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ABSTRACT

Automatic Feature Engineering (AFE) aims to extract useful knowledge for interpretable

predictions given data for the machine learning tasks of interest. Here, we develop AFE to extract

dependency relationships that can be interpreted with functional formulas in order to discover

physics meaning or new hypotheses for the problems of interest. We focus on materials science

applications, where interpretable predictive modeling may provide a principled understanding of

materials systems and guide new materials discovery. It is often computationally prohibitive to

exhaust all the potential relationships to construct and search the whole feature space to identify

interpretable and predictive features. We develop and evaluate new AFE strategies by exploring

a feature generation tree with deep Q-network for scalable and efficient exploration policies. The

developed reinforcement learning based AFE strategies are benchmarked with the existing AFE

methods on several materials science datasets.
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NOMENCLATURE

AFE Automated Feature Engineering

DQN Deep Q-Network

DRL Deep Reinforcement Learning

FE Feature engineering

FGT Feature Generation Tree

HPRC Texas A&M High Performance Research Computing

LASSO Least Absolute Shrinkage and Selection Operator

MDP Markov Decision Process

MFE Manual Feature Engineering

ML Machine Learning

RL Reinforcement Learning

SISSO Sure Independence Screening and Sparse Operation
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Feature engineering (FE) is the process of creating features that capture hidden dependency

relationships in data and improve the prediction performances of machine learning (ML) algo-

rithms [2]. It usually involves two aspects: generating new feature representations by transforming

the original raw or primary features in the given dataset, and selecting those engineered features that

are important (interpretable and predictive) for the ML tasks. Such prepossessing pipelines and data

transformations are crucial and often take most of the actual efforts in deploying ML algorithms

since the prediction performance of ML algorithms is heavily dependent on features [3, 4].

However, traditional FE is a labor-intensive and time-consuming task, which requires complex

exercises, being performed in an iterative manner with trial and error and being driven by domain

knowledge developed over time [3, 5]. Thus such methods are usually problem-specific and not

generally applicable to different datasets, limiting their direct adoption in corresponding applications,

especially when both domain knowledge and available training data are scarce. Compared to

traditional FE methods, Automated Feature Engineering (AFE) [5, 6] has been recently introduced

to automatically extract complex feature representations based on raw features (using deep learning

for example), which has attracted much attention in recent literature. Many black-box deep neural

network based AFE models [7, 8] have shown their great potential to improve the corresponding

ML algorithms’ performance and be general to be implemented on different datasets without too

much additional manual labor. However, on the one hand, the brute force way to generate and select

features by exhausting the possible feature transformations costs too much time and is difficult to

complete with reasonable scalability to the number of original raw features. On the other hand,

a good interpretability to the generated features is usually hard to attain through such black-box

methods.

For the materials science problems we study in this paper, finding the actuating mechanisms of
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a certain property or function and describing it in terms of a set of physically meaningful variables

is the desired scientific solution [9]. Such a set of physical variables with corresponding parameters

that uniquely describe the material and its function of interest, can be denoted as “descriptors”. One

of the purposes of discovering descriptors in materials-science data, is to predict a target functional

property of interest for a given complete class of materials [10]. Hence, AFE for materials science

faces two main challenges to build better ML models: a good interpretability of the engineered

descriptors from the raw features, and the scalability and efficiency to select important descriptors

from the often enormous generated feature space for the given target of interest.

In this paper, we propose a Feature Generation Tree (FGT) and focus on novel AFE strategies

by combining FGT exploration with Deep Reinforcement Learning (DRL) [11] to address both

the interpretability and scalability challenges. Instead of employing a brute-force way to perform

algebraic operations on the raw features in a given dataset and then selecting important descriptors,

we combine the generating and selecting processes together by constructing FGTs and developing

the corresponding tree exploration policies guided by deep reinforcement learning. An efficient

exploration of the prominent descriptors can be attained in the growing feature space based on the

allowed algebraic operations, and our new AFE strategies, constructing interpretable descriptors

based on a list of operations according to the DRL learned policies, are more scalable and flexible

with the performance-complexity trade-off with the help of adjustable batch size for generating

intermediate features. When additional prior knowledge, such as physics constraints on applying

appropriate algebraic operations to specific feature groups, is available, it can be readily incorporated

in our new AFE procedure to produce physically-meaningful descriptors. Our experiments on

several materials science datasets show that better predictions of material properties can be achieved

using our new AFE methods with less memory and running time compared to existing brute-force

AFE methods [1].

