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ABSTRACT 

 

Many research institutions conduct annual forage trials to determine which species and 

varieties of those species produce the most biomass in specific geographical areas.  

These trials can be costly, time consuming and labor intensive to conduct.  A cool-

season annual grass forage trial was conducted at the Texas A&M Research Farm during 

the 2015-2016 and 2016-2017 growing seasons. This forage trial tests small grains 

species such as wheat, oat, rye, triticale, and barley in addition to annual ryegrass.  The 

purpose of this research was to determine if Unmanned Aerial Vehicle (UAV) 

technology or other ground-based sampling methods could replace traditional forage 

harvesting techniques.  The ultimate goal of this project was to develop a low cost and 

effective method to measure above ground forage biomass. 

If researchers are unable to take destructive samples, both visual and plant height 

measurements were highly correlated for fall and late spring clips. Combining all 

measurements of the traditional methods into one model to predict forage yield may be a 

better way to estimate forage yield if the whole plot forage harvest is not possible.  In the 

UAV and ground-based methods no one variable showed a strong relationship across all 

clip times or species.  Models were developed for each species and clip time to better 

predict forage yield using multiple variables. In some cases, the models did improve the 

coefficient of determination (R2) substantially, but in many cases, improvement was 

marginal. The ground model did as good as or better than the aerial model for wheat, oat, 

barley and the combined model, whereas the aerial model was far better for rye.  There 
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was little to no difference between the ground and aerial models for ryegrass. 

Transforming the data also had little effect on model accuracy for wheat, oat and barley.  

However, transforming the data for rye had a negative effect while ryegrass and the 

combined species model were improved when the data was transformed. 

The best results for evaluating multi species across clip times was the traditional 

method model created from visual rating, plant height and subsample weight. It seemed 

far better when evaluating a multi species trial to do so at specific times during the 

growing season as opposed to throughout the growing season.  If only a single species is 

being evaluated, it seemed that species a specific method and clip time was ideal. 
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Nomenclature 

 

ADF   Acid Detergent Fibers 

ADG   Average Daily Gain 

HT   Plant Height 

LAI   Leaf Area Index 

NDF   Neutral Detergent Fibers 

NDVI   Normalized Difference Vegetation Index 

NIR   Near Infra-Red 

RCBD   Randomize Complete Block Design 

RGB   Red Green Blue  

RMSE   Root Mean Square Error 

SUB   Sub-Sample 

TDM   Total Dry Matter 

TVI   Triangular Vegetation Index 

UAV   Unmanned Aerial Vehicle 

VI   Vegetation Index  
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CHAPTER I  

INTRODUCTION AND REVIEW OF LITERATURE 

There are many methods used to evaluate forage potential, some of the more 

traditional methods have been utilized for well over 50 years.  However, in recent 

decades there has been an interest in developing more modern and efficient ways to 

evaluate forage potential.  Having a good indication of how much yield potential a 

particular forage species and cultivar has is useful for livestock managers who rely on 

good forage production to meet the high demands of their forage systems.  It is also 

important for researchers in forage and small grains breeding programs whom need good 

forage potential data for cultivar advancement.  The United States (U.S.) is one of the 

largest forage producing nations in the world.  According to the 2017 United States 

Department of Agriculture census, there were 55.7 million acres of land used for forage, 

which contributed to the sustainable nutritive needs of over 89.9 million cattle and 

calves.  In the southern U.S., Texas is the largest forage producing state with over 5 

million acres dedicated to forage production (USDA-NASS, 2018).  In a 2016 national 

forage review, the USDA estimated that total forage production (all dry hay, haylage and 

green chop) is only down 1% to 90.7 million tons from the previous year (USDA-NASS, 

2016).      

In the southern U. S., the use of cool season annual grasses for forage is a 

common practice.  Livestock producers have used cool season annual grasses for hay, 

silage, and pasture, and often times as an accompanying crop for alfalfa (Medicago 
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sativa L.) establishment.  Cool season grasses offer producers valuable production and 

management alternatives as sources of forage, which utilize similar planting equipment 

and harvest management techniques as that of alfalfa. For example, small grains used for 

forage provide ample quality to meet the nutritional needs of most livestock (Maloney et 

al., 1999). Many livestock managers feed hay, silage or concentrates during the fall to 

early spring; however, this method can be expensive and greatly reduce any profit 

realized.  One solution to this problem is for livestock managers in the southern U.S. to 

adapt a more cost effective annual cool-season forage system to feed their livestock 

(Redmon et al., 1998).  The importance of predicting forage production yield can have a 

great effect on livestock management strategies and stocking rate.  Historically this has 

been achieved through detailed record keeping of forage production, livestock 

performance, and livestock stocking rates (Redfearn and Bidwell, 2000).   In addition, 

cool season forage researches would benefit greatly from the ability to select 

experimental lines for high biomass potential, which would aid in variety advancement. 

For researchers and producers alike, it is important to know which species and varieties 

of cool season grasses produce the most forage in a given geographical area. For this 

reason, many universities conduct annual forage trials to determine which species and 

varieties of those species produce the most biomass in specific geographical areas.  The 

publications that result from these forage trials are aimed at giving unbiased yield and 

quality data to researchers and forage producers so they can make educated decisions 

regarding the most appropriate varieties for their geographic region (Neely et al., 2016).   
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Small grains forage trials can be costly, time consuming and labor intensive to 

conduct. As noted in past studies, the standard method of determining forage biomass is 

to clip and weigh the samples, which requires great effort and expense (Sanderson et al 

2001).  Recently Texas A&M AgriLife Research has been making efforts to incorporate 

Unmanned Aerial Vehicles (UAV) into determining cool season annual forage biomass.   

These vehicles utilize remote sensing imagery such as visual spectral images, which can 

obtain various vegetation indices.  

The purpose of this research is to determine if UAV technology or other ground 

based sampling methods can replace traditional forage harvesting techniques to better 

assist cool-season annual grass breeders and researchers in estimating forage yield of 

entries in forage trials and breeding lines for advancement in breeding programs.  The 

specific objectives are 1) to compare mechanically harvested above ground biomass 

yield of cool-season annual grasses with alternative forms of limited or non-destructive 

measurements to predict plot yield. 2) Determine at what height UAV measurements 

should be taken for measuring forage yield, 3) Compare relationships among UAV 

generated vegetation indices, hand held NDVI, plant height, and visual rating with dry 

matter forage yield across and between cool-season annual grass species. (4) Develop 

models to predict forage yield among cool-season annual grasses using UAV generated 

vegetation indices and ground based measurements.  5) Determine if models generated 

from UAV data are as reliable as models generated from ground-based measurements. 

The ultimate goal of this project is to develop a low cost and effective method to 

measure above ground forage biomass.  
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Forage Production in the United States: Types and Uses 

In the southern U.S., cool-season annual grasses can extend grazing and supply 

high quality forage for livestock (Bagley et al., 1998). The least costly means of 

providing livestock winter forage would be perennial grasses, unfortunately there are 

currently no good cool-season perennial forage grass options well adapted to the south.  

This makes the use of cool season annual grasses the most common form of winter 

pasture (Corriher-Olson and Redmon, 2013).  Some of the most common cool season 

annual forage species in the southern U.S. are small grains, which include wheat 

(Triticum aestivum), rye (Secale cereal), oats (Avena sativa) and triticale (Triticum 

secale) (Bruckner and Raymer, 1990).  In addition to these more common southern 

species, barley (Hordeum vulgare) can produce good quality silage and hay similar to 

that of oats and triticale (Min, D.-H. 2012).  Annual ryegrass (Lolium multiflorum) is not 

considered a small grain, but provides a source of high-quality winter and spring forage 

in the temperate regions of the world (Hill and Gates, 2001) 

Winter wheat 

Most cultivated winter wheat is an Allohexaploid bread wheat (Triticum 

aestivum L.), which makes up approximately 20% of all calories consumed by humans 

(Marcussen et al., 2014).  In the Southern Great Plains, winter wheat grown for both 

forage and grain can be an extremely important source of income from both the sale of 

grain and in terms of weight gained by grazing livestock (Redmon et al., 1995).  Wheat 

forage provides feed for cattle and sheep.  The forage is low in fiber but high in protein, 

energy, and minerals.  However, due to the high moisture content it can be difficult to 
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meet the daily dry matter needs of grazing animals (Duncan et al., 2018).  Wheat 

pastures are an excellent feedstock, especially for young growing cattle.  While protein 

and grain supplements are generally not necessary, an additional form of dry matter 

roughage is sometimes recommended to ensure ruminants receive enough fiber (Heeney 

and Stanton, 1988).  Winter wheat pastures of the Great Plains provide grazing for 

millions of stocker cattle each year.  If only grazed, the cattle will remain on wheat until 

May; however, dual-purpose wheat is typically grazed from November to mid-March 

(Mader et al., 1983).  Careful considerations should be made on decisions of when to 

remove cattle from winter wheat as indicated in a study conducted by Dunphy et al. 

(1982) to determine the effects of wheat forage removal on grain yield.  This study 

indicated that delaying the final forage harvest could significantly reduce grain yield.  

The study also suggests that grazing should be terminated by the early jointing stage or 

sooner to obtain maximum grain yields (Dunphy et al., 1982; Taylor et al., 2010). 

Rye 

Rye is in the same group Triticeae as wheat and barley.  Of the total rye grown in 

the U.S. less than 50% is harvested for grain, the rest would be used for pasture, hay or a 

cover crop (Oelke et al., 1990).  It is commonly grown in parts of Europe as a source of 

bread, alcohol and animal feed.  Unlike most grain crops, rye is a cross-pollination 

cereal, which allows for greater genetic diversity (Monteiro et al., 2016).  In the southern 

U.S. rye is an important forage crop for stocker cattle (Bos pp.) (Newell and Butler, 

2013).   Of all of the cool-season grasses, rye is the most winter-hardy and productive on 

poor soils.  It matures earlier than most wheat varieties which results in more fall forage 
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than spring forage (Redmon et al., 1998; Snapp et al., 2005).  A previous 1983 study by 

Hay and Abbas (1993) supported this observation and discovered that the earlier forage 

and higher yields of rye are due to many factors.  These factors include rapid 

germination rates, crop emergence, leaf appearance and expansion in conjunction with a 

higher leaf area ratio.  It was noted that the early initiation of the rye stem extension 

showed a significant increase in the total assimilation rate (Hay and Abbas, 1983).  Rye 

has also contributed to the improvement of bread wheat by the chromosomal 

translocation of 1RS [Rye] chromosome.  The 1BL/1RS chromosome from rye provided 

a race-specific disease resistance to a major rust race (Zarco-Hernandez et al., 2005). 

Oat 

Oats are grown for both human consumption and livestock grazing.  Oats are 

commonly known for their high levels of beta glucan and the hypocholesterolemic 

properties of oat fiber that are now well-documented (Lia et al., 1995). Oats can be 

classed as either winter or spring with the main distinctions between the two classes 

being time of planting and the ability of winter oats to withstand cold temperatures 

(King and Bacon., 1992).  As an annual forage, oats are very versatile and can be planted 

in both late summer and late winter for livestock grazing and hay production.  One 

disadvantage of oat production is its lack of winter tolerance compared to other small 

grains (Redmon et. al., 1998).   In the Great Plains region of the U.S., especially in the 

northern states, such as North Dakota, spring planted oats account for 80% of all cereals 

managed for hay production.  South Dakota had almost 90% and Montana 50% of all 

cereal land, which was devoted to oat hay production (Carr et al., 2004).  In the north 
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central U.S., spring sown forage oats are a common companion crop to aid in the 

establishment of alfalfa.  These oats are typically harvested in the early summer at boot 

stage for silage (Contereras-Govea, F.E. and Albrecht, K.A. 2006).  In the southern U.S.,  

oats are grown in the wintertime and provide excellent forage when other high protein 

sources are scarce (Schrickel et al., 1992).  Oat phenotypic categories determine its use 

and adaptation.  Oats can be considered spring or winter types; however, this is not a 

very clear distinction as they can have a wide range of vernalization and photoperiod 

dependence.  There is some confusion on the terms of “winter type” and   “winter 

hardy”.  When discussing a “winter type” of oat, the reference would indicate the proper 

planting time of that variety which would be in the autumn or winter.  Many winter types 

do not have a vernalization requirement and could be planted in the spring.   Several 

studies have attempted to examine the winter tolerance of oats, but it is not easily 

distinguishable as that of winter and spring wheat.  In a study conducted by M. C. 

Amirshahi and Fred L. Patterson (1956) the researchers had to rely on uniform winter 

hardiness nursery trials to obtain winter tolerance information on the oat varieties for 

their trial (Amirshahi  and Patterson., 1956).  In a 1960, publication by Pfeifer and Kline 

the major limiting production factor of winter oats is the lack of winterhardiensss for 

climates with cold winters.  The goal of the study was to develop an accurate laboratory 

technique for selection for winter hardy oats (Pfeifer and Kline., 1960).  In the U.S., 

traditionally winter oat cultivars are grown in the South during the winter, and spring oat 

cultivars are grown in the Midwest during the spring.  Some researchers have noted a 

possible cold treatment requirement for the induction of flowering (vernalization) which 
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could also be a factor in determining the type of oat.  In a publication by King and Bacon 

1992, they noted that a reduction in the number of days to heading of winter oat 

genotypes was attributed to a vernalization treatment and there was no reduction in the 

spring oat genotypes as a result of vernalization treatments.  In the vernalized (24 day 

treatment) panicle emergence was reduced by 19 days compared to the non-vernalized 

treatment (King and Bacon., 1992).  In addition there can be hulled and hull-less types 

which would determine their use (Kim et al., 2014).  A 1960 published paper by Smith 

(1960) evaluated the chemical composition of forage oats in relation to their maturity.  

He found that with maturity the percentage of protein, fat, ash, P, Ca, K, and nitrate 

declined.  He also noted that the early dough stage is when the highest proportion of total 

yield of the most important nutritional constitutes was produced (Smith, 1960).  Collins 

et al. (1990) noted that nitrogen concentration decreased with later heading. 

Triticale 

Triticale (Triticum secale) is the result of a breeding cross between wheat 

(Titicum) and rye (Secale).  The species received its name by combining the name of the 

two parent species involved in the cross.  Triticale is similar to wheat in its pollination 

strategy as it is a self-pollinated crop as opposed to a cross-pollination species like rye 

(Oelke et al. 1989).  Triticale could be a good source of winter grazing in areas of the 

U.S. that typically have mild winters (Brown and Almodares, 1976).  Triticale is said to 

do well on sandy soils and has a better tolerance to low pH soils than that of wheat, but 

not quite as good as rye (Min, 2012).  Triticale offers good versatility as a cereal grain 

and can be used as forage, grain and biofuel feedstock (AGMRC, 2017).  In arid and 
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semi-arid regions of the world, triticale can out-yield wheat and barley for straw 

production, which is a major source of animal feed (Bilgili et al., 2009).  A study done in 

Spain evaluated the dual-purpose possibilities of triticale and evaluated the effects of 

forage removal on grain yield.  This study found that on irrigated sites or sites receiving 

adequate rainfall both good forage and grain yields could be obtained, however, on 

dryland or low rainfall sites forage cuttings would not be advised (Ramos et al., 1993).   

A study by A. J. Ciha (1983) evaluated forage production of triticale as compared to 

other spring grains.  He found that in the Pacific Northwest, crude protein yield of 

triticale was similar to that of other spring grains under most planting dates and harvest 

stages (Ciha, 1983). 

Ryegrass 

In the U.S. there are two types of ryegrass:  perennial (Lolum perenne L.) and 

annual (L. multiflorum La.).  The perennial species is not utilized in the Southern U.S. 

due to poor adaptation; however, annual species are widely utilized in a forage-livestock 

system (Blount and Prine, 2000).  In the southern U.S., annual ryegrass is considered a 

high-yielding nutritious grass and is the most widely grown of all cool season annual 

forage grasses.  It is very responsive to N inputs and can tolerate wet, poorly drained 

soils (Vendramini et. al., 2006). Ryegrass tends to be better established under 

conventional tillage practices as opposed to no-till systems due to small seed size.  

