
 

 

 

3D SOLID FINITE ELEMENT ROTORDYNAMICS:  

PARAMETRIC STABILITY ANALYSIS AND CONTACT MODELLING 

 

A Dissertation 

by 

JOSEPH OH  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Alan B. Palazzolo 

Committee Members, C. Steve Suh 

 Stefan Hurlebaus 

 Won-Jong Kim 

Head of Department, Andreas A. Polycarpou 

 

December 2020 

 

Major Subject: Mechanical Engineering 

 

Copyright 2020 Joseph Oh



 

ii 

 

ABSTRACT 

 

Conventional rotordynamic analyses generally simplify the rotor, neglecting 

detailed geometrical characteristics. However, in modern rotating machines, rotors 

consist of multiple complex-shaped parts that are usually non-axisymmetric with 

preloads to ensure the assembly. These effects may significantly affect rotordynamic 

behavior of high-performance rotating machinery. The present study aims to take them 

into account in rotordynamic analyses, by presenting an efficient rotordynamic stability 

approach for non-axisymmetric rotor-bearing systems with complex shapes using three-

dimensional solid finite elements. The 10-node quadratic tetrahedron element is used for 

the finite element formulation of the rotor. A rotor-bearing system, matrix differential 

equation is derived in the rotor-fixed coordinate system. The system matrices are 

reduced by using Guyan reduction. The current study utilizes the Floquet theory to 

determine the stability of solutions for parametrically excited rotor-bearing systems. 

Computational efficiency is improved by discretization and parallelization, taking 

advantage of the discretized Monodromy matrix of Hsu’s method. The method is 

verified by an analytical model with the Routh-Hurwitz stability criteria, and by direct 

time-transient, numerical integration for large order models. The proposed and Hill’s 

methods are compared with respect to accuracy and computational efficiency, and the 

results indicate the limitations of the Hill’s method when applied to 3D solid rotor-

bearing systems. A parametric investigation is performed for an asymmetric Root’s 

blower type shaft, varying bearing asymmetry and bearing damping. In addition to the 
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non-axisymmetric rotor-bearing system analysis, a new contact model for rotordynamic 

analysis of an assembled rotor-bearing system with multiple parts connected by multiple 

joints is suggested. A contact element formulation is presented using solid finite 

elements and statistics-based contact theories. A test arrangement was developed to 

validate the proposed contact model for varying interface surface roughness and 

preloads. An iterative computation algorithm is introduced to solve the implicit relation 

between contact stiffness and stress distribution. Prediction results, using the contact 

model, are compared with measured natural frequencies for multiple configurations of a 

test rotor assembly. A case study is performed for an overhung type rotor-bearing system 

to investigate the effect of contact interfaces, between an overhung impeller and a rotor 

shaft, on critical speeds. 
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NOMENCLATURE 

 

FEM Finite Element Method 

dof Degree of Freedom 

P Coordinate of an arbitrary point in a rotating body 

r Position vector of P 

x Coordinate vector 

u Displacement vector 

Ω Spin speed 

Ω Spin speed vector 

ϒ Rotation matrix 

Ek
e Kinetic energy of an element 

qe Nodal displacement vector 

N Shape function matrix 

x0 Nodal coordinate vector of an element 

B strain-displacement relation matrix 

E Constitutive relation matrix 

Me Element mass matrix 

Ce Element Coriolis matrix 

Ks
e Element structural stiffness matrix 

Kd
e Element dynamic stiffness matrix 

fc
e Centrifugal force vector 
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𝜉𝑖  Natural coordinates 

𝜉𝑖𝑘  ith direction coordinate of the kth Gauss quadrature point 

wk Weight factor corresponding to kth Gauss quadrature point 

Kb,i Bearing stiffness coefficient matrix in inertial coordinates 

Cb,i Bearing damping coefficient matrix in inertial coordinates 

R Rotation matrix for coordinate transformation 

Kb,r Bearing stiffness coefficient matrix in rotor-fixed coordinates 

Cb,r Bearing damping coefficient matrix in rotor-fixed coordinates 

M System mass matrix 

C System damping matrix 

K System stiffness matrix 

fc System centrifugal force vector 

Ri Mass-to-stiffness ratio for Guyan reduction 

MR Reduced system mass matrix 

CR Reduced system damping matrix 

KR Reduced system stiffness matrix 

fc
R Reduced system centrifugal force vector 

B(t) Time-varying coefficient matrix 

ON N by N null matrix 

IN N by N identity matrix 

Tmin Minimum time period of B(t) 

𝚽𝑴(𝑡) Matrizant matrix 



 

ix 

 

HM Monodromy matrix 

Bk Piecewise contact coefficient matrix 

HM(K) Discretized Monodromy matrix 

m Point mass 

cr Rotor internal damping 

ce Rotor external damping 

kυ Rotor stiffness along the υ-axis 

kη Rotor stiffness along the η-axis 

q Rotor asymmetry 

qr Rectangular cross-section rotor asymmetry 

h Height 

w Width 

kb,xx Bearing stiffness in the x-direction corresponding to ux 

kb,yy Bearing stiffness in the y-direction corresponding to uy 

kb,xy Bearing stiffness in the x-direction corresponding to uy 

kb,yx Bearing stiffness in the y-direction corresponding to ux 

cb,xx Bearing damping in the x-direction corresponding to ux 

cb,yy Bearing damping in the y-direction corresponding to uy 

cb,xy Bearing damping in the x-direction corresponding to uy 

cb,yx Bearing damping in the y-direction corresponding to ux 

cE Equivalent bearing damping coefficient 

mr Rotor point mass 
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kE Equivalent bearing stiffness coefficient 

𝜁  Damping ratio 

qb Bearing asymmetry 

p(t) General solution of rotor-bearing system equations 

pn(t) Periodic function 

αF Floquet exponent 

K0
R Coefficient matrix of the constant term in KR 

Ks
R Coefficient matrix of the sine term in KR 

Kc
R Coefficient matrix of the cosine term in KR 

jmax Truncation number of Hill’s infinite determinant 

kx bearing stiffness in the x-direction for Jeffcott rotor 

ky bearing stiffness in the y-direction for Jeffcott rotor 

MT Mass matrix for Timoshenko beam model 

CT Damping matrix for Timoshenko beam model 

KT Stiffness matrix for Timoshenko beam model 

D Constant coefficient matrix for first order state-space equations 

λ Eigenvalue 

α Real part of eigenvalue 

β Imaginary part of eigenvalue 

Kσ Stress-stiffness matrix 

he Element contact stiffness matrix 

𝛱𝑐
𝑒 Potential energy of the contact element 
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ue Displacement vector of the element 

de Nodal dof vector of the element 

kc
e Element contact stiffness coefficient matrix 

Ni
e Element inter-domain shape function matrix 

en
e Unit vector normal to the contact plane 

et1
e Orthogonal unit vector 1 tangential to the contact plane 

et2
e Orthogonal unit vector 2 tangential to the contact plane 

kct1
e Contact stiffness in ut1

e direction 

kct2
e Contact stiffness in ut2

e direction 

ns Number of the nodes of face nodes 

N1 Shape function of node 1 

Nns Shape function of node ns 

nG Number of Gauss quadrature integration points 

det(J) Determinant of the Jacobian matrix 

J Jacobian matrix 

ξ1α Gauss quadrature point in the α-direction 

ξ2β Gauss quadrature point in the β-direction 

wα Weight factor corresponding to ξ1α 

wβ Weight factor corresponding to ξ2β 

Kc Assembled contact stiffness matrix 

I Identity matrix 

0 Null matrix 
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E’ Plane-stress modulus 

z(x) Surface height profile along with the linear path x 

ηs Area density 

Rs Average radius of the asperity 

σs Standard deviation of height 

mi Zeroth, second, and fourth spectral moments, I = 0, 2, 4 

Pc Contact pressure 

h Standardized separation 

Fn(h) A solution of parabolic cylinder function 

U Whittaker function 

𝜙∗(𝑠) Gaussian distribution function 

K Modified Bessel function 

υ Poisson’s ratio 

E Elastic modulus 

Dout Outer diameter 

Din Inner diameter 

L Length 

ρ Density 

BJ_A Surface of joint A 

BJ_B Surface of joint B 

BJ_C Surface of joint C 

BJ_Ap Contact plane between joint A and the shaft 



 

xiii 

 

BJ_Bp Contact plane between joint B and the shaft 

BJ_Cp Contact plane between joint C and the shaft 

Ksys Constant system stiffness matrix 

Kbc Contact stiffness at boundary faces 
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Ks Structural stiffness matrix 

CR Coriolis matrix 

Kd Dynamic stiffness matrix 
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1. INTRODUCTION  

 

1.1. Problem Statement and Motivation 

As modern industry faces uprising demands of highly efficient systems with 

higher power density, light weight, and faster rotating speed, rotating machinery gets 

more complex and sophisticated. In general, an increase of spin speed in rotating 

machinery is advantageous in productivity. Furthermore, the higher spin speed lowers 

the required torque for the same amount of power generation compared to lower spin 

speed machines, allowing the machines to be lighter in weight [1]. On account of these 

technical trends, unprecedented dynamic behaviors of rotating machinery are likely to 

arise, resulting in accurate predictions to be more challenging. On the other hand, the 

operating conditions of rotating machines, such as rotating speeds, have to be 

determined within a range satisfying safety criteria. A failure of a proper prediction may 

cause severe damages of the facilities followed by a huge amount of financial loss. 

Rotordynamic analysis spans not only design stages, but also overall machine-life-cycles 

including operations and preventive maintenances. 

 

1.2. Background 

1.2.1. Finite Element Rotordynamics: Beam-type and Solid Elements 

Rotating machinery mainly consists of rotors, stators, and bearings, and an 

adequate rotordynamic model should account for these components with the related 

forces [2]. Historically, several models accounting for a flexible rotor have suggested. 
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Jeffcott rotor is one of the simplest models which describes a flexible rotor with 2 degree 

of freedoms (dofs) [3]. Lumped-parameter models [4, 5] have been employed to 

represent the distributed elastic and inertial properties of rotors, discretizing a solution of 

continuous partial differential equations. The finite element method (FEM) using 

Rayleigh-Ritz approach approximate partial differential [6, 7, 8] . FEM provides a more 

accurate solution than the lumped-parameter model compared to an exact solution [8] 

 

 

Figure 1.1  Beam-type element rotor 

 

 

 

Figure 1.2  Solid element rotor 
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beam-type finite element models such as the Euler-Bernoulli beam and the Timoshenko 

beam [9] have been developed and performed reliably. To accommodate more complex 

geometrical characteristics, such as thin walled rotor, axisymmetric solid finite elements 

have been used [10, 11]. There are more cases when either beam theories or 

axisymmetric solid elements are inadequate to model the behavior of rotors, for 

example, a rotor with bladed disks with non-axisymmetric structure [1]. In such cases, 

3D solid finite element rotor model can be utilized for such cases without ignoring 

geometrical characteristics [12, 13].  

 

1.2.2.  Non-Axisymmetric Rotor-Bearing Systems 

As rotor-bearing systems become complex, accurate predictions of system 

stability get more acute job. Numerous effort has been invested to implement all the 

details of the system into analyses [14, 15, 16, 17, 18]. When it comes to rotor structure, 

accounting for geometrical details is one of the important aspects of the on-going 

development. In contrast to the simplified rotor models which would be used in beam-

type rotordynamic analyses: lumped and axisymmetric, the rotors of many industrial 

machines are not axisymmetric due to the rotor disk blades, couplings, and etc. The rotor 

models do not need to be axisymmetric when using 3D solid finite element formulations. 

Therefore, non-axisymmetric rotors, i.e., two-pole turbine generators, three-bladed wind 

turbines, Root’s type impellers, cracked rotors, etc. can be taken into account in 

rotordynamic analyses by taking advantage of the 3D solid element method. 
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1.2.3. Contact Model for Assembled Rotor-Bearing Systems 

In general, rotating machines are assembled with multiple parts: impellers, disks, 

shafts, couplings and etc. These parts are tightened by bolts and nuts or fitted by press 

fits and interference fits. The dynamic behavior of an assembled rotor may be different 

from the one of a seamless body rotor due to the existence of contacts and forces caused 

by clamping objects. There are various contributing factors to the contact effect, such as 

sizes and shapes of contact areas, surface roughness at interfaces, misalignments of each 

part, stress-stiffening effect due to clamping forces, and so on. Most of the contributing 

factors are geometry-dependent parameters that are hardly predicted by conventional 

rotordynamic analyses using beam-type elements or even solid-type elements when 

contacts between different domains are not properly considered. Therefore, neglecting 

the contact effect may result in a significant decrease of prediction accuracy [19]. 

 

1.3. Literature Review 

1.3.1. Stability Analysis for Non-Axisymmetric Rotor-Bearing Systems [20] 

Prior research has suggested various approaches for modeling rotors with 

complex geometry using the 3D solid finite element method. Nandi and Neogy proposed 

a 3D solid finite element model for rotordynamic analysis [12]. They showed the 3D 

solid finite element model performs better than beam-type finite element models for 

rotors with high slenderness ratios. Chatelet et al. presented a flexible bladed disc-shaft 

model by using a multilayered shell element based on a cyclic symmetry assumption 

[21]. Combescure and Lazarus used a refined 3D model and a 2D Fourier model to 
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demonstrate significant improvement on predicting the dynamic behavior of flexible 

rotor disks [22]. Chaudhry described a solid finite element modeling method for rotors 

with slender shafts and many blades [23]. This method, however, is only available for 

rotor-bearing systems with radially isotropic bearings. The matrix equations of motion 

include time-varying coefficients for a non-axisymmetric rotor supported by non-

axisymmetric bearings. This may destabilize the rotor-bearing system due to parametric 

excitation. Several approaches have been proposed to investigate the rotordynamic 

behavior of non-axisymmetric rotor-bearing systems. Black discussed lateral motion of a 

multi-degree-of-freedom shaft with cross-sectional asymmetry mounted on 

asymmetrically flexible bearings [24]. He used the perturbation-variation method of Hsu 

to solve the equation of motion [25].  

Genta presented the finite element based equations of motion in the inertial frame for a 

general multi-degree of freedom rotor, and presented the solution for a non-

axisymmetric rotor running on an asymmetric supporting structure [26]. In this 

approach, Hill’s infinite determinant was used to approximate the solution for non-

axisymmetric rotor-bearing systems. The Monodromy matrix method can be utilized for 

stability analyses, and several works with beam-type finite element models have been 

published [27, 28]. These papers utilized numerical integration for evaluation of the 

Monodromy matrix, which is less efficient than the Hsu approach utilized here.  

Lazarus et al. suggested the 3D finite element method based on the modal theory in 

order to analyze linear periodic time-varying systems [13]. The authors mainly followed 

Genta’s approach by utilizing the Floquet theory and Hill’s infinite determinant, 
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considering a small number of flexural modes in the inertial frame. The literature 

demonstrates that the Hill method predicts instabilities accurately and efficiently with 

tolerable approximation errors for weakly coupled systems, without Coriolis force or 

gyroscopic effects. However, use of transient numerical integration as a benchmark in 

the present work demonstrates that the Hill method predicts stability inaccurately for a 

case of large order, with non-axisymmetric rotor plus non-axisymmetric bearings, and 

including Coriolis and gyroscopic effects. This weakness in the Hill method for the 

example is demonstrated to be remedied by use of an alternative “Hsu” type method.  

