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ABSTRACT 

 

 Sensors are increasingly being used in agricultural settings to provide data on the 

physical characteristics of plants under field conditions. Accurate data provides 

researchers and producers with the ability to make decisions with a high level of 

confidence. This work addresses two sensing systems for measuring important plant 

characteristics. The first system investigates accuracy differences between two 

unmanned aerial vehicle (UAV) camera calibration methods. The second system 

explores the development and testing of a novel in situ root imaging rhizotron. The UAV 

study compared autoexposure and fixed exposure radiometric calibration methods to a 

single calibrated manned aircraft image and to a ground target measured with a 

spectroradiometer. In a band by band comparison, the autoexposure method, which uses 

a pre-flight image of a single panel for calibration, produced almost twice as much 

radiometric error on average compared with fixed exposure using in-field targets for 

image calibration. When comparing the exposure methods using the Visible 

Atmospherically Resistant Index (VARI), the autoexposure method produced twice as 

much RMSE compared to the fixed exposure method. The study on the novel in situ root 

sensor developed a low field magnetic resonance imaging (LF-MRI) rhizotron. A scaled 

8 cm bore model was designed, built and tested across three types of soil, Weswood silt 

loam, Belk clay, and Houston black clay. The results demonstrated the viability of this 

technology to produce root information in clay soils. A 28 cm bore unit was designed, 

built and tested under field conditions. The resulting system provided root information 
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and visualization of roots with 2-D projection images in a Weswood silt loam, and Belk 

clay both in situ and ex situ.  In summary, (1) using a fixed exposure calibration method 

for UAV remote sensing improved accuracy in reflectance data, providing a better 

understanding of in-field plant conditions and better decision-making capability; and (2) 

the LF-MRI Rhizotron allowed visualization of plant roots in agricultural soils under 

field conditions. Both sensing systems and methods have the potential to be used as tools 

for improving crop production for researchers or growers. 
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1. INTRODUCTION  

For centuries humans have been working to improve their livelihoods and 

security by increasing crop yields through phenotypic measurements in plant selection 

and breeding programs [1]. Food security is still a major concern in the world today, 

with over 800 million people undernourished [2]. The underlying purpose of the research 

described in this dissertation is to provide solutions to food security problems by 

advancing the science involved in agricultural production and research. Specifically, this 

research addresses gaps in the areas of above-ground remote sensing and below-ground 

proximal sensing as methods of plant phenotyping.  

The International Society of Precision Agriculture defines precision agriculture 

(PA) as “a management strategy that collects and analyzes temporal, spatial and 

individual data and uses this information to support management decisions” [3]. The 

goal of this strategy is to use technological advances such as global positioning systems 

(GPS) and variable rate technology to integrate spatial and temporal information to 

improve farming decisions involving economic and environmental considerations [4]. 

Historically PA technologies and processes have included the use of GPS [4],  soil and 

plant mapping [5], and spatially and temporally variable applications of crop inputs like 

nutrients, seeds, pesticides and irrigation water [6]. PA often relies on proximal sensors 

such as yield monitors for estimating crop yield [7] and remote sensors such as satellites 

for monitoring crop stress [8].  

Plant breeding, and specifically the area of phenomics, is an area of research that 

has used many of the sensors mentioned above. Phenomics is focused on the 



 

2 

 

development and use of technologies that provide quantitative plant phenological data at 

a fine spatial resolution. The purpose of the growing investments in these types of 

technologies is to increase the speed of phenotyping, have reliable and repeatable 

measurements, and discover new measurements that can give insight into plant function. 

Field-based high throughput phenotyping (HTP) is a subset of phenomics that focuses on 

collecting spatially intensive phenotypic measurements of plant-breeding trials.  HTP 

uses technological advances to phenotype larger numbers of plants, thus giving plant 

breeders quick access to acquired data sets for efficient selection of plants for the 

purpose of improving crop varieties. Strong correlations have been found between HTP 

data from remote sensing and those collected with more traditional methods [9]. 

Examples in the literature include grain yield production estimations from canopy 

reflectance [10] and comparisons between UAV and field phenotyping methods to assess 

yield and nitrogen use efficiency in barley [11] .  

Sensing the above-ground portion of a crop is the most common use of sensors in 

precision agriculture and HTP. In remote sensing, plant properties are measured from a 

distance, commonly using reflectance in the visible and near infrared VIS/NIR [12] 

and/or thermal portions of the electromagnetic spectrum  [13]. VIS/NIR bands have been 

used for crop monitoring, yield predictions, plant nutrient monitoring, and to understand 

general crop stress [14]. 

For farmers and plant breeders to make useful decisions with remotely sensed 

data, the error in the data needs to lie within an allowable range from the true value of 

the object of interest. For example, normalized difference vegetative index (NDVI) 
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values, based on red and NIR reflectance, are often used for mapping crop stress across a 

field. Calibrating the sensor and the data helps reduce the error, providing more 

confidence in decisions based on the data. Remote sensing with Unmanned Aerial 

Vehicles (UAVs) is a rapidly growing means of data collection for HTP and PA, and as 

such it should also employ calibration methods to generate data that are accurate enough 

to be used for decision-making processes.  

The below ground portion of the plant is equally important, but more difficult for 

field-based phenotyping. Roots provide support, biosynthesis of important hormones and 

are involved in functions occurring in the rhizosphere such as water and nutrient 

extraction. By being able to quantify plant rooting behavior, in situ, it is possible to 

select plants in order to optimize the soil ecosystem services for improving carbon 

sequestration, crop yield and provide for more sustainable agricultural ecosystems for 

improving crop production for the future [15]. Under nutrient-limiting conditions, 

increases in agricultural production are also thought possible by direct modification to 

root system architecture (RSA) [16] , which is known to be important for water and 

nutrient uptake, specifically in arid regions [17].  At the same time, RSA has been 

largely unrepresented in plant phenotyping and plant breeding [18]. 

HTP gives researchers and producers the ability to better understand crop 

responses to the environment the plants are growing in and help improve decision 

making. In this work two sensor systems and methods for HTP have been studied. One 

study involves an above ground UAV based radiometric calibration method to quantify 

the error associated with two multispectral camera exposure systems. The second study 
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involves the development of a novel low field magnetic resonance imaging rhizotron for 

in situ root imaging. Both studies have focused on accurate, field-based, measurement of 

important plant phenotypes. 
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2. UAV RADIOMETRIC CALIBRATION: A COMPARISON OF AUTO 

EXPOSURE AND FIXED EXPOSURE SYSTEMS 

 

2.1. Literature Review 

The timing and amount of available information can have major consequences on 

agricultural business decisions, and the objectivity of the information is critical for 

making appropriate decisions [19]. Sensors can give agricultural producers the ability to 

better understand the environment their crop is growing in and improve their decision-

making. One type of sensor data that can be gathered is images. Two main types of 

information can be collected from images: spatial information like object size, shape, 

position and texture (e.g., stalk thickness of sorghum plants) [20]; and spectral 

information like reflectance values at specific wavelengths, which has been used to 

indicate numerous crop stresses such as spider mite infestation [21], nitrogen deficiency 

and water stress [22]. Spectral information is often used in vegetative indices such as 

NDVI [23]. Having accurate reflectance data is a key factor for generating actionable 

information from remote sensing [24]. There is a relationship between the arbitrary 

digital number (DN) in an image, which is affected by the cameras adjustable 

parameters, and the reflectance of the target in the image. The error in calculating this 

relationship is reduced by including corrections for known distortions such as 

atmosphere, illumination, and camera properties [25]. The conversion from DN to 

reflectance is a critical step in generating reliable NDVI data [26]. These NDVI values 

must be generated from calibrated reflectance maps – i.e., images converted from DN to 
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reflectance – or they are not comparable to other NDVI values [27] collected at different 

times or locations or by different sensors. To produce the most useful (i.e. low error) 

data from remote sensing platforms, calibration must be performed to generate a 

relationship between the DNs and reflectance values. Radiometric calibration is used to 

convert the DN output from the sensor to target reflectance, which can then be compared 

across dates, locations, and sensors.  

Traditionally, researchers have conducted remote sensing surveys for PA and 

HTP using satellites and manned aerial vehicles (MAVs). Each has its own applications 

and limitations. Satellite sensors are calibrated before they are launched into space, but 

over time drift or other problems occur that result in the need for re-calibration. This 

calibration is performed by measuring objects on the ground and comparing their known 

reflectance to the digital number generated by the sensor.  This post-launch calibration 

method is called invariant or vicarious calibration, and it is based on the relationship 

between the at-sensor radiance and the reflectance of ground-based, homogeneous, and 

commonly natural targets [28]. 

Satellites have been used for PA [29], studies in ecology [30], and evaluation of 

natural disasters [31] among other subjects. Satellites are a very stable platform [32] and 

are unique in being able to provide a single image that covers a large section of land, 

allowing (for example) monitoring of crop disease over large areas [33], and they have 

proven useful for measuring global chlorophyll fluorescence to estimate global CO2 

assimilation [34]. Satellites typically have relatively low resolution [35], with Landsat 4 

thematic mapper having a resolution of 30 m for all bands except the IR band, which is 
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at 120 m [36]. This low resolution is being improved as newer satellites are being 

launched, such as the WorldView-2, which has approximately 0.5 m resolution [37]. The 

cost may be prohibitive, though, with WorldView-2 data costing $17.50/sq. km for a 

single acquisition with a 25 sq. km minimum [38]. In addition to cost, one of the greatest 

problems with satellites for PA decision making is the time constraints associated with 

satellite data. For example, Landsat 8 passes overhead every 16 days [39], a span that 

can cause important phenological stages to be missed [35]. Also, if cloud cover obstructs 

the image on the day a satellite is overhead, the time span between data collection events 

doubles. It should be noted that the spatial resolution and period of newer satellites are 

improving all the time; for instance, the Pleiades constellation provides a period of 1 day 

and offers 0.5 m image resolution for 4-band multispectral imagery, at a cost of $25/km2 

with a 25 km2 minimum [40]. 

MAVs have been used as remote sensing imaging platforms for many years. 

These are often relatively small single engine, propeller-driven aircraft, such as the Sky 

Arrow (Skyarrow, Lowcountry Aviation, Walterboro SC USA) [35], or the Cessna 205 

(Cessna 205, Textron Aviation, Wichita KS USA) [41]. This type of platform served as 

the midpoint for many years between ground-based sensing platforms and satellites. 

With current cameras MAVs can achieve spatial resolution on the level of 5 cm,  [42] 

and they are able to repeat surveys quicker than the typical satellite. However, there are 

some drawbacks that come with using MAVs. The cost associated with manned flights 

can often be prohibitive for surveys, particularly for applications that require repetitive 
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flights. Turbulence and air traffic also can be a problem for completing surveys in a 

timely manner [32].  

Unmanned Aerial Vehicles have become prevalent as imaging platforms in 

research studies because of their unique potential. They come in a variety of size 

classifications [30] typically and are able to carry a wide variety of sensors [43], with 

most UAVs in agriculture falling under the small UAS classification as provided by the 

United States Federal Aviation Administration [44]. Their ability to carry sensors at a 

low altitude and relatively low speed presents opportunities for even higher spatial 

resolution. The most common sensors used for both PA and plant breading applications 

have been multispectral cameras including standard red, green and blue (RGB) visible 

light cameras [29], color infrared and other multispectral cameras [45], and thermal 

cameras [46]. 

In one study, researchers performed a comparison of image data from satellites, 

MAVs, and UAVs over a 2.5 ha vineyard in Italy. The RapidEye satellite images were 

purchased pre-calibrated, while the MAV camera was calibrated with proprietary 

software by Terrasystem (Viterbo VT, Italy) and an atmospheric calibration was applied 

with ENVI software (Boulder, CO, USA). The UAV calibration was conducted by 

taking a white reference image pre-flight at ground level and measuring reflectance 

spectra of the white reference panel with a spectroradiometer. The reflectance spectra 

were used to convert the image DNs to reflectance. This study determined that the UAV 

had a higher NDVI range (0.08 vs. 0.04 for MAVs and 0.02 for satellites) as well as a 

larger standard deviation than the other two platforms [35], suggesting that the UAV 
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captured more spectral variability due to its higher image resolution.  Another line of 

investigation has been to use UAVs in conjunction with satellites. In an example of 

calibration in this type of work, an octocopter with a five-band multispectral camera 

(RedEdge, Micasense, Seattle WA USA) was used to collect images over a field that 

were stitched together into a mosaic. The UAV image mosaic was calibrated with 17-

color ethylene vinyl acetate targets placed in the field based on the empirical line 

method. Exposure settings were not discussed in the article, but it is likely that the auto 

exposure (default) setting was used. It was found that the UAV data overestimated the 

reflectance when compared to ground-based measurements, the near infrared radiation 

(NIR) band calculated reflectance values being 15 to 18% higher than the measured 

values [47]. These results show that higher resolution data from UAVs can have inherent 

biases, thus calibration techniques need to be well understood and applied in order to 

generate quality data. 

As researchers and producers investigate ways to use UAVs in agriculture, 

reducing the error by improving calibration continues to be an important area of 

investigation. Wang and Myint hypothesized that the standard empirical line method 

historically used for radiometric calibration produces errors that become more 

pronounced with the type of sensors typically used with UAVs. They used nine gray 

scale Masonite boards from 5% to 90% reflectance as field targets, and they flew a 

Spreading Wings S800 hexacopter (DJI Inc., Nanshan, Shenzhen, China) with a color 

infrared camera (Canon Rebel T4i, Canon, Ota City, Tokyo, Japan) to investigate the 

relationship between DN and reflectance. The targets were placed such that the full gray 
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scale shows up in each UAV image and showed a relationship between DN and 

reflectance was exponential.  By applying a logarithmic transformation, a linear 

regression equation with a high R2 (~0.99) was produced for the green, red, and NIR 

bands, and referred to by the authors as the simplified ELM. The simplified ELM 

equations were then used to calibrate images only one gray calibration target in each 

image and the data was compared with spectroradiometer measurements of 10 points by 

conducting a Mann-Whitney U test. This test showed no statistical difference between 

the 10 ground measurements and the UAV calibrated reflectance [48]. The exponential 

response curve of the cameras plays a large role in determining the proper application of 

calibration equations such as the empirical line method and should be considered when 

designing a calibration system. 

Pozo et. al. tested a vicarious radiometric calibration system for single images. A 

multispectral camera (Mini-MCA 6, Tetracam Chatsworth, CA USA), operating with 

fixed exposure settings, was used to investigate low-cost calibration targets and methods. 

In this instance, vicarious calibration is defined as using ground based (though man-

made) targets with known (measured) reflectance to create the calibration equation that 

relates DN to reflectance. The calibration was only applied to individual images which 

had calibration targets present. Selected target areas inside each calibrated image were 

then compared to the measured reflectance, and a low error (~2%) was determined [49].  

Iqbal et al. investigated a simplified calibration system for UAV images using five 

calibration targets that were placed in the field along with 20 pseudo targets, which in 

this context referred to targets with unknown Lambertian properties. A multispectral 
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camera (Mini-MCA 6, Tetracam Chatsworth, CA USA), operating with fixed exposure 

settings, was flown on a multi-rotor UAV at solar noon. Each image had a pseudo target 

visible, and each image was calibrated individually. A simple linear relationship was 

found between the measured reflectance of the calibration targets and the DN from the 

images. Each target appeared in several images; to improve the calibration the DNs were 

collected from all images with the same target and used in creating the calibration 

equation. R2 values from 0.97 to 0.99 were found for the camera’s six spectral bands. 

The root mean square error (RMSE) values across all bands ranged from 2.5 to 6.3% 

reflectance [50]. The authors did not test the system over multiple flight days, so there is 

no indication of temporal stability of the calibrated measurements. The calibration 

methods put forth in [48], [49], and [50] all require a calibration target in each image. 

For large research fields or commercial agriculture, using a calibration target in each 

image would commonly require hundreds of targets and would be an impractical use of 

time and money.  

Mafanya et al. investigated a calibration method for large-scale mapping at high 

resolution. The calibration procedure used six gray-scale Masonite boards for calibration 

with four gray targets at 20%, 40%, 60% and 80% reflectance, as well as a white and 

black target for high and low reflectance. The calibration targets were placed at a single 

location covered by the flight. Red, green, blue, black and white PVC boards were 

placed near the calibration targets, and the reflectance of each PVC board was measured 

with a spectroradiometer. These colored PVC boards served as assessment targets for 

calibration based on the gray-scale boards.  An RGB camera (Sony Nex-7, Sony, Minato 
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City, Tokyo Japan) was flown on a custom built fixed-wing UAV at 160 m AGL. The 

simplified ELM, using a log transformation to create a linear relationship between DN 

and reflectance with a single calibration target in each image, put forth in [48] was used 

for radiometric calibration in this work. The measured reflectance of the five color 

targets was compared to the estimated reflectance from the UAV mosaic in each band, 

and the resulting regression line had an R=0.97. The RMSE values were 4%, 4%, and 

8% reflectance for red, green and blue respectively, and the student’s T-test showed no 

statistical difference between the mean DN of the assessment targets across the mosaic. 

By only placing the calibration targets in a single part of the survey area and then using 

information from that area post-mosaicking, the authors demonstrated that calibration 

points do not need to be in each image to generate consistent error across the mosaic 

[51]. 

Laliberte et.al. investigated an image processing method for radiometric correction 

of images from a 6-band multispectral camera (Mini-MCA 6, Tetracam Chatsworth, CA 

USA) and an RGB camera (Canon SD 900, Canon, Ota City, Tokyo, Japan). Both 

cameras were operating with a fixed exposure and gain settings. Two ground-based 

calibration targets (2% and 85% reflectance) were used as reference targets. Two ways 

of applying the ELM were tested. One method involved taking the information from a 

single image and then applying the ELM to all images pre-mosaicking. The other 

method involved mosaicking un-calibrated images and then applying the ELM to the 

mosaic. Each method was compared with ground measurements made with a field 

spectroradiometer. Applying the calibration post mosaic across all six bands resulted in a 
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2.2% reflectance RMSE, while applying the calibration to each image pre-mosaic 

produced a 5.6% reflectance RMSE [52]. The authors do note that the sensor correction 

such as vignetting are performed during the mosaicking step, and that the order of 

calibration steps is important for reducing error. 

As remote sensing has progressed through satellites and MAVs to UAVs, the 

method of calibrating the sensors during image acquisition has been investigated as each 

new platform and sensor have been placed in use. Past work shows that each image can 

be calibrated with in-field targets, resulting in low error, but it would be cumbersome 

and expensive to place targets in each UAV-based image for production farming. ELM 

has been shown to work well in many instances where ground-based targets are used 

with fixed sensor settings, and when the sensor is known to have a generally linear 

response. As UAVs become more common, and sensors are being designed specifically 

for UAV platforms, auto exposure camera settings are being commonly used because 

they are easier and faster to set up. As these systems and operating methods gain 

traction, they need to be tested to understand the sensor and acquisition method’s impact 

on the accuracy of the data. By extension the agronomic decisions that are being made 

with the data depend on such testing. Thus far little consideration and research have been 

published on the impact of auto exposure systems on radiometric calibration of UAV 

image mosaics. 

It is hypothesized in this work that using a sensor with fixed exposure settings and 

ground-based reference targets for post-mosaic calibration will generate smaller errors 

when compared to a sensor with automatically adjusted exposure settings and single-
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panel pre-flight calibration image. Thus, the objective of this research was to collect 

UAV-based remote-sensing images with both methods and then compare both data sets 

to a single MAV image calibrated with the standard ELM, which was intended to serve 

as ground truth. 