Cuomo et al. (1999) emphasized this in a 1999 study, where it was concluded that early–

season forage production is reduced when establishment took place on a no-till site 

verses a conventionally tilled site (Cuomo et al., 1999).  As with most crops, nutritive 
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value of ryegrass tends to decrease with maturity.  This was emphasized in a 2002 

publication that evaluated cultivar and environmental effects on annual ryegrass forage 

yield, yield distribution, and nutritive value.  This study noted that crude protein levels 

decreased as the growing season progressed (Redfearn et al., 2002).  In the lower Mid-

West, there is an expressed interest in stockpiling annual ryegrass as a source of high-

quality winter forage.  Kallenbach et al. (2003) noted a decline in forage quality from 

mid-December to mid-February.  However, the acid detergent fiber (ADF) and the 

neutral detergent fiber (NDF) remained at an acceptable level (Kallenbach et al., 2003) 

Barley 

Barley (Hordeum vulgare) is not as commonly utilized as a winter pasture in 

comparison to other small grains as it does not have the winter hardiness of wheat and 

rye.  Barley does have its place in some winter pastures, such as those on alkaline soils 

that are high in saline content (Redmon et al., 1998).  In most parts of the U.S., barley is 

typically used for malting and other feed sources for animals.  There is promising 

research that suggests an expanded use of barley forage in states such as Texas is 

possible.  Its lower preference as a host by Hessian fly (Mayetiola destructor), a 

significant insect pest of wheat, would be one advantage over wheat in certain regions of 

the state (Ledbetter, K. 2017).  A 1986 study by Brink G.E. and Maren G.C evaluated 

the effects of barley and oat as a companion crop to alfalfa establishment.  For spring-

seeded alfalfa, both barley and oat were seeded as companion crops to alfalfa to assist in 

establishment.  The study found that barley provided superior quality at various growth 

stages than that of oat, which is the traditional companion crop to alfalfa (Brink and 
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Marten, 1986). Barley as a solo crop can also be valued for its higher nutritive value as 

compared to other small grains cultivars such as wheat, oat and triticale as indicated in a 

1982 study on the biological and chemical quality and yield of small grain forage 

potentials.   This study also found that barley has less grass tetany potential as opposed 

to wheat, oat and triticale, but it did have a greater milk fever potential (Cherney and 

Marten, 1982). 

In conclusion, wheat is the most popular small grain forage species planted in 

U.S. It has very good cold tolerance; seed is readily available in most geographic 

locations and it has great flexibility to be used as a dual-purpose crop for both grazing 

and grain. Rye, which has great early-season forage, particularly in southern climates, 

generally has more total forage than wheat also.  However, one of the major drawbacks 

to planting rye is that it can become a major weed problem in areas where wheat is 

grown for grain.  Oats, which have a tendency to produce the earliest season forage of 

any small grains, are also the least winter hardy.  Triticale is the result of a cross between 

rye and wheat and has earlier maturity than wheat, but later than rye.  Likewise, triticale 

generally produces more forage than wheat, but less than rye.  Barley is not as 

commonly grown in the south due to its lower popularity among livestock producers and 

its seed sources can be difficult to find in some areas.  Still, barley has exceptional 

tolerance of soils high in soluble salts or sodium and has better drought tolerance (Rohila 

et al., 2002).  
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The Importance of estimating forage potential  

It is important for both producers and plant breeders to have a good assessment 

of forage production quality and quantity when evaluating potential forage species and 

varieties.  Producers rely on accurate forage estimates to adjust cattle stocking rates and 

animal gains.  Plant breeders also need accurate forage data to make determinations on 

genotype advancement for public release of forage cultivars. 

Producers 

For any producer involved with livestock, forage production is critical.  A forage 

system can assist a livestock manager in some cases with an implementation of a year-

round grazing system that utilizes both warm and cool season forages.  A key strategy 

for a successful forage system is to accurately match animal nutrition demand with 

forage nutrient supply (Redmon, 2003).  One important aspect of a good forage system 

is the maintenance of an accurate stocking rate, which is the specified period of time an 

expected number of animals can graze on a given acre of land (Hancock, 2011).  A 

Kansas State University forage facts publication illustrated an example of a stocking rate 

for grazing wheat pastures.  This publication stated that the stocking rate for the fall and 

winter can range from 113 to 226 kilograms of live animal per hectare and increase to 

226 to 453 kg per hectare in the spring (Duncan et al., 2018).  When comparing forage 

systems, many factors must be considered to be successful.  Four important factors can 

influence the profitability of the forage system:  First, the average daily gain (ADG), 

which is the expected rate of gain for each animal.  Second is the Gain/hectare, which is 

the expected gain per hectare.  Third is the grazing period, which is the number of days 
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when forage can be grazed at a certain stocking rate. Fourth is the stocking rate, which 

as defined earlier, is the number of animals that can be grazed on a given acre for a 

certain time. The overall goal is to maintain ADG’s approximately 0.68 kg/head/day so 

that the animals’ weight is appropriate to its age.  However when stocking rates increase, 

if an individual animal is unable to select graze for high quality forage it may not be able 

to meet its nutritional needs (Hancock et al., 2011).   

According to Bruckner and Raymer (1990), an important forage management and 

production decision should be based on the species and cultivar choice for winter forage 

(Bruckner and Raymer., 1990).  In a University of Georgia review on forage systems for 

stocker cattle, the authors found there are over 60 forage species produced in Georgia 

alone.  Cool season annual performance can vary with location, soil type and 

management.  In addition, forage species vary as to the time they are most productive 

during the course of a season.   

Plant Breeders 

Plant variety selection based on phenotypic performance was done long before 

any type of DNA or molecular markers were available.  In order to improve a variety, 

the best genetic variation would need to be identified.  Breeding is a numbers game; the 

goal is to screen the maximum number of varieties under the maximum number of 

environments (Araus and Cairns, 2014).  Barker and Kalton (1989) stated that there are 

two important conditions to maximize grassland production: (1) proper management and 

(2) usage of the proper species and cultivar for a specific climate and purpose (Barker 

and Kalton, 1989). The latter of the two conditions is where breeding is fundamental.  
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Selection and improvement of grasses began before humanity itself as prehistoric 

animals practiced natural selection when grazing on more desired species.  It was not 

until the mid-1930’s that forage grass breeding accelerated (Barker and Kalton, 1989).  

In the 1960’s, there was a serious effort to genetically improve forage crop nutritive 

values.  Advances in laboratory techniques in analytical chemistry and rumen 

fermentation technology gave forage breeders the tools to screen thousands of samples 

in an attempt to improve genetic gains in breeding for forage quality (Casler and Vogel, 

1999).  There have also been studies conducted to evaluate forage yield.   In a 1972 

publication that considered genetic variation in yield and quality of oat forage, the 

authors noted that cultivar variations for forage yield was more consistent than that of 

forage quality over the course of several years.   They concluded that when developing a 

superior forage oat cultivar, emphasis should be made first on yield and then on forage 

quality (Stuthman and Marten, 1972).  There are direct and indirect economic benefits to 

forage improvement.  The direct benefits would include increased seed and hay sales to 

the public and the indirect benefit would consist of saleable animal products. The direct 

and indirect products are a result of improved forages through breeding efforts (Bouton, 

2007). 
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Traditional methods of estimating forage potential  

The volume of forage has long been very difficult to accurately measure.  

Compounding the problem is the fact that the weight of plant material will vary between 

species.  Since all forage in a particular pasture cannot be collected and weighed, 

sampling is the only way to obtain an estimate of forage yield (Wilm et al., 1944).  It is 

necessary to have some measure of production, availability and consumption of forage in 

order to gain a better understating of the plant-animal interaction.  The plant-animal 

interaction can determine stocking rates and has a great influence on the pasture output, 

which in many cases, is the animal product (Bransby et al., 1977).    

In 1943, F. A. Coffman first proposed visual forage estimates as a tool evaluating 

the forage potential of winter oat strains in the U.S. Department of Agriculture Regional 

Oat Nurseries. His method was to visually rate the experimental lines for leafiness, vigor 

and overall biomass compared to standard varieties (Atkins et al., 1969).  Another study 

evaluated the accuracy of visual biomass scores and forage yield in red clover (Trifolium 

pretense L.).  The study found that visual scores could explain 90% of the variation of 

actual fresh weights.  The evaluators that gave the same plants the same high score was 

high with an R²=0.84 (Riday, 1997).  Visual rating in space planted red clover seemed 

very accurate for biomass estimation; however, all forage species may not be so easily 

evaluated. For this reason, many other methods have been tested throughout the years.  

For instance, in other crops such as corn (Zea mays L.), plant height measurement was a 

good predictor of plant biomass when collected before reproductive growth.  A 2007 

study of by-plant prediction of corn forage biomass and nitrogen uptake at various 
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growth stages using remote sensing and plant height concluded that across six site years 

plant height was a good indicator of plant biomass with an R2  of 0.81 (Freeman et al., 

2007).  In the 1970’s, a disk meter for measuring yield was used by many researchers.  

The disk method can either be a simple disk or a weighted disk that is placed on top of 

the forage and the height of the disk from the ground is measured giving the researcher 

an indication of forage biomass.  This method is effective, yet time consuming and labor 

intensive; however, the simple disk method has an advantage over the weighted disk, as 

it is easier to use in the field (Santillan et al., 1979).  Many methods can be used to 

estimate forage biomass in a non-destructive way; however, according to Harmoney et 

al., (1997) cutting and weighing forage from known areas is the most accurate method 

for determining forage biomass (Harmoney et al., 1997).   

Researchers have discovered adequate ways of measuring biomass; however, 

these methods can be time consuming and labor intensive.  Several studies have 

indicated that forage cutting to measure yield is costly and destructive; in addition, the 

demands of personnel and funding did not allow reliable information to be gathered, 

which could lead to sampling errors in research trials (Wilm et al., 1944; Haydock and 

Shaw, 1975; Sanderson et al., 2001). To solve some of these problems more recent 

studies have been conducted to modernize the way forage biomass can be measured 

(Freeman et al., 2007; Andales et al., 2006; Fricke et al., 2011).  The now relatively low 

cost of remote sensing tools and techniques could be utilized to address many of the 

problems addressed earlier with the traditional methods of predicting forage yields. 
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Nondestructive method of estimating forage by use of UAV visual spectrum 

reflectance and primitive NDVI meters  

The introduction of a “vegetation index” came from the first NASA ERTS 

satellite better known as Landsat 1 in 1972.  Landsat 1 was equipped with a multi-

spectral scanner to evaluate earth remotely, which could sense such things as spring 

green-up and fall dry down.  Through Landsat 1 research, the development of a ratio that 

used the difference of the red and infrared radiances over their sums to normalize was 

developed.  This vegetation index, Normalized Difference Vegetation Index (NDVI), is 

one of the most successful and simple ways to identify live green plant material in a 

remotely sensed way (LDP, 2015).  Precision agriculture systems have been developed 

as a means to improve profitability and productivity of producers.  This system requires 

high-resolution information, which will enable producers to better manage inputs (Elarab 

et al., 2015).   

Many studies have evaluated the relationship between remotely sensed data and 

forage biomass (Serrano et al., 2000; Freeman et al., 2007; Tucker, C. J., 1980; 

Anderson et al., 1993).  In a 2002 publication, the relationship between growth traits and 

spectral vegetation indices in durum wheat (Triticum turgidum var.duram) was 

evaluated.  The study aimed at determining if vegetation indices (VI) could identify total 

dry matter (TDM) and leaf area index (LAI) in durum wheat, and in turn aid selection in 

a breeding program.  The study determined the best growth stage for trait appraisal were 

Zadoks 65 and 75.  The final results were mixed and determined that VI could track 

changes in the LAI during the growing season at different growth stages, environments 
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and genotypes but was limited due to the lack of predictive ability for the combination of 

growth stage and environment (Aparicio., et al. 2002).  In a 2016 study, Possoch et al. 

(2016) evaluated the use of multi-temporal crop surface models that were combined with 

the RGB vegetation index (VI) for forage monitoring in grasslands.  The study found 

that the RGB vegetation index (RGBVI) was not a good estimator of biomass, but if 

combined with plant heights, medium correlations (R2 = 0.50) could be obtained. In a 

2012 study, the relationship between biomass, percent groundcover and remote sensing 

indices across six winter cover crops was evaluated.  A 16-band CROPSCAN sensor 

was used to obtain ten vegetation indices.  The study concluded that there was a strong 

relationship between NDVI and groundcover with an R2 of 0.93.  The most accurate 

index for measuring high ranges of biomass was the triangular vegetation index (TVI) 

with an R2 of 0.86.  In the low to medium biomass range the NDVI did not have a 

clustering of values; however, there was saturation in the higher ranges (Prabhakara et 

al., 2015).  NDVI has had some criticisms for some of its perceived defects:  (1) the 

differences between “true” NDVI measured at the surface and NDVI measured from 

space due to atmospheric interference, (2) the sensitivity of NDVI to LAI (leaf area 

index), which becomes weak with a rising LAI, and (3) soil brightness variations, which 

can cause variations in NDVI from one image to the next (Carlson and Ripley, 1997).  

Other problems with NDVI have been attributed to saturation issues in dense vegetation 

(Mutanga et al., 2004).  One possible solution to the saturation issue would be to use the 

Red Edge peak, which is defined as the point of maximum slope in the vegetation 

reflectance spectra (680-750nm).  This is the point where reflection changes from very 
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low in the red region of the spectra to very high NIR in chlorophyll absorption.  This 

phenomenon is a result of leaf and canopy scattering (Filella and Penuelas., 1994).  This 

idea supports the results of the a study conducted by Mutanga et al (2004) where they 

indicated during high canopy density the best estimation of biomass can be discovered 

by using vegetation indices that are based on wavelengths near the red edge rather than 

using NDVI (Mutanga et al., 2004).  Several studies have indicated a good correlation 

between plant biomass from models obtained between NDVI readings and from 

primitive handheld devices and plant height of various species (Andersson et al., 2017, 

Flynn et al., 2008, Freeman et al., 2007).  

The use of VI has long been applied to biomass estimation; however, the most 

popular VI would traditionally use the near infrared region (NIR) with a light reflectance 

range of 700 to 1300 nm (Bendig et al., 2015). To obtain the NIR band would require the 

use of a more expensive four band multispectral camera; however, a more cost-effective 

approach would be the utilization of a UAV mounted three band camera which would 

only take into account the Red (R), Green (G) and Blue (B) bands (400-700nm) (Bendig 

et al., 2015, Lessem et al., 2017, 2018). There has been some research into the use of 

visible band VI that has shown potential to be an effective method of biomass 

estimation; however; further investigation would be needed (Lussem et al., 2017, 2018, 

Tilly et al., 2015, Bendig et al., 2015, Possoch et al., 2016).  A study conducted by 

Motohka et al (2010) concluded that visual spectrum VI’s can be useful in detecting the 

early phase of leaf green-up, but may be limited to certain growth stages (Motohka et al., 

2010).  This may be useful when evaluating a multi-clip forage trial.  There has not been 
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a great deal of research on the best flight altitude for biomass screening.  In a 2010 

study, by Swain et al set out to determine the yield and total biomass of a rice crop by 

utilizing a low altitude unmanned helicopter, the UAV was flown at 20 meters over the 

experimental plots and had very good results when compared to satellite images for 

estimating some biomass parameters (Swain et al., 2010). 
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CHAPTER II  

COMPARING MECHANICAL HARVEST WITH ALTERNTIVE GROUND 

BASED METHODS FOR ESTIMATING FORAGE YIELDS IN COOL SEASON 

ANNUAL GRASSES  

 

Introduction 

The United States (U.S.) is one of the largest forage producing nations in the 

world. According to the U.S. Department of Agriculture (USDA-NAAS, 2017) census, 

there were 23 million hectares of land in the U.S. used for forage, which contributed to 

the nutritive needs of over 93.6 million beef cattle and calves alone.  Texas is the largest 

forage producing state in the U.S. with over two million hectares dedicated to forage 

production (USDA-NASS, 2018). Some of the most common cool-season annual forage 

species in the southern U.S. are small grain crops, which include wheat (Triticum 

aestivum), rye (Secale cereal), oats (Avena sativa) and triticale (Triticum secale) 

(Bruckner and Raymer, 1990).  In addition to these, barley (Hordeum vulgare) is another 

small grains species that is less utilized, but can produce good quality silage and hay 

similar to that of oats and triticale (Min, D.H., 2012).  Annual ryegrass (Lolium 

multiflorum) is not considered a small grain, but is a cool-season annual grass that 

provides a source of high quality winter and spring forage in the temperate regions of the 

world (Hill and Gates, 2001).  Cool-season grasses offer producers valuable production 

and management alternatives as sources of forage, which utilize similar planting and 

harvest equipment as that of alfalfa (Medicago sativa).  
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Wheat is one of the most popular small grains forage species planted in the U.S., 

due in large part to its excellent cold tolerance and broad adaptation. Furthermore, wheat 

seed is readily available in most geographic locations and it typically performs well in 

grain, grazing or dual-purpose cropping systems giving producers flexibility in their 

operations (Redmon et al., 1995, Hossain et al., 2003).  Rye, which has great early-

season forage, particularly in southern climates, generally has more total forage than 

wheat.  However, rye can become a major weed problem in areas where wheat is grown 

for grain (Roberts et. al. 2001), limiting its widespread adoption to certain regions where 

pasture and hay production dominate the agriculture landscape.  Oats tend to produce the 

earliest season forage of any small grains, but are the least winter hardy, which limits 

their use as a winter forage to only the most southern states (Stichler and Livingston, 

1998).  Triticale is the result of a cross between rye and wheat and has earlier maturity 

than wheat, but later than rye.  Triticale generally produces more forage than wheat, but 

lower forage than rye.  Barley is not as commonly grown in the southern U.S. because of 

limited access to seed sources in some areas and it is more winter tender than wheat.  

