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ABSTRACT 

  

High wine pH is an important challenge in hot climates due to pH’s influence on red wine 

color, oxidation, flavor, and cold and microbial stability. In order to increase grape acidity 

in the vineyard and decrease the pH, viticultural factors that directly influence grape berry 

acidity need to be determined. For this purpose, a two-year field study was conducted in 

seven commercial V. vinifera cv. ‘Tempranillo’ vineyards located in the Texas High Plains 

and North Texas regions. Data on cultivar, canopy architecture, soil and vine nutrition, 

climate, harvest yield, and berry composition were collected from twenty consecutive 

vines from each vineyard site. Partial least squares regression (PLSR) models were 

constructed to predict factors that influence acidity at individual vineyard sites and across 

all vineyard sites by year and collectively. The variance in juice pH observed across sites 

and within individual sites was best explained by juice potassium (K). Juice pH increased 

with the increase in total K concentrations in the berry. Rootstock selection and vine water 

status were also important factors to the models. Results from the study indicate that 

proper rootstock selection and water management are important factors for reducing K and 

pH in grape juice. The strong correlation between K and juice pH was further investigated 

in four additional V. vinifera cultivars. ‘Malbec’, ‘Grenache’ and ‘Carnelian’ also showed 

a strong positive correlation between K and juice pH.  

 

Key words: Grapevine, pH, acidity, controls, potassium, rootstock, water management.   
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NOMENCLATURE 

 

AVR Acid variables removed 

AVA American Viticultural Area 

Ca Calcium 

CEFA Cluster exposure flux availability 

DAA Days After Anthesis 

EC Electrical conductivity 

Ep1 Canopy calibration coefficient 

FW Fresh weight 

H Harvest 

K Potassium 

KHT Potassium bitartrate 

LEFS Leaf exposure flux symmetry 

NOAA National Oceanic and Atmospheric Administration 

OLSR Ordinary least squares regression 

PLSR Partial least squares regression 

TA Titratable Acidity  

VIP Variable of importance in projection 

YC Years combined 

TA Titratable Acidity  

50V 50% veraison 
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CHAPTER I  
INTRODUCTION 

 

 The production of wine dates back 8,000 years to modern-day Georgia (Curry, 

2017). Since that time winemaking has spread throughout the world by means of religion 

and culture, with the United States being no exception. The United States produces 6.9 

million tons of grapes annually, with 65.6% of that for wine production. In 2018, the US 

produced 624 gallons of wine (OIV, 2019). In wine production by state, Texas is the fifth 

leading wine producer in United States, producing 4.2 million gallons in 2018 

(WineAmerica, 2019). Grape and wine production in Texas does not come without 

challenges. Aside from domestic and global competition, the hot climate of Texas has 

shown to be less conducive for grape growing compared to well-known regions with cooler 

climates such as California, France or Italy. Hot climates tend to produce grapes with 

relatively low acidity and high pH, causing problems for wine making (Jones et al., 2005; 

Neethling et al., 2012; Ramos et al., 2008; Webb et al., 2007).  With the immense national 

increase in demand for wine, and the economic incentive for Texas to increase production, 

it is important to assess and overcome the pitfall of relatively low acidic grapes and 

resulting wine produced in the hot climate of Texas.
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Acidity in Grapes and Wine 

 It is widely recognized that wine quality is inextricably correlated with the quality 

of the grapes used. Acidity is an important parameter to monitor in the vineyard as a proxy 

for grape maturity and potential quality of the wine. Acidity impacts the aroma (Jackson, 

2014), color (Kodur, 2011; Poni et al., 2018), taste (Poni et al., 2018), chemical and 

microbiological stability (Boulton, 1980), and ageing potential (Boulton, 1980; Poni et al., 

2018) of wine. The rate of fermentation is affected by acid levels in the grape. The three 

predominate organic acids present in grapes are tartaric, malic, and citric acid. Three 

additional acids, lactic, succinic, and acetic, are formed during the winemaking process 

(Waterhouse et al., 2016).  

 The organic acids found in grapes are considered weak acids, because they 

partially dissociate hydrogen ions (protons) in solution. Grape acidity is routinely quantified 

in two ways: pH and titratable acidity (TA). pH represents the negative log (base 10) of 

dissociated (free) protons in solution. pH is measured to determine microbial stability of 

wine (Boulton, 1980), precipitation of potassium bitartaric acid during winemaking (Berg 

& Keefer, 1958), and malolactic acid fermentation potential (Fornachon, 1957). Grape juice 

pH is primarily the result of anionic forms of malic and tartaric acids, and potassium 

interacting in the juice (Boulton, 1980). Changes in the concentration of any of these three 

factors, whether in the vineyard or winery, can affect pH. A maximum pH of 3.7 is 

considered ideal for inhibiting unwanted microbial growth in the wine, thus preventing 

spoilage. Sulfur dioxide (SO2) is an additive often used in winemaking to provide additional 

protection from spoilage microbes and oxidation in wine. SO2 exists as both free SO2 and 
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bound SO2 in wine. Free SO2 exists as molecular SO2 (the form effective against wine 

microbes and oxidation), bisulfite and sulfite. The wine pH determines how free SO2 is 

distributed between these three forms. When wine pH is low, small amounts of free SO2 can 

be effective in controlling wine microbes. When wine pH is high, excessive additions of 

free SO2 may not produce enough molecular SO2 to effectively control microbes.  

 In contrast, titratable acidity (TA) is a measure of both free and undissociated 

protons using an acid-base titration, most commonly with an endpoint of pH 8.2. TA is 

more strongly correlated with consumer perception of acidity and taste (Rühl et al., 1992), 

but does not contribute to wine stability and is a poor indicator of organic acid content 

(Boulton, 1980). TA values vary by grape cultivar, climate, vineyard practices, and 

preference of the winemaker. In developing grape berries, TA increases from berry set to 

véraison, and then declines throughout maturation.  

 

Tartaric Acid  

 Tartaric acid, or 2,3-dihydroxybutanedioic acid, is a carbon-based compound 

found in various plant species, including grapes. Tartaric acid is diprotic. Tartrate is the 

predominant acid at all stages of grape berry development (Morris et al., 1983), commonly 

present in mature grapes at an average concentration of 5 to 10 g/L (Ruffner, 1982). It is 

also predominant in all the parts of the vine, except for the roots (Ruffner, 1982). Tartaric 

acid is not metabolized during fermentation, so it is often used to adjust the pH of the juice 

in the winery (Keller, 2015). In mature grapes, tartaric acid concentrations are often higher 

than malic acid, and are relatively constant. It is the primary acid perceived in all wine that 

attributes to the body and balance of flavors (Ruffner, 1982). 
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Malic Acid  

 Like tartaric acid, malic acid is also diprotic. Malic acid is derived from a succinic 

acid via glycolysis and the TCA cycle (Volschenk et al., 2006) in which a hydrogen attached 

to a carbon is replaced by a hydroxyl group. Along with tartaric acid, malic acid is a major 

organic acid found in all the parts of the vine (Ruffner, 1982) and is predominant at all stages 

of grape berry development, resulting in a significant influence on the acidity in mature 

grapes (Morris et al., 1983). Combined, tartaric acid and malic acid represent up to 90% of 

total organic acids present in mature grape berries (Hale, 1977; Ibrahim, 2001; Ruffner, 

1982). Malic acid contributes to the tartness in wine, and can be converted into the weaker 

acid, lactic acid, in the presence of lactic bacteria during fermentation. Malic acid is present 

in mature grapes at an average concentration of 2 to 6.5 g/L (Boulton et al., 1996). The 

concentration of malic acid in mature grapes commonly fluctuates and declines more rapidly 

from véraison to maturation than tartaric acid, posing challenges to winemakers (Margalit, 

1997). The degradation of malic and tartaric acids occurs from an increase in membrane 

permeability in the cell vacuole, causing stored acids to respire and reducing the amount of 

acids being transported from the leaves. Potassium from within the berries bind to the leaked 

acids and form salts that reduce berries ability to synthesize organic acids as the berry 

matures, leading to a dilution effect of acid to sugar ratio in the berries (Winkler et al,. 1974). 

Malic acid levels are a function of temperature, and generally decrease as a result of high 

respiration rates of the berry during maturation (Jackson & Lombard, 1993). 
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Citric Acid  

 Citric acid is produced directly by grapevines, but in significantly lower 

concentrations than tartaric and malic acids (Mato et al. 2005). It is a tricarboxylic acid 

commonly present in concentrations of ≤1 g/L in mature grapes (Jackson, 2014). Additions 

of citric acid are often made to white wines to impart citric character. Citric acid can be 

converted into acetic acid by lactic bacteria during fermentation, resulting in an unpleasant 

vinegar taste. Additionally, Oenococcus oeni bacteria can convert citric acid into diacetyl 

during malolactic fermentation which may not be desirable depending on concentration and 

wine style. To avoid unwanted flavor profiles, tartaric acid adjustments may be made instead 

of citric acid (Jackson, 2014). 

 

Potassium 

 Potassium (K) ion is estimated to make up 80% of the total cations in mature grape, 

and is the most abundant cation in all developmental stages of the berry (Rogiers et al. 2006).  

K in the plant is a function of available soil K and the capacity of uptake by the host plant 

roots (Ruhl, 1989).  The accumulation of K in the plant is equal to the K net uptake by the 

roots (Mpelasoka, et al., 2003). Mobilization of K from root to shoot is hypothesized to be 

regulated by the xylem loading capacity (Tanner and Beevers, 2001), and storage sinks 

within developing tissues (Mengel and Kirkby, 1987). As an essential plant nutrient, K is an 

important mineral for stomatal regulation and ATP synthesis in plants (Boulton, 1980; 

Daverède, 1996; Gawel et al., 2000; Iland, 1987). K also facilitates amino acid, sugar, and 

water transport during the onset of berry ripening (Marten et al., 1999). High accumulation 

of K increases the neutralization of organic acids (Kodur, 2010) and has been linked to 
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changes in berry pH (Hafke et al., 2007). Alongside sugar accumulation, K accumulates 

rapidly in the berry during ripening. In wine, K and tartaric acid can form a salt, potassium 

bitartrate (KHT), which can precipitate resulting in changes to wine pH. Additions of K and 

calcium (Ca) salts during winemaking may also cause precipitations of potassium bitartrate 

(KHT) or calcium tartarate (CaT). The precipitation of KHT will further decrease TA of the 

wine because KHT yields a titratable proton that contributes to TA. The shift in pH is 

dependent on the pH prior to precipitation (Waterhouse, et al. 2016). 

 

Acidity Adjustments in the Winery  

 Without acid additions, high pH, low acid wines are commonly made from grapes 

grown in warm climates, such as Texas, resulting in wines described as low bodied or flat. 

Adjustments by adding tartaric, malic, and citric acids or their mixtures can help reduce the 

low acidity attributes of high pH wines, but pH adjustments are limited by the concomitant 

increase in TA (Jackson & Lombard, 1993; Waterhouse et al. 2016). The addition of tartaric, 

malic, or citric acids will result in an increase of TA.  

 

Cultural Practices and Environmental Impacts on Acidity 

Vine Nutrition 

 K is the predominate cation in leaves, must, and wine, and is recognized as an 

important factor in controlling must and wine acidity (Champagnol, 1986; Daverède, 1996; 

& Garcia et al., 2001). This cation varies considerably in concentration among grape 

cultivars and climate conditions. 
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 Gawel et al. (2000) observed a decrease of tartaric acid in grape juice in response 

to increasing concentrations of juice K. The change in free acids resulted in an overall 

increase in the juice pH. Similar results were observed in a hydroponics study conducted by 

Daverède (1996). The study indicated that acid levels in the must and wine of Vitis vinifera 

L. cv. ‘Negrette’ decreased when K levels were high. The study also determined a positive 

correlation between the concentrations of K in leaves at veraison and in the must of mature 

grapes. These results are supported by an additional hydroponic study conducted by C. 

Daverède and Garcia (2000). The titratable acidity of must and wine obtained from Vitis 

vinifera L. cv. ‘Negrette’ increased as the K concentration in the nutrient solution decreased. 

Boulton (1980) proposed that membrane-bound enzymes with high affinity for K causes a 

stoichiometric exchange for protons originating from endogenous plant acids to accumulate 

K in grapevines and berries resulting in a net loss of free protons.  

 With many studies determining that high accumulation of K (e.g. > 50mM) in the 

juice of grape berries can result in high juice pH, there is an apparent need to determine the 

appropriate combination of scion/rootstock, and/or environmental factor(s) in order to lessen 

high pH outcomes in wine (Cirami et al. 1993, Kodur et al., 2010; Kodur, 2011; Rühl, 1989; 

Whiting, 2003).  

 

Plant Genotype  

 More than 30 grape cultivars are commercially grown in Texas, including cultivars 

of Vitis vinifera, interspecific hybrids, and muscadine grapes (Vitis rotundifolia) (USDA, 

2019). Plant genotype heavily influences nutrient absorption and accumulation in vegetative 
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tissues. Various studies have evaluated nutrient and cation content of the plant, must, and 

wine, predominately K, to determine the scions influence on nutrient uptake.  

 A two-year study on Vitis vinifera scion on 3309 Couderc rootstock reported that 

K absorption and storage in leaf and berry tissues varied depending on scion cultivar (Attia 

et al., 2004). ‘Negrette’ showed the highest accumulation of K in leaf tissues at bloom and 

veraison in the two seasons, and the highest accumulation of K in the must in the first season. 

Similar results were observed in studies conducted by Garcia et al. (2001) and Ibrahim et al. 

(2001). In contrast, ‘Malbec’ presented the lowest levels of K in leaf tissues at bloom and 

veraison in both seasons, and the lowest accumulation of K in the must in the first season. 

