. 

2.2.4. Materials and Testing 

Due to the hazardous and challenging environment at low earth orbit (LEO), any 

type of satellite under development must pass rigorous testing to ensure it operates 

correctly in space. As mentioned earlier, certain materials when placed in a vacuum are 

susceptible to certain side effects, like outgassing and whisker growth. The kinds of 

materials that should be used or avoided to mitigate outgassing and whisker risks have 

been previously mentioned in this subsection. In general, outgassing resistant materials 

can be chosen depending on two different properties: Total Mass Loss (TML) and 

Collected Volatile Condensable Material (CVCM) [3]. To meet NASA standards, the 

TML of a material should be less than or equal to 1% and the CVCM less than or equal to 

0.1%. As a useful reference, NASA provides a database that includes the TML and CVCM 

of multiple materials [69]. It was also mentioned previously in this subsection to avoid the 

widespread use of steel as it could interfere with magnetic fields [2]. All materials selected 
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for the CubeSat design should also pass the ISS toxic material containment standards and 

re-entry survivability standards. A CubeSat waiting to be launched from the ISS should 

not present any toxicological hazards for the ISS crew, and all potentially toxic materials 

must feature sufficient levels of containment. Also, due to their size, the CubeSats should 

ideally burnup completely upon re-entry. If certain materials are not burned up because of 

high melting points, they must impart less than 15 Joules of energy at any point per FCC 

standards [3]. The ISS Program also requires adequate documentation for jettison 

assessment of such materials.  

A major component for the CubeSat design process is the periodic testing of the 

satellites to ensure mission readiness. Without sufficient testing, the CubeSats will not be 

cleared for launch or in-orbit operations. There are three major kinds of tests which must 

occur during the design process: functionality, mechanical, and environmental testing. To 

test functionality, the CubeSats must be able to perform all required tasks in terms of 

software and hardware. It must be assured that the CubeSats can execute their functions 

and that there are no faults in the programming. Mechanical testing can be completed with 

the use of an electrodynamic shaker to test the CubeSats’ ability to survive launch and 

deployment. Vibrations replicating a spacecraft launch can be programmed for the shaker. 

Testing of random vibrations on the CubeSats must also be conducted. The satellites’ 

integrity must be unaffected, and all components must be functional for it to pass 

mechanical testing. Environmental testing involves thermal-vacuum bake-out and 

thermal-vacuum cycling tests to analyze the CubeSats’ ability to withstand extreme 

temperature and vacuum environments [2]. During testing, it can be determined if 
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materials may experience issues like outgassing. It is also important to analyze if 

functionalities of the satellites are conserved after experiencing such environments. These 

tasks usually take between hours and days to complete and should therefore be scheduled 

accordingly. 

2.3. Orbital Options and Modelling 

The National Aeronautics and Space Agency (NASA) makes public the daily 

ephemeris data for the ISS which it updates regularly [70]. Given this data from NASA, 

the position and orbit of the ISS can be modeled with the correct software and algorithms. 

Table 11 shows an example of the ephemeris data posted by NASA for the ISS. As a first 

step for analyzing the orbital capabilities of a CubeSat, a proof of concept was created to 

explore if the ISS and CubeSat orbits do allow for access to any point of interest on the 

Earth’s surface. Therefore, a model for the orbits of both satellites was desired. Figure 12 

shows a free body diagram of the modelling process for the ISS and a CubeSat. As can be 

seen from the figure, the first step in the procedure for eventually calculating access times 

for a CubeSat, or how long the CubeSat is above a target on the surface, starts by first 

modelling the ISS orbit. 
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Table 11. An example of the ephemeris data provided by NASA for the ISS on 

February 28th, 2020 at 02:05:00.00. 

Parameter Variable Value 

Semi-Major Axis a 6793034.89 m 

Eccentricity e 0.0009419 

Inclination i 51.67784° 

Argument of Perigee ωp 81.96084° 

Right Ascension of the Ascending 

Node 
Ω 172.02147° 

True Anomaly ν 207.89816° 

Mean Anomaly M 207.94869° 

 

 

 

 
Figure 12. Steps for modelling satellites and computing the access time from the 

CubeSat to a target. 

 

 

 

Initial attempts for creating a model for the space station’s orbit involved using the 

Keplerian equations and Python code [11,12]. The python model of the Kepler equations 

used the ephemeris data of the ISS to calculate its current and future position in a 

latitudinal coordinate system. The developed model produced the latitude coordinate of 
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the ISS within 1° of error for up to a day in the future, but the model never accurately 

predicted the longitude coordinate. Since the Python model did not achieve the desired 

accuracy for modelling satellite orbits, it was decided that a higher fidelity model was 

needed to continue the work in this thesis. The use of software packages like STK by AGI 

and GMAT by NASA which feature complex propagators with very high fidelity was 

explored [71,72]. The package chosen to continue the work done in this paper was the 

General Mission Analysis Tool (GMAT) which is provided at no cost by NASA [72]. 

Figure 13 shows the interface for the GMAT software package. Given the live ephemeris 

data provided by NASA for the ISS, GMAT can model the orbit of the ISS. Figures 14 

and 15 show the two different graphic displays that GMAT generates for modeling the 

ISS. The accuracy of the modelled orbit, however, only extends up to two to three days in 

the propagated model. Because of this, the model should be updated daily with the 

ephemeris data provided by NASA to maintain high fidelity in the calculations.   
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Figure 13. The interface for GMAT by NASA. 

Figure 14. The planetary graphic display created by GMAT while modelling the 

orbit of the ISS. 
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Figure 15. The Earth map graphic display created by GMAT while modelling the 

orbit of the ISS. 

 

The steps for calculating the access times for a CubeSat to any target on the globe 

using GMAT as seen in Figure 12 are as follows. First, the ISS is modelled given the 

ephemeris data provided by NASA at the specific epoch. For example, if the data for the 

ISS provided by NASA was given at 12:00:00 pm on May 16th, 2020, the GMAT model 

will begin its propagation at the same time. As was mentioned earlier, the time window 

for the propagator must be updated for the model daily as well as the ISS’s data in order 

to maintain a high accuracy. Once the ISS data has been input, a target location is placed 

on the surface given its latitudinal coordinates. The software propagator is then initiated, 

and the ISS access times are calculated for that location. Table 12 shows the output data 

GMAT produces for access times for the ISS. In this example, the city of College Station 

was the target, and the ISS experienced eight passes between May 16th, 2020 at 
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02:21:11.119 UTC and May 17th 2020 11:25:42.474 UTC. The access times for the ISS to 

a given location are calculated from when the ISS is coming just over the horizon and can 

see the target location. Whenever the access times for the CubeSat are calculated, they 

will be using a different angle of elevation. For imaging or sensing purposes, the CubeSat 

will need to be closer to the target for data acquisition, so the calculated access times 

reflect that. A graphic describing the angle of elevation from the surface to a satellite can 

be seen in Figures 16 and 17. The elevation angle is measured considering a vector at the 

0° angle being on the horizon and the 90° vector being vertically up towards space from 

the surface. Therefore, a higher valued angle of elevation means less access to the location. 

For example, a 60° angle of elevation means a satellite can only see the location from the 

cone half angle between the 60° angle and the 90° angle. Once the access times are 

calculated for the ISS to a certain location, the ephemeris data for the ISS at the instant it 

begins the access time is exported and given to the CubeSat. The CubeSat is then modelled 

with the ISS ephemeris data with an epoch at the time of when the access time for the ISS 

begins. This is done in order to avoid orbit deformation as much as possible for at least 

the first pass of a location. This method of waiting until the ISS is above a target to deploy 

a CubeSat is what is called “stash and deploy”. When the ephemeris data is given to the 

CubeSat, its specific weight and ballistic coefficient are also added. Since the CubeSat is 

launched from the ISS in a downward direction, it will obviously begin with a lower semi-

major axis. For the sake of the GMAT model, the semi-major axis is kept the same since 

a difference of a few hundred meters is negligible. Once the CubeSat is created with the 

necessary parameters, the model is propagated, and access times are calculated. Table 13 
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shows the access times for the CubeSat in the College Station example. The angle of 

elevation used for the data in Table 13 was 60°, which is a typical angle for satellite optical 

imagery [73]. As mentioned earlier, the access times for the CubeSat are completely 

dependent on the angle of elevation, which is dependent on the type of sensor used for 

observation. The type of sensor(s) used for this surveillance platform are explored later in 

this thesis. Once the type of sensor is determined, the CubeSat access times can be 

solidified. As can be seen from Table 13, the duration of the access times for the CubeSat 

to a location are not always the same. This is because the satellite will not always pass 

over a location at the same angle. Also, with a smaller angle of elevation, the CubeSat 

would have longer times and more instances of access times. The maximum time any 

location on Earth is visible from a satellite at a 500 km low Earth orbit (LEO) is about 11 

min if the satellite is flying directly over the target. These 11 min will serve as an upper 

limit for deciding on the type of sensor that will be used. Sensors needing a longer time 

for data acquisition of a target will not be feasible for this surveillance platform.  

 

 

Table 12. The start time, stop time, and total duration in seconds of the ISS access 

times to College Station between May 16th and May 17th, 2020. 

Start Time (UTC) Stop Time (UTC) Duration (s) 

16 May 2020 02:21:11.119 16 May 2020 02:28:50.439 459.320 

16 May 2020 04:00:24.049 16 May 2020 04:03:58.692 214.643 

16 May 2020 08:55:58.427 16 May 2020 08:59:33.090 241.663 

16 May 2020 10:31:06.514 16 May 2020 10:38:46.245 459.730 

17 May 2020 01:33:35.889 17 May 2020 01:40:56.842 440.953 

17 May 2020 03:11:22.331 17 May 2020 03:16:58.536 336.205 

17 May 2020 09:43:24.391 17 May 2020 09:50:51.132 446.742 

17 May 2020 11:21:24.435 17 May 2020 11:25:42.474 258.039 
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Figure 16. The definition of an angle of elevation with regards to a satellite. 

Figure 17. A 3D representation of the angle of elevation. 

Table 13. The start time, stop time, and total duration in seconds of a CubeSat 

access times to College Station between May 16th and May 17th, 2020. 

Start Time (UTC) Stop Time (UTC) Duration (s) 

16 May 2020 02:24:28.108 16 May 2020 02:25:31.255 63.147 

16 May 2020 10:33:28.336 16 May 2020 10:34:31.426 63.090 
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As can be seen by the access time calculation completed with GMAT, a CubeSat 

surveillance system launched from the ISS proves to be feasible. The CubeSat system can 

reach any point of interest on the Earth’s surface and can do so more than once. The 

difference in the number of access times between the two satellites is due to the CubeSat’s 

decaying orbit and its angle of elevation to the target. As was mentioned earlier, the types 

of sensors on board the CubeSat will affect the access times of the satellite to a location 

on Earth because of their needs for different angles of elevation. The less angle of 

elevation a sensor needs to collect data, the longer the access time duration will last. The 

amount of time available per pass for surveillance is a strong consideration for the type of 

observations that will be made by the CubeSat system.  

2.4. Conclusion 

This section assessed the viability of a CubeSat system as a platform to accomplish 

its surveillance goals. First, it provided a more specific definition of a cube satellite and 

explored its capacities for supporting a surveillance platform. The major components and 

capabilities of a CubeSat and the nature of an ISS deployment were defined. Next, a 

summary of a general CubeSat design process was explored for facilitating future. The 

design processes outlined in CubeSat designed guides were analyzed and adapted to the 

CubeSat surveillance system. Other CubeSat mission design procedures were also listed 

as reference points. To close out the section, a CubeSat’s orbital capabilities in low Earth 

orbit (LEO) were examined through modelling. The General Mission Analysis Tool from 

NASA was used to observe the trajectory of a CubeSat’s flight and analyze the kind of 

access it can have to targets on the surface 
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3. ARCHITECTURE AND DEPLOYMENT SCENARIOS 

The previous section explored the capability of a CubeSat-based platform to 

support a global surveillance system. This section will expand on the information 

presented in Section 2 by comparing different possible architecture scenarios for the 

CubeSat surveillance system. It has been previously mentioned that a constellation of 

CubeSats proves most effective for accurate surveillance, but a closer comparison to a 

singular CubeSat surveyor is made to justify the use of a constellation. Different aspects 

of each system architecture were considered and compared to inform the final decision. 

Three different communications configurations for the CubeSat constellation were 

considered and analyzed in a decision matrix. Alternate system architectures for the 

constellation were also explored. Additionally, a mathematical algorithm was developed 

to define the deployment method of the CubeSat surveillance system from the ISS. With 

the completion of the deployment algorithm,  

3.1. Comparison between 1 CubeSat and a Constellation 

When asserting that a constellation of CubeSats is advantageous for global 

surveillance, a comparison must be made to a system featuring a singular satellite. Both 

options for the system present advantages and disadvantages. The most notable difference 

between these two architecture scenarios is the number of sensors the surveillance system 

can rely on. As previously mentioned in this thesis, 3U and 6U CubeSat structures only 

offer enough space for the integration of a single sensor. Therefore, since only one type of 

sensor is available for Earth observation in a singular CubeSat system, not all the 

previously listed parameters describing the phenomena of interest can be detected by one 
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satellite. For example, unless a new kind of sensor is developed, a singular CubeSat system 

cannot gather information about a structural fire’s size, temperature, and chemical make-

up with high enough individual accuracy for adequate characterization. Although a 

building fire can possibly be identified from LEO from only one of those parameters, there 

will be a much higher degree of uncertainty in characterizing the specific situation. If the 

system features an imager in the visible spectrum, it would only recognize the fire’s size 

and nothing else. On the other hand, a constellation of CubeSats can feature as many 

sensors as there are satellites. Featuring a greater number of sensors allows the 

surveillance system to collect data of greater diversity when observing the target and 

increase its characterization accuracy. A constellation of CubeSats can permit the 

characterization of a structural fire’s size, temperature, chemical make-up, and any other 

type of information about the event that can be gathered from other types of sensors 

onboard the system. A system with access to greater amounts of data allows the 

characterization method to more accurately analyze phenomena of interest. For example, 

since structural fires and wildfires have similar temperatures, having access to different 

types of parameters from the observed phenomena, like dimensional values or chemical 

make-up, allows the surveillance system to differentiate the two. Also, having numerous 

satellites allows for more than one sensor of the same type in the system. Redundancy 

with sensors in the system mitigates possibilities of sensor failure. Also, the presence of 

multiple satellites in the system increases its ability to survive an attack when compared 

to a single CubeSat system. If one of the satellites in the constellation were to be destroyed, 

the surveillance system as a whole would still function through the remaining satellites, 
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sparing any major communications interruptions experienced by the removal of one of the 

satellites in the constellation. 

The next consideration is the system simplicity when comparing the singular 

CubeSat and constellation. Analyzing the simplicity of both architectures can be divided 

into two categories: constructional and operational simplicity. During the design and 

assembly phase of the CubeSat system, the singular CubeSat option has an obvious 

advantage in terms of number of satellites to be constructed. Less supplies and 

coordination are needed for the completion of a single CubeSat versus multiple. The 

diversity in sensors for a constellation greatly reduce simplicity as each individual satellite 

must accommodate a different sensor, especially in terms of power demand and software 

integration. On a licensing aspect, acquiring a license for a single satellite transceiver is 

less time consuming than for multiple transceivers. Also, having more satellites in the 

system increases the duration of the CubeSat design process by a factor of the number of 

satellites in the system. The construction of more satellites also translates to higher costs 

for the surveillance system. The cost of launch is also increased for a constellation since 

the price is based on the number of satellites sent to orbit. Although the price is not 

necessarily proportional to the number of CubeSats in the constellation, prices still 

increase with each additional satellite. As for operating in orbit, the singular CubeSat 

system still features greater simplicity than a constellation. Multiple different access times 

to a target need to be calculated for each satellite in a constellation. The difference in 

sensors onboard the surveillance system also creates different angles of elevation for each 

satellite. This increases computational time and resources when compared to only 
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calculating a single access time for a surveillance system with one CubeSat. On the other 

hand, since each satellite in the constellation has its own access time, the overall system 

has an access time to ground station communications which lasts longer by a factor of the 

number of satellites when compared to a single CubeSat system. Finally, the biggest 

source of complexity for a constellation when compared to a single satellite is the different 

communications options for the system. For a single CubeSat surveyor, it can only 

transmit information directly to a ground station during its access time. As will be 

discussed in the next subsection, a constellation of satellites has the option of exchanging 

information only through a ground site or through intersatellite communication before 

transmitting to ground.  

After considering the benefits and disadvantages for each system architecture, the 

CubeSat surveillance system for this work is chosen to be made up of a constellation of 

multiple satellites, as has been mentioned previously in the thesis. In the decision process, 

phenomena characterization accuracy and system robustness were valued higher than 

everything else. The final surveillance system architecture was chosen using Table 14. 

 

 

Table 14. The advantages and disadvantages between a 1 CubeSat or constellation 

system. 

Attribute 1 CubeSat Constellation of 

CubeSats 

Higher Characterization Accuracy Through 

Sensor Diversity 
 ✓ 

Lower Cost ✓  

Increased System Security  ✓ 

Robustness Through Sensor Redundancy  ✓ 

Simplicity ✓  

Longer Overall Access Times to Ground  ✓ 
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In Section 1, it was stated that the biggest advantages of using a CubeSat-based 

platform for remote monitoring over conventional satellite systems was the platform’s 

increased simplicity and reduction of costs. As can be seen in Table 14, simplicity and 

costs are the two disadvantages of a CubeSat constellation when compared to a single 

CubeSat system. It is important to reiterate that even a CubeSat constellation proves 

advantageous in those two attributes when compared to conventional satellites due to the 

CubeSat sizes and use of COTS components. Although the assembly of multiple CubeSats 

takes much longer than for just one, time and resources do not have to be spent on the 

development of individual components custom made for the system, as is the case for 

conventional satellites. Conventional satellites may feature additional components not 

included in CubeSats that can increase their constructional and operational complexity, 

like propulsion systems. When comparing costs, a typical 3U CubeSat with X-band 

communications and a COTS multispectral imager would cost around $237,290.00 

[85,74]. Assuming a constellation is made up of five CubeSats, the total cost, including 

the price of launch with NanoRacks, would be less than $2 million. The actual price of the 

CubeSat system in this thesis will vary as more or less CubeSats are needed in the 

constellation and as adequate sensors are developed in-house instead of acquiring them as 

COTS. On the other hand, NASA plans on spending approximately $165.7 million on the 

launch of their Geostationary Operational Environmental Satellite-T (GOES-T) alone 

[86]. The GOES-T satellite will provide data and imagery for multiple high-accuracy 

meteorological measurements [86]. 
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3.2. CubeSat Constellation Scenarios 

As was justified in the previous subsection, the optimal system architecture for the 

CubeSat surveillance system involves the use of a constellation of multiple satellites. The 

constellation configuration sacrifices the lower cost and complexity of the singular 

CubeSat option for increased characterization accuracy, system security, sensor 

redundancy, and longer overall access times. As part of the increased complexity of a 

constellation, there are multiple configuration options for the system. Different scenarios 

were considered for the final constellation design and are discussed in this subsection. 

The most important consideration for constellations of satellites is the method in 

which they communicate. Three separate methods for accomplishing communications 

between the multiple CubeSats in the system were explored. The first method involves 

each individual satellite communicating directly to a ground station. In this scenario, each 

CubeSat transmits its individual data collected to a ground station during an access time. 

The on-board computers of each satellite run only a portion of the characterization 

algorithm which relates to the type of data its sensor collected. The satellites would then 

transmit their individual results to a ground station where the final portions of the 

characterization algorithm produce a final result. Ground station exclusive communication 

for the surveillance system presents the simplest option when compared to the other 

communications configurations, but it adds additional steps in the flow of data which can 

increase the time it takes for completing full characterizations of phenomena.  

The second available method for system communications involves the CubeSats 

transmitting data between each other before sending it to the surface. This option allows 
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for the data from different sensors to compile within the system where the complete 

characterization algorithm can produce a result. System autonomy is gained with 

intersatellite communications as the ground station directly receives the end result of the 

characterization algorithm, and it requires less steps in the data flow. Since data is shared 

between the satellites in this communications option, only one of the CubeSats needs to 

be in range of a ground station to transmit the information to the surface, reducing the time 

needed to receive results. Since each CubeSat in the constellation may have a different 

ballistic coefficient once in orbit, their individual trajectories will deform slightly from 

each other, causing some satellites in the system to have access to a ground station when 

others do not. On the other hand, a constellation with ground station exclusive 

communications can only transmit all its data when each satellite has an access time to the 

station. The downfall of intersatellite communication, however, is its high levels of 

complexity and possible failure. For successful communications to occur between any two 

satellites, a direct line of sight between the two needs to be present. For conventional, 

large satellites, a direct line of sight is easily achievable through attitude control and 

propulsion systems. The CubeSats in the constellation can create direct line of sights 

through their attitude control systems, but their lack of propulsion does not guarantee they 

will persist throughout the lifetime of the CubeSats. In fact, the difference in ballistic 

coefficients of the CubeSats will eventually cause the distance between them to increase 

to a point where direct line of sights are lost for the rest of their lifetimes. Also, inter-

CubeSat communication adds operational complexity to the system as compared to a 
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ground station exclusive system since each satellite must be adequately programmed to 

transmit, receive, and store information from the other CubeSats.  

The third available method has the benefits of inter-CubeSat communications 

while aiming to resolve the line of sight challenge by utilizing another system of satellites 

as relays. For example, the Globalstar Network is a network of larger satellites further 

away from the surface of the Earth that offer enough coverage for all the CubeSats to 

always have constant access to them [60]. Using a relay satellite system like the Globalstar 

Network allows for the CubeSat surveillance system to keep its speed and autonomy for 

producing the final characterization of phenomena throughout the lifetime of the CubeSats 

similar to the inter-CubeSat communications option. Once the CubeSats in the system start 

drifting further from each other, communications between them are still possible since 

they will never lose coverage to the secondary satellite system. This communications 

option does present higher operational complexity when compared to a ground station 

exclusive option because of increased attitude control of the CubeSats to have a line of 

sight with the larger satellites and increased data transmission. Also, the use of a relay 

satellite system incurs an additional cost that comes with the service when compared to 

the other two options. Table 15 presents the decision matrix created when considering the 

three communications options. A green box represents a positive attribute; red, a negative 

attribute; and yellow, and intermediate attribute. It is important to note that the words in 

the boxes describe the attributes for the specific communications option while the colors 

describe the desirability. For example, “high” operational complexity is labeled as red 

since it is less favorable, while “high” speed to surface is labeled as green since it is more 
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favorable. When judging each aspect of the communications options, comparisons to a 

surveillance system with a singular CubeSat were also made. For example, even though 

the operational complexity of the ground station exclusive communications option is 

lower than the other two, it is rated as “moderate” instead of “low” since ground station 

exclusive communications for a singular CubeSat system are less complex than for the 

constellation.  

Regardless of the communications method chosen from the ones previously 

mentioned, the data is eventually sent to the surface via a ground station. As previously 

mentioned, data transmission from a CubeSat to a ground station only occurs during an 

access time, making the communications rates largely dependent on the frequency of 

access times. For one ground station, the frequency of access times could vary between 

multiple times a day or have a wait time of up to two days before the next access time. If 

a certain phenomenon of interest involves an emergency which must be characterized in 

a short period of time, waiting up to two days for results is unfeasible. To overcome this 

obstacle, the transmission rate of data can be increased by allowing the CubeSat access to 

a network of ground stations around the globe. The Kongsberg Satellite Services (KSAT) 

provide a network of 23 station strategically placed all around the globe which any 

CubeSat mission to use [83]. Granting access to the KSAT network allows the CubeSat 

system to transmit data to the nearest station on its orbital path, greatly reducing the time 

between data collection by the sensors and final transmission to the surface. Even though 

only 17 of the 23 stations lie within a 51.6° inclined orbit, the CubeSat system 
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communications rate to the surface would still be 17 times faster when compared to a 

single ground station. 

 

 

Table 15. The decision matrix for the CubeSat constellation communications 

options. 

 Ground Station 

Only 
Inter-CubeSat 

Additional Satellite 

Relay 

Operational 

Complexity 
Moderate High High 

Data Flow Steps High Moderate Moderate 

Speed to Surface Moderate High High 

Autonomy Low High High 

Lifetime High Low High 

Cost Moderate Moderate High 

 

 

 

Given the decision matrix above, the communications method most advantageous 

to the CubeSat surveillance system is the use of an additional satellite system further away 

from the surface, like the Globalstar Network, that acts as a relay for the data transmission 

between the CubeSats in the constellation. During the selection of the communications 

option for the system, different aspects of the constellation configurations were also 

considered. When analyzing the inter-CubeSat communications as an option, a solution to 

the loss of line of sight problem was considered in the form of tethers between the satellites 

in the constellation. By attaching cables between the CubeSats, they would never drift 

away from each other due to variable ballistic coefficients. A tethered constellation 

architecture configuration would increase the lifetime of the inter-CubeSat 

communications option and would make it the best communications option for the system 

when considering an updated decision matrix. However, a tether between satellites creates 
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more problems for the system than it solves. Section 2 mentioned that ensuring a 

successful deployment from the launch vehicle, the number of external components on a 

CubeSat should be minimal as to avoid any complications when deployed, like getting 

stuck in the deployer. The presence of an external cable attached from satellite to satellite 

increases this probability of a failed deployment. Even if a tethered constellation has a 

successful launch, other issues are created by the tether once in orbit. The metal cable 

could build up charge as it moves through the Earth’s magnetosphere and potentially 

damage the CubeSats’ hardware. Also, the presence of the tether in LEO creates additional 

drag with the atmosphere at that elevation, causing the orbital lifetime of the whole system 

to decrease. As is evident when comparing the advantages and disadvantages of a tethered 

constellation, this CubeSat surveillance system will not include one in its architecture.  

Another alternative constellation configuration considered in this section involves 

dedicating one CubeSat in the system as the computational unit. This “computational” 

satellite within the constellation allows for all the data from the other CubeSats with 

sensors to compile in one location to run the final portions of the characterization 

algorithm before transmitting to ground. Without a dedicated CubeSat where the different 

types of data can be collected, data transmission between all the different satellites will 

resemble a complicated web, adding additional layers of complexity to how the 

characterization algorithm compiles data into a final answer. Additionally, since the 

“computational” CubeSat does not feature its own sensor, larger on-board computers may 

be installed to handle the large amount of data arriving from the other CubeSats and to 

increase computational resources for reducing the time the algorithm needs to run. One 
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downside of using the computational architecture option is that it leaves the CubeSat 

system more vulnerable to failure. If the “computational” CubeSat were to suffer a 

malfunction or some type of damage, the established data flow for the characterization 

algorithm would be interrupted. However, if that were to be the case, the CubeSat system 

architecture will resemble that of one which did not feature a “computational” satellite 

from the very beginning since each individual “sensing” CubeSat still features its own on-

board computer. Re-programing of the system would be necessary, which could happen 

during the next possible access time of the system to a ground station. It is also worth 

noting that a computational satellite configuration is only feasible when using either the 

inter-CubeSat or the additional satellite relay communication option. Overall, this 

alternative constellation configuration increases characterization speeds and operational 

simplicity at the risk of reduced system robustness. After weighing the advantages and 

disadvantages, the CubeSat surveillance system will benefit from the use of a dedicated 

satellite within the constellation for demanding computational processes.  

To summarize, Section 2 of this thesis explored the physical capabilities of a 

CubeSat and its individual components, while this section justified the specific operational 

architecture of the overall system. The CubeSat surveillance system will be made up of a 

constellation of satellites, each with a different sensor in order to increase the diversity of 

data collected and therefore the accuracy of the characterization algorithm. One of the 

satellites within the system will be used as a “computational” unit where all the necessary 

data will be compiled to produce a final characterization of the observed phenomenon of 

interest before transmitting to the surface. The CubeSats will communicate with each other 
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via an external satellite system further away from the Earth which will act as relays, like 

the Globalstar network. The system will also take advantage of the KSAT network of 

ground stations to increase the data transmission rate to the surface. 