The Coriolis force must be included in the 3D solid finite element described in the rotor-

fixed coordinate system. Ma et al. presented a Hill’s infinite determinant based analysis 

for a 3D finite element model [29]. Their method was numerically verified in the inertial 

frame, comparing results with Genta’s [26]. A distribution of unstable speed ranges due 

to asymmetry of the rotor and bearings appeared to be missed in their predictions. Tai 

and Shen presented closed-form solutions for a spinning, cyclic symmetric rotor with 3D 

solid finite element [30]. The prior literature’s quantitative studies on the effects of 

combined rotor and bearing asymmetry on system stability is very sparse.  

The present study utilizes a 10-node quadratic tetrahedron element for developing finite 

element models of non-axisymmetric rotor-bearing systems. Hsu’s approximation 

method is adopted to generate the discretized Monodromy matrix [31]. Parametric 

studies are conducted for the effect of bearing asymmetry and bearing damping on the 

stability of a non-axisymmetric rotor-bearing system. Direct time-transient integration 

using a fourth order Runge-Kutta method and an analytical model with the Routh-
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Hurwitz stability criteria are provided for verifications. Some limitations of the existing 

Hill’s infinite determinant related methods are identified by comparison with the 

proposed approach and direct numerical integration. 

 

1.3.2. 3D Solid Finite Element Contact Model for Assembled Rotor-Bearing 

Systems [32] 

The importance of taking contact effect into consideration was reported in [19]. 

The evolution of contact model starting from the GW contact model [33] was reviewed 

by Müser and et al. [34]. The present work focuses on accounting for contact interface 

effects of stacked rotor assemblies on rotordynamic response, while there are other 

applications for contact theory modeling, as exemplified by the work in the area of 

bladed disk vibration [35, 36], numerical studies on jointed structures using zero 

thickness contact elements, the penalty method, etc. [37, 38, 39, 40, 41, 42], and 

experimental studies on the assembled structures [43, 44, 45, 46]. 

In prior research, there are several approaches for modeling the contact effect in 

the finite element method. Modeling approaches with 2D axisymmetric solid elements 

[47], beam-type elements [48, 49, 50, 51] and 3D solid elements [52, 53] were used for 

rotordynamic analyses of assembled rotors. Zhang, Du, Shi and Liu [47] utilized 

empirically obtained contact stiffness for their 2D axisymmetric finite element rotor 

model. For the beam-type approaches [48, 49, 50, 51], statistical contact theories were 

adopted to calculate contact stiffness at joints. Geometrical characteristics and the 

stress-stiffening effect were not considered with these beam-type methods. Prior 
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studies were conducted with 3D solid elements [52, 53], and included geometric details 

and stress stiffening. The contact stiffnesses at the interfaces were modeled using an 

axial layer with a fictitious elastic modulus, adjusted to match experimental natural 

frequency measurements. This may have limited use for original rotor assembly design, 

where natural frequency measurements are not available. 

The novel contribution of the present work is a new approach for applying GW 

contact theory model to stacked, preloaded, spinning shaft assemblies, as found in 

industrial and aviation turbines and compressors. This extends prior work in this 

application area by employing a higher fidelity, 3D solid element, finite element model, 

with zero-thickness-plane-type contact elements at contact interfaces. The suggested 

model can be applied to various types of joints in rotor-bearing systems without 

imposing simplifying geometrical modeling assumptions. In addition, the approach has a 

greater level of universality by not requiring prior tests to establish “equivalent” 

parameters, such as an equivalent Youngs modulus, for a given shaft assembly. 

Therefore, the asperity induced, contact stiffness model at interfaces can be evaluated by 

the prediction model at the design stage, without measuring natural frequencies of the 

built system.  

In this paper, a finite element formulation of the contact element with a statistics-

based contact theory is presented. A test rig for a through-bolt type rotor assembly with 

multiple joints is built, and experimental results are obtained to validate the proposed 

contact modeling method. An iterative procedure for a prediction model is introduced, 

and simulation results of the prediction model are compared with the experimental 
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results. Finally, a rotordynamic analysis is carried out for an overhung type rotor-bearing 

system using the proposed contact modeling method. 

 

1.4. Objectives 

The present study seeks the following objectives: 

I. Investigate instabilities caused by non-axisymmetric rotor-bearing systems. 

II. Derive 3D solid finite element formulation dedicated to rotordynamic analyses. 

III. Generalize simulation modelling method for evaluating stability of non-

axisymmetric solid rotor-linear bearing system using Floquet theory. 

IV. Improve computational efficiency by utilizing Hsu’s method. 

V. Conduct quantitative comparison between Hill’s method and Hsu’s method both 

in the rotor-fixed coordinate system and the inertial coordinate system. 

VI. Derive a contact model finite element formulation which is suitable for the 3D 

solid finite element rotordynamic analysis. 

VII. Develop the contact stiffness calculation algorithm for a preloaded rotor structure 

VIII. Validate the contact model by conducting an experimental test rig. 

 

 

1.5. Novelties and Contributions 

In the present study, non-axisymmetric rotor-bearing systems and contact 

modeling within rotor-assemblies are investigated via 3D solid finite element method. 

These subjects have been challenging in conventional rotordynamic analysis on account 



 

10 

 

of geometrical complexities. Beam-type elements couldn’t afford to fully implement 

geometrical variances of non-axisymmetric rotor [24, 27, 28]. Though 3D solid finite 

element method was utilized, obtaining a Floquet solution of the problem was still 

challenging with respect to computational loads [30]. As an alternative way, Hill’s 

determinant with modal reduction was adopted, but verification of the method was done 

only in the inertial frame of reference [1, 29]. 

The author presents a new efficient way of obtaining a Floquet solution for non-

axisymmetric rotor-bearing systems by adopting 3D solid element method and Hsu’s 

approximation [31]. The proposed method is verified by Routh-Hurwitz stability criteria. 

Monodromy matrix method [54] and Hill’s determinant method [1] for the same Floquet 

solution of a rotor-bearing system are compared quantitively in both the inertial frame of 

reference and the rotating frame of reference with respect to accuracy and computational 

speed. Some limitations of Hill’s determinant are shown in a numerical approach. It is 

also proven that the proposed method can be used to detect non-parametric instability as 

well. 

As regard to contact modeling, a new contact element for 3D solid finite element 

rotordynamic analysis is proposed. While equivalent flexural stiffness method [48, 49, 

50, 51] and fictitious elastic modulus method [52, 53] have been suggested so far, no 

general contact algorithm which accounts for geometrical variances and surface 

roughness with an adequate modeling algorithm has been published yet. The author 

proposes a model which can be applied to various types of joints in rotor-bearing 

systems without geometrical limitations. Furthermore, statistics-based contact theories 
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can be applied directly to the 3D solid finite element rotordynamic model without 

additional manipulations, such as generating fictitious modulus. Therefore, asperity 

effect at interfaces can be evaluated by the prediction model with surface roughness 

parameters case independently.  

When it comes to experimental validations for contact models, adequate test results with 

full descriptions for surface roughness parameters and accurate preload measurements 

are very sparse in literature. No surface roughness parameters were measured in most 

references, while only one paper compared multiple levels of surface roughness on 

dynamic characteristics of a stacked rotor [47], still providing only a rough mean value 

of height of the surface that are insufficient for a proper contact modeling. The present 

research builds a test rig for a through-bolt type rotor assembly with multiple joints, 

providing full descriptions for geometries and surface roughness parameters for contact 

theories. Unlike explicit modeling methods that have been shown in prior research, 

lacking accurate predictions for stress distribution, an implicit contact modeling 

algorithm is presented, providing more accurate stress distribution at contact interfaces.  
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2. STABILITY ANALYSIS FOR NON-AXIYSMMETRIC ROTOR-BEARING 

SYSTEMS* [20] 

 

2.1. Rotordynamic System Modelling with the Finite Element Method 

2.1.1. Equation of Motion in the Rotor-Fixed Coordinate System 

The rotor-fixed coordinate system is attached to the spinning rotor and rotates 

along with the rotor at the same speed. The rotor-fixed coordinate system is 

advantageous for describing detailed kinematics when it comes to non-axisymmetric 

rotors [13]. In this study, non-axisymmetric rotors are described in the rotor-fixed 

coordinate system. In order to develop the equation of motion of a non-axisymmetric 

rotor, the rotor is assumed to have small displacements and to spin at a constant speed. 

Figure 2.1 shows a point 𝑷 on the rotating body and its position vector 𝒓 = 𝒙 + 𝒖, where 

𝒙 and 𝒖 are the coordinate vector and the displacement vector, respectively. The body is 

rotating at speed 𝛺 about the 𝒛-axis along with the rotor-fixed coordinate system 𝝊𝜼𝒛. 

The relation between the time derivatives of position vector 𝒓 in the inertial coordinate 

system and the rotor-fixed coordinate system can be written as [23] 

 

 
(
𝑑𝒓

𝑑𝑡
)
𝑖

= (
𝑑𝒓

𝑑𝑡
)
𝑟

+ 𝛀 × 𝒓 (2.1) 

 

* Reprinted in part with permission from “Stability of Non-Axisymmetric Rotor and Bearing Systems 

Modeled With Three-Dimensional-Solid Finite Elements,” by Oh, J., Palazzolo, A., and Hu, L., 2020. 

ASME J. Vib. Acoust., 142(1), pp. 011010., Copyright 2020 by ASME. 
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where subscripts 𝑖 and 𝑟 mean the inertial coordinate system and the rotor-fixed 

coordinate system, respectively, and the rotating frame, time rate of change term (
𝑑𝒓

𝑑𝑡
)
𝑟

 

is that which is sensed by an observer in the rotating frame. The angular velocity vector  

𝜴 of the rotor-fixed coordinate system is represented in vector form as 

 

 𝛀 = Ω𝚼 

 

𝚼 = [
0 −1 0
1 0 0
0 0 0

] 

(2.2) 

   

Then equation (2.1) can be written as  

 

 
(
𝑑𝒓

𝑑𝑡
)
𝑖

= (
𝑑𝒓

𝑑𝑡
)
𝑟

+ Ω𝚼 ∙ 𝒓 (2.3) 

 

Let the body be an element of the rotor, then the kinetic energy of the element in the 

spinning rotor is obtained from equation (2.3) as 
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Figure 2.1  Rotor-fixed coordinate system 
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𝐸𝑘
𝑒 =

1

2
∫ 𝜌 (

𝑑𝒓

𝑑𝑡
)
𝑖

𝑇

(
𝑑𝒓

𝑑𝑡
)
𝑖

𝑑V𝑒

 

V𝑒

=
1

2
∫ 𝜌 (�̇� + 𝚼 ∙ (𝒖 + 𝒙))

𝑇

(�̇� + 𝚼 ∙ (𝒖 + 𝒙))𝑑V𝑒

 

V𝑒

=
1

2
(�̇�𝑒)

𝑇

∫ 𝜌𝑵𝑻𝑵𝑑V𝑒

 

V𝑒

�̇�𝑒 + (�̇�𝑒)
𝑇

∫ 𝜌𝑵𝑻𝚼𝑵𝑑V𝑒

 

V𝑒

𝒒𝑒

+ (�̇�𝑒)
𝑇

∫ 𝜌𝑵𝑻𝚼𝑵𝑑V𝑒

 

V𝑒

𝒙𝟎 +
1

2
(𝒒𝑒)

𝑇

∫ 𝜌𝑵𝑻𝚼𝑻𝚼 𝑵𝑑V𝑒

 

V𝑒

𝒒𝑒

+
1

2
(𝒒𝑒)

𝑇

∫ 𝜌𝑵𝑻𝚼𝑻𝚼 𝑵𝑑V𝑒

 

V𝑒

𝒙𝟎

+
1

2
𝒙𝟎

𝑻∫ 𝜌𝑵𝑻𝚼𝑻𝚼 𝑵𝑑V𝑒

 

V𝑒

𝒒𝑒

+
1

2
𝒙𝟎

𝑻∫ 𝜌𝑵𝑻𝚼𝑻𝚼 𝑵𝑑V𝑒

 

V𝑒

𝒙𝟎 

 

(2.4) 

 

where Ek
e is the kinetic energy of the element, 𝒒𝒆 is the nodal displacement vector of the 

element, 𝑵 is the shape function matrix, 𝒙𝟎 is the nodal coordinate vector of the element. 

The potential energy of the rotor from deformation can be written by 

 

 
𝐸𝑝
𝑒 =

1

2
𝒒𝒆(𝑡)𝑇∫ 𝑩𝑻𝑬 𝑩

 

V𝑒

𝑑𝑉 𝒒𝒆(𝑡) (2.5) 
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where 𝑩 provides strains when multiplied into 𝒒𝒆, and 𝑬 is the constitutive relation 

matrix [9]. The Euler-Lagrange equation for the system is 

 

 𝑑

𝑑𝑡
(
𝑑𝐸𝑘

𝑒

𝑑𝒒�̇�(𝑡)
) −

𝑑𝐸𝑘
𝑒

𝑑𝒒𝒆(𝑡)
+

𝑑𝐸𝑝
𝑒

𝑑𝒒𝒆(𝑡)
= 0 (2.6) 

 

The equation of motion of the element is obtained by substituting equations (2.4) and 

(2.5) into (2.6), yielding [23, 11], 

 

 𝑴𝒆�̈�𝒆(𝑡) + 2Ω𝑪𝒆�̇�𝒆(𝑡) + (𝑲𝑠
𝑒 − Ω2𝑲𝑑

𝑒)𝒒𝒆(𝑡) = Ω2𝒇𝑐
𝑒 (2.7) 

 

where 𝑴𝒆, 𝑪𝒆, 𝑲𝑠
𝑒, 𝑲𝑑

𝑒  and 𝒇𝑐
𝑒   are the element mass matrix, the element Coriolis 

matrix, the element structural stiffness matrix, the element dynamic stiffness matrix and 

the centrifugal force vector, respectively. 

 

 𝑴𝒆 = ∫ 𝜌𝑵𝑇𝑵𝑑V𝑒

 

V𝑒

 (2.8) 

 𝑪𝒆 = ∫ 𝜌𝑵𝑇𝚼𝑵𝑑V𝑒

 

V𝑒

 (2.9) 

 𝑲𝑠
𝑒 = ∫ 𝑩𝑻𝑬 𝑩

 

V𝑒

𝑑𝑉 (2.10) 

 𝑲𝑑
𝑒 = ∫ 𝜌𝑵𝑇𝚼𝑻𝚼 𝑵𝑑V𝑒

 

V𝑒

 (2.11) 
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 𝒇𝑐
𝑒 = ∫ 𝜌𝑵𝑇𝚼𝑻𝚼 𝑵 𝑑V𝑒

 

V𝑒

𝒙𝟎 (2.12) 

 

2.1.2. 10-node, Quadratic, Isoparametric Tetrahedron Element 

One of the advantages of using tetrahedron elements in the finite element 

formulations is the ability to create unstructured mesh for complex geometry structures. 