The data also showed a linear correlation between K content of the must and leaves, with a 

less considerable correlation observed with K level in the wine. Over extraction of K from 

leaf tissue to berry tissue has been suggested to cause an increase in juice pH due to the 

binding of K to tartaric acid (Hale, 1977; Boulton, 1980; Walker and Blackmore, 2012). 

 Ca content was the highest in leaf tissues at bloom and véraison and in the must of 

‘Malbec’ and the lowest in ‘Négrette’ for the two consecutive seasons. The antagonistic 

relationship of K to Ca reported in ‘Négrette’ and ‘Malbec’ cultivars supports previous data 

findings by Daverède (1996), Garcia et al. (1999), Gallego (1999) and Ibrahim et al. (2001). 

No significant difference was observed for magnesium (Mg) content in leaves and grape 

must for all cultivars.  

 Organic acid concentrations from véraison to harvest were also analyzed by Attia 

et al. (2004). Malic acid showed a greater decline in all cultivars tested from véraison to 

harvest than tartaric acid. Cultivars ‘Tannat’ and ‘Fer Servadou’ had the highest levels of 
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malic acid, and ‘Malbec’ had the highest levels of tartaric acid compared to the other 

cultivars. Negative correlations were observed between the tartaric acid concentration and 

the pH levels in musts and wines of all cultivars. Overall organic acid data collected from 

the five cultivars indicate a similar evolution of tartaric and malic acids from véraison to 

harvest.  

 The use of rootstocks to control scion vigor or to overcome specific soil and 

climate limitations is a common practice in viticulture. The effect of the rootstock on scion 

nutrition and growth has been well documented in the literature (Delas & Pouget, 1979; 

Kodur, 2011; Loué et al. 1984; Valcheva et al. 2012), but with many studies analyzing acid 

accumulation. S. Kodur (2011) suggests that plant genotype, in respect to root morphology 

and rooting pattern, can impact K uptake, thus, the pH in the berry or wine. Garcia et al. 

(2001) analyzed the effect of three commercially used rootstocks, 101-14 Mgt (Vitis riparia 

x Vitis rupestris), 3309 C (Riparia tomenteux x Rupestris martin), and SO4 (Vitis 

Berlandieri x Vitis riparia) grown under identical conditions on acid content in grape must. 

The study reported that K concentrations in the must and wine were the highest for the SO4 

rootstock and the lowest for the 3309 C rootstock. The opposite was observed for calcium 

and magnesium concentrations in the must and leaves. Must pH was the highest in the SO4 

and the lowest in 3309 C rootstock, whereas TA of musts was not significantly different 

among the three rootstocks. Tartaric acid concentrations in the must were significantly 

higher in the SO4 rootstock. No significant difference was measured for malic acid across 

all three rootstocks. Results from the study suggest that 3309 C rootstock is the ideal choice 

to combat high pH conditions often observed in warm climates (Garcia et al. 2001). 
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Canopy Microclimate  

 Sunlight is an important component to physiological processes of grapes because 

it is required for photosynthesis, sugar accumulation, and can influence grape berry 

temperature. Changes in sunlight exposure and temperature have been observed to influence 

biochemical components in the berry such as organic acids and phenolic compounds (Price 

et al., 1995; Reynolds et al., 1986), leading many to suggest that sunlight and berry 

temperature are two of the most important microclimate factors impacting berry acid content 

(Jogaiah, et al. 2012; Kliewer, 1973; Spayd et al. 2002). Consequently, a considerable 

number of studies have been conducted to determine the effect of sunlight and temperature 

on berry acidity and pH.  

 In 1976, Smart and Sinclair noted a significant effect of canopy density on grape 

berry temperature. Shaded berries were reported 2.4◦C above the ambient temperature, 

whereas clusters exposed to solar radiation were up to 12.4◦C above the ambient 

temperature. Smart (1976) also observed delays in sugar accumulation and acid degradation 

under densely shaded berries. Findings from a field trail by Jogaiah et al. (2012) stated that 

TA was the highest in shaded berry clusters compared to fully exposed or partly exposed 

clusters, agreeing with R.E. Smart observations. Jogaiah et al. (2012) suggested that the 

increased TA and pH in shaded clusters may be attributed to greater accumulation of malic 

acid and K. Additional studies agree with the relationship between berry temperature and 

malic acid content (Buttrose et al. 1971; Sepu ́lveda and Kliewer 1986; Smart et al., 1985). 

It has also been observed that reduced malic acid accumulation and increased pH of grape 
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berries is the result of night time heating between véraison and ripening, and inverse 

relationship with shading during day time (Sweetman, et al. 2014).   

 An additional sunlight exposure study conducted by Morrison and Noble reported 

that shaded ‘Cabernet-Sauvignon’ clusters accumulated more K from véraison to harvest 

compared to sunlight exposed clusters, increasing juice pH (1990). The study suggested that 

temperature may have a greater influence on berry acidity than sunlight exposure.  A 

previous study by Crippen and Morrison reported similar patterns of sugar accumulation 

and acid metabolism in shaded and exposed berry clusters when the cluster-bearing shoots 

were exposed to the same amount of sunlight (1986). These findings are in conjugation with 

Morrison and Noble’s claim on K accumulation. An additional study conducted in 

Washington to assess ‘Merlot” berries composition by separating the effects of sunlight and 

temperature determined the overall temperature of the berry is inversely related to berry TA 

(Spayd et al., 2002).   

 Row orientation has also shown to impact acid content in grape berries as a 

function of sunlight exposure and temperature. In a sun exposure field trail, Vitis aestivalis 

c.v ‘Norton’ grapes oriented from east-west had higher levels of tartaric acid, glucose, and 

fructose, and lower levels of citric acid, malic acid, titratable acidity, and juice K compared 

to vines oriented from north-south (Jogaiah, et al., 2012). In the same study, grape clusters 

on the south and west sides of the canopy were recorded to have higher juice pH compared 

to clusters on the north or east sides. 
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Soil Nutrients 

 The importance of soil conditions for plant nutrient uptake is well known. The 

accumulation of K in grapevines is a function of the availability of K in the soil (Ruhl, 1989). 

Soil electrical conductivity (EC), the measure of the amount of salts in a solution, can affect 

the plants ability to take up available nutrients in the soil. Low soil EC limits the plants 

growth due to nutrient deficiency, while too high soil EC inhibits plant growth due to salinity 

stress (Ding, et al., 2018). High levels of Ca and Mg uptake by plants in alkaline soils (pH 

> 7.0) has been associated with reduced K availability (Hannan, 2011). Remobilization of 

K from other plant tissues to the grape berry may depend on soil K availability, K uptake 

capacity of the roots, and rates of K translocation from root to shoot to meet the berry 

demand for K (Mpelasoka, et al., 2003). 

 

Water Status  

 Crop yield and grape berry compositional traits that influence the quality of a wine 

can be highly influenced by water status during the growing season. The effect of water 

deficit irrigation on grape berry acidity has been studied extensively. As mentioned 

previously, many studies have suggested that malic acid concentration in grape berries and 

must is a function of temperature. Grape berry temperature can be considered a function of 

water status as demonstrated in a 5-year irrigation treatment study conducted by Intrigliolo 

and Castel (2010). Moderate to heavily irrigated V. vinifera cv. ‘Tempranillo’ vines had 

higher malic acid concentration in the must and wine compared to non-irrigated vines. This 

result is attributed to the greater vegetative growth of the irrigated vines reducing sunlight 

exposure, thus, lowering berry cluster temperature. Additional studies reported that reduced 
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canopy shading from non-irrigated vines resulted in a higher rate of malic acid degradation 

(Buttrose et al. 1971; Sepu ́lveda & Kliewer 1986; Smart et al., 1985). A significant 

difference in wine pH was also reported in wines from grapes grown under different 

irrigation practices (Intrigliolo and Castel, 2010). Wine pH was higher in irrigated vines 

compared to non-irrigated vines. In contrast, tartaric acid concentrations were lower in the 

must and wine of irrigated grapes compared to non-irrigated grapes. No significant 

difference was reported for titratable acidity. Another water status study conducted by 

Phogat et al. (2017) reported contrasting results. In the two-year study, a decrease in must 

pH and an increase in must TA were observed in the must of increased irrigated Vitis vinifera 

cv. ‘Chardonnay’ vines, suggesting that quality component responses to water status could 

be cultivar dependent. 

  

Climate Change  

 Within the past few decades, researchers have begun investigating the impact of 

climate change on grapevine, and multiple studies have determined that climate change is 

significantly impacting grape berry acidity (Jones et al., 2005; Neethling et al., 2012; Ramos 

et al., 2008; Webb et al., 2007). Studies have shown grapevines to begin key phenological 

stages such as bud break and fruit maturity earlier than average dates in response to increased 

temperatures (Petgen, 2007; Nemani et al., 2001; Ramos et al., 2008: Sigler, 2008;). TA 

reduction at harvest has been observed in regions experiencing warmer annual temperatures 

(Barnuud et al., 2014), thus resulting in a decline of malic acid concentration at harvest 

(Sweetman et al. 2014). Grapes are being harvested with lower acidity and higher sugar 
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levels (Duchêne & Schneider 2005). Subsequently, growers are harvesting lower quality 

fruit that will require additional adjustments in the winery or be market at a lower cost.  
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CHAPTER II  
IDENTIFYING PREDICTOR VARIABLES OF PH AND K IN 

GRAPE BERRY 

 

 

Abstract 

 

 High wine pH is an important challenge in hot climates due to pH’s influence on 

red wine color, oxidation, flavor, and cold and microbial stability. In order to increase grape 

acidity in the vineyard, viticultural factors that directly influence berry acidity need to be 

determined. For this purpose, a two-year field study was conducted in seven commercial 

V. vinifera cv. ‘Tempranillo’ vineyards located in the Texas High Plains and North Texas 

regions. Data on cultivar, canopy architecture, soil and vine nutrition, climate, harvest 

yield, and berry composition were collected from twenty consecutive vines from each 

vineyard site. Partial least squares regression (PLSR) models were constructed to predict 

factors that influence acidity at individual vineyard sites and across all vineyard sites by 

year and collectively. The variance in juice pH observed across sites and within individual 

sites was best explained by juice potassium (K). Juice pH increased with the increase in 

total K concentrations in the vine. Rootstock selection and the amount of water received by 

the vines were also important factors to the models. Results from the study indicate that 

proper rootstock selection and water management are important factors for reducing K and 

pH in grape juice.  

 

Key words: Grapevine, pH, acidity, controls, potassium, rootstock, water management.   

 



 

23 

 

Introduction 

 

 High wine pH is a serious challenge for warm and hot climate wine regions. V. 

vinifera cv. Tempranillo is the second most cultivated grape cultivar in Texas (USDA, 

2020), and often has high juice pH at harvest. Grape juice and wine pH influence the 

microbial stability of wine (Boulton, 1980b), consumer perception of acidity, taste, and 

balance (Ruhl et al., 1992), precipitation of potassium bitartaric acid during winemaking 

(Berg & Keefer, 1958), and malolactic acid fermentation potential (Fornachon, 1957). The 

pH of juice or wine may be managed in the winery, but techniques are limited and may be 

cost prohibitive. Organic acid additions may be made to lower the pH, but will increase the 

perception of acidity (Jackson & Lombard, 1993; Waterhouse et al. 2016). Other techniques 

such as electrodialysis and cation exchange may also be employed to lower wine pH, but 

may result in unwanted changes to wine flavor or may be cost prohibitive (Ponce, et al., 

2018). Therefore, managing acidity should begin in the vineyard. A large number of 

viticultural factors are shown to influences acidity including vine nutrition (Champagnol, 

1986; Ruhl, 1989; Kodur, 2011), plant genotype (Hale, 1977; Boulton, 1980b; Garcia et al., 

2001; Attia et al., 2004), canopy microclimate (Reynolds et al., 1986; Kliewer, 1973; Spayd 

et al. 2002), soil nutrients (Ruhl, 1989; Mpelasoka, et al., 2003; Hannan, 2011), water status 

(Buttrose et al. 1971; Sepu ́lveda & Kliewer, 1986; Smart et al. 1985b), and climate change 

(Jones et al., 2005; Neethling et al., 2012; Ramos et al., 2008). However, most studies only 

measure a limited number of parameters making it difficult to determine what factors 

directly influences acidity in grapes. The objective of this study was to identify factors that 
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directly correlate with grape juice acidity in Tempranillo by evaluating relationships 

between dependent and independent variables using ordinary least squares regression 

(OLSR) and developing predictive models with partial least squares regression (PLSR). This 

may lead to new and improved vineyard management practices to address the challenge of 

high pH in vineyards grown in warm and hot climates. 

 

Materials And Methods 

 

Experimental Design 

 This study was conducted in 2019 and 2020 in seven commercial vineyards located 

in the Texas High Plains American Viticultural Area (AVA) and North Texas Growing 

Region (Table 2.1) Twenty mature (three years or older) V. vinifera cv. Tempranillo vines 

were selected at each site for the study. Ten additional vines were selected from Site 6. 

When possible, vines were consecutive in a single row. All vines were located in the same 

block in close proximity. Standard cultural practices for the respective growing region were 

implemented at all vineyard sites. Experimental units consisted of single vines and all data 

were collected on individual experimental units (Table 2.2). In 2019, anthesis measurements 

were not recorded at all study sites. Site 7 did not participate in the 2020 study. 