1.2 Related Work

An desirable FE method should attain considerable improvement of model prediction perfor-

mance, generalizability, as well as good interpretability with little manual labor. Thus, the first AFE
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method proposed in [12], Deep Feature Synthesis, extracts features based on explicit functional

relationships without experts’ domain knowledge based on an algorithm to automatically generate

features through stacking multiple primary features and implementing operations or transformations

on them to get engineered features. But it suffers from efficiency and scalability problems due to its

brute force way to generate and select features. Kaul et al. [6] proposed an Autolearn framework

using a regression-based feature learning algorithm to generate and select features by mining

pairwise feature associations to select those relationships that are stable and improve the prediction

performance. While such an AFE method avoids overfitting, to which deep Learning based FE

methods are amenable, and improves the efficiency by selecting subsets of engineered features

according to stability and information gain, it does not directly produce a set of intepretable features.

Khurana et al. [5] introduced the Cognito framework, which formulates the feature engineering

problem as a search on the transformation tree, and developed an incremental search strategy to

explore the prominent features and later extended the framework by combining reinforcement

learning with a linear functional approximation [13] to improve the efficiency. This framework

enables learning the policy to generate features from different datasets. A similar framework

has recently been developed by Zhang et al. [14], who also used a tree-like transformation graph

with the search policy derived by deep reinforcement learning. It improves the policy learning

capability by utilizing deep neural networks compared to the linear functional approximation in

Cognito. However, both frameworks generate features without explicitly incorporating available

prior knowledge into the AFE procedures.

For AFE in materials science applications, several methods have been developed, such as the

method based on compressed sensing [10] and more recent Sure Independent Screening and Sparse

Operation (SISSO) method [1] that uses the brute force way to generate features and then select

subsets of generated features by the sure independent screening [15] together with sparse operators

such as Least Absolute Shrinkage and Selection Operator (LASSO) [16]. These methods pose an

scalability challenge with the exponentially growing memory requirement to store intermediate

features and significantly high computational complexity to search for desired features.

3



1.3 Statement of the Problem

Given a dataset D0 =< F0, y >, where F0 denotes the finite set of p variables as raw or

primary features {f 0
0 , f

1
0 , ..., f

p
0 } and y denotes the target vector, we need to construct sets of

engineered features Fi = {g1(F0, c1), g2(F0, c2), . . . } based on functional forms with allowed

algebraic operations to generate interpretable and predictive descriptors for y. The function gm(·)

consists of a set of algebraic operations φ, from an operation set O, implemented on features in

F0. The operation set O can be pre-defined, for example, with the following unary and binary

operations:

O = {exp(·), log(·), (·)2, (·)3, (·)−1,
√
·, 3
√
·,+,−,×,÷}. (1.1)

For each function, ci represents the complexity of the corresponding generated feature—the number

of algebraic operations in one function. For example, the function exp(f 0
0 )× (f 1

0 )
2+

√
(f 2

0 ) has the

complexity of 5. Here, Fi denotes the iteratively generated feature set with the maximum allowed

complexity ci.

From the whole feature space F = F0 ∪ F ′is, our goal is to find such an optimal feature set

F ∗ = {(f 1)∗, (f 2)∗, . . . }(∀(fd)∗ ∈ F ∗, (fd)∗ ∈ F) that maximizes the prediction performance

score, for example by classification or regression accuracy, AL{F ′, y}:

F ∗ = argmax
∀fk∈F ′,fk∈F,ci<cmax

AL{F ′, y}, (1.2)

where L denotes the prediction model, which can be linear regression or Support Vector Machine

(SVM) for interpretability with generated features, and F ′ denotes the set of all generated features.
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2. METHODOLOGY

In this section, we introduce our new AFE strategies, which are based on the formulated feature

generation tree (FGT) exploration guided by DEEP Q-network. More critically, we facilitate a

flexible intermediate feature generation procedure that helps achieve good performance-complexity

trade-off as well as flexible integration of available physics constraints as prior knowledge.