In reality, geometries of rotors are complex and non-axisymmetric; for example, a gas-

turbine rotor with many blades, a screw compressor rotor, a motor armature, etc. High-

order elements, such as the 10-node quadratic tetrahedron shown in Figure 2.2, may be 

preferable choices for developing element matrices for vibration analyses. A quadratic 

tetrahedron mesh can be created by several meshing software packages (SolidWorks, 

MATLAB and etc). The elements are assumed to be isoparametric, and the tetrahedral 

coordinate system is utilized to describe arbitrary points within a tetrahedron element. 

The mapping between the isoparametric natural coordinates 𝜉𝑖 and the actual coordinates 

of the tetrahedron element is given by 

 

 

{

1
𝑥
𝑦
𝑧

} = [

1 1 1 1 ⋯ 1
𝑥1 𝑥2 𝑥3 𝑥4 ⋯ 𝑥10
𝑦1 𝑦2 𝑦3 𝑦4 ⋯ 𝑦10
𝑧1 𝑧2 𝑧3 𝑧4 ⋯ 𝑧10

]{

𝑁1
𝑁2
⋮
𝑁10

} (2.13) 

 

where the shape functions are defined by 
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 𝑁𝑖 = 𝜉𝑖(2𝜉𝑖 − 1) 𝑓𝑜𝑟 𝑖 = 1~4  

𝑁5 = 4𝜉1𝜉2, 𝑁6 = 4𝜉2𝜉3, 𝑁7 = 4𝜉3𝜉1, 𝑁8 = 4𝜉1𝜉4,  

𝑁9 = 4𝜉2𝜉4, 𝑁10 = 4𝜉3𝜉4  

(2.14) 

 

Each element matrix is numerically integrated with 14 Gauss Quadrature points with 4 

coordinates  

 

 

𝐾𝑒 =∑𝑤𝑘𝐹(𝜉1𝑘, 𝜉2𝑘 , 𝜉3𝑘, 𝜉4𝑘)

𝑝

𝑘=1

 (2.15) 

 

where p is the number of Gauss quadrature integration points, 𝜉𝑖𝑘 is the ith direction 

coordinate of the kth Gauss quadrature integration point in the tetrahedral coordinate 

system, and 𝑤𝑘 is the corresponding weight factor.  
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Figure 2.2 10-node quadratic isoparametric tetrahedron element (a) local 10 nodes of the 

element (b) the tetrahedral coordinate system 

 

 

2.1.3. Bearing Model 

The bearing coefficient matrices in the inertial coordinate system consist of four 

stiffness coefficients and four damping coefficients, which are defined as for bearing as  

 

 
𝑲𝑏,𝑖 = [

𝑘𝑏,𝑥𝑥 𝑘𝑏,𝑥𝑦
𝑘𝑏,𝑦𝑥 𝑘𝑏,𝑦𝑦

] (2.16) 

 𝑪𝑏,𝑖 = [
𝑐𝑏,𝑥𝑥 𝑐𝑏,𝑥𝑦
𝑐𝑏,𝑦𝑥 𝑐𝑏,𝑦𝑦

] (2.17) 

 

where 𝑲𝑏,𝑖 and 𝑪𝑏,𝑖 are the stiffness coefficient matrix and the damping coefficient 

matrix in the inertial coordinate system, respectively. An entry 𝑘𝑏,𝑖𝑗 of the stiffness 
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matrix indicates the bearing stiffness coefficient which exerts a force on the journal in 

the i direction due to the journal deflection in the j direction, in the inertial coordinate 

system. Similarly, 𝑐𝑏,𝑖𝑗 is the bearing damping coefficient defined in the same manner 

with respect to the journal velocity. The bearing stiffness matrix 𝑲𝑏,𝑖 has to be 

transformed to the rotor-fixed coordinate system in order to assemble it with the rotor-

fixed, shaft element matrices. Displacement and velocity vectors in the fixed, inertial 

𝑥, 𝑦 coordinates can be transformed to their counterparts in the rotating frame 𝜐, 𝜂 

coordinates by pre-multiplying with the rotation matrix 𝑹 

 

 𝑹 = [
cosΩ𝑡 sinΩ𝑡
− sinΩ𝑡 cos Ω𝑡

] (2.18) 

 

And the displacement and velocity vector in the fixed coordinates can also be expressed 

by the transposed rotation matrix 

 

 
{
𝒙
𝒚} = 𝑹

𝑻 {
𝜻
𝜼
} (2.19) 

 
{
�̇�
�̇�
} = 𝑹𝑻 {

�̇�
�̇�
} + �̇�𝑻 {

𝜻
𝜼
} (2.20) 

 

The bearing force vector exerted by bearing damping and stiffness in the inertial frame 

can be represented as 
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 𝑭𝑏,𝑖 = 𝑪𝑏,𝑖 {
�̇�
�̇�
} + 𝑲𝑏,𝑖 {

𝑥
𝑦} (2.21) 

 

The bearing force vector in the rotating frame can be obtained by pre-multiplying the 

rotation matrix 𝑹 to equation (2.21) 

 

 

𝑭𝑏,𝑟 = 𝑹 𝐹𝑏,𝑖 = 𝑹(𝑪𝑏,𝑖 {
�̇�
�̇�
} + 𝑲𝑏,𝑖 {

𝑥
𝑦})

= 𝑹 𝑪𝑏,𝑖 (𝑹
𝑇 {
𝜁̇

�̇�
} + �̇�𝑇 {

𝜁
𝜂
}) + 𝑹 𝑲𝑏,𝑖𝑹

𝑇 {
𝜁
𝜂
}

= 𝑹 𝑪𝑏,𝑖𝑹
𝑇 {
𝜁̇

�̇�
} + (𝑹 𝑪𝑏,𝑖�̇�

𝑇 + 𝑹 𝑲𝑏,𝑖𝑹
𝑇) {

𝜁
𝜂
} 

(2.22) 

 

Therefore, the bearing coefficient matrices in the rotating frame can be defined by 

 

 𝑪𝑏,𝑟 = 𝑹 ∙ 𝑪𝑏,𝑖 ∙ 𝑹
𝑇 (2.23) 

 𝑲𝑏,𝑟 = 𝑹 ∙ 𝑲𝑏,𝑖 ∙ 𝑹
𝑇 + 𝑹 ∙ 𝑪𝑏,𝑖 ∙ �̇�

𝑇 (2.24) 
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𝑲𝑏,𝑟(1,1) =

𝑘𝑏,𝑥𝑥 + 𝑘𝑏,𝑦𝑦

2
+
𝑘𝑏,𝑥𝑥 − 𝑘𝑏,𝑦𝑦

2
cos 2Ωt −

𝑘𝑏,𝑦𝑥 + 𝑘𝑏,𝑥𝑦

2
sin 2Ωt

+ Ω(
𝑐𝑏,𝑥𝑦 − 𝑐𝑏,𝑦𝑥

2
+
𝑐𝑏,𝑥𝑦 + 𝑐𝑏,𝑦𝑥

2
cos 4Ωt

−
𝑐𝑏,𝑥𝑥 − 𝑐𝑏,𝑦𝑦

2
sin 4Ωt) 

𝑲𝑏,𝑟(1,2) =
𝑘𝑏,𝑥𝑦 − 𝑘𝑏,𝑦𝑥

2
+
𝑘𝑏,𝑥𝑦 + 𝑘𝑏,𝑦𝑥

2
cos 2Ωt −

𝑘𝑏,𝑥𝑥 − 𝑘𝑏,𝑦𝑦

2
sin 2Ωt

+ Ω(−
𝑐𝑏,𝑥𝑥 + 𝑐𝑏,𝑦𝑦

2
−
𝑐𝑏,𝑥𝑥 − 𝑐𝑏,𝑦𝑦

2
cos 4Ωt

−
𝑐𝑏,𝑥𝑦 + 𝑐𝑏,𝑦𝑥

2
sin 4Ωt) 

𝑲𝑏,𝑟(2,1) = −
𝑘𝑏,𝑥𝑦 − 𝑘𝑏,𝑦𝑥

2
+
𝑘𝑏,𝑥𝑦 + 𝑘𝑏,𝑦𝑥

2
cos 2Ωt

−
𝑘𝑏,𝑥𝑥 − 𝑘𝑏,𝑦𝑦

2
sin 2Ωt

+ Ω(
𝑐𝑏,𝑥𝑥 + 𝑐𝑏,𝑦𝑦

2
−
𝑐𝑏,𝑥𝑥 − 𝑐𝑏,𝑦𝑦

2
cos 4Ωt

−
𝑐𝑏,𝑥𝑦 + 𝑐𝑏,𝑦𝑥

2
sin 4Ωt) 

𝑲𝑏,𝑟(2,2) =
𝑘𝑏,𝑥𝑥 + 𝑘𝑏,𝑦𝑦

2
−
𝑘𝑏,𝑥𝑥 − 𝑘𝑏,𝑦𝑦

2
cos 2Ωt −

𝑘𝑏,𝑥𝑦 + 𝑘𝑏,𝑦𝑥

2
sin 2Ωt

+ Ω(
𝑐𝑏,𝑥𝑦 + 𝑐𝑏,𝑦𝑥

2
−
𝑐𝑏,𝑥𝑦 + 𝑐𝑏,𝑦𝑥

2
cos 4Ωt

+
𝑐𝑏,𝑥𝑥 − 𝑐𝑏,𝑦𝑦

2
sin 4Ωt) 

 

(2.25) 
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𝑪𝑏,𝑟(1,1) =

𝑐𝑏,𝑥𝑥 + 𝑐𝑏,𝑦𝑦

2
+
𝑐𝑏,𝑥𝑥 − 𝑐𝑏,𝑦𝑦

2
cos 2Ωt −

𝑐𝑏,𝑦𝑥 + 𝑐𝑏,𝑥𝑦

2
sin 2Ωt 

𝑪𝑏,𝑟(1,2) =
𝑐𝑏,𝑥𝑦 − 𝑐𝑏,𝑦𝑥

2
+
𝑐𝑏,𝑥𝑦 + 𝑐𝑏,𝑦𝑥

2
cos 2Ωt −

𝑐𝑏,𝑥𝑥 − 𝑐𝑏,𝑦𝑦

2
sin 2Ωt 

𝑪𝑏,𝑟(2,1) = −
𝑐𝑏,𝑥𝑦 − 𝑐𝑏,𝑦𝑥

2
+
𝑐𝑏,𝑥𝑦 + 𝑐𝑏,𝑦𝑥

2
cos 2Ωt

−
𝑐𝑏,𝑥𝑥 − 𝑐𝑏,𝑦𝑦

2
sin 2Ωt 

𝑪𝑏,𝑟(2,2) =
𝑐𝑏,𝑥𝑥 + 𝑐𝑏,𝑦𝑦

2
−
𝑐𝑏,𝑥𝑥 − 𝑐𝑏,𝑦𝑦

2
cos 2Ωt −

𝑐𝑏,𝑥𝑦 + 𝑐𝑏,𝑦𝑥

2
sin 2Ωt 

 

(2.26) 

𝑲𝑏,𝑟 and 𝑪𝑏,𝑟 contain time-varying coefficients with the minimum period 𝑇𝑚𝑖𝑛 = 𝜋 Ω⁄  

due to the coordinate system transformation. Therefore, the assembled system matrix 

differential equation  

 

 𝑴�̈�(𝑡) + 2𝛺𝑪(𝑡)�̇�(𝑡) + 𝑲(𝑡)𝒒(𝑡) = Ω2𝒇𝑐 (2.27) 

 

also has time-periodic stiffness 𝑲(𝑡) and rate  𝑪(𝑡) matrices. Figure 2.3 illustrates how 

the bearings are attached to the rotor in the finite element model. Bearing nodes are 

distributed along the circumferential direction, and the shaft at the bearing location 

moves as rigid plane which is imposed via the use of constraint equations which force all 

degrees of freedom located on the cross section to remain in a plane after deformation. 
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Figure 2.3  Bearing connection nodes in the finite element model 

 

2.1.4. Model Reduction 

A finite element model for a complex-shape, non-axisymmetric rotor requires a 

large number of dofs to include sufficient detail for its complex geometry. This large 

number of dofs has to be properly reduced in order to lessen the computational 

requirement. Guyan reduction [55] is utilized to reduce the size of the total system 

matrices, retaining only a certain portion of the total dofs. The selection of retained dofs 

is achieved by comparing mass-to-stiffness ratios of diagonal entries of the mass matrix 

and stiffness matrix as explained in [11]. A mass-to-stiffness ratio for ith dof can be 

represented as 

 

 
𝑅𝑖 =

𝑴𝑖𝑖

𝑲𝑖𝑖
 (2.28) 
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Degrees of freedom dofs which are connected to the bearings may include time-varying 

coefficients and should always be retained. The model reduction yields the reduced 

matrix differential equation as 

 

 𝑴𝑅𝒒�̈�(𝑡) + 2𝛺𝑪𝑅(𝑡)𝒒�̇�(𝑡) + 𝑲𝑅(𝑡)𝒒𝑅(𝑡) = 𝛺2𝒇𝑐
𝑅 (2.29) 

 

2.2. Parametric Vibration Stability Analysis 

2.2.1. Floquet Theory 

The reduced system matrix differential equation includes periodically varying 

coefficients in the stiffness and damping matrices. Time variation of the stiffness, mass 

or damping parameters causes parametric excitation and resulting parametric vibration. 