 

Vine Characterization  

 Grapevine canopy was characterized using enhanced point quadrant analysis as 

described by Meyers and Vanden Heuvel (2008). Measurements were taken at 20cm 

intervals at anthesis, 30 days after anthesis (DAA), and at harvest. The number of count and 
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non-count shoots were determined at 30 DAA and harvest, and canopy density was 

determined as the number of shoots per vine divided by in-row vine spacing. Measurements 

of photosynthetically active radiation (PAR, 400 - 700 nm) were taken in the fruiting zone 

with a AccuPAR LP-80 ceptometer (Decagon Devices, Cambridge, UK) on cloudless days 

between 10:00 am and 3:00 pm at anthesis, 30 DAA and harvest. The probe was inserted 

parallel to the row in the interior of the canopy at the fruiting zone and mid canopy and the 

mean of 2 readings of Ambient Flux and OLN/2 Flux were recorded.  

 Vine vigor was measured as shoot diameter using a digital caliper (IP54 Digital 

Caliper, EAGems, Los Angeles, California) between nodes 1 and 2 at the base of shoots 

from ten randomly selected shoots per vines at 30 DAA and harvest. For the first year of the 

study, dormant cane pruning weights were recorded during winter pruning in January of 

2020. The dormant canes were pruned above node 5 from the base of each shoot and 

weighed per vine to determine total pruning weight. Pruning weight data were not collected 

in the second year of the study. 

 

Climatic Measurements  

 Weather data is presented in Table 2.3. Mean monthly temperatures for 2019 and 

2020 during the April-August growing seasons were obtained from local weather stations 

(WatchDog 1650 Micro, Spectrum Technologies, Inc., Dallas/Fort Worth, TX) at Sites 1, 2, 

3, and 4. Mean monthly temperatures for Sites 5, 6, and 7 were obtained by regional weather 

stations recorded by  the National Oceanic and Atmospheric Administration (NOAA) 

National Centers for Environmental Information (NOAA, 2020). Monthly precipitation 

means for 2019 and 2020 during the April-August growing seasons were obtained by 
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regional weather stations recorded by the NOAA National Centers for Environmental 

Information at all research sites. Growing degree days (GDD) were determined as GDD = 

[(maximum daily temperature + minimum daily temperature) / 2] – 10 from 1 April to 

harvest.  

 

Vine Nutrient Status  

 Whole leaf samples were collected at 30 DAA and 50% veraison  to assess vine 

nutrient status. One recently matured leaf (corresponding to nodes 5 to 7 from the apical 

shoot tip) per primary fruit bearing shoot that were well exposed to sunlight were selected. 

Five leaves per vine were collected. The samples were stored in paper bags during field 

collection. Whole leaf samples were washed in a mild, phosphorus-free soap water solution, 

rinsed with distilled water, and then dried for 72 hours in a drying oven at 60°C. Samples 

were analyzed by the Texas A&M AgriLife Extension Soil, Water and Forage Testing 

Laboratory for P, K, Ca, Mg, Na, S, Fe Cu, Mn, Zn, and B analysis. 

 

Soil Sampling  

 Soil sampling was performed in July 2020 using a spade as described by Soil, 

Water and Forage Testing Laboratory, Department of Soil and Crop Sciences, Texas 

AgriLife Extension Service. A homogenous soil sample consisting of 4 subsamples at vines 

3, 8, 13, and 18 were taken per site and submitted to the Texas AgriLife Extension Soil, 

Water and Forage Testing Laboratory for pH, NO3-N, soil electrical conductivity, P, K, Ca, 

Mg, Na, and S analysis. 
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Berry Sampling And Analyses for Chemical Composition 

 Twenty berries were randomly sampled per vine at 30 DAA and 50% veraison, 

and 200 berries were randomly sampled per vine at harvest for chemical analyses. Whole 

berry samples were immediately frozen at -23ºC for preservation until processing. For 

sample preparation, the frozen berries were placed in a beaker and heated to 65ºC for one 

hour in a water bath (DSB-500D, LW Scientific, Inc., Atlanta, Georgia) to re-dissolve 

tartrates. The warmed samples were homogenized in a commercial blender (GB26-b, 

Hamilton Beach, Glen Allen, VA) for 3 minutes and transferred to 50ml polypropylene 

tubes. The sample tubes were centrifuged for 5 minutes at 4000 rpm. The supernatant was 

transferred into 57 grams wide-mouth plastic jars for carbon isotope analysis, and the juice 

was centrifuged an additional 5 minutes at 4000 rpm. Remaining supernatant was discarded 

and the must samples were immediately frozen at -23ºC until analyses.   

 For must analysis, the samples were thawed for 48 hours at 4ºC. The samples were 

analyzed with a FOSS WineScan (WineScanTM, Foss, Denmark) for soluble solids (ºBrix), 

pH, K, TA, malic acid, tartaric acid, fructose, and glucose using Fourier Transform Infrared 

analysis as described by Musingarabwi, et al. (2015). To validate chemical analysis 

methodology, 20 must samples from the 2020 harvest were selected at random for soluble 

solids (ºBrix), pH, K, TA, malic acid, tartaric acid, fructose, and glucose analysis by ETS 

Laboratories in St. Helena, CA for correlation comparison with the Fourier Transform 

Infrared analysis.  
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Harvest Parameters 

 At harvest, cluster counts were recorded and yield per vine was measured with a 

digital hanging scale (FG007750000000 Pelouze, Rubbermaid, Atlanta, GA). Mean cluster 

weight was calculated as yield divided by the number of clusters. Mean fresh berry weight 

was determined by weighing the 200-berry harvest samples. Crop load was calculated in 

2019 as vine yield divided by dormant pruning weight. 

 

Statistical Analysis 

 To evaluate relationships between dependent and independent variables and to 

develop predictive models, partial least squares regression (PLSR) and ordinary least 

squares (OLS) regression were conducted with JMP Version Pro 15 Statistical Software 

(SAS Institute, Cary, NC). The method of validation carried out was the leave one out cross-

validation. Data was normalized and the number of latent vectors in each PLS model was 

determined by the lowest predicted residual sum of squares (PRESS). When building 

models, all variables were included in the initial models and independent variables were 

removed in an iterative process based on low regression coefficients and variable 

importance factors until the strength of the model could no longer be improved. To 

determine the variables most significant to the models, a variable of importance coefficient 

(VIP) of 0.8 was used as the threshold. All variables below the threshold were removed 

before each model was reconstruction. One-way analysis of variance (ANOVA) and 

Welch’s t-test, followed by means separation using Games-Howell test at the 5% 

significance level was used to compare data on juice pH across research sites and years. 
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Results And Discussion 

 

 This study was conducted in seven commercial Tempranillo vineyards located in 

two separate grape production regions in Texas that represent different climatic and soil 

conditions. Tempranillo was selected for the study because it is the second most cultivated 

grape cultivar in Texas (USDA, 2019), and often has high juice pH at harvest. With high 

juice pH being problematic in winemaking by reducing the microbial stability of wine and 

lowering wine quality, it is important to understand the variables that influence pH in 

Tempranillo grown in Texas. In this study, berry acidity was evaluated because pH is the 

measure of free acid in solution, primarily tartaric acid, malic acid, and K in grape  juice 

(Boulton, 1980b). The variability in vine growth, yield components, nutritional status, and 

weather was used to explain differences in grape acidity over two growing seasons.  

 Grape berries were collected 30 days after anthesis (30 DAA), at 50% veraison 

(50V), and at harvest for berry composition analysis. Mean pH by site data are displayed in 

Table 2.4. A significant difference in mean pH at p-value <0.0001 was found among sites 

in the 2019 and 2020 growing seasons at 30 DAA and at harvest. At harvest in 2019, sites 

1 and 5 had the highest mean pH of 4.493 and 4.623, respectively, and site 7 had the lowest 

mean pH of 4.094. In 2020, harvest data was not collected for sites 5 and 7 due to crop loss. 

At harvest in 2020, sites 1, 3, and 4 had the significantly highest mean pH of 4.402, 4.314, 

and 4.286 respectively, and site 2 had the significantly lowest mean pH of 3.952. Across all 

years and years combined, sites 1 and 5 had the highest juice pH. Site 2 had lowest mean 

pH across all years and years combined.  
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Important Predictors of pH 

 To determine the correlation between grape juice pH and key vine physiological 

attributes and environmental factors, PLSR analysis was performed to construct best fit 

predictive models (Table 2.5). Models were constructed for data collected in 2019, 2020, 

and for data from both years combined at 30 DAA, 50V, and harvest. PLSR analysis was 

performed using a total of 69 acidity predictor variables (APV), and with measures of acidity 

(tartaric acid, malic acid, and total acidity) removed (AVR) due to their strong, well-known 

relationship with pH. The goal of the study was to identify viticultural factors that influence 

pH that may be manipulated through vineyard practices.   

 

PLSR Analysis with All Acidity Predictive Variables  

 The PLSR analysis with all 69 predictor variables included was performed to test 

the expected strong correlations between pH and tartaric acid, malic acid, and total acidity. 

A mean of 9 variables (berry composition and yield components) explained the greatest 

variance in predictor variables and grape juice pH (Table 2.5). The six most important 

variables to each model are provided in Table 2.6.  

 At all collection timings, berry composition indices of K, tartaric acid, malic acid, 

and °Brix show the greatest importance (VIP ≥ 1.077; coefficients ≥ ± 0.0298). Of those 

variables, juice K had the highest model correlation coefficient with pH (VIP ≥ 1.483; 

coefficients ≥ ± 1.1695) at the three collection timings (Table 2.6). The correlation between 

K and juice pH has been reported previously (Boulton 1980a; Hepner and Bravado, 1985; 

Gawel et al., 2000; Rogiers, et al., 2017). Ordinary Least Squares Regression (OLSR) 

analysis was conducted to further understand this positive correlation (Figure 2.1). In the 
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2019 fitted regression, K accounted for 48% of the variation in berry pH at 30 DAA, 68% 

of the variation at 50V, and 84% of the variation at harvest. A similar increase in the percent 

of variation of pH through berry development was observed in the 2020 growing season. 

These results indicate that the proportion of the variance in juice pH explained by juice K 

increases with grape berry growth and development. Mean K concentration from all sites 

increase by 58.5% from 30DAA to 50V  and 65.5%  from 50V to harvest in 2019. Mean K 

concentrations from all sites increase by 34.06% from 30DAA to 50V  and 73.89%  from 

50V to harvest in 2020. Similar results were found in a study on Carignane grapevines, 

where K concentration accumulated rapidly until the berries reached 10°Brix, followed by 

relatively slow accumulation between 10° and 17°Brix, and then a second rapid period of 

accumulation during the final stages of ripening (Freeman and Kliewer, 1983). 

  The proportion of major organic acids (VIP ≥ 1.0435; coefficients ≥ ± 0.0348) 

and dissolved sugars (VIP ≥ 1.0504; coefficients ≥ ± 0.0145) are also high in importance for 

predicting pH (Table 2.6). An order of variable importance cannot be easily defined between 

organic acids and major sugars because of fluctuation in coefficient values by year and 

timing, but tartaric acid, malic acid, glucose, fructose, and °Brix all lie within the number 

of latent vectors in each PLSR model. Notwithstanding the fluctuation in variables of 

importance, tartaric acid followed juice K for variable of importance in four of the models 

(VIP ≥ 1.1745; coefficients ≥ ± 0.0229). OLSR analysis showed tartaric acid to account for 

17% of the variation in juice pH, 11% of the variation at 50V, and 48% of the variation at 

harvest (Table 2.11). °Brix followed K in three of the models (VIP ≥ 1.1113; coefficients ≥ 
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± 0.1147) (Table 2.6). OLSR analysis showed °Brix to account for 31 – 34% of the variation 

in berry pH between all collection timings (Table 2.11). 

 Results from the PLSR analysis showed cluster number and crop load to be 

important predictors of the models at timings 30 DAA and 50V in both growing seasons 

(VIP ≥ 1.0124; coefficients ≥ ± 0.0001). The correlation between cluster number and juice 

pH was inconsistent between timings. A slightly negative correlation coefficient of -0.0443 

between crop load and berry pH was observed at 50V in years combined. OLSR analysis at 

the three collection timings in years combined revealed relatively no relationship between 

juice pH and cluster number or crop load (Table 2.11). OLSR analysis by site and year 

revealed strong correlations between crop load and pH in 2019. Sites 1 and 4 showed strong 

negative correlations of 14% and 40%, respectively, between crop load and pH at 30 DAA. 

Sites 1, 2, and 4 showed strong negative correlations of 20%, 14%, and 22%, respectively, 

between crop load and pH at 50V. Sites 1, 2, and 6 showed strong negative correlations of 

12%, 17%, and 15%, respectively, between crop load and pH at harvest. Measurements of 

cluster number and crop load may not have accounted for intentional fruit thinning or shoot 

hedging over the growing season, which could have contributed to the varying correlations. 

Research conducted on the effects of crop load on juice pH and K have been conflicting. 

One study that compared juice quality from Carignane vines not thinned and thinned to one 

cluster per shoot observed no effect on grape juice pH, titratable acidity and K between the 

treatment and control (Freeman and Kliewer, 1983). Another study observed an increase in 

juice K when crop load decreased in Carignane and Cabernet-Sauvignon (Hepner and 

Bravdo 1985). The researches partially accredited the increase in juice K in Cabernet-
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Sauvignon to crop load reduction by frequent irrigation. The variation in crop load effect on 

K and juice pH may indicate an indirect effect dependent on source/sink relationships with 

K concentration and water availability.      

  

PLSR Analysis with Acid Variables Removed  

 PLSR analysis with acid variables removed was performed to predict pH by the 

environmental and cultural predictor variables without interference of tartaric acid, malic 

acid, or total acidity as pH is a measure of free acid (Table 2.5). These models provide 

variables of importance for pH that may be manipulated through vineyard management 

practices. The models predict that a mean of 11 factors (berry composition, nutritional 

status, and climate) explain the greatest variance in predictor variables and grape juice pH. 

The six most important variables to each model are provided in Table 2.7.  