2.1 Feature Generation Tree (FGT)

To approximate the optimal feature set F ∗, we introduce the Feature Generation Tree (FGT)

illustrated in Figure 2.1 to iteratively construct the feature space and transform the problem into

a tree search problem for efficient AFE. Each node in FGT represents a feature set Fi and each

edge represents an operation φ. We denote (F d)∗ = {(f 1)∗, (f 2)∗, . . . , (fd)∗} as the top d optimal

features when we choose the cardinality of F ∗ as d, and (fd)∗ as the selected optimal feature

for the dth dimension of (F d)∗. The FGT exploration aims to search for the optimal features

(f 1)∗, (f 2)∗, . . . one by one. The corresponding complete AFE procedure constructs the feature

subspace F d sequentially as the search space of each (fd)∗ exploration. Iterations start from

the root node F0, which represents the primary feature set. At some node Fi, we choose an

operation φi according to the policy π as detailed in the following subsection, then move forward

to the next node, generate the new feature set Fj(j > i) and add the generated features to F d.

Meanwhile, the generated new feature set F ′ = (F d−1)∗ ∪ {fd} will be fed to the predictive

model L to obtain the score AL{F ′, y}, where (F d−1)∗ = {(f 1)∗, (f 2)∗, . . . , (fd−1)∗} for each

(fk)∗ ∈ F k(1 6 k 6 d− 1), representing the top d− 1 optimal feature set chosen from the previous

feature subspace F k; and fd ∈ F d. The FGT will grow by repeating the operations above until it

attains the maximum complexity cmax. Then a new iteration will start again to grow another FGT to

find (fd)∗. When F ′ achieves our desired prediction performance score, we will stop or look for

the next optimal descriptor (fd+1)∗. Note that the feature subspace F d is the union of all Fi’s in all

explored FGT’s when looking for (fd)∗, and the whole feature space F is the union of all F d’s.
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Figure 2.1: Example of a feature generation tree

2.2 Reinforcement learning for FGT exploration

AFE by our FGT exploration can be considered as a finite Markov Decision Process (MDP)

problem. Considering the huge feature space and the large available operation set we may have, we

adopt the Deep Q-Network (DQN) [11] with experience replay to learn the policy π for choosing

φ’s during FGT exploration. Formally, we define the states, actions and rewards for our AFE

formulation as follows:

• state: F d
i , which denotes a primary or generated feature set when looking for the dth optimal

descriptor;

• action: π(F d
i ) = φi, which denotes an operation in the operation set O;

• reward: R(F d
i , φi) = max

F ′
(1.001 − AL{F ′, y})−1, where 0 6 AL{F ′, y} 6 1 and F ′ =

(F d−1)∗ ∪ {fd}, for (F d−1)∗ = {(f 1)∗, (f 2)∗, . . . , (fd−1)∗} for each (fk)∗ ∈ F k(1 6 k 6

d− 1) and fd ∈ φi(F
d
i ).

Each node in FGT represents a state and each edge in FGT represents an action. We always want

6



to find the optimal F ∗ with the lowest cardinality to meet the desired prediction performance score

threshold and therefore our AFE will first look for (F 1)∗, and then look for (F 2)∗, or more if the

set of resulting descriptors does not meet the score threshold within the allowed budget (maximum

number of exploration iterations).

To have a flexible exploration procedure for both performance-complexity trade-off and incor-

poration of prior knowledge, for each (fd)∗ in F ∗, it can be chosen from the top n features with

highest rewards in the corresponding feature subspace F d, which compose a candidate set Sd. So

(F d−1)∗ can have multiple combinations according to the whole candidate sets S = {S1, . . . , Sd−1},

and F ′ also has multiple combinations according to different (F d−1)∗ and fd. Consequently the

reward is computed as the maximum reward over F ′.