 

2.2. Material and Methods 

2.2.1. Site Description 

Flights were conducted between mid-August and late November of 2017 and 

involved two field locations at the Texas A&M AgriLife Research farm near College 

Station, Texas. Field 1 was a long and narrow field with rows running along the short 

side and total area of approximately 12.1 ha (figure 2-1A). It was bordered on one short 

side and one long side by perennial grass and row crops on the other two sides. It was 

broken up into several plots with row crops of soybeans, corn, wheat, and a weed 

research plot. Field 2 covered a 31.5 ha area, with a perennial grass border on all sides 

(figure 2-1B). It was planted mainly in cotton, with a small strip of energy sorghum 

approximately 100 ft long by 10 rows wide. Field 2 also had a center-pivot irrigation 

system that traversed it, and the field covered approximately 1/3 of the pivot circle. The 

cotton, soybeans, and winter wheat were all harvested at typical dates for central Texas 

(cotton, August; soybeans, September; winter wheat, June), but the corn was part of the 

weed study and was not removed until mid-November. After harvest each plot was tilled 

under and left as bare soil. The land cover changed from predominantly row crops to 

predominantly bare soil through the course of this experiment. The use of two fields over 
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the course of several months enabled the study to include broad variability in land cover 

and range of reflectances. This factor was important in the comparison of calibration 

methods for UAV remote sensing. 

 

 

Figure 2-1: A) Field #1 was long and narrow covering 12.1 ha with mixed land cover of crops, soil and weed 

research plots. B) Field #2 was 31.5 ha planted in cotton, and had approximately 1/3 of a center pivot irrigation 

system. 

 

2.2.2. Equipment Description 

A single RedEdge camera (Micasense, Seattle WA, USA; figure 2-2) was used 

for both UAV and MAV flights. It is a five-band multispectral sensor with discrete 

bands in the blue, green, red, red edge, and NIR spectral regions (table 2-1) and has a 

downwelling radiation sensor that allows the sensor to gather information about ambient 

light conditions. The RedEdge camera allows for two different exposure setting modes. 

The default mode is autoexposure, which adjusts the exposure time and gain settings for 

each band independently in real time. The second mode is fixed exposure, in which the 
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user chooses from 15 exposure time settings and four gain settings, with each band being 

set independently.  

 

Figure 2-2: The Micasense RedEdge camera used for both unmanned aerial vehicle and manned aerial vehicle flights 

 

 

Table 2-1: Micasense RedEdge band information with band width reported as full width at half maximum 

Band  Center Wavelength (nm) Band Width (nm) 

Blue 475 20 

Green 560 20 

Red 668 10 

Red edge 717 10 

NIR 840 40 

 

A Cessna 206 (Textron Aviation, Wichita, KS, USA) was flown by the USDA 

Agricultural Research Service (USDA-ARS) Aerial Application Technology Research 

Unit as the MAV for this research. A Tuffwing mapper UAV (Tuffwing, Boerne, TX, 

USA; figure 2-3) was used for all UAV flights. It is a fixed wing UAV with a wingspan 

of 1.2 m and takeoff weight of 2.2 kg fully loaded. This UAV uses a Pixhawk on-board 
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flight controller, and Mission Planner (Ardupilot, Canberra Australia) was used for the 

mission planning software. The RedEdge camera was mounted in the downward facing 

sensor port in the bodies of the UAV and MAV.  

 

Figure 2-3: Tuffwing unmanned aerial vehicle flights. The orange panel can be removed to access the sensor payload. 

 

Geographic registration is important for mosaicking images properly so that 

locations within mosaics can be accurately compared between image-collection methods 

and between flights. Ground control points (GCPs) served as geographic registration 

points for both UAV and MAV, and the particular GCPs used also served as radiometric 

calibration points for the fixed exposure UAV flights. The GCPs had two levels, one at 

0.92 m above the ground and the other at 1.83 m (figure 2-4). Each level of a GCP had 

three radiometric targets painted dark gray, medium gray, and light gray, along with a lid 

to protect the tiles from the weather and sunlight when not in use. The radiometric 

targets had dimensions of 60.9 x 60.9 x 0.64 cm, were constructed from recycled rubber, 

and had a reflectance of approximately 6%, 25%, and 50%, respectively. For geographic 

registration a Trimble R7 (Sunnyvale, CA, USA) GPS base station was used along with 
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a Trimble R8 rover, and post-processing kinematic correction was performed on the data 

after field collection. This GPS system and method results in position data with an 

accuracy of ±2 cm in the x, y plane.   

 

Figure 2-4: The ground control points were constructed with two levels, with radiometric targets placed on both the 

top and the bottom. The gps information was collected from the front corners of the lower deck. 

 

Four radiometric calibration tarps (Group 8 technology, Provo UT, USA) 

measuring 8 m x 8 m were also placed in the field prior to each flight for calibration of 

the MAV data. These tarps had reflectance of approximately 6%, 15%, 25%, and 40% 

(figure 2-5). 

 

Figure 2-5: Aerial calibration tarps used in radiometric calibration of manned aircraft images 
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2.2.3. Data Collection 

Flight missions and associated data collection were conducted on August 18, 

October 6, October 25, and November 30, 2017. Flights performed on dates 2 through 4 

were on field 1, while the flight on the first date was conducted over field 2. Each day 

had a clear sky, and all flights were conducted in a time window of +/- 1.0 h of solar 

noon. On each flight day, two UAV flights with the two different exposure methods 

were conducted along with one MAV flight. The UAV was flown at 120 m AGL, 

producing a spatial resolution of approximately 7.6 cm. The MAV was flown at 1310 m 

AGL, giving 0.90 m spatial resolution, allowing the entire field to be captured in a single 

image. 

The autoexposure setting allows the camera to change the exposure time and 

sensor gain immediately before each image is acquired based on incident light being 

reflected from the scene. The reflected light can change drastically from image to image 

depending on the dominant ground cover in the scene, so the exposure and gain can 

change drastically as well. The fixed exposure mode involves setting the exposure time 

and sensor gain pre-flight and maintaining those settings constant for the duration of that 

flight. Twenty preliminary flight tests were conducted to determine exposure settings for 

the fixed exposure mode. The UAV was flown over the calibration targets (6%, 25%, 

and 50 % reflectance) at 120 m above ground level (AGL) on a cloud free day near solar 

noon. The gain and exposure settings were systematically changed for each flight, and 

the DNs associated with the dark gray, medium gray, and light gray calibration targets 

were determined.  The settings that maximized the dynamic range – i.e., the difference in 
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DNs between dark and light targets – without zeroing or saturating any pixels of interest 

were selected for each band. Based on these preliminary tests, exposure time settings of 

0.44, 0.44, 0.44, 0.44, and 1.00 ms, and gain settings of 1x, 1x, 2x, 2x, and 2x, were 

selected for the Blue, Green, Red, Red edge and NIR bands, respectively. For the MAV 

flights, the camera had fixed exposure settings of 0.33 ms for all bands and a gain of 1x. 

These settings were based on the experience of the USDA-ARS flight crew in using this 

sensor on a manned aircraft traveling at comparable AGL and speeds to those used in 

this experiment. These preliminary tests were also used to determine if the response 

curve for the RedEdge camera was linear, and thus if the ELM was an acceptable 

equation for calibration. 

The GCPs were placed in the field at the beginning of the growing season in 

April 2017 and secured in place with four metal posts per GCP until the end of the 

season. Eight GCPs were placed in Field 1, with one at each corner and two spaced 

evenly along the long edge of the field. Nine GCPs were placed in Field 2 and spaced 

fairly evenly around the perimeter but out of the way of the center-pivot irrigation 

system. For georeferencing, the GPS base station was placed at a previously surveyed 

point that had been established by setting up the base station to record position for 24 hr. 

To collect position data for the GCPs, the rover was placed on the front left and front 

right corners of the lower deck on each GCP.  

On all four flight days the MAV was flown first, and the radiometric target data 

collection was usually started while this flight was being performed. After the MAV 

flight was finished, the RedEdge camera was removed and mounted on the UAV and the 
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autoexposure flight was launched. After the autoexposure mission ended, fixed-exposure 

settings were set on the camera and the fixed-exposure flight was launched. Each UAV 

flight lasted approximately 20 minutes. This protocol allowed the completion of all three 

flights of the same field inside the 2 hr flight window centered on solar noon. At 

approximately the same time the MAV flight was beginning, a spectroradiometer (PSR+ 

3500, Spectral Evolution, Lawrence, MA, USA) was used to collect ground truth 

measurements of the MAV calibration tarps and the UAV calibration targets. The PSR+ 

3500 has an active sensor and shields the object it is scanning, making it insensitive to 

solar illumination, and it provides data output in reflectance. Each calibration target was 

measured at five points spread across the surface. The five readings of each target were 

then averaged to generate its final reflectance value for the given flight. During the 

flights on 10/25 and 11/30, ground based radiometric calibration readings were collected 

on all reflectance calibration targets with the spectroradiometer. For flight day 08/18, the 

target measurements were collected on 08/16. The measurements for 10/06 were not 

collected on a day close to the fight; instead the data for this flight day were interpolated 

from data collected on 6/06, 10/25 and 11/30, assuming that any reflectance changes 

over this period would be linear.  

2.2.4. Image Pre-processing 

Physical parameters of the RedEdge camera as reported by the manufacturer 

were stored as metadata in the image files and later used in image processing to provide 

corrections for dark current and vignetting. To generate the relationships between DNs 

and reflectance for the whole-field MAV image, the empirical line method (ELM) based 
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on the spectroradiometer data from the four calibration tarps was used in ENVI software 

(Boulder, CO, USA). After calibration, the image was loaded into ARCGIS 10.2 

software (Redlands, CA, USA) for geo-referencing, which was performed by locating 

the GCPs in the image and applying the measured GPS coordinates to the appropriate 

corners of each GCP in the image. 

For the autoexposure UAV flights, the camera manufacturer’s recommended 

methods were followed to generate a reflectance mosaic. This method includes using a 

single white calibration panel of 15 x 15 cm provided by the camera manufacturer. An 

image of the calibration panel was taken pre and post-flight by holding the aircraft over 

the panel and manually triggering an image, while being careful about certain 

considerations like light direction so as not to induce shadows. The raw flight data were 

loaded into Pix4D software (Pix4D, Prilly, Switzerland) along with the images of the 

calibration panel, and the albedo value for each band. Since the downwelling radiation 

sensor was used for these flights, that option was selected during the program set up. 

Pix4D uses the metadata imbedded in the images to create a rough layout of the mosaic. 

The user then applies the GPS information to the images containing the GCPs. The 

software then completes the mosaic and the calibration. The output was a geo-rectified, 

calibrated reflectance map of the entire field in which each pixel value was reported as 

percent reflectance. 

 Images from the fixed-exposure flights were loaded into Photoscan software 

(Agisoft, St. Petersburg, Russia), which created an orthomosaic. The reflectance data 

collected from the calibration targets were loaded into a custom software program that 
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performs radiometric calibration of the mosaicked image based on ELM. The calibrated 

mosaic was then loaded into ARCGIS to apply GPS-measured position data to the GCPs 

and create a geo-rectified, calibrated reflectance map of the entire field. The reason for 

using a different mosaicking process with fixed-exposure images is twofold. First, Pix4D 

was the program recommended by the camera manufacturer to handle the changing 

exposures generated by the autoexposure setting, so Pix4D had to be used for the 

autoexposure images.  On the other hand, Photoscan offers more control over image-

processing procedures such as color smoothing, which was not desirable with the fixed-

exposure images. Thus, Photoscan was more appropriate for the fixed-exposure data. 

Any differences in reflectance strictly attributable to the difference in software and 

processes used to create the orthomosaic were expected to be negligible.  

2.2.5. Data Analysis 

While the data were being evaluated it was observed that the red edge and NIR 

bands had unexpectedly large errors relative to the other bands regardless of exposure 

method.  Several possible contributing factors to the large errors in the red edge and NIR 

were explored, including temperature during the flights, ground cover classification, 

mosaic quality problems such as stitching artifacts, and raw image quality problems such 

as pixel noise or image blurring.  

Image reflectance data from the two UAV remote-sensing calibration methods 

were compared on each flight date and across flight dates in three ways: 1) band-by-

band comparison across 31 areas of interest (AOIs) relative to “ground truth” (i.e., the 

single calibrated image captured from the MAV); 2) band-by-band comparison relative 
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to the ground-based spectroradiometer measurements of the four radiometric calibration 

tarps placed in each field during the flight missions; and 3) by the spectral index, visible 

atmospherically resistant index (VARI), across the 31 AOIs relative to ground truth (i.e., 

the MAV VARI).  

To extract pixel-level data from commonly located AOIs, the 40 reflectance 

mosaics (four image dates, two exposure methods, and five spectral bands) and 20 MAV 

reflectance images (four image dates and five spectral bands) were processed with 

custom code written in R. The code retrieved pixel reflectance values from 31 AOIs 

(figure 2-6) defined by a set of coordinates in the image space. These AOIs were 

selected with a stratified random sampling technique based on knowledge of each field 

so as to span the reflectance range and ensure each AOI was as homogeneous as 

possible. Each AOI used for the band to band comparison was approximately 10 m x 10 

m, with the mean pixel value of each AOI being calculated by the R code. The AOIs 

allowed comparison of reflectance at the same position in the UAV mosaics and the 

MAV images as well as comparisons of the same area across dates.  
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Figure 2-6: 31 area of interest (AOI) locations across the field used for comparing unmanned aerial vehicle and 

manned aerial vehicle images. The AOI’s are laid out using coordinates in the x-y plane to insure the same 

geographical location is being compared across images. A) Field 1 used for flights on 10/06/2017, 10/25/2017, and 

11/30/2017. B) field #2 was used for the flight 08/18/2017. 

 

For the first comparison, plots of the mean UAV reflectances for each AOI vs. 

the mean MAV reflectances for each corresponding AOI were constructed for 

comparison of each band on each date and spanning all dates. Regression lines were 

determined and coefficients of determination (R2) and root mean square error (RMSE) 

calculated. The closer the UAV data matched the MAV data, which was considered 

ground truth, the more accurate the method was considered. A perfect match would 

follow a 1:1 line, thus the RMSE of the data from each method was calculated with 

respect to the 1:1 line. A paired T-test was also conducted to compare the mean 

differences of the residuals between the UAV calibration methods. The null hypothesis 

of the paired T-test was that the means of autoexposure residuals and fixed-exposure 

residuals for the population of AOIs were not significantly different. Thus, if the null 

hypothesis could be rejected, the two calibration methods could be said to have different 

levels of accuracy. 
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 For the second comparison, mean pixel reflectance values from the calibrated 

UAV mosaics were compared to the known reflectance values (as measured with the 

spectroradiometer) for the four calibration tarps (figure 2-4). As mentioned previously, 

these tarps had been used to calibrate the MAV data, but they were not used to calibrate 

the UAV data. The RMSE and bias relative to the 1:1 line were calculated for both UAV 

calibration methods.  

 For the third comparison, VARI was calculated from the mean RGB pixel values 

for each of the 31 AOIs based on the following equation.  

𝑉𝐴𝑅𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛+𝑅𝑒𝑑−𝐵𝑙𝑢𝑒
                                                  Equation 1 

The mean AOI reflectance values in each of these bands was used in place of the 

corresponding pixel-level variables in the equation. The VARI for each UAV calibration 

method was then plotted against VARI for the MAV, and the RMSE was calculated. 

This comparison enabled a better understanding of how reflectance error would affect a 

common spectral index like VARI, considered to be a real-world application method for 

this type of data. 

As mentioned previously, most users of agricultural remote-sensing data use 

vegetative indices as principal metrics in their decision-making processes, so the 

difference in reflectance error between autoexposure and fixed exposure is important not 

just in a theoretical sense but also in a practical sense. Vegetative indices are most often 

used in a local context, and it is thus difficult to use values of one field to aid in 

decisions for a field 20 km down the road, for example [53]. These vegetative indices are 

classified into management zones based on the available management methods, with 
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different management zones being created for the application of inputs like nutrients, 

irrigation water, and pesticides.  This process is well described in [54], where NDVI 

maps were broken into four classifications or zones for cotton plants and four more for 

all non-cotton regions of a 218 ha of field.   

To demonstrate the effect that each calibration method’s error would have in 

practical usage such as with the application of vegetative indices, we created a 

simulation that mirrors actual field usage that was reported in the literature and 

commercialized as a means of applying insecticide to a cotton crop at appropriate 

variable rates to control the insect, tarnished plant bug [54] [55]. In those studies, NDVI 

was used as a means to classify a field according to vigor level. The insects tend to 

thrive in high-vigor field areas, so it was assumed in our simulation that the full rate of 

insecticide would be applied in high-vigor areas, half rate in medium-vigor areas, and 

zero insecticide in low-vigor areas. For this simulation VARI was used instead of NDVI 

due to the limitations of the data collected. Each data point represents an arbitrary size in 

the field, which in the real world would be matched to the spatial resolution of the 

variable rate spray system.  

The accuracy of a simulated insecticide prescription maps based on the two 

different UAV image calibration methods was tested with a Monte Carlo simulation.  In 

this simulation a ground truth vector was created for the red, green, and blue bands, with 

each band having 10,000 data points. Each vector was generated with the rnorm function 

in R (R:  A Language and Environment for Statistical Computing, R Foundation for 

Statistical Computing, Vienna, Austria), which creates a vector of random numbers such 
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that the values of the vector fit a normal distribution with a specified mean and standard 

deviation. In this case the mean and standard deviation were set to match those measured 

by the MAV (Table 2-2). 

 

Table 2-2: The manned aerial vehicle mean value and standard deviation for the blue, green and red bands which were 

then used in the Monte Carlo simulation for creating the ground truth simulation data. 

Manned Aerial Vehicle 

 Mean SD 

Blue 5.14 6.14 

Green 8.60 7.88 
Red 11.34 9.46 

 

The same random number generator was used to generate two error vectors using 

the means of the residuals and the standard deviation of the residuals which is the RMSE 

for the fixed exposure and autoexposure methods (table 2-3).  

Table 2-3: The mean of the residuals from the unmanned aerial vehicle autoexposure and fixed exposure systems 

along with the root means squared error values. These values were used to create the Monte Carlo simulation error 

data for each exposure method. 

  Autoexposure Fixed exposure 

  
Mean of 
residual 

RMSE 
Mean of 
residuals 

RMSE 

Blue -2 2.6 0.52 1.7 
Green -2.6 3.3 0.09 1.8 

Red -3.59 4.5 1.29 2.5 

 

The ground truth vector and error vectors were combined to create two simulated 

data sets, one for each calibration method, of values in the RGB bands. These data were 

then used to calculate VARI for the ground truth, autoexposure and fixed exposure. The 

ground truth, autoexposure and fixed exposure VARI data were then classified into three 

management zones, and comparisons were made between the MAV classification and 

the auto exposure and fixed exposure classifications, with the percent correct 
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classification being reported. This simulation was conducted 10,000 times with varying 

randomized data, so the classification comparisons are based on 10,000 iterations of 

10,000 data points. 

 When autoexposure is being used, the exposure time and gain setting for one 

image can conceivably be different for all adjacent images. The unique pairs of exposure 

and gain settings require unique equations to convert DNs to reflectance. These 

equations are calculated in Pix4D automatically based on the specific exposure time and 

gain settings and data from pre-flight calibration panel, the downwelling light sensor, 

and internal camera corrections (vignetting, dark current, etc.). The equations are applied 

to the raw image data during the orthomosaicking process. Furthermore, the tendency of 

autoexposure to change the exposure and gain settings from image to image calls into 

question how the data are initially digitized by the camera. The RedEdge camera used in 

this study has 16-bit (commonly 0 to 65,535) DN representation but actually uses a 

dynamic range for DN of 1 to 65520. An analysis of the exposure and gain variability 

with the autoexposure method was conducted to better understand how often the system 

changed the exposure and gain settings and the effect this had on the DN. The exposure 

time and gain were extracted from the metadata of each autoexposure raw image, and a 

bubble plot was created for each band and flight date so that the overall variability could 

be observed. The number of times the system changed exposure and gain was also found 

for each band and flight date. Select raw images from two regions of field #1 were also 

used to compare the dynamic range of DNs between the autoexposure and fixed-

exposure methods. Two images each were selected from flight days 10/06/2017 and 



 

30 

 

10/25/2017 that contained AOI #A (figure 2-7), and one image each was selected from 

flight days 10/06/2017 and 10/25/2017 that contained AOI #B (figure 2-8). For this 

dynamic range comparison, the two AOIs covered an area of 26 m x 66 m. These new 

AOIs were chosen to have consistent land cover of perennial grass, providing reflectance 

levels expected in agricultural crops, based on a knowledge of the field conditions at the 

time of flight. The mean, minimum, and maximum DNs for the AOIs were then 

determined and used to calculate the portion of the camera’s dynamic range used by the 

autoexposure and fixed exposure methods. For agricultural surveys, it is ideal for the 

plant reflectance to occupy the largest portion of the dynamic range, because this 

provides for high spectral resolution in the region of interest and the greatest amount of 

information about small changes in plant reflectance, which may relate to various 

stresses. The exposure time and gain of the selected images were determined, and the 

DNs from AOI #A and AOI #B were collected. The DN range was calculated for both 

auto exposure and fixed calibration methods. The range of values from the AOI was 

divided by the possible dynamic range of the DNs to provide a percentage of the 

dynamic range related to green vegetation.  
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Figure 2-7: Raw image showing Area of Interest #A used to investigate the digital numbers of auto exposure. The 

black box shows the area of interest that the digital numbers were collected from. 