However, barley has exceptional tolerance of soils high in soluble salts or sodium and 

has better drought tolerance (Rohila et al., 2002, Nevo and Chen, 2010).   

The ability to accurately estimate forage yield of experimental lines and varieties 

without the time and expense of harvesting with and maintaining a plot harvester would 

aid cool-season forage grass researches and breeders in variety selection and 

advancement. For researchers and managers alike, it is important to know which species 

and genotypes of cool-season grasses produce the most forage in a given environment. 
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To ascertain this information, many universities conduct cool-season annual forage trials 

to determine which species and genotypes produce the most yield in their respective 

regions.  The publications that result from these forage trials are aimed at giving 

unbiased yield and quality data to researchers and forage managers so they can make 

educated decisions regarding the most appropriate varieties for their geographic region 

(Neely et al., 2016).  

In an earlier study on the effectiveness of visual estimations for forge potential in 

oat and barley species, the researchers compared visual rating of forage potential against 

actual forage yields.  The study found good correlations from a January evaluation when 

compared to actual yield.  Interestingly, when the estimations from January were 

combined with a second estimation in March, the correlations increased when compared 

to total yields for the season (Atkins et al., 1969).  Another study by Riday (1997),  the 

accuracy of visual biomass scores on estimating forage yield in red clover (Trifolium 

pretense L.) was evaluated. The evaluators that gave the same plants the same high score 

was high with an R²=0.84.  This study found that visual scores could explain 90% of the 

variation of actual fresh weights (Riday, 1997).   

Although visual rating is a reasonably accurate method for biomass estimation, 

all forage species may not be so easily evaluated. For this reason, many other non-

destructive methods have been tested throughout the years such as plant height (Freeman 

et al., 2007) and disk meter (Santillan et al., 1979) with success.  While these methods 

were successful, cutting and weighing forage from a known area is the most accurate 
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method for determining forage biomass.  Unfortunately, the up-front and routine 

maintenance costs associated with a mechanical forage harvester can be cost-prohibitive 

to physically harvest entire test plots (Sanderson et al 2001).   

The objective of this research was to compare mechanically harvested 

aboveground biomass yield of cool-season annual grasses with alternative forms of non-

destructive and limited destructive measurements of forage plot yield and to determine 

which method works best for each species and clip time. A less labor intensive method 

of estimating plot forage would aid breeders and researchers in evaluating more varieties 

or experimental lines more efficiently. 

Materials and Methods 

A cool season annual grass forage trial was conducted at the Texas A&M 

Research Farm near College Station, TX (30°31’N 96°25’W) during the 2015-2016 

(2016) and 2016-2017 (2017) growing seasons. The climate of the location is humid 

subtropical. The 30-year average annual temperature is 20.6 °C and growing season 

(October-May) temperature is 19.0°C   (College Station 2020). The 30-year long-term 

average annual precipitation is 1018 mm and growing season precipitation is 435 mm 

(College Station, 2020). The highest precipitation generally occurs in the months of 

May, June, and October.  Plots for both years were located on a Ships clay (Udertic 

Hapluderts) soil type. The trial was set up in a randomized complete block design 

(RCBD) with four replications of 37 entries in 2016 and 38 in 2017. Total number of 

plots in the 2016 was 148 and 2017 152.  Each plot measured 6 m in length and 1.5 m in 

width. The trial included commercial and experimental wheat, oat, rye, triticale, barley 
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and ryegrass cultivars.  All plots in the trial were treated with Cruiser Maxx Vibrance for 

Cereals to protect from seed borne and soil borne diseases and insects (e i. 

Thiamethoxam, Mefenozam, Fludioxonil and Sedazan) (Syngenta, Basel, Switzerland).  

All small grains plots were planted at a rate of 106 kg seed ha-1
. Ryegrass was planted at 

28 kg seed ha-1.  Row spacing was 19 cm for both small grains and Ryegrass.   

In the first growing season (2016), all plots were planted on October 1, 2015.  

Treatments included 10 wheat, 12 oat, 3 rye, 2 triticale, 7 ryegrass and 3 barley cultivars 

(total 37 treatments). In the second growing season (2017), the study was planted on 

September 29, 2016. The study included 9 wheat, 12 oat, 3 rye, 2 triticale, 9 ryegrass and 

3 barley cultivars (total 38 treatments).  In both growing seasons, temperatures were 

normal for the year. However, rainfall was above average in 2016 growing season and 

the trial received 632 mm of rain from October until May. In 2017, 273 mm of rain was 

received during the growing season.   

Nitrogen fertilizer was applied in both growing season. A total of 101 and 102 kg 

N ha-1 were applied as liquid urea ammonium nitrate (UAN 32-0-0) in the first and 

second years, respectively, on January 20, 2016 and December 2, 2016.  The entire plot 

was harvested a total of three times per year with a small plot Haldrup 1500 forage 

harvester (Haldrup, Ilshofen, Germany) which is equipped with an onboard weigh 

system and 1.5 m header. 

Forage clipping was done three times during the growing season. In 2015-16, 

clippings were done on January 19, March 28, and April 26, 2016. The clipping dates 

were November 30 (2016), February 8 and March 3, 2017. Clippings times were 
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categorized into four groups based on time of year: fall (November), mid-winter 

(January and February), early spring (March) and late spring (April) (Appendix 1).  

There was only one fall clipping in this study (November 30, 2016) from the 2016-17 

growing season due to an early planting date and good moisture conditions at planting.  

Both the mid-winter and early spring clip times included clips from both growing 

seasons.  Due to above average spring rainfall during the 2015-16 growing season, there 

was a late spring clipping (April 26, 2016), which did not occur in year two. 

Visual rating, plant height and subsample weights (1m linear row) were collected 

within 24 hrs. immediately prior to mechanical harvest (clipping) of the full plot . Three 

plant height measurements were recorded per plot using a meter stick. Visual rating was 

conducted for each plot on a 0-10 scale where 0 indicated no forage potential and 10 

indicated high forage potential. The visual rating was based on a visual assessment that 

took leafiness, height, and overall vigor into consideration to compare treatments. 

Following plant height and visual scoring, a 1 m linear row random subsample was 

collected from a single row within each plot. The subsample was cut 5 cm from the soil 

level to simulate cutting height of the mechanical harvester.  Subsamples were weighed 

immediately following harvest to document fresh (wet) weight prior to drying. Dry 

weights were recorded after drying in the oven at 50°C for three days.  Percent moisture 

at harvest was then calculated from the two weights (Eq. 2.1) and dry matter percentage 

was used to calculate dry matter yield from mechanical harvest.  

% Dry Matter = Dry Weight / Wet Weight * 100 [Eq. 2.1] 
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Statistical analysis was conducted using SAS 9.4 statistical software (SAS 

Institute, Cary, North Carolina). PROC CORR was used to run Pearson’s correlation 

analyses between plant height, visual rating, subsample dry weight and total plot dry 

forage yield. This was done for individual species as well as all species combined to 

assess if certain measurements were better correlated with forage yield for certain 

species. Correlations were also run for individual species and across species for 

individual clip times to assess if certain measurements were better correlated with forage 

yield for certain times of the year. PROC REG was used with a backward stepwise 

regression (alpha = 0.05) to develop a biomass prediction model using plant height, 

visual scores, and sub sample weight as possible variables within the model. 

 

Results and Discussion 

Visual Rating 

Correlation analysis revealed a wide range in relationships between visual rating 

and dry matter biomass for each specie and clip time combination (Table 1). While 

number of observations ranged by specie from eight (triticale, fall clip) up to 95 (oats, 

mid-winter and early spring clips), increasing the number of observations did not always 

improve correlations as both wheat (n=35) and rye (n=12) were not significant. Instead, 

the range in biomass played a bigger role. A good example of this is the difference in 

biomass range between the early spring clip time of Rye (n=24) and Barley (n=20).  The 

correlation between visual rating and forage yield was much greater for Barley (r=0.92, 

p>0.0001) which had a range in biomass yield between 322 to 1770 kgha-1 compared to 
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Rye (r=0.39, N.S.) which had a smaller range in biomass yield between 320 to 817 kgha-

1.  Overall, the highest correlation between visual rating and forage yield was achieved 

for barley (r=0.92, p<0.001) during the early spring clip. Wheat, rye, ryegrass, and 

barley all had at least one clip time throughout the season that was not significant, 

though rye was consistently the poorest.  

For individual species, the visual rating correlated the best with yield during the 

fall clip for triticale (r=0.84, p<0.01), mid-winter clip for rye (r=0.43, p<0.05), early 

spring clip for oats (r=0.78, p<0.001) and barley (r=0.92, p<0.001), and late spring clip 

for wheat (r=0.60, p<0.001) and ryegrass (r=0.83, p<0.001). Interestingly, when species 

were combined by clip, the fall (r=0.84, p<0.001) visual rating had the highest 

correlation to yield indicating this was a reliable method to estimate relative forage yield 

among entries at this time of the year while In fact, correlations between visual scores 

and forage yields appeared reliable for early and late spring clippings as well, though the 

mid-winter clipping correlation (r=0.39, p<0.001) was weak. Intuitively, this makes 

sense as mid-winter clips are generally lower yielding and with less variation among 

plots. It is more difficult to detect a relationship when little variation exists. Based on 

this study, visual scoring would be a viable option for ranking trial entries for forage 

potential, but not a good method for actually predicting yield since the scoring system is 

relative to other entries only within a specific clip..  

When data were combined across clip times for each specie, ryegrass had the 

best correlation between visual rating and yield (r=0.62, p<0.0001) while rye had the 

lowest correlation (r=0.39, p<0.001). When all data were combined across species and 
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clip times the visual rating only had a correlation of r=0.50 (p<0.001).  A scatter plot 

between visual rating and yield across all species and clip times revealed an exponential 

relationship between the two measurements (y = 42.659e0.3553x) with an R²=0.44 

(Figure 2.1). Still, compared to subsampling, the relationship is not as strong. This 

weaker relationship could be attributed to the method in which the plots were visually 

scored at each clipping. When visually rating a plot, its score was standardized based on 

a reference entry in the trial. In this instance, oat entry ‘’TAMO 411’ (Ibrahim et al., 

2018) was given a visual rating and all other plots were scored above or below that 

rating based on whether they looked better or worse. This may lead to accurate ratings 

per clip, but would not transcend clip times as a score of eight for TAMO 411 in a fall 

clipping yielded 4265 kg ha-1 whereas a late spring clipping with a score of eight only 

yielded 919 kg ha-1. This particular genotype yielded very well in both the fall and late 

spring clippings in relation to other entries; however, this illustrates the tendency of an 

observer to standardize the rating based on the surrounding entries in an individual 

clipping.  

In Table 2.1, the visual rating for individual clip times were better in general than 

the combined species correlation across all clips.  Similarly, Riday et al (2009) achieved 

very good results (R²=0.79, p<0.0001) when evaluating red clover plants on an 

individual basis to compare visual biomass scores with actual forage yield where 

measurements were taken only once for the growing season at two different locations. In 

another study by Atkins et al (1969), visual scores were used to estimate forage yield of 

oat and barley species, which showed a slight increase in coefficient of determination 
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from r=0.40 to r=0.50 for individual species and clip times to r=0.55 to r=0.66 when 

combining clip times and species. 

 

 
Table 2.1 Pearson Correlation coefficients and number of observations (n) between 
visual rating and dry matter forage yield for six species and four clip times in a cool 
season annual forage trial in College Station, TX across the 2016 and the 2017 growing 
season. 
  

Clip Time 

  Fall Mid-winter Early 
spring Late spring      Combined  

Wheat 0.32NS   
n=35 

0.50*** 
n=75 

0.49*** 
n=75 

0.60***   
n=40 

0.50***   
n=225 

Oat  0.53*** 
n=48 

0.31** 
n=95 

0.78***   
n=95 

0.42**   
n=48 

0.46***   
n=288 

Rye 0.50NS  
n=12 

0.43*     
n=25 

0.39NS    
n=24 

0.56NS   
n=12 

0.39***     
n=72 

Ryegrass 0.71*** 
n=35 

0.20NS    

n=63 
0.53***   
n=63 

0.83***    
n=28 

0.62***   
n=189 

Triticale 0.84**      
n=8 

0.57**    
n=20 

0.78***   
n=20 

0.83***   
n=12 

0.56***      
n=60 

Barley 0.75**  
n=12 

0.61**   
n=20 

0.92***    
n=20 

0.40NS   
n=8 

0.50***     
n=60 

Combined  0.84***  
n=150 

0.39***   
n=298 

0.66***    
n=298 

0.77***   
n=148 

0.50***   
n=894 

*, **, *** Correlation coefficient significant at the 0.05, 0.01, and 0.001 probability levels.  

NS, non-significant at P ≥ 0.05. 
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Figure 2.1 Relationship between visual rating and total plot dry matter forage yield 
across clip times and species. Visual Rating was determined using a scale of 0-10, where 
zero equals no forage yield. Data was collected from a cool-season annual forage trial 
with six species and taken across four clip times [fall (November), mid-winter (January 
and February), early spring (March) and Late Spring (April)] during the 2016 and 2017 
growing seasons in College Station, TX. 
 

 

 

Plant Height 

Correlation analysis revealed generally low correlation between plant height and 

dry matter forage yield for most individual species when combined across clip times; 

however, coefficient of determination values were much higher for individual clip times 

when combined across species ranging from r=0.52 (early spring) up to r=0.81 (fall) 

(Table 2.2).The highest height correlation to yield by species occurred for triticale 
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(r=0.95 p<0.001) in the fall, wheat (r=0.69 p<0.001)) and barley (r=0.87 p<0.001) in 

mid-winter, oat (r=0.80 p<0.001) in early spring, and rye (r=0.77 p<0.01) and ryegrass 

(r=0.67 p<0.001) in late spring.   As was the case with visual rating, plant height had the 

best correlation with forage yield for the fall clipping (r=0.81 p<0.001) (Table 2.2).  

Plant height could be used to determine forage production rankings for individual clips 

throughout the growing season, but would not be useful by itself in predicting forage 

production without the context of growth stage or clip time. Barley had the highest 

correlation between plant height and yield among the different species when data was 

combined across all clip times (r=0.37, p<0.01) while wheat, oat, rye, and triticale had 

no significant correlation when combined across clip times.  