It is worth noticing that we have different types of algebraic operations in O. When we apply

unary operations φu on a feature set Fi, it will apply φu on all the features in Fi and results in the

new generated feature set Fj = {φu(f
1), φu(f

2), . . . }. However, when we apply binary operations

φb on Fi, beside the one feature in the Fi, we have to choose another one feature in the whole feature

space to complete the operation, resulting the exploding of the corresponding feature subspace with

the new generated feature set as Fj = {φb(f
1, f s)} ∪ {φb(f

2, f s)} ∪ . . . . Clearly, if we enumerate

f s from all the features in F, it is computationally prohibitive as Fj grows exponentially. Thus, we

introduce the flexible batch sampling to randomly sample a feature subspace B from F as a “Batch

Set” each time and enumerate f s only from B to achieve the performance-complexity trade-off,

and take the maximum reward from all the combinations as the reward. When prior knowledge is

available as physics constraints on applying corresponding operations to specific feature groups,

this batch sampling procedure can naturally take care of them. The pseudo-code for the basic AFE

strategy of FGT exploration with DQN is provided in Algorithms 1 and 2.
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Algorithm 1 DQN for Automatic Feature Engineering
1: input: Primary features F0, Action set H
2: for d = 1, 2, . . . do
3: Construct new DQN
4: Clear Buffer
5: for episode = 1, 2, . . . , N do
6: for i = 0, 1, . . . , do
7: φi = ε-Greedy Method(Fi, ε)
8: Fi+1, Ri, ci = FGT_Grow {Fi, φi, ci}
9: Buffer← {Fi, Fi+1, φi, Ri, ci}

10: Train DQN with experience replay
11: if Ri > threshold then
12: goto Output
13: end if
14: if ci ≥ cmax then
15: break
16: end if
17: end for
18: end for
19: S← Candidate set Sd with n features of highest Ri

20: end for
21: Output: Optimal feature set F ∗ chosen from S

Algorithm 2 FGT_Grow
1: input: Feature set Fi, action φi, complexityci
2: if φi is unary then
3: Fi+1 = φi(Fi), ci+1 = ci + 1, Ri = R(Fi, φi)
4: else
5: L = ∅
6: Randomize B from feature space F
7: for each f s in B do
8: L← φi(Fi, f

s)
9: end for

10: Select Fi+1 from L with maximum R(Fi, φi)
11: Ri = R(Fi, φi), ci+1 = ci + (cs of f s)
12: end if
13: F← Fi+1

14: Output: Feature set Fi+1, Reward Ri, Complexity ci+1

8



3. EXPERIMENTS AND DISCUSSION

To evaluate our proposed AFE strategies, we perform experiments with three real-world materials

science datasets: one for classification of metal/non-metal materials, one for regression to get alloy

elastic behavior based on alloy compositions, and the third dataset for predicting material’s phase

transition temperature with the physics constraints of feature groups. In these experiments, we

assume that we have a limited computation budget and set the same upper bound of the allowed

runtime for each experiment. We run all the experiments on Texas A&M High Performance

Research Computing(HPRC) platform with the hardware configuration of Intel Xeon E5-2670,

64GB 1866MHz RAM and 2 NVIDIA k20 GPUs. In the following experiments, “descriptors”

denote the engineered features in the final optimal feature set. For each dataset, we perform each

algorithm with the same setup 5 times to report descriptors based on the best performing sets of

descriptors obtained in the given runtime budget in one run, as well as use the average of the size of

feature space and running time for the scalability and efficiency comparison.

For DQN, we have adopted a two-layer Q-network with the corresponding hidden dimensions

{150,120} and the relu activation function is used for both layers. The following hyperparameters

are set for DQN training: Learning rate: 0.001; Experience replay batch size: 64; Gamma: 0.99;

Epsilon: 1.0 (decay 0.99 and min 0.05). For SISSO, we used the code provided by [1], and set the

same max complexity, operation set and the number of descriptors as DQN’s, as well as SIS-selected

subspace to be 5,000.