The theory that is used to evaluate the stability of systems governed by periodically 

varying coefficients is referred to as Floquet theory [54]. The form of equation (2.29) 

with external force terms removed may be written in first-order (state-space) form as 

 

 �̇�(𝑡) = 𝑩(𝑡) 𝑿(𝑡) (2.30) 

 

where the periodic time-varying coefficient matrix 𝑩(𝑡) is  

 

 
𝑩(𝑡) = [

𝟎𝑁 𝑰𝑁

−(𝑴𝑅)
−1
𝑲𝑅(𝑡) −2Ω(𝑴𝑅)

−1
𝑪𝑅(𝑡)

] (2.31) 
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 𝑩(𝑡 + 𝑇𝑚𝑖𝑛) = 𝑩(𝑡) (2.32) 

 

𝑇𝑚𝑖𝑛 is the minimum period of 𝑩(𝑡), and N is the number of retained dofs. The 

Matrizant matrix 𝚽𝑴(𝑡) satisfies 

 

 𝚽�̇�(𝑡) = 𝑩(𝑡)𝚽𝑴(𝑡) (2.33) 

 𝚽𝑴(𝑡0) = 𝑰2𝑁 (2.34) 

 

where 𝑰2𝑁 is the identity matrix of size 2N. The Monodromy matrix is then obtained 

from  

 

 𝑯𝑴 = 𝚽𝑴(𝑇𝑚𝑖𝑛) (2.35) 

 

The Monodromy matrix is obtained by evaluating the Matrizant matrix at 𝑇𝑚𝑖𝑛, and 𝑯𝑴 

is a numerical matrix by virtue of its evaluation at 𝑇𝑚𝑖𝑛. The stability of the system can 

be evaluated by considering the magnitude of the kth eigenvalue 𝜆𝑚𝑘 of 𝑯𝑴. The system 

is asymptotically stable if |𝜆𝑚𝑘| < 1 for all k, asymptotically unstable if |𝜆𝑚𝑘| > 1 for 

any k and marginally stable if |𝜆𝑚𝑘|  = 1 for any k and |𝜆𝑚𝑘| < 1 for all j ≠ k.   
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2.2.2. Hsu’s Method 

The numerical integration based solution for 𝑯𝑴 via (2.33) – (2.35), may take an 

excessive amount of computer time for systems with time-varying 𝑩(𝑡) and a large 

number of dofs. Hsu [31] developed an approximate method to efficiently obtain 𝑯𝑴, by 

dividing the period T into small intervals, and then assume that 𝑩(𝑡) is approximately 

constant within each interval. The piecewise constant coefficient matrix 𝑩𝑘 is obtained 

from 

 

 
𝑩𝑘 =

1

∆𝑘
∫ 𝑩(𝑠)𝑑𝑠
𝑡𝑘

𝑡𝑘−1

 (2.36) 

 

Then the discretized Monodromy matrix is obtained from 

 

 𝑯𝑴(𝐾) = 𝑰𝑁𝑒𝑥𝑝(∆𝐾𝑩𝐾)𝑒𝑥𝑝(∆𝐾−1𝑩𝐾−1)⋯ 𝑒𝑥𝑝(∆1𝑩1) (2.37) 

 

A matrix exponential of a constant coefficient matrix has a constant matrix solution, and 

each solution is independent of the others in (2.37). Hence, the discretized Monodromy 

matrix can be integrated with multiple parallel computing processors. Utilizing parallel 

processing improves computation speed significantly. 
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2.3. Illustration and Validation 

2.3.1. Asymmetric Rectangular Cross Section Rotor Supported by Isotropic 

Bearings 

The parametrically excited, rectangular cross section Jeffcott rotor analyzed in 

[2] is examined as a validation step for the proposed method. The homogeneous 

equation of motion for a Jeffcott rotor with asymmetric shaft stiffness and rigid bearings 

is written in the rotor-fixed coordinate system as 

 

 
[
𝑚 0
0 𝑚

] {
�̈�𝜐
�̈�𝜂
} + [

2(𝑐𝑟 + 𝑐𝑒) −2Ω𝑚

2Ω𝑚 2(𝑐𝑟 + 𝑐𝑒)
] {
�̇�𝜐
�̇�𝜂
}

+ [
𝑘𝜐 −𝑚Ω

2 −𝑐𝑒Ω

𝑐𝑒Ω 𝑘𝜂 −𝑚Ω
2] {

𝑞𝜐
𝑞𝜂
} = 0 

(2.38) 

 

where 𝑚, 𝑐𝑟, 𝑐𝑒, 𝛺, 𝑘𝜐 and 𝑘𝜂 are the point mass, the rotor internal damping, the 

external damping, the spin speed of the rotor, the rotor stiffness along the 𝜐-axis and the 

rotor stiffness along the 𝜂-axis, respectively. Equation (2.38) is written in simplified 

form as 

 

 
{
�̈�𝜐
�̈�𝜂
} + [

2𝜁�̅� −2Ω

2Ω 2𝜁�̅�
] {
�̇�𝜐
�̇�𝜂
} + [

�̅�2(1 + 𝑞) − Ω2 −2𝜁𝑒�̅�Ω

2𝜁𝑒�̅�Ω �̅�2(1 − 𝑞) − Ω2
] {
𝑞𝜐
𝑞𝜂
} = 0 (2.39) 

 

where �̅�2 = (𝑘𝜐 + 𝑘𝜂) 2𝑚⁄ , 𝑞 = (𝑘𝜐 − 𝑘𝜂) 2𝑚�̅�
2⁄ ,  𝜁𝑒 = 𝑐𝑒 2𝑚�̅�⁄  , 𝜁𝑟 = 𝑐𝑟 2𝑚�̅�⁄  , 𝜁 =

𝜁𝑟 + 𝜁𝑒 
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The characteristic equation of equation for (2.39) is  

 

 �̅�4 + 4𝜁�̅�3 + 2(1 + 2𝜁2 + Ω̅2)�̅�2 + 4[𝜁 + (𝜁𝑒 − 𝜁𝑟)Ω̅
2]�̅�

+ [(Ω̅2 − 1)2 + 4𝜁𝑒Ω̅
2 − 𝑞2] = 0 

(2.40) 

 

where Ω̅ = Ω/�̅�, s̅ = s/�̅�. Application of the Routh-Hurwitz stability criteria to the roots 

of equation (2.40) yields the following stability criteria: 

 

 𝜁 + (𝜁𝑒 − 𝜁𝑟)�̅�
2 > 0, 

−(𝜁𝑟 𝜁⁄ )2�̅�4 + (1 − 𝜁𝑟
2)�̅�2 + 𝜁2 − (𝑞 2⁄ )2 > 0, 

(�̅�2 − 1)2 + 4𝜁𝑒
2𝛺2 − 𝑞2 > 0 

(2.41) 

 

The first two conditions of equation (2.41) determine instability due to internal damping, 

and the last condition determines instability by parametric excitation due to the rotor 

asymmetry 𝑞. For undamped systems, the instability criteria from the last condition of 

equation (2.41) becomes 

 

 𝜆𝜐 < 𝛺 < 𝜆𝜂 

𝑤ℎ𝑒𝑟𝑒 𝜆𝜐
2 = 𝜆2(1 − 𝑞) = 𝑘𝜐 𝑚⁄  

𝑎𝑛𝑑 𝜆𝜂
2 = 𝜆2(1 + 𝑞) = 𝑘𝜂 𝑚⁄  

𝑎𝑛𝑑 (𝑘𝜂 > 𝑘𝜐) 

(2.42) 
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Thus, the undamped asymmetric rotor will be unstable at running speeds between the 

undamped natural frequencies in the 𝜐𝑧 and 𝜂𝑧 planes. These results are utilized as a 

validation step for the proposed general, numerical approach using Hsu’s approximation 

for the Monodromy matrix. The asymmetry of the rectangular cross section rotor with 

height ℎ and width 𝑤 is characterized by 

 

 
𝑞𝑟 = 𝑎𝑏𝑠 (

ℎ − 𝑤

ℎ + 𝑤
) (2.43) 

 

The rotor spins about the 𝑧-axis at the constant spin speed 𝛺. An 8-coefficient bearing 

model is included at each end of the rotor. The Young’s modulus and Poisson’s ratio of 

the model are 200 GPa and 0.3, respectively. A mesh convergence study was conducted 

for the four lowest natural frequencies of the rotor with the rotor asymmetry 𝑞𝑟 = 0.1. 

The results are plotted in Figure 2.4. The rotor mesh density was then selected to be 

within the range for which the four lowest natural frequencies are well converged. 

Figure 2.5 shows the rotor mesh for 𝑞𝑟= 0.1, including 12,262 elements and 19,935 

nodes, with 59,805 dof. The monodromy matrix in (2.35) is of order twice the number of 

retained degrees of freedom, which would equal 119,610 without Guyan reduction. This 

is excessive from a computation time perspective therefore Guyan reduction must be 

applied. The retained degrees of freedom include all degree of freedom that have time 

varying stiffness or damping terms plus those with the largest 𝑅𝑖 ratios in (2.28). A study 

is conducted utilizing the 4 lowest undamped natural frequencies of the non-spinning 

rotor as a measure of convergence with respect to increasing the number of retained 
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degrees of freedom. Figure 2.6 shows the four lowest undamped natural frequencies vs. 

the number of the retained dofs. The graph shows steep drops of two of these 

frequencies at 40 and 50 dof and then the frequencies converge. The converged values 

for the undamped natural frequencies are listed Table 2.1. 

 

 

 

 

 

Figure 2.4  Undamped natural frequencies of the rectangular rotor-bearing system (𝑞𝑟= 

0.1) vs. number of elements 
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Figure 2.5  Mesh for the asymmetric rectangular rotor with 𝑞𝑟  = 0.1 

 

 

Table 2.1 Undamped natural frequencies of asymmetric non-spinning rotors 

qr Modes 𝜐𝑧 plane 𝜂𝑧 plane 

0.01 
1st bending mode 367 rad/s 371 rad/s 

2nd bending mode 878 rad/s 879 rad/s 

0.05 
1st bending mode 358 rad/s 380 rad/s 

2nd bending mode 871 rad/s 884 rad/s 

0.10 
1st bending mode 347 rad/s 390 rad/s 

2nd bending mode 864 rad/s 892 rad/s 

 

 

Convergence on natural frequencies is neither a necessary nor a sufficient condition for 

convergence on monodromy matrix eigenvalues, and ultimately on prediction of 

parametric excitation instabilities.  
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Figure 2.7 shows the maximum magnitude eigenvalue 𝜆𝑚𝑘 of the monodromy 

matrix  𝑯𝑀 through an unstable speed range for various values of the number of retained 

degrees. For the preceding example, only 0.1% of the total number of system degrees of 

freedom needed to be retained for converged results to occur. The effect of rotor 

asymmetry on parametric stability is clearly presented in Figure 2.8. As expected the 

undamped spinning rotor is marginally stable over the entire speed range when 𝑞𝑟 = 0.0 

(no asymmetry). The unstable speed ranges appear in the vicinities of 𝛺 = 370 rad/s and 

𝛺 = 880 rad/s for the rotor asymmetry greater than 0, and the width of each unstable 

speed range becomes larger as the rotor asymmetry increases. These results are 

consistent with eq. (2.42) and the natural frequencies in Table 2.1. The first and second 

bending modes occur in the spin speed range in Figure 2.8. The unstable speed ranges 

are seen to occur between the undamped natural frequencies in the 𝑥𝑧 plane and the 𝑦𝑧 

plane for both first and second bending modes, consistent with equation (2.42). 

Gyroscopic effects are negligible for this example. 
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Figure 2.6  The four lowest undamped natural frequencies of the rotor-bearing system 

(for 𝑞𝑟=0.1) versus the number of the retained dofs 

 

 

Figure 2.7  Maximum magnitude, monodromy matrix eigenvalue vs. spin speed for 

various numbers of retained dofs. 
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2.3.2. Asymmetric Rectangular Rotors with Asymmetric Bearings 

The bearing asymmetry parameter 𝑞𝑏 is defined as 

 

 
𝑞𝑏 = 𝑎𝑏𝑠 (

𝑘𝑏,𝑥𝑥 − 𝑘𝑏,𝑦𝑦

𝑘𝑏,𝑥𝑥 + 𝑘𝑏,𝑦𝑦
) (2.44) 

 

where 𝑘𝑏,𝑥𝑥 and 𝑘𝑏,𝑦𝑦 are the bearing stiffness in the 𝑥-axis and the 𝑦-axis of the inertial 

coordinate system, respectively. Figure 2.9 illustrates the unstable spin speed ranges of 

the rotor-bearing system with 𝑞𝑟 = 0.1 for the four different levels of the bearing 

asymmetry. The first unstable speed range (346 rad/s ≤ 𝛺 ≤ 390 rad/s) corresponding to 

the first bending modes is nearly invariant with respect to bearing asymmetry. The 

second unstable speed range (864 rad/s ≤ 𝛺 ≤ 892 rad/s) corresponding to the second 

bending modes splits into the three parts with increasing bearing asymmetry. The 

unstable range separates into 3 distinct unstable sub-ranges, and increases in total width 

by 60% as 𝑞𝑏 increases from 0 to 0.1. In addition, the overall magnitude of the 

maximum eigenvalue for each unstable range decreases as 𝑞𝑏 increases. The instability 

criterion from the analytical approach in equation (2.42) is not applicable for asymmetric 

rotors with asymmetric bearings. Instead a time-transient, numerical integration [9] is 

performed to identify stable and unstable speed ranges.  The Runge-Kutta method is 

applied to equation (2.29), with 𝑞𝑟 = 0.1, to obtain nodal displacements and velocities 

vs. time. Figure 2.10 (a) and (b) show the y displacement at the bearing location vs. 

number of revolutions at five different spin speeds: 𝛺 = 885 rad/s and 𝛺 = 911 rad/s. The 
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system is marginally stable at 𝛺 = 911 rad/s, and unstable at 𝛺 = 885 rad/s, in agreement 

with the Floquet stability result in Figure 2.9. Comparison between 𝑞𝑏 = 0 and 𝑞𝑏 = 0.1 

in Figure 2.9 shows that the unstable speed ranges of the asymmetric rotor may shift due 

to bearing asymmetry. For example, the system is unstable at 𝛺 = 885 rad/s, and stable at 

𝛺 = 911 rad/s with zero bearing asymmetry qb = 0. This is reversed when the bearing 

asymmetry is increased to qb = 0.1. The latter case results are verified by direct time-

transient, numerical integration as presented in Figure 2.10 (c) and (d). The system is 

stable at 𝛺 = 885 rad/s and unstable at 𝛺 = 911 rad/s, consistent with Figure 2.9.  
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Figure 2.8  Maximum magnitude, monodromy matrix eigenvalue vs. spin speed vs. 𝑞𝑟 

 

 

 

 

Figure 2.9  Maximum magnitude, monodromy matrix eigenvalue vs. spin speed vs. 𝑞𝑏 

for the rectangular rotor-bearing system (𝑞𝑟= 0.1) 
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2.3.3. Damping Effects on the Stability of an Asymmetric Rotor-Bearing System 

The addition of external damping to conventional undamped rotor models 

without rotor asymmetry, will always improve stability.  Likewise, the addition of 

external damping to a rotor model with rotor asymmetry also mitigates parametric 

excitation instability. Bearings are generally the main source of external damping in 

rotor-bearing systems [2]. The bearing damping coefficient matrix in the rotor-fixed 

coordinate system 𝐶𝑏,𝑟 was derived from the bearing damping matrix in the inertia 

coordinate system 𝐶𝑏,𝑖 in equation (2.17). For sake of simplicity the bearing damping 

𝐶𝑏,𝑖 is assumed to be isotropic without cross-coupled damping terms, i.e. 𝑐𝑏,𝑥𝑥 = 𝑐𝑏,𝑦𝑦 =

𝑐𝑏,𝑛 and 𝑐𝑏,𝑥𝑦 = 𝑐𝑏,𝑦𝑥 = 0. Hence by (2.17) and (2.23), 

 

 𝑪𝑏,𝑖 = 𝑪𝑏,𝑟 = 𝑐𝑏,𝑛𝐼2 (2.45) 

 

Define the damping ratio 𝜁 as 

 𝜁 =
𝑐𝐸

2√𝑚𝑟𝑘𝐸
 (2.46) 

 

where 𝑐𝐸, 𝑚𝑟 and 𝑘𝐸  are the equivalent bearing damping coefficient, the rotor mass and 

the equivalent bearing stiffness coefficient, respectively. For example, the damping ratio, 

𝜁 = 10% can be calculated by considering 𝑐𝐸 = 7.2 e3 N/(m/s), 𝑚𝑟= 65.154 kg, and 𝑘𝐸  = 

2.0 e7 N/m. Figure 2.11 shows the maximum magnitude, monodromy matrix eigenvalue 

vs. spin speed for the case of 𝑞𝑟 = 0.1 and 𝑞𝑏 = 0.0. Results are shown for various 
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damping ratios. The inclusion of 𝜁 = 10% external damping has the effects of decreasing 

the intensity and speed range of the 1st mode instability, and completely eliminating the 