 

 

 

Figure 2-8: Area of Interest #B used to investigate the digital number dynamic range of autoexposure. The black box 

shows the area of interest that the digital numbers were collected from. 
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2.3. Results and Discussion 

It is informative to consider how the reflectance in the field changed over time. 

From the first image on 08/18/2017 to the last image on 11/30/2017, the ground cover in 

the field moved from predominantly green vegetation to predominantly bare soil. This 

change was expected to have an impact on the reflectance being measured during a 

flight. Figure 2-9 includes six AOIs chosen from the MAV data that have land cover of 

perennial grass and are on the edge of both fields. The reflectance of each is plotted 

according to flight date. As the more reflective elements in the field (i.e. plants) are 

reduced in number and vigor throughout the season, the reflectance range became more 

compact and the values lower. The solar angle also changes from 72 degrees to 37 

degrees between August and late November. The cumulated effect is a reduced 

reflectance range at the end of the season. 
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Figure 2-9: Reflectance from AOI’s from the manned aerial vehicle system plotted against the flight data. This 

demonstrates the expected trend in reflectance as it progresses through time. 

 

 

While performing the data analysis we found that the red edge and NIR bands 

displayed unexpectedly large error. To investigate where this error might originate, we 

plotted the reflectance residuals vs. ambient temperature in Celsius for both UAV 

calibration methods (figure 2-10). Autoexposure is shown in the left column and fixed 

exposure in the right, spectral bands are separated by row, and flight days are indicated 

by color. Trends for the autoexposure method were the same as for fixed exposure, and 

the spread of the residuals was also approximately the same on each flight date. A 

distinct increase in residuals as temperature increased would be expected if temperature 

were a significant contributing factor to error. While there is greater variation in 
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residuals for the red edge and NIR bands, the residuals are flat or decreasing with 

increasing temperature, indicating that temperatures was likely not a major source of the 

error in the red edge and NIR bands.  

 

Figure 2-10: This is a graph of Temperature in Celsius vs. unmanned aerial vehicle residuals. The left column shows 

the Temperature vs residuals of the auto exposure system, and the right column shows the Temperature vs residuals of 

the fixed exposure system. Each row shows the bands, and color depicts the flight day. 

 

Inspection of the red edge and NIR mosaics did not show any significant blurring 

or image artifacts. However, visual inspections of the raw images show some possible 

image speckling (figure 2-11) was present in all of the fixed exposure flights as well as 

the autoexposure flights on 08/18/2017, and 10/06/2017, but no noticeable speckling on 
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10/25/2017 or 11/30/2017. It is interesting to note that the speckling was present in the 

fixed exposure mosaics, but not present in the autoexposure mosaics (for flight days 

08/18/2017 or 10/06/2017). During flights for other projects using the same equipment 

similar problems were noted, however the camera was destroyed during a hard landing 

making it impossible to have the sensor checked by the manufacture. The observation 

noted above suggests that the red edge and NIR detectors on the camera were not 

functioning properly at the time of the flights and led to a focus on the RGB data in this 

work.  

 

Figure 2-11: The raw images were visually inspected for noise. A) Shows the red edge band from a fixed exposure 

flight on 10/06/2017. B) Shows the near infrared band from autoexposure on flight day 08/18/2017. The black circles 

demonstrate positions of possible speckling noise which could be the cause of the unexpectedly high error in the red 

edge and near infrared bands. 

 

Plots of UAV vs. MAV reflectance by band, flight day, exposure method, 

spectral band, and AOI type are shown in figure 2-12. Each flight day is shown as a 

different column, along with each band as a different row. The data point shape denotes 

UAV calibration method, while the color denotes AOI classification.  The RGB bands 

A B 
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have consistent groupings by AOI type along the 1:1 line, with the autoexposure method 

having slightly more scatter than fixed exposure. The RGB bands are also consistent 

across time, with similar scatter for a given calibration method and AOI classification. 

The red edge and NIR bands however have much more scatter about the 1:1 line, with 

little temporal consistency. The AOI types fall in different places as the season goes on 

for both red edge and NIR.  For example, the crop and soil class had high NIR 

reflectance on 08/18/2017, but low NIR reflectance on 11/30/2017. Red edge and NIR 

reflectance of some AOI classes moved across the 1:1 line from one flight date to the 

next. This lack of consistency between flight days for red edge and NIR but not for RGB 

further suggests an error problem with the NIR and red edge data. 

 

 

Figure 2-12: The unmanned aerial vehicle reflectance vs. the manned aerial vehicle reflectance with each column 

representing a flight day, while each row represents a specific spectral band. The color of the data points indicates the 

area of interest land cover classification and the data point shape indicates the exposure system used. 
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The band to band comparison of the AOIs between autoexposure and fixed 

exposure methods across all dates is shown in figure 2-13, where reflectance values from 

the two UAV calibration methods are plotted against reflectance values from the MAV 

image. The left column of plots represents autoexposure and the right represents fixed 

exposure, with each row corresponding to a different spectral band. The regression line 

plotted on each graph has a slope of one and an intercept of zero, marking where perfect 

agreement between UAV and MAV data would be. The shapes of the data points signify 

different flight days, while the colors indicate the different AOI types (e.g., soil or 

perennial grass) and therefore different expected reflectance. A clear trend can be seen in 

the RGB bands for both auto and fixed exposure methods. Autoexposure points are 

mostly above the 1:1 regression line, with increased scatter as the reflectance value 

increases. Autoexposure data also have more variance between flight days. The fixed 

exposure scatter is smaller and lies along the 1:1 line with little to no increase in 

variance at different reflectance values and across flight days. As mentioned previously, 

the red edge and NIR bands were observed to have unexpectedly large errors with both 

the autoexposure and fixed exposure methods. For both methods the error for the red 

edge (RMSE auto=5.75; fixed= 5.67) and NIR (RMSE auto=9.06; fixed=8.11) bands 

was roughly double that of RGB error (RMSE autoavg=3.45; fixedavg=1.97). Both the red 

edge and NIR bands also showed greater variability between flight days in terms of AOI 

classification reflectance compared to the RGB bands (figure 2-13).  
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Figure 2-13: The unmanned aerial vehicle reflectance vs. the manned aerial vehicle reflectance for the auto exposure 

system (left column) and fixed exposure system (right column). Each row shows an individual band, while the data 

point shape indicates the flight day and the color indicates the type of ground cover for that area of interest. 

 

The RMSE about the 1:1 line in figure 2-13 is given for each band across the 

four flight dates in table 2-4. For the RGB bands, the autoexposure RMSE was 2.6 to 

4.5% reflectance, roughly twice as high when compared to the fixed exposure, which 

had RMSE of 1.7 to 2.5% reflectance. It is worth pointing out that the red edge and NIR 

RMSEs were almost double that of the RGB bands, and autoexposure had higher RMSE 

than fixed exposure for these two bands as well. High R2 values (table 2-4) indicate that 

the relationship between reflectance data from both UAV calibration methods and 

reflectance data from the MAV was strongly linear across the reflectance range, 
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indicating that ELM was a reasonable method to apply to the fixed exposure for 

converting DNs to reflectance. The paired T-test on the residuals of autoexposure and 

fixed exposure data showed a significant difference at the 0.01 confidence level (table 2-

4), indicating that the RMSE differences in the band to band comparison are significant, 

establishing the clear superiority of the fixed exposure method in the RGB data 

accuracy.  

 

Table 2-4: The RMSE of the UAV exposure systems to the 1:1 line. The R2 values are for a linear regression of the 

unmanned aerial vehicle onto the manned aerial vehicle for each band. The paired T-test compares the auto and fixed 

exposures systems on an area of interest basis. 

 RMSE R^2 Paired T-test 

Band Auto Fixed Auto Fixed 
P-value 

Mean of the 

Difference 

Blue 2.6 1.7 0.94 0.94 2.69*10-37 2.58 

Green 3.3 1.8 0.94 0.95 1.24*10-19 2.70 

Red 4.5 2.5 0.96 0.96 6.27*10-51 4.88 

Red edge 5.8 5.7 0.91 0.77 3.20*10-28 5.17 

NIR 9.1 8.1 0.61 0.72 1.38*10-17 5.11 

 

The comparison between autoexposure and fixed exposure of the calibration 

tarps for all flight dates is shown in figure 2-14. The UAV exposure method is shown by 

the shape and while the red, green, and blue bands are shown by the color of the data 

points. The regression line shown is the 1:1 line, showing where perfect agreement 

between the UAV and ground measurements would lie. The autoexposure tends to 

overestimate the reflectance of the calibration tarps and has more scatter compared to the 

fixed exposure for all three bands. The scatter for both exposure methods does increase 

as the reflectance values increase, and the reflectance values for the bands becomes more 

distinct. The RMSE of the auto exposure data was higher than that of the fixed exposure 
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data with the difference ranging from 0.5 % reflectance to 2.5% reflectance (table 2-5), 

with the largest difference between the methods found in the red band. Table 2-5 also 

shows the bias relative to the 1:1 line for UAV reflectance vs. tarp reflectance. The bias 

for the autoexposure method was more than double the fixed exposure bias for each of 

the RGB bands. These results confirm the aforementioned results with the AOIs, which 

showed fixed exposure reflectance data to be more accurate than autoexposure data. 

 

Figure 2-14: Reflectance for measured tarps reflectance plotted against the unmanned aerial vehicle mosaic tarps 

reflectance for RGB bands, for all four flight days. 
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Table 2-5: The RMSE and bias calculated from the comparison of the unmanned aerial vehicle mosaic reflectance and 

the measured tarp reflectance. 

  Tarp RMSE to 1:1 line Tarp Bias to 1:1 line 

Band 

Auto 

Exposure (% 

reflectance) 

Fixed 

Exposure (% 

reflectance) 

Auto Exposure 
Fixed 

Exposure 

Blue 3.6 2.3 -0.80 -0.09 

Green 4.1 3.6 -1.61 -0.56 

Red 4.9 2.4 -3.96 0.98 

 

 The VARI spectral index comparison on the AOIs between autoexposure and 

fixed exposure methods across all dates is shown in figure 2-15. The auto exposure and 

fixed exposure methods are the left and right plots, respectively, while the shape and 

color of the points indicate the flight date, and the 1:1 line is shown to indicate the 

position where perfect agreement between UAV and MAV VARI would lie. VARI is a 

ratio of combined like variables, and as such it has no units and thus is reported simply 

as a number. The auto exposure data had greater scatter, and at the high end of index 

values, the error was very high. There also was a large amount of variation in the UAV 

vs. MAV VARI trends from one flight day to the next for the auto exposure method. The 

auto exposure method had a higher RMSE (0.44) than fixed exposure (RMSE = 0.23). 

Also, while the MAV data had a VARI range of -0.62 to 0.59, autoexposure had a much 

higher range (-0.66 to 2.79), and fixed exposure also had a higher range (-0.69 to 1.15) 

but more in line with the MAV data. These results indicate that when calculating a 

vegetative index from reflectance values, the error levels in the original data are 

important, and fixed exposure produces results with approximately half the error of 

autoexposure and is more consistent across flights. As mentioned previously, most users 

of agricultural remote-sensing data use vegetative indices as principal metrics in their 
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decision-making processes, so the difference in reflectance error between autoexposure 

and fixed exposure is important not just in a theoretical sense but also in a practical 

sense. 

 

Figure 2-15: The Visible atmospheric resistance index (VARI) data for the unmanned aerial vehicle systems plotted 

against the VARI data from the manned aerial vehicle system. A) is the auto exposure system. B) Shows the fixed 

exposure system. 

 

When the Monte Carlo simulation was conducted to compare the effects of 

reflectance error between the two calibration methods on classifications into three VARI 

classes, it was determined that the autoexposure method enabled correct classifications 

67.7% of the time, while the fixed exposure method enabled correct classification 82.2% 

of the time. Essentially, the autoexposure method enabled 100% improvement in 

accuracy compared to a random guess, which would produce an accuracy of 33.3%. The 

fixed exposure method, on the other hand, enabled 147% improvement. 

A B 
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To visualized the difference between the impact of the autoexposure error and 

fixed exposure error, figures representing an agricultural field were created from the 

classification data, such that green represents correctly classified management zones and 

red represents misclassified zones due to the addition of the error (figure 2-16). The 

upper figure (A) shows results of the simulation based on autoexposure error, and the 

lower figure (B) shows results of the simulation based on fixed exposure error.  The 

Monte Carlo simulation showed that if these zones were used to apply pesticide to 

cotton, the fixed exposure method would result in significantly higher revenue by 

enabling correct application of pesticide on 15% more of the field than the autoexposure 

method.  

 

Figure 2-16: The Monte Carlo simulation is displayed graphically with the green squares representing a unit that is 

correctly classified and the red squares representing a unit that was mis-classified due to the presents of error. A) 

Shows the visible atmospheric resistance index (VARI) calculation when the error present in the autoexposure method 

is used, resulting in 67% correctly classified and 33% classified incorrectly. B) shows the VARI calculation using the 

fixed exposure error, showing 82 % correct classification and 18% classified incorrectly. 
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When exposure times and gain settings of the autoexposure method were 

considered, it was observed that exposure time changed often. The minimum number of 

times exposure time changed during a flight was 79 (red edge band, 10/06/2017), out of 

268 images (table 2-6). The maximum number of times was 120 for the NIR band, 

which on Nov. 30 was almost half the number (267) of images collected. These numbers 

mean that between 29 and 44% of the images in any mosaic had a different exposure 

time than adjacent images.  

 

Table 2-6: The number of times the auto exposure time changes for each flight by band. 

Number of times exposure values change  

Flight day 

Images per 

flight 
Blue Green Red 

Red 

edge 
NIR 

8/18/2017 346 104 104 104 82 64 

10/6/2017 268 94 88 81 79 108 

10/25/2017 394 115 91 80 83 120 

11/30/2017 267 115 91 80 83 120 

 

Table 2-7 shows the number of times the gain setting changed for each flight day 

and spectral band. The smallest number of changes was for the green band on 

08/18/2017, with only 4 changes in 346 images. The largest number was 61 for the blue 

band on 11/30/2017. These numbers mean that between 1 and 22% of the images of a 

mosaic had a different gain setting than adjacent images.  

 

 

 



 

45 

 

Table 2-7: The number of times the gain settings for the auto exposure system change for each flight day on each 

band. 

Number of times gain value changes in each set 

Flight day 

Images per 

flight 
Blue Green Red 

Red 

edge 
NIR 

8/18/2017 346 48 4 40 38 22 

10/6/2017 268 28 22 30 38 54 

10/25/2017 394 50 22 35 37 62 

11/30/2017 267 61 50 50 42 49 

 

 A bubble plot of exposure time vs. gain setting is given in figure 2-16. The size 

of each bubble indicates the number of individual exposure and gain pairs at that point. 

Each graph encompasses one flight day and one spectral band. Figure 2-16 includes two 

plots indicative of the extremes from the data set. Figure 2-16A shows the exposure and 

gain pairs from 10/06/2017, and it can be seen that the exposure range is roughly from 

0.5 to 2.0 ms with two gain settings (1, 2). Figure 2-16B shows three gain settings 

(1,2,4) and exposure times of roughly 1.0 to 2.0 ms. This trend of increased gain values 

and exposure times is found throughout the data as the date moves from earlier in the 

season to later in the season. The reflectance decreases as the season progresses, and the 

exposure times and gain settings also increase as autoexposure appears to adjust for low 

reflectance in the field by increasing the sensitivity of the system, most likely to produce 
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a visually pleasing image. Bubble plots for the rest of the flight days and bands can be 

seen in Appendix A.  

 

  

Figure 2-17: The bubble plot shows a distribution of exposure time and gain settings for the auto exposure system. 

The larger bubbles indicate more images sharing the same gain/exposure settings. A) Shows the bubble plot for the 

green band on 10/06/2017. B) Shows the bubble plot for the green band on 11/30/2017.  

  

When the dynamic ranges of the autoexposure and fixed-exposure methods were 

compared with respect to green vegetation, the auto exposure DNs covered a larger 

percentage of available dynamic range than the fixed exposure DNs (table 2-8). The 

autoexposure DNs actually covered between 40 and 80% of the available dynamic range 

on average, while the fixed-exposure DNs covered between 10% and 40%. Because 

fixed exposure and autoexposure data were produced with the same camera, any 

digitization error should have been consistent on a per-DN basis across both systems. 

Since the autoexposure DNs covered a larger amount of the dynamic range, the 

autoexposure data should have had more precision in digitization of object reflectance. 

Yet the error was significantly greater with autoexposure, so it appears likely that the 

A B 
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majority of the error in the autoexposure data was introduced in the conversion from DN 

to reflectance. 

 

Table 2-8: The range of the DN for the chosen area of interest of perennial grass, shown as a percent of the dynamic 

range possible given the nature of the sensor. 

 Auto Exposure System % of Dynamic Range Fixed Exposure System % of Dynamic Range 

Image name Blue Green Red Red edge NIR Blue Green Red Red edge NIR 

1_10062017 42.8 50.7 43.7 42.7 81.8 22.4 28.6 41.4 26.5 65.2 

2_10062017 43.1 23.8 67.1 65.5 78.9 13.6 18.4 25.7 18.9 49.5 

3_10062017 84.2 79.7 57.6 80.0 80.9 33.1 37.7 25.3 30.2 55.7 

1_10252017 65.6 55.7 57.6 58.7 82.3 14.5 21.9 25.3 23.5 47.9 

2_10252017 80.9 76.4 64.3 23.1 67.9 11.5 19.1 24.4 21.1 47.0 

3_10252017 65.3 80.9 87.0 77.7 81.4 18.4 21.8 28.7 19.9 45.2 

 

The difference in error between the calibration methods might have several 

sources. One possible source of error with the autoexposure method comes from how the 

calibration panel is used. The process involves a single high-reflectance target, which 

means the reflectance values and DN relationships must be extrapolated from that single 

point, likely resulting in more error than interpolating between a low and high point as 

was done with fixed exposure. The autoexposure method collects an image of the 

calibration target under relatively unstructured conditions at ground level pre-flight, 

while the images that are collected during the flight mission are collected at altitude (120 

m AGL), meaning calibration is not performed under the same lighting circumstances as 

image collection during the mission, so parameters that are based on this calibration step 

likely have inherent error.  

Furthermore, the fact that images can have many different exposure time and 

gain settings can potentially lead to two more sources of error. First, an additional 

mathematical step is required to relate the raw images parameters to the calibration 

image parameters before being converted from DN to reflectance. This relationship may 
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be erroneous. Second, the actual exposure and gain achieved at different settings could 

be inconsistent or different than the setting values. Another possible source of the error 

with autoexposure is the order of the data processing operations. Because each image 

can have a different exposure and gain, the images must be calibrated before the mosaic 

can be constructed. Laliberte et al. showed that even when using fixed exposure, images 

calibrated pre-mosaic resulted in higher radiometric error [52].  

Fixed exposure, by contrast, has in this case three calibration targets of low, 

medium, and high reflectance that span the majority of the reflectance range of interest. 