 Consistent with the models constructed with all predictor variables, juice K had 

the highest correlation to juice pH at the three collection timings (VIP ≥ 1.4867; coefficients 

≥ ± 0.6724), followed by dissolved sugars (VIP ≥ 0.9953; coefficients ≥ ± 0.0167). Cluster 

count and crop load variables also showed importance at 30 DAA and 50V (VIP ≥ 1.0357; 

coefficients ≥ ± 0.0074) as seen in models constructed including acid variables.  

 Growing degree days (GDD) were determined by month at each site to provide an 

additional temperature variable in the PLSR models. Results from the PLSR analysis show 

GDD in June and July to be important predictors of the models at timings 30 DAA and 50V 

depending on growing season (VIP ≥ 0.9739; coefficients ≥ ± 0.0074; Table 2.11). OLSR 

analysis showed GDD in June accounted for 58% of the variation in juice pH at 30 DAA in 

2019. In years combined, GDD in July accounted for 43% of the variation in juice pH at 30 
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DAA. These findings agree with the study by Spayd et al. that determined the overall 

temperature of the berry is inversely related to berry TA (2002).   

 The PLSR models with acid variables removed also revealed soil parameters to be 

of lesser, but significant importance to berry pH at harvest in both growing seasons (VIP ≥ 

0.9935; coefficients ≥ ± 0.0081; Table 2.7). Soil K at harvest in years combined had a model 

coefficient of -0.0553, suggesting a slightly negative relationship with juice pH. OLSR 

analysis confirmed the negative relationship between soil K and juice pH, but soil K does 

not show to be highly influential, accounting for only 1% of the variance in juice pH (Table 

2.11). The amount of K in the plant being a function of the vines capacity to uptake nutrients 

from the soil may contribute to the low correlation between soil K and juice pH at harvest. 

The PLSR model at harvest in 2020 suggests soil Ca as an important variable in the models 

(VIP = 1.0391; coefficient = 0.0105), however OLSR analysis indicated a minor positive 

relationship between the two variables. In years combined, soil electrical conductivity (EC) 

variables lie within the number of latent vectors in each PLSR model (VIP = 0.9935; 

coefficients = 0.3096). OLSR analysis indicated a positive relationship between pH and soil 

EC in years combined, accounting for 26% of the variation in berry pH at harvest. The 

significance of soil nutrient content to juice acidity has been researched with varying effects. 

In a study by Downton and Loveys to assess the effects of salinity in grape development, 

vines grown under high salinity irrigation produced fruit with higher juice acid than the 

control throughout pre-veraison (1978). The authors attributed the high juice acidity in salt-

treated plants to an increase in osmotic pressure of the juice from the accumulation of 
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reducing sugars. After veraison, a degradation of malate and tartrate were observed as K 

concentrations increased in the juice, resulting in a decrease in juice acidity.   

 

Important Predictors of K 

 In accordance with previous reports (Boulton 1980a; Gawel et al. 2000), the PLSR 

analysis to predict juice pH indicated that juice K is highly correlated with juice pH across 

sites. Therefore, identifying variables that directly affect juice K may provide management 

solutions to control grape juice pH in the vineyard. To determine the correlation between K 

and key physiological and environmental attributes in grapevine, PLSR analyses were 

performed to construct best fit predictive models (Table 2.8). Models were constructed for 

the 2019, 2020, and years combined to predict K in berries at 30 DAA, 50V, and harvest. 

PLSR analysis was performed using a total of 69 acidity predictor variables (APV), and with 

measures of acidity (tartaric acid, malic acid, and total acidity) removed (AVR). The acid 

variables were removed from the second analysis due to the evidently strong relationship 

between acidity parameters and pH and K that may prevent the models ability to predict 

important environmental or cultural factors.   

 

PLSR Analysis with All Acidity Predictive Variables  

 The models conducted with all predictor variables present predict that a mean of 

seven factors (berry composition, nutritional status, and climate) explain the greatest 

variance in juice K (Table 2.8). A maximum of the six most important variables to each 

model are provided in Table 2.9. The significance of the predictive variables lying within 

the number of latent vectors in each PLSR model for K varied greatly by collection timing. 
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 At 30 DAA, °Brix and total acidity were the two most important variables to 

explain the greatest variance in juice K, dependent on growing season (VIP ≥ 1.146; 

coefficients ≥ ± 0.2427). At 50V and harvest, juice pH had the highest correlation to juice 

K in both growing seasons (VIP ≥ 1.4089; coefficients ≥ ± 0.3255). An apparent difference 

in the types of important variables following the main variable is present at 30 DAA from 

50V and harvest. At 30 DAA, fruit maturity indices, organic acids, and dissolved sugars 

were the variables with the greatest importance to the models. At 50V and harvest, soil 

variables and leaf nutrition become prominent in the models. This change in variables of 

importance as the fruit matures suggests that K content in the juice may be dependent on 

nutrient remobilization from source to sink relations in the grapevine. It had been previously 

identified that K accumulation is most rapid after the onset of ripening (Hale, 1977; Possner 

and Kliewer, 1985; Ramos and Romero, 2017). The process of K uptake and accumulation 

in grapevine has been explored and defined with limitations. K from the soil is taken up 

through the roots by membrane transporters and channel proteins and stored in woody plant 

structures for remobilization to new shoots and leaves during the growing season (Cherel et 

al., 2014). The amount of K remobilized from long-term storage structures to fruit has not 

been determined, however, the majority of K  within growing shoots and inflorescences 

comes from woody storage areas (Clarke et al., 2015). Drivers of K accumulation after 

veraison have been attributed to a change from symplastic to apoplastic phloem loading of 

K and the decline in xylem flow (During et al., 1987; Findlay et al., 1987).  

 Leaf nutrient variables K, Cu, and Ca were important in the models for predicting 

juice K at 50V in the 2019 and 2020 growing seasons (VIP ≥ 0.9596; coefficients ≥ ± 
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0.0310). OLSR analysis was conducted to further understand the significance of leaf 

nutrients at these timings (Table 2.12). The results indicate that leaf K at 50V accounted for 

35% of the variation in juice K in 2019, and 39% of variation in 2020. Leaf Cu at 50V in 

growing seasons combined accounted for 19% of the variation in juice K. A negative 

relationship between leaf Ca and juice K in years combined was observed at 50V (22%). 

Leaf nutrient analysis by site showed mean leaf K concentrations at 50V were lower at sites 

2, 3, 5, and 7 (Range: 8,601 – 11,838 ppm) than sites 1, 4, and 6 (Range: 14,090 – 18,238 

ppm) in 2019 and 2020.  Mean leaf K concentrations in 2019 at harvest were lower at sites 

5, 6, and 7 (Range: 5,563 – 6,776 ppm) than sites 1, 2, 3, and 4 (Range: 9,032 – 18,276 

ppm). Mean leaf K concentrations at 50V were lower at sites 2, 3, and 5 (Range: 8,601 – 

10,957 ppm) than sites 1, 4, and 6 (Range: 14,398 – 18,381 mg/kg) in 2020. As mentioned 

previously, site 1 had the highest mean K and juice pH at all collection timings in both years, 

with the exception of 30 DAA in 2020. In contrast, Site 2 had the significantly lowest mean 

pH at all collection timings in both years, with the exception of harvest in 2019. At 50V and 

harvest in both growing seasons, leaf K concentration at site 1 was in the higher range and 

leaf K concentration at site 2 was in the lower range, suggesting the concentrations of juice 

K  during ripening is partially dependent on K concentrations in the leaves. This 

phenomenon has been previously identified. Remobilization of K from other plant tissues 

to the grape berry may depend on soil K availability, K uptake capacity of the roots, and 

rates of K translocation from root to shoot to meet the berry demand for K (Mpelasoka, et 

al., 2003). The roles of K in sucrose phloem loading and stomatal regulation may contribute 

to the positive correlation between leaf K and juice K during ripening. K assistance in re-
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energizing the transmembrane phloem loading process has been observed in Arabidopsis 

(Wolf et al., 2008). This process occurs if excess K is available after it has been transported 

along the phloem stream to K deficient areas of the plant.     

 Soil variables were also prominent in the models for predicting juice K at 50V and 

harvest in the years combined data (VIP ≥ 0.9447; coefficients ≥ ± 0.006). OLSR analysis 

was conducted to further understand the significance of soil nutrients at these timings (Table 

2.12). The results indicate that soil K at 30 DAA accounted for 35% of the variation. Soil 

EC at 50V and harvest accounted for 74% and 65%, respectively, of the variation in juice 

K. Soil Ca at harvest accounted for 29% of the variation in juice K. At harvest, soil EC was 

the most important soil parameter. The degree of salinity in the soil measured as soil ECe 

(dS/m) was determined for each site according to Michael Cahn (n.d.). All sites were 

considered non-saline (< 4 dS/m). Sites 1 and 4 had the lowest soil EC at 0.07 and 0.16 

dS/m, respectively, and site 7 had the highest at 0.4 dS/m. The remaining sites had a soil EC 

range of 0.2 – 0.25 dS/m.The sufficiency ranges for soil pH, phosphorous (P), potassium 

(K), calcium (Ca), and magnesium (Mg) concentrations were determined for each site 

according to the Wolf, et al. (2008). Site 1 had a soil pH within the sufficient range for 

growing Vitis vinifera, and all other sites were above the sufficient range for soil pH. P 

deficiency ( < 20 ppm) was present at sites 1, 2, 3, and 6. Site 1 was deficient in soil K ( <75 

ppm), and all other sites were high in soil K ( >100 ppm). Ca was high at sites 2 and 3 ( 

>2,000 ppm). Site 1 was deficient in Mg (<100 ppm), and sites 5, 6, and 7 were high in Mg 

( >250 ppm). The soil conditions at site 1 appear contradictory to the juice pH and K 

concentrations at harvest in both growing seasons. Site 1 had the significantly highest mean 
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pH at all collection timings in both years, with the exception of 30 DAA in 2020 (Table 2.4). 

Mean K concentrations at site 1 were also the highest at all collection timings in both years, 

with the exception of 30 DAA in 2020 (Range: 687.45 – 2797.75 mg/L). Conversely, the 

soil pH at site 1 was slightly acidic (6.5) and the soil was deficient in K (56 ppm) and Mg 

(83 ppm). In contrast, Site 2 had the significantly lowest mean pH at all collection timings 

in both years, with the exception of harvest in 2019 (Table 2.4). Mean K concentration at 

site 2 was lower than the mean K concentration at site 1 by collection timing and year 

(Range: 635.06 – 1348.70 mg/L). Mean K concentration of all collection timings in growing 

seasons combined was 42% less at site 2 than at site 1. The soil pH at site 2 was the highest 

of all sites (7.8) and high in K (157 ppm). These contradicting measures suggest another 

variable is responsible for juice pH and K concentrations. Previous research has shown 

inconsistent responses in grapevine to soil conditions. Morris et al. (1983) observed an 

increase in petiole K from 1.24% (dry weight basis) in control plants to 6.07% in plants 

grown under high K fertilizers. In addition, an increase in juice K was also observed with 

high levels of K fertilization, resulting in pH increases and titratable acidity reductions in 

the juice. In another study, K fertilization had no effect on grape juice pH, titratable acidity 

and K (Freeman and Kleiwer, 1983). The variation in grapevine response to soil K 

concentrations may be attributed to the complexities of soil nutrient chemical reactions 

(Mpelasoka et al., 2003).  

 The results shown in Table 2.9 also indicate that rainfall in 2020 was of importance 

at 30 DAA and harvest (VIP ≥ 1.0991; coefficients ≥ ± 0.0004). OLSR analysis showed 

rainfall in April accounted for 70% of the variation in juice K at 30 DAA.  At harvest, 
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rainfall in June and July accounted for 83% and 66% of the variation in juice K. Rainfall 

data by site are displayed in Table 2.3. The mean amount of rainfall received in 2020 was 

38% less than the rainfall received in 2019 (Table 2.3). In 2020, site 1 had the mean highest 

pH (4.4) at harvest, and site 2 had the lowest mean pH (3.95) at harvest (Table 2.4) Rainfall 

in June of 2020 at site 1 was 64% greater than rainfall at site 2. Rainfall in July of 2020 at 

site 1 was 72% greater than rainfall at site 2.  K concentration at site 1 was also higher than 

site 2 by 62% at harvest that year. These findings, parallel to the high positive linear 

correlation between monthly rainfall and juice K, suggest that an increase in rainfall or 

irrigation during mid-to-late-veraison will result in an increase in juice K, thus an increase 

in juice pH. Previous studies corroborate these findings. Hepner and Bravdo (1985) 

observed frequent irrigation to be partially responsible for a reduction in crop load, and thus 

an increase in juice K in Cabernet-Sauvignon. Another study observed this same 

relationship, in that an increase in pH and K was observed in vines grown under high 

irrigation (Freeman and Kleiwer, 1983). K uptake by plants is often escalated in by surplus 

of water due to increased mobility in the soil and rapid root uptake (Tazawa et al., 2001). 

 

PLSR Analysis with Acid Variables Removed  

 The PLSR analysis with acidity variables removed (AVR) was performed to 

predict K by the environmental and cultural predictor variables without interference of 

tartaric acid, malic acid, total acidity, or pH (Table 2.5). These models provide variables of 

importance for K that may be manipulated through vineyard management practices. These 

models predicted a mean of 4 factors (nutritional status and rootstock) explain the greatest 
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variance in predictor variables and grape juice K. A maximum of the six most important 

variables to each model are provided in Table 2.8.  

 With acidity variables removed, the variables of greatest importance were leaf and 

soil nutrition (VIP ≥ 0.8672; coefficients ≥ ± 0.1145), followed by rootstock (VIP ≥ ; 

coefficients ≥ ± ), and rainfall and temperature (VIP ≥ 1.1855; coefficients ≥ ± 0.034). Leaf 

P (VIP ≥ 1.3229; coefficients ≥ ± 0.1743) and soil EC (VIP ≥ 1.3044; coefficients ≥ ± 

0.0392) were modeled as important predictors of K at 30 DAA in both growing seasons. 