When all data was combined across species and clip times, plant height had a low 

correlation of r=0.15 (p<0.001). This poor correlation can likely be attributed to the 

different growth stages that small grains experience throughout the season. In the fall 

and winter, cool-season annual grasses remain in the vegetative stage where they tiller 

and put on only vegetative, leafy growth. Certain varieties also have more prostrate 

growth than others, the degree of which may be independent of total biomass production. 

This can reduce correlations among plant height and forage biomass.  As noted in studies 

of other species such as corn, individual plant height measurements were good indicators 

of biomass during early stages of growth as opposed to the later stages (Freeman et al 

2007).  Unlike corn, winter small grains species do not begin their reproductive growth 

cycle until spring, at which time they begin stem elongation and eventually produce 
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reproductive seed heads. During this stage of growth, small grains and ryegrass 

accumulate biomass rapidly.  

Once forage is removed during or after this stem elongation, plants will attempt to 

recover and shoot up smaller, thinner stems in an effort to produce seed. Hence, many 

times in late spring plants may be taller than in the fall, but produce less biomass. As a 

result, height was well correlated with yield at each growth stage or clip time, but led to 

poor correlation when data was combined across clip times.  A good example from this 

study is based on winter wheat variety ‘TAM 401’ (Rudd et al., 2012) which had a fall 

plant height of 31 cm and a yield of 1629 kg h-1 compared to a plant height of 43 cm in 

the late spring clip with a yield of only 742kg h-1 of dry matter.  

   Figure 2.2 shows the relationship between plant height and dry matter forage 

yield across all species separated out by clip time.  The highest association with yield 

was in the fall with an R²=0.65 across species, followed by late spring (R²=0.55) and 

mid-winter (R²=0.46).  The lowest association with yield was in the early spring 

(R²=0.27) (Figure 2.2). 
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Table 2.2 Pearson Correlation coefficients and number of observations (n) between 
plant height and dry matter forage yield for six species and four clip times in a cool-
season annual 
  Clip Time 

  Fall Mid-
winter 

Early 
spring 

Late 
spring     Combined  

Wheat 0.21NS   
n=35 

0.69*** 
n=75 

0.54*** 
n=75 

0.56***   
n=40 

0.05NS   
n=225 

Oat  0.43** 
n=48 

0.64*** 
n=95 

0.80***   
n=95 

0.23NS   
n=48 

0.09NS   
n=288 

Rye 0.61*  
n=12 

0.69***     
n=25 

0.64***    
n=24 

0.77**   
n=12 

-0.06NS   
n=72 

Ryegrass 0.53** 
n=35 

0.41*** 
n=63 

0.40**   
n=63 

0.67***    
n=28 

0.30***  
n=189 

Triticale 0.95*** 
n=8 

0.53*    
n=20 

0.73***   
n=20 

0.65*   
n=12 

0.00NS   
n=60 

Barley 0.37NS  
n=12 

0.87***   
n=20 

0.79***    
n=20 

0.77*     
n=8 

0.37**   
n=60 

Combined  0.81***  
n=150 

0.67***   
n=298 

0.52***    
n=298 

0.74***   
n=148 

0.15***   
 n=894 

*, **, *** Correlation coefficient significant at the 0.05, 0.01, and 0.001 probability levels.  

NS, non-significant at P ≥ 0.05. 
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Figure 2.2 Relationship between plant height and total plot dry matter forage yield for 
four clip times using data collected from a cool-season annual forage trial with six 
species and taken across four clip times [fall (November), mid-winter (January and 
February), early spring (March) and Late Spring (April)] during the 2016 and 2017 
growing seasons in College Station, TX. 

 

Sub sample measurement 

The subsample method had the highest correlation to yield across all species and 

clip times of all the methods evaluated in this study (r=0.83 p<0.001).  Indeed, an 

R2=0.68 was achieved when subsample weight was plotted against total plot forage 

yield, which is better than that of both visual rating and plant height (Figure 2.4).  Most 

species had the highest correlation to yield in the mid-winter clipping with the exception 

of ryegrass and triticale, which had their highest correlations during the early spring 
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(r=0.78 p<0.001) and fall clippings (r=0.79, p<0.05), respectively (Table 2.3). This was 

expected as ryegrass is slow to establish in the fall and correlations are more difficult to 

establish when there is little variability among forage yields. Ryegrass produced 

abundant vegetative growth later in the season leading to the better correlation at that 

time. Interestingly, the fall clip had the poorest correlation for all but Triticale, but the 

fall clip time had the highest correlation when all species were combined (r=0.81 

p<0.0001) (Table 2.3). 
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Table 2.3 Pearson Correlation coefficients and number of observations (n) between sub 
sample dry weight and total plot dry matter forage yield for six species and four clip 
times in a cool season annual grass forage trial in College Station, TX across the 2016 
and 2017 growing seasons. 
  Clip Time 

 Fall 
Mid- Early 

Spring 
Late 
Spring Combined  

winter 

Wheat 0.41*   
n=35 

0.78***  
n=75 

0.70*** 
n=75 

0.62***   
n=40 

0.83***   
n=225 

Oat  0.41** 
n=48 

0.82***  

n=95 
0.72***   
n=95 

0.39**   
n=48 

0.86***   
n=288 

Rye 0.37NS  
n=12 

0.87***     
n=25 

0.54**    
n=24 

0.55NS   
n=12 

0.81***     
n=72 

Ryegrass 0.36* 
n=35 

0.70***  
n=63 

0.78***   
n=63 

0.74***    
n=28 

0.71***    
n=189 

Triticale 0.79*   
n=8 

0.77***    
n=20 

0.35NS   
n=20 

0.76***   
n=12 

0.85***     
n=60 

Barley 0.32NS   
n=12 

0.91***   
n=20 

0.83***    
n=20 

0.58NS   
n=8 

0.91***     
n=60 

Combined  0.81***  
n=150 

0.80***   
n=298 

0.77***    
n=298 

0.69***   
n=148 

0.83***   
n=894 

*, **, *** Correlation coefficient significant at the 0.05, 0.01, and 0.001 probability levels.  

NS, non-significant at P ≥ 0.05. 
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Figure 2.3 Relationship between subsample dry weight and total plot dry matter forage 
yield across clip times and species. Data was collected from a cool-season annual forage 
trial with six species and taken across four clip times [fall (November), mid-winter 
(January and February), early spring (March) and Late Spring (April)] during the 2016 
and 2017 growing seasons in College Station, TX. 

 

All species achieved good correlations between subsample harvesting and full 

plot forage yields when combined across clip times and ranged from r=0.71, p<0.001 

(ryegrass) to r=0.91, p<0.001 (barley). Correlations were also strong when combined 

across species by clip and ranged from r=0.69, p<0.001 (late spring) to r=0.81, p<0.001 

(fall). Rye showed the most variability in correlations across clip times, which were only 

significant for the mid-winter (r=0.87, p<0.001) and early spring clippings (r=0.54, 

p<0.01). Rye matures more rapidly than the other species in the trial, and subsequently, 

it only produced very sparse growth during the late spring because it had already headed 

out and was nearing the end of its life cycle. This could explain the poor late spring 

correlation.    



 

39 

 

The data strongly indicates that the subsampling method is more strongly 

correlated to whole plot dry matter forage yield compared to visual scoring or plant 

height when combining data across species and clip time for cool-season annual grasses. 

This is supported by the work of Martin et al. (2005) in which they concluded that the 

standard quadrat harvesting (subsampling) was the most reliable method to estimate 

forage biomass in a mixed species trial. In fact, this method could be more accurate than 

the whole plot harvest to which the subsample yields are compared to. While whole plot 

forage harvest with a forage plot harvester is the industry standard, it can also have its 

inaccuracies due to factors such as: non-uniform cuts across the plots, unbalanced scales, 

scales affected by wind and sparse forage in the early fall and late spring that can be 

difficult to mechanically harvest. 

Prediction Model 

While subsampling appeared to be the best method for estimating full plot forage 

yields, correlations could still be stronger and indeed, they were not significant in every 

instance. Therefore, a prediction model for dry matter forage yield was developed using 

669 observations from replications 1, 3 and 4 across all clip times. A backwards 

stepwise regression was conducted using the following variables: plant height (HT), 

visual ratings (VR) and subsample weights (SUB). Using this method, all variables were 

found to be significant and the following prediction model was developed : Yield= (-

590.563+51.62051*VR+8.31458*HT+20.42425*SUB).   Using this model, predicted 

yields were plotted against actual yields of replication 2, which produced an adjusted 

R²=0.78 (p<0.0001) and RMSE 258.14 (Figure 2.4). This was an improvement over the 
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stand-alone subsample method with an R²=0.68 (p<0.0001) and RMSE 289.42 (Figure 

2.3).   A separate model using only plant height and visual rating was created [Yield = (-

635.58294+176.44599*VR+3.59274*PH], which generated a much lower adjusted R² 

value (R²=0.29 p<0.0001) and RMSE 468.93. Personal preference would dictate whether 

the added level of accuracy of taking visual ratings and plant height is worth the extra 

time and effort beyond utilizing only the subsample method. 

 

Figure 2.4  A graphical representation of predicted forage yield compared to actual 
forage yield from a model developed using plant height (HT), visual ratings (VR) and 
subsample dry weights (SUB). Observations used in the model were collected from a 
cool-season annual forage trial with six species and taken across four clip times [fall 
(November), mid-winter (January and February), early spring (March) and Late Spring 
(April)] and the 2016 and 2017 growing seasons in College Station, TX. 

 

      It is clear that subsampling was a better method to estimate or rank forage 

potential of entries in this trial; however, subsampling is still time and labor intensive. 
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For plant breeders who evaluate thousands of lines, it may not be a practical method for 

comparing forage yield of breeding lines. In this case, visual scoring or plant height may 

be useful, but not as accurate as subsampling.  Breeders could then utilize this 

information for the advancement of cultivars from very large observational or 

preliminary nurseries for forage production. 

Conclusion 

When evaluating a multi-species forage trial over several clippings throughout 

the year, the model created in this study using all three measurements was better at 

predicting forage yield than any individual method alone.  However, the subsample 

method was consistently better than either visual rating or plant height measurements 

and would be the only acceptable method for comparisons of entries across clip times 

and species.   

If researchers are unable to take destructive samples, both visual and plant height 

measurements were highly correlated for fall and late spring clips. It is less clear which 

would be best throughout the entire season though, as visual rating was poorly correlated 

for the mid-winter clip and plant height was inferior to visual rating for early spring. In 

general, it would not be advisable to rely solely on visual rating or plant height to make 

comparisons within a specie for forage yield across all clip times, as correlations were 

generally low to moderate. Combining all measurements into one model to predict 

forage yield may be a better way to estimate forage yield if whole plot forage harvest is 

not possible. A less labor and cost intensive method of estimating plot forage would aid 

breeders and researchers in evaluating more varieties or lines more efficiently. 
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CHAPTER III  

COMPARING NONDESTRUCTIVE AERIAL AND GROUND METHODS OF 

ESTIMATING FORAGE YIELD IN COOL SEASON ANNUAL GRASSES 

USING UAV VISUAL SPECTRUM REFLECTANCE INDICIES, VISUAL 

EVALUATION AND PRIMATIVE NDVI METERS  

 

Introduction 

The United States (U.S.) is one of the largest forage producing nations in the 

world. In fact, the USDA estimated that total U.S. forage production (all dry hay, 

haylage and green chop) in 2016 was 82.3 million metric tons (USDA NASS 2016). As 

a result, there is interest in developing more modern and efficient ways of evaluating 

breeding lines and cultivars of different forage species for forage biomass. Some of the 

more traditional methods, such as visual rating and subsampling have been around for 

over 50 years and are labor intensive.  Having a good indication of how much yield 

potential a particular forage species and cultivar has is useful for livestock managers 

who rely on good forage production to meet the high demands of their forage systems.  It 

is also important for researchers in forage and small grains breeding programs who need 

good forage potential data for cultivar advancement. 

In the southern U.S., cool-season annual grasses can extend grazing and supply 

high quality forage for livestock (Bagley et al., 1998).  This makes the use of cool season 

annual grasses the most common form of winter pasture (Corriher-Olson and Redmon, 

2013).  Some of the most common cool season annual forage species in the southern 
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U.S. are small grains, which include wheat (Triticum aestivum), rye (Secale cereal), oats 

(Avena sativa) and triticale (Triticum secale) (Bruckner and Raymer, 1990).  In addition 

to these more common southern species, barley (Hordeum vulgare) can produce good 

quality silage and hay similar to that of oats and triticale (Min, D.-H. 2012).  Annual 

ryegrass (Lolium multiflorum) is not considered a small grain, but provides a source of 

high-quality winter and spring forage in the temperate regions of the world (Hill and 

Gates, 2001). The forage season usually stretches from October to May in  Texas where 

this trial was conducted.  

It is important for both livestock managers and plant breeders to have a good 

assessment of forage production quantity when evaluating potential forage species and 

varieties. For any livestock manager forage production is critical.  A forage system can 

assist a livestock manager in some cases with an implementation of a year-round grazing 

system that utilizes both warm and cool season forages (Redmon, 2003). Producers rely 

on accurate forage estimates to adjust cattle stocking rates and animal gains.  Plant 

breeders also need accurate forage data to make determinations on genotype 

advancement for public release of forage cultivars. Plant variety selection based on 

phenotypic performance was done long before any type of DNA or molecular markers 

were available.  In order to improve a variety, the best genetic variation would need to 

be identified.  Breeding is a numbers game; the goal is to screen the maximum number 

of varieties under the maximum number of environments (Araus and Cairns, 2014).    

For these reasons, many universities conduct annual forage trials to determine 

which species and varieties of those species produce the most biomass in specific 
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geographical areas.  The publications that result from these forage trials are aimed at 

giving unbiased yield and quality data to researchers and forage producers so they can 

make educated decisions regarding the most appropriate varieties for their geographic 

region (Neely et al., 2016).  

Despite their usefulness, small grains forage trials can be costly, time consuming 

and labor intensive to conduct. As noted in past studies, the standard method of 

determining forage biomass is to clip and weigh the samples, which requires great effort 

and expense (Sanderson et al 2001). Recently, efforts have been made to incorporate  

unoccupied aerial vehicles (UAV) into estimating cool season annual forage biomass.  

These vehicles utilize remote sensing imagery such as visual spectral images, which can 

obtain various vegetation indices (VI). The use of VIs has long been applied to biomass 

estimation; however, the most popular VI would traditionally use the near infrared 

region (NIR) with a light reflectance range of 700 to 1300 nm (Bendig et al.,2015). To 

obtain the NIR band would require the use of a more expensive four band multispectral 

camera; however, a more cost-effective approach would be the utilization of a UAV 

mounted three band camera which would only take into account the red (R), green (G) 

and blue (B) bands (400-700nm) (Bendig et al., 2015, Lessem et al., 2017, 2018). In a 

2016 study, Possoch et al. (2016) evaluated the use of multi-temporal crop surface 

models that were combined with the RGB vegetation index (VI) for forage monitoring in 

grasslands.  The study found that the RGB vegetation index (RGBVI) was not a good 

estimator of biomass, but if combined with plant height, medium correlations (R square 

0.50) could be obtained. A study conducted by Motohka et al (2010) concluded that 
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visual spectrum VIs can be useful in detecting the early phase of leaf green-up, but may 

be limited to certain growth stages (Motohka et al., 2010). This may be useful when 

evaluating a multi-clip forage trial. Research is also limited on the best flight altitude for 

biomass screening. In a 2010 study by Swain et al, investigators set out to determine the 

yield and total biomass of a rice crop by utilizing a low altitude unmanned rotocopter. 

The UAV was flown at 20 meters over the experimental plots with positive results when 

compared to satellite images for estimating some biomass parameters (Swain et al., 

2010). Many studies have evaluated the relationship between remote sensing data and 

forage biomass (Serrano et al., 2000; Freeman et al., 2007; Tucker, C. J., 1980; 

Anderson et al., 1993). Some research using visible band VIs has shown potential as an 

effective method of biomass estimation; however, investigators acknowledge further 

investigation is needed (Lussem et al., 2017, 2018, Tilly et al., 2015, Bendig et al., 2015, 

Possoch et al., 2016).  