3.1 Classification

The classification problem is based on a dataset of 9 prototype structures (NaCl, CsCl, ZnS,

CaF2, Cr3Si, SiC, T iO2, ZnO, FeAs,NiAs) with a total number of 260 materials from one of

the experiments reported in [1], which includes seven primary features (IEA, IEB, χA, χB, xA,

xB, VCell/
∑
Vatom) for each material. The problem is to predict whether a given material is metal

or not as a classification problem.
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In this experiment, we adopt a Support Vector Machine (SVM) with the linear kernel as the

classification model. When generating complex features/descriptors, we limit to an operation set

including {exp(·), log(·), (·)2,
√
·,+,−,×,÷} to search a set of two descriptors. We have limited

the upper bound of the running time for each descriptor to be 4 hours and also set the same maximum

feature complexity cmax to 5 to have the fair comparison with the adopted AFE strategy SISSO

in [1].

When applying binary operations to generate new features, we explore different sizes of Batch

Sets as B in Table 3.2 to evaluate the performance-complexity trade-off by limiting the total

number of combinations of feature pairs for corresponding binary operations to speed up the feature

generating process. In order to study the influence of the size of Batch Sets, we have tested five

batch sizes: {5, 00, 1, 000, 2, 000, 4, 000, 8, 000}. We also compare our AFE strategies with one-

step greedy AFE, which replace DQN with selecting engineered features giving the best prediction

performance at each step in FGT exploration without considering future predictive power, and

SISSO [1], which constructs and selects features by brute-force exhausting the potential feature

space with increasing complexity.

To further investigate the generalizability of generated descriptors, we perform hold-out testing

with two ways of splitting the samples into the training and test sets respectively. One way is to

randomly split the dataset to be 7:3 with 182 materials in the training set and the remaining 78

materials in the test set, which are not used for feature generation. However, as materials belonging

to the same prototype may share information, to further guarantee that the AFE and model training

processes do not get additional information about testing data, the other hold-out testing setup

is to use one prototype of materials, for example CaF2, to be the test set, and all the remaining

prototypes of materials as the training set. In this setup, 225 materials are in the training set and 35

materials are in the test set. Table 3.1 provides the best performing descriptors in 5 runs for both the

“random” and “type” splits for training and test sets.

In Table 3.1, we can see that for the random split test set, compared with the primary features

in the dataset, both one-step greedy and our AFE strategies with DQN can engineer predictive
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Test Set Methods Descriptors
Accuracy

Training Prediction

Random
Split

Primary
Features IEA, IEB, χA, χB, xA, xB, VCell/

∑
Vatom 0.9780 0.9615

SISSO
(f 1)∗ = (IEB/xA)

2(χB + VCell∑
Vatom

)/xB
(f 2)∗ = (IEB/xA)