3.3. Deployment Algorithm 

After the final CubeSat system architecture was defined, its deployment options 

were then explored. Although examples where given in Section 2 on how to model the 

ISS and CubeSat orbits with NASA’s General Mission Analysis Tool (GMAT) for 

calculating access times, a mathematical definition for that process must be defined to 

illustrate the CubeSat system’s deployment options. The algorithm developed in this 

section does not aim at replacing the complicated orbital mechanics calculations which 

GMAT handles. Instead, this algorithm mathematically describes when to launch the 

CubeSat surveillance system from the ISS and the duration of its access times. Figure 18, 

as seen in previous sections, lays out the different steps the algorithm aims to describe, 

and Figures 19a and 19b outlines the algorithm structure. The rest of the section describes 

in detail the steps in Figures 19a and 19b. 
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Figure 18. Algorithm flow for calculating CubeSat access times to a target. 

 

 

 

As seen in Figure 18, the first step in the process is to model the ISS’s orbit. Since 

the orbital modelling is done through GMAT, the ISS’s orbit can be mathematically 

described by Eq. 3-1 to illustrate the variables of interest to the user. In Eq. 3-1, the ISS’s 

position at a given time in cartesian coordinates is described by its orbit function OISS, 

which is a function of time and the ISS ephemeris data at epoch. For reference, an epoch 

refers to an initial starting point in time. As previously discussed, the ephemeris data of 

the ISS is made public by NASA at daily epochs. For example, the ISS ephemeris data for 

June 3rd, 2020 was recorded and published at 23:25:30.983 GMT (that day’s epoch). 
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Figure 19. Algorithm structure to evaluate deployment characteristics. 
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Figure 19. Continued. 
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𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) = 𝑂𝐼𝑆𝑆(𝐸0, 𝑡)     (3-1) 

 

 Where, 

  𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) = The ISS cartesian coordinates at time t 

  𝑂(𝐸0, 𝑡) = The ISS orbital model function at time t dependent on ephemeris  

     data E0 at epoch time t0 

 

With Eq. 3-1 describing the ISS’s position at any given time, access times for the 

ISS can be calculated to any target on the surface. First, a target must be identified by 

defining its coordinates. Usually, it is easier to find a target’s coordinates in latitudinal 

coordinates first and then translating to cartesian. For example, the latitudinal coordinates 

for the city of College Station are 30.6280°N and 96.3344°W at an altitude of 103 m. 

Although the target may be a single point, the ISS’s view of the certain target occurs over 

an area. The ISS’s position during its access times to a target can be described by Eq. 3-2 

and 3-3. The ISS has access to a target between position 1 and 2 within the field of view 

as can be seen in Figure 20. The area around a target defining the field of view is dependent 

on the satellite’s angle of elevation to the target, as described in detail in Section 2. A 

smaller angle of elevation creates a larger view angle which increases the visible area. A 

typical angle of elevation for the ISS to start having access to a target is around 6-8° [84]. 

The radius for the field of view is therefore the distance from the target to a height of 6-

8°. The coordinates for Position 1 and 2 are where the orbit intersects with the 

circumference of the field of view area and are described in terms of the ISS orbit in Eq. 

3-2 and 3-3.  
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Figure 20. An example of a satellite pass over a field of view of a target. 

 

 

 

𝑥1(𝑡1), 𝑦1(𝑡1), 𝑧1(𝑡1) = 𝑂𝐼𝑆𝑆(𝐸0, 𝑡1),       𝑤ℎ𝑒𝑟𝑒 𝑂𝐼𝑆𝑆 ∩ 𝐶𝑉(𝜀)       (3-2) 

𝑥2(𝑡2), 𝑦2(𝑡2), 𝑧2(𝑡2) = 𝑂𝐼𝑆𝑆(𝐸0, 𝑡2),       𝑤ℎ𝑒𝑟𝑒 𝑂𝐼𝑆𝑆 ∩ 𝐶𝑉(𝜀)       (3-3) 

 

 Where, 

𝑥1(𝑡1), 𝑦1(𝑡1), 𝑧1(𝑡1) = The position (Position 1) of the ISS at the  

                                      beginning of its   access time to a target at time t1 

  𝑥2(𝑡2), 𝑦2(𝑡2), 𝑧2(𝑡2) = The position (Position 2) of the ISS at the end of 

  its access time to a target at time t2 

𝐶𝑉(𝜀) = Circumference of the field of view as a function of angle of  

   elevation 𝜀. 

 

With the intersection locations defined, the times of intersection and total access 

time for the ISS is found. Eq. 3-2 and 3-3 can be translated into eigenvalue equations 

transforming Eq. 3-1 into Eq. 3-4 with t as the eigenvalue. The transformed Eq. 3-2 and 

3-3 can be seen in Eq. 3-5 and 3-6. 

𝑷 = 𝑶𝑡          (3-4) 

 

 Where, 

  𝑡 = The eigenvalue representing time 

  P = The eigenfunction for position of the satellite 

  O = The eigenfunction for the orbit model 

 

𝑷𝟏 = 𝑶𝑡1          (3-5) 
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𝑷𝟐 = 𝑶𝑡2          (3-6) 

 

 Where, 

  𝑡1 = Time when access time starts 

  𝑡2 = Time when access time ends 

P1 = The position of the ISS at the beginning of its access time to a target 

at time  

        𝑡1 

P2 = The position of the ISS at the end of its access time to a target at time 

𝑡2 

  O = The ISS orbital model function, still dependent on ephemeris data E0 

 

The start and end times, 𝑡1 and 𝑡2, for the ISS access time to the target can be found 

by inverting and multiplying O, as seen in Eq. 3-7 and 3-8. 

𝑡1 = 𝑷𝟏𝑶−1          (3-7) 

𝑡2 = 𝑷𝟐𝑶−1          (3-8) 

 

The total access time duration can then be found with Eq. 3-9. It is important to 

keep in mind that the mathematical algorithm is only a representation of the calculations 

done by GMAT. As mentioned earlier, GMAT will produce all access time instances and 

durations for a satellite given its ephemeris data, angle of elevation, and a target location. 

𝑇𝐴 = 𝑡2 − 𝑡1            (3-9) 

 

To reiterate, 𝑡1 is the time at which the ISS crosses the target’s field of view. 

Whenever CubeSats are deployed from the ISS, they must wait a total of 30 min before 

they power on in order to avoid their RF signals interfering with ISS systems and signals. 

Therefore, in order to have an operational CubeSat system once its orbit reaches the target, 

it time of deployment must be defined by Eq. 3-10.  

𝑡𝐶𝑆 = 𝑡1 − 30 𝑚𝑖𝑛      (3-10) 
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The CubeSat system will adopt the same ephemeris data as the ISS at time 𝑡𝐶𝑆 in 

the ISS orbit, represented as 𝐸𝑡𝐶𝑆
. If the calculated time for 𝑡𝐶𝑆 has already passed at the 

time of calculation, Eq. 3-2 – 3-10 must be redone for the next pass of the target in the ISS 

orbit. If 𝑡𝐶𝑆 is still in the future, the algorithm can be continued. As with starting to model 

the ISS, the CubeSat system’s orbit can be mathematically described by Eq. 3-11. In Eq. 

3-11, the CubeSat system’s position at a given time in cartesian coordinates is described 

by its orbit function OCube, which is a function of time and the CubeSat ephemeris data at 

epoch 𝑡𝐶𝑆. 

𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) = 𝑂𝐶𝑢𝑏𝑒(𝐸𝑡𝐶𝑆
, 𝑡)     (3-11) 

 

Like the process with the ISS, the next step is determining the coordinates of 

intersection between the CubeSat orbit function, OCube, and the circumference of the field 

of view for the CubeSat, 𝐶𝑉(𝜀). However, the elevation angle, 𝜀, for the CubeSat will be 

different to that of the ISS. The CubeSat’s angle of elevation depends on the type of 

sensor(s) on board. Some sensors require a more direct line of sight to the target in order 

to collect data, making the area for the field of view much smaller. Therefore, the 

circumference of the field of view for the CubeSat can be rewritten as 𝐶𝑉(𝜀(𝑠𝑖)), making 

the elevation angle dependent on the type, i, of sensor, s, onboard a specific CubeSat. For 

CubeSats in the constellation with other sensors, different circumference functions must 

be considered since their field of view is different. For example, 𝐶𝑉(𝜀(𝑠𝑗)) represents the 

circumference of the field of view for a CubeSat in the constellation with sensor type j. 

The coordinates for where the CubeSat with sensor type i intersects the circumference of 

the field of view for the target are represented by Eq. 3-12 and 3-13. Also, since access 
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times are specific to each CubeSat in the constellation, the orbital model function is 

changed to 𝑂𝐶𝑢𝑏𝑒,𝑖 = (𝐸𝑡1, 𝑡) to represent the orbit for any CubeSat in the constellation 

with sensor type i. 

𝑥1(𝑡1
𝐶𝑢𝑏𝑒,𝑖), 𝑦1(𝑡1

𝐶𝑢𝑏𝑒,𝑖), 𝑧1(𝑡1
𝐶𝑢𝑏𝑒,𝑖) = 𝑂𝐶𝑢𝑏𝑒,𝑖(𝐸𝑡𝐶𝑆

, 𝑡1
𝐶𝑢𝑏𝑒,𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑂𝐶𝑢𝑏𝑒,𝑖 ∩ 𝐶𝑉(𝜀(𝑠𝑖))   

(3-12) 

𝑥2(𝑡2
𝐶𝑢𝑏𝑒,𝑖), 𝑦2(𝑡2

𝐶𝑢𝑏𝑒,𝑖), 𝑧2(𝑡2
𝐶𝑢𝑏𝑒,𝑖) = 𝑂𝐶𝑢𝑏𝑒,𝑖(𝐸𝑡𝐶𝑆

, 𝑡2
𝐶𝑢𝑏𝑒,𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑂𝐶𝑢𝑏𝑒,𝑖 ∩ 𝐶𝑉(𝜀(𝑠𝑖))  

(3-13) 

 

Where, 

𝑥1(𝑡1
𝐶𝑢𝑏𝑒,𝑖), 𝑦1(𝑡1

𝐶𝑢𝑏𝑒,𝑖), 𝑧1(𝑡1
𝐶𝑢𝑏𝑒,𝑖) = The position of the CubeSat with 

sensor i at 

the beginning of its access time to a target 

at time t1 

𝑥2(𝑡2
𝐶𝑢𝑏𝑒,𝑖), 𝑦2(𝑡2

𝐶𝑢𝑏𝑒,𝑖), 𝑧2(𝑡2
𝐶𝑢𝑏𝑒,𝑖) = The position of the CubeSat with 

sensor i at 

the end of its access time to a target at time 

t2 

 

Like with the ISS, Eq. 3-12 and 3-13 can be transformed into an eigenvalue 

representation using Eq. 3-4. The transformations are seen in Eq. 3-14 and 3-15. 

𝑷𝟏
𝒊 = 𝑶𝒊𝑡1

𝐶𝑢𝑏𝑒,𝑖
       (3-14) 

𝑷𝟐
𝒊 = 𝑶𝒊𝑡2

𝐶𝑢𝑏𝑒,𝑖
       (3-15) 

 

 Where, 

  𝑡1
𝐶𝑢𝑏𝑒,𝑖

 = Time when access time starts for CubeSat with sensor i 

  𝑡2
𝐶𝑢𝑏𝑒,𝑖

 = Time when access time ends for CubeSat with sensor i 

𝑷𝟏
𝒊  = The position of the CubeSat with sensor i at the beginning of its access 

time  

         to a target at time 𝑡1 

𝑷𝟐
𝒊  = The position of the CubeSat with sensor i at the end of its access time 

to a  

         target at time 𝑡2 

  𝑶𝒊 = The CubeSat with sensor i orbital model function, still dependent on  

         ephemeris data 𝐸𝑡1 
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The start and end times for the CubeSat with sensor i access time to the target can 

be found by inverting and multiplying 𝑶𝒊, as seen in Eq. 3-16 and 3-17. 

𝑡1
𝐶𝑢𝑏𝑒,𝑖 = 𝑷𝟏

𝒊 𝑶𝒊
−1         (3-16) 

𝑡2
𝐶𝑢𝑏𝑒,𝑖 = 𝑷𝟐

𝒊 𝑶𝒊
−1         (3-17) 

 

The total access time for CubeSat with sensor i can then be found by Eq. 3-18. 

Since a constellation may have more than one CubeSat with the same sensor, the access 

time is multiplied by the number of CubeSats with sensor i, 𝑛(𝑠𝑖). The steps represented 

by Eq. 3-12 – 3-18 can be repeated for CubeSats in the constellation with different types 

of sensors.  

𝑇𝐴,𝑖 = (𝑡2
𝐶𝑢𝑏𝑒,𝑖 − 𝑡1

𝐶𝑢𝑏𝑒,𝑖) ∗ 𝑛(𝑠𝑖)            (3-18) 

 

Using the mathematical algorithm developed and the corresponding GMAT 

calculations for the CubeSat system to identify its access time duration and start time to a 

target, a decision can be made about deploying the CubeSat system for the observation of 

a target. Deployment of the surveillance system is initiated at the calculated access time 

start time, and the sensors will be activated for the calculated duration of the start time. In 

the field, it is recommended to activate the sensors for a longer period than the calculated 

access time duration to mitigate orbit calculation errors. As an example, Figure 21 

describes the data flow for the CubeSat surveillance system observing and identifying 

suspicious activity at an enrichment plant. Figure 21 illustrates how different algorithms 

and processes are integrated for a final CubeSat system operation. 
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Figure 21. The data flow for observing and identifying suspicious activity at an 

enrichment plant. 

 

 

 

3.4. Conclusion 

This section explored different architecture and deployment scenarios for the 

CubeSat system. The system was determined to be comprised of a constellation of multiple 

satellites instead of one. The main reason for the decision was driven by a constellation’s 

higher characterization accuracy due to a higher number of sensors in the system. Since a 

constellation was chosen for the system, different communications configurations were 

explored. Intersatellite communication using a satellite relay network, like Globalstar, 

combined with a network of ground stations, like KSAT was determined as the optimal 

communications option. Also, a satellite system architecture featuring a single CubeSat as 

the major computational unit for processing most of the data collected by the sensors was 
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chosen. The last topic of the section introduced a mathematical algorithm which utilizes 

GMAT for determining CubeSat deployment times. 
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4. SENSOR SELECTION 

Sections 2 and 3 discussed in detail the capability of a CubeSat system to support 

a surveillance platform and its configuration. The sections determined that a constellation 

of CubeSats deployed from the ISS with adequate power, communications, and other 

hardware capabilities proves to be a feasible surveillance system with lower costs and 

higher simplicity with respect to conventional satellites. This section joins the CubeSat 

system developed thus far with the considerations about the phenomena of interest for 

surveillance by selecting sensors for the system. As was seen in the design process 

presented in Section 1, the sensor selection for the system influences the creation of the 

surrogate data set used to develop the characterization methodology in the next section. 

This section first analyzes the surveillance requirements for observing signatures from the 

phenomena of interest to define the required resolutions for sensors onboard the CubeSat 

surveillance system. Then, the different types of sensors available for meeting the 

surveillance requirements are studied and recommendations are made. Finally, different 

satellite system requirements for the integration of sensors are considered. 

4.1. Sensor Introduction 

With the advent of advanced aerial and spatial platforms, higher resolution sensors, 

and data processing capabilities, remote sensing system are becoming increasingly 

popular for collecting data on the Earth and its processes. Remote sensing platforms allow 

the user to obtain critical data from vantage points not readily accessible to humans. The 

first instances of remote sensing occurred in the mid-1800s and early 1900s when balloons 

and, subsequently, airplanes were used for surveying land in commercial and military 
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applications [87]. Although airplanes and, most recently, drones still present an effective 

platform for remote sensing systems with very high resolution, satellites offer reliable, 

quick, and repeated global coverage of even the most remote locations around the globe, 

often times without being detected themselves by their targets on the ground. A satellite-

based remote sensing system allows scientists and governments to collect data never 

thought possible before. Currently, typical civilian uses for satellite systems include: 

monitoring biomass energy and foliage inventory, determination of solar energy 

absorption on the planet’s surface, monitoring of snow cover, monitoring of weather 

patterns and natural disasters, pollution detection, monitoring time changes in water 

systems, monitoring urban growth, and many other applications. Recently, NASA and the 

National Oceanic and Atmospheric Administration (NOAA) have launched two satellites 

since 2016 and plan on launching two more by 2024 as part of their Geostationary 

Operational Environment Satellites (GOES) program to provide advanced imagery and 

high-accuracy measurements of meteorological events [88]. The NASA GOES satellites 

will accomplish their remote sensing goals through the use of an advanced baseline 

imager, an extreme ultraviolet x-ray irradiance sensor, a geostationary lightning mapper, 

a magnetometer, a solar ultraviolet imager, and a suite of in-situ sensors for radiation flux 

monitoring in space [89]. As for governmental or military operations, satellite-based 

remote sensing platforms provide important data used for monitoring, targeting, strategic 

planning, deployment, and threat assessment [90]. Although information over specific 

remote sensing capabilities or technology on military satellites is not readily available, 

general sensor technologies used for accomplishing the goals of remote sensing military 
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satellites include: optical imagers that gather visible light, multispectral imagers, 

hyperspectral imagers, and radio or microwave scanners [90]. 

A remote monitoring system focused on effectively characterizing events 

pertaining to nuclear fuel cycle surveillance, as the one developed in this system, benefits 

most from a satellite platform because of all the benefits over aerial platforms previously 

mentioned. The CubeSat-based surveillance system introduced in this thesis provides a 

simpler and cost-effective platform when compared to conventional satellites. The biggest 

disadvantage for remote sensing on a CubeSat platform, however, is the loss of data 

resolution when compared to larger satellites. For example, the current highest spatial 

resolution CubeSat panchromatic/multispectral imagers reach a resolution of 1 m, while 

larger satellites can feature up to a 30-40 cm resolution [68,91,106]. It is worth noting that 

the 30-40 cm resolution is the highest available resolution for only commercially available 

images. The difference in resolutions stems mainly from the restraints on aperture sizes 

for imagers within a CubeSat structure.  

The following subsections explore the sensor options for the CubeSat surveillance 

system by considering the sensor requirements for observing the phenomena of interest 

based on their signatures and currently available technology. It is worth mentioning that 

remotely sensing radiation was a very attractive proposition for a surveillance system 

focused on monitoring nuclear facilities. It was decided that, unless any nuclear weapons 

detonations occurred, radiation signatures are not likely to be detected from LEO. Due to 

the distance of the sensor to the radiation source at a facility and the density of the 

atmosphere, any trace of radiation detected would be indiscernible from the background 
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radiation at the CubeSats’ altitude. Eq. 4-1 gives the attenuation equation used during the 

determination. At an average ISS altitude of 400 km, only 0.028% of a 20 MeV gamma 

source’s intensity would reach a radiation detector. 

𝐼 = 𝐼0𝑒−𝜇𝑥      (4-1) 

 

 Where, 

  𝐼 = The intensity of photons at distance x across a medium 

  𝐼0 = The initial intensity of the photons 

  𝜇 = The linear attenuation coefficient of the medium 

  𝑥 = The distance the photons traveled in the medium 

 

4.2. Surveillance Requirements 

For the CubeSat remote monitoring system to correctly characterize the 

phenomena occurring on the planet’s surface, sufficient data must be collected with the 

system sensors to adequately describe the phenomena. When the phenomena of interest 

were introduced in Section 1, several parameters and signatures describing each 

phenomenon were given. For example, the dimensions of typical commercial trucks were 

given, as well as their engine temperatures and emissions. Allowing the CubeSat system 

to collect diverse kinds of data was the driving factor in choosing a constellation system 

architecture, as was seen in Section 3. Although some phenomena, like a commercial 

truck, can be characterized by only one kind of signature, like a commercial truck’s 

dimensions, the characterization false positive and false negative rates decrease if data 

from other signatures is also collected, like a commercial truck’s emissions. Therefore, 

the goal of down selecting sensors for the surveillance system involves collecting as much 

information as possible from the phenomena. Two main considerations were made in the 

sensor selection process in this section; signature requirements and system requirements. 
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It is important to note that this section only identifies the types of sensors needed that best 

suite the remote monitoring goals of the CubeSat system. Specific sensor systems were 

not chosen. 

Methods and sensors for remote sensing, especially for Earth observation, can be 

divided into two categories; Passive and Active imagery [92]. In principle, the difference 

between the two methods involves how sensors in either category collect their data. In 

Passive imagery, sensors collect emissions and signatures from the subject of observation. 

The signals the sensor collects can either be directly produced from the subject (like 

thermal infrared radiation) or be reflected off the subject (like visible light) [92]. Active 

imagery sensors on the other hand rely on sending and receiving signals in the 

electromagnetic spectrum to collect data on the object of interest, like radar. Passive 

sensors usually operate in the visible (0.39 – 0.70 µm) and infrared (0.70 – 14 µm) spectra, 

and typical imagery types include; panchromatic, multi-spectral, and hyper-spectral [92]. 

Active sensors usually operate in the radio wave (1 cm – 11 m) spectrum, and typical 

imagery types include; synthetic aperture radar (SAR), light detection and ranging 

(LIDAR), radar altimetry, and radar scatterometry [92]. Although both sensor types 

provide suitable options for the CubeSat surveillance system, the analysis for the 

phenomena of interest signatures and sensor recommendations are mainly focused on 

passive imagery.  

As mentioned, passive sensors within a remote monitoring system are limited to 

the signatures emanating from the subject of observation which can reach the system. For 

example, if a scientist were to measure the temperature of an exothermic chemical 
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reaction, they would place a thermometer within the solution undergoing the reaction since 

the scientist has direct access to the subject of observation. A remote monitoring system 

on the other side of the laboratory does not have that kind of access, so the temperature of 

the chemical reaction cannot be measured via a thermometer. The remote monitoring 

system is, therefore, forced to measure the temperature of the chemical reaction through 

other means. Since the solution undergoing the chemical reaction is producing heat, it is 

producing infrared radiation. Infrared radiation, or infrared light, is part of the 

electromagnetic spectrum, having wavelengths just larger than visible light [93]. The 

emittance of infrared radiation by objects is what humans perceive as heat. By detecting 

the infrared signatures from the chemical reaction, the remote sensing system at the other 

side of the lab can determine the temperature of the reaction. For detecting infrared 

radiation a few meters away from the subject of observation, a typical thermal imaging 

camera can be used to capture the chemical reaction’s temperature [94]. Like with the 

chemical reaction in the previous example, the phenomena of interest for the CubeSat 

remote monitoring system also produce different kinds of signatures detectible by a 

satellite in LEO. When analyzing the capabilities of a remote sensing system to detect a 

certain phenomenon, especially from hundreds of kilometers away, the phenomenon’s 

signature must be separated into spatial, spectral, and temporal resolutions. Defining the 

needed resolutions to detect signatures of each phenomenon parameter is the first step in 

selecting a sensor to measure such parameter. Table 16 summarizes the different types of 

signature resolutions the remote sensors can detect for each phenomenon of interest 

parameter. During the parameter signature identification process, the resolutions were 
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defined in the following order; spectral, spatial, and finally, temporal. The spectral 

resolutions needed for each signature were analyzed first because it is the biggest factor 

in determining the type of sensor needed for that parameter’s signature. For example, an 

optical imager operating only in the visible light spectrum is not able to collect data 

reflectance data in the infrared spectrum for gases in the atmosphere. It is important to 

note that the “spectral resolutions” recorded in Table 16 actually represent spectral 

“regions” where the parameters can be observed, like the visible light range. In the remote 

monitoring community, the spectral resolution of a sensor refers to the distance between 

the bands in the data. Therefore, a sensor operating in the visible light spectrum (0.39 – 

0.70 µm) may contain only three separate bands (red, green, and blue). While the spectral 

regions determine the type of sensor technology, the spatial resolution required for the 

parameters determines the quality and technology level of a specific sensor, and the 

temporal resolution determines the time of observation with the sensor. It is important to 

note that the required spatial resolutions were determined by the physical sizes of the 

phenomena as well as typical resolution regions for previous satellite imagery. Typical 

resolution regions are defined as high to very high (30 cm – 5 cm per pixel), medium (10 

– 30 m per pixel), and low (over 60 cm per pixel).  

 

 

 

 



89 

Table 16. The spectral, spatial, and temporal resolution needed for characterizing a 

phenomenon’s parameters. 

Phenomenon Parameter 
Signature Resolution 

Spectral (Region) Spatial Temporal 

Automobiles 

and Airplanes 

Length, Width, 

Height 

Visible and 

Infrared Light 

bands 

1-1.5 m Single Sample 

Speed 

Visible and 

Infrared Light 

bands 

1-1.5 m
Multiple 

Samples 

Temperatures 
Infrared Light 

bands 
1-1.5 m Single Sample 

Gas Emissions 

Infrared Light 

(Reflectance) 

bands 

10-30

m

Continuous 

Sampling 

Facilities and 

Emergencies 

Length, Width, 

Height 

Visible and 

Infrared Light 

bands 

10-30

m
Single Sample 

Temperatures 
Infrared Light 

bands 

10-30

m
Single Sample 

Gas Emissions 

Infrared Light 

(Reflectance) 

bands 

10-30

m

Continuous 

Sampling 

Aerosol Index 
Ultra-Violet Light 

bands 

10-30

m

Continuous 

Sampling 

Construction 

and Mining 

Length, Width, 

Height 

Visible and 

Infrared Light 

bands 

1-2 m Single Sample 

Speed 

Visible and 

Infrared Light 

bands 

1-2 m
Multiple 

Samples 

Temperatures 
Infrared Light 

bands 
1-2 m Single Sample 

Gas Emissions 

Infrared Light 

(Reflectance) 

bands 

10-30

m

Continuous 

Sampling 

Footprint 

Visible and 

Infrared Light 

bands 

10-30

m
Single Sample 
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For observing the dimensions of the different phenomena from LEO, a sensor can 

utilize both the visible light and infrared spectral regions. Distinct features of an object, 

like length, width, and height, can be identified in both regions by analyzing a difference 

in wavelengths received from the object and its environment. In the visible range (0.39 – 

0.70 µm), the difference in wavelength translates to differences in colors. In the infrared 

range (0.70 – 14 µm), the difference in wavelength translates to a difference in 

temperatures or emissivity. While data in the visible light range may provide more detail 

about an event given appropriate conditions, data in the infrared range can provide 

adequate data through cloud cover or at night [95]. Therefore, the CubeSat surveillance 

system will benefit from having sensors operating in both spectra for the identification of 

object dimensions. As for spatial resolutions when observing dimensions, automobiles and 

airplanes need a resolution of 1-1.5 m since the smallest value for a dimension in that 

phenomenon category is 1.41 m, as can be seen in Section 1. Sensors with resolutions 

lower than the values of the parameters prevent the parameters from being recognized, 

causing the subject to not show up in the data collected. For the vehicles in the construction 

and mining events of interest, a similar resolution is needed since the smallest value for a 

dimension is 1.62 m. As for the length, width, and height of the objects of interest in the 

facilities and emergencies group, at least a medium resolution level of 10-30 m is needed. 

A higher spatial resolution, like for detecting vehicles, can still be used but is not needed 

due to the size of buildings at facilities. As for needed temporal resolutions for detecting 

height, length, and width, only one instantaneous reading is necessary. As will be 

discussed later in this section, most sensors considered for the CubeSat system capture 
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data instantaneously. Detecting speed, however, requires a temporal resolution of multiple 

measurements during a single observation. These multiple measurements can be taken by 

the same sensor at different times or by two identical sensors from the same spot at 

different times. A constellation of CubeSats can account for needed temporal resolutions 

in both regards. The speed of an object can be calculated by comparing the difference in 

position of an object between to identical readings at different points in time. The spectral 

and spatial resolutions for detecting speed are the same as for the dimension parameter. 