Allowing interpolation between points to generate the relationship between reflectance 

and DN likely results in a lesser error than extrapolation. Because the images all have 

the same parameter settings, the data processing order allows the mosaic to be 

constructed before the calibration step, again reducing error, as found by [52]. Once the 

mosaicking step has been completed the calibration equation can be applied to all areas 

of the image mosaic with a single calibration equation for each band.  

 

2.4. Conclusions 

While red edge and NIR data were not evaluated in detail in this study due to 

error issues with the camera, results with the RGB reflectance data from agricultural 

fields were conclusive and showed that calibrated UAV mosaics of images collected 

with fixed exposure typically produced approximately half the error produced by their 

auto exposure counterparts. The difference in error between the two methods is 

statistically significant at a confidence level of 0.01. The higher accuracy with fixed 
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exposure was present when data were compared to AOIs with different land cover types 

and when compared to calibration tarps in the field. When the RGB bands were used to 

calculate the VARI index, the error in the VARI index was again found to be roughly 

twice as great in autoexposure as in fixed exposure. We demonstrate that the impact of 

this error on management decisions making is improved by 15% when the fixed 

exposure is used for 3 classification zones.  

The source of the greater error associated with autoexposure is not completely 

clear, but it does not appear to be attributable to digitization error.  More likely it is 

mainly a result of errors introduced in the conversion of DNs to reflectance. 

Autoexposure changes the image parameters often, requiring a different calibration 

equation for each unique set of image parameters. Because the image parameters are 

different the autoexposure method must be calibrated pre-mosaic, which has been shown 

in other work to increase the error. The autoexposure method also uses an image of a 

single calibration panel, which is collected with image parameters that are potentially 

different than the parameters found in the survey causing additional calculations, and 

because a single calibration point is used the DN to reflectance relationship must be 

extrapolate to estimate reflectance. The combination of these sources of error are most 

likely the main drivers in producing the larger error and the larger bias reported in this 

work. By comparison the fixed exposure method is calibrated post-mosaic requiring a 

single calibration equation for each band, and uses interpolation between a high and low 

calibration point, simplifying the process and reducing the error and the bias. 

 



* Reprinted with permission from “Low-field magnetic resonance imaging of roots in intact clayey and

silty soils” by Bagnall, G. C., Koonjoo, N., Altobelli, S.A., Conradi, M.S., Fikushima, E., Kuethe, D. O.,

Mullet,J. E., Neely, H., Rooney, W. L., Stupic, K., Weers, B., Zhu, B., Rosen, M. S., Morgan, C.L.S.

2020. Geoderma. 370, 114356, 2020 by G. Cody Bagnall.
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3. LOW-FIELD MAGNETIC RESONANCE IMAGING OF ROOTS IN INTACT

CLAYEY AND SILTY SOILS* 

3.1. Literature Review 

Analysis of plant root system development and architecture in structured field soils 

is challenging. Technology that enables in situ root system measurement and analysis 

would improve our understanding of the development, architecture, and responses to 

environmental variation, and improve root models, breeding for ideal root structures, and 

management decisions that focus on carbon sequestration in soil [17] [16]. While many 

tools have been developed for laboratory-based measurements [56] [57] [58], no current 

technology is capable of in-field, in situ measurements of root systems across a variety 

of agricultural soils. This paper presents a proof-of-concept of a system capable of 

imaging plant roots in situ growing in agriculturally relevant soils. 

The most common method for quantifying root systems is by excavation, washing 

and imaging the cleaned roots, often called “shovel-omics”. Trachsel et. al (2011) gives 

an example of this method, in which the roots are excavated and visual metrics are used 

to describe the roots in ways that advise plant breeding applications [59]. Newer 

methods that have varying adoptions by researchers include 2-D flatbed optical scanners 

[60], X-ray computed tomography [61], [62], [63], and magnetic resonance imaging 
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(MRI) [64], [65], [66], [67]. Flatbed optical scanners are useful for imaging roots after 

removal of soil but are not suitable for in situ measurements. X-ray computed 

tomography is a high-resolution technique that is useful in a laboratory setting, but safe 

field deployment is difficult. Several researchers have used MRI in laboratory settings to 

image plant root architecture in re-packed soil and engineered potting media and soil 

mixes. Laboratory based plant root system morphometric analysis is useful; however, 

these systems do not accurately reflect the root system architectures found in field soils 

[16].   

Magnetic resonance imaging can be categorized based on the magnetic field 

strength operational range, with high field MRI (HF-MRI) typically performed in the 

range of 1-10 T (Tesla) and low field MRI (LF-MRI) operating below 1 T. The source of 

the signal in the MRI experiment in both cases is nuclear magnetic resonance (NMR) 

inductive detection of precessing nuclear magnetic moments in a magnetic field. Spatial 

encoding is obtained by phase and frequency modulating the detected signal using the 

application of magnetic gradient fields to the system. Systems of precessing nuclear 

magnetic moments can be characterized by their NMR properties. In particular, the time 

for spin systems to revert to their thermal equilibrium polarization is known as the spin 

lattice relaxation time (T1) and the time for precsssing magnetization to become 

dephased is the spin-spin relaxation time (T2). In MRI, time constants T1 and T2 can be 

used to provide image contrast, and differences in these values allow a target material to 

be separated from the background material surrounding the desired target [68].  



 

 

52 

 

Magnetic resonance imaging, as performed in this work, images 1H nuclear spins 

which in the case of soil and roots, are found in the form of water. The amount of water 

that is found in soil changes with the amount of silicate clay in the soil matrix as well as 

the relative soil moisture content. Soil water has been found to have short T2 relaxation 

times [68], and is dependent on soil type [68], [69]. The soil-dependent T1 and T2 

influence the imaging strategy which requires the relaxation time to be measured for 

each soil [70]. In the case of root imaging in soil, the greater the difference between the 

soil water relaxation time and the root water relaxation time, the easier it is to distinguish 

roots from soil.  

To differentiate between soil water and water located in the roots, we need to 

understand the relaxation times of each. Rogers and Bottomley (1987) discovered a clear 

distinction between soil water and root water relaxation times and conclude that soil 

texture and water potential need to be considered for future use of MRI systems in soils-

based research. In that work, fava beans were grown in eight natural soils with a range of 

clay contents, and eight potting media. The samples were placed in a 1.5 T field to 

measure soil water and for root imaging. Natural soils with more than 4% paramagnetic 

material did not produce usable images at 1.5 T. The images produced from soils with 

less than 4% paramagnetic material, such as some of the manufactured potting media 

and some of the natural soils, produced mixed results with some generating clear root 

images and others, such as the Houston Black clay, producing distorted images [71].  

Since most soils are described in terms of soil texture instead of paramagnetic content, 
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Pflugfelder et.al. (2017) used some of the findings from Rogers and Bottomley to test six 

soils and two manufactured media for MRI suitability. The study was conducted at 4.7 

T, while also making note of the water holding capacity, soil texture, and ferromagnetic 

particle content for each soil. Two of the four soils tested had high ferromagnetic particle 

concentrations (11.7 and 25.3%) and also had the highest clay content (~ 25% and 45%, 

respectively). Clay content was directly related to the ability to image either seminal 

roots or lateral roots. In those soils with greater clay content, larger seminal roots, but no 

lateral roots were distinguishable [72]. At low clay content, however, MRI performs 

quite well. Dusschoten et al. (2018) successfully performed a quantitative analysis of 

three crop roots using a 4.7 T magnet in a sandy loam with 4% clay content and less than 

0.2% ferromagnetic particles by mass [73].  

In all the experiments described above, the researchers used a HF-MRI unit in a 

laboratory setting to determine the extent an MRI could image roots in the soil. The 

higher magnetic field produces a higher spin polarization in the material being studied, 

which may result in a detected signal with a higher signal-to-noise ratio (SNR), but also 

will produce image artifacts due to the presence of soil with relatively high magnetic 

material content. To avoid this issue, researchers created artificial soils with low 

magnetic material (< 4% by mass) which correlates with relatively low clay contents (~ 

10% or less).  

We hypothesize that the operation of an MRI in a low magnetic field regime (LF-

MRI) will reduce or remove image distortions, while preserving the ability to use the 
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difference in relaxation times between soil water and root water as a contrast mechanism 

to allow the separation of their signals. It will enable scientifically useful images to be 

obtained in agriculturally relevant soils. We describe four specific experiments that 

answer the critical questions concerning the implementation of a LF-MRI for root 

phenotyping. 

1) The determination of the NMR properties of soil water and root water at low 

magnetic fields. 

2) The development and testing of a small-scale MRI system operating at 47 mT in 

four soil types. 

3) Determination of the relationship between LF-MRI signal-to-noise-ratio (SNR), 

image resolution and scanning time at 47 mT field strength for roots in soil. 

4) Evaluation of a deep neural network approach (AUTOMAP) to improve SNR 

and image quality for plant root imaging with LF-MRI 

3.2. Material and Methods 

3.2.1. Field Sample Collection 

TX08001, a bioenergy sorghum hybrid (Sorghum bicolor (L.) Moench.), was 

planted on May 30th, 2018 at the Texas A&M AgriLife Field laboratory in Burleson 

County, Texas USA. Sorghum was planted to a depth of 2.5 cm with a row spacing of 76 

cm in two soil types, a Weswood silt loam, (a Udifluventic Haplustept, 25 % clay, mixed 

minerology) and a Belk clay (a Entic Hapludert, 49 % clay, mixed minerology) and has a 

high coefficient of linear extensibility. Standard agronomic practices were employed for 
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fertilization and cultivation. Soil cores containing sorghum roots were collected roughly 

120 d after planting from the two field sites.  

A hydraulic soil probe (Giddings Machine Company, Inc., Windsor, CO., USA) 

mounted on a 1-ton pickup truck was used to collect soil cores with a diameter of 5.7 

cm. The probe had a polyethylene terephthalate (PETG) sleeve insert allowing the 

collection and easy removal of the soil core from the probe. The probe was pushed into 

the ground adjacent to the crown roots on the inner-row side of the sorghum plant to a 

depth of 30.5 cm. The plastic sleeve was then removed from the metal core with the soil 

and roots contained inside and marked to indicate the core’s orientation to the plant 

stalk. Two cores were collected on either side of a given plant stem, between the rows in 

both the Weswood silt loam and the Belk clay on each collection day. Each core was cut 

into a 0-to 7.5-cm and a 7.5- to 15-cm depth section, for a total of four cores 

representing one plant for each soil type. The cores were treated for fire ants and shipped 

overnight to ABQMR, Inc., (Albuquerque NM) for laboratory-based LF-MRI imaging 

where the cores were refrigerated at approximately 8 C between imaging sessions. 

3.2.2. Greenhouse Sample Collection 

To test the system in a broader range of soils, rhizotrons (26.1-cm diameter, 75-

cm long) were filled with dried ground soil. Either a Houston Black clay soil (52 % clay, 

smectitic minerology, an Udic Haplusterts) which has a high coefficient of linear 

extensibility, or a sandy loam soil (5 to 10% clay) purchased from a nearby landscaping 

supply store was used. Sorghum was planted in the rhizotrons, with cores being collected 



 

 

56 

 

starting at roughly 90 d after planting. A 6.4-cm diameter soil core was collected to a 

depth of 37.5 cm. The full core was then cut into five 7.5-cm long sections for imaging 

and comparison. 

3.2.3. NMR Properties of Soil and Roots 

While it is not the goal of this paper to give an in depth description of the physics of an 

MRI system, we recognize that more background information may be helpful to understand the 

methods put forth in this paper. The following publications are excellent introductions to the 

basics of MRI [74] [75] [76] [77].   

Soil and root image contrast is determined by the water NMR relaxation times (T1, T2) in 

the target material (roots) and the surrounding background material (soil). In the application of 

MRI, T1 determines the maximum rate of repetition of the imaging pulse sequence, while T2 

determines the maximum time after the initial radio frequency (RF) pulse that the signal can be 

obtained. Our imaging strategy for the root vs soil discrimination is based on the differences in 

T2 relaxation time, and therefore measurements of these parameters under realistic conditions is 

critical.  

We used an inversion-recovery sequence with a Carr-Purcell-Meiboom-Gill (CPMG) 

[75] read out to measure T1 and T2. A custom built 267 mT NMR scanner was used on eight soil 

samples to explore the usefulness of LF-MRI in soils while the 47 mT scanner (which is 

discussed later) was being constructed. After construction of the 47 mT system was completed, 

six soil samples were re-tested to verify that relaxation values were similar between the two 

systems. A range of clay contents (8 to 65 %) with seven different water contents (0.05 to 0.35 

kg kg-1) were explored. To obtain the range in water content, the soils were air dried, passed 
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through a 2-mm sieve, and wet by weight (with an oven-dry correction). Fifty inversion times 

from 10 to 100 ms were evenly spaced on a log scale.  The repetition time was 200 ms, and 150 

echoes were generated at an echo spacing of 120 µs.  Depending on moisture content, the 

number of averages ranged from 4 to 64. 

A second experiment was conducted to measure T1 and T2 in three samples of 

approximately 2-mm diameter sorghum roots. The soil was washed off and the roots were placed 

in a glass container for scanning. We used 40 inversion times from 500 µs to 5 s evenly spaced 

on a log scale.  The repetition time was 10 s and there were 64 echoes with echo spacing of 10 

ms and 4 signal averages. 

3.2.4. 8-cm Bore MRI System 

An MRI system was designed and built to test the hypotheses that operation at low 

magnetic field would allow the generation of root images in agricultural soils. A 47 mT 

electromagnet (corresponding to water NMR frequency of 2 MHz) with an 8-cm bore and 30 cm 

in length (figure 3-1A) was used to image each soil core. The magnet was wound on an 18-cm 

outside diameter (OD) nylon cylinder. An electromagnetic system was chosen based on the long-

term plans for field deployment, where we believe it is advantageous to be able to switch the 

magnet on and off for safety reasons. The electromagnet main solenoid and end corrections coils 

were energized by separate power supplies (Hewlett-Packard 6012B) which were operating near 

their (kw) capacity. This operational capacity was a driving consideration for choosing 47 mT. 
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Figure 3-1: Image 1.A is the 8-cm bore electro magnet. Image 1.B shows the magnet, RF coil, and gradient coil placed 

in the cooling oil. Image 1.C shows the Techmag Redstone along with the computer that controls the system. 

An in-house manufactured gradient coil was wound on a 12.5-cm OD polycarbonate 

cylinder, which was used to spatially encode the roots in a 2-D k-space. The 1 kW of heat 

generated in the 16 AWG wire of the magnet's main windings and end windings was removed by 

using recirculated hydraulic oil and an oil-to-water heat exchanger (figure 3-1B). A transmit-

receive radio frequency saddle coil was wound on a 11.5-cm OD polycarbonate cylinder and was 

used to apply the RF pulse and then receive the magnetic resonance signal from the sample. 

Three AE Techron model 2105 amplifiers (Audio Electronics, Inc., Elkhart IN) were used to 

drive the three gradient coils, and a single Tomco RF amplifier (Tomco technologies, Stepney, 

South Australia) was used to generate the RF pulses used to flip the nuclear spins. A Tecmag 

Redstone console (Tecmag, Houston TX, USA) was used to control the pulse programmer, RF 

transmitter and receiver, and the gradient system (figure 3-1C). After the construction of the 47 

mT scanner, six soils from the above experiment were tested to verify that the relaxation values 

at 47 mT approximately agreed with those found with the 267 mT scanner. 

A C B 
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To demonstrate that a LF-MRI system can be used for visualizing roots in soils, 2-

D projection images were acquired from cores collected from two different sources. The 

field soil cores collected from the Weswood silt loam and Belk clay were used as well as 

the Houston Black clay and sandy loam rhizotron cores. For these images, a CPMG [75] 

sequence was used where each echo is acquired with the same phase encode and read out 

gradients. This approach allows all of the echos to be averaged to improve the SNR. In 

this work, we leave the third dimension unresolved. Two approaches to the 2-D imaging 

are reported here, both use the pulse sequence shown in figure 3-2. The first sequence 

uses eight sequential spin echoes, with an echo spacing of 7 ms and a 2-D projection 

image acquisition time of 1 hour. The second sequence uses sixteen sequential spin 

echoes with an echo spacing of 7 ms; fewer signal averages were used, so the image 

acquisition time for each 2-D projection in this experiment was 15 minutes. For both 

methods a 0.5 second repetition time was used, along with a field of view of 80 mm. For 

both approaches, the RF-pulses were rectangular (or “hard”) pulses [77] in time (figure 

3-2). Each echo (either eight or sixteen) acquired the same line in k-space such that the 

data were averaged for improved signal-to-noise ratio. These sequences parameters were 

chosen to produce the best SNR for the system. The timing implies that soil water 

signals (T2 <4ms) were heavily suppressed while the root water signals (T2~100ms) 

were only slightly attenuated, resulting in root images that are T2-weighted.  
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Figure 3-2: Pulse sequence for image generation uses CPMG pulse sequence that is fully rewound, both for phase 

encode and frequency read out. The subscripts refer to the phase of the RF transmit, data acquisition. τ and 2 τ are RF 

pulse spacing. Depending on the experiment either 8 or 16 echos are acquired and averaged together for each phase 

encode. 

 

The time domain k-space data was appended with zeros (known as zero -filling) to 

create an interpolated image of a standard size regardless of the pixel resolution. For the 

experiments described here, the acquired k-space matrix sizes which range from 48 x 48 

to 92 x 92 (the second number is the number of phase encode steps) being zero filled and 

transformed to create images that are 128 x 128 pixels. The images were reconstructed 

from k-space using the conventional Inverse Fast Fourier Transform (IFFT), or with 

AUTOMAP. 
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3.2.5. SNR, Resolution, Scanning Time 

To explore the relationship between image resolution, image acquisition time and signal-

to-noise ratio (SNR) one Weswood silt loam core and one Belk clay core were imaged six times 

each. For both soil types, two sets of 2-D projection images are generated with a fixed field of 

view of 80 mm. For the first set of experiments, the scanning time was fixed and the resolution 

was changed from 1.74, 1.25, and 0.625 mm pixel-1, which causes the image SNR to change in 

response. For the second set of experiments the images were acquired at the same spatial 

resolutions as before; however, the image acquisition times were increased accordingly to 

deliver a nearly constant SNR. The data were zero filled as described above, resulting in images 

that are 128 x 128 pixels.  

3.2.6. AUTOMAP 

Low field MRI generally suffers from low SNR due to the intrinsically low 

Boltzmann spin polarization. As a result, relatively long acquisition times are needed to 

accommodate the additional signal averaging required to attain sufficient SNR. Zhu et 

al. (2018) have recently described a deep-neural-network-based approach for image 

reconstruction known as Automated Transform by Manifold Approximation 

(AUTOMAP). It leverages data-driven learning of the low-dimensional manifold 

representations of real-world data that are robust to corruptions, such as noise, and have 

been shown to improve imaging performance. This method is applied to the raw data in 

k-space and is used to transform the MRI data to image space.  

We assessed the performance of AUTOMAP reconstruction to improve the 

imaging quality of the LF-MRI system. The image SNR was used to compare 
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AUTOMAP reconstruction of the same 2-D LF-MRI data with the more conventional 

inverse fast fourier transform reconstruction method. Six images corresponding to three 

soil types were reconstructed at resolutions of 1.67, 1.11, and 0.83 mm pixel-1.  

AUTOMAP was trained on the Fourier forward-encoding model using a training 

corpus assembled from 55,000 2-D synthetic roots images. These root images were 

generated using a 3D root system growth model implemented in MATLAB- called 

RootBox (Dunbabin et al 2013). Random additive white gaussian noise was applied to 

each image in the training set to expedite manifold learning during training. To produce 

the corresponding k-space representations for training, each noise-corrupted image was 

Fourier Transformed with MATLAB’s native 2-D FFT function. The neural network 

was trained from the noise corrupted k-space encodings and target ‘noise-free’ images to 

learn an optimal feed-forward reconstruction of k-space domain into the image domain. 