The Normalized Difference Vegetation Index (NDVI) is one of the most 

successful and simple ways to remotely identify live green plant material (LDP, 2015). 

In a 2015 study Prabhakara et al., a 16-band CROPSCAN sensor was used to obtain ten 

VIs to determine the relationship between biomass, percent groundcover and remote 

sensing indices across six winter cover crops  The study concluded that there was a 

strong relationship between NDVI and groundcover with an R² value of 0.93 

(Prabhakara et al., 2015).  
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NDVI does have criticisms for some of its perceived defects: (1) the differences 

between “true” NDVI measured at the surface and NDVI measured from space due to 

atmospheric interference, (2) the sensitivity of NDVI to LAI (leaf area index) which 

becomes weak with a rising LAI, and (3) soil brightness variations which can cause 

variations in NDVI from one image to the next (Carlson and Ripley, 1997). Other 

problems with NDVI have been attributed to saturation issues in dense vegetation 

(Mutanga et al., 2004). Still, several studies have indicated a good correlation between 

plant biomass and NDVI readings from primitive handheld devices or plant height for 

various species (Andersson et al., 2017, Flynn et al., 2008, Freeman et al., 2007).   

These new methods have been recently explored in their application possibilities; 

however, historically the traditional methods such as visual rating and plant height have 

been utilized solely or incorporated as a part of the estimation of forage potential in 

various crops (Ackerman et al 1999, Ud-Din et al 1993, Freeman et al 2007, Fernandez 

et al 2009). Researchers have utilized visual rating for many applications in the plant 

science discipline.  Several studies have utilized these ratings to evaluate issues such as 

weed pressure in cover crops, individual space planted clover and winter wheat forage 

lines (Lawley et. al. 2011, Ud-Din et. al. 1993, Riday, 1997).   

    The purpose of this research was to compare a ground-based method of forage 

estimations to an aerial method.  The main goal is to determine which method is best to 

assist cool season annual grass breeders and researchers in estimating forage yield of 

entries in forage trials and breeding lines for advancement in breeding programs. The 
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specific objectives of this study are to: (1) determine at what height UAV measurements 

should be taken for measuring forage yield, 2) Compare relationships among UAV 

generated vegetation indices, hand held NDVI, plant height, and visual rating with dry 

matter forage yield across and between cool-season annual grass species, (3) Develop 

models to predict forage yield among cool-season annual grasses using UAV generated 

VIs and ground based measurements.  4) Determine if models generated from UAV data 

are as reliable as ones generated from ground based measurements. 

Materials and Methods 

A cool season annual grass forage trial was conducted at the Texas A&M 

Research farm near College Station, TX (30°31’N 96°25’W) during the 2016-2017 

(2017) growing season.  The climate of the location is humid subtropical. The 30-year 

average annual temperature is 20.6 °C and growing season (October-May) temperature 

is 19.0°C   (College Station., 2020). The 30-year long-term average annual precipitation 

is 1018 mm and growing season precipitation is 435 mm (College Station, 2020). The 

highest precipitation generally occurs in the months of May, June, and October.  Plots 

were located on a ships clay (Udertic Hapluderts) soil type (USDA-NRCS 2018). The 

trial was set up in a randomized complete block design (RCBD) with four replications of 

38 entries in 2017. Total number of plots in the 2017 growing season was 152.  Each 

plot measured 6 m in length and 1.5 m in width. The trial included commercial and 

experimental wheat, oat, rye, triticale, barley and ryegrass cultivars.  All plots in the trial 

were treated with Cruiser Maxx Vibrance for Cereals to protect from seed borne and soil 

borne diseases and insects (e i. Thiamethoxam, Mefenozam, Fludioxonil and Sedazan) 
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(Syngenta, Basel, Switzerland).  The plots were planted at a rate of 75 kg seed ha-1 on 19 

cm row spacing in plots that were 1.5 meters (m) x 6.0 m in size. 

The study was planted on September 29, 2016. Monthly temperature averages 

were near normal at 18.4°C and there was a below average amount of rainfall (273 mm) 

(College Station, 2020) during the growing season. The study included 9 wheat, 12 oat, 

3 rye, 2 triticale, 9 ryegrass and 3 barley cultivars (38 treatments). The clipping dates 

were November 30, 2016 (Fall), February 8, 2017 (mid-winter) and March 31, 2017 

(early spring). A total of 102 kg N ha-1 were applied as liquid UAN (32-0-0) on 

December 2, 2016. Three plant height measurements were taken per plot just before 

harvest using a meter stick and averaged to get mean of plot height. 

There were two methods of forage biomass analysis that were evaluated in this 

study an aerial and ground.  The Ground method utilized the hand held NDVI meter, 

which was a Trimble GreenSeeker Handheld Crop Sensor, Trimble part number 91500-

00 (Trimble. GreenSeeker, Sunnyvale, Ca). This sensor produces red and infrared light 

once the trigger was pulled at an operating height of 80 cm above the plant canopy. The 

trigger was held while the operator walked the length of the plot as measurements of the 

reflected light were taken at a continuous pace while the trigger was engaged. Once the 

trigger was released, an average plot reading was displayed. A numeric reading between 

0.00 and 0.99 was produced based upon the NDVI which uses the equation NDVI = 

(NIR-R)/(NIR + R) (Hansen and Schjoerring., 2003) . In theory, higher values indicate a 

healthier crop. Three plant height measurements were recorded per plot using a meter 

stick to get an overall plot average. A visual rating was taken for each plot on a 0-10 



 

49 

 

scale, where 0 indicates no forage potential and 10 represents very high forage potential. 

The visual rating was based on a visual assessment that took leafiness, height, and 

overall vigor into consideration to compare trial entries.     

   The aerial method utilized UAV data that was collected by using a Phantom 4 

multi rotor drone equipped with an RGB camera (DJI, Phantom 4 multi rotor drone, 

Shenzhen, China). Flights were flown at two different altitudes of 20m and 30m with an 

80% overlap just prior to clipping. The resulting images were processed and stitched 

together using Microsoft: Image Composite Editor (Microsoft. Redmond, Washington). 

Once the images were stitched, they were uploaded into the ENVI software (Exelis 

Visual Information Solutions, Boulder, Colorado) and the Region of Interest (ROI) tool 

was used to draw individual polygons over the entirety of each plot. Once all the 

polygons were drawn, the ENVI statistics tool was utilized to obtain the reflectance 

values of the three bands; band 1 red, band 2 green and band 3 blue for each pixel and 

then averaged across each ROI. Data was compiled in a Microsoft Excel spread sheet 

and used to calculate the vegetation indices identified in Table 3.1. In order to avoid 

multicollinearity issues, only the highest correlated VI was used for each species and 

combined species analysis.  In addition to the VI, the same manual plant height was used 

as described earlier in order to remain consistent across methods.  Once all data was 

taken, the plots were harvested using a Haldrup 1500 forage harvester (Haldrup, 

Ilshofen, Germany) which has an onboard weigh system and 1.5 m header to give plot 

total plot yield which was then converted to kg ha -1.  In order to better synchronize the 
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yield data and produce a linear relationship with the indices and NDVI results the log 10 

of each yield was taken by using the log function in Microsoft Excel. 

Table 3.1 List of vegetation indices used to predict forage yield of a cool season annual 
grass forage trial along with their respective abbreviations, formulas and sources. 

Vegetation Indices  Abbreviation Formula Reference 

Normalized Red  r Red/ Red+Green+Blue Woebbecke et al 
1995 

Normalized Green  g Green/Red+Green+Blue Woebbecke et al 
1995 

Normalized Blue  b Blue/Red+Green+Blue Woebbecke et al 
1995 

Red Green VI RG R/G Introduced here 

Normalized Red 
Green VI rg r/g Introduced here 

Modified Green 
Red VI MGRVI (G)²-(R)² / (G)²+(R)² Bendig et 

al.,2015 

Red Green Blue VI RGBVI (G)²-(B*R) / (G)²+(B*R) Bendig et 
al.,2015 

Excessive Green VI ExG 2g-r-b Woebbecke et al 
1995 

Normalized Green 
Red VI g/r g/r  Introduced here 

 

 

Statistical analysis was conducted using SAS 9.4 statistical software (SAS 

Institute, Cary, North Carolina). PROC CORR was used to run a correlation analyses 

between plant height, NDVI, R/G, r/g, MGRVI, RGBVI, ExG, g/r and total plot dry 
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forage yield and the log 10 of total plot dry forage yield of all species. PROC REG was 

used with a backward stepwise regression (alpha = 0.05) to develop the dry forage yield 

and log yield prediction models using , plant height (PH), Visual Rating (VR) and R/G, 

r/g,  MGRVI, RGBVI, ExG, and g/r for the ground method.  A second PROC REG 

backward stepwise regression (alpha = 0.05) was used to develop the dry forage yield 

and log yield prediction models by using the best VI R/G, r/g,  MGRVI, RGBVI, ExG, 

and g/r in addition to plant height  for the aerial method. 

Results and Discussion 

Measurements of visual rating, plant heights, hand held NDVI, and six VIs derived 

from the RGB (UAV) images were taken multiple times across a single growing season 

in an attempt to estimate forage potential. The UAV data was collected at two flying 

heights, 20 and 30-meter altitudes just prior to each clipping.  . The performance of each 

species varied based on the time of year as well as temperature and rainfall during the 

growing season. This is expected as each species performs differently through its life cycle 

and differs in response to mechanical clipping. In order to capture some of this variability, 

the study was divided into three seasonal clip times based on the time of year the clippings 

were performed. 

   Measurements for VIs are inherently small (between 0 and 1) and the yield data 

measured in kg ha-1 ranged from 20 kg ha-1 to 1706 kg ha-1 which is comparatively much 

higher.  The yield data was then log transformed in an attempt to create a linear 

relationship with measurements since VIs are known to produce non-linear relationships 

with yield (Panda, S.S., et. al. 2010, Dadhwal and Sridhar, 1997).  Transforming the data 
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did improve correlations in some cases, but not all. Log transforming the plant height 

data did not increase the correlation to yield; and in some cases, it decreased it.  Several 

studies have indicated that plant height can be a useful measurement of forage 

production (Boukerrou, and Rasmusson 1990, Tilly et al 2015, Alheit et al 2014) 

 

UAV Flight Altitude 

Each vegetation index was calculated for flight altitudes of 20 and 30 m above soil level 

to determine which flight altitude produced the best correlations. In every instance for 

the fall and mid-winter clippings, the correlation coefficient was as good or better at the 

20 m altitude flight compared to the 30 m height (Table 3.2). The improvement was 

quite minimal for the fall clip however, and there was no improvement during the early 

spring clipping as the vegetative indices showed no correlation at either altitude. Of all 

the indices, the 20m height showed the greatest and most consistent improvement for the 

RGBVI index. The correlation coefficients were most improved during the mid-winter 

clipping when comparing the 20m to the 30m flight heights. Other studies documented a 

similar improvement at lower UAV flight heights.  Liu et. al., noted that, as UAV flight 

height differed, the image resolution of the same area varied.  It was determined that this 

variation can have an effect on image features which can degrade accuracy of the trait 

being evaluated (Liu et al 2018).  A second study indicated that as the flight height of the 

UAV increased, the number of detectable targets decreased (Trolove and Shorten 2019). 

In the current study the effects of flight altitude were minor never the less the accuracy 
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was improved at lower altitudes. This was also seen in several other studies (Torres-

Sánchez et al 2014, López-Granados et al 2016, and Peña et al 2015). 

 

Table 3.2  Pearson Correlation coefficients and number of observations (n) among 
vegetation indices, plant height, and hand held NDVI with dry matter forage yield for a 
cool-season annual grass forage trial in College Station, TX. Correlation coefficients for 
vegetative indices are shown at two flight heights (20 and 30 m) and combined across all 
varieties and species (wheat, oat, barley, rye, triticale, and ryegrass) in the trial. 

Season n R/G r/g MGRVI RGBVI ExG g/r Plant 
Height 

Hand 
Held 

NDVI 

20m Ground 
Measurements 

Fall n=142 -0.73*** -0.76*** 0.74***  0.64***  0.71***   0.76*** 0.80*** 0.73***  
Mid-
winter n=142 -0.45*** -0.48*** 0.44***  0.41***  0.42***  0.48***  0.52***  0.26**   

Early 
spring n=139 -0.14ns -0.12ns 0.14ns 0.16ns  0.15ns  0.12ns  0.40***     0.47***  

Combined n=423 -0.36*** -0.35*** 0.36*** 0.25*** 0.29*** 0.36*** 0.38*** 0.47*** 

30m     
Fall n=142 -0.72*** -0.75*** 0.73***  0.53***  0.69***   0.75*** _ _ 
Mid-
winter n=142 -0.36*** -0.39*** 0.36**   0.34***  0.34***  0.39***  _ _ 

Early 
spring n=139 -0.14ns -0.11ns 0.14ns 0.16ns  0.15ns  0.12ns  _ _ 

Combined n=423 -0.35*** -0.33*** 0.34*** 0.16*** 0.25*** 0.33*** _ _ 

 

UAV and Ground Based Measurement Relationships with Forage Yield 

UAV Measurements 

A Pearson correlation analysis revealed a wide range in relationships among 

vegetative indices and plant height with dry matter forage yield for specific species and 

clip times (Table 3.3). Previous studies have shown non-linear relationships among VIs 

and biomass, so data was also log transformed to compare correlation coefficients 
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(Goward et al 1985, Hobbs 1995, and Santin-Janin et al 2009). While number of 

observations ranged by species from 12 (barley and rye) up to 44 (oats), increasing the 

number of observations did not necessarily improve correlations.  Log transforming the 

data did improve the correlation coefficient for some species, but not all, and there was 

not a single VI that was best correlated to all species.   

Overall, the strongest correlation obtained between a VI and dry matter forage 

yield for any species was for R/G, r/g, MGRVI, and g/r (r=-0.89, r=-0.89, r=0.89, 

r=0.89, respectively; p<0.001 for all) during the Fall clip for ryegrass when the data was 

log transformed.  In fact, ryegrass had the highest VI correlations across clip times and 

combined clips (R/G: r=-0.92, p<0.001; MGRVI: r=0.92, p<0.001) than any the other 

species in the study. This could be a result of the naturally shinny, dark green, and 

smooth leaves that are characteristic of annual ryegrass (Lacefield, G. et al 2003). In 

general, the correlations between the VIs generated from UAV images and dry matter 

forage yield was far better for ryegrass in this study than any other small grains species.  

A study conducted by Golzarian and Frick, 2011 wanted to determine if image 

classification could distinguish differences between wheat and ryegrass by using color, 

texture and shape.  The study evaluated the digital numbers of red, green and blue on a 

scale of 0-255.  It was determined that ryegrass plants would have more red color than 

wheat which had more blue color (Golzarian and Frick, 2011).  Red (564-580nm) and 

blue (420-440 nm) light wavelengths are strongly absorbed by chlorophylls (Terashima, 

I., et. al. 2009).  Chlorophyll is the source of the green color that is reflected and found 

in all plants (Rabinowitch, E.I., 1965) and has a direct relationship with the amounts of 
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nitrogen contained in the plant cells (Wood et al. 1993, Lamb et al .2002, Schepers, J.S, 

1996).  In this study, it was noted that the ryegrass plots were visibly greener to the 

naked eye than that of the other species in the trial.  This phenomenon could explain why 

the UAV and hand-held NDVI sensor were able to better detect above ground biomass 

yields in the ryegrass plots.  While coefficients were high for original data, log 

transformed data improved the coefficient even further for ryegrass. Transforming plant 

height did improve correlations for fall and mid-winter clips, but early spring plant 

height was not significant in either case, and VI coefficients were better in every 

instance.  