For detecting temperatures in all three phenomena categories, a spectral region 

within the infrared radiation wavelengths (0.70 – 14 µm) is needed. All objects emit 

energy in the form of infrared radiation which describes their temperature [96]. The hotter 

a material, the shorter the wavelength of the electromagnetic radiation it produces. When 

a material starts reaching high enough temperatures, this electromagnetic radiation enters 

the visible light spectrum, like with fires. By detecting the wavelengths of the infrared 

radiation of an object, its temperature can be determined. Spatial resolutions for 

temperature readings vary between the different categories as they did for dimension 

readings. For all three categories, a spatial resolution equal to the one needed for detecting 

their individual dimensions can be used to determine the specific temperatures of the 

objects within their dimensions, as mentioned earlier. It is worth noting that the 

characterization of phenomena based on their temperature readings is not necessarily 

restricted to an object’s dimensions. For example, due to radiative heat transfer and engine 

emissions, automobiles and airplanes create a temperature “footprint” which is larger than 

the vehicle [97]. A larger area for detecting temperature “footprints” could translate to 
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lower spatial resolutions, but it was determined that utilizing lower resolutions from what 

was already specified would cause too much detail to be lost about the phenomena. 

Temporally, typical sensors that operate in the required spectral and spatial regions for 

temperature readings make instantaneous observations.  

For characterizing gas emissions, the most common remote sensing technique is 

spectroscopy. Sensors measure the wavelengths absorbed or emitted by a sample, 

generally in the long-wave infrared spectrum (8 – 14 µm), to characterize the chemical 

makeup of a sample [98]. A specific chemical compound will have a unique spectral 

signature of absorbed and reflected wavelengths that a sensor can use to identify it. The 

gas emissions from all three phenomenon categories can be identified by their unique 

reflectance bands in the infrared light spectrum. Spatially, a medium range resolution of 

10-30 m should be adequate for characterizing the gas emissions in all phenomena 

categories. Spatial resolutions higher than that are generally not worth the additional 

sensor costs since gases released to the atmosphere do not tend to stay constrained to the 

area in which they were created [99]. As for temporal resolutions, typical sensors used for 

spectroscopy in this fashion take continuous readings throughout the observational period 

to record the highest amounts of data possible [98].  

For calculating the aerosol index of events under the infrastructural emergencies 

category, measurements taken in the near-ultra-violet (UV) spectrum (0.27 – 0.39 µm) are 

best suited. The aerosol index refers to the number of particles present in the atmosphere 

at a given location and can be quantified by measuring the amount of UV radiation they 

absorb [100]. If more UV light is absorbed in a section of the atmosphere, the more non-
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air particles are present. Although the presence of aerosols can be measured in the UV, 

visible, and infrared spectra, the typical aerosol index calculations introduced in Section 

1 are conducted with data obtained in the UV spectrum. Just like with characterizing gas 

emissions, a spatial resolution of 10-30 m is adequate for measuring aerosol indices. A 

higher spatial resolution would be overkill, and a lower resolution is not enough to 

adequately characterize the phenomena. For temporal resolutions, typical sensors in the 

UV or infrared range that measure atmospheric quality take continuous readings 

throughout the observation time of a phenomenon [98,100,101].  

Finally, the last parameter to be defined was the footprints for mining and 

construction activities of interest. To identify footprints, sensors operating in the same 

spectral regions as for identifying the dimension parameters of the other phenomena are 

suitable. Considering the typical sizes for mine footprints, a spatial resolution of 10-30 m 

is enough to identify the phenomena. As for temporal resolutions, it has been mentioned 

that sensors in the visible and infrared spectrum can capture data immediately.  

4.3. Sensor Recommendations 

Given the signatures and resolutions presented in Table 16, considerations and 

recommendations for the types of sensors onboard the CubeSat surveillance system can 

be made. As was mentioned, the spectral regions required for observing the phenomena 

of interest from a passive imaging perspective had the biggest influence in the sensor 

selection. Table 17 summarizes the sensor recommendations for identifying each 

parameter for the phenomena of interest.  
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Table 17. The sensor type recommendations for observing each parameter. 

Phenomenon Parameter Sensor Recommendation 

Automobiles 

and Airplanes 

Length, Width, Height Panchromatic and Multispectral 

Speed Panchromatic and Multispectral 

Temperatures Multispectral 

Gas Emissions Hyperspectral 

Facilities and 

Emergencies 

Length, Width, Height Panchromatic and Multispectral 

Temperatures Multispectral 

Gas Emissions Hyperspectral 

Aerosol Index Multispectral 

Construction 

and Mining 

Length, Width, Height Panchromatic and Multispectral 

Speed Panchromatic and Multispectral 

Temperatures Multispectral 

Gas Emissions Hyperspectral 

Footprint Panchromatic and Multispectral 

 

 

 

For observing the length, width, and height of all three categories along with the 

footprints in the mining and construction events of interest category, panchromatic and 

multispectral sensors are best suited. Panchromatic imagers typically produce the highest 

spatial resolutions and can operate in either the visible light spectrum or thermal infrared 

spectrum (10 – 12 µm) [92]. Although sensors operating in the visible range may produce 

more detailed images, sensors in the thermal infrared range can be produce images at 

night. A surveillance system featuring sensors collecting data in both spectra makes it less 

dependent on environmental conditions and produces more accurate results. Panchromatic 

data is produced through one band that spans the region of interest in the electromagnetic 

spectrum, combining information from all the wavelengths within the region instead of 

producing separate spectra [102]. The information collected per pixel represents the 

intensity of light received, producing images within the panchromatic band as grayscale 

[103]. Multispectral imagers, on the other hand, collect data across more spectral bands 
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within regions of the electromagnetic spectrum [103]. Separating the signals received into 

various bands allows the sensor to collect more information on the wavelengths of the 

light received. For example, colored pictures are created with multispectral sensors 

collecting data across a few bands. Common bands for multispectral imagers best suited 

for observing details in dimensions are the blue, green, red, and/or near-infrared bands 

(0.45 – 0.9 µm). Since multispectral sensors divide the energy of light they receive across 

multiple bands, each individual band receives less energy when compared to the single 

panchromatic band. Due to the reduced energy received, multispectral sensors need to 

sample a larger area to collect the minimum amount of energy needed for identifying the 

differences in brightness for each band wavelength, causing them to generally have lower 

spatial resolutions than panchromatic sensors [103]. In order to collect the highest amount 

of accuracy spatially and spectrally when observing phenomena of interest, panchromatic 

and multispectral images can be combined to utilize the benefits from both types of data 

[92]. This process of data fusion is referred to as pansharpened data. Historically, 

pansharpened images are best suited for object-based image analysis, which is needed for 

identifying the dimensions of the phenomena of interest [103]. The CubeSat system will 

best meet its surveillance goals for the phenomena of interest using pansharpened data. 

Therefore, the CubeSat constellation will feature at least one panchromatic sensor in the 

visible spectrum and one multispectral sensor operating in the blue, green, red, and near-

infrared bands. Featuring four bands in the multispectral sensor will provide greater 

diversity in data collected, increasing the characterization accuracy. For example, data 

collected in the near-infrared band of a multispectral sensors can aid in distinguishing 
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man-made structure from vegetation by displaying the difference in their emitted infrared 

radiation as distinct colors in the images [92]. Easily identifying vegetation in a scene 

through a difference in color can increase the characterization of phenomena located in 

regions with dense vegetation. Also, the CubeSat system surveillance versatility will 

increase by featuring a panchromatic sensor operating in the infrared region to identify 

phenomena at night.  

Detecting temperatures from satellites can be accomplished with multispectral 

sensors. Like the multispectral imagers previously mentioned for observing phenomena 

dimensions, a multispectral imager used for temperature measurements collects data on 

several bands within a region of the electromagnetic spectrum. The region of operation 

for multispectral sensors suited for temperature measurements is typically in the infrared 

spectrum (8 – 14 µm) [104]. Their functionality is the same as for multispectral imagers 

in the visible and near-infrared regions, but it is done in the long-wave infrared region. 

Once data is collected in each band, images are produced where different colors indicate 

different temperatures in the observed scene. As was previously mentioned, panchromatic 

sensors can also operate in the infrared region and produce a higher spatial resolution than 

multispectral sensors. Since they only have a single band, thermal panchromatic sensors 

cannot produce the level of spectral detail necessary for identifying distinct temperatures. 

They only observe a “change” in temperatures between object. A multispectral sensor, on 

the other hand, can observe greater detail between the temperature values within a scene 

due to its greater number of bands. Essentially, the difference in detail between 

panchromatic and multispectral sensors for thermal imaging is the same as the difference 
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between grayscale and color images in the visible light region. For the purposes of 

observing the temperatures of phenomena from the CubeSat surveillance system, the level 

of detail produced by thermal multispectral sensor is best suited.  

As was mentioned previously, traces of gas emissions in the atmosphere can be 

identified through spectroscopy of the absorbed and reflected wavelengths from a sample. 

Hyperspectral sensors can accomplish this task by featuring hundreds of bands in the 

infrared spectrum [98]. Each band within a hyperspectral sensor collects data in the same 

way the previously mentioned sensors due, but while a multispectral sensor may have a 

maximum of 15 bands, hyperspectral sensors can have more than a hundred [103]. The 

unique spectral signatures of chemical compounds are identified by detecting the 

intensities of infrared light received at each of the narrow bands of a hyperspectral sensor. 

Data collected from hyperspectral sensors can be thought of as a data “cube” having two 

dimensions being spatial and the third being spectral. As a hyperspectral sensor on an 

aerial or spaceborne vehicle passes over a target, data is usually collected in a “push 

broom” fashion, which means that measurements need to be taken continuously to form 

an image instead of taking an instantaneous picture [98].  In each individual measurement, 

the sensor collects spectral data within its instantaneous field of view (IFOV). The IFOV 

has a specific spatial resolution in the x and y dimensions, and it creates a single pixel in 

the hyperspectral image [98]. As the sensor makes continuous measurements, its IFOV 

sweeps through its swath path to create a full image out of each pixel collected. The 

CubeSat surveillance system will be able to identify the presence of gas emissions through 

use of a hyperspectral sensor. 
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As for measuring the presence of aerosols in the atmosphere and calculating an 

aerosol index, a multispectral sensor is suitable. Although the identification of gas 

emissions with hyperspectral sensors can also describe the presence of aerosols in the 

atmosphere, too much unnecessary data is collected if the parameter of interest is just 

simply the aerosol index. A multispectral sensor, on the other hand, only leads a few 

spectral bands to measure the presence and absence of aerosols (the aerosol index) when 

observing a phenomenon since the specific identity of the aerosols is not needed. Although 

aerosol indices have been historically calculated using data from multispectral sensors 

operating in the UV spectrum, atmospheric quality can also be measured within the 

infrared spectrum given adequate data postprocessing [100,105]. 

After determining the types of sensors needed for each parameter, the technology 

readiness level (TRL) for the sensors at the required spatial resolutions listed in Table 17 

was analyzed. Table 18 summarizes current sensor capabilities of meeting those required 

spatial resolutions for a CubeSat platform [68,74,106,107,108,109,110,111,112,113,114]. 

The table represents the results of an extensive literature review on CubeSat heritages for 

each sensor type and at the needed spatial resolutions. Although all recommended sensor 

types have been previously operated on CubeSat platforms, their current TRL for the 

CubeSat surveillance system in this thesis varies with sensor type. There currently exists 

panchromatic and multispectral sensor technology in the visible and near-infrared 

spectrum capable of detecting the phenomena object dimensions, speeds, and footprints 

[106]. As for multispectral and hyperspectral sensor technology in the infrared or UV 

region for observing temperatures, gas emissions, and aerosol indices, future development 
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is needed to meet the spatial requirements for the phenomena of interest. As was 

mentioned in earlier sections, any sensor development efforts for the completion of a final 

CubeSat system ready for deployment is outside the scope of this work. 

 

 

Table 18. Sensor type recommendations and CubeSat heritage at required spatial 

resolutions. 

Phenomena Parameter Sensor Type 
CubeSat 

Heritage  

CubeSat 

Heritage 

at Spatial 

Resolution 

Future 

Sensor 

Development 

Needed? 

Automobiles 

and Airplanes 

Length, 

Width, 

Height 

Panchromatic/ 

Multispectral 
Yes Yes No 

Speed 
Panchromatic/ 

Multispectral 
Yes Yes No 

Temperatures Multispectral Yes No Yes 

Gas 

Emissions 
Hyperspectral Yes No Yes 

Facilities and 

Infrastructural 

Emergencies 

Length, 

Width, 

Height 

Panchromatic/ 

Multispectral 
Yes Yes No 

Temperatures Multispectral Yes No Yes 

Gas 

Emissions 
Hyperspectral Yes No Yes 

Aerosol 

Index 
Multispectral Yes No Yes 

Construction 

and Mining 

Events 

Length, 

Width, 

Height 

Panchromatic/ 

Multispectral 
Yes Yes No 

Speed 
Panchromatic/ 

Multispectral 
Yes Yes No 

Temperatures Multispectral Yes No Yes 

Gas 

Emissions 
Hyperspectral Yes No Yes 

Footprint 
Panchromatic/ 

Multispectral 
Yes Yes No 
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As was mentioned, the previous analysis on parameter signatures and sensor 

recommendations assume passive imagery methods only. However, active imagery 

sensors, like synthetic aperture radar (SAR) and light detection and ranging (LIDAR), can 

also be used for observing the phenomena of interest [92]. Active imagery sensors send 

and receive signals in the electromagnetic spectrum to collect data on the object of interest. 

All of the parameter types listed for the phenomena can be observed through either SAR 

or LIDAR techniques [92,115,117,118,119]. However, passive sensors were chosen as the 

main sensor recommendations because of their increased TRL and hardware simplicity 

when compared to active sensors. Traditionally, CubeSat missions for Earth observation 

have stayed clear of active sensors due to their large size, weight, and power requirements 

[119]. In recent years, multiple efforts have worked to dispel that notion by developing 

adequate SAR, LIDAR, and other radar systems for CubeSat platforms, with some 

currently in orbit [117,119,120]. Out of all the active sensors under development for 

CubeSats, none are currently capable of meeting spatial requirements for the phenomena 

of interest. Also, active sensors require additional hardware installations, like antennas, 

that may increase the time and complexity of the CubeSat fabrication process when 

compared to passive sensors. If sufficient sensor development efforts are completed in the 

future, SARs and LIDARs present viable sensor options for the CubeSat surveillance 

system. 

4.4. System Requirements 

When making final sensor selections for a final CubeSat surveillance system given 

the sensor recommendations in the previous section, the system requirements for sensor 
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integration with the CubeSat must be analyzed. The biggest factors affecting the feasibility 

of installing a sensor on a CubeSat are size and power. As was seen in Table 18, all the 

sensor types recommended for the surveillance system have previous experience on 

CubeSat systems, meaning that size and power requirements have been met in the past. 

As future sensor developments are made to increase spatial resolutions, it is important that 

the sensors can still fit within a CubeSat form factor while still providing enough space 

for the additional satellite systems. As mentioned in Section 2, the most common CubeSat 

mission sizes are 3U and 6U, and they can have a maximum size of 12U. As an example, 

a 3U CubeSat can house a sensor no larger than a 2U size.  

As for power, Section 2 mentioned that a typical CubeSat power supply can offer 

up to 80 Wh. This means that the sensor and other satellite components have 80 W of 

power available for an hour before the batteries need to be recharged. Since some 

components require a constant stream of power and others may require high power 

consumptions for short periods of time, an adequate duty cycle must be created for the 

power supply system. A duty cycle coordinates the power consumption of various 

components with the power generation from the solar panels and battery capacity to ensure 

there is always enough power for the satellite system. In a typical CubeSat mission, the 

components with highest power consumption are the sensor and transmitter/receiver 

system and should therefore not operate simultaneously to ensure enough power is 

available to the operational component of the two and to the rest of the satellite. Assuming 

an average CubeSat power consumption of 15 W, excluding the sensor and 

transmitter/receiver system, there are up to 65 Wh of energy available for use [108]. If the 
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longest possible duration for an access time, as mentioned in Section 2, is around 7 min, 

then a sensor would ideally have up to 557 W available during an observation. However, 

the more power a sensor uses during its operation, the longer it will take for the battery to 

recharge with the solar panels. If the battery cannot recharge in time before a subsequent 

access time, there will not be enough available power for the sensor to make another 

observation. Therefore, adequate duty cycle planning is necessary for operations. Figure 

22 shows an example duty cycle graph with the power generation, consumption, and 

capacity for a CubeSat for a 24-hour period. The CubeSat has two access times to a 

location within the 24-hour period where it turns on its detector, like in the example in 

Section 2. For the sake of the example, it was assumed that each access time lasted 10 

min, which is around the maximum access time a CubeSat can have to a target given its 

orbit. Also, the CubeSat made multiple data transmission in 10- and 5-min increments. 

The power generation comes from solar panels producing 40 W whenever they are in the 

sun, and the power consumption assumes an average 15 W for the CubeSat bus at all times, 

an additional 14 W for the transmitter/receiver system, and 80 W for the sensor 

[77,82,108]. As can be seen, the CubeSat in the example is adequately able to house an 80 

W sensor. The plot was created by first defining the generation and consumption functions 

and then calculating the battery capacity. All three functions were defined as a function of 

time with increments of 5 min throughout the 24 hours. For the power generation function, 

it was defined at 40 W between 𝑡 = 0 𝑚𝑖𝑛 and 𝑡 = 45 𝑚𝑖𝑛 and then at 0 W between 𝑡 =

45 𝑚𝑖𝑛 and 𝑡 = 90 𝑚𝑖𝑛. The 45-minute step function value increments were alternated 

until the time reached 24 hours. For the power consumption function, its values were 
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initially set at 15 W for all 𝑡. Then, the power values for the sensor and transmitter/receiver 

system were added to either 5-min or 10-min 𝑡 increments throughout the 24-hour period. 

The battery capacity function was then calculated at each individual time step. The battery 

capacity at 𝑡 = 0 was set to 80 Wh, and then Eq. 4-2 was used to calculate the power 

capacity at each subsequent time step. Since the maximum battery capacity is only 80 Wh, 

if the calculated capacity with Eq. 4-2 ever exceeded that value for a time step, the 

calculated value was capped at 80 Wh. 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 = [(
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖−1

∆𝑡
) + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 − 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖] ∗ ∆𝑡     (4-2) 

 

 Where, 

  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 = Battery capacity calculated at time step i in Wh 

  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 = Power generated at time step i in W 

  𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖 = Power consumed at time step i in W 

  ∆𝑡 = Time step of 0.083333 hrs (5 min) 

 

 

 

 
Figure 22. An example duty cycle for a CubeSat with an 80 W sensor and two 

access times in 24 hours. 
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Once final sensor selections have been completed, the final considerations for 

system performance are the sensors’ angles of elevation for observation. Although the 

angles of elevation do not affect the capability for sensor integration into a CubeSat, they 

affect CubeSat operations once in orbit. As was seen in Sections 2 and 3, a larger angle of 

elevation creates a smaller viewing angle for a sensor and, in turn, creates a shorter access 

time to a target. Selecting sensors with smaller angles of elevation (larger viewing angles) 

allots the surveillance system more time to collect data and are recommended.  

4.5. Conclusion 

The section first explored the capabilities of remote monitoring and considered the 

surveillance requirements for the phenomena of interest. Defining the signatures for the 

phenomena determines the type of sensors needed for the CubeSat surveillance system. 

For each phenomenon of interest, their signature resolutions in the spectral, spatial, and 

temporal dimensions were established. Then, the different sensor requirements necessary 

for monitoring the signatures were explored. The various kinds of sensors and their 

capabilities were defined. It was determined that the CubeSat surveillance system can 

accomplish its observation goals by featuring a combination of panchromatic and 

multispectral sensors operating in the visible and near-infrared spectrum, multispectral 

sensors operating in the infrared spectrum, hyperspectral sensors operating in the infrared 

spectrum, and multispectral sensors operating in the ultraviolet spectrum. The current 

capabilities and CubeSat heritage for the recommended sensors were explored, and it was 

observed that future sensor development is needed to reach the necessary resolution and 
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size requirements. The section concludes with an analysis of CubeSat satellite architecture 

capabilities of housing sensors. 
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5. SURROGATE DATASET 

While the previous three sections analyzed the physical capabilities of CubeSats 

and all their components as a surveillance system, the focus is now shifted towards the 

development of the characterization methodology on board the satellites. As has been 

previously alluded to, the methodology developed in the rest of this thesis is based on 

machine learning techniques, specifically deep learning. Like with any deep learning task, 

an adequate dataset in terms of quality and size is required to develop an accurate model. 

The dataset created in this section for training the deep learning model for characterization 

aims at representing the data collected from the different sensors on board the surveillance 

system at a proof of concept level. Rather than training the methodology on real satellite 

imagery, the dataset is a simplified representation. This approach is taken because of a 

lack of actual sensor data from a CubeSat platform, and to allow the methodology 

developed to serve as a proof of concept for deep learning models that can adapt to other 

types of data. Creating the characterization methodology on a dataset too specific to 

certain scenarios can limit the methodologies adaptability to different kinds of data. Also, 

the surrogate data set assumes that the raw data collected from the system’s sensors is 

sufficiently post-processed so that only the relevant information is fed to the 

characterization methodology. There are multiple machine learning and data fusion 

techniques employed at improving the data produced by sensors, like interpreting 

hyperspectral data as an image or reducing the signal-to-noise ratio (SNR). Such data 

processing techniques are outside the scope of the characterization methodology. This 
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section first introduces deep learning and its applications. Then, the methodology for 

creating the surrogate dataset and results are discussed.  

5.1. Introduction to Machine and Deep Learning 

In recent years, machine learning (ML) and artificial intelligence (AI) have been 

the dominating buzzwords for most engineering industries. Since the 1950s, the field of 

AI has expanded from solving well-defined problems using logic, like playing Go and 

chess, to more complex and open-ended problems, such as language processing, computer 

vision, data fusion, and much more [121]. Machine learning is a subset of AI and is 

comprised of techniques that “learn” representations from data. ML algorithms use large 

datasets of known examples of inputs and outputs to produce, or “learn”, statistical models 

for the correlations between the inputs and their outputs. In other words, ML models can 

“learn” to predict accurate outputs given new inputs after enough exposure to examples of 

similar data. A ML algorithm encodes the data it was given into representations that are 

better interpreted for finding the correlations between inputs and outputs. For example, 

given enough pictures of dogs and cats with the correct labels, a model can predict whether 

a new picture is that of a dog or a cat. The downfall of ML, however, is that it is heavily 

reliant on the data used for training the model. In the dogs and cats example, the model 

cannot identify a picture of an elephant since it was only exposed to pictures of dogs and 

cats. Therefore, the dataset created in this section must represent phenomena as captured 

by “sensors” in a simplified way accurately enough for the characterization algorithm to 

effectively characterize the data. 
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When attempting to create a dataset, it is important to consider two separate 

branches of machine learning, supervised learning and unsupervised learning. Supervised 

learning involves an algorithm learning representations on data which include their known 

targets [121]. In other words, examples of data and their solutions are used to predict 

solutions for new data. Typical applications for supervised learning include classification 

and regression. On the other hand, unsupervised learning involves an algorithm learning 

representations from data which do not have known targets or solutions [121]. 

Unsupervised learning can aid in understanding data through visualization, compression, 

or noise reduction. Typical applications for unsupervised learning include dimensionality 

reduction, clustering, and anomaly detection. Since the characterization methodology for 

the CubeSat surveillance system aims at identifying phenomena from sensor images, it 

can be defined as image classification, which falls under supervised learning. Each piece 

of data in the surrogate dataset must also include a label describing it. For example, a 

surrogate “image” of an automobile will include a label of “automobile”. 

5.1.1. Deep Learning Basics 

In the same way ML is a subset of AI, deep learning is a subset of ML. While other 

ML techniques only learn single “layers” of representations of data, deep learning 

techniques use multiple “layers” for learning representations from the data [121]. In other 

words, these successive layers learn representations from the previous representations of 

the data. The word “deep” in deep learning refers to “depths” of models containing 

multiple successive layers [121]. These deep models are referred to as “neural networks”. 

Each layer in the network contains multiple perceptrons, or neurons, as can be seen in 
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Figure 23. A neuron takes in one or multiple inputs x (this could be the pixel values for 

the picture of a dog) and produces an output y (this could be the label of “dog” for the 

picture) through Eq. 5-1. The weights w and biases b in Figure 23 and Eq. 5-1 are randomly 

initiated and are continuously adjusted as more data is passed through the neuron until it 

“learns” the correct values of w and b that produce a y that matches the y from the data 

given a metric for weighing performance, like the mean squared error or accuracy.  

 
Figure 23. A visual representation of a neuron. 

 

 

 

𝑦 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑁
𝑖=1         (5-1) 

 

 Where, 

  x = an input value 

  w = a weight value 

  b = a bias value 

  y = an output value 

 

For a complete layer within a network, the neurons take in the input as a tensor x, 

use tensors for weights w and biases b, and output a tensor y. Eq. 5-1 for a single neuron 

is then changed to Eq. 5-2 for a layer. Eq. 5-2 represents the linear combination of 
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parameters executed within a layer, but each layer also performs a non-linear combination 

known as the activation function [122]. Instead of just outputting the solution y of the 

linear combination, each layer in the network outputs the solution of the activation 

function, f(y). A common, well-performing activation function (and the one used for the 

characterization network in the next section) is the rectified linear unit function, or 

ReLU(y), and it is described with Eq. 5-3 and Figure 24 [122]. With each layer of neurons 

in the network the output f(y) then becomes the input x for the next layer. A visual 

representation of a simple neural network can be seen in Figure 25. 

𝐲 = 𝐰𝐱 + 𝐛                (5-2) 

 

𝑅𝑒𝐿𝑈(𝐲) = 𝑚𝑎𝑥{0, 𝐲}           (5-3) 

 

 

 

 
Figure 24. A plot of the ReLU(y) activation function given y. 
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Figure 25. The architecture of a simple neural network. 

 

 

 

As was mentioned and as can be seen in Figure 25, once a prediction, y’, is made 

on the data, it is compared to the true y to measure the performance of the network through 

the loss function. There are many different types of loss functions employed in neural 

networks, but a popular choice is the mean squared error, as described in Eq. 5-4 [122]. 

The type of loss function depends on the object of the neural network, however. For 

example, a network trained for regression tasks might use the mean squared error as a loss 

function, but a network trained for classification might use binary cross-entropy. The loss 

function used for the characterization algorithm is described in the next section. Once the 

loss function is used to calculate the loss score for a network, an optimizer function is used 

to update the network parameters (weights and biases) in order to reduce the loss score in 

the next iteration. This updating of the network parameters with every iteration is the 
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essence of the “learning” in deep learning. Like with loss functions, different optimization 

functions are used for different types of networks, but they all contain the same two 

techniques at their core, backpropagation and gradient decent. Backpropagation is used to 

compute the gradient of the loss functions given the current network parameters, as seen 

in Eq. 5-5 [121,122]. Backpropagation uses the chain rule to start at the calculated loss 

score and compute the gradients of each previous layer due to its parameters. Once the 

gradient of the loss function is found, a gradient descent algorithm uses it to update the 

network parameters in the opposite direction of the gradient, as seen in Eq. 5-6 [121,122]. 

The learning rate in Eq. 5-6 is set by the user during training to optimize the results of the 

network. However, a learning rate too small might cause the network to get stuck on a 

local minimum, and a learning rate too large can cause the network to miss on important 

representations and features in the data [122]. The difference in optimizers for networks 

comes from the specific type of gradient descent function employed. The next section 

discusses which optimization function is used for the characterization algorithm. 

𝑀𝑆𝐸 = ∑ (𝐲 − 𝐲′)2
𝑥∈𝑋        (5-4) 

 

 Where, 

  𝑀𝑆𝐸 = The mean squared error 

  𝐲 = The true values for inputs x 

  𝐲′ = The predicted values for inputs x 

 

∇𝑝𝑓(𝐱; 𝑝)      (5-5) 

 

 Where, 

  𝑓(𝐱; 𝑝) = The predicted values, y’, written as a function of inputs x 

  𝑝 = The network parameters, weights w and biases b 

 

𝑝𝑖+1 = 𝑝𝑖 − 𝜂∇𝑝𝑓(𝐱; 𝑝𝑖)         (5-6) 
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 Where, 

  𝑝𝑖 = The network parameters from the previous iteration 

  𝑝𝑖+1 = The updated network parameters 

  𝜂 = A constant referred to as the learning rate 

 

To summarize, a neural network as seen in Figure 25 can be described with the 

following steps: 

1. Define the training data x and its corresponding outputs y 

2. Initialize random network parameters 

3. Pass the input data x through the network to obtain the predicted outputs y’ 

4. Calculate the loss score by comparing y and y’ with the loss function 

5. Compute the gradient of the loss through backpropagation 

6. Update the network parameters through gradient descent 

7. Repeat steps 3-6 until an adequate loss score is reached 

 

5.1.2. Convolutional Neural Networks 

As was discussed in the previous subsection, each layer in a neural network is 

made up of several neurons. However, the neurons within a layer can be “stacked” in 

different ways to create different kinds of layers within a neural network that process data 

differently. The simplest type of layer is referred to as a Dense or fully connected layer. 