OLSR analysis indicated 25% of the variation in juice K was explained by leaf P, and 14% 

of the variation in juice K was explained by soil EC (Table 2.12). At 50V and harvest, leaf 

K (VIP ≥ 0.9752; coefficients ≥ ± 0.0126), soil EC (VIP ≥ 1.2894; coefficients ≥ ± 0.4779), 

soil K (VIP = 1.2496; coefficients = -0.0472), and soil Ca (VIP ≥ 1.3914; coefficients ≥ ± 

0.1439) were the most important variables, dependent on growing season. At 30 DAA in 

2019, cluster exposure flux availability (CEFA) had the greatest variable of importance of 

1.3936 with a correlation coefficient of 0.2604, however, OLSR analysis showed only a 2%  

predictivity of variation in juice K, suggesting CEFA to be of lesser importance than 

determined by PLSR analysis (Table 2.12). 

 With acidity variables removed, PLSR analysis modeled rootstock to be a variable 

of importance in predicting K (VIP ≥ 1.3882; coefficients ≥ ± 0.1173). In the years combined 

data, rootstock accounted for 25% of the variability in K at 50V and 33% of the variability 

in K at harvest (Table 2.12). A comparison of rootstocks to mean pH by site at 50V and 

harvest in growing seasons combined suggests that own-rooted and 101-14 Mgt grafted 

vines produced the lowest juice pH,  3309 Couderc grafted vines produced moderate juice 
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pH, and 1103 Paulsen vines produced the highest juice pH. Previous studies showed similar 

results for rootstock 101-14 Mgt and contrasting results for 1103 Paulsen. The effect of the 

rootstock on scion nutrition and growth has been well documented in the literature (Delas 

& Pouget, 1979; Kodur, 2011; Garcia et al. 2001; Loue et al. 1984; Valcheva et al. 2012). 

In a rootstock trial by Ruhl, the scion variety Sultana was grafted to six different rootstock 

varieties and the juice acidity was analyzed (1989). Rootstocks 1103P (V. berlandieri X V. 

rupestris), 110R (V. berlandieri x V. rupestris), and 1202 (V. vinifera x V. rupestris) had the 

lowest pH and lowest concentrations of K. In another study, rootstock SO4 (Vitis 

Berlandieri x Vitis riparia) had greater K concentrations and higher pH in the must than 

3309 C (Riparia tomenteux x Rupestris martin) and 101-14 Mgt (Vitis riparia x Vitis 

rupestris) when grown under identical conditions ( Garcial, et al., 2001). Mg and Ca 

concentrations were also lower in SO4 than 3309 C and 101-14 Mgt.  

 

Summary 

 

 Results from the Partial Least Squares Regression (PLSR) analyses identified 

twenty predictive variables to be of the greatest importance in predicting grape juice pH. 

The twenty variables are categorized as berry maturity indices, temperature, water status, 

soil conditions, rootstock genotype, leaf nutrition, and crop load. As observed in previous 

studies (Boulton 1980a; Gawel et al. 2000), grape juice K concentration had the highest 

model correlation coefficient with pH (VIP ≥ 1.483; coefficients ≥ ± 1.1695) at all collection 

timings in 2019 and 2020. This strong correlation indicates that K is the key variable for 
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manipulating grape juice pH. Therefore, identifying variables that directly affect juice K 

may provide management solutions to control grape juice pH in the vineyard. PLSR 

analyses determine twelve latent vectors to be of the greatest importance in predicting grape 

juice K. The twelve latent vectors are categorized as temperature, water status, soil 

conditions, rootstock genotype, and leaf nutrition. The variation in juice K in grapevine 

appears to be a function of the rootstocks ability to take up the nutrients available in the soil. 

Increased ambient temperatures and increased water status from the onset of berry ripening 

to mid-ripening correlated to an increase in K concentrations in the leaves, and thus in the 

berries at harvest. Future research should consider the importance of potassium, plant 

nutrient availability, soil nutrient availability, rootstock cultivar, and vine water status as 

viticulture factors important in directly influencing juice acidity. By focusing on these five 

variables, future research may determine a precise vineyard management approach to 

decrease berry pH and thus, increase berry acidity.  
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 Table 2.1   Research sites characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site 

ID 
Location Site Coordinates 

Regional Weather Station 

Coordinates 
Soil series Scion  Rootstock 

Year 

Planted 

Number of 

vines 

2019 2020 

Site 1 Southlake, TX 32°57'06.8"N -97°09'58.9"W 32.8978° N -97.0189° W Vertisols Tempranillo clone 11.1 1103 Paulsen 2018 20 20 

Site 2 Weatherford, TX 32°50'49.4"N -97°39'26.8"W 32.7816° N -98.0602° W Vertisols Tempranillo clone 11 101-14 Mgt 2015 20 20 

Site 3 Mingus, TX 32°27'12.3"N -98°27'27.3"W 32.4444° N -97.8169° W Mollisols Tempranillo clone 05 3309 Couderc 2008 20 20 

Site 4 Edna Hill, TX 31°58'09.0"N -98°21'55.8"W 32.2153° N -98.1775° W Mollisols Tempranillo 1103 Paulsen 2015 20 20 

Site 5 Brownfield, TX 33°11'18.5"N -102°14'08.9"W 33.1713°N -101.7980° W Alfisols Tempranillo 1103 Paulsen 2014 20 20 

Site 6 Brownfield, TX 33°09'05.1"N -102°13'13.5"W 33°10'30.8"N -102° W Alfisols Tempranillo clone 02 Ownrooted 2007 30 20 

Site 7 Tokio, TX 33°08'24.1"N -102°34'50.7"W 33.1869°N -102.8281° W Alfisols Tempranillo 101-14 Mgt 2015 20 0 
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Table 2.2 Date of data collection by site in 2019 and 2020 at anthesisa, 30 DAA, 50% veraison, harvest and rough pruningb 

    2019   2020 

Site   Pruning Anthesis 
30 

DAA 
50% veraison Harvest 

  

Pruning Anthesis 
30 

DAA 
50% veraison Harvest 

1   - - 20-Jun 19-Jul 31-Jul   15-Jan 1-May 15-Jun 19-Jul 9-Aug 

2   - - 20-Jun 19-Jul 31-Jul   16-Jan 1-May 15-Jun 19-Jul 4-Aug 

3   - - 21-Jun 19-Jul 17-Aug   8-Mar 1-May 15-Jun 19-Jul 15-Aug 

4   - - 21-Jun 19-Jul 31-Jul   1-Feb 1-May 15-Jun 19-Jul 8-Aug 

5   - - 26-Jun 30-Jul 6-Sep   - 24-May 29-Jun 13-Jul - 

6   - - 25-Jun 30-Jul 6-Sep   1-Feb 24-May 29-Jun 13-Jul 16-Aug 

7   - - 25-Jun 30-Jul 19-Aug   - - - - - 

                          

aAnthesis data was not collected in 2019  

b Pruning data was not collected in 2019  
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Table 2.3 Temperature, rainfall, and GDD by site from April to August in 2019 and 2020 

 2019  2020 

Site Month Temperatureb Rainfall GDDc   Month Temperature Rainfall GDD 

  ---- °C ---- 

---- mm --

--    ---- °C ---- ---- mm ----  

1 

Apr 18.89 171.45 162  Apr 18.11 48.26 151 

May 23.00 207.01 367  May 23.22 191.52 367 

Jun 26.9844a 104.90 479  Jun 26.01a 135.89 516 

Jul 37.98a 19.81 595  Jul 28.51a 58.67 595 

Aug 42.21a 61.98 624  Aug 28.59a 32.26 599 

          

2 

Apr 18.17 146.05 282  Apr 17.11 24.89 119 

May 21.83 267.97 453  May 22.61 100.08 338 

Jun 26.00a 85.09 623  Jun 25.79a 48.51 495 

Jul 26.90a 32.51 604  Jul 29.05a 16.26 590 

Aug 29.53a 130.56 526  Aug 28.31a 11.94 599 

          

3 

Apr 25.00 224.54 0  Apr 19.44 15.49 158 

May 23.33 161.80 26  May 23.33 107.44 378 

Jun 27.22 135.13 21  Jun 27.05a 93.73 528 

Jul 31.11 47.50 287  Jul 30.12a 45.47 637 

Aug 27.22 48.26 204  Aug 28.55a 9.65 602 

          

4 

Apr 23.33 9.65 153  Apr 18.89 4.06 121 

May 22.78 10.41 313  May 23.89 75.95 344 

Jun 26.11 69.09 456  Jun 25.74a 73.41 475 

Jul 29.44 1.27 553  Jul 28.69a 37.85 599 

Aug 27.22 55.12 609  Aug 28.74a 0.00 541 

          

5 

Apr 16.39 85.60 50  Apr 15.56 0.51 63 

May 19.72 84.33 116  May 22.50 65.02 313 

Jun 24.44 41.40 413  Jun 25.83 58.93 465 

Jul 27.78 1.27 545  Jul 29.17 14.73 593 

Aug 28.89 25.91 584  Aug 28.06 13.97 560 
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Table 2.3 Continued  

          

6 

Apr 16.72 44.45 213  Apr 15.83 0.51 289 

May 19.89 100.58 324  May 21.11 52.32 311 

Jun 24.94 52.32 537  Jun 25.28 46.99 496 

Jul 27.78 0.00 579  Jul 26.39 46.99 592 

Aug 29.11 54.36 459  Aug 25.83 13.72 554 

          

7 

Apr 15.00 22.35 34  Apr - - - 

May 18.89 33.78 144  May - - - 

Jun 23.61 73.15 376  Jun - - - 

Jul 28.06 8.64 520  Jul - - - 

Aug 26.11 55.12 555  Aug - - - 

          
aData collected on-site by WatchDog 1650 Micro Station weather stations 

bTemperature values determined as a total mean of the daily temperature means recorded by month 

cGDD: growing degree days. Determined as GDD = [(maximum daily temperature + minimum daily 

temperature) / 2] – 10base  
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Table 2.4 Mean (+ SD) pH in Tempranillo by site in 2019, 2020, and years combined at 30 DAA, 50% veraison, and harvest  
  

  2019   2020 

Site 30 DAAb SD 
50% 

veraison 
SD Harvest SD 

  
30 DAA SD 

50% 

veraison 
SD Harvest SD 

1 3.385ac 0.075 3.934a 0.117 4.493ab 0.130   3.332c 0.055 3.849a 0.106 4.402a 0.189 

2 3.298bcd 0.063 3.71b 0.139 4.237c 0.099   3.323c 0.091 3.717b 0.147 3.952c 0.137 

3 3.307bcd 0.070 3.828ab 0.120 4.246c 0.143   3.449ab 0.072 3.842a 0.063 4.314ab 0.226 

4 3.261d 0.043 3.761b 0.113 4.094c 0.132   3.344c 0.046 3.845ab 0.130 4.286ab 0.131 

5 3.324abc 0.054 3.937a 0.136 4.623a 0.131   3.487a 0.080 3.909a 0.172 - - 

6 3.361ab 0.091 - - 4.438b 0.194   3.403b 0.054 3.8ab 0.121 4.171b 0.254 

7 3.275cd 0.068 3.753b 0.162 4.094d 0.149   - - - - - - 

pa < 0.0001   < 0.0001   < 0.0001     < 0.0001   < 0.0143   < 0.0001   

                            

                            

  Years Combined     p-value (year)d     

Site 30 DAA SD 
50% 

veraison 
SD Harvest SD 

  
Site 30 DAA 

50% 

veraison 
Harvest     

1 3.358ab 0.070 3.893a 0.118 4.448b 0.167   1 < 0.0026 < 0.0204 < 0.0907     

2 3.310bc 0.078 3.714c 0.141 4.094d 0.187   2 < 0.1296 < 1.0000 < 0.9043     

3 3.378a 0.100 3.834ab 0.098 4.28c 0.190   3 < 1.0000 < 1.0000 < 0.0001     

4 3.303c 0.061 3.803b 0.127 4.279c 0.130   4 < 1.0000 < 1.0000 < 0.0819     

5 3.394a 0.105 3.925a 0.152 4.623a 0.131   5 < 0.9888 < 0.0001 < 1.0000     

6 3.374a 0.084 3.8abc 0.121 4.345bc 0.250   6 < 0.0223 < 1.0000 < 0.9505     

7 3.275c 0.068 3.753bc 0.162 4.094d 0.149   7 < 1.0000 < 1.0000 < 1.0000     

pa < 0.0001   < 0.07   < 0.0001                 

 
ap-value, comparison of mean pH by research site.   
bDAA: days after anthesis.   
cMeans within a column followed by the same letter are not significantly different at the 0.05 level of probability (Games-Howell).  
dComparison of mean pH by year (Welch’s test).  
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Table 2.5 Best fit predictive modelsa for grape juice pH in 2019, 2020, and years 

combined at 30 DAA, 50% veraison, and harvestb  

                
Year  Data 

Type 

Collection 

Timing 

Number 

of 

factors 

Root Mean 

PRESS 

Cumulative 

Q² 

Cumulative 

R²X 

Cumulative 

R²Y 

2019 APV 30 DAA 10 0.3960 1.0000 0.9513 0.8893 

2019 AVR 30 DAA  11 0.4119 1.0000 0.9430 0.8872 

2019 APV 50V 8 0.3089 1.0000 0.8860 0.9560 

2019 AVR 50V  9 0.3312 1.0000 0.8885 0.9732 

2019 APV Harvest  9 0.3336 1.0000 0.8791 0.9721 

2019 AVR Harvest  9 0.2773 1.0000 0.9208 0.9609 

2020 APV 30 DAA 10 0.4983 1.0000 0.9123 0.8639 

2020 AVR 30 DAA  12 0.5203 1.0000 0.9526 0.8294 

2020 APV 50V 10 0.3659 0.9999 0.9648 0.9151 

2020 AVR 50V  6 0.3634 1.0000 0.9146 0.9058 

2020 APV Harvest  10 0.2845 1.0000 0.9660 0.9585 

2020 AVR Harvest  12 0.2728 1.0000 1.0000 0.9529 

YC APV 30 DAA 9 0.3982 1.0000 0.9303 0.8877 

YC AVR 30 DAA  15 0.3906 1.0000 0.9659 0.9081 

YC APV 50V 8 0.2645 1.0000 0.9414 0.9587 

YC AVR 50V  8 0.3255 1.0000 0.9497 0.9360 

YC APV Harvest  9 0.2790 1.0000 0.9140 0.9584 

YC AVR Harvest  13 0.2608 1.0000 0.9872 0.9592 

 

aModels conducted with JMP Pro 15 Statistical Software using Leave-One-Out Cross Validation with 