After ryegrass, rye had the next highest correlations among measurements and 

dry matter forage yield. Transforming the data had mixed results. Correlation 

coefficients were only slightly improved by transforming the data for the mid-winter 

clip, while coefficients were lower for the fall and had no practical impact for early 

spring. The original data did provide the best correlations when combining data across 

clips with R/G obtaining the highest correlation (r=0.75, p<0.001). Rye plant height had 

strong correlations for each individual clip time, but was much lower than most VIs 

when combined across clips.  The strong plant height correlations reflects the more 

semi-erect to erect growth pattern of rye (Briggle 1959,Holt 1962, Pfahler et. al., 1986) 

which has much of its biomass located in the mid to upper canopy throughout the 

growing season.  This is the opposite to ryegrass, which tends to have a semi-prostrate 

growth pattern (Arnold et. al., 1981,Choi et. al., 2000, Choi et. al., 2011) especially later 

in the season compared to other annual grass species.   
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Wheat, oat, and barley had low or no significant correlation in many cases when 

comparing VIs with dry matter forage yield. Wheat and oat both tended to have stronger 

correlations during the mid-winter clip time for many of the VIs, while barley had more 

success in the early spring clip.  This could be attributed to when each species initiates 

spring green up. In this study oat and wheat cultivars tended to mature slower than 

barley.  Interestingly, transforming the data improved mid-winter coefficients for wheat 

and decreased coefficients for oats.  This could be a result of the overall range in yield 

for each species during the mid-winter clip time.  The winter wheat ranged from 212 kg 

ha-1 to 1,043 kg ha-1 and the oat had a slightly higher range 264 kg ha-1 to 1,260 kg ha-1.  

It is possible that certain winter wheat cultivars had reached canopy closure before the 

oats resulting in a plateauing VI response to dry matter forage yield for the higher yields. 

This often results in a logarithmic relationship and cause an improvement to the 

correlation coefficient when the data was log transformed for the wheat, but not the oats. 

Data transformation made no appreciable difference for barley VIs in any clip time, 

which could be attributed to the data having a smaller range in values for all three clip 

times (fall 321-770 kg ha-1, Mid-winter 202-649 kg ha-1 and early spring 628-1585 kg 

ha-1).  No VI was significant when combining data across clip times for wheat and oats, 

though R/G produced a coefficient of r=0.42 (p<0.001) for barley using non-transformed 

data. Plant height had a much more consistent correlation with dry matter forage yield 

than VIs for wheat, ranging from r=0.52 (p<0.001) in the fall to r=0.36 (p<0.05) in the 

early spring with a coefficient of r=0.52 (p<0.001) for combined clip data. Oat plant 

height correlations were only significant in the fall (r=0.45, p<0.01), with or without 
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data transformation.  This could be attributed to the growth habit of most oats in this 

study which were noticed to have erect growth early in the season, but as the season 

progresses and the oats developed a more semi-prostrate growth habit.  This would result 

in much of the oat forage being located in the mid canopy of the plant for which plant 

height may not be the best determination of forage yield.  Non-transformed winter barley 

plant height produced a high correlation for the mid-winter (r=0.82, p<0.01) and early 

spring (r=0.80, p<0.01) clips, but was not significant for the fall clip.  This is likely an 

effect of growth habit of the specie, as it tends to maintain an erect growth pattern 

throughout the year with much of its forage evenly distributed throughout the plant 

profile, making plant height a reasonable forage assessment tool for most of the growing 

season. The small sample size and small range in yield likely was the cause of no 

significant correlation in the fall clip for barley. 

Table 3.3  Correlation coefficients of original and log transformed data for plant height, 
R/G, r/g, MGRVI, RGBVI, ExG, and g/r with dry matter forage yield using visual 
reflectance data taken with a UAV at a 20m flight altitude. Measurements were taken 
three times (fall, mid-winter,  early spring, and combined species) on a cool-season 
annual grass forage trial near College Station, TX during the 2017 seasons. 

Original Data Log Transformed Data 
  Winter Wheat 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant Height 0.52***  0.46**  0.36*   0.52*** 0.42**  0.47**  0.39*   0.52***  

R/G -0.35*    -0.30*  -0.04ns   0.07ns   -0.37*     -0.36*  -0.02ns     0.00ns   

r/g -0.34*   -0.32*  -0.07ns   0.02ns   -0.35*    -0.39* -0.05ns     -0.05ns   

MGRVI 0.34* 0.29ns   0.05ns   -0.07ns 0.37*  0.36*   0.02ns   0.00ns  

RGBVI 0.10ns   0.47**  0.10ns -0.08ns  0.17ns  0.54***  0.08ns  0.00ns  

ExG 0.23ns  0.38*   0.07ns  -0.06ns  0.28ns  0.45**   0.05ns  0.02ns  

g/r 0.34*  0.32*   0.07ns  -0.02ns  0.35* 0.39*  0.05ns 0.05ns  

n n=38 n=38 n=38 n=114  n=38  n=38  n=38 n=114 
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Table 3.3 Continued.   
Original Data Log Transformed Data 

  Oat 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant Height 0.45**  0.08ns  0.16ns   0.17* 
n=132 0.45** 0.07ns  0.24ns   0.20*  

R/G -0.03ns  -0.51***  0.24ns   0.13ns   -0.03ns  -0.49*** 0.26ns  0.06ns  

r/g -0.11ns  -0.54***  0.27ns  0.13ns  -0.12ns  -0.50***  0.28ns  0.07ns   

MGRVI 0.03ns  0.51***  -0.24ns   -0.13ns  0.03ns  0.48*** -0.26ns      -0.07ns  

RGBVI 0.18ns 0.39**  0.19ns   -0.11ns  0.18ns  0.37*  0.21ns   -0.06ns  

ExG 0.12ns  0.46**  -0.09ns   -0.13ns  0.13ns 0.42**  -0.08ns -0.07ns  

g/r 0.11ns  0.54***  -0.27ns     -0.13ns 0.12ns  0.50***  -0.28ns     -0.07ns 

n n=44 n=44 n=44 n=134 n=44 n=44 n=44 n-134 

  Rye 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant Height 0.62** 0.74**  0.77***  0.48**  0.63* 0.71**  0.75**  0.37*   

R/G -0.64*  0.57ns   0.63*       0.75***  -0.60* -0.62*  0.64*  0.68***   

r/g -0.62**  0.60*     0.62*      0.71***   -0.57ns  -0.65* 0.63*  0.65***   

MGRVI 0.64*    0.57ns   -0.63*         -0.74***    0.60*  0.61*  -0.64*  -0.67***   

RGBVI 0.64*    0.32ns   -0.39ns        -0.71***  0.58*   0.37ns  -0.41ns   -0.68*** 

ExG 0.65*    0.46ns   -0.53ns       -0.72***  0.60*  0.51ns  -0.54ns   -0.67***  

g/r 0.62*    0.60*     -0.62*          -0.71***  0.57ns  0.65*  -0.63*    -0.65***  

n n=12 n=12 n=12 n=36 n=12 n=12 n=12 n=36 

  

  
  Ryegrass 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant Height 0.56***  0.31ns    0.27ns    -0.08ns    0.69***  0.36*    0.28ns   -0.12ns      

R/G -0.82***  -0.68***  -0.79*** -0.83***   -0.89***  -0.76***  -0.83***  -0.92***    

r/g -0.86***  -0.67***  -0.76***  -0.86***    -0.89*** -0.71*** -0.77***  -0.91***    

MGRVI 0.83***  0.68*** 0.78***  0.85*** 0.89***  0.75*** 0.81***  0.92***  

RGBVI 0.82***  0.68*** 0.77***  0.74***  0.87*** 0.75*** 0.80***  0.85***  

ExG 0.84***  0.67*** 0.78***  0.81*** 0.88***  0.73***  0.80***  0.88***  

g/r 0.86***  0.67***  0.76***  0.86***    0.89***  0.71***  0.77***  0.91*** 

n n=35 n=35 n=35 n=105 n=35 n=35 n=35 n=105 
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Table 3.3 Continued.   
 Original Data                                              Log Transformed Data 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant Height 0.37ns    0.82**     0.80**  0.52**  0.37ns   0.78*     0.77**   0.54***  

R/G -0.20ns  -0.43ns  0.58ns 0.42*   -0.20ns -0.42ns  0.58**  0.29ns   

r/g -0.24ns   -0.46ns   0.58*  0.31ns   -0.24ns   -0.46ns   0.58**  0.18ns    

MGRVI 0.20 ns  0.43ns  -0.57ns  -0.40*  0.20 ns  0.42ns  -0.57ns  -0.26ns  

RGBVI 0.27ns  0.53ns  -0.71**  -0.37*  0.27ns 0.54ns  -0.71**  -0.19ns  

ExG 0.26ns  0.48ns  -0.62*  -0.34*  0.25ns 0.48ns -0.62*  -0.19ns  

g/r 0.24 ns  0.46ns  -0.58*  -0.46ns  0.24 ns  0.46ns  -0.58**  -0.17ns  

n n=12 n=12 n=12 n=36 n=12 n=12 n=12 n=36 

  Combined 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant Height 0.80***    0.52***     0.40***  0.39**  0.75***   0.53***     0.41***  0.30**  

R/G -0.73***  -0.44***  -0.15ns  -0.36***  -0.89***  -0.50***  -0.18*  -0.54***  

r/g -0.76***  -0.47***  -0.12ns  -0.36***  -0.90***  -0.51***  -0.16ns  -0.51***  

MGRVI 0.74***  0.44***  0.15ns  0.36***  0.90***  0.50***  0.18*  0.52***  

RGBVI 0.64***  0.41***  0.17*  0.25***  0.83***  0.48***  0.21**  0.42***  

ExG 0.71***  0.42***  0.17ns  0.29***  0.87***  0.48***  0.17*  0.45***  

g/r 0.76***  0.47***  0.13ns  0.36***  0.90***  0.51***  0.13ns  0.51***  

n n=141 n=141 n=141 n=423 n=141 n=141 n=141 n=423 

*, **, *** Correlation coefficient significant at the 0.05, 0.01, and 0.001 probability levels.  

NS, non-significant at P ≥ 0.05. 

 

Ground-Based Measurements 

Correlation analysis in Table 3.5 compares the VR, plant height, and hand held 

NDVI sensor to dry matter forage yield for each species, clip time and combined clip 

time for the original and log-transformed yield data.  In this study, transforming the data 

showed little benefit to VR for any specie, except for a slight improvement in ryegrass 

correlations for each clip time and combined clips (r=0.85, p<0.001) (Table 3.5). 

Similarly, transforming NDVI data consistently improved correlation coefficients for 
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ryegrass for individual and combined clips (r=0.88, p<0.001). In fact, log transformed 

NDVI data had the strongest correlation with dry matter forage yield of any ground 

based measurement. While transforming plant height data showed some improvement 

for ryegrass, it generally did more harm than good for correlations with dry matter 

forage yield in other species. 

Outside of ryegrass, NDVI produced few significant correlations for other 

species with only low to moderate correlations for wheat (r=0.36, p<0.05) and oats 

(r=0.41, p<0.01) in the early spring clip. In general, VR provided a consistently higher 

correlation to dry matter forage yield than plant height (PH) for all species except rye 

and the contrast was most striking for oats and ryegrass. Rye PH correlation with dry 

matter forage yield was better than VR for all individual and combined clips (r=0.48, 

p<0.01).  Correlations between visual scores and dry matter forage yields appeared 

reliable for winter wheat, oat and rye during the mid-winter clip time. Intuitively, this 

makes sense as mid-winter clips during this study took place in February when these 

species were on the verge of breaking winter dormancy and are generally demonstrating 

more variability in forage production.  It is more difficult to detect a relationship when 

little variation exists, as was the case in the early spring for these species.  Ryegrass and 

barley demonstrated a wider range in yield throughout the growing season, which made 

the relationships between dry matter forage yield and VR easier to detect through the 

season. Based on this study, VR would be a viable option for ranking trial entries for 

forage potential; however, its use would be limited to within a specific clip and would 

not be useful to predict yield, especially across clip times. 
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Table 3.4 Correlation coefficients of original and log transformed data for visual rating, 
plant height, and hand held NDVI meter with dry matter forage yield.  Measurements 
were taken three times (fall, mid-winter, early spring, and combined species) on a cool-
season annual grass forage trial near College Station, TX during the 2017 seasons. 

Original Data Log Transformed Data 
  Winter Wheat 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

VR 0.49** 0.76*** 0.39* 0.33*** 0.43**  0.75***  0.41** 0.36*** 

PH 0.52*** 0.46**  0.36*  0.52***   0.42**  0.47** 0.39*  0.55***  

NDVI 0.24ns  0.27ns  0.36*  0.06ns  0.20ns  0.36*  0.34*  0.10ns   

n  n=38 n=38 n=38 n=144 n=38 n=38 n=38 n=144 

  Oat 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

VR   0.65***   0.82***   0.55***   0.63***  0.66***   0.83***  0.55***   0.68***  

PH 0.45**   0.08ns   0.16ns    0.18*  0.45**  0.07ns   0.24ns    0.20*   

NDVI 0.04ns    0.37*  0.41**   0.22**  0.01ns    0.39**   0.40**  0.25**   

n  n=44 n=44 n=44 n=132 n=44 n=44 n=44 n=134 

  Rye 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

VR  0.49ns   0.71**   0.10ns      0.11ns   0.42ns   0.63*        0.10ns     0.14ns      

PH 0.62*   0.74**    0.77**     0.48**   0.63*    0.71**       0.75**     0.37*   

NDVI 0.56ns    0.05ns   -0.20NS  -0.26ns    0.60*     0.06ns       -0.24ns   -0.14ns   

n  n=12 n=12 n=12 n=36 n=12 n=12 n=12 n=36 

  Ryegrass 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

VR  0.72*** 0.69*** 0.76***   0.79***  0.78***  0.78***  0.79***  0.85***  

PH 0.56***  0.31ns    0.27ns    -0.08ns   0.69***  0.37*       0.28ns    -0.12ns  

NDVI 0.83***  0.65***  0.83*** 0.78***   0.90***  0.74***  0.88***  0.88***  

n  n=35 n=35 n=35 n=105 n=35 n=35 n=35 n=105 

  Winter Barley 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

VR  0.75***  0.73*   0.87***  0.46*     0.74***  0.70*       0.85***    0.49**    

PH 0.37ns   0.82**  0.80**     0.52**   0.37ns    0.79**   0.77**      0.54***   

NDVI 0.48ns    0.20ns   -0.11ns   -0.02ns  0.50ns    0.20ns     -0.14ns         0.03ns   

n  n=12 n=12 n=12 n=36 n=12 n=12 n=12 n=36 
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Table 3.4 Continued.   

Original Data Log Transformed Data 
  Combined 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

VR 0.83***    0.73***     0.68***  0.68***  0.89***    0.74***     0.70***  0.74***  

PH 0.80***  0.52***  0.40***  0.39***  0.75***  0.53***  0.41***  0.30***  

NDVI 0.73***  0.26**  0.47***  0.47***  0.87***  0.33***  0.52***  0.61***  

n n=141 n=141 n=141 n=423 n=141 n=141 n=141 n=423 

*, **, *** Correlation coefficient significant at the 0.05, 0.01, and 0.001 probability levels.  

NS, non-significant at P ≥ 0.05. 

 

Prediction Models Aerial Method 

Since no one variable showed a strong relationship across all clip times or species, 

models were developed to predict dry matter forage yield.  The best VIs of the six 

evaluated here (R/G, r/g, MGRVI, RGBVI, ExG, and g/r) and plant height were used in 

a backward stepwise regression to develop individual models for each individual 

species, clip time, and combinations of species and clip times.  In addition, models were 

created across species and clip times for both the original yield data and the log 

transformed yield data (Table 3.4). Using this data, 48 models were attempted, though 

five were not significant and thus not used.   