These types of layers are made up of neurons stacked in a single dimension and can, 

therefore, only process one-dimensional data. Figure 26 illustrates how a network of three 

Dense layers would look like. As can be seen in the figure, the first two layers have 8 

neurons while the last layer only has one. The number of neurons in the last layer 

correspond to the number of outputs the network produces and is dependent on the 

objective of network. For example, a network trained to decide if a movie review is 

positive or negative should only give a single output, positive or negative (numerically 

represented as 0 or 1). As for the number of neurons in the previous layers, they correspond 

to the number of features learned from the data and are mainly found through trial and 
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error in most cases. However, there does exist an optimal number of neurons in Dense 

layers for each network. Too few neurons mean the network cannot learn enough features 

to correctly make predictions, and too many neurons mean that the network is learning 

features that do not contribute to making accurate predictions. It is also important to note 

that each Dense layer can have a separate activation function. As was mentioned in the 

last subsection, the most common activation function is ReLU(y). In most examples of 

neural networks nowadays, every layer, Dense or otherwise, does use ReLU(y) except for 

the last layer. The activation function for the last layer of a neural network depends solely 

on the objective of the network. For example, networks trained to output a regression may 

still use ReLU(y), but networks trained for classification usually use a sigmoid activation 

function, as seen in Eq. 5-7 and Figure 27. The sigmoid activation function outputs a 

probability between 0 and 1, which is ideal for binary classification problems, like the 

movie review example.  

 

 

 
Figure 26. A visual representation of a three-layer Dense network. 
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𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐲) =
1

1+𝑒−𝐲      (5-7) 

 

 

 

 
Figure 27. A plot of the sigmoid activation function given y. 

 

 

 

Although networks only built from Dense layers can prove powerful for simple 

problems, neural networks developed for image classification, like the cat vs dog example 

or facial recognition, use what are referred to as convolutional neural networks (CNN). 

While Dense layers trained on images learn global patterns, CNNs learn local patterns 

through what are referred to as filters [121]. The advantage in using filters for learning 

local patterns is that the learned features are location independent. Once a pattern is 

learned from an object in an image, it can be recognized in another image in a completely 

different location. On the other hand, Dense layer learned features are restricted to the 

locations where they were first learned. This advantage allows CNNs to continually 
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outperform Dense layers in image identification tasks. For example, a CNN can be trained 

to recognize a car in an image by learning the patterns from headlights, tires, and side-

mirrors. While Dense layers take in 1-dimensional data, CNNs operate on 3-dimensional 

data. The three dimensions include two spatial axes, like the height and width of an image, 

and depth axis [121]. When using images to train a CNN, the depth axis could be 3, for 

the red, blue, and green values of a colored image. Typical CNNs are made up of two 

types of layers, convolutional and max pooling layers.  

In convolutional layers, filters pass through the input map of the data (the three 

dimensions previously mentioned) to extract features. Filters are typically of size 3 x 3 or     

5 x 5, and they stop at every possible spot in an input map [121]. Figure 28 shows the 

patches of 3 x 3 data points in a 5 x 5 input map where the filter passes through [121]. The 

filter, or the convolutional kernel, performs a matrix multiplication and summation with 

the patch in the input data where it passes through to reduce the size of the input data; an 

example is also included in Figure 28. The result of the dot product becomes a data point 

on the outputted data map. Once the filter passes through all the patches, the outputted 

data map has smaller spatial dimensions. In Figure 28, the 5 x 5 input map transforms to 

a new map of size 3 x 3, spatially. With any convolutional layer, the spatial dimensions 

will always reduce by two. Since convolutional layers usually have multiple filters, the 

depth of the outputted data is transformed to the number of filters in the convolutional 

layer. Figure 29 shows a visual representation of how the dimensions change when input 

data of size 5 x 5 x 2 is transformed by a convolutional layer with three filters. Each filter 
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in Figure 29 operates like the example in Figure 28 to reduce a 5 x 5 map to size 3 x 3. 

The three resultant 3 x 3 maps are then stacked to form the new depth of the data. 

 

 

 
Figure 28. A visual representation of a 3 x 3 convolutional filter going through a 5 x 

5 input. 

 

 

 

 
Figure 29. A visual representation of the dimension changes in a convolutional 

layer. 
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Max pooling layers are typically used in CNNs after convolutional layers to 

downsample the feature map. Downsampling is desired in CNNs to have less coefficients 

to process in feature maps and to have filters in later convolutional layers look at larger 

windows proportionally in relation to the feature map [121]. For example, if an input 

feature map of size 10x10 is put through two convolutional layers, its size will reduce to 

8x8 and then 6x6. Proportionally, a 3x3 filter in the second convolutional layer will see 

more of the total feature map it receives than in the first layer. This increasing proportional 

filter window size is desired to create feature hierarchies in the network that can allow it 

to learn more abstract features. Functionally, max pooling layers operate in the same way 

as convolutional layers but utilize a “max” tensor operation instead of the convolutional 

kernel matrix multiplication and summation. Figure 30 conceptually illustrates the process 

in a max pooling layer. Only the largest number from each patch is chosen for the 

outputted data. While convolutional layers typically use filters of size 3x3 or 5x5, max 

pooling layers use filters of size 2 x 2. Figure 30 shows a 2 x 2 filter going through a 4 x 

4 map that was outputted from a convolutional layer. It is important to note that the 

movement of max pooling filter is different than the convolutional layer. The filter in 

Figure 28 passed through every possible combination of 3 x 3, while the max pooling filter 

passes through independent sets of  2 x 2 pixels. This is referred to as stride. Convolutional 

layers typically use a stride of “1”, which means the filter moves by only a single column 

or row. A max pooling layer stride of “2” means the filter moves by two columns or rows 

every time. As can also be seen in Figure 30, the dimensions of the map reduced from 4 x 

4 to 2 x 2. When a max pooling layer is used in a CNN, it reduces the spatial dimensions 
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in the input feature map by half. If the spatial dimensions of input data are odd numbers, 

the resultant halved dimensions are rounded up to the nearest whole number. For example, 

data with size 7 x 7 will be outputted from a max pooling layer with size 4 x 4. Also, max 

pooling layers do not affect the depth of data, unlike convolutional layers. 

 

 

 
Figure 30. A visual representation of the Max Pooling layer. 

 

 

 

Although convolutional and max pooling layers are the keystone of CNNs, in 

practice, the last layers of a CNN are Dense layers. After features have been extracted 

from the input data by convolutional and max pooling layers, the three-dimensional data 

representations are flattened and passed through Dense layers in order to accomplish the 

final task of the neural network. While the convolutional and max pooling layers 

essentially functioned as a dimensionality reduction technique, the final Dense layers 

complete the final classification or regression through the processes previously discussed. 

The next section describes the final neural network architecture for the characterization 

methodology. 
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5.2. Creating the Datasets 

When creating a dataset for machine learning problems, it is essential to 

understand how the different ML algorithms work. Since the last subsection introduced 

the functionality of deep learning and neural networks, the discussion is now turned to the 

creation of the surrogate dataset. The first step in developing the surrogate dataset was 

determining the goals of the characterization methodology. As previously mentioned, the 

characterization methodology developed in this thesis falls under image classification 

given the objectives of the CubeSat surveillance system. Therefore, each data point in the 

surrogate dataset must represent an image containing phenomena of interest. With these 

“satellite images”, the characterization methodology has a few options for its output. The 

characterization methodology could just identify if a scene captured by sensors is relevant 

or not, it could identify the individual phenomena in a scene, it could count the number of 

phenomena, or it could identify the location of targets within a scene. Each 

characterization objective requires a different neural network structure and different 

methods of creating the surrogate data set. Also, the number of neural networks used 

within the characterization methodology is another consideration. There could be a neural 

network trained for each phenomenon, or a network trained to identify all phenomena at 

once. It was decided that the characterization algorithm shall be created to identify if each 

phenomenon is present in a scene using the same neural network. This type of deep 

learning problem is referred to as multi-label classification [123]. In multi-label 

classification, the label for each data point or “image” in the surrogate dataset is a tensor 

with the same length as the total number of possible phenomena in a scene. Each number 
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in the tensor indicates the presence or absence of the phenomenon it corresponds to with 

a “1” or “0”, respectively. Outputting either a “1” or “0” from the neural network requires 

the sigmoid activation function previously discussed. Once the neural network is trained 

with the surrogate dataset, it will output the presence or absence of all phenomena of 

interest given a new “image”. 

As was mentioned earlier, the creation of the surrogate dataset makes a few 

assumptions. First, each data point is a simple representation of a sensor image, not actual 

sensor data. The surrogate dataset is created in this fashion because of a lack of availability 

of sensor data from a CubeSat platform and to train the characterization methodology on 

data simple and general enough to allow for future adaptability to more specific data. 

Second, the dataset assumes that any data processing done between signal collection by 

the sensor and the production of a final image is already done. In reality, many data 

analysis techniques are employed for interpreting the signals received by sensors into 

images, like data fusion and improving signal-to-noise ratios. Even though the surrogate 

data set is a simple representation of satellite images, the sensor recommendations from 

the previous section were applied to the creation of the dataset. As can be seen in the last 

section, a total of four different sensor types were selected for observing phenomena of 

interest: panchromatic/multispectral sensors in the visible and near-infrared (VIS-NIR) 

range for dimensional parameters, multispectral sensors in the infrared (IR) range for 

temperatures, hyperspectral sensors in the IR range for gas emissions, and multispectral 

sensors in the ultra-violet (UV) range for aerosol measurements. To simulate the real-
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world difference between all four sensors and their data, the surrogate dataset includes 

four separate datasets representing each sensor type.  

5.2.1. Methodology 

As previously mentioned, machine learning and deep learning model performance 

is highly contingent on the quality and quantity of data. Large quantities of diverse data 

are needed to ensure the robustness of these models. For a surveillance system on a 

CubeSat platform, identifying phenomena in a variety of scenarios is extremely important 

for accurate characterization and can be accomplished by training the characterization 

methodology on an adequate dataset. Therefore, the two overarching themes of the 

surrogate dataset creation are randomness and reproducibility. High levels of randomness 

when creating multiple data points ensures that the deep learning models learn important 

features solely relevant to the phenomena instead of learning situational features. For 

example, if in every “image” of the dataset there is always an object representing an 

automobile in the lower left corner, the deep learning model will get good at recognizing 

automobiles in the same location. However, if an automobile were to show up in the upper 

right corner of an image, the deep learning model might not recognize it since it related 

the automobiles in the training set to the lower left corner location. Therefore, a 

randomness in the placement of automobiles in the data allows the model to learn features 

exclusively pertaining to the automobile that can be recognized in any location or 

orientation in an image. Also, high reproducibility exposes the deep learning model to 

enough cases for statistical accuracy.  



 

123 

 

The creation of the surrogate dataset began with choosing the size of each “image”. 

In other image recognition tasks in deep learning, the size of the input data refers to the 

number of pixels in the image. Images are represented as two to three dimensional tensors 

where each number represents the value of an individual pixel. For example, a black and 

white image could be of size 480 x 480 pixels where each pixel is a greyscale value. After 

some trial and error, a somewhat arbitrary number of 100 x 100 pixels was chosen for the 

size of the data in the surrogate dataset. An “image” of this size allows for multiple 

phenomena of different sizes in the image without seeming overcrowded. Each pixel value 

within the image represents either a phenomenon or background with different sized 

groups of pixels representing different phenomena as well. The overall dataset creation 

algorithm can be seen in Figure 31. 

An image is first created by generating a 100 x 100 tensor of background values. 

The value for each pixel is created using Eq. 5-8. The variable base in Eq. 5-8 is where 

the difference in datasets representing the sensors comes in. Having different base values 

for the pixels simulates the different spectra where the sensors operate to collect data. 

Table 19 shows the different base values for the different datasets, the dataset names, and 

the sensors they correspond to. 

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑖,𝑗 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑡𝑒𝑔𝑒𝑟(0,9) + 𝑏𝑎𝑠𝑒     (5-8) 

 

 Where, 

  𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑖,𝑗 = The value for pixel in the i and j position 

  𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑡𝑒𝑔𝑒𝑟(0,9) =A random integer between 0 and 9 

  𝑏𝑎𝑠𝑒 = The base value of the dataset type 
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Table 19. The different datasets, the sensors and spectra they correspond to, and 

their base value. 

Dataset Name Sensor Spectral Region Base Value 

Dimension Panchromatic/Multispectral VIS-NIR 100 

Temperature Multispectral IR 200 

Gas Hyperspectral IR 300 

Aerosol Multispectral UV 400 

 

 

 

Eq. 5-9 shows a shortened example of an “image” with only background values 

in the Dimension dataset. The subscript next to each number in the tensor represents its 

coordinates in the i and j directions. 

[

1001,1      1021,2      1081,3 ⋯ 1071,100

⋮                 ⋮                 ⋮ ⋱ ⋮
109100,1  104100,3  104100,3 ⋯ 102100,100

]     (5-9) 
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Figure 31. The algorithm for creating a dataset. 



 

126 

 

Once the background is created, a “tracker” list for object positions is initialized. 

The tracker prevents pixels of objects from overlapping when the objects are created. 

Whenever an object is added to the “image”, its i and j pixel coordinates are added to the 

tracker list. The tracker list has two dimensions, the i and j coordinates of every pixel of 

an object added and will have a length of the number of total pixels used for objects in the 

image. 

Then, a list of phenomena observed by the detector corresponding to the dataset is 

retrieved. Tables 20-23 show the phenomena lists for each dataset, which were created 

from the sensor recommendations given for each parameter in Section 4. Each dataset is 

a type of parameter for each phenomenon, as was mentioned earlier. Pixel values and sizes 

are also included in the tables and are explained shortly. It is important to note that Tables 

20-23 also include a “False Object”. The false objects create diversity in an image that is 

meant to challenge the characterization algorithm. They represent figures in the scene that 

are not of interest but are also not part of the background. Their inclusion prevents the 

characterization algorithm to learn phenomena features solely on pixel size, forcing it to 

also rely on phenomena values for characterization. As can be seen in the tables, the false 

objects can be of any pixel size but do have consistent pixel values that do not interfere 

with phenomena values. During the image creation algorithm, the false objects are treated 

the same as a phenomenon in the list, but their inclusion in an image is not specified with 

labeling. At the same time the phenomena list is retrieved, an empty list is created where 

the phenomena labels will be stored. For the list of phenomena, the algorithm goes through 

each phenomenon and decides whether to include it in the image by randomly generating 
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a “1” or a “0”. For the rest of this thesis, the function Rand(a,b) will refer to the process 

of randomly generating a number between the range a to b, inclusive. If Rand(0,1) gives 

“0”, the phenomenon is not included in the image, but if Rand(0,1) gives “1”, the 

phenomenon is included. If the phenomenon is not included, a “0” is added to the label 

for the image indicating it is not present. If the phenomenon is to be included, the 

algorithm then randomly picks a number between one and ten (Rand(1,10)) to represent 

how many instances of the phenomenon will be in the image and how many times the 

object addition sub-algorithm is initiated. The random inclusion of phenomena in random 

amounts in images ensures that the characterization neural network learns features 

independent to each phenomenon object instead of learning their presence by drawing 

correlations between different phenomena or the number of phenomena present. For 

example, without randomness, the neural network might learn to only recognize the 

presence of automobile object if there are also fire objects present in the scene. Through 

the use of the Rand operations, the neural network will identify phenomena in an image 

in any situation. 

 

 

Table 20. The phenomena list for the Dimension dataset. 

Phenomenon Pixel Size Pixel Value 

Automobile 2, 4 40-44 

Airplane 6 45-49 

Facility 10 50-54 

Construction/Mining Vehicle 4, 6 55-59 

Mine Footprint 35 60-64 

Fire 10 70-74 

Blackout 10 75-79 

False Object 2, 4, 6, 10, 24, 35 30-34 
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Table 21. The phenomena list for the Temperature dataset. 

Phenomenon Pixel Size Pixel Value 

Automobile 2, 4 40-44

Airplane 6 45-49

Construction/Mining Vehicle 4, 6 55-59

Construction/Mining Processes 10 80-84

Fire 10 70-74

Blackout 10 75-79

False Object 2, 4, 6, 10, 24, 35 30-34

Table 22. The phenomena list for the Gas dataset. 

Phenomenon Pixel Size Pixel Value 

Automobile 4, 6 40-44

Airplane 10 45-49

Construction/Mining Vehicle 6, 10 55-59

Construction/Mining Processes 10, 24 80-84

Fire 10, 24 70-74

False Object 2, 4, 6, 10, 24, 35 30-34

Table 23. The phenomena list for the Aerosol dataset. 

Phenomenon Pixel Size Pixel Value 

Construction/Mining Processes 10, 24 80-84

Fire 10, 24 70-74

False Object 2, 4, 6, 10, 24, 35 30-34

As can be seen in Figure 31, the box detailing when phenomena objects are added 

to the image is outlined in red, indicating a nested algorithm for adding the objects. The 

object addition sub-algorithm is the section of the overall algorithm where most of the 

randomness takes place and can be seen in Figures 32a-32c. As was previously mentioned, 

the accuracy of the deep learning model for characterization is increased when it is 

exposed to a large diversity of cases for the phenomena. The object addition sub-algorithm 
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ensures that a phenomena object is always placed randomly within the image with a 

random orientation. As can be seen in Tables 20-23, each phenomenon has a different 

pixel size and pixel value. The pixel sizes for each phenomenon were chosen in 

comparison to each other to represent the proportional difference in sizes between the 

phenomena. For example, a 2-pixel automobile represents a regular passenger vehicle, 

while a 4-pixel automobile represents a commercial truck. Since the surrogate dataset only 

aims at creating a simple representation of sensor images, the pixel sizes for phenomena 

objects are not necessarily proportional to spatial resolutions of sensors and their swath 

size. As can be seen in the tables, the automobile object is not the only one with different 

pixel sizes. For construction/mining vehicles, a 4-pixel object represents smaller 

equipment, like bulldozers and dump trucks, while a 6-pixel object represents larger 

equipment, like cranes. For construction/mining processes (like concrete mixing or 

blasting agents) and fires in the Gas and Aerosol datasets, the difference in sizes represents 

their gas emissions and aerosols moving through the atmosphere to encompass a larger 

area than the original object. As can also be seen in the tables, the pixel sizes also vary 

between datasets. For the Dimension and Temperature dataset, their pixel sizes are equal 

and represent the actual sizes of the objects. In the Gas and Aerosol datasets, however, the 

pixel sizes for the objects increase to the next tier up to represent gas and aerosol diffusion, 

as was just mentioned. As for the pixel values, different intervals of five numbers were 

assigned to each phenomenon. When adding the objects to an image, the base value for 

the dataset type is added to the pixel values as well. For example, an automobile in the 
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Dimensions dataset will have pixel values of 140-144, while in the Temperature dataset it 

will have values of 240-244.  

As mentioned, the object addition sub-algorithm is completed for the number of 

times a phenomenon is added to the image from Rand(1,10). The algorithm starts by 

inputting the phenomena name and current tracker list. The phenomena name specifies the 

number of pixels to be used and the value attached to the pixels to represent the object, as 

seen in Tables 20-23. For the objects that have multiple pixel size, one size is randomly 

chosen. For the values for each pixel, a random number is chosen from the 5-number 

interval corresponding to the phenomenon and the dataset base value is added. Once the 

object size is decided, the coordinates for a corner of the object is randomly selected from 

the image index numbers, as seen in Eq. 5-10. The rest of the object pixels are extended 

from the randomly chosen corner. 

𝑖 = 𝑅𝑎𝑛𝑑(0,99) 

𝑗 = 𝑅𝑎𝑛𝑑(0,99)       (5-10) 
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Figure 32. The first part of the object addition sub-algorithm. 
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Figure 32. Continued. 
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Once the object corner is chosen, its orientation is chosen through Rand(0,1), a “1” 

indicating the object will extend in the x direction and a “0” in the y direction in the image. 

After the orientation is chosen, the direction is chosen again through Rand(0,1). In the x 

direction, a “1” indicates an extension to the right, while a “0” is an extension to the left. 

In the y direction, a “1” indicates an extension upwards, while a “0” indicates an extension 

downwards. While choosing the object direction in both orientations, a check is done to 

see if the object would exceed the image dimensions given its pixel size. The check is 

represented by Eq. 5-11. If the object exceeds the image dimensions, the opposite direction 

is chosen for the object. For example, if an object exceeds image dimensions by extending 

to the right, the direction is then chosen as left. Table 24 shows the different object lengths 

depending on pixel size, and Appendix B shows examples of the different objects. It is 

important to note that 24-pixel objects come in two versions. The different versions can 

be seen in Appendix B and the object addition sub-algorithm randomly choses which 

version to use when specifying an object’s pixel size. 

𝑖 − (𝑜𝑏𝑗𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ − 1) < 0, 𝑖 + (𝑜𝑏𝑗𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ − 1) > 99 

𝑗 − (𝑜𝑏𝑗𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ − 1) < 0, 𝑗 + (𝑜𝑏𝑗𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ − 1) > 99    (5-11) 

Table 24. Object pixel length given pixel size. 

Pixel Size Object Length 

2 2 

4,6 3 

10 4 

24 (A) 8 

24 (B) 6 

35 7 
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After the final object direction is chosen for the object, a Rand(0,1) operation 

decides what corner within the object the previously chosen corner will constitute. In the 

x direction, a “1” indicates the chosen corner is the objects top corner, while a “0” is the 

bottom corner. In the y direction, a “1” indicates the chosen corner is the objects left 

corner, while a “0” is the right corner. Since each object is initially created with 

dimensions 2 x object length the chosen corner makes up one of the positions of the 

dimension of size two, and then the object is expanded by its length in the chosen direction. 

Figure 33 shows examples for the corner locations of a six-pixel object where the star 

marks the chosen corner. Once the object is extended in its chosen direction and has size 

2 x object length, a “tail” is added to the object to give it a more interesting shape. The red 

box in Figures 32b and 32c indicates the section of the sub-algorithm where a “tail” is 

added to the object. For objects with no tail, the algorithm does not go through “tail” 

section. Only objects with pixel size 10 and 24 (version A) have tails. Also, objects of size 

24 (version B) and 35 do not follow the 2 x object length dimensions. The 24 (version B) 

object is a rectangle of size 3 x object length that extends in the chosen direction after the 

corner location is specified, and the 35 pixel object has size 5 x object length that is also 

extended in the chosen direction after the corner location is specified. For adding the tail 

to the 10- and 24- (version A) pixel objects, the algorithm uses another Rand(0,1) 

operation. In the x direction, a “1” indicated the tail is added at the top of the object, while 

a “0” adds the tail to the bottom. In the y direction, a “1” adds the tail to the left of the 

object, while a “0” adds the tail to the right of the object. Like when choosing the object 

corner location, a check is done to ensure the object does not exceed image dimensions. 
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The checks are represented by Eq. 5-12. If adding the tail on one side of the object causes 

it to exceed image dimensions, the tail is therefore added to the other side. The 𝑖 ± 1 do 

the check for if the tail is added right next to the chosen corner and the 𝑖 ± 3 do the check 

for if the tail is added to the other side of the object width (which is two pixels). Once the 

side for the tail is chosen, a random position for it is chosen with Rand(0,2) for the 10-

pixel object and Rand(0,3) and Rand(0,4) for the 24- (version A) pixel object. The tail for 

the 10-pixel object is of size 1 x 2, and the tail for the 24-pixel object is 2 x 4 but the 

position for each row of length 4 pixels is chosen separately, hence the two Rand 

operations. The Rand operations for the location of the tail are based on the location of the 

original corner. A “0” means the tail begins in the same row or column (depending on the 

direction of the object), while each subsequent number in the Rand range means the tail 

will begin the same number of rows or columns away from the original corner. For 

example, if a 10-pixel object with an original corner at (i, j) extending to the right, with 

the original corner as the top corner, and has a tail at the top of the object with Rand(0,2) 

= 1 for its position, the tail will have coordinates (i + 1, j + 1) and (i + 2, j + 1). Similarly, 

a 24-pixel object with the same orientation and corner conditions but with Rand(0,3) = 0 

and Rand(0,4) = 2 for its tail position will have tail pixel coordinates of (i, j + 1), (i + 1, j 

+ 1), (i + 2, j + 1), and (i + 3, j + 1) for the first row and (i + 2, j + 2), (i + 3, j + 2), (i + 4, 

j + 2), and (i + 5, j + 2) for the second row. Figure 34 shows visual representations of both 

examples. The orange stars in Figure 34 indicate the position of the original corner pixel, 

and the red stars indicate where the tail begins. The Rand operation range limit for the tail 

positions is decided by Eq. 5-13 and guarantees that a tail does not extend past the object’s 
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overall dimensions. For the 24-pixel object, the difference in upper limits for each row to 

creates a more interesting figure since 24-pixel objects represent gas emissions and 

aerosols. 

 

 
Figure 33. Corner and extension examples for a 6-pixel object. 

 

 

 

 

 
Figure 34. Examples of a 10- and 24- (version A) pixel object. 

 

 

 

𝑖 − 1 < 0 𝑜𝑟 𝑖 − 3 < 0, 𝑖 + 1 > 99 𝑜𝑟 𝑖 + 3 > 99 

𝑗 − 1 < 0 𝑜𝑟 𝑗 − 3 < 0, 𝑗 + 1 > 99 𝑜𝑟 𝑗 + 3 > 99        (5-12) 

 

𝑡𝑎𝑖𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =
𝑜𝑏𝑗𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

2
   (5-13) 
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Once the tail coordinates are created, or once the tail section of the algorithm is 

skipped, all the pixel coordinated for the object are put in a list which takes shape 2 x total 

number of pixels. The object pixel list is then compared to the tracker list to see if any of 

the pixels overlap with previously created objects. If at least one pixel’s location overlaps, 

the object addition sub-algorithm is reinitiated. The algorithm loops until an object is 

created with no overlapping locations. If no pixels overlap, the pixel locations of the object 

just created are added to the tracker list and then the pixel value representing the 

phenomenon chosen at the beginning of the sub-algorithm is added as a third column to 

every row of the pixel location list. The list is then outputted from the sub-algorithm and 

the pixel values of the image with the same coordinates as the object list are replaced by 

the object’s pixel value. The object is therefore added to the image. Once an object is 

added to the image, the object addition sub-algorithm is repeated for however many 

objects of the same phenomenon are added (the Rand(1,10) operation from before). After 

all the phenomenon objects are added, a value of “1” is appended to the label list for the 

image, indicating the phenomenon’s presence in the image. If the phenomenon was not 

added, a “0” is added to the label list. If the object which was added was a false object, no 

number is added to the label list. Their absence from the label list prevents the 

characterization algorithm to learn their features since they only represent obstacles for 

characterization. Figure 35 shows what a label tensor list might look like for an image in 

the Dimension dataset. It is important to note that the label list only indicated the presence 

of a phenomena, not the amount, as was decided by the objective of the characterization 

algorithm. 
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Figure 35. A label list for a data point in the Dimension dataset. 

As can be seen in Figure 31, after a phenomenon is added (or not), the algorithm 

moves on to the next phenomenon in the dataset phenomena list to decide whether to 

include it or not, and the whole object addition sub-algorithm is repeated (or skipped). 

Once the algorithm passes through all the phenomena in the list, the final image and its 

label are added to the overall dataset list as one data point. The whole image creation 

process is repeated until the desired number of data points are created and added to the 

dataset. Examples of the dataset are seen in the next subsection. 