2nd mode instability range. Similarly, the 1st mode instability range is completely 

eliminated when 𝜁 = 30%. The stabilizing effect of bearing damping can also be verified 

by the direct time-transient integration method. Figure 2.10 (e) shows the y direction 

response of a nodal displacement at the bearing location with bearing damping ζ = 30%, 

for a spin speed:  𝛺 = 885 rad/s. The bearing damping causes the nodal displacements to 

converge to zero.  
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Figure 2.10  y displacement at the bearing location vs. time (a) 𝑞𝑟 = 0.1, 𝑞𝑏 = 0.0, 𝛺 = 

885 rad/s, (b) 𝑞𝑟 = 0.1, 𝑞𝑏 = 0.0, 𝛺 = 911 rad/s, (c) 𝑞𝑟 = 0.1, 𝑞𝑏 = 0.1, 𝛺 = 885 rad/s, 

(d) 𝑞𝑟 = 0.1, 𝑞𝑏 = 0.1, 𝛺 = 911 rad/s, (e) , (d) 𝑞𝑟 = 0.1, 𝑞𝑏 = 0.0, ζ = 0.3, 𝛺 = 885 rad/s 
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Figure 2.11  Maximum magnitude, monodromy matrix eigenvalue vs. spin speed with 

(𝑞𝑟 = 0.1, 𝑞𝑏 = 0.0) vs. 𝜁 

 

 

2.4. Computation speed enhancement 

Demands for longer, more lightweight and more geometrically complex rotors 

have produced a need for higher fidelity structural models that include very large 

numbers of dofs. The stability evaluation approach presented here is highly efficient and 

benefits from Hsu’s approach being amenable to discretization and parallelization. Hsu’s 

approximate evaluation of (2.33) – (2.35) is accurate as demonstrated by the results 

shown in Figure 2.12. The “without Hsu” approach corresponds with numerically 

integrating the full set of equation in (2.33) – (2.35) without assumptions or 

approximations. The “with Hsu” approach follows the approximate evaluation of the 

monodromy system matrix outlined in (2.36) and (2.37).   
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Figure 2.13 shows plots of the ratio of computation time for full numerical 

integration of (2.33) – (2.35) divided by time to evaluate the monodromy matrix with 

Hsu’s approach. Hsu’s method without parallel-processing is 100 times faster than the 

conventional Floquet method. Parallelization with Hsu’s approach further improves 

computational efficiency so that the ratio becomes 400 or more. A 12-core computing 

system is utilized for the parallel-processing. The computation speed improvement by 

the parallel-processing becomes more effective as the number of dofs increases.   

Figure 2.13 (b) shows the corresponding ratio of full Floquet to Hsu approach for 

the maximum magnitude, Monodromy matrix eigenvalue. This comparison indicates the 

relative error by the Hsu approximation is less than 0.0001%. 
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Figure 2.12  Maximum magnitude, monodromy matrix eigenvalue vs. spin speed with 

(𝑞𝑟 = 0.1, 𝑞𝑏 = 0.0) for with and without Hsu’s method 

 

 

  

Figure 2.13  Computation speed comparison for the rotor-bearing system  

(𝑞𝑟 = 0.1, 𝑞𝑏 = 0.0) 
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2.5. Comparison between the proposed method and Hill’s method 

References [26, 13, 29] utilize Hill’s method to predict instabilities of non-

axisymmetric rotor bearing systems. The method is briefly summarized in this section. 

According to Floquet theory, a solution of the homogeneous form of (2.29) has the form 

[29, 56] 

 

 𝑝(𝑡) = 𝑝𝑛(𝑡)𝑒
𝛼𝑡 (2.47) 

 

where 𝑝𝑛(𝑡) is a periodic function of time with period 𝑇𝑚𝑖𝑛 and  𝛼𝐹 is a Floquet 

exponent. The unknown periodic function 𝑝𝑛(𝑡) can be expressed by the general Fourier 

series  

 

 𝑝𝑛(𝑡) = ∑ 𝑝𝑗𝑒
𝑖𝑗2Ω𝑡

𝑗=∞

𝑗=−∞

 (2.48) 

 

Substituting (2.47) and its derivatives into the homogeneous form of (2.29), yields an 

infinite set of algebraic equations for the unknown terms in (2.48) which can be stated in 

matrix form as 
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[
 
 
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋰
⋯ 𝐴−2 𝐵    ⋯

⋯ 𝐶 𝐴−1 𝐵   ⋯

⋯  𝐶 𝐴0 𝐵  ⋯

⋯   𝐶 𝐴+1 𝐵 ⋯

⋯    𝐶 𝐴+2 ⋯

⋰ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]
 
 
 
 
 
 

{
  
 

  
 
⋮
𝑝−2
𝑝−1
𝑝0
𝑝+1
𝑝+2
⋮ }
  
 

  
 

=

{
  
 

  
 
⋮
0
0
0
0
0
⋮}
  
 

  
 

 (2.49) 

 

where 𝑨𝑗 = −𝑴𝑅(𝜶2 + 𝟒𝒋𝛀 + 𝟒𝒋2𝛀2) + 𝑪𝑅(𝜶 + 𝟐𝒋𝛀)𝒊 + 𝑲0
𝑅, 𝑩 = (𝑲𝒄

𝑅 + 𝒊𝑲𝒔
𝑅) 𝟐⁄ , 

𝑪 = (𝑲𝒄
𝑅 − 𝒊𝑲𝒔

𝑅) 𝟐⁄ . 𝑲0
𝑅, 𝑲𝒄

𝑅, and 𝑲𝒔
𝑅 are the coefficient matrix of the constant term, the 

coefficient matrix of the cosine term and the coefficient matrix of the sine term of the 

reduced stiffness matrix 𝑲𝑅, respectively. The determinant associated with (2.49) is 

called Hill’s infinite determinant, and an eigenproblem linked with it can be used to 

predict the stability of periodically time-varying systems. Approximate solutions for the 

eigenproblem can be obtained by truncating the matrix in Equation (2.49). The 

maximum value of j, jmax is the truncation number and it has to be determined properly 

for an accurate solution.  In the prior research [26, 13, 29], various values of jmax have 

been used in the range from 2 to 5. Parametrically excited Jeffcott rotor models both in 

the inertial coordinate system and in the rotor-fixed coordinate system [57] were 

presented to verify applications of Hill’s method. The equation of motion of the Jeffcott 

rotor model in the inertial coordinate system can be written 
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𝑚�̈� + (𝑐𝑟 + 𝑐𝑏)�̇� + (𝑘�̅� + 𝑘𝑥 + 𝑘𝑖
′ cos 2Ω𝑡)𝑥 + (𝑐𝑟Ω+ 𝑘𝑖

′ sin 2Ω𝑡)𝑦

= 𝑚Ω2𝑎 cosΩ𝑡 

𝑚�̈� + (𝑐𝑟 + 𝑐𝑏)�̇� + (𝑘�̅� + 𝑘𝑦 + 𝑘𝑖
′ cos 2Ω𝑡)𝑦 + (𝑐𝑟Ω+ 𝑘𝑖

′ sin 2Ω𝑡)𝑥

= 𝑚Ω2𝑎 sinΩ𝑡 

(2.50) 

 

where 𝑘�̅� =
𝑘𝜐+𝑘𝜂

2
, 𝑘𝑖

′ =
𝑘𝜐−𝑘𝜂

2
. Equation (2.50) can be transformed into the rotor-fixed 

coordinate system as 

 

 

𝑚�̈� + (𝑐𝑟 + 𝑐𝑏)�̇� + (𝑘𝑟̅̅ ̅ + 𝑘𝜐 + 𝑘𝑟
′ cos 2Ω𝑡 − 𝑚Ω2)𝜐 − 2𝑚Ω�̇�

− (𝑐𝑏Ω+ 𝑘𝑟
′ sin 2Ω𝑡)𝜂 = 𝑚Ω2𝑎 

𝑚�̈� + (𝑐𝑟 + 𝑐𝑏)�̇� + (𝑘𝑟̅̅ ̅ + 𝑘𝜂 − 𝑘𝑟
′ cos 2Ω𝑡 − 𝑚Ω2)𝜂 + 2𝑚Ω�̇�

+ (𝑐𝑏Ω− 𝑘𝑟
′ sin 2Ω𝑡)𝜐 = 0 

(2.51) 

 

where 𝑘𝑟̅̅ ̅ =
𝑘𝑥+𝑘𝑦

2
, 𝑘𝑟

′ =
𝑘𝑥−𝑘𝑦

2
, 𝑚 = 75.8 kg, 𝑐𝑟 = 𝑐𝑏 = 0, 𝑘𝜐 = 1.25e6 N/m, 𝑘𝜂 = 5.0e6 

N/m, 𝑘𝑥 = 1.0e7, 𝑘𝑦 = 1.0e6. Figure 2.14 shows the results from instability prediction 

from both Hill’s method and Hsu’s method in both reference frames. The convergence 

of Hill’s method is achieved by jmax = 2. Hill’s method in the rotor-fixed coordinate 

system predicts instabilities in the speed ranges around 𝛺 = 180 rad/s and from 𝛺 = 200 

rad/s to 𝛺 = 340 rad/s, whereas unstable speed ranges determined by Hsu’s methods are 

from 𝛺 = 200 rad/s to 𝛺 = 253 rad/s and from 𝛺 = 300 rad/s to 𝛺 = 340 rad/s. Time-

transient, numerical integration is performed to verify the results. Figure 2.15 shows the 
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nodal displacements in the 𝑥-axis vs. number of revolutions at rotor spin speeds: 𝛺 = 

220 rad/s, 𝛺 = 280 rad/s and 𝛺 = 320 rad/s. The system is marginally stable only when 𝛺 

= 280 rad/s, hence, the results imply that Hill’s method in the rotor-fixed coordinate 

system inaccurately predicts at the speed range from 𝛺 = 253 rad/s to 𝛺 = 300 rad/s. 

 

 

 

 

Figure 2.14  Stability predictions of the Jeffcott rotor-bearing model by (a) Hsu’s 

method, (b) Hill’s method (jmax=2) 
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Figure 2.15  y axis displacement of the Jeffcott rotor at rotor spin speed: (a) 𝛺 = 220 

rad/s, (b) 𝛺 = 280 rad/s, (c) 𝛺 = 320 rad/s 

 

Hill’s method is also tested with the 3D solid rotor bearing system in Figure 2.5 

(𝑞𝑟=0.1). Figure 2.16 compares the two methods for both the isotropic bearings (𝑞𝑏=0.0) 

and asymmetric bearings (𝑞𝑏=0.1) cases. The convergence of Hill’s method is achieved 

by jmax = 3. While the instability predictions for both methods agree well in the isotropic 

bearings, both methods present different stability predictions when it comes to the 

asymmetric bearing case. As shown in Figure 2.16, Hill’s method predicts that the 

system become unstable at the speed range from 𝛺 = 883 rad/s to 𝛺 = 918 rad/s, whereas 

Hsu’s method gives the opposite prediction on the speed range from 𝛺 = 883 rad/s to 𝛺 

= 900 rad/s. As verified by time-transient, numerical integration in Figure 2.10 the 

system (𝑞𝑟=0.1, 𝑞𝑏=0.1) is diverging at 𝛺 = 885 rad/s and it implies that Hsu’s method 

predicts the unstable speed ranges accurately for the 3D solid rotor bearing system in the 

rotor-fixed coordinate system, and Hill’s does not. Figure 2.17 illustrates computation 
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time ratios of Hill’s method to Hsu’s method vs. the number of dofs in terms of jmax. The 

graphs show that the computational speed becomes slow as jmax of Hill’s method 

increases and Hsu’s method becomes more advantageous than Hill’s method as the 

number of dofs increases. For example, at 500 dofs, Hsu’s method is 63 times, 181 times 

and 423 times faster than Hill’s method for jmax = 2, jmax = 3 and jmax = 4, respectively. 

 

 

 

 

Figure 2.16  Stability predictions by Hsu’s method and Hill’s method (jmax=3) for (a) 

𝑞𝑟 = 0.1, 𝑞𝑏 = 0.0, (b) 𝑞𝑟 = 0.1, 𝑞𝑏 = 0.1 
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Figure 2.17  Computation time comparison between Hsu’s method and Hill’s method 

 

 

2.6. Non-parametric instabilities detection 

This section provides examples that verify the proposed method may be used to 

detect non-parametric instabilities, such as classical oil whirl instability. This is 

demonstrated using a Timoshenko beam element model of the shaft, and stiffness and 

damping representations of the fluid film journal bearings. The steel shaft model has a 

0.1 m diameter, 2.0 m length and 20 kg disk in the middle. The 2-axial groove fluid film 

bearings are modeled with 10° Χ 2 oil groove angles, 0.05 m bearing length, 100 μm 

assembled bearing clearance, 200 μm machined bearing clearance and 9.37 mPas 

absolute viscosity of the lubricant [58]. The homogeneous system matrix differential 

equation can be expressed as 

 

 𝑴𝑻�̈�(𝑡) + 𝑪𝑻�̇�(𝑡) + 𝑲𝑇𝒒(𝑡) = 𝟎 (2.52) 
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Equation (2.52) can be converted into a first order form as 

 

 �̇�(𝑡) = 𝑫 𝑿(𝑡) (2.53) 

 

The coefficient matrix 𝐵(𝑡) in Eq. (2.31) becomes the constant matrix 𝑫. Then 𝑯𝑀 in 

Eq. (2.37) becomes 

 

 𝑯𝑴 = 𝑰𝑁𝑒𝑥𝑝(𝑇𝑚𝑖𝑛 𝑫) (2.54) 

 

Let 𝜈 be an eigenvector of 𝑫 with corresponding eigenvalue 𝜆 = 𝛼 + 𝛽𝑖, then 𝜈 is also 

an eigenvector of 𝑇𝑚𝑖𝑛 𝑫 with eigenvalue �̃� = 𝑇𝑚𝑖𝑛𝛼 + 𝑇𝑚𝑖𝑛𝛽𝑖.  By reference [59] 𝜈 is 

an eigenvector of the matrix exponential 𝑯𝑴 with corresponding eigenvalue �̂� = 𝑒 �̃�, and 

the magnitude of the eigenvalue is |�̂�| = |𝑒𝑇𝑚𝑖𝑛𝛼+𝑇𝑚𝑖𝑛𝛽𝑖| = 𝑒𝑇𝑚𝑖𝑛𝛼. Then 𝛼 and |�̂�| are 

related by  

 

  𝑖𝑓 𝛼 ≤ 0, |�̂�| ≤ 1 

𝑖𝑓 𝛼 > 0, |�̂�| > 1,  

(2.55) 

 

Therefore, the stability of the system is solely determined by the eigenvalues of 𝑫 

regardless of the non-zero constant 𝑇𝑚𝑖𝑛, The above shows the equivalence of 

determining stability either by searching for Monodromy matrix eigenvalues of 
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magnitude greater than 1, or by searching for real parts of eigenvalues of 𝑫 that are 

positive, for the non-parametrically excited case. Figure 2.18 shows the stability results 

for both (a) the Monodromy matrix method and (b) conventional eigenvalue method. It 

can be concluded that the proposed method can accurately predict instabilities in rotor-

bearing systems where both parametric and non-parametric instabilities exist.  