Of the 43 models that were created, eight used only plant height, 12 used only a 

VI and 23 utilized both plant height and a VI (Table 3.4).  Models for winter wheat and 

ryegrass had slightly higher adjusted R2 values when yield data was log transformed 

whereas the oat, cereal rye and barley did not.  The winter wheat model with the highest 

correlation to log transformed yield was the mid-winter clip time [(Y=1.40.019* 

HT+21713*RGBVI) Adj R²=0.54, RMSE 142].  The ryegrass model for the fall clipping 
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[(Y=1.3+0.018* HT+2.1*MGRVI) Adj R²=0.82 (p<0.0001), RMSE 27] had the highest 

coefficient of determination for the log transformed yield data (R²=0.82, (p<0.0001)) of 

any individual clip, though the developed models fit the data well for all clips. In fact, 

the combined model across clips was the best (R²=0.84 p<0.0001) for ryegrass 

For oat, only the fall and mid-winter clip time models were significant, and even 

then, adjusted R2 values were low, regardless of whether the yield data was transformed 

or not.  The fall clip time for barley, for both the normal and log transformed forage 

data, did not produce a significant model; however; moderately high R2 values were 

produced for both the mid-winter and early spring clip time models without transforming 

the data.  Interestingly the early spring model   [(Y=123.4+35.3*HT) Adj 

R²=0.65(p<0.0001), RMSE 174 utilized only plant height while the log transformed 

early spring model [(Y=3.4-1.1*RGBVI) Adj R²=0.28 (p<0.0001), RMSE 167] only 

utilized RGBVI, but produced a similar adjusted R2. The mid-winter model had a 

slightly lower adjusted R2 value, but had a much lower RMSE compared to the early 

spring clip. Despite the models fitting the data moderately well for mid-winter and early 

spring, combining data across clip times produced a model that explained very little of 

the variability in yield.  

For cereal rye, the developed models explained over half of the variability for all 

three clip times and was best using the original yield data, though each model used a 

different parameter.  The best rye model was for the mid-winter clip time 

[(Y=751638+751650*gr) Adj R²=0.70 (p<0.0001), RMSE 63]; however, the combined 

model did nearly as well in terms of the R². Of the combined species models, the fall clip 
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time had the highest R² for both the original and log transformed forage data with an 

adjusted R²=0.76(p<0.0001) and R²=0.89(p<0.0001), respectively. In every case, 

transforming the data improved the adjusted R2 value, but also increased the RMSE. The 

combined clip time and species was poor for both the original (R²=0.23(p<0.0001)) and 

log transformed (R²=0.36(p<0.0001)) forage data (Table 3.4), indicating there was not a 

“one size fits all” model. However, combining plant height with the gr VI in a model 

shows promise that a single model could be used across species to predict dry matter 

forage yield in the fall for a multi-species cool-season annual grass forage trial. 

Unfortunately, the models were less accurate for the mid-winter clip and rather poor in 

the early spring. 



Table 3.5  Original vs log transformed data of the aerial method for each species and clip time. 
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After validating the prediction models using a subset of the data from replication 

two, Figure 3.1 illustrates the accuracy of the models for the original and log 

transformed forage yield data.  The effectiveness of the log transformation is most 

noticeable in the scatter plots for ryegrass (Figure 3.1, d and i). The log transformation 

of the ryegrass forage yield data distributed the data points closer to the 1 to 1 line. The 

data for the original rye forage yield (plot c; R²=0.68 (p<0.0001) have a more uniform 

distribution around the 1 to 1 line than that of the transformed rye yield (plot h; 

R²=0.44(p<0.0001). The predicted yields for both the original and log transformed 

forage yield data for winter wheat, oat and barely were not very well correlated with 

actual yield. The wheat model overpredicted low yields and underpredicted high yields, 

while the oat model showed no discernible relationship. The barley models did well at 

predicting low yields but underpredicted high yielding plots. 

66 



67 

Figure 3.5  Aerial method original and log transformed data Predicted vs actual yield 
data on a 1:1 line a) Wheat b) Oat c) Rye d) Ryegrass e) Winter Barley for original data, 
f) Wheat g) Oat h) Rye i) Ryegrass j) Winter Barley for log-transformed data.
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The log transformed forage data for the fall clip time (R²=0.89(p<0.0001); plot e) 

was an improvement over the original forage yield data (R²=0.76 (p<0.0001); plot a) 

(Figure 3.2).  While the predicted yields are more evenly distributed along the 1 to 1 line 

for lower yields when transforming the data, they appear to be more scatter as yield 

increases. Similar to the fall clip, the mid-winter clip model tended to underpredict low 

forage yields and overpredict the higher yields in that particular clip using the original 

data (plot b; R²=0.43 (p<0.0001)). Transforming the mid-winter clip yield data only had 

a minimal improvement on over or under predicting forage yield (plot f; R²=0.48 

(p<0.0001)).  The ability of the model to predict forage yield during the early spring clip 

was quite poor for both original (plot d; R²=0.27 (p<0.0001)) and transformed (plot h; 

R²=0.32 (p<0.0001)) data, though there was again a slight improvement using the 

transformed data. In the model where species and clip times were combined, low yields 

were significantly underpredicted and higher yields were overpredicted using the 

original data (plot d; R²=0.23 (p<0.0001)). The log transformation helped with over or 

under predicting to some degree, but caused more scatter in the predicted values and R2 

values were quite low in either case. (plot h; R²=0.36 (p<0.0001)).  It is noteworthy that 

the log transformed forage yield data had better R2 values for all clip times and 

combined clip times than that of the original data. 
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Figure 3.6 Validation of models for original and log transformed data using vegetative 
indices and plant height to predict actual yield based on clip time. Plots are assigned as 
a) Fall clip b) Mid-winter c) early Spring d) combined for original forage yield data and 
e) Fall clip f) mid-winter g) early spring h) combined for log transformed forage yield 
data. Solid line represents 1:1 line. 
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Prediction Models Ground Based Method 

 

Since no one variable showed a strong relationship across all clip times or 

species, models were developed to predict dry forage yield using visual rating, plant 

height and handheld NDVI. Of the 48 models attempted, three were not significant.  Of 

the 45 models that were created, 11 used only plant height, 15 used only a visual rating 

and five used only hand held NDVI.  Some models for species and clip times were more 

accurate when all measurements were combined. Five models used plant height and 

visual rating, four used plant height and handheld NDVI, two used visual rating and 

handheld NDVI, and three models utilized all three measurements.  Using the original 

data for the cereal rye was superior in every clip time including the combined data across 

clips, though the combined model was much less accurate than the individual clip 

models.  Similar to cereal rye, predicted winter barley yields were more highly 

correlated to actual yield for each individual clip using original data compared to log 

transformed data and individual clip times were much better at predicting yield than 

combining all three clips together There were no appreciable differences between the 

models using original and transformed data for winter wheat. The models for mid-winter 

and early spring produced moderately high R2 values, but the fall clip and combined 

models were quite poor. For the oat models, the only appreciable difference between the 

original data and transformed data occurred for the combined model where transforming 

improved the R2, but increased the RMSE. In general the adjusted R2 values were low 
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except for the mid-winter clip [(Y=2.2+0.082*VR) Adj R²=0.67 (p<0.0001), RMSE 

198], which had the lowest RMSE as well.  Transforming the forage data improved 

individual clip models and the combined model for ryegrass, though the fall clip 

produced the most accurate model [(Y=0.637+0.019*HT+1.3*NDVI) R²=0.84 

(p<0.0001), RMSE 23].  The winter barley models were better in every case using the 

original data, except when combining clip data. In fact, the barley models rivalled the 

accuracy of the ryegrass models using transformed data, except when combined across 

clips. When combining data across species, transforming the data improved R2 values, 

but also increased RMSE values slightly. The combined species fall clip time produced 

the best R2 value (R2=0.87 (p<0.0001)), compared to the mid-winter and early spring 

clips, but again, the RMSE was not as low (RMSE=187). 



Table 3.6 Original vs log transformed data of the ground method for each species and clip time.  

Species Fall Mid-Winter Early Spring Combined Fall Mid-Winter Early Spring Combined

Model Y=-113.3+100.0*VR Y=-699.2+174.1*VR
Y=-

1063.4+23.1*HT+ 
1891.1*NDVI

Y=243.9+13.7*HT Y=2.2+0.068*VR Y=1.6+0.149*VR
Y=1.9+0.019*HT+0.

946*NDVI
Y=2.4+0.010*HT

Adj R2 0.19 0.59 0.48 0.21 0.15 0.60 0.50 0.25

RMSE 129 118 129 213 129 119 130 218

n 28 28 28 84 28 28 28 84

Model Y=-173.8+128.1*VR Y=-121.5+117.6*VR
Y=-

670.1+114.7*VR+ 
1264.4*NDVI

Y=-180.9+139.3*VR Y=2.3+0.072*VR Y=2.2+0.082*VR
Y=2.3+0.045*VR+0.

503*NDVI
Y=2.2+0.084*VR

Adj R2 0.38 0.66 0.27 0.36 0.41 0.67 0.26 0.45

RMSE 139 115 153 193 140 119 153 198

n 33 33 33 99 33 33 33 99

Model Y=-227.1+14.6*HT Y=-222.1+29.3*HT Y=-81.1+25.6*HT Y=-119.7+20.4*HT n.s n.s. Y=2.3+0.015*HT n.s.

Adj R2 0.42 0.45 0.51 0.22 0.49

RMSE 43 85 93 217 90

n 9 9 9 27 9

Model
Y=-

78.2+379.7*NDVI
Y=-63.6+83.8*VR

Y=-165.2+1540.5 
*NDVI

Y=-514.2+1645.6 
*NDVI

Y=0.637+0.019*HT+
1.3*NDVI

Y=1.9+0.098*VR Y=2.1+1.0*NDVI Y=0.991+2.3*NDVI

Adj R2 0.69 0.47 0.69 0.59 0.84 0.60 0.76 0.75

RMSE 35 152 135 256 23 152 126 257

n 26 26 26 78 26 26 26 78

Model Y=-295.7+109.9*VR Y=-209.9+30.2*HT
Y=-

692.3+159.7*VR+18.
4*HT

Y=17.2+21.3*HT Y=2.0+0.093*VR Y=1.8+0.033*HT Y=2.3+0.095*VR Y=2.3+0.014*HT

Adj R2 0.67 0.62 0.87 0.25 0.67 0.56 0.74 0.27

RMSE 67 84 96 273 71.16 103 122 275

n 9 9 9 27 9 9 9 27

Model
Y=-923.6+105.8 
*VR+19.0*HT

Y=-453.4+104.6 
*VR+11.4*HT

Y=-
642.2+75.7*VR+13.9 
*HT+888.2*NDVI

Y=-533.7+137.1 
*VR+8.0*HT

Y=0.455+0.121*VR+
0.013 

*HT+1.17*NDVI

Y=1.7+0.094*VR+0.
010*HT

Y=2.0+0.035*VR+0.
008*HT+0.582*NDV

I

Y=1.1+0.113*VR+0.
005*HT+0.884*NDV

I 

Adj R2 0.77 0.57 0.56 0.47 0.87 0.61 0.63 0.58

RMSE 154 150 156 244 187 153 158 279

n 105 105 105 315 105 105 105 315

Barley

Combined

Original Data Log Transformed Data

Wheat

Oat

Rye

Ryegrass
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The effectiveness of the log transformation is most noticeable in the scatter plots 

for ryegrass (Figure 3.3, d and i), which also happened to be the best model for any 

species combined across clip times. The relationship between predicted and actual 

forage yield for cereal rye were among the poorest of all the species.  The combined 

models for winter oat show no improvement from transforming the forage yield data as 

the RMSE increased slightly, despite the R2 value improving (Figure 3.3, b and h).  The 

combined models developed for both winter wheat and barley clearly did not predict 

forage yield with a high level of confidence, regardless of using original or log 

transformed forage yield data. 

73 
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Figure 3.7 Models developed to predict forage yield of cool-season annual grass species 
using ground measurements and comparing model performance using original data or 
log transformed data. Predicted forage yield is compared to actual yield data using a 1:1 
(black) line for the following species: a) Wheat b) Oat c) Rye d) Ryegrass e) Winter 
Barley for original data and f) Wheat g) Oat h) Rye i) Ryegrass j) Winter Barley for log 
transformed data. 
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When running validations for models using ground-based measurements to 

predict forage yield across species for specific clip times, there was a consistent trend. 

For every individual clip time, including the combined model, the models using the 

original forage data overpredicted lower forage yields and underpredicted higher forage 

yield. Using log transformed forage data improved the R2 values for the models in every 

case, but also increased the RMSE. Still, using the transformed data was an 

improvement as it reduced the amount of over or underprediction, though improvements 

were only modest for the mid-winter and early spring clips. The fall clip time of the log 

transformed forage data had the highest R²=0.87(p<0.0001) (RMSE=187), while the 

mid-winter and early clip times only achieved a R2=0.61(p<0.0001) (RMSE=153) and 

R2=0.63(p<0.0001) (RMSE=158), respectively. The individual clip times were better at 

predicting forage yield compared to the combined model, which had a lower R2 and 

nearly double the RMSE. 
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Figure 3.8 Models developed to predict forage yield of cool-season annual grass species 
using ground measurements and comparing model performance using original data or 
log transformed data. Predicted forage yield is compared to actual yield data using a 1:1 
(black) line for the following clip times: a) Fall clip b) Mid winter c) early Spring d) 
combined for original data, e) Fall clip f) mid winter g) early spring h) combined for log 
transformed data. 
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Table 3.7 compares the R2 for all measured variables in the study which include 

PH visual rating, handheld NDVI, R/G, r/g, MGRVI, RGBVI, ExG, and g/r alongside 

the aerial and ground models and using both original or log transformed forage yield 

data.  For each species, the variables that correlated well to forage yield varied widely 

among species and clip times. In many cases, the aerial or ground models made little or 

no improvement to the cR2 values; however, there were some instances where it made a 

significant improvement such as with the early spring clip of wheat and oat, fall and 

mid-winter clips for rye, fall and early spring clips for barley, and early spring clip for 

the combined data. The early spring clip benefitted the most often from the ground-

based model. The ground-based model in general did better than aerial-based models for 

wheat, oat, and barley; generally did worse for rye, and was not much different for 

ryegrass. In general, combining data across clip times for specific species did not 

achieve good results, though there were some exception such as with rye (aerial model) 

and ryegrass (aerial model).  

Winter wheat had the highest R²=0.61(p<0.0001) for both the original (Y=-

699.2+174.1*VR) and log transformed (Y=1.6+0.149*VR) forage yield data during the 

mid-winter clip time with the ground method which only utilized VR in the model.  This 

was only a slight increase from using the visual rating alone for both the original 

(R²=0.58(p<0.0001)) and log transformed (R²=0.56(p<0.0001)) forage data.  The VR 

produced the highest R²=0.69(p<0.0001) for the oat mid-winter clip using the log 

transformed forage yield data. Neither model produced a better R2 value. The best R2 for 

cereal rye (R²=0.73 (p<0.0001)) was generated by both the original (Y=-
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751638+751650*gr) and log transformed (Y=-979.7+981.8*gr) models during the mid-

winter clip using the aerial method which only utilized the gr VI in the model.  Ryegrass 

had the highest R²=0.85(p<0.0001) for log transformed 

(Y=0.637+0.019*HT+1.3*NDVI) forage yield data during the fall clip time with the 

ground model. In this case, the model utilized plant height and hand held NDVI. For the 

combined clip time for ryegrass the aerial model (Y=2.1+3.7*MGRVI) had the highest 

correlation to yield of the log transformed forage yield data with a R²=0.84 (p<0.0001).  

Winter barley had the highest R²=0.90 (p<0.0001) for the original forage yield data (Y=-

692.3+159.7*VR+18.4*HT) during the late spring clip time with the ground method 

which utilized the VR and HT in the model.  When combining species, the best 

correlation occurred using log transformed forage yield data for the fall clip time.   Both 

the ground model (Y=0.455+0.121*VR+0.013 *HT+1.17*NDVI) with an 

R²=0.88(p<0.0001) which used the visual rating, NDVI and plant height, and aerial 

model (Y=-531.3+ 0.022 *HT+ 532.7*gr) with a R²=0.89(p<0.0001) and utilized plant 

height and the gr VI were very highly correlated to forage yield.  When combining clip 

times across species, the highest correlations occurred with the log transformed forage 

yield data and the ground model (Y=1.1+0.113*VR +0.005*HT+0.884*NDVI; R²=0.59 

(p<0.0001)).  The ground model included all three variables: visual rating, plant height 

and hand held NDVI. 
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Table 3.7 Coefficient of determination of original vs log transformed data for plant 
height, visual rating, hand held NDVI, R/G, r/g, MGRVI, RGBVI, ExG, and g/r 
individual variables compared to aerial and ground models. 