5.2.2. Results and Discussion 

Although examples of the different phenomena objects can be seen in Appendix 

B, the following subsections include examples of visual representations of images in each 

dataset. The following figures are only plots of the “image” tensor for better visualization. 

The characterization algorithm receives each data point in the form of the 100 x 100 tensor 

and a corresponding label tensor of shape 1 x number of phenomena. Since the 

characterization neural networks need to be trained on a high number of data points, 
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individual images are appended together and the input data to the network takes shape of 

number of data points x 100 x 100. 

In the figures below, show visual representations of the created images. Each pixel 

in the grid represents a number in the 100 x 100 “image” tensor and its color represents 

the pixel value. The grid plots display the difference in features between phenomena that 

a CNN can easily learn. Each figure also includes the image’s label list indicating the 

presence or absence of each phenomenon. The tables below each figure show the number 

of each phenomenon present in the images. Even though only four images are included 

for each dataset as examples, the randomness in their creation is apparent. For example, 

Figure 43 includes all possible phenomena for the Temperature dataset, while Figure 50 

does not include any phenomena at all. Also, some images include false objects while 

others do not. The possibility exists for one image to include ten objects for each 

phenomenon and the next image to have only background. Given the amount of Rand 

operations an integer values employed in the dataset creation algorithm, it is extremely 

difficult for two images to be the same. Training the characterization neural networks on 

datasets with so much diversity allows them to recognize each phenomenon in any 

situation. 
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5.2.2.1 Dimension Dataset 

Figure 36. Example image one created in the Dimensions dataset. 

Table 25. The number of each phenomenon present in Figure 36. 

Phenomenon Amount 

Automobile 0 

Airplane 4 

Facility 0 

Construction/Mining Vehicle 2 

Mine Footprint 5 

Fire 5 

Blackout 0 

False Object 2 

Figure 37. Example image two created in the Dimensions dataset. 
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Table 26. The number of each phenomenon present in Figure 37. 

Phenomenon Amount 

Automobile 2 

Airplane 8 

Facility 0 

Construction/Mining Vehicle 0 

Mine Footprint 0 

Fire 7 

Blackout 0 

False Object 10 

 

 

 

 
Figure 38. Example image three created in the Dimensions dataset. 

 

 

 

Table 27. The number of each phenomenon present in Figure 38. 

Phenomenon Amount 

Automobile 9 

Airplane 1 

Facility 0 

Construction/Mining Vehicle 0 

Mine Footprint 0 

Fire 0 

Blackout 0 

False Object 6 
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Figure 39. Example image four created in the Dimensions dataset. 

 

 

 

Table 28. The number of each phenomenon present in Figure 39. 

Phenomenon Amount 

Automobile 3 

Airplane 7 

Facility 5 

Construction/Mining Vehicle 4 

Mine Footprint 0 

Fire 4 

Blackout 0 

False Object 2 

 

 

 

The randomness in the dataset creation algorithm can be clearly seen in the 

difference between each “image”, which were created consecutively. For example, Figure 

38 only has two objects while Figure 39 is only missing two objects. It is important to also 

note the randomness present in the creation of the same type of phenomenon within the 

same picture. For example, each of the four fires in Figure 39 all have a different shape 

within the image. As mentioned, this randomness helps the characterization methodology 

algorithm learn features unique to phenomena that are not influenced by how they were 

placed in the image. The presence of “False Objects” can also be easily seen in the figures. 
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Even though Figure 38 only has automobiles and airplanes in the image, objects with a 

24-pixel size which are not of interest can also be observed.

5.2.2.2 Temperature Dataset 

Figure 40. Example image one created in the Temperature dataset. 

Table 29. The number of each phenomenon present in Figure 40. 

Phenomenon Amount 

Automobile 3 

Airplane 0 

Fire 0 

Blackout 2 

Construction/Mining Vehicle 8 

Construction/Mining Processes 9 

False Object 0 
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Figure 41. Example image two created in the Temperature dataset. 

Table 30. The number of each phenomenon present in Figure 41. 

Phenomenon Amount 

Automobile 0 

Airplane 0 

Fire 9 

Blackout 9 

Construction/Mining Vehicle 0 

Construction/Mining Processes 10 

False Object 0 

Figure 42. Example image three created in the Temperature dataset. 
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Table 31. The number of each phenomenon present in Figure 42. 

Phenomenon Amount 

Automobile 4 

Airplane 3 

Fire 0 

Blackout 0 

Construction/Mining Vehicle 0 

Construction/Mining Processes 9 

False Object 6 

Figure 43. Example image four created in the Temperature dataset. 

Table 32. The number of each phenomenon present in Figure 43. 

Phenomenon Amount 

Automobile 8 

Airplane 2 

Fire 8 

Blackout 6 

Construction/Mining Vehicle 1 

Construction/Mining Processes 7 

False Object 9 

Like with the Dimension dataset images, the Temperature dataset also produces 

highly randomized “images”. In contrast to other example “images”, Figure 43 includes 

every possible phenomenon. Even though it appears crowded, the dataset creation 
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algorithm prevented the objects in Figure 43 from overlapping. Unlike the other datasets, 

the maximum object size for the Temperature dataset is only 10 pixels. Figure 41 shows 

an “image” containing three out of six objects, all of size 10 pixels. Thanks to the 

difference in pixel value, the three phenomena are still distinguishable from each other. 

However, this fact of having half of the possible phenomena in the dataset all be the same 

size is the most likely reason for the characterization neural network’s poorer performance 

on the Temperature dataset when compared to the other datasets, as is seen in Section 6. 

5.2.2.3 Gas Dataset 

Figure 44. Example image one created in the Gas dataset. 

Table 33. The number of each phenomenon present in Figure 44. 

Phenomenon Amount 

Automobile 8 

Airplane 0 

Fire 4 

Construction/Mining Vehicle 0 

Construction/Mining Processes 0 

False Object 0 
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Figure 45. Example image two created in the Gas dataset. 

Table 34. The number of each phenomenon present in Figure 45. 

Phenomenon Amount 

Automobile 6 

Airplane 3 

Fire 2 

Construction/Mining Vehicle 0 

Construction/Mining Processes 0 

False Object 0 

Figure 46. Example image three created in the Gas dataset. 
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Table 35. The number of each phenomenon present in Figure 46. 

Phenomenon Amount 

Automobile 0 

Airplane 4 

Fire 5 

Construction/Mining Vehicle 10 

Construction/Mining Processes 0 

False Object 9 

 

 

 

 
Figure 47. Example image four created in the Gas dataset. 

 

 

 

Table 36. The number of each phenomenon present in Figure 47. 

Phenomenon Amount 

Automobile 3 

Airplane 0 

Fire 5 

Construction/Mining Vehicle 5 

Construction/Mining Processes 0 

False Object 2 

 

 

 

Like with the other two datasets, the high levels of randomness within the dataset 

creation algorithm are present in the four Gas dataset example “images”. For example, 

Figures 44 and 45 have no “False Objects” within the image, while the rest of the other 

images seen so far all include them. The difference in individual phenomenon shape/size 
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can be easily observed with the fire objects in Figure 47. As was previously mentioned, 

the fire object for the Gas dataset is created in two possible sizes, 10 and 24 pixels, to 

emulate the propagation of gasses in the atmosphere. Fires with 10 and 24 pixels are 

present in the image, and the objects of size 24 also appear in the two different version 

shapes, A and B. As was mentioned, the Gas dataset has fewer observable phenomena 

than the previous two datasets, causing its images to appear a little less crowded. 

5.2.2.4 Aerosol Dataset 

 

 

 

 
Figure 48. Example image one created in the Aerosol dataset. 

 

 

 

Table 37. The number of each phenomenon present in Figure 48. 

Phenomenon Amount 

Fire 6 

Construction/Mining Processes 0 

False Object 0 
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Figure 49. Example image two created in the Aerosol dataset. 

Table 38. The number of each phenomenon present in Figure 49. 

Phenomenon Amount 

Fire 2 

Construction/Mining Processes 1 

False Object 0 

Figure 50. Example image three created in the Aerosol dataset. 

Table 39. The number of each phenomenon present in Figure 50. 

Phenomenon Amount 

Fire 0 

Construction/Mining Processes 0 

False Object 9 
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Figure 51. Example image four created in the Aerosol dataset. 

 

 

 

Table 40. The number of each phenomenon present in Figure 51. 

Phenomenon Amount 

Fire 6 

Construction/Mining Processes 0 

False Object 6 

 

 

 

Finally, the Aerosol dataset example “images” also highlight the continued 

randomness in the dataset creation algorithm. For example, Figure 49 includes all possible 

phenomena while Figure 50 has none. The objects still visible in Figure 50, however, are 

only “False Objects”. Figure 50 presents a clear example of how the characterization 

methodology is challenged by “False Objects”. Just because there are objects in an 

“image”, it does not mean they are of interest. Detecting the absence of phenomena is just 

as important as detecting their presence. It is also interesting to observe how the six 

uniquely looking objects in Figure 48 are all the same phenomena, as was also seen in the 

Gas dataset. Compared to the three other datasets, the Aerosol dataset has the least number 

of observable phenomena, causing the characterization methodology to produce its best 

performance on it, as is seen in Section 6. 
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5.3. Conclusion 

This section served as an introduction to the concepts of machine learning and 

deep learning, covered the methodology used to create the representative surrogate dataset 

based on sensor types, and showed examples of the data. As was mentioned, the dataset 

creation algorithm is the same for each of the four datasets. The only differences are the 

base value added to each pixel and each dataset’s corresponding phenomena list. Different 

phenomena lists create label lists with different lengths. As can be seen in Tables 20-23, 

the label lists are of length 7 for the Dimensions dataset, 6 for the Temperature dataset, 5 

for the Gas dataset, and 2 for the Aerosol dataset. This difference in label list sizes and 

base values creates the need to have four different characterization models, one trained on 

each dataset. As is discussed in the next section, the characterization neural network has 

the same architecture for each dataset except for the last Dense layer which directly 

outputs the probability of a phenomenon’s presence in an image in an output label list. 

Each number in the outputted list is a probability between 0 and 1 of a phenomenon’s 

presence in the image. 
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6. CHARACTERIZATION METHODOLOGY 

The previous section discussed the basics of deep learning techniques that are 

expanded in this section to create the characterization methodology for the surrogate 

dataset also discussed in the previous section. Although the same deep learning models 

created in this section cannot be directly applied to an actual CubeSat platform for 

characterization real sensor data, it provides a proof of concept and skeleton which can be 

easily adapted to different datasets as the surveillance platform continues development 

beyond this thesis. As was discussed during the creation of the surrogate dataset, each data 

point or “image” aims to provide a simplified representation of sensor data after it is 

already processed. The surrogate dataset and characterization methodology assume the 

data was already processed from sensor signals into recognizable images. The surrogate 

dataset includes four different datasets representing different sensor types and parameters. 

This section discusses the architecture developed for the convolutional neural networks 

(CNNs) trained on each of the four datasets. Although each CNN is trained on slightly 

different data, they have the same architecture of layers and functions. The training and 

optimization of the CNNs during their performance on new data are also discussed in this 

section. When the CubeSats in the constellation pass over a target, all sensors in the system 

are used to produce data or “images”. In terms of the surrogate dataset, surveying a target 

produces an image in each of the four datasets. As each “image” is evaluated by its 

corresponding CNN model, each CNN outputs a probability for each phenomenon’s 

presence or absence. The probabilities from each CNN from surveying a target are then 

combined to produce a final characterization solution. The last subsection provides an 
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illustrative application example of how each topic discussed thus far in the thesis is 

combined into a complete CubeSat surveillance system.  

6.1. Model 

As was mentioned in Section 5, the CNNs trained on the surrogate dataset form 

the main part of the characterization methodology. When the CubeSat surveillance system 

collects data from a scene on the planet’s surface, the CNNs trained on data corresponding 

to each sensor directly make the characterization predictions for phenomena observed with 

each sensor (or dataset). However, the parallel CNNs must be brought together into an 

overall characterization methodology that can produce a final characterization solution of 

a target given the probabilities from each CNN. Figure 52 illustrates the structure of the 

overall characterization methodology and the data flow steps. Combining the phenomena 

probabilities into a final characterization solution, as can be seen in the last step of Figure 

52, illustrates one of the advantages of having multiple satellites in the CubeSat 

surveillance system. A constellation of satellites allows for multiple sensors on board the 

overall system which give the characterization methodology access to multiple parameters 

for identifying phenomena. Using multiple parameters of a phenomenon to confirm its 

presence increases the methodology’s characterization accuracy. Eq. 6-1 describes the last 

step of Figure 52 which combines each CNN’s probability to produce a final solution. For 

each phenomenon, its probabilities of presence or absence in the scene from each CNN 

are averaged to create a final probability. As was seen in the previous section, not all 

datasets/CNNs include every possible phenomenon. For example, the aerosol dataset 

cannot detect the presence of a facility’s physical building. As a result, only a 
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phenomenon’s probabilities from the datasets in which it can be detected are averaged. To 

continue the example, a facility’s final probability is not contributed to from the Aerosol 

CNN since it cannot be detected in that dataset in the first place.  

 

 

 
Figure 52. Structure of data flow in characterization methodology. 

 

 

 

𝑃(𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑛𝑖) = [𝑃(𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑛𝑖|𝐷) + 𝑃(𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑛𝑖|𝑇) + 

𝑃(𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑛𝑖|𝐺) + 𝑃(𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑛𝑖|𝐴)]/𝑁𝑝   (6-1) 

 

 Where, 

  𝑃(𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑛𝑖) = Probability of presence in a scene for phenomenon i 

  𝐷 = CNN trained on Dimension dataset 

  𝑇 = CNN trained on Temperature dataset 

  𝐺 = CNN trained on Gas dataset 

  𝐴 = CNN trained on Aerosol dataset 

  𝑁𝑝 = Number of probabilities used for the calculation 
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Although the final step of the characterization methodology can be described by 

only one equation, describing each parameter in Eq. 6-1 is not as easy. Each probability is 

a result of a deep learning neural network trained on thousands of data points. The 

development of the four CNNs in the characterization methodology is discussed in the 

following subsections. As previously mentioned, each CNN has the same architecture, 

except for the last Dense layer of each. Since the CNNs are trained for a multi-label 

classification problem, the last Dense layer outputs the final probabilities for each 

phenomenon. Since the number of phenomena are different for each dataset, the last Dense 

layer for each CNN contains different numbers of neurons, or nodes. The number of nodes 

in the last layer directly correspond to the number of outputs from the network. It is 

important to mention that the development of the convolutional neural networks was 

accomplished using the Tensor Flow wrapper, Keras, within Python 3.7. The Keras 

module in python provides a simpler interface with the deep learning library. Also, the 

models were trained and evaluated on a GeForce GTX 950 with 1364 MB of memory. 

6.1.1. CNN Architecture 

Even though the CNN architecture went through an optimization process to 

achieve the best accuracy for the dataset, initial inspiration was drawn from networks in 

[121,124,125] which were used for image recognition tasks. The final CNN architecture 

can be seen in Figure 53. The architecture includes a total of 12 convolutional layers, with 

a max pooling layer after each group of three. All convolutional layers use filters of size 

3x3, and the number of filters doubles with every subsequent group of three convolutional 

layers except for the last group which has the same number of filters as the group 
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preceding it. After passing through the convolutional and max pooling layers, the data is 

flattened in order to pass through the Dense layers at the end. The Flatten layer creates a 

1-dimensional tensor with a length equal to the multiplication of the input data’s three 

dimensions. Then, only one Dense layer, which includes 512 neurons, is used before the 

output layer. The number of neurons for the last Dense layer in Figure 53 is written as N 

because it varies depending on each dataset. The last layer has 7 neurons for the 

Dimensions dataset, 6 for the Temperature dataset, 5 for the Gas dataset, and 2 for the 

Aerosol dataset. Every convolutional layer in the network and the first Dense layer use the 

ReLU(y) activation function and the last Dense layer uses the sigmoid activation function. 

The nature of both activation functions is discussed in the previous section. When data is 

passed through the network, each data point or “image” tensor is introduced with 

dimensions (100, 100, 1) since the convolutional and max pooling layers only receive data 

in three dimensions. Using Python, the dataset images with dimensions (100, 100) are 

simply reshaped into size (100, 100, 1). Table 41 shows how the size of the data changes 

as it passes through the network. The table demonstrates how a convolutional layer 

transforms the third dimension of the input data into the same size as the number of filters. 

However, the convolutional layers in this network do not reduce the spatial dimensions of 

the input data by two, like how it was explained in the previous section. This is because 

all 12 convolutional layers implement padding in order to avoid losing information about 

the edges of the “image” as it passes through the network. Padding adds columns and rows 

on all four sides of the input feature map for the output dimensions of a convolutional 

layer to be the same as the input dimensions [121]. For filters of size 3 x 3, one row is 
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added to the top, one row to the bottom, one column to the left, and one column to the 

right, essentially making the input dimensions for the data (102, 102, 1). During training, 

the use of padding significantly increased the model’s accuracy since object features on 

the edges of the image were not lost due to the convolutional layers. It can also be seen in 

Table 41 how the network transforms a tensor of size (100, 100, 1) into a single 1-

dimensional tensor of size (N,) which included the probabilities for every phenomenon 

present in the input tensor. This illustrates how machine learning and deep learning 

techniques are used to reduce the size of data into meaningful representations. 

 

 

 
Figure 53. The final architecture for the convolutional neural network. 
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Table 41. The dimensions of the data after each layer in the CNN. 

Layer Output Shape 

Conv2D 1 (100, 100, 32) 

Batch Normalization 1 (100, 100, 32) 

Conv2D 2 (100, 100, 32) 

Batch Normalization 2 (100, 100, 32) 

Conv2D 3 (100, 100, 32) 

Batch Normalization 3 (100, 100, 32) 

Max Pooling 1 (50, 50, 32) 

Conv2D 4 (50, 50, 64) 

Batch Normalization 4 (50, 50, 64) 

Conv2D 5 (50, 50, 64) 

Batch Normalization 5 (50, 50, 64) 

Conv2D 6 (50, 50, 64) 

Batch Normalization 6 (50, 50, 64) 

Max Pooling 2 (25, 25, 64) 

Conv2D 7 (25, 25, 128) 

Conv2D 8 (25, 25, 128) 

Conv2D 9 (25, 25, 128) 

Max Pooling 3 (12, 12, 128) 

Conv2D 10 (12, 12, 128) 

Conv2D 11 (12, 12, 128) 

Conv2D 12 (12, 12, 128) 

Max Pooling 4 (6, 6, 128) 

Flatten (4608,) 

Dropout (4608,) 

Dense 1 (512,) 

Dense 2 (N,) 

 

 

 

As can be seen in Figure 53 and Table 41, the network architecture also includes 

layers called “Batch Normalization” and “Dropout”. The inclusion of these layers in any 

network help reduce what is referred to as overfitting. The issue of overfitting is one that 

plagues most neural networks in deep learning, but it can be overcome through different 

techniques. When a model is training on a dataset, it uses a different subset of the data, 

commonly referred to as validation data, to test the performance of the model as it learns. 
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During training, the model processes the input training and validation data completely in 

multiple cycles called epochs. In one epoch, the model goes through every data point in 

segments called batches. As the model goes through each epoch, its performance on the 

training data improves as the neural network learns the representations of the training data. 

After each epoch, the model is evaluated on the validation data to test its performance on 

completely new data. Since the point of training neural networks is to produce accurate 

predictions on new data, the metrics produced by evaluating the validation data are what 

indicate the model’s true performance, not the metrics produced from the training dataset. 

In an ideal model, the training and validation metrics, which are the network’s loss and 

accuracy, should be close to the same value after each epoch. Overfitting occurs when the 

training metrics keep increasing with each subsequent epoch but the model’s performance 

on validation data does not keep improving. This means that the model is learning 

irrelevant or misleading representations from the training data that does not translate to 

new data. When overfitting occurs, the best solution is to give the model more training 

samples. If using more samples is not possible or does not reduce overfitting, 

regularization techniques can be used [121]. As mentioned, the techniques used for this 

CNN model are batch normalization and dropout. Batch normalization helps reduce some 

overfitting in a network by increasing its stability. Increased stability prevents the 

performance on validation data to oscillate wildly, which decreases the reliability of a 

model. Batch normalization, essentially, adds noise to the previous layer’s activation 

function, causing the model to only learn the features with higher importance [126]. It 

normalizes the output of the previous layer by subtracting the current batch’s mean and 
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dividing by its standard deviation. The batch normalization process can be seen in Eq. 6-

2 – 6-5 [126]. The parameters 𝛾 and 𝛽 are learned in the training process through gradient 

descent, like the weights and biases in the other layers. During the training of the model, 

it was found that with each batch normalization layer added, the model’s performance 

increased, and overfitting reduced. After the addition of the sixth batch normalization 

layer, improvements in performance and overfitting plateaued. The number on batch 

normalization layers was therefore left at only six since each additional layer causes fewer 

total features to be learned from the data. 

𝜇𝐵 =
1

𝑚
∑ 𝒙𝑖

𝑚
𝑖=1            (6-2) 

 Where, 

  𝜇𝐵 = The batch mean 

  𝑚 = The batch size 

  𝒙𝑖 = The outputs of the previous layer to be normalized within the batch 

 

𝜎𝐵
2 =

1

𝑚
∑ (𝒙𝑖 − 𝜇𝐵)2𝑚

𝑖=1                (6-3) 

 Where, 

  𝜎𝐵
2 = The batch variance 

𝒙𝒊̂ =
𝒙𝒊−𝜇𝐵

√𝜎𝐵
2+𝜖

         (6-4) 

 Where, 

  𝒙𝒊̂ = The normalized mean of the data in the batch 

  𝜖 = Batch normalization constant added for stability 

 

𝐵𝑁𝛾,𝛽(𝒙𝒊) = 𝒚𝒊 = 𝛾𝒙𝒊̂ + 𝛽        (6-5) 

 Where, 

  𝐵𝑁𝛾,𝛽(𝒙𝒊) = 𝒚𝒊 = The normalized output of the previous layer  

  𝛾 = Learned “mean” parameter 

  𝛽 = Learned “standard deviation” parameter 

 

The dropout layer functions like batch normalization in the sense that it prevents 

the model from learning insignificant features from the data. When applied to a layer, 
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dropout randomly sets a certain amount of the output’s values to zero during training 

[121]. The dropout rate can be set manually by a user which refers to the fraction of value 

in a layer’s outputs set to zero during training. For example, a dropout rate of 0.5 sets half 

of a layer’s outputs to zero. During testing, the dropout added to a layer does not “zero 

out” the outputs like in training. Instead, the output is scaled down by multiplying by the 

dropout rate to maintain the same number of values present in the output of the layer as 

during training. Randomly setting values to zero prevents the neural network from 

learning insignificant features in the data. The location for the dropout added to the model 

in this thesis, as seen in Figure 53, was inspired by the networks in [121,125]. 

Figure 54 below shows an example of a neural network overfitting during training, 

while Figure 55 shows an example of a model with no overfitting. These graphs were 

produced during the optimization process for the CNN, so their accuracies do not reflect 

the final model training curves. As can be seen when comparing the different sets of 

figures, the validation curves for accuracy and loss diverge from the training curves for 

the overfitted model. It is important to note that even though some spikes in the validation 

values in Figure 55 occurred, they do not indicate the presence of overfitting. The presence 

of spikes means that convergence during training was not entirely “smooth”. Although a 

few large steps towards convergence (spikes) were taken during the gradient descent 

process, the curves in Figure 55 do display convergence. However, when choosing 

between two models with similar performance during an optimization process, the model 

displaying smoother validation curves, or better convergence, is preferable as its final test 

performance will display more consistency if it is trained multiple times. 
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Figure 54. The training and validation accuracy and loss for an overfitted model. 
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Figure 55. The training and validation accuracy and loss for non-overfitted model. 

 

 

 

6.1.1.1. Optimization 

While constructing the final CNN architecture, a few different parameters were 

changed to find an optimally performing network. Those parameters were: number of 

Conv2D layers, number of Dense layers, number of filters for the Conv2D layers, filter 

size, and number of neurons for the Dense layer(s). During the optimization of the 

architecture, only one parameter was changed at a time in order to observe its true effect 

on the network’s performance. Also, the hyperparameters were kept the same while 
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training each model. Hyperparameter optimization is discussed in the Training subsection. 

For evaluating the performances of each network architecture, their accuracies on a set of 

test data are compared. The performance accuracy for a network is the percentage of data 

points which it predicted correctly. It is also important to mention that during the 

optimization of the CNN, only the Dimension dataset was used. Once a final architecture 

was found, only the number of nodes in the last Dense layer of the network were changed 

when training with the other three datasets. It is important to note that while training the 

different models in the optimization process, a Keras “callback” was used to only save the 

best performing model during training instead of the model produced at the end. For 

example, if the validation accuracy after 15 out of 20 training epochs is 96% and that score 

is not reached again in the remaining epochs, the model after the 15th epoch is saved as 

the final model. Saving the best model while training prevents the final network 

performance from suffering if spiking or overfitting occur towards the later epochs. Using 

the best model during training instead of the final one illustrates the full potential of a 

certain architecture during optimization. Also, during the optimization processes, 

individual architectures were trained several times in order to understand the full scope of 

their performance. Due to the random nature of initializing weights during training, a 

model may not produce the same performance every time it is trained. It was observed 

that the final model accuracies for individual architectures after several training sessions 

had a standard deviation of 0.26% accuracy. The error bars included in all the architecture 

optimization graphs reflect this 0.26% training variation for architectures.  
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When optimizing for the number of Conv2D layers to include in the architecture, 

the idea of four-layer groups separated by max pooling layers persisted through each 

iteration. Four different architectures were trained and evaluated containing 4, 8, 12, and 

16 convolutional layers. Figure 56 shows how accuracy is affected by the number of 

Conv2D layers. As can be seen, the test accuracy of the network increases with the number 

of layers, with the 12- and 16-layer architectures producing accuracies within error. The 

4- and 8- layers models achieved lower performances since they were not able to learn 

enough features to successfully predict the data due to a lack of layers. Since the 12- and 

16-layer architectures produced the same test accuracies and showed the same amount of 

spiking in the training and validation curves, the 12-layer model was chosen as the final 

architecture to save on computational resources during training. For the Dense layers in 

the network (not including the final layer), optimization began with a single layer and each 

subsequent iteration added an extra layer (while still before the final layer). It was seen 

that the inclusion of a second Dense layer did not significantly improve the model’s 

accuracy and decreased the smoothness during training, so only one Dense layer was 

chosen for the final architecture. 
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Figure 56. Model accuracy on test data depending on number of Conv2D layers. 

 

 

 

With the number of layers chosen, optimization for the number of filters for the 

Conv2D networks and number of neurons in the Dense layer was done. For the Conv2D 

layers, the same trend of increasing the number of filters by a factor of two with each new 

convolutional 3-layer group (except for the last group of layers) was kept. The different 

filter numbers used for the first convolutional layer group were 16, 32, and 64. The second 

layer group of convolutional layers for each iteration then has 32, 64, and 128 filters, 

respectively, and then the third and fourth groups have 64, 128, and 256 filters, 

respectively. It is important to note that the number of nodes for the Dense layer were set 

to 512 for each of the three models. Figure 57 shows the final model accuracy for each of 

the three architectures. Model test accuracy increased as the number of filters in the 

Conv2D layers increased. The difference in test accuracy errors between the 32 and 64 

initial layer filter architectures was only 0.2%. 
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Even though the architecture with 32 initial layer filter architecture produced 

slightly lower test accuracies, it was chosen for the final model since the 64 initial layer 

filter architecture produced displayed more overfitting in the training curves and was more 

computationally expensive. As mentioned, the presence of spiking or slight overfitting 

does not necessarily affect a model’s final accuracy performance on a test dataset. 

However, it can affect a model’s performance on predicting individual phenomena in 

“images”, as is discussed in the Results and Discussion subsection. As a result, when 

choosing between two models with similar test accuracies (less than 0.5% difference), the 

model with less spiking and overfitting is preferred. For the number of nodes in the Dense 

layer, 128, 256, 512, and 1024 nodes were used. For all four architectures, the number of 

filters for the Conv2D layers were set to 32, 64, 128, and 128 for the four-layer groups. 