 

 

Figure 2.18  Axisymmetric Timoshenko beam rotor on the fluid film journal bearing (a) 

maximum magnitude, monodromy matrix eigenvalue vs. spin speed, (b) maximum real 

part, 𝑫 matrix eigenvalue vs. spin speed 
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Figure 2.19  Mesh of the Root impeller 

 

2.7. Root Impeller Case Study 

Bishop and Parkinson examined a second order forced vibration on 2-pole 

turbogenerators [60] due to the 2 planes of unequal rotor stiffness interacting with 

gravity loading. Similarly, other turbo machines that have multiple poles have non-

axisymmetric rotors, such as Root type impellers. Figure 2.19 shows a Root impeller that 

are non-axisymmetric, having shaft stiffness in the two principal axes that are not 

identical. In this section, the stability of the Root impeller is analyzed with respect to an 

influence of bearing stiffness asymmetry and bearing damping. The properties of steel 

are used in the FE model. Table 2.2 lists the bearing coefficients with respect to 𝑞𝑏. 

Figure 2.20 shows the maximum magnitude, monodromy matrix eigenvalue vs. spin 



 

54 

 

speed ratio vs. bearing damping ratio for the Root impeller. The unstable range spans 

from 325 rad/s to 333 rad/s with the damping ratio ζ = 0%. The magnitude and width of 

the unstable range gradually decrease as ζ increases, and the unstable range vanishes for 

ζ = 1.0%. 

 

Table 2.2  Bearing stiffness coefficients for the Root impeller 

Bearing stiffness 

coefficients 

𝑞𝑏 0.00 0.02 0.05 0.10 0.20 

𝑘𝑏_𝑥𝑥 (N/m) 1.5e7 1.47e7 1.43e7 1.35e7 1.2e7 

𝑘𝑏_𝑦𝑦 (N/m) 1.5e7 1.53e7 1.58e7 1.65e7 1.8e7 

 

 

 

 

Figure 2.20  Maximum magnitude, monodromy matrix eigenvalue vs. spin speed vs. 𝜁 

for the Root impeller with (𝑞𝑏 = 0) 
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Figure 2.21  Maximum magnitude, monodromy matrix eigenvalue vs. spin speed vs. 𝑞𝑏 

for the Root impeller 

 

Figure 2.21 illustrates the variation of the unstable range due to change in the bearing 

asymmetry parameter 𝑞𝑏. The unstable range begins to split into the three separated 

unstable intervals as 𝑞𝑏  increases. The total width of the three unstable ranges after full 

separation is 54% wider than the width of the unstable range with the isotropic bearings. 

The first range moves toward the lower speed, and the third range approaches the higher 

speed, while the second range tends to remain in the vicinity of its original range as the 

bearing asymmetry increases. The stability evaluation results can be verified by direct 

time-transient, numerical integration. Figure 2.22 plots the nodal displacements at the 

bearing nodes in the y-axis versus the number of revolutions for the Root impeller with 

𝑞𝑏 = 0.00 and ζ = 0%. The rotor-bearing system is marginally stable at 320 rad/s and 340 

rad/s, but diverges at 330 rad/s as predicted in Figure 2.20. Figure 2.23 shows the 

unstable speed ranges when a cross-coupled stiffness of 𝑘𝑏_𝑥𝑦 = −𝑘𝑏_𝑦𝑥 = 7.5e5 N/m is 
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added to the model at the bearing location. A comparison of Figure 2.21 with Figure 

2.23 shows that unstable sub-ranges are combined or merged when cross-coupled 

stiffness is included. The Root impeller example illustrates how parametrically excited 

instabilities may occur when the rotor speed is in the vicinity of the two natural 

frequencies that are the lowest bending modes corresponding to the two-principal rotor 

stiffnesses being in series with the same (isotropic) bearing stiffness, at zero rpm. The 

unstable speed range may be split into isolated sub ranges by the presence of bearing 

asymmetry.  

 

 

 

 

Figure 2.22  Bearing y nodal displacement at the bearing location for the root impeller 

with (𝑞𝑏 = 0.0, 𝜁 = 0.0) at speeds: (a) Ω=320 rad/s, (b) Ω=330 rad/s, (c) Ω=340 rad/s 

 

 



 

57 

 

 

Figure 2.23  Maximum magnitude, monodromy matrix eigenvalue vs. spin speed vs. 𝑞𝑏 

for the Root impeller with 𝑘𝑏_𝑥𝑦 = −𝑘𝑏_𝑦𝑥 = 7.5e5 N/m 

 

2.8. Conclusion 

An efficient method was presented for rotordynamic stability simulation of 

systems with non-axisymmetric rotors and bearings, modeled with 3D solid finite 

elements. Ten (10) node quadratic tetrahedron elements were developed for modelling 

the non-axisymmetric rotor. Guyan reduction was utilized to reduce the dimension of the 

matrix differential equation to efficiently evaluate its monodromy matrices. Parametric 

instabilities in non-axisymmetric rotor-bearing systems were determined with Floquet 

theory, exploiting Hsu’s method to discretize the Monodromy matrix. Numerical 

integration and a Routh-Hurwitz test were utilized to validate the approach for a Jeffcott 

rotor model with rectangular cross section. Use of Hsu’s method and parallel 

computation for evaluation of Monodromy matrices accelerated the computation time by 

a factor of 400 or more. The approximate Hsu approach was demonstrated to be highly 

accurate with a large order model example. Parametric studies were conducted to 
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determine the effect of varying bearing and rotor asymmetry on the intensity of the 

instability and the speed ranges over which it will occur. The prior method using Hill’s 

infinite determinant was compared with the proposed method using Hsu’s method. The 

presented results imply that applications of Hill’s method may be limited to the inertial 

coordinate system or to small level of bearing asymmetry in the rotor-fixed coordinate 

system, whereas the proposed method in this paper using Hsu’s method accurately 

predicts the instability of the 3D solid rotor-bearing systems having complex geometries 

which require a large number of dofs and description in the rotor-fixed coordinate 

system without limitation of the level of bearing asymmetry. It was also shown that the 

proposed method becomes more advantageous as the number of dofs increases with 

respect to computational efficiency. A demonstration model with a Timoshenko beam 

rotor and fluid film journal bearings was developed to show that the proposed method 

can detect both parametric and non-parametric instabilities. A Root type impeller 

example was presented to illustrate the possibility of parametric instability (resonance) 

for practical, non-axisymmetric rotors. The system exhibited unstable behavior at spin 

speeds near the first bending modes, undamped natural frequencies. The unstable speed 

range split into the three parts and its total width increased by 54 % as the asymmetry of 

the bearings increased. A 1.5% bearing damping ratio was shown to suffice to suppress 

the parametric instability for the Root impeller model.  



 

 

3. 3D SOLID FINITE ELEMENT CONTACT MODEL FOR ROTORDYNAMIC 

ANALYSIS: EXPERIMENT AND SIMULATION* 

 

3.1. Finite Element Formulation 

3.1.1. Equations of Motion of Rotor-Bearing System 

The focus of the present study is accurate predictions for arbitrary geometry, 

rotor-bearing systems with internal, preloaded contact interfaces. The geometry is best 

modeled with 3D solid finite elements. A standard form for the equations of motion of a 

rotor-bearing system is 

 

 𝑴�̈�(𝑡) + 𝑪(𝑡)�̇�(𝑡) + 𝑲(𝑡)𝒒(𝑡) = 𝑭(𝑡) (3.1) 

 

where M, C(t), K(t), F(t) and q(t) are the mass matrix, the damping matrix, the stiffness 

matrix, the external force vector, and the nodal displacement vector, respectively. The 

methodology of this paper can be applied to three generalized rotor-bearing system 

types: (1) axisymmetric rotors with orthotropic bearings, (2) non-axisymmetric rotors 

with isotropic bearings, and (3) non-axisymmetric rotors with orthotropic bearings. For 

axisymmetric rotors with orthotropic bearings, the rotors are described in the inertial 

coordinate system, and bearing dynamic coefficients are independent of time. Thus, 

 

* Reprinted in part with permission from “3D Solid Finite Element Contact Model for Rotordynamic 

Analysis: Experiment and Simulation,” by Oh, J., Kim, B., and Palazzolo, A., 2020. ASME J. Vib. Acoust., 

Copyright 2020 by ASME. 



 

60 

 

time-dependent components in C(t), K(t) are eliminated, and free and forced responses 

may be easily obtained. Non-axisymmetric rotors with isotropic bearings can be 

modeled in a rotor-fixed coordinate system, where the coordinate system rotates with the 

spin speed of the rotor. Both the rotor and the bearing stiffness, mass and damping 

representations are time-independent in the rotor-fixed coordinate system since the 

coordinate system is fixed to the rotor, and the bearings are isotropic. Therefore, a 

standard linear time invariant analysis LTI can be performed for the type 2 systems as 

well. Closed-form solutions are generally unavailable [1] for type 3 systems, however 

stability can be evaluated by using Floquet type methods [20]. Type 2 rotor-bearing with 

contact models are treated in the present paper, while the systems in the other types can 

be approached in a similar manner. 

 

3.1.2. Finite Element Formulation for Rotor-Bearing Systems 

The 3D solid finite element method has the advantage of modeling complex 

geometrical characteristics of the system without a loss of accuracy from using 

simplifying assumptions. In Equation (3.1), K includes the stress stiffness matrix Kσ 

which implements the stress-stiffening effect into the finite element model. The stress-

stiffening effect is an important consideration in preloaded structural analyses. Similar 

with a violin string, the resistance to bending deformation increases if a member is under 

axial tension. In contrast, the bending stiffness decreases if the member has axial 

compressive stress [11]. The stress-stiffening effect on the response of a stacked rotor 
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assembly may be significant as the preload increases. The finite element formulation of 

the stress stiffness matrix is summarized as follows. 

The formulation of the stress stiffness matrix is [11, 9] 

 

 𝑲𝜎
𝑒 = ∫ 𝑮𝑇𝑺𝟎 𝑮 𝑑V𝑒

 

V𝑒

 (3.2) 

 𝑺𝟎 = [

𝒔 𝟎 𝟎

𝟎 𝒔 𝟎

𝟎 𝟎 𝒔
] (3.3) 

 𝒔 = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑦𝑧 𝜎𝑧𝑧

] (3.4) 

 

The numerical integration form of the matrix with Gauss quadrature can be represented 

as 

 

 𝑲𝜎
𝑒 = ∑∑∑𝑤𝛼𝑤𝛽𝑤𝛾 𝑱𝑮

𝒆𝑇 𝑮𝒆𝑇𝑺𝟎
𝒆𝑮𝒆𝑱𝑮

𝒆 𝑑𝑒𝑡 (𝑱𝒆) 

𝑛𝐺

𝛾=1

𝑛𝐺

𝛽=1

𝑛𝐺

𝛼=1

 (3.5) 

 𝑱𝑮
𝑒 =

[
 
 
 
 𝑱
𝒆−𝟏 𝟎 𝟎

𝟎 𝑱𝒆−𝟏 𝟎

𝟎 𝟎 𝑱𝒆−𝟏]
 
 
 
 

 (3.6) 
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 𝑱𝒆 =

[
 
 
 
 
 
 
𝜕𝑥1
𝜕𝜉1

𝜕𝑥2
𝜕𝜉1

𝜕𝑥3
𝜕𝜉1

𝜕𝑥1
𝜕𝜉2

𝜕𝑥2
𝜕𝜉2

𝜕𝑥3
𝜕𝜉2

𝜕𝑥1
𝜕𝜉3

𝜕𝑥2
𝜕𝜉3

𝜕𝑥3
𝜕𝜉3]

 
 
 
 
 
 

 (3.7) 

 

 𝑮𝒆 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁1
𝜕𝜉1

0 0

0
𝜕𝑁1
𝜕𝜉1

0

0 0
𝜕𝑁1
𝜕𝜉1

𝜕𝑁1
𝜕𝜉2

0 0

0
𝜕𝑁1
𝜕𝜉2

0

0 0
𝜕𝑁1
𝜕𝜉2

𝜕𝑁1
𝜕𝜉3

0 0

0
𝜕𝑁1
𝜕𝜉3

0

0 0
𝜕𝑁1
𝜕𝜉3

       …      

𝜕𝑁𝑛
𝜕𝜉1

0 0

0
𝜕𝑁𝑛
𝜕𝜉1

0

0 0
𝜕𝑁𝑛
𝜕𝜉1

𝜕𝑁𝑛
𝜕𝜉2

0 0

0
𝜕𝑁𝑛
𝜕𝜉2

0

0 0
𝜕𝑁𝑛
𝜕𝜉2

𝜕𝑁𝑛
𝜕𝜉3

0 0

0
𝜕𝑁𝑛
𝜕𝜉3

0

0 0
𝜕𝑁𝑛
𝜕𝜉3 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.8) 

 

where x1, x2 and x3 are element geometry coordinates, and ξ1, ξ2 and ξ3 are natural 

coordinates, N1 and Nn are the 1st and nth shape functions, respectively. 
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3.1.3. Finite Element Formulation of Contact Element 

A contact element is used to model the contact stiffness between two different 

domains that share a preloaded interface. In rotor-bearing systems, a rotor may have 

multiple contact interfaces via coupling joints, such as Butt, Hirth, or Curvic joints. The 

contact element is a zero-thickness surface element [11] which defines contact stiffness 

between two contacting faces. Figure 3.1 illustrates the contact element between two 

domains. The shaded faces in the middle of the two layers of the hexahedron elements 

represent the contact elements, and one of the elements is highlighted to visualize unit 

vectors at the contact face. The unit vector en
e is normal to the contact plane, and et1

e and 

et2
e are orthogonal unit vectors tangent to the contact plane. Contact nodes x1 ~ x4 belong 

to the upper domain, whereas x5 ~ x8 belong to the counter domain, and they are paired 

as shown in Figure 3.1 which indicates that the contact nodes are coincident due to the 

conformality of the mesh at the interface. Conformality of interface meshes is a basic 

assumption of the present study, while non-conformal meshes may be dealt with using 

interpolation methods. 
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Figure 3.1  Contact elements (coupled with hexahedron elements) 

 

The finite element formulation for the contact stiffness matrix of the contact element can 

be derived from the potential energy of contact interfaces [11] 

 

 

𝛱𝑐
𝑒 =

1

2
∫ (𝒖𝒆)

𝑇
𝒌𝒄

𝑒 𝒖𝑒𝑑𝑆𝑒

 

𝑆𝑒

=
1

2
∫ (𝒅𝒆)

𝑇
(𝑵𝒊

𝒆)
𝑇
𝒌𝒄

𝑒𝑵𝒊
𝒆 𝒅𝑒𝑑𝑆𝑒

 

𝑆𝑒

=
1

2
(𝒅𝒆)

𝑇
∫ (𝑵𝒊

𝒆)
𝑇
𝒌𝒄

𝑒𝑵𝒊
𝒆𝑑𝑆𝑒

 

𝑆𝑒

 𝒅𝑒 

(3.9) 

 

where Πc
e, ue, kc

e, de, and Ni
e are the potential energy of the contact element, the element 

displacement vector, the element contact stiffness coefficient matrix for a unit area, the 

element nodal dof vector, and the element inter-domain shape function matrix, 

respectively. 
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 𝒉𝒆 = ∫ (𝑵𝒊
𝒆)
𝑇
𝒌𝒄