Original Data Log Transformed Data 
  Winter Wheat 

  Fall Mid-winter Early spring Combined Fall Mid-winter Early spring Combined 

Plant Height 0.27 0.21 0.13 0.27 0.18 0.22 0.15 0.27 

VR 0.24 0.58 0.15 0.11 0.18 0.56 0.17 0.13 

NDVI 0.06 0.07 0.13 0.00 0.04 0.13 0.12 0.01 

R/G 0.12 0.09 0.00 0.00 0.02 0.13 0.00 0.00 

r/g 0.12 0.10 0.00 0.00 0.12 0.15 0.00 0.00 

MGRVI 0.12 0.08 0.00 0.00 0.14 0.13 0.00 0.00 

RGBVI 0.01 0.08 0.01 0.00 0.03 0.29 0.00 0.00 

ExG 0.05 0.14 0.00 0.00 0.08 0.20 0.00 0.00 

g/r 0.12 0.10 0.00 0.00 0.12 0.15 0.00 0.00 

n n=38 n=38 n=38 n=114  n=38  n=38  n=38 n=114 

Aerial Model 0.32 0.47 0.33 0.22 0.29 0.58 0.34 0.26 

Ground Model 0.22 0.61 0.52 0.22 0.18 0.61 0.54 0.26 

n n=28 n=28 n=28 n=84 n=28 n=28 n=28 n=84 

  Oat 

  Fall Mid-winter Early spring Combined Fall Mid-winter Early spring Combined 

Plant Height 0.20 0.00 0.03 0.03 0.20 0.00 0.06 0.04 

VR 0.42 0.67 0.30 0.40 0.40 0.69 0.09 0.46 

NDVI 0.00 0.14 0.17 0.05 0.00 0.15 0.16 0.06 

R/G 0.00 0.26 0.06 0.02 0.00 0.24 0.07 0.00 

r/g 0.01 0.29 0.07 0.02 0.01 0.25 0.08 0.00 

MGRVI 0.00 0.26 0.06 0.02 0.00 0.23 0.07 0.00 

RGBVI 0.03 0.15 0.04 0.01 0.03 0.14 0.04 0.00 

ExG 0.01 0.21 0.00 0.02 0.02 0.18 0.00 0.00 

g/r 0.01 0.29 0.07 0.02 0.01 0.25 0.08 0.00 

n n=44 n=44 n=44 n=134 n=44 n=44 n=44 n-134 

Aerial Model 0.31 0.31 0.00 0.06 0.31 0.27 0.00 0.00 

Ground Model 0.40 0.67 0.32 0.36 0.42 0.69 0.31 0.45 

n n=33 n=33 n=33 n=99 n=33 n=33 n=33 n=99 
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Table 3.7 Continued. 

Original Data Log Transformed Data 
  Rye 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant 
Height 0.38 0.55 0.59 0.23 0.4 0.5 0.56 0.14 

VR 0.24 0.5 0.01 0.01 0.18 0.4 0.01 0.02 

NDVI 0.31 0 0.04 0.06 0.36 0 0.06 0.02 

R/G 0.41 0.32 0.4 0.56 0.36 0.38 0.17 0.46 

r/g 0.38 0.36 0.38 0.5 0.32 0.42 0.4 0.42 

MGRVI 0.41 0.32 0.4 0.55 0.36 0.37 0.17 0.45 

RGBVI 0.41 0.1 0.15 0.5 0.34 0.14 0.17 0.46 

ExG 0.42 0.21 0.28 0.52 0.36 0.26 0.29 0.45 

g/r 0.38 0.36 0.38 0.5 0.32 0.42 0.4 0.42 

n n=12 n=12 n=12 n=36 n=12 n=12 n=12 n=36 

Aerial 
Model 0.62 0.73 0.57 0.7 0.54 0.73 0.55 0.46 

Ground 
Model 0.49 0.52 0.57 0.25 0 0 0.55 0 

n n=9 n=9 n=9 n=27 n=9 n=9 n=9 n=27 

  Ryegrass 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant 
Height 0.31 0.1 0.07 0 0.48 0.13 0.08 0.01 

VR 0.52 0.48 0.58 0.62 0.61 0.61 0.62 0.72 

NDVI 0.69 0.33 0.69 0.61 0.81 0.55 0.77 0.77 

R/G 0.67 0.46 0.62 0.48 0.79 0.58 0.69 0.85 

r/g 0.74 0.45 0.58 0.55 0.79 0.5 0.59 0.83 

MGRVI 0.69 0.46 0.61 0.72 0.79 0.56 0.66 0.85 

RGBVI 0.67 0.46 0.59 0.55 0.76 0.56 0.64 0.72 

ExG 0.71 0.45 0.61 0.66 0.77 0.53 0.64 0.77 

g/r 0.74 0.45 0.58 0.74 0.79 0.5 0.59 0.83 

n n=35 n=35 n=35 n=105 n=35 n=35 n=35 n=105 

Aerial 
Model 0.71 0.47 0.7 0.73 0.84 0.65 0.74 0.84 

Ground 
Model 0.71 0.49 0.7 0.6 0.85 0.61 0.77 0.75 

n n=26 n=26 n=26 n=78 n=26 n=26 n=26 n=78 
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Table 3.7 Continued. 

Original Data Log Transformed Data 
  Winter Barley 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant 
Height 0.14 0.67 0.64 0.27 0.14 0.61 0.59 0.29 

VR 0.56 0.53 0.76 0.21 0.55 0.49 0.72 0.24 

NDVI 0.23 0.04 0.01 0 0.25 0.04 0.02 0 

R/G 0.04 0.18 0.34 0.18 0.04 0.18 0.34 0.08 

r/g 0.06 0.21 0.34 0.1 0.06 0.21 0.34 0.03 

MGRVI 0.04 0.18 0.32 0.16 0.04 0.18 0.32 0.07 

RGBVI 0.07 0.28 0.5 0.14 0.07 0.29 0.5 0.04 

ExG 0.07 0.23 0.38 0.12 0.06 0.23 0.38 0.04 

g/r 0.06 0.21 0.34 0.21 0.06 0.21 0.34 0.03 

n n=12 n=12 n=12 n=36 n=12 n=12 n=12 n=36 

Aerial 
Model 0 0.67 0.69 0.42 0 0.61 0.68 0.3 

Ground 
Model 0.71 0.67 0.9 0.28 0.71 0.61 0.78 0.3 

n n=9 n=9 n=9 n=27 n=9 n=9 n=9 n=27 

  Combined 

  Fall Mid-
winter 

Early 
spring Combined Fall Mid-

winter 
Early 
spring Combined 

Plant 
Height 0.64 0.27 0.16 0.15 0.57 0.28 0.17 0.09 

VR 0.69 0.53 0.46 0.46 0.8 0.56 0.49 0.55 

NDVI 0.54 0.07 0.22 0.22 0.76 0.11 0.27 0.37 

R/G 0.53 0.2 0.02 0.13 0.79 0.25 0.03 0.29 

r/g 0.58 0.23 0.02 0.13 0.8 0.26 0.03 0.26 

MGRVI 0.55 0.2 0.02 0.13 0.8 0.25 0.03 0.27 

RGBVI 0.41 0.17 0.03 0.06 0.69 0.23 0.03 0.17 

ExG 0.51 0.18 0.03 0.09 0.76 0.23 0.04 0.21 

g/r 0.58 0.23 0.02 0.13 0.8 0.26 0.03 0.26 

n n=141 n=141 n=141 n=423 n=141 n=141 n=141 n=423 

Aerial 
Model 0.77 0.44 0.28 0.24 0.89 0.49 0.33 0.36 

Ground 
Model 0.78 0.58 0.57 0.47 0.88 0.62 0.64 0.59 

n n=105 n=105 n=105 n=315 n=105 n=105 n=105 n=315 
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Conclusions 

In this study, no one variable showed a strong relationship across all clip times or 

species.  This was expected due to differences in physiological appearance and growth 

stage. Models were developed for each species and clip time to better predict forage 

yield using multiple variables. In some cases, the models did improve the R2 

substantially, but in many cases, improvement was marginal. The ground model did as 

good as or better than the aerial model for wheat, oat, barley and the combined model, 

whereas the aerial model was far better for rye.  There was little to no difference 

between the ground and aerial models for ryegrass. Transforming the data also had little 

effect on model accuracy for wheat, oat and barley.  However, transforming the data for 

rye had a negative effect while ryegrass and the combined species model were improved 

when the data was transformed.    

When individual species were combined across clip time wheat, oat, and barley 

had very poor results with both the ground and aerial models.  This is a good indication 

that it would not be beneficial to evaluate wheat, oat and barley over the course of a 

growing season, but rather select the best clip time to conduct an evaluation for each 

species.  When the original data for rye was evaluated across clip times, the aerial model 

produced good results with a significant improvement over the ground model.  The best 

results for a combined clip time was the log transformed ryegrass aerial model.  

Interestingly there were very good results when all the species were combined across 

clip times, especially when using the transformed data for the ground model.  This could 

be misleading as the rye and ryegrass may overcompensate for the poor combined results 
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of the wheat, oat and barley.  Due to the scatter and large RMSE of the overall combined 

model across clip time and species, it would be more useful to utilize a combined species 

model for a specific clip time than across clip times.  The best-combined species clip 

time was in the fall when the transformed data was used for either the ground or aerial 

model.  This would indicate that a combined species forage model would be fairly 

reliable in estimating forage yield early in the growing season, perhaps 60 days post 

emergence.   

Both winter wheat and oat provided the best estimation of forage yield during the 

mid-winter (February) clip, which occurred after the first clipping and prior to stem 

elongation, but even then, results suggest it may not be good enough for reliable 

prediction of actual yield if trying to select the top performing line or entry in a forage 

trial.  For both species, the ground model, which utilized only the visual rating, was best 

and log transforming the data only made a slight improvement over the original data.  

Forage biomass analysis of rye had good results throughout the season with the original 

data for the aerial method.  Although correlations between yield and plant height alone 

were good for individual clip times throughout the season, the combined clip was poor.  

This could be attributed to the plants growth pattern progression throughout the growing 

season.  Early in the season the plant growth focuses on vegetative stage and as the 

season progresses the plant growth moves into a reproductive growth pattern.  Plant 

height is affected by this occurrence in that most of the forage for a plant during the 

vegetative growth period would be located throughout the plant in which plant height 

would be a good indicator of forage potential.  However, as the plant moves into the 
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reproductive phase more energy is focused on seed production in which the plant would 

remain tall but not have a tremendous amount of forage in the lower to mid canopy.    

Interestingly when rye plant height was combined with RG VI the result produced a 

model with a relatively low RMSE and high R2 value across clips.   

Ryegrass had the most noticeable improvement when the data was log 

transformed, which made the data more linear.  Ryegrass is slow to establish in the fall 

and does not produce a large amount of forage until later in the winter or spring.  

Consequently, the best time of the year to evaluate ryegrass was in the fall before canopy 

closure, which is ideal for reflectance measurements such as NDVI and other VIs, before 

images become saturated. However, the ryegrass models continued to perform well in 

later cuts likely due to higher amounts of red band reflectance compared to other species 

like wheat and oats.  Combining plant height with MGRVI consistently improved aerial 

models for ryegrass as well. In fact, plant height showed up consistently in many of the 

models regardless of clip time or species. For barley, plant height and visual rating were 

most useful in estimating forage yield, particularly when combined in the late spring 

clip.   

In general, rye and ryegrass showed much greater potential for producing reliable 

single species models that would work well across clip times. A single model using 

UAV spectral sensors could likely be used to estimate forage in the fall for all species if 

combined with plant height, but reliability will likely decline as the season progresses 

into the winter, and especially spring, using the techniques described in this study. The 

ground models using plant height and visual rating in general did a better job than the 
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aerial models for individual species and clip times, particularly visual rating, indicating 

that a trained eye can reliability select high yielding lines or entries. However, this 

measurement is subjective, and will inevitably vary from person to person based on 

experience. 



CHAPTER IV 

CONCLUSIONS 

Knowing the yield potential a particular forage species or cultivar has is useful 

for livestock managers who rely on good forage production to meet the high demands of 

their forage systems.  It is also important for researchers in forage and small grains 

breeding programs to accurately measure forage potential for cultivar advancement.  

Some of the more traditional methods have been utilized for well over 50 years.  

Recently Texas A&M AgriLife Research has been making efforts to incorporate 

Unmanned Aerial Vehicles (UAV) into determining cool season annual forage biomass.   

These vehicles utilize remote sensing imagery to measure reflectance in order to obtain 

various vegetation indices. The purpose of this research was to determine if UAV 

technology or other ground-based sampling methods could replace traditional forage 

harvesting techniques to better assist cool-season annual grass breeders and researchers 

in estimating forage yield of entries in forage trials and breeding lines for advancement 

in breeding programs.  Ideally, this would provide a low cost and effective method to 

measure above ground forage biomass.     

The traditional method of evaluating a multi-species cool-season annual grass 

forage trial over several clippings throughout the year was completed over a two-year 

period.  The individual methods used were plant height, visual score and a subsample 

method.  The model created in this study using all three measurements was better at 

predicting forage yield across species and clip times than any individual method alone.  

However, the subsample method was consistently better than either visual rating or plant 
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height measurements and would be the only acceptable stand-alone method for 

comparisons of entries across clip times and species.  If researchers are unable to take 

destructive samples, both visual and plant height measurements were highly correlated 

for fall and late spring clips. Combining all measurements into one model to predict 

forage yield may be a better way to estimate forage yield if whole plot forage harvest is 

not possible.  

Remote sensing methods of evaluating forage potential were applied to the 2017 

forage trial through the use of UAVs (aerial method).  No one variable showed a strong 

relationship across all clip times or species using the aerial method, so models were 

developed for each species and clip time to better predict forage yield using multiple 

variables. In some cases, the models did improve the R2 values substantially, but in 

many cases, improvement was marginal. The ground model did as good or better than 

the aerial model for some species, but not all.  Log transforming the data had mixed 

results and proved to be more useful to ryegrass and the combined model than to wheat, 

oat, barley and ultimately having a negative effect on rye.      

 This study has demonstrated that both ground and aerial methods can be useful 

in predicting forage yield of cool-season annual grasses, but may be specific to certain 

species or clip times.  The best results for evaluating multi-species across clip times was 

the model produced using the ground measurements of visual rating, plant height and 

sub sample weight. This method is labor intensive; however; it does not require 

expensive plot harvesting equipment, which can be a major limitation to smaller forage 

breeding operations. The aerial method was equally as good at producing a combined 
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model for the fall clip, but was inferior to the ground model in subsequent clips. It 

seemed far better when evaluating multiple species in a forage trial to do so at specific 

times during the growing season as opposed to throughout the entire growing season.  

Regardless of ground or aerial models, the best time to evaluate a combined multi-

species trial was during the fall clip, which is generally 45-60 days post emergence.  If 

only a single species is being evaluated, researchers may want to use models on a case-

by-case basis since correlations among measurements varied widely by clip time and 

species. If the main goal is to remain non-destructive, the best ground model provided 

modest results for winter wheat in the mid-winter and early spring clip times, mid-winter 

only for oats, and all three clip times for rye. The best ground model showed good 

potential for barley and ryegrass for all three clip times. The best aerial models rarely 

exceeded the potential of ground base models except for rye, and performed similarly for 

ryegrass (all clips), wheat (mid-winter only), and barley (mid-winter only). The best 

results from a remote sensing platform were obtained for ryegrass.   Depending on the 

researches resources and goals, forage evaluation on either a multi or single species 

forage trial could be obtained at a low cost and with minimal labor. 
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APPENDIX A 

Appendix 2.1. Timing and grouping of forage clips from a cool-season annual grass 

forage trial conducted in College Station, TX across the 2015-2016 and 2016-2017 

growing seasons.  

Time of Year 

Clipping Date FALL 
MID 

WINTER 

EARLY 

SPRING 

LATE 

SPRING 

January 19, 2016  X 

March 28, 2016 X 

April 26, 2016 X 

November 30, 2016 X 

February 8, 2017  X 

March 3, 2017 X 
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