Figure 58 shows that the architecture’s test accuracy peaked at 512 nodes, with its 

accuracy performing within error of the 256-node model. As the number of nodes 

increased, more representations from the data were learned, which increased test accuracy. 

However, the 1024-node model produced lower performance due to overfitting. Other 

than producing test accuracies within error, the 256- and 512-node architectures also 

displayed the same frequency of spiking in the training and validation curves. The 512-

node architecture was chosen as the final model to allow the network to learn more 

representations from the data. 
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Figure 57. The final model accuracy when compared to number of Conv2D filters. 

 

 

 

 
Figure 58. The final model accuracy when compared to number of Dense nodes. 

 

 

 

The last architectural feature to be optimized was the filter size for the 

convolutional layers. The different sizes used were 3 x 3, 5 x 5, and 7 x 7. As can be seen 

in Figure 59, the architecture test accuracy decreased as the filter size increased. Even 
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though it is unclear in Figure 59, the error bars for the 3 x 3 filter model and the 5 x 5 filter 

model do not overlap. Also, overfitting was more prevalent as the filter sized increased. 

Therefore, the final filter size for the Conv2D layers was chosen as 3 x 3.  

 

 

 
Figure 59. The final model accuracy when compared to changing Conv2D filter 

size. 

 

 

 

6.1.1.2. Compiling the Model 

Once a final architecture is chosen for a CNN, it must be compiled within Keras 

by specifying the optimizer for the network, the loss function, and any metrics for 

calculation other than the loss score. As was discussed in the previous section, the loss 

function measures the performances of the neural network, while the optimizer updates all 

the network parameters through gradient descent techniques. The loss function 

implemented into this CNN is referred to as binary cross-entropy. Typically, the loss 

function for a neural network is determined by the type of output, or measure, desired from 
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the model. Since this CNN aims to solve a multi-label classification problem which 

outputs the probability of a phenomenon, binary cross-entropy is a natural fit. This loss 

function, as described with Eq. 6-6, computes the loss for the predicted value out of two 

labels. It multiplies the log probability of the predicted correct label with the true correct 

label and adds it to the multiplication of the log probability of the opposite of the predicted 

label with the opposite of true label. Eq. 6-7 give an example of a calculated loss score for 

a predicted label of 0.9 when the true label is 1 for a single sample. As can be seen, the 

loss is calculated as 0.1054. If the predicted label would been a very accurate prediction 

of 1, the loss value would be 0. Once a loss score is calculated for a set of data, the gradient 

descent algorithm in the optimizer aims to reduce it in the next iteration by updating the 

network parameters. 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ 𝑦𝑖 log(𝑦𝑖

′) + (1 − 𝑦𝑖)log (1 − 𝑦𝑖
′)𝑁

𝑖=1   (6-6) 

 Where, 

  𝐿𝑜𝑠𝑠 = The loss value 

  𝑁 = The total number of samples 

  𝑦𝑖 = The true label value (between 0 and 1) 

  𝑦𝑖
′ = The predicted label value (between 0 and 1) 

 

−(1 ∗ log(0.9) + (1 − 1) ∗ log(1 − .9)) = 0.1054  (6-7) 

 

The optimizer chosen for this CNN is called RMSprop, a popular choice in the 

world of deep learning. When compared to other optimizers, RMSprop scales the learning 

rate in gradient descent by a moving average of the squared gradient [128,129], as 

described in Eq. 6-8 and 6-9. It is worth noting that Eq. 6-8 is only a slight alteration from 

Eq. 5-6 in the previous section. The learning rate in Eq. 6-8 is a hyperparameter which 

was optimized during training of the CNN. Another popular optimizer, Adam, was also 
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explored, but RMSprop was chosen at the end of the day because it produced the same 

results at a much higher learning rate, meaning the network trained faster. 

𝑝𝑖+1 = 𝑝𝑖 −
𝜂

√𝐸[∇𝑝𝑓(𝐱;𝑝𝑖)2]
∇𝑝𝑓(𝐱; 𝑝𝑖)       (6-8) 

 

 Where, 

  𝑝𝑖 = Current network parameters 

  𝑝𝑖+1 = New updated network parameters 

  ∇𝑝𝑓(𝐱; 𝑝𝑖) = The gradient of the network 

  𝐸[∇𝑝𝑓(𝐱; 𝑝𝑖)
2] = The moving average of the squared gradient 

  𝜂 = The learning rate 

 

𝐸[∇𝑝𝑓(𝐱; 𝑝𝑖)
2] = 𝛾𝐸[∇𝑝𝑓(𝐱; 𝑝𝑖−1)2] + (1 − 𝛾) ∗ ∇𝑝𝑓(𝐱; 𝑝𝑖)

2  (6-9) 

 

  

Where, 

  𝐸[∇𝑝𝑓(𝐱; 𝑝𝑖)
2] = The moving average of the squared gradient 

  𝐸[∇𝑝𝑓(𝐱; 𝑝𝑖−1)2] = The previous moving average of the squared gradient 

  𝛾 = The moving average parameter, usually 0.9 

 

The last parameter specified in Keras when compiling a model is the metrics. When 

creating a neural network, a user has the opportunity to specify any parameter other than 

the loss value to evaluate the model during training by including it in the metrics option. 

For this CNN, the only other metric used to evaluate models is the performance accuracy. 

The performance accuracy, as was seen in the architecture optimization, is the percentage 

of data points which the model predicted accurately. 

6.1.2. Training 

After the final architecture for the CNN was defined, final training of the networks 

on the datasets was accomplished. Although the CNN was trained and tested on data in 

the previous subsection while optimizing the architecture, this section details the training 
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of the final four models and the hyperparameter optimization such as batch size, epochs, 

dropout rate, and learning rate. 

Each of the four CNNs were trained on 10,000 samples from their respective 

datasets, validated on 2,100 samples, and tested on 2,100 samples. Since deep learning 

neural networks increase their performance when exposed to more data, 10,000 samples 

were chosen as sufficient for training. During early stages of neural network architecture 

optimization, fewer sample were explored to save on computational resources, but 

performance decreased as the number of training samples available to the network 

decreased. For the validation and test data subsets, 2,100 samples were chosen for each to 

maintain a ratio of 70% training samples and 30% validation/test samples. Table 42 shows 

the tensor input shape for each data subset. The values for the first dimension in each data 

subset refers to the number of datapoints or “images”. When the training dataset is goes 

through the neural network, the dimension with value 10,000 is added to the output of 

each layer in Table 41. Table 43 shows the tensor output shapes of the models. Each model 

outputs N numbers for each inputted data point. As previously mentioned, during training, 

a neural network learns from a training data subset, while a validation data subset is used 

to evaluate the model’s performance on new data during training. The training and 

validation loss and accuracy performance during training for the final models are seen in 

6.1.2.2-6.1.2.5. Training loss and accuracy graphs are commonly used to evaluate the 

degree of overfitting in a model and the smoothness of training. If the training and 

validation curves do not converge in either graph, overfitting is present. A third subset of 

the data, the test dataset, is used once a model is finished training to evaluate its final 
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performance on new data. The test accuracies were the metric used when optimizing the 

CNN architecture and hyperparameters when choosing final models. The final accuracies 

and evaluations of the four CNNs is seen in the Results and Discussion subsection. As was 

the case in the architecture optimization, callbacks were used during training of the final 

models in order to save the best performing model during testing. Also, the CNN for each 

of the four datasets was trained three different times on the same data subsets and the best 

performing model of the three was chosen as the final model for each dataset.  

 

Table 42. The input tensor shapes for the three data subsets used while training the 

CNNs. 

Subset Input Shape 

Training Data (10000, 100, 100, 1) 

Validation Data (2100, 100, 100, 1) 

Test Data (2100, 100, 100, 1) 

 

 

 

Table 43. The output tensor shapes for the outputted data subsets for each dataset. 

Subset Dimension 

Dataset Output 

Shape 

Temperature 

Dataset Output 

Shape 

Gas Dataset 

Output Shape 

Aerosol 

Dataset Output 

Shape 

Training 

Data 
(10000, 7) (10000, 6) (10000, 5) (10000, 2) 

Test 

Data 
(2100, 7) (2100, 6) (2100, 5) (2100, 2) 

 

 

 

When training neural networks, it is generally good practice to normalize the input 

data before training [121]. Introducing data points with very large integers, like in the 

surrogate datasets, which are larger than the network’s weight values, can cause large 

gradient updates which prevent convergence of the network [121]. Since network weight 
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values are initialized between 0 and 1, normalizing the data points to values within the 

same range aids in the performance of the network. For example, since the Dimensions 

data set has values between 100 and 189 for each pixel, all number would be normalized 

to between 0 and 1. Eq. 6-10 was used to normalize the samples in each dataset before 

going through the network for some training sessions. Training the network on normalized 

data increased the test accuracy scores of the model by about 0.5-1% and displayed 

smoother conversion in the training and validation curves. It is important to remember that 

when testing the model on new data, the new data must also be normalized before the 

model can evaluate it to make its predictions. When the models trained on normalized data 

were used to make predictions on new data, the model’s performance decreased 

significantly when compared to a model trained on unnormalized input data. Although the 

normalized models displayed slightly higher test accuracy during training, their 

performance on predicting individual phenomena was surprisingly poor when using the 

metrics outlined in the Results and Discussion subsection. For example, the rate for 

predicting the presence of automobiles in the Dimension dataset correctly was around 85% 

for the normalized models and around 93% for the unnormalized models. Since model 

performance on individual phenomena is of most importance for the characterization 

algorithm, the final CNN architecture was trained on unnormalized input data. 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐱 =
𝐱−min(𝐱)

max(𝐱)−min(𝐱)
          (6-10) 

 

 Where, 

  x = The input dataset tensor undergoing normalization 
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6.1.2.1. Hyperparameter Tuning 

The hyperparameters in a network pertain to how a network is trained. Depending 

on the chosen values, a network can converge faster or slower, not converge at all, and 

even increase or reduce overfitting. A list of the different hyperparameters can be seen in 

Table 44, along with their different values used during optimization. As was the case 

during the optimization of the network architecture, the hyperparameter optimization was 

performed using the Dimension dataset. After a complete final architecture, including 

hyperparameter values, was chosen, it was then trained on the remaining three datasets to 

produce the other final models. The figures for the hyperparameter optimization also 

display a 0.26% accuracy error in training. 

 

 

Table 44. A list of the tuned hyperparameters and their explored values. 

Hyperparameter Value 

Learning Rate 0.0001, 0.00005, 0.00001 

Epochs 20, 25, 30, 35, 40 

Batch Size 2, 8, 16, 32 

Dropout Rate 0.1, 0.2, 0.3, 0.4, 0.5 

 

 

 

The first hyperparameter that was optimized was the learning rate for the network’s 

optimizer function. During initial optimization of the network architecture and other 

hyperparameters, a default learning rate of 0.0001 was used for the RMSprop optimizer. 

While using the default learning rate for the network, a well performing CNN architecture 

was found and optimized. It appeared that a final CNN model was found, but there was 

still one issue: spiking was very prevalent in the training and validation curves. As 
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mentioned, even though the presence of spikes indicates that a model did not converge 

smoothly, models can still converge and produce high test performance. Spiking becomes 

a problem when its presence causes a network’s final test accuracy to oscillate 

significantly with each training session. Training a neural network with a smaller learning 

rate aids in convergence by providing smaller step sizes during the gradient descent 

process. Smaller steps sizes ensure a gentler approach to the minima in gradient descent, 

while larger step sizes can cause the gradient to skip around, therefore causing spikes or 

preventing convergence all together. A step size too small, however, slows down the 

learning process for a neural network to a point where performance does not improve. In 

an attempt to smooth over the validation accuracy and loss curves during training, a 

learning rate of 0.00001 was used (one magnitude lower than the default). Although the 

validation and training data subset values seemed to match during the entirety of training, 

the new learning rate was too small to allow for the neural network to learn. The training 

and validation accuracies did not improve with each subsequent epoch. A third learning 

rate with a value halfway in between the first two was then explored. The learning rate of 

0.00005 was large enough to allow the neural network to learn. Spiking in the training and 

validation curves was significantly reduced while maximum test accuracy only decreased 

by half a percent. Although performance technically suffered slightly with a training rate 

of 0.00005, the network displayed a lot smoother convergence during training. As a result, 

the final learning rate for the network was chosen as 0.00005 to increase model robustness 

during training. After a new learning rate was set, CNN architecture optimization was 

conducted again using the new hyperparameter value to validate the optimized 
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architecture. The optimization process described in the previous subsection details the 

results of the final optimization process for the CNN. 

After the learning rate was set and the CNN architecture re-optimized, the rest of 

the hyperparameters were chosen. As was mentioned, the number of training epochs for a 

model refers to the number of cycles the training data is passed through the network. With 

each epoch, the network keeps updating its weights until it converges on a final set of 

parameters to reach its maximum possible performance. A larger number of epochs for a 

network to train on gives more time for its training and validation values to converge to a 

final solution, but too many epochs can cause overfitting to start occurring for certain 

networks. Also, too few epochs prevent the model from converging to its maximum 

performance. Figure 60 displays the best final accuracies produced when using each 

training epoch option explored, as listed in Table 44. As can be seen, the final test 

accuracies for all epochs are all within each other’s error bars. While training the different 

models, the “early stopping” callback was used with a patience of six epochs. Early 

stopping halts the training of a model if the validation accuracy did not improve after six 

epochs. Due to early stopping, the models trained for longer than 25 epochs were actually 

halted between 25-30 epochs. Essentially, training the model longer than 30 epochs did 

not increase performance and created overfitting. When several models were trained using 

30 total epochs, some were stopped early (while still passing the 25-epoch limit) and others 

reached maximum performance at 30 epochs. Since setting the number of epochs to 30 

appears as the natural limit for the network, it was the value chosen for the final CNN. 

Although the final network is set to train over 30 epochs, the best performing model 
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produced during training might not occur at the end of the 30. Using early stopping permits 

saving the best model if it occurs at an earlier epoch. 

 

 
Figure 60. The final model accuracy compared to number of epochs. 

 

 

 

The batch size while training a model refers to the number of data points (or 

“images”) passed through the model at a time. During an epoch, the training dataset is 

passed through the network in intervals of data, called batches, until all the data has gone 

through. The gradient descent algorithms for a neural network operate with these batch 

sizes to update the network parameters. A larger batch size can train a network faster but 

may prevent the model from converging. A smaller batch size may lead to better 

convergence but slows down training. Four different batch sizes for the CNN were 

explored: 2, 8, 16, and 32. While training the models, the number of epochs were kept at 

30. Figure 61 shows final accuracies depending on batch size. As can be seen, due to the 

network’s learning rate, batch size did not affect a network’s test accuracy performance. 
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When a higher learning rate was used in previous network iterations, it was observed that 

batch size did have an effect in that case. The models with 2, 8, and 16, batch sizes 

produced similar spiking and overfitting trends, but the model with a batch size of 32 

displayed slightly less convergence during training. While the three smallest batch sizes 

only produced a few spikes in the validation curves, the 32-batch size model caused larger 

spikes and overfitting towards the later epochs. Since no difference in performance was 

observed between the batch sizes of 2, 8, and 16, a size of 16 was chosen to decrease the 

computer time for training. 

 

 
Figure 61. The final model accuracy compared to batch size. 

 

 

 

As mentioned earlier, adding dropout to a neural network helps in reducing 

overfitting during training by preventing the network from learning irrelevant features 

from the dataset that can hinder performance. When adding dropout to a layer in a network, 

the dropout rate must be specified. Typically, dropout rates between 0.2-0.5 are used 
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[121]. Higher dropout rates are better at reducing overfitting while training, but if a rate is 

too large, the network may not learn. Figure 62 shows the final model accuracies for the 

different dropout rates listed in Table 44. A. slight trend where performance increases is 

present. The two highest rates produced the best performance and are outside of the error 

for the lowest dropout rate. Although test accuracy was similar with the three highest rates, 

a significant trend in the training curves was observed where overfitting decreased in the 

validation data as dropout rate increased. Since a dropout rate of 0.5 produced one of the 

highest test accuracies and the least overfitting of the data, it was chosen as the final rate 

for the network. 

 

 
Figure 62. The final model accuracy compared to dropout rate. 

 

 

 

In summary, Table 45 lists the final hyperparameter values used while training the 

final CNN architecture. The figures in 6.1.2.2-6.1.2.5 show the training and validation 

data subset accuracy and loss values produced while training the final CNN architecture 
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on each dataset. While training, each CNN model was run a total of three different times 

and the “save the best model” callback was used during each training session to prevent 

spiking or overfitting to hinder the final model performance. In the figures below, a red 

line marks the location of the epoch at which the best model was saved during training. 

For each of the four CNNs, the best performing model out of the three training sessions 

was chosen as the final model. Although the validation curves in the final model figures 

display spiking, it does not mean the models perform worse than if it had a smooth curve. 

Each model still produced high performance accuracies that perform with consistency, as 

seen in the Results and Discussions subsection, even though their training convergence 

was not the smoothest. 

 

 

Table 45. The final hyperparameter values chosen. 

Hyperparameter Value 

Learning Rate 0.00005 

Epochs 30 

Batch Size 16 

Dropout Rate 0.5 

 

 

 

6.1.2.2. Dimension Dataset Final CNN Training Performance 

Figures 63 and 64 below show the training and validation accuracy and loss values 

for each epoch during training for the Dimension dataset final CNN model. The red line 

indicates at which epoch the best performing model was saved. In this case, the best 

performing model occurred at epoch 28 since the model began to overfit after the 28th 

epoch. As can be seen, there were a few peaks in the validation accuracy and loss values 
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before training was halted. The presence of spikes does not indicate the presence of 

overfitting or hinder the model’s final performance. As was mentioned earlier, when the 

CNN was trained on normalized data, the frequency of spiking was reduced and overfitting 

towards later epochs eliminated. Figures 65 and 66 show the training and validation curves 

for the Dimension CNN trained on normalized data. One thing to note for the normalized 

model is that it the total number of training epochs were optimized to 20 instead of 30. 

Although normalized models displayed better training performance, they did not perform 

well at all on the metrics described in the Results and Discussion subsection. 

 

 

 
Figure 63. The training and validation data subset accuracy during training for the 

Dimension CNN model. 
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Figure 64. The training and validation data subset loss during training for the 

Dimension CNN model. 

Figure 65. The training and validation data subset accuracy during training for the 

Dimension CNN model with normalized input data. 
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Figure 66. The training and validation data subset loss during training for the 

Dimension CNN model with normalized input data. 

6.1.2.3. Temperature Dataset Final CNN Training Performance 

The figures below show the training and validation accuracy and loss values for 

each epoch during training for the Temperature dataset final CNN model. The red line 

indicates at which epoch the best performing model was saved. In this case, the best 

performing model occurred at epoch 17 since the model started overfitting after it. It is 

interesting to observe that the CNN model trained on the Temperature dataset was halted 

seven epochs the Dimension CNN was and at almost halfway of the 30 training epochs it 

was set to. Without the “save the best model” option during training in Keras, the 

Temperature CNN would have continued to train causing increased overfitting as the 

number of epochs reached 30, resulting in terrible model performance. As can be seen, 

before the best model was saved at epoch 17, the model suffered a couple of big spikes 

during training. The presence of spikes does not indicate the presence of overfitting or 

hinder the model’s final performance. Like with the Dimension CNN, the presence of 
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overfitting towards later epochs was eliminated when using normalized data, but the 

unnormalized model performed a lot better in the metrics described in the Results and 

Discussion subsection. 

Figure 67. The training and validation data subset accuracy during training for the 

Temperature CNN model. 

Figure 68. The training and validation data subset loss during training for the 

Temperature CNN model. 
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6.1.2.4. Gas Dataset Final CNN Training Performance 

The figures below show the training and validation accuracy and loss values for 

each epoch during training for the Gas dataset final CNN model. The red line indicates at 

which epoch the best performing model was saved. In this case, the best performing model 

occurred at epoch 20 since overfitting began occurring after it. As can be seen, 

convergence for the gas model was a lot smoother compared to the previous two models. 

However, overfitting started occurring in the model after a certain number of epochs, like 

in the other models, preventing it from completing the 30 total epochs. It is interesting to 

note that the Gas CNN was halted between the epochs where the previous two models 

were halted. The difference in early stopping originates from the use of unnormalized data. 

As was illustrated for the Dimension CNN, normalized input data smoothened the model’s 

convergence, reduced the presence of spiking, and eliminated overfitting. When training 

each of the four CNNs on normalized data, their best model epochs were all at the final 

epoch or a few epochs before. Using unnormalized input data, on the other hand, creates 

more volatility when training because of increased spiking and overfitting, leading to large 

differences in early stopping epochs between the four CNNs. 
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Figure 69. The training and validation data subset accuracy during training for the 

Gas CNN model. 

Figure 70. The training and validation data subset loss during training for the Gas 

CNN model. 
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6.1.2.5. Aerosol Dataset Final CNN Training Performance 

The figures below show the training and validation accuracy and loss values for 

each epoch during training for the Aerosol dataset final CNN model. The red line indicates 

at which epoch the best performing model was saved. In this case, the best performing 

model occurred at epoch 17. Even though the presence of overfitting in the last epochs is 

not clear in the graphs, training of the model was halted because performance did not 

improve within six epochs after the best model was saved.  

Figure 71. The training and validation data subset accuracy during training for the 

Aerosol CNN model. 
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Figure 72. The training and validation data subset loss during training for the 

Aerosol CNN model. 

6.2. Results and Discussion 

While the previous subsection discussed the characterization methodology’s CNN 

architecture and training, the results of each CNN and the overall methodology are detailed 

in this subsection. During optimization and training of the CNNs, the models’ test 

accuracy was used to compare their performance. As mentioned, the test accuracy refers 

to the percentage of labels correctly predicted for a new sample dataset. Table 46 lists the 

final model accuracies, loss scores, and their performance errors for each CNN. While the 

previous subsection referred to training error as the difference in test accuracy produced 

each time a network architecture was trained, the performance error of a model is the 

difference in accuracy one single model experiences every time it evaluates new data. As 

seen in Table 46, the final Dimension CNN model selected produced a test accuracy of 

around 97%. Once a model is trained, it can then be used to evaluate new data at any point 

in the future. The error for the Dimension CNN was produced by calculating the standard 
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deviation in accuracies the CNN outputted every time it evaluated a new sample of data. 

For each evaluation of all four models, a test data subset of size (2100, 100, 100, 1) was 

used for consistency. Each CNN was evaluated on ten different test datasets, and Table 46 

shows the mean and standard deviation for accuracies and loss scores produced from the 

ten evaluations.  

Table 46. The final accuracies and loss scores for each CNN model in the 

characterization methodology. 

Model Test Accuracy Test Loss 

Dimension 97.318% ± 0.159% 0.0933 ± 0.0059 

Temperature 95.272% ± 0.106% 0.1375 ± 0.0044 

Gas 98.263% ± 0.098% 0.0621 ± 0.0028 

Aerosol 99.038% ± 0.162% 0.0337 ± 0.0044 

As can be seen in Table 46, all four CNN models produced a test accuracy higher 

than 95%. When comparing test accuracies between the different models, a trend appears 

where test accuracy increases as the number of labels in the dataset decreases. As the 

number of labels to predict for data points decrease, the prediction problem for a neural 

network becomes easier to solve since it needs to learn less relationships in the data. 

Interestingly, the Temperature CNN model does not follow this trend. Since the 

Temperature dataset includes one less label per “image” than the Dimension dataset, a test 

accuracy equal to or higher than the Dimension CNN was expected. CNN architecture and 

hyperparameter optimization was performed on the Temperature CNN to find an 

alternative configuration that performed better on the Temperature dataset. Different 

convolutional and dense layers, different filter and neuron numbers, higher and lower 
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batch normalization, different dropout rates, and different epoch and batch sizes were all 

explored, but none of the alternate architectures performed better than the final CNN 

model previously created. The source of the decrease in performance of the Temperature 

model is most likely due to the nature of the “images” in the dataset rather than the CNN 

architecture. Since three of the six objects included in the Temperature dataset used the 

same number of pixels, the CNN architecture was not able to learn enough representations 

in the data to distinguish the phenomena and produce a higher performance than the 

Dimension CNN.  

Although test accuracy is a useful metric to compare different CNN architecture 

performances during training, it is not a good indicator to how well the models predict the 

presence or absence of individual phenomena within an image. Instead, the following 

metrics are used for gauging a model’s performance on each phenomenon: the True 

Positive (or Recall Rate), the False Positive (FP) Rate, the True Negative (TN) Rate, the 

False Negative (FN) Rate, and the Precision Rate. The Recall Rate is the ratio of the 

number instances a model correctly predicted the presence of a phenomenon over the true 

number of instances when the phenomenon was present, as described in Eq. 6-11. The 

False Positive Rate is the number of times the model predicted a phenomenon was present 

but was incorrect. The True Negative Rate is the number of instances a model correctly 

predicted the absence of a phenomenon. The False Negative Rate is the number of 

instances a model predicted the absence of a phenomenon but was incorrect. Finally, the 

Precision Rate is the ratio of the number of instances the model correctly predicted the 

presence of a phenomenon over the total number of times the model predicted the presence 
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of a phenomenon, as described in Eq. 6-12. When analyzing the performance metrics, only 

the Recall and Precision Rates are of relevance since the other rates can be deduced from 

these two. Tables 47-50 show the performance metrics for the four different models. When 

calculating the performance rates, each model evaluated 5000 total samples for its 

respective dataset. As was mentioned in the Training subsection, the metrics in Tables 47-

50 are where the CNN models trained on normalized data did not perform well. For 

example, the recall rate on automobiles for the Dimension CNN was around 92%, while 

the recall rate in the same category for the Dimension CNN trained on normalized data 

was around 85%. The decrease in performance for phenomena identification with the 

normalized CNNs is most likely due to the loss of information about the pixel values in 

the “images” by normalizing them. 

𝑅𝑅 =
𝑇𝑃

𝐺𝑃
   (6-11) 

Where, 

𝑅𝑅 = Recall Rate 

𝑇𝑃 = Number of instances a phenomenon was correctly predicted present 

𝐺𝑃 = Total number of instances a phenomenon is present 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (6-12) 

Where, 

𝑃𝑅 = Precision Rate 

𝐹𝑃 = Number of instances a phenomenon was incorrectly predicted 

present 
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Table 47. The performance of the Dimension CNN for identifying phenomena of 

interest. 

Phenomena Recall 

Rate 

Precision 

Rate 

FP Rate TN Rate FN Rate 

Automobile 92.5% 99.9% 0.08% 99.9% 7.47% 

Airplane 96.1% 99.2% 0.77% 99.2% 3.93% 

Facility 98.0% 98.5% 1.43% 98.6% 1.97% 

Cons/Mine 

Vehicle 

96.0% 99.8% 0.16% 99.8% 4.01% 

Footprint 99.6% 99.9% 0.08% 99.9% 0.44% 

Fire 93.7% 97.4% 2.54% 97.5% 6.34% 

Blackout 95.4% 98.0% 2.03% 98.0% 4.58% 

Table 48. The performance of the Temperature CNN for identifying phenomena of 

interest. 

Phenomena Recall 

Rate 

Precision 

Rate 

FP Rate TN Rate FN Rate 

Automobile 90.0% 99.8% 0.16% 99.8% 10.0% 

Airplane 94.1% 99.5% 0.43% 99.6% 5.86% 

Fire 93.9% 96.8% 2.85% 97.1% 6.06% 

Blackout 90.6% 92.3% 7.95% 92.1% 9.41% 

Cons/Mine 

Vehicle 

97.2% 99.3% 0.73% 99.3% 2.77% 

Cons/Mine Process 89.7% 99.8% 0.20% 99.8% 10.3% 

Table 49. The performance of the Gas CNN for identifying phenomena of interest. 

Phenomena Recall 

Rate 

Precision 

Rate 

FP Rate TN Rate FN Rate 

Automobile 95.6% 99.7% 0.33% 99.7% 4.35% 

Airplane 97.4% 98.8% 1.23% 98.8% 2.58% 

Fire 95.0% 99.9% 0.12% 99.9% 4.95% 

Cons/Mine 

Vehicle 

97.1% 99.5% 0.52% 99.5% 2.92% 

Cons/Mine Process 99.1% 99.6% 0.41% 99.6% 0.91% 



 

195 

 

Table 50. The performance of the Aerosol CNN for identifying phenomena of 

interest. 