2 exp (χA/
VCell∑
Vatom

)
1.000 0.9359

One-step
Greedy

(f 1)∗ = xB + VCell∑
Vatom

+ χB/χA

(f 2)∗ = VCell∑
Vatom

− IEB + χA + IEAIEB/χA
0.9725 0.9615

DQN
(f 1)∗ = xA − χA + χB + VCell∑

Vatom
−√χA

(f 2)∗ = (χB + VCell∑
Vatom

(IEA + χB)/χA)/IEA
0.9890 0.9872

Type
Split

Primary
Features IEA, IEB, χA, χB, xA, xB, VCell/

∑
Vatom 0.9822 0.9429

SISSO
(f 1)∗ = (IEB

VCell∑
Vatom

)2/(χA(χA − xA))
(f 2)∗ = χBχ

2
B exp (IEA/χA)

1.0000 0.8857

One-step
Greedy

(f 1)∗ = logχB − χA/
VCell∑
Vatom

(f 2)∗ = log IEB + χB/χA − xA
0.9777 0.9429

DQN
(f 1)∗ = VCell∑

Vatom
+ xB + χB − χA − χAxB

(f 2)∗ = χB − xA − log IEB

0.9822 0.9429

Table 3.1: Metal vs. non-metal classification descriptors

Test Set
Average

Performance

Methods

SISSO
DQN

B=5,00 B=1,000 B=2,000 B=4,000 B=8,000

Random
Split

Feature
Space 59,597,864 182,022 163,563 232,880 298,149 162,974

Runtime
(hours) 6.2 3.4 2.6 3.8 4.7 2.8

Type
Split

Feature
Space 58,614,708 168,668 228,652 276,840 210,435 263,928

Runtime
(hours) 3.9 2.7 3.2 3.9 2.8 4.1

Table 3.2: Scalability and efficiency comparison for metal vs. non-metal classification (Note:
‘Feature Space’ here refers to the total number of generated intermediate features until the final
descriptors are found.)
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(a) SISSO descriptors with random split (b) DQN descriptors with random split

(c) SISSO descriptors with type split (d) DQN descriptors with type split

Figure 3.1: Metal vs. non-metal classification results in the test set
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descriptors that improve the prediction accuracy compared to the model with primary features.

When constructing features using training samples, SISSO and DQN strategies can get the best

training accuracy. However, as shown in the table, SISSO is prone to overfitting and has a rather

lower prediction accuracy than the model with primary features. By contrast, DQN has more stable

and significant improvement on the prediction accuracy. For the type split test set, SISSO has the

best training accuracy, but again it overfits. Our AFE strategies with DQN has the best prediction

accuracy among all feature engineering strategies but we note that none of them improves over

the predictive model with primary features, which demonstrates the difficulty in applying machine

learning methods in materials science applications as the materials systems are often heterogeneous

with potential nonlinear phase transitions. Without physics knowledge or sufficient data, simpler

predictive models may be more robust. Particularly when we are interested in using these simpler

models to suggest new materials to synthesize in order to meet a specific performance requirement.

Figure 3.1 shows the classification results of the SISSO strategy and DQN strategy in both split

methods and proves that DQN strategy is more robost compared with SISSO strategy in both split

methods to avoid overfitting.

In Table 3.2, we compare the scalability and efficiency of SISSO and DQN by calculating the

average number of generated intermediate features and the total runtime to identify interpretable

and predictive descriptors. For our FGT exploration with DQN, different sizes of Batch Sets B have

been tested. In this experiments, all these different setups attain the similar best training accuracy

with the same runtime budget. Together with the results in Table 3.1, we can see that our AFE

strategies with DQN can attain similar training accuracy and better prediction accuracy compared

to the results by SISSO while our strategies construct a much smaller feature space than SISSO’s to

identify the predictive descriptors. In addition to better scalability, with a suitable Batch Set size, for

example, B =500, 1,000, 2,000 or 4,000, our AFE strategies with DQN can also be computationally

more efficient than SISSO, taking less runtime to find the descriptors. This is expected as with

a small Batch Set size, FGT exploration can iterate faster and DQN can also converge to stable

policies faster; while with a large Batch Set size, our AFE strategies generate more intermediate

13



features in the binary operation steps and thus can lower the chance of overlooking some promising

features with long-term benefits in increasing predictive power but higher memory and runtime

requirements.

3.2 Regression

We implement our AFE strategies for another materials science dataset studying alloy elastic

constants, in which 14 primary features are made from elemental properties using the rule-of-

mixtures: crystal radius (CR), atomic radius (AR), electron affinity (ea), ionization potential (phi),

melting point (m), density (rho), number of valence electrons (val), electronegativity (chi). And the

elastic constants: C11, C12, C44, and bulk modulus (K), shear modulus (G), and Young’s modulus

(E). For brevity, we refer average properties, e.g., C11average as C11 throughout the paper (unless

specified). The target elastic constant C11m is the first-principle calculated value for an alloy in the

quinary alloy system Mo-W-Ta-V-Nb.