NIPALS method 
bAbbreviatons: DAA, days after anthesis; 50V, 50% veraison; YC, years combined; APV, all acidity 

predictive variables; AVR, acid variables removed 
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Table 2.6 Variable of importance coefficients and model coefficients from best fit predictive modelsa for grape juice pH in 2019, 

2020, and years combined at 30 DAA, 50% veraison, and harvestb  
 
  30  DAA   50V   Harvest 

  

Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

  Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

  Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

2
0
1
9
 

Juice K- 1c 1.616 1.2012   Juice K- 2d 1.8205 0.801   Juice K- 3e 1.7048 0.7116 

Tartaric Acid- 1 1.531 -0.2201   °Brix- 2 1.5869 0.1212   Tartaric Acid- 3 1.3822 0.0298 

°Brix- 1 1.189 0.3267   Glucose- 2 1.5517 0.0955   °Brix- 3 1.2686 0.1147 

Total Acidity- 1 1.153 -0.3468   Fructose- 2 1.5499 0.076   Malic Acid- 3 1.22 0.039 

Malic Acid- 1 1.077 -0.2214   Crop load- 3 1.2205 0.0001   Fructose- 3 1.2144 0.0535 

Cluster number- 1 1.049 0.0656   Soil pH 1.0707 -0.021   Glucose- 3 1.1989 0.0145 

                        

2
0
2
0
 

Juice K- 1 1.7669 1.1695   Juice K- 2 1.6956 0.8001   Juice K- 3 1.483 0.9732 

Yield per Vine- 1 1.2906 -0.3283   °Brix- 2 1.4188 0.3432   Malic Acid- 3 1.2175 0.3002 

Cluster number- 1 1.1557 0.05   Fructose- 2 1.3453 0.1254   Tartaric Acid- 3 1.1745 -0.1692 

Mean cluster 

weight- 1 
1.1521 -0.0637   Glucose- 2 1.2929 -0.0834   Rainfall (Jul) 1.1451 -0.0385 

Leaf Cu- 1 1.1047 0.0462   Cluster number- 3 1.1393 -0.0994   Soil Ca 1.1264 0.0948 

Nitrate-N- 1 1.1032 0.0578   GDD (Jul) 0.9572 0.0726   Juice K- 2 1.0911 0.0928 

                        

Y
e
a
r
s 

C
o
m

b
in

e
d

 Juice K- 1 1.5802 1.1886   Juice K- 2 1.5613 0.8233   Juice K- 3 1.6126 0.7883 

Tartaric Acid- 1 1.4816 -0.1988   °Brix- 2 1.335 0.1261   Tartaric Acid- 3 1.4627 0.0229 

°Brix- 1 1.1671 0.3263   Fructose- 2 1.3021 0.0666   Malic Acid- 3 1.1382 0.4312 

Total Acidity- 1 1.115 -0.35   Glucose- 2 1.2973 0.0989   °Brix- 3 1.1113 0.1385 

Malic Acid- 1 1.0435 -0.2278   Crop load- 3 1.0512 -0.0443   Juice K- 2 1.0687 0.0565 

Cluster number- 1 1.0124 0.1105   GDD (Jun) 0.9641 0.0087   Fructose- 3 1.0504 0.0348 

aModels conducted with JMP Pro 15 Statistical Software using Leave-One-Out Cross Validation with NIPALS method 
bAbbreviatons: DAA, days after anthesis; 50V, 50% veraison; YC, years combined; VIP, variable of importance; GDD, growing degree days 
c Variables followed by 1 indicate collection timing at 30 DAA 

dVariables followed by 2 indicate collection timing at 50% veraison 
eVariables followed by 3 indicate collection timing at harvest 
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Table 2.7 Variable of importance coefficients and model coefficients from best fit predictive modelsa with acid variables removed  

for grape juice pH in 2019, 2020, and years combined at 30 DAA, 50% veraison, and harvestb 

  30 DAA   50V   Harvest 

  

Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 
  

Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 
  

Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

2
0
1
9
 

Juice K- 1c 1.7778 0.9097  °Brix- 2d 1.7594 0.118  Juice K- 3e 1.8523 1.0704 

°Brix- 1 1.3395 0.3805  Juice K- 2 1.7369 0.7527  Juice K- 2 1.2135 -0.0173 

Cluster 

number- 1 
1.152 0.1309  Glucose- 2 1.7361 0.0896  °Brix- 3 1.2045 0.1414 

GDD (Jul) 1.14 0.0302  Fructose- 2 1.7201 0.067  Fructose- 3 1.1484 0.0237 

Temperature 

°C (Aug) 
1.1128 -0.0435  Crop load- 3 1.1163 0.0337  Glucose- 3 1.1292 -0.0167 

GDD (Jun) 1.055 0.0493  Leaf Mn- 1 1.0668 -0.1467  Soil K 1.0284 -0.0081 

             

2
0
2
0
 

Potassium- 1 1.7562 0.8528  Juice K- 2 1.7084 0.6724  Juice K- 3 1.4867 0.9861 

Yield per Vine- 

3 
1.1192 -0.2952  °Brix- 2 1.4016 0.1907  Juice K- 2 1.0998 0.0087 

Soil nitrate-N 1.1141 -0.131  Fructose- 2 1.3271 0.1288  Rainfall (Jul) 1.085 -0.1112 

GDD (Jul) 1.0804 0.7013  Glucose- 2 1.2728 0.0857  Soil Ca 1.0391 0.0105 

Leaf N- 1 1.0464 0.0901  Cluster number- 

3 
1.0847 -0.1543  Soil nitrate-N 0.9956 0.0746 

Ep1- 1 1.015 0.0704  GDD (Jul) 0.9425 0.0841  °Brix- 3 0.9915 0.1712 

             

Y
ea

rs
 C

o
m

b
in

ed
 

Juice K- 1 1.8332 0.5759  Juice K- 2 1.6056 0.7725  Juice K- 3 1.7073 1.0387 

°Brix- 1 1.4203 1.2442  °Brix- 2 1.3676 0.0908  Juice K- 2 1.151 -0.0171 

GDD (Jul) 1.1664 0.0418  Fructose- 2 1.329 0.0918  °Brix- 3 1.0628 0.6961 

Cluster 

number- 1 
1.1577 0.0074  Glucose- 2 1.3278 0.1014  Soil K 1.0166 -0.0553 

Temperature 

°C (Aug) 
1.1524 -0.1076  Crop load- 3 1.0357 -0.0275  Fructose- 3 0.9953 -0.3486 

GDD (Jun) 1.08 -0.0356  GDD (Jun) 0.9739 0.0312  Soil EC 0.9935 0.3096 
 

aModels conducted with JMP Pro 15 Statistical Software using Leave-One-Out Cross Validation with NIPALS method 
bAbbreviatons: DAA, days after anthesis; 50V, 50% veraison; YC, years combined; VIP, variable of importance; Ep1, canopy calibration coefficient; EC, electrical conductivity 
c Variables followed by 1 indicate collection timing at 30 DAA  

dVariables followed by 2 indicate collection timing at 50% veraison  

eVariables followed by 3 indicate collection timing at harvest  
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Figure 2.1 Ordinary Least Squares Regression of pH by potassium (K) in the 2019 and 2020 

growing seasons. There is a significant correlation between pH and K at p-value <0.0001 for all 

timings. Abbreviations for collection timings: 30 DAA, 30 days after anthesis; 50V, 50% 

veraison; H, harvest.  
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Table 2.8 Best fit predictive modelsa for grape juice potassium in 2019, 2020, and years 

combined at 30 DAA, 50% veraison, and harvestb 

Year 
Data 

Type 

Collection 

Timing 

Number 

of factors 

Root Mean 

PRESS 

Cumulative 

Q² 

Cumulative 

R²X 

Cumulative 

R²Y 

2019 APV 30 DAA 9 0.1907 1.0000 1.0000 0.9695 

2019 AVR 30 DAA 5 0.7877 0.8773 0.7342 0.5776 

2019 APV 50V 9 0.2505 1.0000 0.9009 0.9796 

2019 AVR 50V 1 0.6243 0.6103 0.5499 0.6540 

2019 APV Harvest 15 0.1341 1.0000 0.9635 0.9931 

2019 AVR Harvest 3 0.6459 1.0000 0.6051 0.7054 

2020 APV 30 DAA 4 0.3015 0.9985 0.5985 0.9408 

2020 AVR 30 DAA 2 0.8456 0.4541 0.5992 0.3875 

2020 APV 50V 7 0.2598 1.0000 0.8723 0.9580 

2020 AVR 50V 4 0.5387 0.9892 0.6745 0.8504 

2020 APV Harvest 8 0.1433 1.0000 0.9434 0.9887 

2020 AVR Harvest 2 0.5948 0.8711 0.7051 0.6845 

YC APV 30 DAA 6 0.2818 0.9999 0.9997 0.9271 

YC AVR 30 DAA 6 0.7787 0.9250 0.7569 0.6090 

YC APV 50V 5 0.3318 0.9999 0.7032 0.9668 

YC AVR 50V 7 0.6295 0.9978 0.8640 0.7466 

YC APV Harvest 4 0.1883 1.0000 0.8829 0.9750 

YC AVR Harvest 4 0.6798 0.9414 0.5251 0.8009 

                

aModels conducted with JMP Pro 15 Statistical Software using Leave-One-Out Cross Validation with 

NIPALS method 
bAbbreviatons: DAA, days after anthesis; 50V, 50% veraison; YC, years combined; APV, all acidity 

predictive variables; AVR, acid variables removed 
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Table 2.9 Variable of importance coefficients and model coefficients from best fit predictive models modelsa for grape juice K in 

2019, 2020, and years combined at 30 DAA, 50% veraison, and harvestb 

  30  DAA   50V   Harvest 

  

Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

  Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

  Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

2
0
1
9

 

°Brix- 1c 1.233 -0.0337   pH- 2d 1.6245 0.5960   pH- 3e 1.6435 0.3255 

Total Acidity- 1 1.212 -1.7085   Malic Acid- 2 1.2639 0.3031   Tartaric Acid- 3 1.4429 0.2531 

Malic Acid- 1 1.196 1.9378   Soil K 1.0976 0.0134   Malic Acid- 3 1.3533 0.6396 

Tartaric Acid- 1 1.026 0.5525   Soil Mg 1.0768 0.0236   Soil EC 1.1767 -0.0674 

pH- 1 1.009 0.2703   Soil EC 1.0745 -0.0571   Soil S 1.0783 -0.0481 

Glucose- 1 0.930 0.0236   Leaf K- 2 1.0671 0.0015   GDD (Jun) 1.0718 0.0381 

                        

2
0
2
0
 

Total Acidity- 1 1.922 0.2427   pH- 2 1.6938 0.4415   pH- 3 1.4089 0.3818 

Malic Acid- 1 1.793 0.2086   Tartaric Acid- 2 1.1971 0.2953   Malic Acid- 3 1.2932 0.2836 

pH- 1 1.742 0.2967   Soil Ca 1.1765 -0.1342   Rainfall (Jul) 1.1638 -0.0185 

Tartaric Acid- 1 1.576 0.2758   Malic Acid- 2 1.1685 0.1738   Tartaric Acid- 3 1.1345 0.2787 

°Brix- 1 1.5201 0.1629   Leaf K- 2 1.1628 0.0374   Rainfall (Jun) 1.0991 -0.0004 

Rainfall (Apr) 1.2165 -0.0327   Leaf Ca- 2 1.1623 0.0310   Soil EC 1.0985 0.0060 

                        

Y
e
a
r
s 

C
o
m

b
in

e
d

 °Brix- 1 1.146 -0.6323   pH- 2 1.6845 0.2937   pH- 3 1.4875 0.4398 

pH- 1 1.112 0.3395   Malic Acid- 2 1.3456 0.1606   Tartaric Acid- 3 1.2495 0.2719 

Malic Acid- 1 1.0766 1.1078   Soil K 1.2167 -0.0080   Malic Acid- 3 1.1675 0.2280 

Total Acidity- 1 1.0604 -0.3490   Leaf Cu- 2 1.2045 0.0534   Soil EC 1.0356 -0.0458 

Glucose- 1 0.8775 -0.5613   Soil EC 1.1875 -0.0341      

Tartaric Acid- 1 0.8704 0.3230           
 

aModels conducted with JMP Pro 15 Statistical Software using Leave-One-Out Cross Validation with NIPALS method 
bAbbreviatons: DAA, days after anthesis; 50V, 50% veraison; YC, years combined; VIP, variable of importance; EC, electrical conductivity 

c Variables followed by 1 indicate collection timing at 30 DAA 

dVariables followed by 2 indicate collection timing at 50% veraison 

eVariables followed by 3 indicate collection timing at harvest 
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Table 2.10 Variable of importance coefficients and model coefficients from best fit predictive modelsa with acid variables  

removed for grape juice K in 2019, 2020, and years combined at 30 DAA, 50% veraison, and harvestb 