The network architecture described in Zhu et. al. 2018 was used in this experiment. The 

raw 2-D k-space datasets from all samples were stacked and multiplied by a scalar so the 

range of signal intensities lies within that of the corresponding training models. The 

stacked k-space datasets were then reconstructed with the trained model. The signal 

magnitude of each 2-D dataset was normalized to unity to enable fair comparison 

between both reconstruction methods. SNR was then computed by dividing the signal 

magnitude by the standard deviation of the noise. 
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3.3. Results and Discussion 

3.3.1. NMR Properties of Soil and Roots 

A large difference was seen between the NMR T2 relaxation times of soil water 

in the eight soils tested (figure 3-3) and in roots. An increase in the relaxation time 

corresponds with an increase in the water content for all soils tested; however, the rate of 

increase with water content is dependent on soil type. Relaxation times of soil water are 

strikingly short when compared to free water or root water, leading us to conjecture a 

relaxation mechanism where the 1H nuclei interact with paramagnetic ions in the soil. As 

soil water content increases, the soil surface area is unchanged, leaving increasing 

amounts of free water in the soil matrix. Hence surface-bound water becomes a smaller 

fraction of the total soil water. This indicates that in this system, the water relaxation is 

dominated by the surface bound water interacting with soil paramagnetism. This results 

in the relaxation time for water in a soil increasing as the amount of soil water increases; 

however, proving this hypothesis requires further research. The measured T2 relaxation 

in soil water as a function of soil water content is plotted in figure 3-3.  
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Figure 3-3: Measured soil water T2 versus water content for six soils with different texture classes. As water content 

increases, the relaxation times also increase. T2 also varies between textures. 

 

 

The T2 relaxation time for the soil water across the tested soils ranged from 0.33 

to 4.14 ms, and T1 ranged from 0.51 to 9.54 ms (table 3-1). Soil water contents ranged 

from permanent wilting point to field capacity for each soil, as a representative range of 

possible water contents in the field. In contrast, the T1 relaxation time for water in bare 

roots was between 0.7 and 1.2 s, and the T2 relaxation time of water in bare roots ranged 

from 85 to 140 ms. By adjusting the NMR echo time in the LF-MRI pulse sequence such 

that it is long in comparison to T2 of soil water and short in comparison to T2 of root 

water, we are able to image the root water without signal contamination from soil water.   
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Table 3-1: A summary of the soil particle size distribution for nuclear magnetic resonance relaxation times (T1 and 

T2). N/A represents a soil water content that was not achievable because it is beyond the liquid limit for that soil.  
Particle size 
 distribution  

Relaxation times  
at 0.1 kg kg-1 water 

Relaxation times  
at 0.25 kg kg-1 water 

Texture class Sand Silt Clay T1 T2 T1 T2 

 
%      ms 

Claya
† 3.1 33.5 63.4 0.98 0.55 1.61 0.90 

Silty Clay  3.0 44.3 52.7 0.88 0.47 1.60 0.88 

Clayb
† 8.6 39.4 52.0 0.74 0.52 1.31 0.94 

Clay Loam 32.5 34.0 33.5 1.3 0.77 2.46 1.47 

Silty Clay Loam 15.2 56.1 28.7 1.32 0.70 2.37 1.31 

Sandy Clay loam 55.7 14.5 21.8 1.3 0.49 3.95 1.37 

Fine Sandy Loam 69.8 20.4 9.8 2.37 1.42 N/A N/A 

Silt 3.0 89.1 7.9 3.01 1.37 7.97 3.7 

 †Claya has mixed mineralogy; Clayb has smectitic mineralogy. 

3.3.2. Imaging System 

A critical step for this work is the development and testing of a LF-MRI system 

capable of producing images of roots in agricultural soils. Figure 3-4 shows 2-D 

projection images, acquired in the 8-cm bore system, of field-collected, intact cores. 

Figure 3-4A shows roots in the Weswood soil (25 % clay), and figure 3-4B shows root in 

a Belk clay (49 % clay).  Both images are 2-D projections of cores that are the top 0 to 

7.5 cm depth. The images have a resolution of 0.8 mm pixel-1 using a scan time of 1 hr. 

The roots shown here are nodal roots of sorghum that are between 1.5 and 2.0 mm in 

diameter. In this projection image some of the brighter pixels represent one or more 

roots crossing each other. 
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Figure 3-4: Energy sorghum root images acquired in the 8-cm LF-MRI scanner. Roots shown in this image are nodal 

roots that are 1.5 to 2.0 mm in diameter. Both images are of intact soil cores collected at 0 to7.5 cm depth, have a 

resolution of 0.8 mm, and an acquisition time of 1 hour. Image A) is a Weswood silt loam and B) is a Belk clay; both 

are collected adjacent to the plant. 

 

 

 2-D projection images acquired in the 8-cm bore LF-MRI scanner of soil and 

root cores from the rhizotrons are shown in figure 3-5. These images were acquired with 

a 15-min scanning time and pixel size of 1.74 mm. Figure 3-5A shows a full root crown 

in a Houston black clay rhizotron. Figure 3-5B shows a similar root crown grown in a 

sandy loam rhizotron. When figures 3-5A and 3.5B are compared, one can see different 

rooting structures that are likely the result of soil type, as all other environmental factors 

were similar. The apparent blurring in figure 3-5 is due to the relatively low image 

resolution combined with the visualization of 3-D information in a 2-D projection image. 

         

16 mm 

A B 

16 mm 
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Figure 3-5: A) LF-MRI of the root crown from a rhizotron-grown greenhouse sorghum in a Houston Black and B) 

manufactured sandy loam soil. The plants were harvested approximately 90 days after planting. The roots seen in 

these images are 1.5 to 2.0-mm in diameter. 

 

 

 Experimental results in figures 3-4 and 3-5 demonstrate that we can generate 2-D 

projection images of roots with a diameter of 1.5 mm or larger, in moderate to heavy 

clay soils using this LF-MRI system with relatively short image acquisition times of 15 

to 60 minutes. Increased signal averaging obtained through longer acquisition times 

generates higher SNR and will allow smaller roots to become visible in the images. The 

images presented in figures 3-4 and 3-5 are reconstructed using the IFFT method. 

3.3.3. SNR, Resolution, Scanning Time 

To develop a successful imaging protocol, the relationship between SNR, image 

acquisition time, and resolution must be determined. Figure 3-6 (A-C) shows an image 

collected of a Weswood silt loam core, with nodal roots ranging from 1.5 to 2.0 mm in 

diameter. While holding the image acquisition time constant at 30 minutes and setting 
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the image pixel size at 1.74, 1.25, and 0.625 mm pixel-1, the SNR changes in response. 

The resulting SNR becomes smaller (worse) as the pixels become smaller, making it 

harder to identify roots in the image. Figures 3-6(D-F) show the same roots, but here the 

SNR is held constant as the resolution is changed from 1.74, to 1.25, and 0.625 mm 

pixel-1 and the acquisition time is increased from 0.5 to 4 hrs. 

Figure 3-6: LF-MRI images of sorghum roots in a Weswood silt loam soil core, all with a fixed FOV of 80 mm. 

Images (A-C) were acquired in 30 min, with the indicated image resolution, leading to differences in image SNR. 

Images (D-F) were acquired with acquisition 
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Figure 3-7 shows a similar relationship for a Belk clay soil core, confirming the 

conclusion that the resolution and SNR are inversely related for a constant scan time. 

Likewise, resolution and scan time are inversely related for a constant SNR, and none of 

these properties are related to the soil texture. These experiments indicate that for a 

successful imaging sequence we will need to balance resolution, SNR, and image 

acquisition time to create a practical field-based imaging system that creates useful 

images in a reasonable time frame.  

Figure 3-7: LF-MRI images of sorghum root in a Belk clay soil core, all with a fixed FOV of 80 mm. Images (A-C) 

were acquired in 32 minutes, with the indicated image resolution leading to different SNR. Images (D-F) were 

acquired by selecting image acquisition time for each improvement in image resolution. 

Paul Motquin
Cross-Out
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roots images is shown in figure 3-8 for two Belk clay soils. Images acquired with a matrix 

size of 48 x 48 (spatial resolution of 1.67 mm) showed an improvement in the mean SNR 

of 69% and 29% compared to the standard IFFT method. The noise levels in these images 

are lower by more than 30%, giving the roots architecture better contrast with the MR 

signal from the soil.  

For the 72 x 72 matrix size (1.11 mm spatial resolution) root images from Houston 

Black clay (figures 3-8 E - F) and from the sandy loam (figures 3-8 G and H), where the SNR of 

the standard IFFT image was high, showed improvements of 161 and 148 %, respectively. 

For the 96 x 96 matrix size (spatial resolution of 0.83 mm) root images collected from 

Houston Black clay (figures 3-8 I and J) show a mean SNR improvement of 171%. The same 

images shown in figure 3-8 (K and L) with a lower window level, reveal the significant noise 

floor reduction when the data is reconstructed with AUTOMAP. 

For the 128 x 128 matrix size (spatial resolution of 0.63 mm), the root images 

reconstructed with AUTOMAP not only show an improvement of 88% in mean SNR but also 

the removal of spike artifacts (figures 3-8 M and N). As seen in the windowed images in figure 

3-8O and 3-8P, the RF leakage artifact (horizontal streak near bottom) was significantly 

eliminated with AUTOMAP reconstruction. 

The improved contrast in roots, reduction of noise, and spike artifact elimination indicate 

the utility of AUTOMAP. The lowering of the noise floor, and the improvement to the SNR 

allows the user greater latitude to adjust the scanning time, resolution or SNR by providing a 

greater range post hoc. 

3.3.4. AUTOMAP Image Reconstruction 

AUTOMAP reconstruction versus conventional IFFT reconstruction method of
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Figure 3-8: AUTOMAP versus Conventional IFFT reconstruction method of roots images – Four spatial resolutions 

are shown – 1.67 mm pixel size (A - D), 1.11 mm pixel size (E - H), 0.83 mm pixel size (I - L) and 0.63 mm pixel size 

(M - P). For each set of spatial resolutions, the top images were reconstructed using AUTOMAP and the bottom 

images were reconstructed using the conventional IFFT method. Images (I and J) were windowed to a lower level in 

images K and L respectively, to show the decrease in noise. Likewise, the images (M and N) were windowed to a 

lower level in images (O and P) respectively, to show the noise reduction and spike elimination. For each figure, 

image intensities are displayed in a windowed range of intensities (from 0 to 1), as indicated on the legend. The table 

indicates the image SNR for both reconstruction approaches and tabulates the fractional SNR enhancement seen with 

AUTOMAP. 
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3.3.5. Conclusion 

Visualization and measurement of root structure in situ would aid in 

understanding the function of roots and how roots behave under different environmental 

conditions. We have demonstrated that low field MRI can allow scientists to detect and 

visualize roots through intact, natural soils and collect spatial information to aid in 

understanding root morphology, architecture and development. While previous studies 

have shown the difficulty of using high field MRI and soils with high clay content 

(>10%), these issues are less problematic when using low field MRI. 

We have demonstrated that the soil water signal relaxation time T2 is much 

shorter than root water signal (4 ms vs. 120 ms), allowing soil water signals to be 

suppressed, resulting in images of roots in the soil. We have measured the clay content 

and have shown that LF-MRI is still successful in situations with moderate to high clay 

content. We have shown that images can be collected in soils with more than 10% clay 

content. The images shown in this paper demonstrate that there is a balance of scanning 

time, SNR, and resolution to be optimized. We have also demonstrated that AUTOMAP 

can be used to improve the SNR (by 29 to 148%) and lower the noise floor during the 

image reconstruction stage, allowing for more flexibility in the application of a LF-MRI 

system. 

The next step in our research is to develop an LF-MRI system that can be 

deployed in the field. It is ideal to be able to image lateral roots that have smaller 

diameters in addition to the larger diameter nodal roots. For imaging smaller roots, we 
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will need to improve the SNR, which will be done by further improvements to the 

hardware, software, and by continuing to explore the use of AUTOMAP. To continue 

this research in the field, the system will be scaled up. It is our goal to increase the linear 

size of the magnet by a factor of three; we expect to be able to generate a 1.5 mm 

resolution image in approximately 25 minutes.  



 

 

74 

 

4. LOW FIELD MAGNETIC RESONANCE IMAGING OF SORGHUM ROOTS 

IN THE FIELD 

 

4.1. Introduction 

In situ root measurements for the purpose of crop improvement are difficult due to 

the opaque nature of soils. The process of measuring roots in natural soil is typically 

labor intensive and often requires digging out the roots and washing soil away before 

measurements can be acquired. Plant breeding, and root phenotyping in particular are 

developing crop phenotypes to address drought resilience [78] [79], nutrient recovery 

[80] and to increase rooting depth and biomass to enhance soil organic carbon storage 

[81]. In this work we explore the availability of tools and techniques for root 

phenotyping, and build upon a previous design [82] to develop a novel field based Low 

Field Magnetic Resonance Imaging (LF-MRI) Rhizotron for root scanning. 

Root systems architecture is the spatial configuration of the roots [17]. It is well 

established that root system architecture plays an important role in plant growth and 

productivity [79] [83] [84] [85] [86] [87]. It is also understood that the most aspects of 

the environment, such as soil ph, temperature, and salinity effects the root system 

architecture [88] and are therefore important elements in the plant breeding process. 

Root phenotyping can be subdivided under two categories: The first, laboratory-

based phenotyping, tends to rely on controlling all aspects of the environment which 

allows meticulous experiments to be constructed. But these methods also tend to do a 
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poor job of replicating the plants natural environment such as plant-to-plant interactions, 

light and temperature fluctuations, soil structure and natural soil heterogeneity to name a 

few.  Laboratory experiments often employ techniques such as hydroponics [78], clear 

gel growth media [89] or aeroponics [90] to study root structure. These systems allow 

the roots to be measured and inspected more easily, but at the cost of the environmental 

impact of the natural soil environment thus limiting the phenotypic data available. When 

natural soils are used in laboratory settings the soil is often ground and packed into pots 

or rhizotrons. This method homogenizes the soil and removes the natural preferential 

pathways associated with soil structure. Thus, changing the rooting environment from 

those found in natural soils. The rhizotron edges also restrict rooting structure resulting 

in edge effects soon after the plant emerges.  

The second category is in-field root phenotyping, which provides researchers the 

chance to investigate plant-to-plant interactions, soil interactions, and other 

environmental and management impacts. However, field-based root phenotyping tends 

to have less sophisticated tools for measuring root architecture because of agricultural 

environmental factors such as moisture, heat, dust, and vibrations from surrounding 

equipment. Additionally, working with in-tact soils, especially those with silicate clays 

in them is difficult.  A lack of tools suitable for field-based root phenotyping is a 

significant impediment to root phenotyping [79]. Therefore, root phenotyping 

technology that can be operated in the field and can capture the interaction between 

genetics, environment and management (G x E x M) expressions is needed.  
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One common field-based method is the excavation and washing of the roots 

(shovelomics). After excavation, the roots are then either scored visually [59] or a newer 

approach uses an image processing platform to measure the root metrics [91] [92]. This 

method allows the quantification of many root traits, is low tech (high usability) and can 

be used for high throughput. But shovelomics is very labor intensive, the true root 

system architecture cannot be known once the soil is removed, and it is difficult to know 

how much information is lost from disturbing the root system. Shovelomics tends to 

work well for cores root metric information such as nodal root length or root crown size. 

Other field-based methods include mini-rhizotrons [93], electrical root capacitance [94] 

[95] and soil coring [79] [96]. The mini-rhizotron method provides information on 

timing and abundance of root growth but does not provide useful root architecture data 

because the roots will tend to preferentially grow around the rhizotron tubes. Electrical 

root capacitances can provide estimates of root biomass, and because the plant does not 

have to be destroyed can provide root biomass growth information over time. However, 

this method lacks the ability to give root length, diameter, or architectural information. 

Collecting soil and root cores allows root diameters to be correlated with depth and 

sometimes distance from the plant. But this method does not provide root architecture 

information, or root growth over time since the plant is destroyed during sampling. 

As computing has improved in speed and size, and as machine learning algorithms 

increase in popularity, data-heavy imaging systems have become more common place 

for root phenotyping as well. Systems such as 2-D optical scanners [60] and X-ray 
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computer tomography (CT) [57] [97] have been used. The 2-D optical scanners work 

well for small seedlings in a laboratory setting but roots quickly run out of room as they 

grow and the system requires that the roots are pressed between two surfaces to be 

imaged resulting in relatively simple 2-D root structure. X-ray CT systems are effective 

for imaging root system architecture, but these systems are currently only suitable for 

laboratory imaging due to safety and infrastructure requirements.  

Magnetic resonance imaging systems have been tested and used for both above 

ground plant phenotyping and below ground root phenotyping. High field MRI systems 

(ranging from 1-10 T) have been used to measure soil water relaxation times, finding 

that each soil type has a different relaxation time, making a universal calibration method 

difficult [68] and making the type of soil used with an MRI experiment quite important 

[98]. High field MRI have also been used to show that it is possible to differentiate 

between the soil water and root water [71] when using a suitable soil. But magnetic 

material found in some soils tends to create distortions in the images. When operating at 

high field in soil with more than 10% clay content [72], or more than 4% paramagnetic 

material by weight [73], these distortions become significant or even severe.  High field 

MRI systems are capable of creating high-quality three-dimensional root system 

architecture images and generate root phenotyping data [99] [100] [98].  However, the 

above soil constraints, coupled with high power demands and the sensitivity of the MRI 

to environmental noise result in MRI systems not been widely used for root imaging. 
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When an MRI is used for root imaging sandy soils are used in under laboratory 

conditions with a high field MRI. 

Bagnall et al. demonstrated the use of a low field MRI (LF-MRI) system in a 

laboratory setting that allows roots to be visualized in soils with greater than 10% clay 

content, allowing the use of this technology in agriculturally relevant natural soils [82]. 

Root systems contribute to the overall health and robustness of the plant, and 

therefore are of major interest to plant breeders. The root system is impacted by the 

environment (planting density, nutrient availability, soil heterogeneity etc.) and thus the 

environment should be considered when phenotyping. However, there is a lack of tools 

that are capable of in situ, nondestructive root mapping for phenotyping. This paper 

presents outcomes of our overall goal to develop a field-based LF-MRI Rhizotron 

system. A field-based system must work in a hot, humid environment of a crop field and 

work in agricultural soils. Using the results of Bagnall et al. we will demonstrate in this 

work that by using a low field system and spin-echo pulse sequence it is possible to 

collect in situ root data in the form of root biomass estimations and root system 

architecture images under agricultural field conditions. We address this goal through the 

following specific objectives,  

1. Design and construct a field deployable Low Field Magnetic Resonance 

Imaging Rhizotron system, 

2. Measure root biomass using the above LF-MRI Rhizotron in the field, and 

3. Demonstration of root image collection for root system architecture analysis. 
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4.2. Material and Methods 

4.2.1. The Low Field Magnetic Resonance Imaging (LF-MRI) Field Rhizotron 

System 

One goal of the LF-MRI Rhizotron design was to produce a system that could be 

operated in, and moved between, the typical agricultural research plots. This requires 

that the system works in hot and humid field conditions and it must have portable power 

supply. This requirement also places upper bounds on the size, weight, and power 

consumption constraints for the LF MRI Rhizotron. Additionally, the Rhizotron needed 

to be large enough to capture enough of the root system architecture to be useful in root 

phenotyping, which was estimated to be 25 cm diameter and 25 cm deep.  

Figure 4-1 is a schematic of the field equipment layout of the LF-MRI Rhizotron 

system. Field equipment included generators, an air-conditioned trailer, and other items 

to support the Magnet and data acquisition. The trailer contained the LF-MRI electronics 

and computing equipment and was powered by the two generators. The water chiller and 

the oil pump worked in tandem to keep the LF-MRI electromagnet within operating 

temperatures. 
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Figure 4-1: Schematic of the Low Field Magnetic Resonance Imaging (LF-MRI) Rhizotron equipment layout for field 

data collection. Two generators powered the trailer, water chiller, and oil pump. An air-conditioned trailer housed the 

LF-MRI control electronics, which is connected to electromagnet. 
 