Our AFE with DQN strategies are implemented to search for a set of three descriptors with the

maximum complexity cmax set to 5 for this regression problem. Specifically, we use the operation set

{exp(·), log(·), (·)2,
√
·,+,−,×,÷} and limit the upper bound of the runtime for each descriptor

to be 6 hours for DQN and one-step greedy methods. Linear regression is adopted to predict C11_m

by engineered descriptors. The prediction performance is evaluated based on the R2 score and

root-mean-square error (RMSE). For the training vs. test set split, we randomly separate the dataset

with the ratio 7:3, resulting in 58 materials in the training set and 25 materials in the test set. Table

3.3 shows the best performing descriptors in 5 runs for each methods and Table 3.4 shows the

average size of feature space and running time when DQN with different batch size attain the

same maximum training R2 score in the time budget for the first time for scalability and efficiency

comparison.

From Tables 3.3 and 3.4, all the feature engineering strategies can improve the prediction

performance compared with the model with primary features. SISSO has the highest training

R2 score with the much higher cost of significantly larger feature space and longer runtime to

search for three final descriptors than our AFE strategies with DQN. On the other hand, without
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Test Set Methods Descriptors
R2 Score
RMSE

Training Prediction

Random
Split

Primary
Features

C11, C12, C44, K,G,E,AR,CR,
ea, phi,m, rho, val, chi

0.9736
13.923

0.9545
17.045

SISSO
(f 1)∗ =

√
(K × ea)− chi logE

(f 2)∗ = AR× fi+G2/ exp rho
(f 3)∗ = (rho+ log ea)/m2

0.9870
9.774

0.9729
13.931

One-step
Greedy

(f 1)∗ = val − C44 × AR× CR/C12

(f 2)∗ =
√
AR− CR× rho× chi/C44)

(f 3)∗ = fi+ chi− (ea+ E − C11)/G

0.9821
11.458

0.9659
15.633

DQN
(f 1)∗ = ea

√
CR/chi− ea/K

(f 2)∗ = AR2 + C12/(fi× AR× rho)
(f 3)∗ = E

√
CR/(C44

√
ea)

0.9830
11.162

0.9755
13.258

Table 3.3: Alloy elastic behavior regression descriptors with prediction performances

Test Set
Average

Performance

Methods

SISSO
DQN

B=500 B=1,000 B=2,000 B=4,000 B=8,000

Random
Split

Feature
Space

4,806,301
,260 675,318 931,356 1,010,109 919,548 799,882

Runtime
(hours) 28.4 6.3 8.2 9.1 7.9 5.6

Table 3.4: Scalability and efficiency comparison for alloy elastic behavior regression (Note: ‘Feature
Space’ here refers to the total number of generated intermediate features until the final descriptors
are found.)

Test Set Methods Descriptors
R2 Score
RMSE

Training Prediction

Random
Split

Primary Features G1, . . . , G14
0.7070
78.303

0.5762
97.446

DQN
(Constrained

method 1)

(f 1)∗ = (G3(G1 +G5)/G1)/G13

(f 2)∗ = (G
1
2
7 + (G2(G1 −G2)))
×(G5 +G−23 )

0.7301
75.159

0.5816
96.817

DQN
(Constrained

method 2)

(f 1)∗ = G2
3 + (G1 +G10)(

√
G5 −G12)

(f 2)∗ = G8(G2 −G6G13)
−G2

6G13 −G2
4 −G2

1

0.7268
75.605

0.5472
100.724

Table 3.5: Descriptors derived by physics-constrained AFE and their performance (Note: Descriptors
for constrained method 1 and 2 can be interpreted as gm(G1, . . . , G14) = gm(

∑
j(f

j
1 ), . . . ,

∑
j(f

j
14))

and gm(G1, . . . , G14) =
∑

j gm(f
j
1 , . . . , f

j
14).)
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considering potential long-term benefits when constructing intermediate features, one-step greedy

cannot perform better than SISSO or DQN-based strategies. With small datasets, SISSO again

shows the tendency of overfitting. Our AFE strategies with DQN attain similar training R2 scores

as SISSO does but have the highest prediction R2 score with the derived descriptors, showing

its potential to derive physics meaningful descriptors with better scalability and computational

efficiency.