  30  DAA   50V   Harvest 

  
Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

  Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

  Variable of 

Importance 

VIP 

coefficient 

Model 

coefficient 

2
0
1
9
 

CEFA- 2d 1.3936 0.2604   Soil K 1.2496 -0.0472   Leaf K- 1 1.6527 0.0945 

Leaf P- 1c 1.3229 0.1743     

 

  GDD (Jun) 1.6509 0.0405 

Soil EC 1.3044 -0.0392        Leaf Na- 1 1.6195 0.1194 

LEFS- 2 1.2748 -0.3365         

GDD (Aug) 1.2029 -0.0340           
                        

2
0
2
0
 PIC- 2 1.2912 -0.1145   Rootstock 1.6628 -0.1730   Rainfall (Jul) 1.2894 1.2894 

Rainfall mm (Apr) 1.252 -0.0531   Soil Ca 1.6543 -0.1694   Soil EC 1.2712 1.2712 

             
                        

Y
e
a
r
s 

C
o
m

b
in

e
d

 CEFA- 2 1.3997 1.3997   Leaf K – 2 1.6174 0.0833   Soil Ca 1.3914 -0.1439 

Leaf P- 1 1.3596 1.3596   Leaf Ca – 2 1.5221 -0.0793   Soil EC 1.3882 -0.4779 

Soil EC 1.3367 1.3367        Rootstock 1.3493 -0.1173 

GDD (Aug) 1.2055 1.2055        GDD (Jun) 1.1855 0.1577 

LEFS- 2 1.1994 1.1994        Leaf K -1 0.9752 0.0126 

Leaf Cu- 1 1.1990 1.1990        Leaf Zn -2 0.8672 -0.2182 
 

aModels conducted with JMP Pro 15 Statistical Software using Leave-One-Out Cross Validation with NIPALS method 
bAbbreviatons: DAA, days after anthesis; 50V, 50% veraison; YC, years combined; VIP, variable of importance; EC, electrical conductivity; 

LEFS, leaf exposure flux symmetry, CEFA, cluster exposure flux availability 

c Variables followed by 1 indicate collection timing at 30 DAA 

dVariables followed by 2 indicate collection timing at 50% veraison 

eVariables followed by 3 indicate collection timing at harvest 
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Table 2.11 Ordinary Least Squares regression of pH by predictor variables identified as 

important in PLSR models in (list year)a  

Response 

variable 

Predictor 

variable 

Collection 

timing 
Growing season Equation 

Adjusted 

R-square 

pH- 1 K- 1b 30 DAA Years combined y = 0.00041x + 3.04775 0.544352 

pH- 2 K- 2c 50V Years combined y = 0.000392x + 3.4034 0.601285 

pH- 3 K- 3d Harvest Years combined y = 0.0003256x + 3.6964 0.696411 

pH- 1 Cluster number- 1 30 DAA Years combined y = -0.0007x + 3.3574 0.02273 

pH- 2 Cluster number- 2 50V Years combined y = 4E-05x + 3.8135 -0.00495 

pH- 3 Cluster number- 3 Harvest Years combined y = 0.0015x + 4.2557 0.013478 

pH- 1 Crop load- 1 30 DAA Years combined y = 0.0028x + 3.3043 0.085883 

pH- 2 Crop load- 2 50V Years combined y = -0.018x + 3.9016 0.340724 

pH- 3 Crop load- 3 Harvest Years combined y = -0.0005x + 4.3501 -0.00852 

pH- 3 Malic acid- 3 Harvest Years combined y = 0.1447x + 3.9841 0.285631 

pH- 1 Tartaric acid- 1 30 DAA Years combined y = 0.05x + 3.1466 0.170121 

pH- 2 Tartaric acid- 2 50V Years combined y = 0.0879x + 3.5508 0.112098 

pH- 3 Tartaric acid- 3 Harvest Years combined y = 0.1807x + 3.5544 0.48296 

pH- 1 °Brix- 1 30 DAA Years combined y = 0.0536x + 3.1915 0.326229 

pH- 2 °Brix- 2 50V Years combined y = 0.0316x + 3.456 0.314158 

pH- 3 °Brix- 3 Harvest Years combined y = 0.039x + 3.6296 0.335536 

pH- 1 Fructose- 1 30 DAA Years combined y = 0.0079x + 3.30675 0.185455 

pH- 2 Fructose- 2 50V Years combined y = 0.0067x + 3.4192 0.407625 

pH- 3 Fructose- 3 Harvest Years combined y = 0.007x + 3.6654 0.319253 

pH- 1 Glucose- 1 30 DAA Years combined y = 0.006197x + 3.5132 0.163133 

pH- 2 Glucose- 2 50V Years combined y = 0.0055x + 3.6129 0.388636 

pH- 3 Glucose- 3  Harvest Years combined y = 0.0058x + 3.8774 0.279118 

pH- 1 Soil K 30 DAA Years combined (m)e y = 2.3324E-6x + 3.3494 -0.0909 

pH- 2 Soil K 50V Years combined (m) y = -0.00038x + 3.8871 -0.01779 

pH- 3 Soil K Harvest Years combined (m) y = -0.00089X + 4.4435 -0.01048 

pH- 1 Soil Ca 30 DAA Years combined (m) y = -2.205E-6x + 3.3597 -0.02402 

pH- 2 Soil Ca 50V Years combined (m) y = -6.665E-6x + 3.8554 0.370182 

pH- 3 Soil Ca Harvest Years combined (m) y = -1.225E-5x + 4.3511 0.202058 

pH- 1 Soil EC 30 DAA Years combined (m) y = -0.000207x + 3.3909 -0.0208 

pH- 2 Soil EC 50V Years combined (m) y = -0.000506x + 3.9241 0.230642 

pH- 3 Soil EC Harvest Years combined (m) y = -0.00122x + 4.53568 0.261449 
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Table 2.11 Continued 

            

pH- 1 GDD June 30 DAA 2019 (m) y = 0.0260281x  + 1.5253 0.580628 

pH- 2 GDD June 50V 2020 (m) y = 0.0631893x + -0.5134 0.784431 

pH- 1 GDD July 30 DAA Years combined (m) 

y = 0.01142x + 

2.4984568 0.429271 

pH- 2 GDD July 50V Years combined (m) y = 0.00323x + 3.581892 -0.06958 

            
aAbbreviatons: DAA, days after anthesis; 50V, 50% veraison; EC, electrical conductivity; GDD, growing degree 

days 

bVariables followed by 1 indicate collection timing at 30 DAA 

cVariables followed by 2 indicate collection timing at 50% veraison 

dVariables followed by 3 indicate collection timing at harvest 

eGrowing season followed by (m) indicate that mean data was analyzed 
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Table 2.12 Ordinary Least Squares regression of K by predictor variables identified as important in PLSR 

models in (list year)a 

Response 

variable 

Predictor 

variable  

Collection 

timing 
Growing season Equation 

Adjusted 

R-square 

K- 1 pH- 1b 30 DAA Years combined y = 1320.1662x + -3696.131 0.544352 

K- 2 pH- 2c 50V Years combined y = 1538.8219x + -4811.143 0.601285 

K- 3 pH- 3d Harvest Years combined y = 2142.4107x + -7358.509 0.696411 

K- 1 Malic acid- 1 30 DAA Years combined y = 55.0218x + 391.9869 0.528908 

K- 2 Malic acid- 2 50V Years combined y = 179.0233x + 578.3215 0.383542 

K- 3 Malic acid- 3 Harvest Years combined y = 485.145x + 794.0618 0.491231 

K- 1 Tartaric acid- 1 30 DAA Years combined y = 125.271x + 221.588 0.338158 

K- 2 Tartaric acid- 2 50V Years combined y = 282.733x + 198.297 0.301838 

K- 3 Tartaric acid- 3 Harvest Years combined y = 531.725x + -340.142 0.63685 

K- 1 °Brix- 1 30 DAA Years combined y = 129.272x + 348.075 0.5987 

K- 2 °Brix- 2 50V Years combined y = 52.9975x + 455.04 0.224655 

K- 3 °Brix- 3 Harvest Years combined y = 104.356x + 58.0131 0.366042 

K- 1 Fructose- 1 30 DAA Years combined y = 16.8149x + 637.527 0.264614 

K- 2 Fructose- 2 50V Years combined y = -1.82116x + 837.523 0.0191 

K- 3 Fructose- 3 Harvest Years combined y = 1.06539x + 610.98 0.013522 

K- 1 Glucose- 1 30 DAA Years combined y = 15.535x + 1140.066 0.325025 

K- 2 Glucose- 2 50V Years combined y = -1.4999x + 786.173 0.01871 

K- 3 Glucose- 3 Harvest Years combined y = 1.034397x + 632.8662 0.016728 

K- 1 Soil K 30 DAA Years combined (m)e y = -2.39531x + 1469.18 0.353598 

K- 2 Soil K 50V Years combined (m)  y = -2.489x + 1476.785 0.202537 

K- 3 Soil K Harvest Years combined (m)  y = -4.58388x + 2630.567 0.238388 

K- 1 Soil Ca 30 DAA Years combined (m)  y = -0.00273x + 743.793 -0.05974 

K- 2 Soil Ca 50V Years combined (m)  y = -0.01577x + 1146.69 0.269516 

K- 3 Soil Ca Harvest Years combined (m)  y = -0.03996x + 2027.24 0.292538 

K- 1 Soil EC 30 DAA Years combined (m)  y = -0.6862x + 867.95 0.144171 

K- 2 Soil EC 50V Years combined (m)  y = -2.1532x + 1498.63 0.739584 

K- 3 Soil EC Harvest Years combined (m)  y = -5.02415x + 2836.737 0.648837 

K- 2 Leaf K- 1 50V Years combined y = 0.035198x + 619.169 0.200581 

K- 2 Leaf K- 2 50V 2019 y = 0.03696x + 672.6961 0.345415 

K- 2 Leaf K- 2 50V 2020 y = 0.04185x + 566.381 0.39432 

K- 2 Leaf K- 2 50V Years combined y = 0.03755x + 645.2955 0.363921 

K- 3 Leaf K- 1 Harvest Years combined y = 0.06792x + 918.94753 0.18457 
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Table 2.12 Continued     

      

K- 3 Leaf K- 2 Harvest Years combined y = 0.0531 + 1279.976 0.187907 

K- 1 Leaf P- 1 30 DAA 2019 y = 0.10679x + 443.3319 0.246817 

K- 2 Leaf Ca - 2 50V Years combined y = -0.0216x + 1625.419 0.218416 

K- 2 Leaf Cu - 2 50V Years combined y = 4.0454x + 998.6694 0.189151 

K- 1 Rainfall (Apr) 30 DAA 2020 (m) y = -4.4014x + 881.39166 0.695119 

K- 2 Rainfall (Jun) 50V 2020 (m) y = 3.884x + 793.31336 0.408244 

K- 2 Rainfall (Jul) 50V 2020 (m) y = 7.1428x + 827.59798 0.351974 

K- 3 Rainfall (Jun) Harvest 2020 (m) y = 16.3701x + 595.8793 0.833271 

K- 3 Rainfall (Jul) Harvest Years combined (m) y = 35.339x + 450.125  0.657144 

K- 1 CEFA- 1 30 DAA 2019 y = 268.774x + 633.139 0.019837 

K- 2 Rootstock 50V Years combined y = -0.0408x + 1230.218 0.253728 

K- 3 Rootstock Harvest Years combined Y = -0.09549x + 2193.014 0.332835 
 

aAbbreviatons: DAA, days after anthesis; 50V, 50% veraison; EC, electrical conductivity; GDD, growing degree 

days; CEFA, cluster exposure flux availability 
bVariables followed by 1 indicate collection timing at 30 DAA 

cVariables followed by 2 indicate collection timing at 50% veraison 

dVariables followed by 3 indicate collection timing at harvest 

eGrowing season followed by (m) indicates that mean data was analyzed 

  

 



 

 

 

65 

CHAPTER III  
INVESTIGATING THE RELATIONSHIP BETWEEN PH AND K IN RED GRAPE 

VARIETALS 

 

 

Abstract 

 

 High wine pH is an important challenge for growing red grape cultivars in hot 

climates due to pH’s influence on red wine color, oxidation, flavor, and cold and microbial 

stability. In grape berries, potassium (K) is the most abundant cation. A positive correlation 

between grape juice and wine pH and potassium has been reported in grape cultivars 

Cabernet-Sauvignon, Syrah, and Chardonnay. This study evaluated the relationship between 

K and juice pH in five additional Vitis vinifera cultivars. During harvest in 2020, twenty 

vines of Carnelian (ownrooted), Grenache (*TBD), Malbec (1103 Paulsen), and Tempranillo 

clone 05 (3309 Couderc) and 50 vines Malbec clone 04 (ownrooted) and Sangiovese 

(ownrooted) were harvested and analyzed for pH and K content. Strong correlation between 

K and juice pH was observed in Carnelian (R2 = 0.88), Grenache (R2 = 0.8), Malbec (R2 = 

0.92) and Tempranillo (R2 = 0.88). The strong positive correlations observed at in these 

cultivars across multiples vineyard sites highlights the strength of this relationship 

irrespective of cultivar.  

 

Key words: Grapevine, Vitis vinifera, pH, acidity, potassium.  