4.2.2. LF-MRI 

The in-field LF-MRI Rhizotron is comprised of both off-the-shelf equipment and 

specially fabricated equipment. Because the LF-MRI Rhizotron must be mobile, a 3.6 x 

1.5 x 1.5 m box trailer was used to keep some equipment cool and protect it from rain 

and dust. The trailer was outfitted with a heating/cooling unit and housed a 

commercially available NMR (nuclear magnetic resonance) spectrometer, radio 

frequency (RF) amplifier, gradient amplifiers, and electromagnetic power supply. The 

trailer was wired with two electrical panels; each panel was powered by a single 220v 

AC (alternating current) gasoline-powered generator (XP12000EH, Duromax, Ontario 

CA, USA; 12.5 kw, Generac, Waukesha WI, USA) (figure 4-2). The generators were 

placed in the opposite side of the trailer from the electromagnet, 12 m from the trailer to 

abate acoustic noise and minimize RF interference (see field equipment layout above, 

figure 4-1).   
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Figure 4-2: The generators used to power the LF-MRI system. The right (Duro) and left (Generac) units have ratings 

of 12 kW and 12.5 kW, respectively. 

 

The trailer contained the electronic and computing equipment for the Rhizotron 

system. This equipment included an MRI console (Redstone, Techmag, Houston Texas, 

USA) as a system controller for the LF-MRI Rhizotron. The console controlled the RF 

receiver, RF transmitter coils, magnetic gradient coils and the conversion of AC current 

to DC current for the system (figure 4-3A). The RF transmitter coils, magnetic gradient 

coils and electromagnet are all housed together, with the RF transmitter coils placed 

inside the gradient coils, which are then placed inside the electromagnet (figure 4-3B) 
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Figure 4-3: A) A Schematic showing how the Low Field Magnetic Imaging (LF-MRI) Rhizotron components are 

connected. B) Shows a schematic of how the components of the electromagnet assembly are assembled. 

 

 

Three amplifiers (model 2105, AE Techron, Elkhart IN, USA) were used to drive 

the gradient coils (figure 4-4A).  A forth amplifier (BT-0100 Alphas S-T, Tomco 

Stepney, SA, Australia) (figure 4-4B) was used to operate the RF transmitter coils. Three 

switching power supplies (6032A, Hewlett-Packard, Palo Alto CA, USA) were used to 

power the main electromagnet windings and end windings. Interior LED lighting, a 

desktop computer, and an air-cooling system were also housed and operated inside the 

trailer.  
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Figure 4-4: The amplifiers used for the LF-MRI system. A) The three gradient amplifiers B) the radio frequency 

amplifier. 

 

Outside the trailer were the cooling system and magnet. The magnetic field was 

created by an electromagnet with a solenoidal main coil and two end correction coils, all 

of which were wound on a stainless-steel bobbin (figure 4-5). The static field (B0) was 

produced using the main coil, a 300-kg winding of 16 AWG heavily enameled copper 

wire (Essex-Brownell, Indiana). The bobbin was made from 300-series stainless steel; 

the winding was 81-cm long and had an innermost diameter of 40.6 cm.  There were 26 

electrically independent layers of wire wound with the same helicity, creating neat, 

closely packed coils. The 26 layers were wired as 13 units in parallel, with each unit 

composed of two layers in series. This winding was operated at 26 A with a warm 

voltage drop of 50 V, corresponding to 2.0 A in each wire. The series-parallel 

configuration was selected to provide an appropriate load to the power supply; however, 

this configuration has an additional benefit of having most layer-to-layer voltages being 

nearly zero.  
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Figure 4-5: The magnet was constructed on a stainless-steel bobbin, wound with copper wire. The gray plastic 

polyvinyl chloride (PVC) housing holds in recirculating oil to cool the magnet. 

 

To create a more uniform magnetic field, end windings were also included in this 

design. The magnetic field was calculated along the solenoid symmetry axis, and the 

length and number of turns of the end correction windings were chosen to eliminate the 

2nd and 4th axial derivatives at the center of the imaging volume. The resulting 

electromagnet is a “sixth-order” design where the first non-vanishing axial derivative is 

the 6th derivative.  

The three HP 6032A switching power supplies (figure 4-6) were used to power 

the electromagnet. Two of the power supplies were used in series to power the main 

magnet solenoid. The third power supply provided power to the end correction coils. The 

total power of roughly 2 kW appears as heat in the windings and is removed by coolant 

oil.   
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Figure 4-6: Three switching power supplies used for powering the magnetic field. Two were used for the main coil 

and one was used for the end correction coils. 

 

 

The magnetic field gradient coils allowed spatial information to be encoded in 

the MRI signal and provided a method to improve the magnetic field uniformity with 

small linear increases to the field in the X, Y, and Z planes (also called shimming). For 

this system, the gradient coils followed the design of [101]. These coils provided better 

linearity than a simple Maxwell pair (for z gradient) and Golay coils (for x and y 

gradients) and were made from 18 AWG enameled wire. The transverse coils were laid-

out on a thick polyethylene sheet with grooves to hold the windings.  The flat coils were 

epoxied and baked in an oven. The eight flat assemblies (four each, for x and y) were 

curved to fit onto a 35.56-cm outside diameter (OD) polyvinyl chloride tube (PVC); the 



 

 

86 

 

coils were epoxied in place after z gradient coils were wound directly onto the PVC 

(figure 4-7).  All gradient coils were secured by winding the assembly with epoxied 

nylon webbing, and the assembly was housed on the inner surface of the electromagnet 

bobbin. The coils produced 100 µT A-1 cm-1, yielding adequate gradient strengths with 

currents under 10 A.  Active cooling of the gradient coils was not needed. 

 

 

Figure 4-7: The gradient coils for the LF-MRI magnet. The z gradient coils were wound directly onto the 

plastic polyvinyl chloride (PVC) pipe, while the x and y gradient coils were constructed using a form and 

attached later. The gradient coils are located between the magnet and the radio frequency coil. 

 

 

The RF coils have a quadrature-coil design with an x-directed saddle RF coil and 

a y-directed saddle coil. By driving the two at 90-degree phase difference, a rotating 

field is generated.  Compared to linear polarization, the 90-degree phase difference 



 

 

87 

 

results in a 3-dB improvement in received signal-to-noise ratio (SNR) and a 41% 

increase in RF field strength (B1) for a given transmitter power. The coils were wound 

on 28.9 cm OD PVC using 0.635 cm copper refrigeration tubing.  Where the coils 

crossed, one was flattened against the PVC (figure 4-8) and the other was flattened to the 

opposite side so that, despite overlapping, the coils were the same diameter.   Resonating 

capacitors consisted of polyester film units that were hand selected to bring the two coils 

(x, y) to the same resonance frequency to within 2 kHz.  The two saddle coils were 

constructed and mounted perpendicular to each other to avoid coupling.  One turn of 

each resonant coil was connected to a coaxial driving cable using capacitive coupling. 

 

Figure 4-8: The radio frequency coil was constructed using a quadrature design with x and y direction saddle coils and 

was wound on 28.9 cm plastic polyvinyl chloride (PVC) pipe. 

 

 



 

 

88 

 

The oil pump and water chiller were situated close to the magnet and were used 

in tandem as a cooling system for the electromagnet. Figure 4-9A shows the water 

chiller (CFT-75, Thermo Neslab LLC., Waltham MA, USA) used to circulated 20 °C tap 

water using a 0.635-cm diameter copper refrigeration tubing wound around the 

electromagnet and resting in the hydraulic fluid. The hydraulic fluid that was used as a 

cooling oil was circulated around the main and end windings of the electromagnet using 

the oil pump (figure 4-9B). 

  

Figure 4-9: A) The Neslab CFT-75 water chiller was used to remove heat from the electromagnet oil bath. B) The oil 

pump was used to recirculate the oil to ensure that the electromagnet did not overheat. 

 

The last piece of equipment used in the LF-MRI rhizotron system was a 

quadrature combiner/splitter, which was used to drive the quadrature RF coils. The 

combiner/splitter was constructed in-house from lumped inductors and capacitors (figure 

4-10) and placed in-line between the Redstone console and the RF coils.  
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Figure 4-10: The combiner/splitter is used to drive the quadrature radio frequency coils. 

 

4.2.3. LF-MRI Magnet Lift System 

Two considerations during the design phase for the LF-MRI Rhizotron were the 

size and mobility of the electromagnet unit in the field. The operating weight of the 

electromagnet assembly (electromagnet coil, RF coil, Gradient coil, and coolant) was 

approximately 453.6 kg. To meet the mobility requirement, a lift system was designed to 

safely lift the electromagnet assembly for moving around an experimental site, and to 

precisely set the electromagnet assembly into an annular hole of removed soil around an 

intact column of soil and roots (figure 4-11).  
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Figure 4-11: The LF-MRI electromagnet assembly is placed in the annular shaped hole around the green plastic 

polyvinyl chloride (PVC) pipe, which is centered around a sorghum plant. 

 

Two 92-cm long, 0.635-cm right angle guide rails were each welded to a steel 

rectangular tubing. These rails supported a 101-cm long I-beam which laid perpendicular 

to the guide rails and rested upon four 10-cm cast iron v-grove wheels -- two mounted at 

either end of the I-beam (figure 4-12). A tractor with a front-end loader system fitted 

with forks was used as the platform for the lift system, with the forks sliding into the 

rectangular frames supporting the guide rails. A one-ton I-beam walker was fitted on the 

lower flange of the I beam (figure 4-12A). The walker enabled the suspended 

electromagnet assembly to be moved left and right by pulling on the chain, so that the 

electromagnet assembly could be securely centered above the annular hole. Additionally, 

a one-ton chain hoist was attached to the I-beam walker to allow the electromagnet 

assembly to be raised and lowered by pulling a second chain. The chain hoist was 
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secured to the electromagnet assembly by connecting eight nylon lifting straps to the end 

of the chain hoist (figure 4-12B).   

 

Figure 4-12: The MRI lift system utilized a chain hoist mounted on an I-beam walker. The I-beam was mounted on a 

set of rollers. This allowed the lift system to place the MRI anywhere inside an 8000 cm2 area. 

 

4.2.4. Field Data Collection 

Field data collection was conducted at the Texas A&M AgriLife Research Field 

laboratory in Burleson County, Texas, USA.  A bioenergy sorghum hybrid (TX08001, 

Sorghum bicolor (L.) Moench.) was planted to a depth of 2.5 cm with a row spacing of 

76 cm in two soil types. A Weswood silt loam, a Udifluventic Haplustept with 25% clay 

and mixed minerology and a Belk clay, an Entic Hapludert with 49% clay and mixed 

minerology. Standard agronomic practices were employed for fertilization and 

cultivation. The root scans were collected at approximately 140 days after emergence. 
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The experimental phase of this work started in August with the image collection being 

conducted in late November of 2020. The time span for in-field measurement allowed 

the system to be tested under a range of maximum daytime temperatures (37.8 to 0.5 

°C), along with the typical humidity, dust, and rain associated with field conditions.  

The LF-MRI Rhizotron design requires that once the plant becomes taller than 

roughly 0.5m the above ground portion will have to be cut off, making most of the data 

collection a destructive test. The LF-MRI Rhizotron was designed to be used in two 

basic arrangements. For the in situ arrangement the sorghum plant is cut off at the soil 

surface, the electromagnet assembly was placed in an annular-shaped hole with the soil 

and root core in the center. For ex situ arrangement, the electromagnet assembly was 

placed on the ground while the sorghum plant was cut off at the soil surface and a 

sample core was collected and placed in the imaging zone. 

For both configurations, a 25.4-cm diameter PVC pipe was pushed into the soil 

while centered around a sorghum plant. A hydraulic soil probe (Giddings Machine 

Company, Inc., Windsor, CO., USA) mounted on a one-ton dual wheeled pickup truck 

was used to push the PVC into the soil. The truck was anchored into the ground with two 

20.32-cm diameter land screws that were 182.88-cm in length. For the first 

configuration, an annular shaped hole was excavated around the PVC pipe using a 66-

cm diameter core constructed in-house, with an offset of the kelly-bar by 25.4 cm to 

allow a connection to the Giddings probe (figure 4-13). The probe was then used to cut a 

core centered on the PVC pipe, creating an annular hole around the 25-cm column of 
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PVC to a depth of 72 cm. The electromagnet assembly was inserted into the annular hole 

using the lift system described above.  

 

Figure 4-13: The annular core was constructed of 16 gauge steel, with 1 in cold rolled steel supports. It was designed 

to be attached to a Giddings probe. 

 

 For ex situ root-scanning, the PVC is pushed into the soil using the hydraulic 

probe to a depth of 25.4 cm, and the PVC plus soil core was excavated. The core was left 

in the PVC and placed in the electromagnet assembly for data collection. Using this 

configuration, twelve cores were pulled and scanned in the field. The cores were then 

washed and the fresh root weight was recorded. The roots were dried at 96 °C for 48 hr 

and then weighted again, allowing a calculation for root water. 
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4.2.5. Imaging Sequence 

After the electromagnet assembly and sample were positioned, three types of 

sequences were run. A Carr-Purcell-Meiboom-Gill (CPMG) [75] spin echo pulse 

sequence was used to measure T2, and signal strength (M0) for 0-D, 1-D, and 2-D scans. 

The spin-echo sequence used sixteen sequential spin echoes with an echo spacing of 7 

ms; again, the timing was CPMG (figure 4-14). After each echo, any phase encoding 

gradient and frequency encoding gradient were rewound. Thus, each echo obtained the 

same line in k-space. The echoes were then averaged to improve the SNR.  

 

 

Figure 4-14: Pulse sequence for image generation uses Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence that is 

fully rewound, both for phase encode and frequency read out. The subscripts refer to the phase of the radio frequency 

(RF) transmit, data acquisition. τ and 2 τ are RF pulse spacing. 16 echos were acquired and averaged together for each 

phase encode. 
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The first sequence used was a 0-D imaging sequence. For this sequence the signal 

strength M0, which is proportional to the amount of hydrogen nuclear spins (1H) present 

as water in the root sample, is collected with the gradients turned off. Thus, there is no 

spatial information. The 0-D image provides a measure of the root water present in the 

imaging zone.  

The second sequence was a 1-D imaging sequence. This sequence provides an 

estimation of root water that is present down the soil profile using the z-gradient to 

provide the vertical spatial information. The 0-D and 1-D imaging sequences each took 

approximately thirty seconds to complete. 

 The last set of data collected was a series of 2-D image projections. For the 2-D 

image sequences, both the vertical and horizontal gradients were engaged to spatially 

encode the root water in the imaging zone, producing a 2-D projection image where all 

roots present in the imaging zone were projected onto a 2-D plane. In this sequence, 

eight 2-D projection images were collected, with each sequential image rotated by 22.5 

degrees. This provided a full 180-degree view of the root system, chopped up into eight 

images. Because these images are 2-D projections, the images were then inverted to 

acquire the “back” 180 degrees, giving a full 360-degree visualization of the root system 

broken up into 16 individual images. Two hours and 16 minutes are required to acquire 

all eight 2-D projections. 

After field data were collected, a system calibration scan was developed to 

convert pixel intensity to a known amount of water present in that pixel. To perform this 
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calibration, a 1.27-cm inner diameter (ID) PVC pipe, 1-m long, was filled with 750 ml of 

tap water. The PVC pipe was placed inside the electromagnet imaging zone, and 

standard system parameters were set for a 2-D projection image. Data were collected 

using the same sequence mentioned above but with an increased last delay of 1s due to 

the longer T1 of tap water. The output of this sequence was a single 2-D image 

projection. This 2-D projection displayed the pixel intensity produced for a measured 

amount of water placed in the PVC pipe. The calibration image was then scaled so that a 

pixel intensity of 1 was equal to 10 mm of fully relaxed water which is perpendicular to 

the image plane. Thus, the calibrated root water was calculated using the following 

equation with a calibrated LF-MRI data set;  

𝑃𝑖𝑥𝑒𝑙 𝑤𝑎𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 ∗ 10𝑚𝑚 ∗ 𝑝𝑖𝑥𝑒𝑙 𝑎𝑟𝑒𝑎 (𝑚𝑚) ∗ 0.001  Equation 2.           

The calibration was then applied to the LF-MRI Rhizotron 1-D data set. 

4.3. Results and Discussion 

The ex situ Rhizotron scanning configuration was used to collect 0-D and 1-D 

data of eleven sets of root systems. We expected the 0-D and 1-D signal strength (M0) to 

be colinear and a strong correlation between root water content and M0. We also 

expected the T2 relaxation times to be similar for 0-D and 1-D signal. Table 4-1 shows 0-

D, 1-D, T2 relaxation times, and calculated root water for sample number 2 to 12. Scans 

of Sample 1 were removed because of equipment errors. Root water was calculated by 

subtracting root dry weight from fresh weight. We expected that as root water increased 

the M0 would also increase; however, the expected relationship was not consistent (table 
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4-1). Instead some samples, such as silt loam 4, had relatively low M0 and high root 

water. While other samples, such as the clay 11, had a relatively high M0 and small root 

water. It is worth noting that the high root water and low M0 is the more common 

outcome. 

 

 

 

Table 4-1: The tabulated results of the 0-D and 1-D signal strength, T2 relaxation time, and calculated root water. 

 

Sample Name 
0-D signal 

strength (M0) 

T2 for 0-D 

(ms) 

1-D signal 

strength (M0) 

T2 for 1-D 

(ms) 
Root water (g) 

Silt loam 2 23071 229.5 15939 204.0 462.0 

Silt loam 3 13292 220.3 6356 133.4 376.6 

Silt loam 4 11141 211.9 7928 185.4 332.2 

Silt loam 5 10933 305.1 10047 313.3 154.5 

Silt loam 6 16425 214.2 12934 200.7 223.9 

Clay 7 9715 235.9 7541 216.5 161.0 

Clay 8 20597 237.7 18654 223.5 248.1 

Clay 9 36278 182.9 28825 182.1 399.4 

Clay 10 18387 197.4 15945 189.9 246.8 

Clay 11 47179 203.5 40217 200.7 182.2 

Clay 12 12375 197.3 9477 191.3 525.7 

 

  

 

The results found in table 4-1 are displayed graphically in figure 4-15. The plot 

of M0 vs the root water shows only a weak relationship. There are several possible 

reasons, the first is an error in equipment set up. If the frequency of the electromagnet, 

which is set and controlled using the Redstone MRI console by adjusting several other 

parameters, is not adjusted correctly the RF coil will not collect the true signal and thus 
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introduce some error to the system. A second possibility is that a portion of this error 

could have been due to environmental noise that is introduced into the system because of 

a reduced effectiveness in the electronic shimming of the magnetic field. During the 

boot-up procedure of the LF-MRI Rhizotron, the magnetic field must be shimmed. In a 

laboratory setting, this system shims quite well; however, in the field the process became 

more difficult because of environmental noise. As a result, the shimming was of lower 

quality and the signal was noisier. Future work in this area requires an experiment 

comparing root 0-D M0 in a laboratory setting and an in-field experiment, which would 

allow a differentiation between the error introduced by the user (via poor settings) and 

environmental noise.  
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Figure 4-15: A weak relationship is displayed in this graph of 0-D signal strength vs. root water. 
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As with the 0-D, we expected a strong relationship between the 1-D M0 and the 

root water. We also expected to be able to map the root water by depth using the z-

gradient. We did find the 1-D and 0-D to be co-linear as expected, with the 1-D signal 

being smaller (figure 4-16B).  The 1-D M0 is only weakly related to the M0, just like the 

0-D results, with likely similar sources of error. Figure 4-16A shows the signal strength 

variation by depth. Figure 4-16A shows the vertical distribution of root water; however, 

because there is not a strong relationship between signal strength and root water content, 

we cannot turn this information into the vertical distribution of that root water or root 

biomass. 
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Figure 4-16: A) The root depth plot shows the root water signal by depth in cm on the y-axis, were the 

soil surfaces are at the top of the graph and the x-axis shows the 1-D signal strength (M0). B) The plot 

of 1-D signal strength (M0) vs the root water with each data point labeled by sample name.  
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We attempted to improve the relationship between M0 and root water by 

calibrating the LF-MRI signal. The calibration used the 2-D image sequence and 

produced a calibrated and scaled image (figure 4-17) such that a pixel value of 1 

represents 0.04 ml of water. We found that when we applied the calibration to the 0-D 

and 1-D data the calibration did not improve the relationship between M0 and root water. 