Phenomena Recall 

Rate 

Precision 

Rate 

FP Rate TN Rate FN Rate 

Fire 96.9% 99.8% 0.16% 99.8% 3.08% 

Cons/Mine Process 99.3% 99.9% 0.12% 99.9% 0.74% 

 

 

 

It can be seen in Tables 47-50 that the test accuracies produced by the CNNs during 

training do not necessarily translate to their performance in predicting the presence of 

phenomena. However, CNNs with lower test accuracies produced lower Recall Rates than 

CNNs with higher test accuracies. As can be seen, the rates listed in Tables 47-50 

demonstrate the high effectiveness of the CNN models. Out of all the Recall Rates, only 

seven were below 95%, and out of those seven, only one was below 90%. To reiterate, the 

Recall Rate refers to the probability a CNN will predict the presence of a phenomenon 

when it is actually there. In the Dimension CNN, only the prediction of automobiles and 

fires is below 95%. About 7.47% and 6.34% of the time, the Dimension CNN will not 

recognize the presence of automobiles and fires, respectively. In the Temperature CNN, 

only one phenomenon has a Recall Rate higher than 95%. The lowest performing 

phenomena are automobiles and construction/mining processes. For the Gas and Aerosol 

CNNs, all phenomena Recall Rates perform higher than 95%. As a gauge of performance, 

other CNNs trained on satellite imagery for object identification produced Recall Rates of 

87-95% [125]. Although the CNNs used for comparison were trained on real satellite 

images and were detecting different phenomena, their Recall Rates serve a threshold for 

typical CNN object detection performance. As for Precision Rate, most phenomena 

produced rates higher than 99%, with only two phenomena producing rates lower than 
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97%. The two least-performing phenomena for Precision Rate are fires and blackouts in 

the Temperature CNN. High performance in Precision Rates indicate that False Positives 

are not an issue for the characterization methodology. For comparison, typical Precision 

Rates for other object detection CNNs are 82-97% [125]. 

When analyzing all the results, the only noteworthy issues in the CNNs are the 

>9% False Negative Rate for automobiles, blackouts, and construction/mining processes 

in the Temperature CNN. About one out of ten times, the Temperature CNN will not 

recognize the presence of those three phenomena. Fortunately, phenomena probabilities 

from each CNN are combined in the last step of the characterization methodology. As seen 

in Figure 52, using the four CNNs to predict the presence of phenomena in an image is 

not the only aspect of the overall characterization methodology. Eq. 6-1 is used to average 

the probabilities for each phenomenon to produce a final probability. The best way to 

illustrate the last step of the methodology is through an example.  

A target of interest for surveillance includes 4 automobiles, 2 facilities, and 1 fire. 

The characterization algorithm receives four images containing the phenomena, one for 

each sensor type (dataset). In the Dimension dataset image, all seven objects are visible. 

In the Temperature and Gas dataset images, only the automobiles and the fire are visible. 

Finally, in the Aerosol dataset image, only the fire is visible. After passing the four images 

through their respective CNNs, predictions for the phenomena’s presence were made. 

Table 51-54 display the prediction outputs for each CNN. 
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Table 51. The phenomena probability predictions from the Dimension CNN. 

 Automobile Airplane Facility C/M 

V 

Footprint Fire Blackout 

Probability 1 0.008 0.999 0.019 0.001 0.991 0.006 

 

 

 

Table 52. The phenomena probability predictions from the Temperature CNN. 

 Automobile Airplane Fire Blackout C/M V C/M P 

Probability 0.999 0.032 0.974 0.048 0.037 0.025 

 

 

 

Table 53. The phenomena probability predictions from the Gas CNN. 

 Automobile Airplane Fire C/M V C/M P 

Probability 1 0.014 0.933 0.016 0.076 

 

 

 

Table 54. The phenomena probability predictions from the Aerosol CNN. 

 Fire C/M P 

Probability 0.999 0.001 

 

 

 

As can be seen in the tables above, each individual CNN outputted the probability 

of every phenomena possible for the dataset. Each CNN was able to correctly predict the 

presence of the phenomena in each image. Once the probabilities are produced, Eq. 6-1 is 

used to average the probabilities of each phenomenon. As mentioned, a probability is only 

incorporated into Eq. 6-1 if it exists. For example, since automobiles are not visible in the 

Aerosol dataset, only its probabilities from the other three CNNs are averaged. Table 55 

shows the final characterization methodology solution for the example scenario. As can 

be seen, the methodology outputted a probability higher than 97% for the phenomena 

actually present in the image, indicating that characterization was successful. 
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Table 55. The phenomena probability predictions from the Dimension CNN. 

 Automobile Airplane Facility C/M V 

Probability 0.999 0.018 0.999 0.024 

 C/M P Footprint Fire Blackout 

Probability 0.034 0.001 0.974 0.027 

 

 

The results in Table 55 exhibit how Eq. 6-1 takes advantage of the increased 

characterization accuracy and robustness that comes from the use of multiple sensors 

onboard the CubeSat system. If one sensor malfunctions or if one CNN outputs an 

incorrect probability, the last step of the characterization methodology can still make an 

accurate prediction about the target of interest. For example, if the Gas CNN outputted a 

probability of 30% for the fire in the previous example, the characterization methodology 

would still output a high final probability of 81.6% since it takes advantage of the other 

CNNs’ correct predictions. Even if the Aerosol CNN also outputted a low probability of 

30%, the final probability would output 64.1%, which is better than a 50/50 guess. 

However, if three out of the four CNNs malfunction, the final prediction for a phenomenon 

would be incorrect. Therefore, it is extremely important to adequately train the CNNs to 

output high accuracies. Also, if a phenomenon has a low Recall Rate for one CNN but a 

very high rate in another, its final probability of detection is not affected (like 

construction/mining processes). 

6.3. Limitations 

As seen above, the characterization methodology is very effective in predicting the 

presence of phenomena of interest in a given seen. The four CNNs used for the different 
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sensor types produced recall rates and precision rates above 90% for all phenomena. 

Although effective for the data and problem posed in this thesis, the characterization 

methodology has a few limitations. The methodology’s drawbacks are caused by the type 

of data used to train the CNNs in this thesis and by inherent limitations of using 

convolutional neural networks.  

As was stated previously, the surrogate dataset created in Section 5 aimed at 

creating “images” that were simple representations of actual sensor data. Consequently, 

the CNN models trained in this thesis can only predict labels for “images” created with 

the surrogate dataset methodology. The CNN models, as they currently stand, cannot make 

any predictions on data or images collected by sensors onboard a CubeSat. They simply 

were not trained to do so. The beauty of creating a characterization methodology on simple 

datasets, however, is that the architectures (CNNs or other aspects of the methodology) 

present a general basis for prediction algorithms that can later expand to accommodate 

more complex datasets. It is possible for the characterization methodology architecture, as 

it stands, to successfully predict the presence of the phenomena of interest in actual 

satellite images given adequate training data. As the characterization methodology is 

further developed in the future for a CubeSat platform, its architecture can be easily altered 

to accommodate new challenges (if adequate data is available).  

The necessity of adequate data for training creates the limitations inherent to any 

algorithm involving convolutional neural networks. CNNs not only require vast amounts 

of data to boost their performance, but the data must also be adequately labeled. Since 

CNNs fall under the Supervised Learning umbrella of deep learning, they are only 
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effective if they know what they should predict. Although multitudes of satellite image 

databases are available to users, a database of thousands of images containing the 

phenomena of interest to the CubeSat satellite system is required to develop an accurate 

characterization methodology for integration with the platform. Even then, the images in 

the database might not have the same resolutions as the sensors onboard the CubeSat 

system.  

The solution to developing an accurate characterization methodology for true 

CubeSat images is to launch an exploratory CubeSat mission with identical satellite 

architectures and sensors with the goal of collecting as many images of phenomena of 

interest as possible. The first CubeSat system mission would only serve the purpose of 

data collection. The collected images can then be used to train the characterization 

methodology for a second CubeSat mission. 

6.4. Illustrative Application 

To summarize all the topics covered in this thesis thus far, an illustrative 

application of the CubeSat surveillance system is explored. The following example 

explains how a final functioning CubeSat surveillance system would operate to 

autonomously characterize phenomena of interest in a target location. To reiterate, the 

overall CubeSat data and algorithm interface introduced in Section 3 is seen in Figure 73. 
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Figure 73. The data flow for observing and identifying suspicious activity at an 

enrichment plant. 

 

 

 

To initialize the example, it is assumed that a nine-CubeSat constellation is stashed 

within a deployer attached to the ISS. All of the satellites within the constellation have the 

same component architecture except for their payloads. Two CubeSats in the system each 

feature a combination of panchromatic and multispectral sensors which capture images 

within the visible and near-infrared (VIS-NIR) electromagnetic spectrum. Another two 

CubeSats each feature a multispectral sensor which operates within the infrared (IR) 

spectrum. Another two each feature a hyperspectral sensor which operates in the IR 

spectrum. Another two each feature a multispectral sensor which operates in the ultraviolet 

(UV) spectrum. Finally, the ninth CubeSat features a large computational component as 

its payload where the images collected by the other eight satellites are processed by the 

characterization algorithm. Each CubeSat also contains S-band receivers and X-band 
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transmitters programmed to effectively communicate with the Globalstar satellite relay 

network and KSAT ground station network. The Globalstar relay allows the CubeSats in 

the constellation to communicate with each other, while the KSAT ground stations allow 

the CubeSats to downlink data to the surface.  

On November 13th, 2020, word is received at the CubeSat system command center 

that there are rumors of suspicious activity at an enrichment facility near Tehran, Iran. The 

US Government wishes to use the CubeSat surveillance system to image the target 

location and determine if there are any phenomena of interest which indicate nefarious 

activity. Since the CubeSat surveillance system is currently stashed within the ISS, the 

deployment algorithm is initialized to calculate the deployment time for the CubeSats. 

First, the ISS ephemeris data for November 13th was used to model its orbit within 

NASA’s GMAT. Given Tehran’s longitudinal coordinates of 35.6892° N, 51.3890° E, an 

altitude of 1189 m, and an ISS angle of elevation of 7°, the deployment algorithm and 

GMAT determined that the ISS first has access to Tehran at 16:17:56.070 UTC on 

November 13th. The complete ISS access time is seen in Table 56. The ISS’s first access 

time only lasting 77.59 s means its orbit most passed through the fringes of the field of 

view. Since the ISS has a smaller angle of elevation than the CubeSat sensors, the CubeSat 

system will most likely not have access to Tehran, or at least an access time with a 

significant duration. However, there is no disadvantage in deploying the CubeSat system 

early, so 𝑡1 for the ISS in the deployment algorithm is set to 16:17:56.070 UTC. Once 𝑡1 

of the ISS’s access time was calculated, the CubeSat deployment time is defined as 𝑡𝐶𝑆 =

𝑡1 − 30 𝑚𝑖𝑛. By deploying the CubeSat system 30 minutes before their orbit passes over 
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Tehran allows enough time for the satellites to boot up. Since the CubeSat system will 

most likely not have significant access to Tehran on the first fly-by, satellite bootup speeds 

are not a concern in this scenario. The CubeSats are deployed at 15:47:56.070 UTC. To 

model the CubeSat system orbit within GMAT, the ephemeris data from the ISS at 

15:47:56.070 is set as the CubeSats’ initial ephemeris. Given Tehran’s coordinates and an 

angle of elevation for the CubeSats of 60°, the CubeSats pass over the target at 

17:54:19.509, as seen in Table 56. As expected, the CubeSats had significant access to 

Tehran during the ISS’s second pass. Since the CubeSats were deployed two hours before 

they reached the target, the satellite systems were boot up completely and good to go. As 

seen in Table 56, the sensors have over a maximum of 62 s to image the enrichment facility 

near Tehran. Although the CubeSat system passes over Tehran for a longer period of time, 

the sensors’ angle of elevation limit true access to only about a minute. 

 

 

Table 56. The satellite access times. 

Satellite Access Time Start 

Time (UTC) 

Access Time End 

Time (UTC) 

Duration (s) 

ISS 
16:17:56.070 16:19:13.658 77.59 

17:51:02.995 17:58:40.185 457.2 

CubeSat System 17:54:19.509 17:55:22.355 62.85 

 

 

 

As the CubeSat system passes over the enrichment facility near Tehran, its sensors 

collect data from the scene. The images captured by each sensor type are then transmitted 

to the CubeSat with the larger computational unit to analyze the images. Figure 74 shows 

the images captured by the panchromatic/multispectral sensors in VIS-NIR, the 

multispectral sensors in IR, the hyperspectral sensors in IR, and the multispectral sensors 
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in UV, respectively. Figure 74 only shows the objects visible to each dataset. As a 

reference, the scene of interest includes 4 facilities, 3 automobiles, 7 construction vehicles, 

and 4 construction processes. It is important to note that the objects in the images are 

randomly distributed due to the nature of how they are created in the datasets, so they do 

not reflect the true coordinates of the objects as for the sake of the example. Also, false 

objects are included in the images to present a challenge for the characterization 

methodology. 
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The image captured by the 

panchromatic/multispectral sensors in VIS-

NIR. 

The image captured by the multispectral 

sensors in IR. 

 
 

The image captured by the hyperspectral 

sensors in IR. 

The image captured by the multispectral 

sensors in UV. 

Figure 74. The images captured by the different sensors onboard the CubeSat 

surveillance system. 

 

 

 

After all the images are received at the computational CubeSat, the characterization 

algorithm proceeds to make prediction on the phenomena. Table 57 shows the prediction 

results of the four CNNs of the characterization algorithm. As can be seen, each CNN 

accurately predicts the presence of phenomena in the scene by outputting a probability 

between 0.999-1. One prediction probability did not fall within a high accuracy range, 



 

206 

 

however. The Dimension CNN outputted a probability of 0.73 for the presence of 

automobiles in the scene. Since it is above 50%, the presence of automobiles is likely 

detected by the Dimension CNN, but the accuracy is not as high as the other CNNs. 

 

 

Table 57. The phenomena presence probabilities outputted by each CNN for each 

image and the final characterization solution.  

The phenomena probability predictions for the panchromatic/multispectral sensor 

image in VIS-NIR. 

 Automobile Airplane Facility C/M 

V 

Footprint Fire Blackout 

Probability 0.730 0.010 1 1 0 0.003 0.021 

 

The phenomena probability predictions for the multispectral image in IR. 

 Automobile Airplane Fire Blackout C/M V C/M P 

Probability 0.999 0.003 0.022 0.063 1 0.999 

 

The phenomena probability predictions for the hyperspectral image in IR. 

 Automobile Airplane Fire C/M V C/M P 

Probability 1 0.003 0.001 1 1 

 

The phenomena probability predictions from the Aerosol CNN. 

 Fire C/M P 

Probability 0.001 1 

 

The final characterization solution for the Tehran enrichment facility. 

 Automobile Airplane Facility C/M V 

Probability 0.910 0.005 1 1 

 C/M P Footprint Fire Blackout 

Probability 0.999 0 0.007 0.042 

 

 

Once the CNN probabilities are calculated, the characterization produces a final 

characterization solution, as seen in Table 57. Due to the diversity of sensors on board the 

CubeSat, the low automobile probability in the Dimension CNN did not affect 

significantly affect the final solution probability as it is still above 90%. The final 
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characterization solution is then downlinked from the CubeSat system to the surface at the 

next visible KSAT ground station. Once data is received by the KSAT station, it is sent to 

the CubeSat system command center where US Government officials can interpret the 

results. It is determined that the presence of construction vehicles and processes at the 

enrichment facility presents evidence of nefarious action since such activity was never 

approved by the IAEA or UN. 

6.5. Conclusion 

This section introduced the characterization methodology developed for the 

identification of phenomena of interest from the CubeSat surveillance platform. The 

characterization methodology consists of four convolutional neural networks trained for 

each sensor type onboard the CubeSat system. The CNNs for this thesis were trained on 

the four surrogate datasets representing simplified versions of satellite imagery. CNN 

model architecture optimization and its network functions were discussed. After 

hyperparameter optimization of the CNNs and training, a final model was produced for 

each of the four datasets with high test accuracies. Then, the performance of each CNN 

on actually predicting each phenomenon in an image was discussed. Within the 

characterization methodology, the predictions from each CNN are combined in the last 

step to produce a final characterization solution to be transmitted by the CubeSat system. 

Finally, limitations for the characterization methodology and an illustrative application 

were discussed. 
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7. MICROREACTOR APPLICATIONS 

As was mentioned in Section 1, this thesis also explores the possibilities of 

extending the methodology developed for the CubeSat surveillance system for the 

monitoring microreactors. Some of the concepts developed thus far in this thesis can be 

either directly or indirectly applied for ensuring safety or aiding in operations for 

microreactors installed in remote locations on or off planet. This section serves as an 

introduction to future work explored beyond this thesis. 

7.1. Microreactor Definitions 

With the advent of multiple advanced reactor designs, microreactors present a 

viable solution for clean energy production in remote areas that cannot afford the 

implementation of other energy sources due to a lack of resources or adverse climate. As 

mentioned, microreactors are defined as small units producing less than 20 MWe which 

feature factory assembly, high transportability, and self-regulation [57]. As an example, 

microreactors could be transported to small communities in northern Alaska for reliable 

energy production. These communities are too far away from bigger population centers to 

economically set up power lines, and the climate is too extreme to allow for diesel 

generators to run uninterrupted. A microreactor could meet those communities’ energy 

needs by producing electricity on-site for as long as the core’s life lasts, which typical 

designs allow for up to ten years. Also, a microreactor’s self-regulating, or autonomous, 

design allows for them to be installed in areas where personnel are not needed. This 

prevents exhausting human resources and allows for microreactors to be implemented in 

more remote locations. Apart from extreme climates, microreactors can also meet clean 
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energy requirements in countries lacking infrastructure for conventional reactors, they can 

provide emergency energy production in disaster areas, and they can even provide reliable 

electricity generation for space environments. 

Even though microreactors present promising designs, they are still faced with 

obstacles preventing their final implementation. Numerous regulatory concerns arise from 

the desired transportability and autonomy of these reactors. While both microreactor 

features are what make the designs so attractive, they present significant challenges to the 

current nuclear industry infrastructure. For example, enough measures must be created 

and implemented which assure the safety and security of a microreactor core while it is 

transported by truck. Regarding safety, an accident on the highway could cause a release 

of radioactive material, so new containers must be designed that provide protection against 

radiation leakage and critical configurations during normal and emergency situations 

[130]. For security, the transportation of high assay low-enriched uranium (HALEU) falls 

under the physical protection requirements within 10 CFR 73, but there currently is no 

pathway for licensing as no facilities have yet to receive licenses for possessing HALEU, 

and the protective measures must be reevaluated [130]. Even if transporting a microreactor 

presents no issues, the safety of its autonomous operation once installed at a site must be 

ensured. In order to prevent any reactor accidents, sufficient measures are needed while 

operating the reactor to avoid the propagation of dangerous situations. For example, fuel 

temperatures can be monitored to adjust coolant mass flow rates accordingly.  

The challenges just presented towards microreactor deployment can be mitigated, 

in part, by the methodologies developed in this paper in contribution to the CubeSat-based 



 

210 

 

surveillance system. By either directly using the CubeSat system or adapting some of its 

approaches, progress towards ensuring the safe and secure transportation and autonomous 

operation of the reactors can be achieved. 

7.2. Direct Application of CubeSat Surveillance System Methodology 

As was proven in the previous six sections of the thesis, a system of CubeSats 

equipped with adequate sensors and data processing techniques provides an effective 

remote monitoring system for phenomena of interest. Since deploying and operating 

microreactors in various locations pose regulatory challenges around the world, their 

observation falls directly under the purview of the CubeSat surveillance system. Like with 

its other phenomena of interest, the CubeSat constellation can be directly used to monitor 

the activity of microreactors. 

Like it did with automobiles and airplanes, the CubeSat system can be trained to 

detect and characterize the vehicles utilized for transporting microreactors. For example, 

the microreactor’s transport truck can be characterized as it drives down a highway. As is 

the nature of the orbital properties of a remote monitoring system in the atmosphere, 

however, the CubeSats cannot maintain continuous monitoring of the microreactor as it 

makes its journey from the factory to the installation sight. The few images the CubeSats 

collect as they briefly fly over the transport vehicle could still help ensure the 

microreactor’s integrity for those brief moments, however. 

Once the microreactor is installed at its final site, the CubeSat system can 

characterize the plant on every access time. The dimensions of the reactor and adjacent 

facilities can be observed with the panchromatic/multispectral sensors onboard the 
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surveillance system. As an example, Table 58 lists the dimensions of a two-facility 

microreactor operations site proposed by Ultra Safe Nuclear Corporation at the Chalk 

River National Lab in Canada [131]. Similar to the enrichment facility example in the last 

section, the detection of other phenomena of interest near the microreactor plant can also 

indicate to suspicious activity. Like with the other phenomena of interest, however, 

enough data (or images) of microreactor plants are needed to adequately train the 

CubeSats’ characterization methodology and learn the plants’ characteristic features. 

Also, infrastructural emergencies, like fires and blackouts, may also occur at a plant 

through the same capacities the CubeSat system already possesses. Unfortunately, the 

CubeSat surveillance system cannot increase the autonomy of operational procedures for 

microreactors. 

 

 

Table 58. The dimensions of a two-facility microreactor plant. 

 Dimension Value 

Facility 1 

Length 130 m 

Width 96 m 

Maximum Height 30 m 

Facility 2 

Length 180 m 

Width 102 m 

Maximum Height 17 m 

 

 

 

Although it can provide valuable information, the CubeSat surveillance system 

cannot fully ensure the safe transportation and operation of microreactors since its 

monitoring is restricted to LEO. However, some methodologies developed as part of the 
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surveillance system can be applied to other sensor systems around a microreactor in a 

useful manor.  

7.3. Indirect Application of CubeSat Surveillance System Methodology 

Some aspects of the CubeSat methodology have the potential of adaptability to 

other applications for microreactor monitoring, namely its deep learning techniques. 

Machine/deep learning algorithms coupled with sensor systems within and around a 

microreactor can be used to improve the safety of its transportation and autonomous 

operation. Although the CubeSat characterization methodology was limited to supervised 

learning techniques, a microreactor monitoring system does not possess the same 

limitations. Unsupervised learning techniques for machine learning have shown 

effectiveness in anomaly detection situations. This subsection presents the potential of 

deep learning techniques for microreactor deployment through the illustration the 

following. 

7.3.1. Example: Microreactor Transportation 

As mentioned, an attractive feature of microreactors is that its fresh fuel is 

integrated within the reactor system before it is transported to its installation site. 

However, current gaps in regulations currently prevent this transportation of microreactors 

[130]. According to the Nuclear Regulatory Commission’s (NRC) 10 CFR Part 71 and the 

Department of Transportation’s (DOT) 49 CFR Parts 172-177, the shipment of any 

radioactive materials must meet their requirements [130,132]. The NRC regulations 

approve the packaging of radioactive materials and require that DOT safety regulations 

for the transportation of hazardous materials are followed. The safety of all radioactive 
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material shipments currently occurring around the country is mainly ensured through the 

use of appropriate shipping containers [132]. Three types of containers are used, industrial, 

Type A, and Type B, and the use of each type depends on the activity, type, and form of 

the material [130,132]. Each container type should adequately shield against the material’s 

radiation levels, retain its contents, and maintain sub-criticality within the material 

configuration [133]. As for radiation levels, they should stay below 2 mSv/h at any point 

on the surface of the container, or up to 10 mSv/h while meeting additional criteria [132]. 

If a radioactive material does not meet these packaging requirements and other NRC and 

DOT regulations, it cannot be shipped. The issue for microreactors is that there currently 

are no approved containers for shipping entire reactor systems, especially if they have fuel 

enrichments between 5-20%, as most microreactor designs do [130]. These microreactor 

designs contain only U238 and U235 at HALEU levels as their radioactive materials. 

Although information on the uranium weight loadings vary between design and are is not 

readily available, U238 has a specific activity of 3.36x10-7 Ci/g and U235 has a specific 

activity of 2.16x10-6 Ci/g [134]. Since typical Light Water Reactor fresh fuel bundles use 

Type A containers, a modified Type A container that ensures radiation safety and 

criticality safety is most likely best suited for transporting microreactors [130]. However, 

additional layers of safety can also be added during transportation by introducing sensors. 

Although the future microreactor containers will have to be tested and certified that they 

meet all current regulations, radiation detectors outside the package but within the 

transport vehicle can monitor radiation levels to confirm the container’s integrity during 

transportation. If the detectors sense higher counts than the accepted levels, it could 
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indicate to shielding failures within the package created during transportation. Identifying 

shielding failures when they happen allows for an incidence response to be implemented 

as soon as possible to reduce the exposure of radiation to the shipping crew and public. It 

is important to note that this detector example only aims at highlighting the capabilities of 

deep learning techniques coupled with sensor systems and does not aim at developing said 

sensor system. 

Along with an adequate sensor system, deep learning data analysis techniques can 

be used to effectively detect any anomalies in the radiation exposure within the 

microreactor shipping vehicle. Unlike the supervised learning techniques implemented for 

the CubeSat surveillance system, the microreactor transportation example is suited better 

for unsupervised learning techniques. As was mentioned in Section 5, unsupervised 

learning methods of deep learning do not require training on labeled data. In unsupervised 

learning, relationships and representations can be formed directly from the data. Similar 

to how classification tasks were a subset of supervised learning, anomaly detection is a 

subset of unsupervised learning. When monitoring radiation levels, anomaly detection 

techniques facilitate the identification of any unexpected changes.  

To illustrate the application of the technology in this example, a convolutional 

neural network is used to identify any changes in radiation levels outside the microreactor 

container. To simulate the radiation detection, it is assumed that the detectors receive a 

signal described by Eq. 7-1. The detectors receive 100 signals (𝑦) per second. Even though 

unsupervised learning does not require data labels, it still needs a large dataset to train on. 

Therefore, the convolutional autoencoder used for anomaly detection is trained on two 
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hours of nominal signals. For the sake of the example, the sensor system would be used at 

the fabrication plant to collect two hours’ worth of radiation readings before shipping the 

microreactor in order to train the deep learning algorithm. 

𝑦 = cos(𝜋𝜉1) + 𝜉2      (7-1) 

 

 Where, 

  𝑦 = The signal received by the detectors 

  𝜉1 = A random number between 0 and 1 

  𝜉2 = A random number between 0 and 1 

 

As mentioned, the deep learning structure used to identify the anomalous signals 

is referred to as a convolutional autoencoder. This neural network uses convolutional 

layers to reduce the input data into a latent space. The latent space is a reduced order 

representation of the input data. In the CNNs developed in Section 6, the networks reduced 

an input tensor of size (100, 100, 1) to an output tensor of size (N) which represented the 

predictions for classifying the data. That output tensor of size (N) is also referred to as the 

latent space. Instead of outputting classification probabilities, however, the latent space of 

an autoencoder for anomaly detection is used to identify any outliers in the data. When 

training on the data, the autoencoder is set up as a convolutional U-Net. The network is 

referred to as a “U-Net” because it encodes the data into a latent space and then decodes 

the latent space into the original size. The decoder section of the network learns to recreate 

the original input data from only what is left in the latent space of the encoder. However, 

when testing the network on new data, only the encoder section of the network is used. 

Figure 75 illustrates the architecture of the convolutional U-Net. It is important to note 

that the convolutional and max pooling layers are only one dimension since the input 
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tensor is only one dimension as well. The input shape of the training data is (7200, 100, 

1) representing the two hours of collecting the 100 signals per second. As for a validation 

dataset, 10% of the input training data is partitioned from validation. Also, the Adam 

optimizer and Mean Squared Error loss function were used to compile the network 

architecture. The model was then trained for 100 epochs with a batch size of 32. 

 

 

 

 
Figure 75. The autoencoder U-Net architecture. 