  



 

 

 

66 

Introduction 

 

 As a macronutrient, potassium (K) serves a large number of roles in plants 

including cell expansion and growth, phloem sucrose loading, long-distance phloem 

transport, and berry stomatal control (Rogiers, et al., 2017). In grape berries, K is the most 

abundant cation with concentrations reported over 5 mg per berry. The berry mesocarp is 

reported to contain the highest proportion of K followed by the exocarp and seeds. However, 

the exocarp contains higher concentrations on a fresh weight basis. Boulton (1980b) was the 

first to report on the relationship between grape juice and wine pH and potassium, and other 

researchers have since reported similar positive correlations in several grape cultivars. 

Because pH plays an important role in wine microbial stability, oxidation, color, and flavor, 

controlling K in juice and wine may be desirable. K content of the berry may be a particularly 

important consideration during red wine maceration because K concentration is generally the 

highest (4.76 – 8.82 mg K/g FW) in berry skins, and therefore may also be extracted in the 

juice during skin contact (Mpelasoka, et al., 2003). The results from the Chapter II PLSR 

analysis to identify predictor variables of pH in grape berries indicated that juice K had the 

highest correlation to pH than all other variables at 30 days after anthesis, veraison, and 

harvest. Due to these findings and corroborating results from previous studies (Boulton, 

1980a; Gawel et al., 2000; Hepner and Bravado, 1985; Rogiers, et al., 2017), this project 

evaluated the relationship between K and juice pH in five Vitis vinifera cultivars. Identifying 

a strong relationship would further support the need to development management practices 

to control K in the vineyard.   
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Materials And Methods 

 

Experimental Design 

 In 2020, berries from five V. vinifera cultivars were collected at harvest from the 

Texas High Plains and North Texas regions and analyzed for berry composition to assess the 

correlation between K and juice pH. Twenty mature grape vines (three years or older) of 

scion variety V. vinifera cv. Carnelian (ownrooted), Grenache (*TBD), Malbec (1103 

Paulsen), and Tempranillo clone 05 (3309 Couderc) and 50 mature grape vines of scion 

variety V. vinifera cv. Malbec clone 04 (ownrooted) and Sangiovese (ownrooted) were 

selected for the study. The Carnelian vines and Tempranillo vines were located in the same 

vineyard. Berry sampling was performed on individual vines.  

 

Berry Sampling and Analyses for Chemical Composition  

 200 berries were randomly sampled per vine at harvest for chemical analyses. 

Sites 1, 2, 3, and 6 were processed different from sites 4 and 5. Whole berry samples from 

sites 1, 2, 3 and 6 were immediately frozen at -23ºC for preservation until processing. 

Samples from sites 5 and 6 were processed immediately after collection. 

 For sample preparation, the frozen berries from sites 1, 2, 3 and 6 were placed in 

a beaker and heated to 65 ºC for one hour in a LW Scientific 115V water bath to re-dissolve 

tartrates. The warmed samples were blended in a commercial blender (GB26-b, Hamilton 

Beach,  Glen Allen, VA) for 3 minutes and transferred to 50ml polypropylene tubes. The 

sample tubes were centrifuged  for 5 minutes at 4000 rpm. After, the supernatant was 

discarded, the remaining juice were  centrifuged for an additional 5 minutes, and then 
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immediately frozen at -23ºC until analyses. The samples from sites 4 and 5 were crushed). 

The juice was centrifuged for 5 minutes at 4000 rpm. After, the supernatant was discarded, 

and the remaining juice was centrifuged for an additional 5 minutes then immediately 

analyzed.  

 For must analysis, the samples from sites 1, 2, 3 and 6 were thawed for 48 hours 

at 4 ºC. All samples were analyzed with a FOSS WineScan (WineScanTM, Foss, Denmark) 

for soluble solids (ºBrix), pH, K, TA, malic acid, tartaric acid, fructose, and glucose using 

Fourier Transform Infrared analysis as described by Musingarabwi, et al. (2015).  

 

Statistical Analysis 

 To evaluate relationships between grape berry K and pH at harvest, ordinary least 

squares (OLS) was conducted with JMP Statistical Software Version Pro 15 (SAS Institute, 

Cary, NC). 

 

Results And Discussion 

 

 The results of Chapter II indicate that potassium plays a strong role in juice pH 

of Tempranillo berries relative to other viticultural and environmental factors. These results 

are supported by previous research that found correlations between grape berry pH and 

potassium (K) concentrations in Cabernet-Sauvignon and Syrah (Ramos and Romero, 2017) 

and Chardonnay (Walker and Blackmore, 2012).  OLSR analysis was conducted to assess 

the correlation between K and juice pH in mature red grape cultivars Carnelian (ownrooted), 

Grenache (unknown), Malbec (1103 Paulsen), Malbec clone 04 (ownrooted), Sangiovese 
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(ownrooted) and Tempranillo clone 05 (3309 Couderc) (Figure 3.1). There was a very strong 

correlation between K and juice pH in Carnelian (R2 = 0.88), Grenache (R2 = 0.8), Malbec 

(R2 = 0.92) and Tempranillo (R2 = 0.88) at harvest. A weaker relationship was observed 

between K and pH in Malbec clone 04 (R2 = 0.4) and Sangiovese (R2 = 0.3).   

 

Summary 

 

 Juice and wine pH play an important role in wine quality and previous research 

suggests that K plays an important role in determining pH. This project evaluated the 

relationship between K and juice pH in mature Malbec, Tempranillo, Sangiovese, and 

Carnelian grapes. The strong positive correlations observed at in these cultivars across 

multiples vineyard sites highlights the strength of this relationship irrespective of cultivar.  

  



 

 

 

70 

Literature Cited 

 

Musingarabwi, D. M., Nieuwoudt, H. H., Young, P. R., Eyéghè-Bickong, H. A., & Vivier, M. 

A. (2015). A rapid qualitative and quantitative evaluation of grape berries at 

various stages of development using Fourier-transform infrared spectroscopy and 

multivariate data analysis. Food Chemistry, 190, 253-262. 

 

Ramos, M. C., & Romero, M. P. (2017). Potassium uptake and redistribution in Cabernet 

Sauvignon and Syrah grape tissues and its relationship with grape quality 

parameters. Journal of the Science of Food and Agriculture, 97(10), 3268-3277. 

doi:10.1002/jsfa.8175 

 

Walker, R. R., & Blackmore, D. H. (2012). Potassium concentration and pH inter-relationships 

in grape juice and wine of Chardonnay and Shiraz from a range of rootstocks in 

different environments. Australian Journal of Grape and Wine Research, 18(2), 

183-193. doi:10.1111/j.1755-0238.2012.00189.x



 

 

 

71 

 

 

Table 13.1 Research sites characteristics 

 

 

 

Site 

ID 
Location Site Coordinates Soil series Scion  Rootstock 

Year 

Planted 

Number of 

vines  

Site 1 Mingus, TX 32°27'12.3"N -98°27'27.3"W Mollisols Carnelian Ownrooted 2008 20 

Site 2 Weatherford, TX 32°50'49.4"N -97°39'26.8"W Vertisols Grenache -a - 20 

Site 3 Southlake, TX 32°57'06.8"N -97°09'58.9"W Vertisols Malbec  1103 Paulsen 2018 20 

Site 4 Brownfield, TX 33°09'05.1"N -102°13'13.5"W Alfisols Malbec clone 04 Ownrooted 2011 50 

Site 5 Brownfield, TX 33°09'32.7"N 102°15'24.5"W Alfisols Sangiovese VCR 06 and 23 Ownrooted 2015 50 

Site 6 Mingus, TX 32°27'12.3"N -98°27'27.3"W Mollisols Tempranillo clone 05 3309 Couderc 2008 20 

aData unavailable.  
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Table 14 Mean (+SD) pH and K by cultivar at 2020 harvest 

 

 

 
Cultivar pH SD 

K 
(mg/l) 

SD 

Tempranillo clone 05 4.314a 0.226 2055.9b 527.9 

Malbec clone 04 4.216a 0.107 2738.4a 229.8 

Grenache 4.064b 0.180 1269.6c 285.8 

Malbec 4.064b 0.169 1890.7b 388.3 

Carnelian 3.952b 0.160 1397.9c 276.0 

Sangiovese VCR 06 and 23 3.758c 0.111 1813.1b 199.0 

pa < 0.0001   < 0.0001   

     
ap-value, comparison of mean data by research site.   
bMeans within a column followed by the same letter are not significantly different at 

the 0.05 level of probability (Games-Howell).  
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Figure 3.1 Ordinary Least Squares Regression of grape berry pH by K at harvest in 2020. There is 

a significant correlation between pH and K at p-value <0.0001 for Carnelian,  Grenache, Malbec, 

Malbec clone 04, and Tempranillo clone 05. There is a significant correlation between pH and K at 

p-value <0.0027 for Sangiovese. Abbreviations for collection timings: 30 DAA, 30 days after 

anthesis; 50V, 50% veraison; H, harvest.   
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CHAPTER IV 

CONCLUSIONS  

  

 Results from the Partial Least Squares Regression (PLSR) analyses identified 

potassium, plant nutrient availability, soil nutrient availability, rootstock cultivar, and vine 

water status as the viticulture factors with the greatest importance in predicting berry K in 

V. vinifera cv. Tempranillo, and in accordance to previous studies (Hafke et al., 2007; 

Ramos and Romero, 2017; Walker and Blackmore, 2012; Waterhouse, et al., 2016), will 

have similar influences with the berry pH. The variation in juice K in grapevine appears to 

be a function of the rootstocks ability to take up the nutrients available in the soil, 

subsequently controlling the nutrient status of the grapevine. The physiological demands of 

the vine at the onset of berry ripening drives the transport of potassium from vegetative 

tissues to the berry (Rogiers, et al., 2006), resulting in an accumulation of K in the berry 

after veraison. An increase in ambient temperatures and water status from the onset of berry 

ripening to mid-ripening also appear to correlate to an increase in K concentrations in the 

leaves and berries. Results from the study also identified strong positive correlations 

between K and juice pH in three additional red cultivars, V. vinifera cv. Carnelian 

(ownrooted), Grenache (unknown), Malbec (1103 Paulsen), across different vineyard sites. 

The strong positive correlations observed at in these cultivars across multiples vineyard sites 

highlights the strength of this relationship irrespective of cultivar.   

 The ability of V. vinifera cv. Tempranillo to thrive in warm climate such as Texas 

makes it an attractive cultivar to grow in warm to hot climates. Producing quality wines 

from Tempranillo can be problematic for winemakers due to its low total acidity and its high 
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pH. The results obtained in this work indicate that future studies should consider potassium, 

plant nutrient availability, soil nutrient availability, rootstock cultivar, and vine water status 

as variables to control to manipulate acidity in the grape berry.  
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APPENDIX A 

 

 
  

 Appendix A.  Predictor variables in Partial Least Squares Regression (PLSR) analyses for 
berry pH and berry potassium content 

 

   BERRY COMPOSITION   VINE NUTRIENTS   SOIL COMPOSITION   

 1 Total soluble solids (°Brix) 28 Nitrogen (%) 54 pH  
 2 Fructose (g/l) 29 Phosphorous (ppm) 55 Electrical conductivity (dS/m)  

 3 Glucose (g/l) 30 Potassium (ppm) 56 Nitrate-N  (ppm)  

 4 Malic acid (g/l) 31 Calcium (ppm) 57 Phosphorous (ppm)  
 5 Tartaric acid (g/l) 32 Magnesium (ppm) 58 Potassium (ppm)  
 6 pHa 33 Sodium (ppm) 59 Calcium (ppm)  
 7 Potassiumb (mg/l) 34 Zinc (ppm) 60 Magnesium (ppm)  
 8 Total acidity (g/l) 35 Copper (ppm) 61 Sulfur (ppm)  

     36 Manganese (ppm) 62 Sodium (ppm)  

   GENOTYPE 37 Sulfur (ppm) 63 Sulfur (ppm)  

 9 Scion clone cultivar 38 Boron (ppm) 64 Boron (ppm)  

 10 Rootstock cultivar          

   
VINE CHARACTERIZATION   

CLIMATIC 
MEAUREMENTS   HARVEST PARAMETERS 

 

 11 Dormant pruning weight (kg) 39 GDD in April 65 Cluster number per vine  
 12 Percent gaps (PG) 40 GDD in May 66 Yield per vine (kg)  
 13 Leaf layer number (LLN) 41 GDD in June 67 Average cluster weight (g)  

 14 Percent Interior Leaves (PIL) 42 GDD in July 68 Average fresh berry weight 
(mg) 

 

 15 Percent Interior Clusters (PIC) 43 GDD in August 69 Crop load (vine yield/dormant 
pruning weight) 

 

 16 Occlusion layer number (OLN) 44 Rainfall average in April (mm)      

 17 Cluster exposure layer (CEL) 45 Rainfall average in May (mm)   AGE  
 18 Canopy calibration coefficient 

(CCS) 
46 Rainfall average in June (mm) 70 Age of vine (years)  

 19 Leaf exposure layer (LEL) 47 Rainfall average in July (mm)      
 20 Canopy calibration coefficient 

(EP1) 
48 Rainfall average in Aug (mm)   

 
 

 21 Cluster exposure flux availability 
(CEFA) 

49 Temperature average in April 
(°C) 

  
 

 

 22 Cluster exposure flux symmetry 
(CEFS) 

50 Temperature average in May 
(°C) 

  
 

 

 23 Leaf exposure flux availability 
(LEFA) 

51 Temperature average in June 
(°C) 

  
 

 

 24 Leaf Exposure Flux Symmetry 
(LEFS) 

52 Temperature average in July 
(°C) 

  
 

 

 25 Leaf contacts 53 Temperature average in 
August (°C) 

     

 26 Cluster contacts          
 27 Shoot diameter (mm)          
 

aPredictor variable not used in PLSR models to predict berry pH 
 

 
bPredictor variable not used in PLSR models to predict berry potassium 
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