 

 

Figure 4-17: The calibration image of a PVC pipe filled with 750 ml of water. The pixel calibration factor multiplied 

by 10 * pixel area gives the water present in that pixel.  

 

In addition to root biomass estimations, root system architecture is also of 

interest to root phenotyping. The 2-D projection images (figure 4-18) demonstrate the 
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type of root system architecture that can be currently captured using the LF-MRI 

Rhizotron. These 2-D projection images were collected using the above ground LF-MRI 

Rhizotron configuration and took approximately 16.5 minutes per image, or 2 hours and 

10 minutes to collect the 8 projections needed to create 360-degree view of the root 

system architecture. Figures 4-18A and 4.18B show samples # 4 and #6 from the 

Weswood silt loam soil while figures 4-18C and 4.18D show sorghum roots in the Belk 

clay using samples #8 and #10, respectively. In all cases, the image is the first in the 

series of 8 projection images. The FOV for these images are 280 mm x 280 mm, with an 

original matrix size of 128 x 128. The image matrix was then zero filled to 256 x 256 

and is the size presented here. These 2-D images demonstrate that root architecture such 

as rooting angle, and root density at different depths is possible using this tool under 

field conditions.  
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Figure 4-18: 2-D image projections of sorghum roots. This image has an in-plane resolution of 1.1 mm and each 

image takes approximately 16 minutes to complete. A) Is Weswood sample #4. B) is Weswood sample # 6. C) Is Belk 

clay sample #8, D) Is Belk clay sample #10. 

 

We tested the LF-MRI Rhizotron using the in-ground configuration as well. 

However, when using the in-ground data collection method we found noise in the data 

from an unknown external source. This signal noise translated to artifacts and distortions 

in the image after image re-construction. Our best guess was that the noise was traveling 

through the ground and was produced by an electromagnetic source nearby. Because the 

A B 

C D 



 

 

105 

 

goal of this method is to place the Rhizotron in situ (in the ground), and the in situ 

configuration requires a column of soil to be inside the electromagnet assembly, this 

effectively places the noise inside the RF coil with no obvious way to shield the system 

from this noise. We discovered that the noise was transient in the frequency space, and 

that by post processing the signal we were able to filter out some of the noise. The image 

sampling scheme was changed to reduce the number of replications of each line of data, 

and only produce four of the eight projection images at a time. A computer program was 

written in Octave [102] to compare each set of the four repeated measurements and 

remove any signal that was not found in all four replicates. This program operates on the 

theory that if a signal spike is present in all four replications, this spike is most likely to 

represent the true signal, if on the other hand that signal spike only shows up in few 

replications of the data then this event is most likely the noise signal and can be 

removed. After the MRI signal is cleaned the image can be constructed as before (figure 

4-19). These images do have more noise present when compared to the data taken using 

the above ground configuration, indicating that the post processing needs more 

refinement. 



 

 

106 

 

 

Figure 4-19: Root image collected in-ground from a Belk clay. You can see artifacts as well as random noise, but also 

still see some of the root structure. 

 

After collecting the data, we attempted to measure the root length from the 2-D 

projection images. Typically, getting root length from images would require 

thresholding the image to convert the image to a binary, black and white, image. Then a 

segmentation is performed and the binary pixels are separated to create two images, one 

of the foreground (roots) and one of the background. After the thresholding and 

segmentation steps, a number of algorithms have been designed to measure root length. 

We attempted the thresholding and segmentation steps using several programing 

packages (EZ-Rooting, Dynamic roots, Image J, GIARoots, DART) and found that these 

programs could identify the total root mass easily using both an automatic thresholding 

or user defined methods. However, the dense root population due to the background 

roots and foreground roots being in the same plane, and the coarse image resolution 

made identifying individual roots to trace for root length not possible (figure 4-20).  
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Figure 4-20:A) The 2-D projection image from Clay sample #9, B) The processed 2-D projection image after image 

thresholding and segmentation  

 

4.4. Conclusions 

We have demonstrated in this work the design and deployment of a low field 

magnetic resonance imaging rhizotron that is suitable for in field scanning in an 

agricultural field setting. The low field system allows the MRI to operate in high clay 

soils and is capable of generating root data in the field either by pulling large cores and 

imaging them above ground or by excavation and placing the LF-MRI in the ground 

around a plant. The system is light enough to be moved around the field and uses two 

portable power supplies. Using both the in situ and ex situ sampling configurations we 

demonstrated the ability to collect root system architecture images for root metric 

analysis. The 0-D, and 1-D data collected in this experiment for measuring root metrics 

displayed unexpectedly weak relationships. The lack of relationship between LF-MRI 

M0 and the measured root water is likely caused by a combination of user error and poor 

magnetic field shimming. This demonstrate that more work needs to be accomplished to 

make this LF-MRI system user friendly and available for a plant breeding application. 

A B 
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We have developed a clear path forward that includes different root-water calibration 

methods for segmentation of the signal into root biomass, 3D imaging, and replacing the 

current resistive magnet with a superconducting magnet.   

 The first track in continuing this work is in creating a systematic tuning 

procedure for the LF-MRI Rhizotron and to improve the model of the relationship 

between the signal and root biomass. The LF-MRI is tuned each time it is turned on or a 

new type of scan is conducted. The parameters for tuning this system under field 

conditions (magnet frequency, shim, RF gain, P90, P180) are not well understood. A 

systematic study of known volume of water under similar field conditions will be used to 

create a user guide to tune the system and better repeatability. We know that a 

relationship exists between signal strength and root water (see Appendix B) under 

laboratory conditions. We believe that by incorporating the T2 relaxation time 

information we can improve M0 and root water relationship for field scans to measure 

root biomass. This will help create a repeatable system, allowing image data to be 

compared over-time and to other MRI systems.  

The second track for improvement is to develop an in-sample calibration system 

to convert the signal information to concrete units that can be compared with other 

systems easily.  By developing a calibration technique that uses a known amount of 

water that is placed in or near the sample before the scan (known as a fiducia). We 

propose that using a vial of water with a known volume and relaxation time, can be 

placed in the sample to fill this role. We believe this method will be more robust than the 
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calibration presented in this work by providing each sample with its own fiducia, making 

each sample complete and independent of any other scans.  

The third track is to further develop the in-ground post processing system to 

improve the SNR and artifact removal. This will allow a broader range of experiments to 

be explored such as scanning the same plant multiple times through its development 

stages in natural soils.   

The fourth track is to improve the quality of the information by changing the 

resistive magnet for a super conducting magnet that uses liquid nitrogen cooling. This 

change allows the magnet assembly to be lighter, operate at higher magnetic field 

strength. This translates to faster scans, or higher resolutions. Preliminary work with a 

super conducting magnet shows 3-D scans can be conducted in approximately 1 hour. 3-

D imaging gives expanded flexibility to data processing and visualization in 

approximately. 

We believe that addressing system set up, calibration, in-ground scans, and 

magnet design will broaden the range of applications that the LF-MRI Rhizotron can 

perform and will solve the issues that arose during the research presented here.  
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5. SUMMARY 

Field phenotyping allows researchers and producers to make plant-breeding and 

agronomic decisions based on plant characteristics of importance. The goal of the 

research presented in this dissertation has been to develop and improve measurements of 

specific above- and below-ground plant characteristics.  Specifically, the methods 

concern radiometric calibration methods for UAV remote sensing of plant reflectance 

and a novel system for in situ root imaging.  

5.1. UAV Camera Calibration  

Regarding UAV remote sensing, a fixed exposure camera calibration method 

with in-field calibration targets was compared to autoexposure calibration using a single 

calibration target. The comparison demonstrated a significant difference between the two 

methods. The fixed exposure method produced significantly less error based on a band 

to band comparison (~50% lower) and also less error when those bands were then used 

to create the vegetative index, VARI (~50% lower). The autoexposure method, however, 

did use a larger amount of the camera’s dynamic range in this study. A Monte Carlo 

simulation was constructed to understand how the difference in error would affect 

management decision making using either of these systems. The results showed that the 

fixed exposure correctly classified management zones 82% of the time, compared to 

67% for the autoexposure. This study showed that using in-field calibration targets along 

with fixed exposure settings provides much more accurate reflectance data, a finding that 

is important for decision making by both researchers and producers. 
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5.2. LF-MRI Rhizotron 

Regarding in situ root imaging, two systems were developed and tested. The 8cm 

bore LF-MRI system was designed and constructed to test the technology’s ability to 

image roots in moderate to high clay soils. Preliminary work showed that soil water and 

root water relaxation times were sufficiently different to allow a good contrast for root 

detection and visualization. With this information, an 8cm bore laboratory LF-MRI 

system was developed and tested across three soil types (Weswood silt loam, Belk clay, 

Houston black clay), producing 2-D projection images at three different resolutions 

(0.625, 1.25, 1.74 mm), and in all three soils.  

A field deployable 28-cm bore LF-MRI Rhizotron was designed to be utilized 

under field conditions. The system was tested in the field in two soil types, Weswood silt 

loam and Belk clay. Two LF-MRI Rhizotron scanning configurations were tested, the 

first was an ex situ scan using 25 cm diameter by 25 cm long cores. The results of this 

configuration demonstrated that data collection and visualization are possible in the 

field. The second scanning configuration required an annular hole to be dug and the LF-

MRI Rhizotron to be placed in situ. The results of this configuration showed significant 

noise in the measurement signal resulting in image artifacts. By modifying the data 

collection approach to compare data replications and remove information that is not 

present in all four replicates, we were able to reconstruct an image of the roots. While 

the new procedure does allow visualization of the root system it does still have image 

artifacts present and needs refinement to produce a higher quality image. We believe that 

further refinement of the system and optimization of user procedures could produce a 
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practical tool for either ex situ or in situ nondestructive root system architecture 

visualization and measurement.  

 



 

113 

 

REFERENCES 

 

[1]  A. Borem and S. C. K. Milach, "Plant breeding in the turn of the millennium," 

Brazilian Archives of Biology and Technology, vol. 3, pp. 1-7, 1998.  

[2]  U. N. FAO, "2018 The state of food secrutiy and nutrition in the world," United 

Nations, [Online]. Available: http://www.fao.org/state-of-food-security-nutrition/en/. 

[Accessed 1 April 2018]. 

[3]  International Society of Precision Agriculture, "ISPA," [Online]. Available: 

ispag.org. [Accessed 4th April 2020]. 

[4]  J. V. Stafford, "Implementing precision agriculture in the 21st century," Journal of 

Agriculture Engineering Research, pp. 267-275, 2000.  

[5]  V. L. Mulder, S. d. Bruin, M. E. Schaepman and T. R. Mayr, "The use of remote 

sensing in soil and terrain Mapping- A review," Geoderma, vol. 162, pp. 1-19, 2011.  

[6]  K. Temizel, "Mapping of some soil properties due to precision irrigation in 

agriculture," Agronomy Research, vol. 14, pp. 959-966, 2016.  

[7]  T. A. Thomasson and R. Sui, "Mississippi cotton yield monitor: Three years of field 

test results," Applied Engineering in Agriculture, vol. 19, no. 6, pp. 631-636, 2003.  

[8]  N. R. Peralta, Y. Assefa, J. Du, C. J. Barde and I. A. Ciampitti, "Mid-season high 

resonlution satellite imagery for forecasting site specific corn yield," Remote 

Sensing, vol. 8, no. 848, pp. 1-16, 2016.  



 

114 

 

[9]  J. L. Araus and J. E. Cairns, "Field high-throughput phenotyping: New crop breeding 

frontier," Trends in Plant Science, vol. 19, no. 1, pp. 52-61, 2014.  

[10]  V. Weber, J. L. Araus, J. E. Cairns, C. Sanchez, A. E. Melchinger and E. Orsini, 

"Predition of grain yield using reflectance spectra of canopy and leaves in maize 

plants grown under different water regimes," Field Crops Research, vol. 128, pp. 82-

90, 2012.  

[11]  S. Kefauver, R. Vicente, O. Vergara-Diaz, J. A. Fernandez-Gallego, S. Kerfal, A. 

Lopez, J. P. E. Melichar, M. D. Serret Molins and J. L. Araus, "Comparative UAV 

and field phenotypig to assess yield and nitrogen use efficiency in hybrid and 

vonventional barley," Frontiers in Plant Science, vol. 8, 2017.  

[12]  J. Xue and B. Su, "Significant remote sensing vegetation indicies: A review of 

developments and applications," Journal of Sensors, vol. 2017, pp. 1-17, 2017.  

[13]  R. Ishimwe, K. Abutaleb and F. Ahmed, "Applications of thermal imaging in 

agriculture: A review," Advances in Remote Sensing, vol. 3, pp. 128-140, 2014.  

[14]  M. Wojtowixz, A. Wojtowicz and J. Piekarczyk, "Applications of remote sensing 

methods in agriculture," Comunications in Biometry and Crop Science, vol. 11, no. 

1, pp. 31-50, 2016.  

[15]  J. P. Lynch, "Rightsizing root phenotypes for drought resistance," Jornal of 

Experimental Botany, vol. 69, no. 13, pp. 3279-3292, 2018.  

[16]  J. Zhu, P. A. Ingram, P. N. Benfey and T. Elich, "From lab to field, new approaches 

to phenotyping root sytem architecture," ScienceDirect, vol. 14, pp. 310-317, 2011.  



 

115 

 

[17]  J. Lynch, "Root architecture and plant productivity," Plant Physiology, vol. 109, pp. 

7-13, 1995.  

[18]  E. D. Rogers and P. N. Benfey, "Regulation of plant root system architecture: 

implications for crop andvancement," ScienceDirect, vol. 32, pp. 93-98, 2015.  

[19]  C. Atzberger, "Advances in remote sensing of agricultur: Context description, 

existing operational monitoring systems and major information needs," Remote 

Sensing, vol. 5, pp. 949-981, 2013.  

[20]  J. Batz, M. A. Mendez-Dorado and J. A. Thomasson, "Imaging for high throughput 

phenotyping in energy sorghum," Jorunal of Imaging, vol. 2, no. 4, pp. 1-12, 2016.  

[21]  C. Nansen, A. J. Sidumo, X. Martini, K. Stefanova and J. D. roberts, "Reflectance-

based assessment of spider mite "bio-response" to maze leaves and plant potassium 

content in different irrigation regimes," Computers and Electronics in Agriculture, 

vol. 97, pp. 21-26, 2013.  

[22]  J. Penuelas, J. A. Gamon, A. L. Fredeen, J. Merino and C. B. Field, "Reflectance 

indicies associated with physiological changes in nitrogen and water limited 

sunflower leaves," Remote Sensing of Enviornment, vol. 48, no. 2, pp. 135-146, 

1994.  

[23]  J. Zhang, C. Yang, H. Song, W. C. Hoffmann, D. Zhang and G. Zhang, "Evaluation 

of an Airborne remote sensing platform consisting of two consumer grade cameras 

for crop indentification," Remote Sensing, vol. 8, no. 3, pp. 1-23, 2016.  



 

116 

 

[24]  A. Brook and E. B. Dor, "Supervised vicarious calibration (SVC) of hyperspectral 

remote-sensing data," Remote Sensing of Environment, vol. 115, pp. 1543-1555, 

2011.  

[25]  G. M. Smith and E. J. Milton, "The use of the emperical line method to calibrate 

remotely sensed data to reflectance.," International Journal of Remote Sensing, vol. 

20, no. 13, pp. 2653-2662, 1999.  

[26]  G. Guyot and X. F. Gu, "Effect of radiometric corrections on NDVI-determined from 

Spot- HRV and Landsat-TM data," Remote Sensing of Environment, vol. 49, pp. 

169-180, 1994.  

[27]  J. C. Price, "Calibration of satellite radiometers and the comparison of vegetation 

indicies," Remote Sensing of Environment, vol. 21, no. 15, pp. 15-27, 1987.  

[28]  R. Muller, "Calibration and verification of remote sensing intstruments and 

observations," Remote Sensing, vol. 6, pp. 5692-5695, 2014.  

[29]  N. Yu, L. Li, N. Schmitz, L. F. Tian, J. A. Greenberg and B. W. Diers, 

"Development of methods to improve soybean yiedls estimation and predict plant 

maturity with an unmanned aerial vehicle based platform," Remote Sensing of 

Environment, vol. 187, pp. 91-101, 2016.  

[30]  K. Anderson and K. J. Gaston, "Lightweight unmanned aerial vehicles will 

revolutionize spatial ecology," Frontiers in Ecology and the Enviornment, vol. 11, 

no. 3, pp. 138-146, 2013.  



 

117 

 

[31]  D. Giordan, M. A., R. Remondino and F. Nex, "Use of unmanned aerial vehicles in 

monitoring application and management of natural hazards," Geomatics, Natural 

Hazards and Risk, vol. 8, no. 1, pp. 1-4, 2017.  

[32]  J. Everaerts, "PEGASUS – Bridging the gap between airborne and spaceborne 

remote sensing.," in New Strategies for European Remote Sensing, Dubrovnik, 2018.  

[33]  N. Shakoor and T. C. Mockler, "High throughput phenotyping to accelerate crop 

breeding and monitoring of diseases in the field," Current Opinion in Plant Biology, 

vol. 38, pp. 184-192, 2017.  

[34]  C. Frankenberg, J. b. Fisher, J. Worden, G. Badgley, S. S. Saatchi, J.-E. Lee, G. C. 

toon, A. Butz, M. Jung, A. Kuze and T. Yokota, "New global observations of the 

terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross 

primary productivity," Geophysical Research Letters, vol. 38, no. 17, pp. 1-6, 2011.  

[35]  A. Matese, P. Toscano, S. F. D. Genaro, L. Genesio, F. P. Vaccari, J. Primicerio, C. 

Belli, A. Zaldei, R. Bianconi and B. Gioli, "Intercomparison of UAV, aircraft and 

satellite remote sensing platfomrs for precision viticulture," Remote Sensing, vol. 7, 

no. 3, pp. 2971-2990, 2015.  

[36]  Q. Weng, "Land use change analysis in the Zhujiang Delta of China using satellite 

remote sensing, GIS and stochastic modelling," Journal of Environmental 

Mangagment, vol. 64, no. 3, pp. 273-281, 2002.  

[37]  S. I. Corp., "WorldView-2 Satellite Sensor," 1 June 2018. [Online]. Available: 

https://www.satimagingcorp.com/satellite-sensors/worldview-2/. 



 

118 

 

[38]  W. W. M. LLC, "Land info," 1 June 2018. [Online]. Available: 

http://www.landinfo.com/satellite-imagery-pricing.html. 

[39]  NASA, "Landsat Science," 9 August 2017. [Online]. Available: 

https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-overview/. 

[40]  AirBus, "intelligence-aribusds.com," 1 January 2019. [Online]. Available: 

www.intelligence-

airbusds.com/file/pmedia/public/r48725_9_airbuds_intelligence_pricelist_1.1.19.pdf. 

[Accessed 15 July 2020]. 

[41]  C. Yang, "Aerial imaging with manned aircraft for precision agriculture," Resource 

Engineering and Technology for a Sustainable World, pp. 25-27, 5 July 2016.  

[42]  Y. Shi, Thomasson, J. Alex, C. Yang, D. Cope and C. Sima, "A case study of 

comparing radiometrically calibrated reflectance of an image mosaic from unmanned 

aerial system with that of a single image from manned aircraft over a same area," in 

Autonomous Air and Ground Sensing Systems for Agricultural Optimization and 

Phenotyping II, Anaheim, 2017.  

[43]  S. Sankaran, L. R. Khot, C. Z. Espinoza, S. Jarolmasjed, V. R. V. G. J. Sathuvalli, P. 