3.2.1 Regression with physics constraints

We also implement our AFE algorithm on a physics-constrained dataset, which consists of 14

elemental properties as primary features {G1, G2, . . . , G14} for each of 40 possible constituting

elements. Here Gi = {f 1
i , f

2
i , ..., f

40
i } with f j

i representing the ith property of the jth element. The

elemental properties are weighted based on each element contribution for a given material. We

apply our AFE strategies to derive sets of descriptors based on these 14×40 primary features and fit

a regression model to predict the target of the transformation temperature Af .

The reason for the constraints is that, in materials systems, rules must be followed to ensure

fundamental science laws are not violated. A material can not have elemental contributions that sum

to less than or greater than one. To reveal underlying physical meaning, the elemental properties can

not be combined in a way that results in an element preference, such as leaving specific elements

and the corresponding properties out of the model. These rules constrain the possible AFE to two

methods. The first is to sum up all the features with the same property across the different elements,

and then apply the AFE on them. The second is to implement AFE on features with the same

element across different properties and then sum them up to perform the regression.

In both methods for the experiments, we choose the action space to be {exp(·), log(·), (·)2, (·)−1,
√
·,+,−,×,÷}. Due to the increasing number of primary features in this dataset compared to

previous datasets, SISSO is not computationally feasible to identify predictive descriptors within

the runtime budget. We report the results based on our AFE strategies with DQN. Specifically, we

search for a set of two descriptors of maximum allowed complexity cmax at 15 with the runtime

budget of 6 hours for each descriptor. We compute the R2 score and RMSE with linear regression
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to evaluate the prediction performances of engineered descriptors. For the training vs. test set split,

we randomly separate the dataset with the ratio 8:2, resulting in 472 materials in the train set and

118 materials in the test set.

Table 3.5 shows the results from the two physics-constrained methods. We can see that the

derived predictors by the first constrained AFE method achieves the best training and prediction R2

scores and RMSEs, demonstrating again that our AFE can help identify interpretable and predictive

descriptors. We note that, although the second constrained AFE method can find the descriptors

with better training R2 score than the model with only primary features, the testing R2 score is low.

One reason is that the second strategy searches for descriptors considering algebraic operations on

primary features from 40 possible elements. With the limited number of training samples, this is

more prone to overfitting than the first constrained AFE method operating on the 14 summarized

primary features (i.e.
∑

j f
j
i ). We expect that the performance can be improved when more prior

physics knowledge and constraints are available to further restrict the feasible feature space.
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4. CONCLUSIONS

In this thesis, we present a physics-constrained AFE framework based on the feature generation

tree exploration with Deep Q-Network for interpretable predictive modeling in materials science

applications.

Compared to the recently developed AFE method—SISSO [1], which learns prediction models

by first generating all the generated complex features and then using the sure independent screening

method to select these “explanable” features for classification and regression, we explore reinforce-

ment learning (RL) for more scalable and efficient AFE. The key difference of our AFE strategies

lies in the way of engineering features. SISSO generates all the available features with the given

complexity in the brute-force way and then finds the promising descriptors in the final prediction

models, which requires generating an exploding number of complex features (double exponential

with respect to the number of allowed operators for feature generation). Such a strategy is not only

time consuming and computationally expensive, but also becomes computational prohibitive with

the increasing maximum complexity of engineered features, leading to the exponential memory

complexity. On the other hand, one-step greedy AFE methods can lose some promising features

due to the non-monotonic relationship between features and prediction accuracy. The proposed

AFE strategies with DQN-guided FGT exploration tackle these problems by approximating the

expectation of the future reward of generating feature policy through DQN, and replacing the brute-

force feature generation by exploring feature generation trees. Consequently, our reinforcement

learning based AFE has better scalability and computational efficiency without sacrificing prediction

performance due to better DQN approximation of future feature predictive power compared to

one-step greedy methods.

The results of our real-world materials science experiments have demonstrated the potential of

our AFE with RL-based tree exploration in reducing the runtime and enhancing the scalability for

automatic feature engineering. More importantly, the engineered descriptors are interpretable with

the corresponding lists of algebraic operations on the original primary features. Such a framework
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can be especially useful for scientific research, including materials science and biomedicine, where

interpretable instead of “blackbox” machine learning can lead to new knowledge discovery and

better decision making.
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