 

 

Once the convolutional autoencoder was trained, it was tested on an hour and five 

minutes of signals. As it translates to the example, the detectors collected data during the 

first hour and five minutes of transportation. During the last five minutes of detection, the 

microreactor shielding failed due to the movement of the transport vehicle and the detector 
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system started receiving higher levels of radiation. Figure 76 shows the magnitude of the 

signals received by the detectors. The hour and five minutes of signals are then put through 

the autoencoder. Figure 77 shows the distribution of the latent space created by the 

network. The graph plots the two numbers outputted by the Dense layer seen in Figure 75. 

As can be seen, there are two separate clusters of signals within the latent space, indicating 

anomalous signals. Figure 78 plots the signals corresponding to the points in the smaller 

latent space cluster over the original signals received. In other words, the seconds at which 

the signal was determined anomalous by the convolutional autoencoder are specified in 

Figure 78. As can be seen, the neural network accurately identifies a change in the signals 

received by the detectors in the microreactor shipping containment. Since a change in 

radiation levels was detected by the deep learning algorithm, the proper safety measures 

can be taken to minimize exposure to the transport crew or the public. 

 

 
Figure 76. The total signals received by the detectors. 
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Figure 77. A visual representation of the latent space of the network. 

 

 

 

 
Figure 78. The anomaly cluster points plotted over the complete detector signal. 

 

 

 

7.4. Microreactor Applications Conclusion 

Even though microreactors present an attractive power generation option for 

multiple scenarios, they still need to overcome large obstacles on their path toward 

deployment. Numerous safety and regulatory concerns arise from the desired 



 

219 

 

transportability and autonomy of these reactors. As was seen, the CubeSat surveillance 

method developed in this thesis can be adapted directly or indirectly to help overcome 

such challenges. Directly, the constellation of CubeSats could monitor the integrity and 

presence of phenomena of interest during the transportation of microreactors or once 

installed at a plant. Indirectly, some aspects of the CubeSat methodology have the 

potential of adaptability to other applications for microreactor monitoring, namely its deep 

learning techniques. An example was explored where anomaly detection techniques of 

deep learning were used to identify a change in radiation levels during the transportation 

of a microreactor. 
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8. CONCLUSIONS 

8.1. Thesis Objectives 

Cube satellites (CubeSats) present a unique new platform for monitoring localized 

processes anywhere within the Earth’s surface or atmosphere using a novel data analysis 

technique. Areas of interest can be targeted at certain times on an on-demand basis by 

storing the CubeSat constellation onboard the International Space Station in what is 

referred to as “stash and deploy”. CubeSats equipped with adequate sensors and data 

analytics capabilities create an autonomous characterization surveillance method for 

phenomena of interest. CubeSats are advantageous over conventional satellites for remote 

monitoring because of their reduced costs and higher simplicity due to the availability of 

commercially-of-the-shelf components. The work presented in this thesis established a 

foundation for a CubeSat surveillance system methodology. The following three 

previously mentioned objectives for the thesis were accomplished throughout the seven 

previous sections of the thesis: 

4. Development and compilation of representative surrogate data sets. 

5. Conceptual development of a methodology for heterogeneous data analytics. 

6. Illustrative applications of the methodology. 

 

The first objective of this thesis focused on the data analytics structure of the CubeSat 

system for the recognition of the phenomena of interest. Since the characterization 

methodology developed was based on machine learning techniques, an adequate dataset 

was needed to successfully train the model to predict the values of new datasets. The 

surrogate dataset created in Section 5 also aimed at replicating the diversity of data 

collected by a multi-sensor system. The second objective established the characterization 
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method which the CubeSat system will used for analyzing phenomena based on the data 

set constructed by the previous objective. Using the diverse types of data as input, the deep 

learning data analytics capabilities made predictions on the kinds of phenomena observed 

by the CubeSat sensors. The final objective of the thesis was an extension of the first two 

objectives. It illustrated how the data analytics model developed was implemented in a 

realistic scenario while incorporating all other aspects of a CubeSat surveillance system. 

Before the completion of the objectives, extensive considerations were made about the 

orbital mechanics, satellite architectures and scenarios, and sensor selection for the 

system. 

The three thesis objectives were met mainly by Sections 5 and 6. As was seen, Section 

5 created simplified but representative datasets of images from all the different sensor 

types onboard the CubeSat surveillance system. Each dataset contained images with the 

phenomena corresponding to each specific sensor type. The presence, size, location, and 

orientation of phenomena in each image was highly randomized to ensure the 

characterization methodology only learned features specific to each phenomenon. As was 

seen, Section 6 first completed the second thesis objective by developing a 

characterization methodology implemented on all datasets. The characterization 

methodology included a convolutional neural network for each dataset that outputted a 

probability of presence for the phenomena in each dataset image. The probabilities are 

then combined to produce a final characterization solution. The last objective was met at 

the end of Section 6 when the Tehran example was discussed. Each feature from the 

CubeSat surveillance system discussed in the thesis was implemented to observe 
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suspicious activity at an enrichment facility near Tehran and characterize the scene from 

Low Earth Orbit. The following subsection discusses in detail the conclusions produced 

from each section of the thesis. 

8.2. Thesis Overview 

As mentioned, the topics covered in the previous seven sections of the thesis 

contributed to the completion of the three thesis objectives. Sections 1-6 each focused on 

a different aspect of the CubeSat surveillance system design process methodology, as seen 

in Figure 79, with Section 6 covering both the creation of the data analytics methodology 

and illustrative application. Explicitly, Section 5 directly completed the first of the three 

thesis objectives, while Section 6 fulfilled the last two. 
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Figure 79. A free body diagram of the design process used to develop the 

methodology for the CubeSat system. 

 

 

 

The thesis opened with Section 1 (Introduction). The section first introduced the 

CubeSat surveillance system and established the need for such a system. Due to lower 

costs and higher simplicity, constellations of CubeSats present an attractive remote 

monitoring system as applied to the use example of nuclear fuel cycle surveillance. The 

phenomena of interest for the surveillance system were introduced. The first step in 

developing a surveillance system is identifying what type of phenomena are of interest for 

observation. Defining the phenomena and their characteristics will determine everything 

else about the surveillance system, like the type of sensors needed and the physical 

CubeSat architecture. Due to the nature of miniature satellites in orbit, it was determined 
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that the CubeSat system was best suited for events of immediate interest. Three different 

categories of phenomena of interest surrounding the nuclear fuel cycle were identified for 

the nuclear surveillance use example. The three categories were: Vehicles of Interest, 

Facilities and Infrastructural Emergencies of Interest, and Construction and Mining Events 

of Interest. For each category, different parameters and signatures were specified for the 

phenomena. Identifying the signatures aids in determining the sensor requirements for the 

surveillance system. Then, Section 1 closed by stating the objectives for the thesis and 

gave an overview of each section to follow. 

The goal of Section 2 (CubeSat-based Surveillance Platform Capability 

Assessment) was to explore the physical feasibility of a CubeSat platform for a 

surveillance system. First, the section provided a more specific definition of a cube 

satellite and explored its capacities for supporting a surveillance platform. The major 

components and capabilities of a CubeSat and the nature of an ISS deployment were 

defined. Next, a summary of a general CubeSat design process was explored for 

facilitating future. The design processes outlined in CubeSat designed guides were 

analyzed and adapted to the CubeSat surveillance system. Other CubeSat mission design 

procedures were also mentioned as reference points. The individual types of components 

needed for the CubeSat surveillance system mission were identified along with their 

COTS feasibility. The CubeSats’ payloads, or sensors, were determined as the only non-

COTS components. Figure 80 shows a schematic of the different components required for 

an individual 3U CubeSat. Also, it was determined that the CubeSat system would feature 

a combination of 3U and 6U sized satellites depending on the size of the payload. To close 
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out the section, a CubeSat’s orbital capabilities in low Earth orbit (LEO) were examined 

through modelling. The General Mission Analysis Tool from NASA was used to observe 

the trajectory of a CubeSat’s flight and analyze the kind of access it can have to targets on 

the surface. 

 
Figure 80. A schematic of the components for a 3U CubeSat in the CubeSat 

surveillance system. 

 

 

 

Section 3 (Architecture and Deployment Scenarios) explored different architecture 

and deployment scenarios for the CubeSat system. The system was determined to be 

comprised of a constellation of multiple satellites instead of one. Table 59 illustrates the 

advantages and disadvantages of a single or multiple satellite surveillance system. 
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Although a constellation architecture has its drawbacks, the main reasoning for the 

decision was driven by a constellation’s higher characterization accuracy due to a higher 

number of sensors in the system. Since a constellation was chosen for the system, different 

communications configurations were explored. Table 60 lists the decision matrix used 

when selecting the ideal communications option for the system. Intersatellite 

communication using a satellite relay network, like Globalstar, combined with a network 

of ground stations, like KSAT was determined as the optimal communications option. 

Also, a satellite system architecture featuring a single CubeSat as the major computational 

unit for processing most of the data collected by the sensors was chosen. The last topic of 

the section introduced a mathematical algorithm which utilizes GMAT for determining 

CubeSat deployment times. 

 

 

Table 59. The advantages and disadvantages between a 1 CubeSat or constellation 

system. 

Attribute 1 CubeSat Constellation of 

CubeSats 

Higher Characterization Accuracy Through 

Sensor Diversity 
 ✓ 

Lower Cost ✓  

Increased System Security  ✓ 

Robustness Through Sensor Redundancy  ✓ 

Simplicity ✓  

Longer Overall Access Times to Ground  ✓ 
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Table 60. The decision matrix for the CubeSat constellation communications 

options. 

 Ground Station 

Only 
Inter-CubeSat 

Additional Satellite 

Relay 

Operational 

Complexity 
Moderate High High 

Data Flow Steps High Moderate Moderate 

Speed to Surface Moderate High High 

Autonomy Low High High 

Lifetime High Low High 

Cost Moderate Moderate High 

 

 

 

Section 4 (Sensor Selection) first explored the capabilities of remote monitoring 

and considered the surveillance requirements for the phenomena of interest. Defining the 

signatures for the phenomena determines the type of sensors needed for the CubeSat 

surveillance system. For each phenomenon of interest, their signature resolutions in the 

spectral, spatial, and temporal dimensions were established. Table 61 shows the 

surveillance requirements for the different phenomena. It is important to note that the 

terms for spectral and temporal resolution used in the table are lose interpretations of their 

actual meaning when it comes to sensor resolutions. Then, the different sensor 

requirements necessary for monitoring the signatures were explored, and the various kinds 

of sensors and their capabilities were defined. It was determined that the CubeSat 

surveillance system can accomplish its observation goals by featuring a combination of 

panchromatic and multispectral sensors operating in the visible and near-infrared 

spectrum, multispectral sensors operating in the infrared spectrum, hyperspectral sensors 

operating in the infrared spectrum, and multispectral sensors operating in the ultraviolet 

spectrum. The current capabilities and CubeSat heritage for the recommended sensors 
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were explored, and it was observed that future sensor development is needed to reach the 

necessary resolution and size requirements, as seen in Table 62. The section concludes 

with an analysis of CubeSat satellite architecture capabilities for housing sensors 

regarding size and power demands. 

 

 

Table 61. The sensor type recommendations for observing each parameter. 

Phenomenon Parameter Sensor Recommendation 

Automobiles 

and Airplanes 

Length, Width, Height Panchromatic and Multispectral 

Speed Panchromatic and Multispectral 

Temperatures Multispectral 

Gas Emissions Hyperspectral 

Facilities and 

Emergencies 

Length, Width, Height Panchromatic and Multispectral 

Temperatures Multispectral 

Gas Emissions Hyperspectral 

Aerosol Index Multispectral 

Construction 

and Mining 

Length, Width, Height Panchromatic and Multispectral 

Speed Panchromatic and Multispectral 

Temperatures Multispectral 

Gas Emissions Hyperspectral 

Footprint Panchromatic and Multispectral 
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Table 62. Sensor type recommendations and CubeSat heritage at required spatial 

resolutions. 

Phenomena Parameter Sensor Type 
CubeSat 

Heritage 

CubeSat 

Heritage 

at Spatial 

Resolution 

Future 

Sensor 

Development 

Needed? 

Automobiles 

and Airplanes 

Length, 

Width, 

Height 

Panchromatic/ 

Multispectral 
Yes Yes No 

Speed 
Panchromatic/ 

Multispectral 
Yes Yes No 

Temperatures Multispectral Yes No Yes 

Gas 

Emissions 
Hyperspectral Yes No Yes 

Facilities and 

Infrastructural 

Emergencies 

Length, 

Width, 

Height 

Panchromatic/ 

Multispectral 
Yes Yes No 

Temperatures Multispectral Yes No Yes 

Gas 

Emissions 
Hyperspectral Yes No Yes 

Aerosol 

Index 
Multispectral Yes No Yes 

Construction 

and Mining 

Events 

Length, 

Width, 

Height 

Panchromatic/ 

Multispectral 
Yes Yes No 

Speed 
Panchromatic/ 

Multispectral 
Yes Yes No 

Temperatures Multispectral Yes No Yes 

Gas 

Emissions 
Hyperspectral Yes No Yes 

Footprint 
Panchromatic/ 

Multispectral 
Yes Yes No 

 

 

 

After the selection of sensors was accomplished Section 5 (Surrogate Dataset) 

directly accomplished the first objective of the thesis: Development and compilation of 

representative surrogate datasets. The dataset created in this section for training the deep 

learning model for characterization aimed at representing the data collected from the 
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different sensors on board the surveillance system at a proof of concept level. Rather than 

training the methodology on real satellite imagery, the dataset is a simplified 

representation. As can be seen in Table 62, since four different sensor types were chosen, 

four different datasets were created. The different datasets are referred to as the 

Dimension, Temperature, Gas, and Aerosol datasets. Each dataset was created using the 

same methodology of producing 100 x 100 pixel “images” which include the phenomena 

of interest. The only difference between datasets was the base value added to each pixel 

and each dataset’s corresponding phenomena list. The dataset creation methodology used 

a multitude of random numbers for determining the inclusion of phenomena in each 

“image”. Including randomness in the creation of the “images” was essential for ensuring 

the characterization algorithm only learned features directly indicating the presence of 

phenomena. By including phenomena in the data points in random locations and in random 

amounts allows the deep learning algorithm to identify each phenomenon in any condition 

in future data. Each “image” created by the dataset included labels indicating the presence 

or absence of a phenomenon. The length of the data labels varied per dataset. The use of 

labels for the datasets are what allow the characterization algorithm to develop 

relationships in the data to accurately predict the labels of future data. Figure 81 shows an 

example image from the Dimension dataset and its corresponding label. Also, Section 5 

introduced the general concepts and math behind deep learning and convolutional neural 

networks. 
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Figure 81. An example image created in the Dimensions dataset. 

 

 

 

Section 6 (Characterization Methodology) used the surrogate dataset created in the 

previous section to address the final two objectives of the thesis: Conceptual development 

of a methodology for heterogeneous data analytics and Illustrative application of the 

methodology. The section introduced the characterization methodology developed for the 

identification of phenomena of interest from the CubeSat surveillance platform, as seen in 

Figure 82. The characterization methodology consisted of four convolutional neural 

networks trained for each sensor type onboard the CubeSat system. The CNNs were 

trained on the four surrogate datasets representing simplified versions of satellite imagery. 

Different numbers of layers, filters, nodes, and filter sizes were explored to optimize the 

CNN architecture. During training, several different hyperparameter values were explored 

to produce the best performing model for each dataset. While test accuracy on test data 

subset was the performance metric used to compare different CNN architectures during 

optimization, it does not describe well the true performance of a CNN at predicting the 

presence of specific phenomenon in an “image”. Other metrics, like Recall Rate and 

Precision Rate, were introduced and calculated. Table 63 restates the performance of the 
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CNNs on the phenomena for each dataset. Within the overall characterization 

methodology, the predictions from each CNN are combined in the last step to produce a 

final characterization solution to be transmitted by the CubeSat system. The section 

wrapped up by discussing an illustrative application in which the CubeSat surveillance 

system was tasked with investigating suspicious activity at an enrichment facility near 

Tehran. Figure 83 illustrates the overall data flow through each aspect of the CubeSat 

system. The topics from Section 1 were discussed to determine the type of phenomena the 

CubeSat system was looking for in the example. Topics from Section 2 and 3 were 

discussed to illustrate how the CubeSat system architecture and orbital mechanics are 

applied to the example. Access times for the CubeSat to Tehran were calculated using the 

algorithm from Section 3 and GMAT. It was discussed how the sensor types selected in 

Section 4 would produce satellite images of the target area, which were represented by 

images created using the methodology in Section 5. Then, the characterization 

methodology was used to produce final predictions of phenomena from the “images” taken 

by the sensors. Table 63 compares the true phenomena probabilities to the predicted 

phenomena probabilities. The predicted phenomena probabilities characterizing the 

observed location are then sent to the surface. 
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Figure 82. Structure of data flow in characterization methodology. 

 

 

 

Table 63. The performance of each CNN on predicting phenomena and the final 

characterization solution probabilities for the Tehran application. 

 

The performance of the Dimension CNN for identifying phenomena of interest. 

Phenomena Recall 

Rate 

Precision 

Rate 

FP Rate TN Rate FN Rate 

Automobile 92.5% 99.9% 0.08% 99.9% 7.47% 

Airplane 96.1% 99.2% 0.77% 99.2% 3.93% 

Facility 98.0% 98.5% 1.43% 98.6% 1.97% 

Cons/Mine 

Vehicle 

96.0% 99.8% 0.16% 99.8% 4.01% 

Footprint 99.6% 99.9% 0.08% 99.9% 0.44% 

Fire 93.7% 97.4% 2.54% 97.5% 6.34% 

Blackout 95.4% 98.0% 2.03% 98.0% 4.58% 
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The performance of the Temperature CNN for identifying phenomena of interest. 

Phenomena Recall 

Rate 

Precision 

Rate 

FP Rate TN Rate FN Rate 

Automobile 90.0% 99.8% 0.16% 99.8% 10.0% 

Airplane 94.1% 99.5% 0.43% 99.6% 5.86% 

Fire 93.9% 96.8% 2.85% 97.1% 6.06% 

Blackout 90.6% 92.3% 7.95% 92.1% 9.41% 

Cons/Mine 

Vehicle 

97.2% 99.3% 0.73% 99.3% 2.77% 

Cons/Mine Process 89.7% 99.8% 0.20% 99.8% 10.3% 

 

The performance of the Gas CNN for identifying phenomena of interest. 

Phenomena Recall 

Rate 

Precision 

Rate 

FP Rate TN Rate FN Rate 

Automobile 95.6% 99.7% 0.33% 99.7% 4.35% 

Airplane 97.4% 98.8% 1.23% 98.8% 2.58% 

Fire 95.0% 99.9% 0.12% 99.9% 4.95% 

Cons/Mine 

Vehicle 

97.1% 99.5% 0.52% 99.5% 2.92% 

Cons/Mine Process 99.1% 99.6% 0.41% 99.6% 0.91% 

 

The performance of the Aerosol CNN for identifying phenomena of interest. 

Phenomena Recall 

Rate 

Precision 

Rate 

FP Rate TN Rate FN Rate 

Fire 96.9% 99.8% 0.16% 99.8% 3.08% 

Cons/Mine Process 99.3% 99.9% 0.12% 99.9% 0.74% 

 
The final characterization solution for the Tehran enrichment facility. 

Probability Automobile Airplane Facility C/M V 

True 1 0 1 1 

Predicted 0.910 0.005 1 1 

 C/M P Footprint Fire Blackout 

True 1 0 0 0 

Predicted 0.999 0 0.007 0.042 
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Figure 83. The data flow for observing and identifying suspicious activity at an 

enrichment plant. 

 

 

 
The last section, Section 7 (Microreactor Applications), explores the applicability 

of the CubeSat surveillance system towards aiding microreactor deployment. Even though 

microreactors present an attractive power generation option for multiple scenarios, they 

still need to overcome large obstacles on their path toward deployment. Numerous safety 

and regulatory concerns arise from the desired transportability and autonomy of these 

reactors. As was seen, the CubeSat surveillance method developed in this thesis can be 

adapted directly or indirectly to help overcome such challenges. Directly, the constellation 

of CubeSats could monitor the integrity and presence of phenomena of interest during the 

transportation of microreactors or once installed at a plant. Indirectly, some aspects of the 

CubeSat methodology have the potential of adaptability to other applications for 

microreactor monitoring, namely its deep learning techniques. An example was explored 
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where anomaly detection techniques of deep learning were used to identify a change in 

radiation levels during the transportation of a microreactor. 

8.3. Future Work 

As was mentioned multiple times throughout the thesis, a final CubeSat surveillance 

system was not developed, only the basis for its methodology. Therefore, there is a lot of 

future work than can be done to expand on the work presented in this thesis. There are 

four potential avenues in which the work can be immediately expanded and turned into 

future projects. Those options are: 

1. CubeSat construction. 

2. Sensor development. 

3. Create characterization methodologies on real satellite data. 

4. Expand on microreactor applications. 

 

The first step in the future development a CubeSat surveillance system is to construct 

the actual satellites for the constellation. Section 2 formed the foundation to be followed 

for physical construction of the CubeSats. All the components listed in the section can be 

directly bought from vendors and assembled into a final product. As was also seen in 

Section 2, the CubeSat design process may take between 1-2 years. Getting through the 

licensing process, integrating the different components into the CubeSat bus, material and 

environmental testing, and communications networks setup all takes time and would 

constitute as its own individual project. 

Even if a full constellation of CubeSats is constructed, they will not successfully 

observe the phenomena of interest without adequate sensors. As was seen in Section 4, 

only one out of the four different sensor types recommended for the surveillance system 

have an immediate technology readiness level. Multispectral sensors in the infrared 
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region, hyperspectral sensors in the infrared region, and multispectral sensors in the 

ultraviolet region need to be developed to image at the required spatial resolutions for the 

phenomena of interest while still fitting inside a CubeSat form factor. A whole industry is 

built around furthering sensor technology, and the development of each sensor mentioned 

would constitute a whole project alone. 

As was mentioned in the Limitations subsection of Section 6, the characterization 

methodology developed in this thesis cannot characterize actual satellite images. The 

solution to developing an accurate characterization methodology for true CubeSat images 

is to launch an exploratory CubeSat mission with identical satellite architectures and 

sensors with the goal of collecting as many images of phenomena of interest as possible. 

The first CubeSat system mission would only serve the purpose of data collection. The 

collected images can then be used to train the characterization methodology for a second 

CubeSat mission. Therefore, creating a truly accurate characterization methodology for a 

CubeSat surveillance system can only be accomplished after the first to avenues for future 

work have been explored. 

The final avenue for future work of this thesis was introduced in Section 7, with the 

focus mainly on indirect application of the CubeSat methodology. Some aspects of the 

CubeSat methodology have the potential of adaptability to other applications for 

microreactor monitoring, namely its deep learning techniques. Machine/deep learning 

algorithms coupled with sensor systems within and around a microreactor can be used to 

improve the safety of its transportation and autonomous operation. Although the CubeSat 

characterization methodology was limited to supervised learning techniques, a 
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microreactor monitoring system does not possess the same limitations. Unsupervised 

learning techniques for machine learning have shown effectiveness in anomaly detection 

situations. Creating a microreactor monitoring system with adequate sensors and data 

analytics capabilities presents a very interesting topic for future projects. 
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APPENDIX A 

This appendix includes all the tables for the parameters of the fifteen common types of 

construction and mining equipment [35,36,37,38,39,40,41,42,43,44,45,46,47]. 

Table A1. The table lists the possible parameters for the identification of an excavator. 

The values come from the CAT 320 GC medium-sized excavator. 

Dimension Value 

Height to Top of Cab 2.96 m 

Length 9.53 m 

Width 3.17 m 

Track Length 3.27 m 

Table A2. The table lists the possible parameters for the identification of a backhoe. The 

values come from the Bobcat B250 backhoe. 

Dimension Value 

Height to Top of Cab 2.38 m 

Load Height 2.41 m 

Length 5.88 m 

Width 1.62 m 

Max Speed 6.44 km/h 

Table A3. The table lists the possible parameters for the identification of a dragline 

excavator. The values come from the CAT 8000 dragline excavator. 

Dimension Value 

Boom Length 101 m 

Bucket Capacity 24-34 m3

Table A4. The table lists the possible parameters for the identification of a bulldozer. 

The values come from the CAT D10 bulldozer. 

Dimension Value 

Height to Top of Cab 4.54 m 

Length with Blade 7.59 m 

Width with Blade 3.51 m 

Track Length 3.93 m 

Table A5. The table lists the possible parameters for the identification of a grader. The 

values come from the CAT 120M grader. 
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Dimension Value 

Height to Top of Cab 3.29 m 

Length 8.50 m 

Width 2.50 m 

Blade Base 2.53 m 

Top Speed 44.57 km/h 

Table A6. The table lists the possible parameters for the identification of a wheel tractor 

scraper. The values come from the CAT 637K wheel tractor scraper. 

Dimension Value 

Height to Top of Cab 3.73 m 

Length 15.48 m 

Width 3.94 m 

Top Speed 55.8 km/h 

Table A7. The table lists the possible parameters for the identification of a trencher. The 

values come from the Wolfe 7000/7000D trencher. 

Dimension Value 

Height to Top of Cab 3.55 m 

Length 11.15 m 

Width 3.48 m 

Top Speed 4.75 km/h 

Table A8. The table lists the possible parameters for the identification of a loader. The 

values come from the CAT 950M medium-sized loader. 

Dimension Value 

Height to Top of Cab 3.45 m 

Length without Bucket 6.91 m 

Width 2.82 m 

Bucket Capacity 9.20 m3 

Top Speed 39.5 km/h 

Table A9. The table lists the possible parameters for the identification of a tower crane. 

The values come from the Manitowoc MDT 269 J10 tower crane. 

Dimension Value 

Height 
74 m (Highest crane in the world 

can reach up to 167.64 m) 

Boom Length 65 m 

Table A10. The table lists the possible parameters for the identification of a paver. The 

values come from the CAT BG240C paver. 
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Dimension Value 

Height to Top of Cab 2.77 m 

Length 6.80 m 

Width 2.44 m 

Paving Speed 1.27 m/s 

Paving Width 7.32 m 

Top Speed 16.09 km/h 

Table A11. The table lists the possible parameters for the identification of a compactor. 

The values come from the CAT 816K landfill compactor. 

Dimension Value 

Height to Top of Cab 3.88 m 

Length 8.06 m 

Width 3.34 m 

Blade Width 3.66 m 

Top Speed 12.5 km/h 

Table A12. The table lists the possible parameters for the identification of a telehandler. 

The values come from the JLG telehandler. 

Dimension Value 

Height to Top of Cab 2.54 m 

Length 6.12 m 

Width 2.56 m 

Maximum Lifting Height 16.76 m 

Maximum Forward Reach 12.80 m 

Top Speed 32.19 km/h 

Table A13. The table lists the possible parameters for the identification of a feller 

buncher. The values come from the John Deere 643L-II feller buncher. 

Dimension Value 

Height to Top of Cab 3.20 m 

Length 6.27 m 

Width 2.90 m 

Table A14. The table lists the possible parameters for the identification of a dump truck. 

The values come from the CAT 7856 Tier 4 Final/Stage V dump truck. 

Dimension Value 

Height to Top of Cab 5.21 m 

Length 11.99 m 

Outside Body Width 6.71 m 

Top Speed 54.80 km/h 

Table A15. The table lists the possible parameters for the identification of pile boring 

equipment. The values come from the CAT MD6250 drill. 
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Dimension Value 

Height with Mast Up 19.55 m 

Height Mast Down 5.13 m 

Body Length 11.71 m 

Length Mast Down 20.18 m 

Width 5.62 m 

Top Speed 2.45 km/h 
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                                                        APPENDIX B 

This appendix includes visual representations of the different pixel configurations for the 

phenomena of interest objects in the datasets created in Section 5. It is important to note 

that Figure 3B does not include every possible combination of pixels for an object of size 

24 (Version A).  

Figure B1. The different pixel configurations for objects with size 2, 4, and 6. 

Figure B2. The different pixel configurations for objects with size 10. 
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Figure B3. Some (not all) of the different pixel configurations for objects with size 24 

(Version A). 
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Figure B4. The different pixel configurations for objects with size 24 (Version B) and 

35. 

 