N. Miklas, A. H. Carter, M. O. Pumphrey, N. R. Knowles and M. J. Pavek, "Low-

altitude, high-resolution aerial imaging systems for row and field crop phenotyping: 

A Review," European Journal of Agronomy, vol. 70, pp. 112-123, 2015.  



 

119 

 

[44]  U. S. D. o. Transportation, "FAA," United States of America, 3rd July 2018. 

[Online]. Available: http://www.faa.gov/news/fact_sheets/news_story.cfm. 

[Accessed 21st June 2020]. 

[45]  H. Zheng, T. Cheng, D. Li, X. Zhou, X. Yao, Y. Tian, W. Cao and Y. Zhu, 

"Evaluation of RGB, color infrared and multispectral images acquired from 

unmanned aerial systems for the estimation of nitrogen accumulation in rice.," 

Remote Sensing, vol. 10, no. 824, pp. 1-17, 2018.  

[46]  R. Ludovisi, F. Rauro, R. Salvati, S. Khoury, G. S. Mugnozza and A. Harfouche, 

"UAV based thermal imaging for high throughput field phenotyping of black poplar 

response to drought," Frontiers in Plant Science, vol. 8, pp. 1684-1699, 2017.  

[47]  J. C. Padro, F. J. Munoz, L. A. Avila, L. Pesquer and X. Pons, "Radiometric 

correction of Landsat-8 and Sentinel-2A scenes using drone imagery in synergy with 

field spectroradiometry," Remote Sensing, vol. 10, pp. 1-26, 2018.  

[48]  C. Wang and S. W. Myint, "A simplified emperical line method of radiometric 

calibration for small unmanned aircraft systems-based remote sensing," Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 5, pp. 

1876-1885, 2015.  

[49]  S. D. Pozo, P. Rodriguez-Gonzalvez, D. Hernadez and B. fleipe, "Vicarious 

radiometric calibration of a multispectral camera on board unmanned aerial system," 

Remote Sensing, vol. 6, pp. 1948-1937, 2014.  



 

120 

 

[50]  F. Iqbal, A. Lucieer and K. Barry, "Simplified radiometric calibration for UAV-

mounted mulispectral sensor," European Journal of Remote Sensing, vol. 51, no. 1, 

pp. 301-313, 2018.  

[51]  M. Mafanya, P. Tsele, J. O. Botai, P. Manyama, G. J. Chirima and T. Monate, 

"Radiometric calibration framework for ultra-high-resolution UAV-derived 

orthomosaics for large scale mapping of invasive alien plants in semi-arid 

woodlands: Harrisia pomanensis as a case study," International Journal of Remote 

Sensing, pp. 1-22, 2018.  

[52]  A. S. Laliberte, M. A. Gogorth, C. M. Steele and A. Rango, "Multispectral Remote 

Sensing from Unmanned Aircraft: Image Processing Workflows and Applications 

for Rangeland Environments," Remote Sensing, vol. 3, pp. 2529-2551, 2011.  

[53]  J. M. McKinion, J. N. Jenkins, J. L. Willers and A. Zumanis, "Spatially variable 

insecticide applications for early season control of cotton insect pests," Computers 

and Electronics in Agriculture, vol. 67, pp. 71-79, 2009.  

[54]  J. L. Willers, J. N. Jenkins, W. Ladner, P. D. Gerard, D. L. Boykin, K. B. Hood, P. 

L. Mckibben, S. A. Samson and M. M. Bethel, "Site specific approaches to cotton 

insect control. Sampling and remote sensing analysis techniques," Precision 

Agriculture, vol. 6, pp. 431-452, 2005.  

[55]  J. M. Mckinion, J. N. Jenkins, J. L. Willers and A. Zumanis, "Spatially variable 

insecticide applications for early season control of cotton insect pests," Computers 

and Electronics in Agriculture, vol. 67, pp. 71-79, 2009.  



 

121 

 

[56]  P. Armengaud, K. Zambaux, A. Hills, R. Sulpice, P. J. Pattison, M. R. Blat and A. 

Amtmann, "EZ-Rhizo: integrated software for the fast and accurate measurment of 

root system architecture," The Plant Journal, vol. 57, pp. 945-956, 2009.  

[57]  S. J. Mooney, T. P. Pridemore, H. J. and M. J. Bennett, "Developing X-ray computer 

tomography to non-invasively image 3-D root system architecture in soil," Plant and 

Soil, vol. 352, pp. 1-22, 2012.  

[58]  X. Zhou and X. Luo, "Advances in non-destruct measurment and 3-D visualization 

methods for plant roots based on machine vision," in 2nd International Conference 

on Biomedical Engineering and Informatics, Tianjin, 2009.  

[59]  S. Trachsel, S. M. Kaeppler, K. M. Brown and J. P. Lynch, "Shovelomics: high 

throughput phenotyping of maize (Zea mays L.) root architecture in the field.," Plant 

and Soil, vol. 341, pp. 75-87, 2011.  

[60]  A. P. Araujo, A. M. Fernades, F. Y. Kubota, F. C. Brasil and M. G. Teixeira, 

"Sample size for measurement of root traits on common bean by image analysis," 

Pesquisa Agropecuaria Brasileria, vol. 39, pp. 313-318, 2004.  

[61]  R. J. Flavel, C. N. Guppy, S. M. Rabbi and I. M. Young, "Non-destructive 

quantification of cereal roots in soil using high-resolution x-ray tomography," 

Journal of Experimental Botany, vol. 63, pp. 2503-2511, 2012.  

[62]  R. J. Flavel, C. N. Guppy, S. M. Rabbi and I. M. Young, "An image processing and 

analysis tool for identifying and analyzing complex plant root systems in 3-D soil 

using non-destructive analysis: Root1," PLOS ONE, vol. 10, pp. 1-18, 2017.  



 

122 

 

[63]  J. A. Lafond, L. Han and P. Duiteul, "Concepts and analyses in the CT scanning of 

root systems and leaf canopies: a timely summary," Frontiers in Plant Science, vol. 

6, pp. 1-7, 2015.  

[64]  J. A. Atkinson, P. M. P., M. J. Bennett and D. M. Wells, "Uncovering the hidden half 

of the plant using new advances in root phenotyping," ScienceDirect, vol. 55, pp. 1-

8, 2019.  

[65]  S. Jahnke, M. I. Menzel, D. Dusschoten, G. W. Roeb, J. Buhler, S. Minwuyelet, P. 

Blumler, V. M. Temperton, T. S. M. Hombach, S. Beer, M. Khodaverdi, K. 

Ziemons, H. H. Coenen and U. Schurr, "Combined MRI-PET dissects dynamic 

changes in plant structures and functions," The Plant Journal, vol. 59, pp. 634-644, 

2009.  

[66]  A. Koch, F. Meunier, J. Vanderborght, S. Garre, Pohlmeier and J. M. A., 

"Functional-structrual root system model validation using a soil MRI experiment," 

Journal of Experimental Botany, vol. 70, pp. 2797-2809, 2019.  

[67]  R. Metzner, D. Dusschoten, J. Buhler, U. Schurr and S. Jahnke, "Belowground plant 

development measured with magnetic resonance imaging (MRI): exploiting the 

potential for non-invasive trait quantification using sugar beet as a proxy," Frontiers 

in Plant Science, vol. 5, pp. 1-11, 2014.  

[68]  L. D. Hall, M. H. G. Agmin, M. Sanda, J. Votrubova, K. S. Richards, R. J. Chorley 

and M. Cislerova, "MR properties of water in saturated soils and resulting loss of 



 

123 

 

MRI signal in water content detection at 2 tesla.," Geoderma, vol. 80, pp. 431-448, 

1997.  

[69]  J. Votrubova, M. Sanda, M. Cislerova, M. H. G. Amin and L. D. Hall, "The 

relationship between MR parameters and the water content in packed samples of two 

soils," Geoderma, vol. 95, pp. 267-282, 2000.  

[70]  R. E. Prebble and J. A. Currie, "Soil Water measurement by a row resolution nuclear 

magnetic resonance technique.," Journal of Soil Science, vol. 21, pp. 273-288, 1970.  

[71]  H. H. Rogers and P. A. Bottomly, "In situ nuclear magnetic resonance imaing of 

roots: influence of soil type ferromagnetic particl content and soil water," Agronomy 

Journal, vol. 79, pp. 957-965, 1987.  

[72]  D. Pfugfelder, R. Metzner, D. V. Dusschoten, R. Reichel, S. Jahnke and R. Koller, 

"Non-invasive imaging of plant roots in different soils using magnetic resonance 

imaging (MRI)," Plant Methods, vol. 13, pp. 1-9, 2017.  

[73]  D. Dusschoten, R. Metzner, J. Kochs, J. A. Postma and D. Pflugfelder, "Quantitative 

3D analysis of plant roots growing in soil using magnetic resonance imaging," Plant 

Physiology, vol. 170, pp. 1176-1188, 2016.  

[74]  R. Brown, Y. Cheng, M. Haacke, M. Thompson and R. Venkatensan, Magnetic 

resonance imaging: physical principles and sequence design., Wiley and Sons, 2014.  

[75]  E. Fukushima and S. B. W. Roeder, Experimental pule NMR: a nuts and bolts 

approach, Boco Raton: CRC Press, 1982.  



 

124 

 

[76]  P. Callaghna, Principles of nuclear magnetic resonance microscopy, Oxford: Oxford 

University Press, 1994.  

[77]  J. P. Hornak, The basics of NMR, http://www.cis.rit.edu/htbooks/nmr/index.html, 

1997.  

[78]  H. Ayalew, X. Ma and G. Yang, "Screening wheat (Triticum spp) genotypes for root 

length under contrasting water regimes: potential sources of variability for drought 

resistance breeding," Journal of Agronomy and Crop Science, vol. 201, pp. 189-194, 

2015.  

[79]  B. A. Fenta, S. E. Beebe, K. J. Kunert, J. D. Burridge, K. M. Barlow, J. P. Lynch and 

C. H. Foyer, "Field phenotyping of soybean roots for drought stress tolerance," 

Agronomy, vol. 4, no. 3, pp. 418-435, 2014.  

[80]  T. Garnett, V. Conn and B. N. Kaiser, "Root based approaches to improving nitrogen 

use effieciency in plants," Plant, Cell and Environment, vol. 32, no. 9, pp. 1272-

1282, 2009.  

[81]  K. Paustian, N. Campbell, C. Dorich, E. Marx and A. Swan, "Assessment of 

potential greenhouse gas mitigation from changes to crop root mass and 

architecture," United States of America Department of Engergy ARPA-E, January 

2016. [Online]. Available: https://arpa-e.energy.gov/?q=publications/assessment-

potential-greenhouse-gas-mitigation-changes-crop-root-mass-and-architecture. 

[Accessed 13 August 2020]. 



 

125 

 

[82]  G. C. Bagnall, N. Koonjoo, S. Altobelli, M. Conradi, E. Fikushima, D. O. Kuethe, J. 

E. Mullet, H. Neely, W. L. Rooney, K. Stupic, B. Weers, B. Zhu, M. S. Rosen and C. 

Morgan, "Low field magnetic resonance imaging of roots in intact clayey and silty 

soils," Geoderma, vol. 370, 2020.  

[83]  A. Henry, V. R. P. Gowda, R. O. Torres, M. L. L. and R. Serraj, "Variation in root 

system architecture and drought response in rixe (Oryzz Sativa): phenotyping of 

Oryza SNP panel in rainfed lowland fields," Field Crops Research, vol. 120, pp. 

205-214, 2011.  

[84]  M. Kano-Nakata, T. Nakamura, S. Mitsuya and A. Yamauchi, "Plasticity in root 

system architecture of rice genotypes exhibited under different soil water distribution 

in soil profile," Plant Production Science, vol. 22, no. 4, pp. 501-509, 2019.  

[85]  L. Lopez-Bacio, A. Cruz-Ramierez and L. Herrera-Estrella, "The role of nutrient 

avaliblity in regulating root architecture," Current Opinion in Plant Biology, vol. 6, 

no. 3, pp. 280-287, 2003.  

[86]  A. Paez-Garcia, C. M. Motes, W. Scheible, R. Chen, E. B. Balancaflor and M. J. 

Montereos, "Root traits and phenotyping strategies for plant improvment," Plants, 

vol. 4, pp. 334-355, 2015.  

[87]  A. Wasaya, X. Zhang, Q. Fang and Z. Yan, "Root phenotyping for drought tolerance: 

a review," Agronomy, vol. 8, pp. 241-260, 2018.  



 

126 

 

[88]  L. T. Koevoets, J. H. Venema, J. T. M. Elzenga and C. Testerink, "Roots 

withstanding their environmentL exploiting root systems architecture response to 

abiotic stress to improve corp tolerance," Frontiers in Plant Science, vol. 7, 2016.  

[89]  L. Ma, Y. Shi, O. Siemianowski, B. Yuan, T. Egner, S. V. Mirnezami, K. R. LInd, B. 

Ganapathysubramanian, V. Venditti and L. Cademartiri, "Hydrogel based transparent 

soils for root phenotyping in vivo.," Proceedings of the National Academy of Science 

of the United States of America, vol. 116, no. 2, 2019.  

[90]  L. Pingault, P. Zogli, J. Brooks and M. Libault, "Enhancing phenotyping and 

molecular analysis of plant root systems using ultrasound aeroponic technology," 

Current Protocols in Plant Biology, vol. 3, no. 4, 2018.  

[91]  T. E. Grift, J. Novais and M. Bohn, "Highthroughput phenotyping technology for 

maize roots," Biosystem Engineering, vol. 110, pp. 40-48, 2011.  

[92]  A. Bucksch, J. Burridge, L. M. York, A. Das, E. Nord, J. S. Weitz and J. P. Lynch, 

"Image based high-throughput field phenotyping of crop roots," Plant Physiology, 

vol. 166, no. 2, pp. 470-486, 2014.  

[93]  C. M. Iversen, M. T. Murphy, M. F. Allen, J. Childs, D. M. Eissenstat, E. A. 

Lilleskov, T. M. Sarjala, V. L. Sloan and P. F. Sullivan, "Advancing the use of 

minirhizotrons in wetlands," Plant and Soil, vol. 352, pp. 23-39, 2012.  

[94]  O. Chloupek, "Evaluation of the size of plant root system using its electrical 

capacitance," Plant and Soil, vol. 48, no. 2, pp. 525-532, 1997.  



 

127 

 

[95]  R. Messmer, Y. Frachebound, M. Banziger, P. Stamp and J. Ribaut, "Drought stress 

and tropical maize: QTLs for leaf greenness, plant senescence, and root 

capacitance.," Field Crops Research, vol. 124, no. 1, pp. 93-103, 2011.  

[96]  A. P. Wasson, G. J. Rebetzke, J. A. Kirkegaard, J. Christopher, R. A. Richards and 

M. Watt, "Soil coring at multiple field environments can directly quantify variation 

in deep root traits to select wheat genotypes for breeding," Journal of Experimental 

Botany, vol. 65, no. 21, pp. 6231-6249, 2014.  

[97]  S. Mairhofer, S. Zappala, S. Tracy, C. Sturrock, M. J. Bennett, S. J. Mooney and T. 

P. Pridmore, "Recovering complete plant root system architectures from soil via X-

ray micro computer tomography," Plant Methods, vol. 9, no. 8, 2013.  

[98]  R. Metzner, A. Eggert, D. V. Dusschoten, D. Pfugfelder, S. Gerth, U. Schurr and N. 

J. S. Uhlmann, "Direct comparison of MRI and X-ray CT technologies for 3D 

imaging of root systems in soil: potential and challenges for root trait 

quantification.," Plant Methods, vol. 11, no. 17, pp. 1-11, 2015.  

[99]  M. L. Grewel, "In situ magnetic resonance imaging of plant roots," Vadose Zone 

Journal, vol. 13, no. 3, pp. 1-8, 2014.  

[100]  C. Hillnhuntter, R. A. Sikora, C. Oerke and D. Van Dusschoten, "Nuclear magnetic 

resonance: a tool for imaging belowground damage caused by heterodera schachtti 

and rhizoctonia solani on sugar beet," Journal of Experimental Bontony, vol. 63, no. 

1, pp. 319-327, 2012.  



 

128 

 

[101]  B. H. Suits and D. E. Wilken, "Improving magnetic field gradient coils for NMR 

imaging," Journal of Physics E.: Scientific Instrumentation, vol. 22, no. 8, pp. 565-

573, 1989.  

[102]  J. W. Eaton, D. Bateman, S. Hauberg and R. Wehbring, GNU Octave version 5.1.0: 

a high level interactive language for numerical computatations, https:// 

www.gnu.org/software/octave/doc/v5.1.0/, 2019.  

 

 



 

129 

 

APPENDIX A 
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APPENDIX B 

LF-MRI ROOT BIOMASS LAB BASED CALIBRATION 

Roots were weighted and measured using a 0-D scan on a 2 MHz, 8 cm bore LF-

MRI system. The roots were dried and reweighted. Table 6-1 shows their signal strength 

and measured root metrics. 
Table 0-1: Root fresh weight, dry weight and calculated root water along with the signal strength and T2 relaxation 

time collected from bare root samples in the 8 cm bore LF-MRI. 

Root ID Wet Mass (g) Dry Mass (g) Water (g) Weighted Sums M0 T2 (ms) 

CR-1 9.52 2.42 7.10 28929 4653 98.5 

CR-2 10.45 2.77 7.68 43939 5494 149.8 

CR-5 11.64 3.29 8.35 37279 4470 157.6 

CR-6 22.68 6.67 16.01 57543 6606 169.6 

L-3 4.56 0.72 3.84 23054 2814 152.3 

L-5 9.49 1.39 8.11 53468 6692 147.9 

L-6 2.82 0.42 2.40 16169 1925 161.6 

L-9 2.28 0.25 2.04 15394 1691 184.1 

M-1 4.34 0.80 3.54 17203 2300 133.8 

M-3 7.11 1.14 5.97 35751 4859 128.8 

M-4 8.41 1.33 7.08 44130 5311 157.3 

M-5 3.34 0.51 2.84 18589 2166 166.3 

M-6 3.11 0.47 2.64 14108 1959 126.8 

PS-1 35.51 12.33 23.17 123994 14589 162.4 

PS-2 4.37 1.26 3.11 20097 2432 158.0 

PS-3 23.64 8.44 15.20 97037 12711 140.8 

PS-4 27.25 10.18 17.08 75215 13746 85.6 

PS-5 7.84 2.11 5.74 49260 4870 234.2 

S-2 5.55 1.06 4.49 22869 3174 127.2 

S-3 4.61 0.97 3.65 17867 2703 112.8 

S-4 3.26 0.55 2.71 15723 2351 114.1 

S-6 2.52 0.48 2.04 9350 1573 97.3 

S-8 1.32 0.25 1.07 4795 802 100.7 

VL-1 13.42 1.94 11.48 74482 8472 171.9 

VL-3 18.78 2.88 15.90 100039 12209 150.1 

VL-4 5.11 0.85 4.26 26341 3481 134.2 

VL-5 7.48 1.26 6.23 41768 4950 161.0 

VS-3 3.83 0.84 2.99 22124 3039 130.6 

VS-4 10.17 2.71 7.46 65788 8681 139.3 

VS-5 0.54 0.11 0.43 2456 390 107.2 

VS-6 0.97 0.17 0.80 5497 817 116.0 

VS-7 7.78 1.86 5.92 39235 5515 125.2 

VS-8 7.82 1.59 6.22 45577 6025 138.3 

VS-9 12.56 5.42 7.14 69780 9357 135.9 
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 The root fresh weight was plotted as a function of the 0-D signal strength with 

good result. The RMSE is 3 g, and R2 of 0.82. The two outliers are a partial sorghum 

stalk and a set of nodal roots. However, this relationship did not translate well into 

predicting root fresh weight in the field. It is possible that these two plant sections hold 

water differently than the smaller roots and contribute to the difficulty in using this 

model for field scans that include more of these types of plant sections. 

 

Figure 0-1: The root wet weight is plotted against the 0-D signal strength from bare roots using the 8 cm bore LF-MRI 

system. The R2 and RMSE show promise but this equation did not predict root wet weight of field data. 