𝑒𝑵𝒊
𝒆  𝑑S𝑒

 

S𝑒

 (3.10) 

 𝒌𝒄
𝑒 = (𝒆𝑛

𝑒)
𝑇
𝑘𝑐𝑛

𝑒 𝒆𝑛
𝑒 + (𝒆𝑡1

𝑒)
𝑇
𝑘𝑐𝑡1

𝑒 𝒆𝑡1
𝑒 + (𝒆𝑡2

𝑒)
𝑇
𝑘𝑐𝑡2

𝑒 𝒆𝑡2
𝑒 (3.11) 

 

where he is the element contact stiffness matrix. The element normal contact stiffness 

corresponding to en
e is kcn

e.  The tangential stiffnesses corresponding to et1
e and et2

e, are 

kct1
e and kct2

e, respectively. The inter-domain shape function matrix defines the 

displacement field across the contact plane between two elements in contact. For the 

case of a conformal mesh on the contact plane, Ni
e can be represented as 

 

 𝑵𝑖
𝑒 = [

−𝑁1
0
0
 
0
−𝑁1
0
 
0
0
−𝑁1

 ⋯ 
−𝑁𝑛𝑠
0
0

0
−𝑁𝑛𝑠
0

 
0
0

−𝑁𝑛𝑠

| 
𝑁1
0
0
 
0
𝑁1
0
 
0
0
𝑁1

 ⋯ 
𝑁𝑛𝑠
0
0
 
0
𝑁𝑛𝑠
0
 
0
0
𝑁𝑛𝑠

 ] (3.12) 

 

where ns is the number of face nodes, which is 4 for a hexahedron face in this paper, and 

N1 and Nns are the shape functions of the first node and nsth node of the element, 

respectively. The element contact stiffness matrix is evaluated with the following Gauss 

quadrature formula [9] 

 

 𝒉𝑒 = ∑∑𝑤𝛼𝑤𝛽𝑵
𝒆(𝜉1𝛼, 𝜉2𝛽)

𝑇
𝒌𝒄

𝑒𝑵𝒆(𝜉1𝛼, 𝜉2𝛽)𝑑𝑒𝑡 (𝑱(𝜉1𝛼, 𝜉2𝛽))

𝑛𝐺

𝛽=1

𝑛𝐺

𝛼=1

 (3.13) 
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where nG is the number of Gauss quadrature integration points, det(J) is the determinant 

of the Jacobian matrix, ξ1α, ξ2β are Gauss quadrature integration points in the natural 

coordinate system and wα, wβ are the corresponding weight factors. 

The size of he is 6*ns by 6*ns. For example, the size of he for the linear hexahedron 

element is 24 by 24. The matrix he of each element is assembled into the global stiffness 

matrix in Equation (3.1), according to the node connectivity of the system, as 

 

 𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + {𝑲 + 𝑲𝐶}𝒒(𝑡) = 𝑭(𝑡) (3.14) 

 

where Kc is the assembled contact stiffness matrix. Equation (3.14). with external force 

terms removed, is written in first order (state-space) form as 

 

 

�̇� = 𝑨 𝑿 

𝑨 = [
−𝑴−𝟏𝑪 −𝑴−𝟏(𝑲 + 𝑲𝐶)

𝑰 𝟎
] 

(3.15) 

 

where I and 0 are the identity matrix and the null matrix. Damped natural frequencies 

can be obtained from the imaginary parts of the eigenvalues of A, and stability can be 

evaluated from the real parts of the eigenvalues of A. 
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3.1.4. Statistical Model of Contact Stiffness at Contact interfaces 

Peak height distributions of engineering surfaces may be considered as having Gaussian 

distributions [33]. For homogeneous, random isotropic Gaussian surfaces, a statistical 

contact model that is referred to as the GW contact model was developed by Greenwood 

and Williamson. The GW contact model mainly requires a surface profile and plane-

stress modulus E’ which can be calculated by       

 

 
1

𝐸′
=
1 − 𝛾1

2

𝐸1
+
1 − 𝛾2

2

𝐸2
 (3.16) 

 

where E and γ are elastic modulus and Poisson’s ratio, respectively, while subscripts 1 

and 2 refer to the two bodies in contact at the interface. A surface profile z(x) may be 

obtained using a surface roughness measurement device. The three main surface 

roughness parameters for the relation between contact pressure and contact stiffness can 

then be evaluated from the measured surface profile z(x). These parameters are ηs  

indicating the area density, Rs the average radius of the asperity, and σs the standard 

deviation of asperity height. The equations for calculating each parameter are given as 

follows [61] 

 

 𝜂𝑠 =
𝑚4 𝑚2⁄

6𝜋√3
 (3.17) 
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 𝑅𝑠 =
3

8
√
𝜋

𝑚4
 (3.18) 

 𝜎𝑠
2 = (1 −

0.8968

𝛼
)𝑚0 (3.19) 

 𝑚0 = 𝑚𝑒𝑎𝑛(𝑧(𝑥)
2) (3.20) 

 𝑚2 = 𝑚𝑒𝑎𝑛((
𝑑𝑧(𝑥)

𝑑𝑥
)

2

) (3.21) 

 𝑚4 = 𝑚𝑒𝑎𝑛((
𝑑2𝑧(𝑥)

𝑑𝑥2
)

2

) (3.22) 

 𝛼 =
𝑚0𝑚4

𝑚2
2

 (3.23) 

 

where m0, m2, and m4 are the zeroth, second, and fourth spectral moments of the profile, 

respectively. In order to consider surface roughness parameters for a contact plane 

between two domains whose surface roughnesses are different from one another, 

composite surface roughness parameters can be utilized [33, 62]. The composite spectral 

moments for the composite surface are calculated from the spectral moments of each 

surface by 

 

 

𝑚𝑛,𝑝
2 = 𝑚𝑛,𝑠1

2 +𝑚𝑛,𝑠2
2 

(𝑛 = 0, 2, 4) 
(3.24) 
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where subscripts p, s1, and s2 indicate composite, surface 1 and surface 2, respectively. 

Then, the composite rough surface parameters are generated using Equation (3.17) - 

(3.19) for the composite spectral moments. An explicit relation is then utilized to 

calculate the contact stiffness from the surface roughness parameters, for a given contact 

pressure [33]   

 

 𝑃𝑐 = 
4

3
𝜂𝑠𝐸𝑅𝑠

0.5𝜎𝑠
1.5𝐹1.5(ℎ) (3.25) 

 𝑘𝑐𝑛 = 2𝜂𝐸𝑅𝑠
0.5𝜎𝑠

0.5𝐹0.5(ℎ) (3.26) 

 

where Pc is the contact pressure, kcn is the normal contact stiffness in a unit area, and h is 

the standardized separation ( defined as d/σs, where d is distance between the two 

reference planes of the two different surfaces).  A solution of Fn(h) is defined by the 

parabolic cylinder function 

 

 

𝐹𝑛(ℎ) = ∫ (𝑠 − ℎ)𝑛𝜙∗(𝑠)
∞

ℎ

=
1

√2𝜋
∫ (𝑠 − ℎ)𝑛𝑒−

1
2
𝑠2𝑑𝑠

∞

ℎ

= 

= 
𝑛!

√2𝜋
𝑒−

1
2
ℎ2𝑈(𝑛 + 0.5, ℎ) 

(3.27) 

 

where U is Whittaker function, and 𝜙∗(𝑠) is the Gaussian distribution function and n 

equals to 0.5 or 1.5. The terms F0.5 and F1.5 can be determined using the relations  
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 𝑈(1, 𝑥) = 2𝜋−
1
2 (
1

2
𝑥)

3
2
(−𝐾1

4
+ 𝐾3

4
) 

𝑈(2, 𝑥) = 2 ∙
2

3
𝜋−

1
2 (
1

2
𝑥)

5
2
(2𝐾1

4
− 3𝐾3

4
+ 𝐾5

4
) 

(3.28) 

 

where K is Modified Bessel function [63]. Then kct
e can also be obtained by [64] 

 

 𝑘𝑐𝑡
𝑒 =

𝜋(1 − 𝜐)

2(2 − 𝜐)
𝑘𝑐𝑛

𝑒
 (3.29) 

 

An example sensitivity study is presented to illustrate the dependence of kcn
e on the 3 

surface roughness parameters (Eqs.(3.17) - (3.19)) ηs , Rs  and σs. Consider the 9 

“sample” surfaces listed in Table 3.1. The material parameters E’ and υ are set 210 GPa 

and 0.3 for both surfaces. It is assumed that both contacting surfaces have the same 

roughness and spectral moments for calculating the composite spectral moments and 

GW parameters. Figure 3.2 shows the contact stiffness versus contact pressure for each 

surface. The Rs values increases 100 times from surface 1 to surface 3 in Figure 3.2 (a).  

The surface roughness parameters ηs and σs are varied in the same manner for cases 4-6 

(Figure 3.2 (b)) and 7-9 (Figure 3.2 (c)), respectively. The contact stiffness increases 

monotonically with increasing Rs or ηs, and decreases monotonically with increasing σs. 

The parameter σs has the greatest influence on the contact stiffness.  
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Table 3.1  Surface roughness parameters for the sensitivity test 

 Rs (μm) ηs (1/m2) σs (μm) 

Surface 1 0.1 1.0 × 1010 1 

Surface 2 1 1.0 × 1010 1 

Surface 3 10 1.0 × 1010 1 

Surface 4 1 1.0 × 109 1 

Surface 5 1 1.0 × 1010 1 

Surface 6 1 1.0 × 1011 1 

Surface 7 1 1.0 × 1010 0.1 

Surface 8 1 1.0 × 1010 1 

Surface 9 1 1.0 × 1010 10 
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Figure 3.2  Contact stiffness sensitivity analysis vs. the surface roughness parameters 

 

 

3.2. Experimental Setting 

The primary objective of the test apparatus is to investigate the effect of axial 

preload and surface roughness at the contact joints, on the natural frequencies of a rotor 

assembly. A test rotor is fastened together with multiple parts, using an axial through-

bolt. as shown in Figure 3.3. 
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Figure 3.3  Cross sectional view of the test rotor assembly 

 

Table 3.2 lists the properties of each part of the rotor assembly. The diameter values Dout 

of the through bolt, and Din of the nut indicate the major diameters. The through-bolt and 

nuts are fine thread with 14 threads per 25.4 mm, and the size of pitch is 1.814 mm. 

 

Table 3.2  Properties of the test rotor assembly 

 Dout (mm) Din (mm) L (mm) E (GPa) ρ (kg/m3) υ 

Outer 

annular 

shaft 

50.8 25.4 152.4 205 8202 0.3 

Center 

joint 
50.8 25.4 20.32 205 8202 0.3 

Through- 

bolt 
22.23 - 381.00 205 7837 0.3 

Nut 33.34 22.23 19.05 205 8202 0.3 

Washer 45.21 24.00 4.32 205 7929 0.3 
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Torque is applied to the through-bolt and the nut, resulting in clamping (preload) forces 

exerted on the outer annular shafts of the rotor assembly [65]. The force produces 

tension in the through-bolt and compression in the outer annular shafts. The tensile and 

compressive forces are considered to be equal, and the compressive force can be 

measured by a strain gauge system. Figure 3.4 shows the test configuration, and Figure 

3.5 shows the strain gage instrumented rotor suspended for free-free modal testing.   

 

 

Figure 3.4  The test configuration for measuring preload and flexural natural frequencies 

 



 

75 

 

The axial preload force is measured with a 4 - strain gage, full bridge configuration. Two 

sets of the strain gauge system are installed on each side of the rotor assembly. The 

second set was added to obtain a second measurement for validation purposes, and both 

sets always showed very close agreement in axial load prediction. The resolution and the 

maximum measurable force of the strain gauge system are 0.267 N and 726 kN, 

respectively. An impact hammer is used to impulse the string supported rotor assembly, 

in order to measure the free-free natural frequencies. The acceleration of the rotor 

assembly is measured with a model PCB U353 B33 accelerometer and model PCB 

480C02 signal conditioner. The broadband resolution of the accelerometer is 0.005 m/s2 

rms, and the measurement uncertainty of the acceleration amplitude is ± 5 % within the 

frequency range from 1 to 4000 Hz.  

 

 

         Figure 3.5  Photo of the strain gage instrumented, axially preloaded test shaft 
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The accelerometer output is recorded with a model NI USB-6002 data acquisition 

system with a sampling rate of 10,000 samples/sec. The natural frequencies are 

identified from the accelerometer output and an FFT analyzer, with a frequency 

resolution of 0.33 Hz. The composite surface roughness at the joints of the rotor 

assembly is varied by using multiple center joints with various surface roughnesses, 

while the remaining parts of the rotor assembly are retained. A stylus type surface 

profiler (Mitutoyo Surftest SJ-210) is used to measure surface roughness with a 

measurement resolution of 1.6 nm for the height of the surface profile. The probe travels 

with a linear path, sampling 8,000 points per single measurement. Table 3.3 lists the 

measured surface roughness parameters for 3 different joints, and for the contact face of 

the annular shaft. Each surface is measured 10 times in distributed positions, and the 

averaged values and the relative standard uncertainty (urel) for the measurement surfaces 

are listed Table 3.3. The urel are calculated from [66] 

 

 
𝑢𝑟𝑒𝑙 =

√∑ (𝜎𝑠𝑖 −∑ 𝜎𝑠𝑖
𝑛𝑚
𝑖 𝑛𝑚⁄ )

2𝑛𝑚
𝑖

(𝑛𝑚 − 1)⁄

∑ 𝜎𝑠𝑖
𝑛𝑚
𝑖 𝑛𝑚⁄

 
(3.30) 

, where nm is the number of measurements. Composite type surface roughness 

parameters are calculated via Equations (3.17) - (3.24), for example, the spectral 

moments m0, m2, m4 of BJ_Ap are calculated from the corresponding spectral moments 

of BJ_A and the Shaft. For a qualitative comparison, BJ_A, BJ_B, and BJ_C represent 

smooth, medium, and rough surfaces, respectively. Figure 3.6 compares the probability 
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distribution functions for the tested rough surfaces BJ_A, BJ_B, and BJ_C and the stand 

normal distribution. In this figure z* is the centered and scaled height of surface as 

 𝑧∗ =
𝑧 − 𝑧

𝜎𝑧
 (3.31) 

where 𝑧, σz are the mean height and the standard deviation of the height, respectively. 

One practical method to evaluate Gaussian distribution of the surface is the 

Kolmogorov-Smirnov test [62], and the test for each surface accepts the null hypothesis 

at the 5% significance level. 

 

Figure 3.6  Probability distribution functions for the standard normal distribution and 

test rough surfaces 
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Table 3.3  Measured surface roughness parameters for the test assembly 

Type Surface m0 m2 m4 α Rs (μm) 
ηs (10-10 
1/m2) 

σs (μm) urel (%) 

Single 

BJ_A 0.2690 0.0035 0.0031 66.3267 11.9577 2.7059 0.5151 9.32 

BJ_B 11.1630 0.0815 0.0833 139.9086 2.3032 3.1673 3.3304 8.05 

BJ_C 49.2146 0.1151 0.1873 695.5993 1.5360 5.0436 7.0108 12.30 

Shaft 2.4529 0.0349 0.0562 113.2693 2.8044 4.9931 1.5600 15.13 

Nut 4.6046 0.0607 0.0354 44.3110 3.5323 1.8096 2.1240 10.06 

Washer 6.1802 0.0201 0.0406 621.8337 3.2984 6.2664 2.4842 7.15 

Composite 

GW#1 

BJ_Ap 2.4676 0.0351 0.0563 112.9570 2.8022 4.9751 1.5646 - 

BJ_Bp 11.4293 0.0887 0.1005 146.0490 2.0971 3.5125 3.3703 - 

BJ_Cp 49.2757 0.1203 0.1955 665.9758 1.5032 5.0394 7.0149 - 

GW#2 (Nut-Shaft) 5.2172 0.0700 0.0664 70.7588 2.5790 2.9424 2.2696 - 

GW#3 (Washer-Nut) 6.6492 0.0403 0.0693 284.3040 2.5243 5.3377 2.5745 - 

 

 

Natural frequencies are measured with preload increments of approximately 10 kN. The 

temperature of the rotor assembly was maintained with room temperature in the range 23 

˚C to 24 ˚C during the measurements. The mode utilized for the comparative study is the 

first bending mode of the outer shaft. Figure 3.7 plots the measured natural frequencies 

versus preload for BJ_Ap. The estimated uncertainties of measurement are ± 0.33 Hz for 

the natural frequency. The relative uncertainty for the preload is 2.25 %. The legends 

Experiment BJ_Ap #1 and Experiment BJ_Ap #2 represent the first attempt and the 

second attempt, respectively. Interpolated BJ_Ap#1 indicates spline interpolation values 

of BJ_Ap#1 which is included to quantitively evaluate the repeatability. The average 

relative difference between BJ_Ap #1 and BJ_Ap #2 is within 0.29 %, which infers 

acceptable repeatability of the test. 
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As shown in Figure 3.7, the measured natural frequency increases as preload increases 

until 100 kN preload, and tends to converge. The natural frequency curve in Figure 3.7 

may account for a combined result of the asperity effect and the stress-stiffening effect. 

As contact pressure at the contact surface increases, the contact stiffness increases, 

resulting in an increase of the natural frequency. On the other hand, the outer shaft of the 

rotor assembly is under compressive stress due to the preload. Hence, the resistance to 

bending deformation may be reduced. The contribution of each effect will be evaluated 

with the simulation model in the following section. Figure 3.8 shows the experimental 

results for 3 different configurations. The natural frequencies for each case tend to have 

converged values near a preload of 100 kN, while BJ_Cp shows the biggest rate of 

change followed by BJ_Bp and BJ_Ap, respectively. 
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Figure 3.7  Measured natural frequencies vs. preload for BJ_Ap#1 and BJ_Ap#2 
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Figure 3.8  Measured natural frequencies vs. preload for BJ_Ap, BJ_Bp, BJ_Cp 

 

 

3.3. Simulation Model 

3.3.1. Finite Element Model 

A computer simulation model with 3D solid elements and the contact model 

outlined above, was developed to compare with the measured results. The geometry of 

the prediction model is shown in Figure 3.3, and separate meshes are generated for each 

part of the rotor assembly. The FEM mesh consists entirely of 8-node hexahedron 

elements, and the meshes of the contacting parts are conformal at shared interfaces 

(joints). High order tetrahedron elements, such as 10-node quadratic tetrahedron 
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elements, can also be used for more complex geometries as long as the nodes are 

coincident at interfaces. A grid test for convergence is shown in Figure 3.9, and a 

converged mesh is illustrated in Figure 3.10. 

 

 

Figure 3.9  Grid test for the test rotor prediction model 

 

 

Figure 3.10  Mesh of the test rotor prediction model 
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The finite element model of the entire rotor assembly is composed of 55,584 linear 

hexahedron elements, 63,961 nodes, and 191,883 degrees of freedom. In total, 6 contact 

faces are modeled with the contact stiffness elements developed above. It is assumed 

that the contact effect between the through-bolt and the nuts is negligible for the mode 

shape of interest. The contact nodes at the interfaces are highlighted in Figure 3.11, and 

the contact elements defined in Equation (3.13) are generated at each contact plane.  The 

measured GW parameters are assigned to calculate contact stiffness at each interface. 

 

 

Figure 3.11  Contact nodes of the test rotor model 

 

3.3.2. Contact Modeling Method     

The determination of contact stiffnesses is an important step in determining the 

natural frequencies of the preloaded rotor assembly. Preload is set as an input boundary 

condition at a joint and the corresponding contact stiffnesses are then calculated. A set of 

element faces is selected for imposing boundary pressure fields that are obtained from 

the preload. Figure 3.12 highlights the boundary faces where the nuts and the washers 

are in contact. Boundary pressure fields are imposed to both faces of two different 
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domains with the same magnitude and the opposite directions. For boundary face 1 as 

noted in Figure 3.12, -Pbc and Pbc are imposed to the right-hand-side face of the nut and 

the left-hand-side face of the washer, where Pbc is equal to the preload divided by the 

area. This results in a tensile load applied to the through bolt, and compression load 

applied to the shaft. Contact pressure fields for all other contact interfaces are 

determined from the calculated stresses at the interface. The stresses corresponding to 

contact pressure should be normal to the contact face which can be obtained by the 

tensor transformation of the nodal stress tensors using the normal vector of the contact 

face. 

        Define two separated sub-assemblies as the outer member sub-assembly (OMA) 

and the inner member sub-assembly (IMA), since stress analyses are carried out 

separately for the two sub-assemblies. The OMA consists of the washers, the annular 

shafts, and the center joint, and the IMA is composed of the through-bolt and the nuts. 

Fictitious soft springs with relatively small stiffnesses (1.0 × 105 N/m) are applied to 

both the OMA and IMA, in order to remove the singularity in the stiffness matrix 

associated with rigid body motion. This is a standard practice and varying the soft spring 

stiffness confirmed that it did not affect the calculated results. The soft springs are 

included only when stress analysis is performed and otherwise removed. The implicit 

relation for the system stiffness matrix is summarized as 

 𝑲 = 𝑲𝑠𝑦𝑠 +𝑲𝜎 (𝝈(𝑲)) + 𝑲𝑐 (𝝈(𝑲)) (3.32) 

, where K is the total stiffness matrix  of the OMA and IMA combined, Ksys is the 

constant system stiffness matrix without contact stiffness and stress stiffness, Kσ is the 
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stress stiffness matrix, Kc is the contact stiffness matrix and σ is the stress tensor. An 

iterative method is applied to solve Equation (3.32). Figure 3.13 explains this iterative 

procedure with a flowchart.  

 

 

Figure 3.12  Boundary faces for the test rotor model 
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Figure 3.13  Flowchart for K calculation 

 

In this flowchart Kc has the initial guess Ki, and Kσ is initialized with a null matrix. By 

following the flowchart, K(1) is the sum of Ksys and Kc(1), and then σc(1) can be calculated 

with K(1) and the pressure boundary conditions P.  The matrices Kc(2) and Kσ(2) can be 

obtained by Equation (3.25) - (3.28), after σc(1) is determined. Each component of 
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abs(Kc(2) - Kc(1)) is evaluated and the total stiffness matrix is determined by the matrix 

sum of all the stiffness matrices in the current iteration, 2 in this instance, if the 

evaluated value is smaller than tol , a tolerance set by the analyst. Otherwise, Kc(2) and 

Kσ(2) are set as initial matrices for the next iteration. The loop continues until Kc shows 

term wise convergence. The total stiffness matrix is determined by the matrix sum of all 

the stiffness matrices in the last iteration after convergence is obtained. Note that Kbc is a 

contact stiffness matrix for the boundary faces where the boundary pressure fields are 

imposed. The matrix Kbc is integrated into the system matrix at the final stage of the 

procedure, connecting the OMA and IMA. The matrix Kbc is a constant matrix since the 

boundary pressure fields determine the contact stiffness of the boundary faces. Figure 

3.14 shows the axial(z) direction (σzz) stress contours over a cross-section, for a 

converged K with a 120 kN preload. Figure 3.15 shows the axial stress contour of the 

contact center joint for a 120 kN preload, providing the pressure in the radial and the 

axial direction. The present modeling approach obtains the interface pressures from the 

σzz, and in turn determines the contact stiffness from the contact pressure and formulae 

(3.25) - (3.26).  
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Figure 3.14  Cross-section view of the stress distribution in the axial direction for the 

test rotor assembly with a 120 kN preload 

 

 

Figure 3.15  Axial stress contour of the contact center joint of the test rotor assembly 

with a 120 kN preload 
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Figure 3.16  Free-free 1st bending mode shape of the rotor with BJ_Ap at preload 60 kN 

 

As discussed earlier, OMA and IMA are predicted to be under compression and tension, 

respectively. Free-free natural frequencies of the preloaded rotor are predicted for the 

calculated contact stiffness and stress-stiffness. Figure 3.16 illustrates the 1st bending 

mode shape of the rotor with BJ_Ap at preload 60 kN. Predictions and measurements of 

rotor natural frequencies are made for preloads of 10, 20, 40, 60, 90, and 120 kN. Figure 

3.17 compares the measurements and the predictions for the rotor assembly 

configuration BJ_Ap. Stress stiffening is seen to have a softening effect at high preloads.  
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Figure 3.17  Natural frequency vs. preload for the test rotor assembly configuration 

BJ_Ap 

 

3.3.3. Experimental Validation 

       Figure 3.18 shows a comparison between the measurements and the predictions with 

stress stiffening effect for the rotor assembly configurations BJ_Ap, BJ_Bp and BJ_Cp. 

The average absolute errors of the configurations BJ_Ap, BJ_Bp and BJ_Cp are 30.75 

Hz (1.84%), 23.76 Hz (1.48%), and 79.46 Hz (5.6%), respectively. The maximum 

absolute errors of the configurations BJ_Ap, BJ_Bp and BJ_Cp are 48.47 Hz (2.97%), 

36.42 Hz (2.10%), and 116.59 Hz (6.56%), respectively. 
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Figure 3.18 Comparison between the experiments and the predictions of the test rotor 

assembly 

 

 

3.4. Application: Overhung Rotor-Bearing System 

             The preceding example clearly reveals the significant effects of joint surface 

roughness on the lowest bending mode of a short, non-rotating shaft assembly with free-

free boundary conditions. In actual machinery, the rotating assemblies are often 

geometrically complex, rotate at high speeds and are supported by hydrodynamic, 

hydrostatic, or rolling element bearings. To address this case, the next example considers 

an industrial class machinery rotor with an overhung impeller [67]. The actual 

connection of the impeller on the shaft may be different, but it is modelled as an axially 
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preloaded connection for illustrating the method presented. In that regard, one could 

view the connection in the model as an impeller with a loose fit with the shaft, being 

retained with a locknut. The dynamic coefficients of the tilting pad journal bearings are 

numerically calculated with the given bearing parameters by solving Reynold’s equation, 

or with CFD, as shown in Figure 3.19 [68, 69, 70, 71, 72, 73, 74]. 

 

 

Figure 3.19  Dynamic coefficients of the support bearings 

 

A rotor-fixed coordinate system is selected to describe the rotor-bearing system since the 

bearings are essentially isotropic, within the operating range as shown in Figure 3.19.  

The example rotor is axisymmetric so an inertial coordinate system could be used. 

However, the rotor fixed coordinates are used to present a more general approach that 

could be used for non-axisymmetric rotors or interfaces, such as a Hirth joint. An 

equation of motion of a rotor-bearing system in the rotor-fixed coordinate system can be 

represented as [22] 
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 𝑴�̈�(𝑡) + {2𝛺𝑪𝑹 + 𝑪𝒃,𝒓} �̇�(𝑡) + {𝑲𝑠 − 𝛺
2𝑲𝑑 +𝑲𝜎 +𝑲𝒃,𝒓} 𝒒(𝑡) = Ω2𝒇𝑐 (3.33) 

 

where CR, Cb,r, Ks, Kd, Kσ, Kb,r, and fc are the Coriolis matrix, the bearing damping matrix 

in the rotor-fixed coordinate system, the structural stiffness matrix, the dynamic stiffness 

matrix, the stress-stiffness matrix, the bearing stiffness matrix in the rotor-fixed 

coordinate system, and the centrifugal force vector, and the mass matrix is identical to M 

defined in Equation (3.1). For bearings in the rotor-fixed coordinate system, Cb,r and Kb,r 

are not identical to the bearing coefficient matrices in the inertial coordinate system. The 

detailed derivation for Cb,r and Kb,r is provided by [20]. Figure 3.20 illustrates the rotor-

bearing system assembly and the meshes. A grid test was carried out as shown in Figure 

3.21.   

 

 

 

Figure 3.20  Overhung type rotor [67] 
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Figure 3.21  Grid test of the overhung rotor-bearing system 

 

Clamping forces are applied to the impeller disk by the locknut. Figure 3.22 shows the 

contact nodes at the interfaces between the main shaft and the impeller disk.  

 

Figure 3.22  Contact nodes of the overhung type rotor-bearing system 
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The force term in Equation (3.33) is considered in the prediction model when the spin 

speed is nonzero, and Guyan reduction [75] is utilized for calculating eigenvalues. Three  

different interface conditions are evaluated, and the surface roughness parameters are 

listed in Table 3.4.  

 

Table 3.4  Surface roughness parameters for the overhung rotor-bearing system 

 Rs (μm) ηs (1/m2) σs (μm) 

Interface 1 1.0 1.0 × 1010  1.0 

Interface 2 1.0 1.0 × 1010 2.0 

Interface 3 1.0 1.0 × 1010 3.0 

 

The Campbell diagrams are plotted in Figure 3.23 and Figure 3.24 in rotor-fixed 

coordinates and inertial coordinates, respectively, using Equation (3.34) [22]. 

 

𝜔𝑓𝑖𝑥𝑒𝑑,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝜔𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + Ω 

𝜔𝑓𝑖𝑥𝑒𝑑,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝜔𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 − Ω 

(3.34) 

 They are utilized to identify the critical speeds of the rotor-bearing system. The damped 

natural frequencies can be obtained in a similar way as described in Equation (3.15) with 

the reduced system matrices. The spin softening effect [22] and the linear bearing model 

in Figure 3.19 strongly influence the natural frequencies of the rotor with respect to spin 

speed. These effects amplify the deviation of the natural frequencies between the rotors 

with different levels of surface roughness as shown in Figure 3.25.  Critical speeds of a 

rotor-bearing system in the rotor-fixed coordinate system can be determined as the speed 
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ranges where the damped natural frequencies encounter the horizontal axis [22]. In the 

present analysis, the critical speeds corresponding to the bending modes are considered. 

Figure 3.26 plots critical speeds versus preload for various levels of surface roughness in 

the rotor-bearing system. The critical speed increases 41.38 %, 36.69 %, and 33.33 % for 

Interface1, Interface2, and Interface3, respectively, over the given preload range. For 

1000 kN preload, the relative differences between Interface1 and Interface2, Interface 2 

and Interface 3, and Interface 1 and Interface 3 are 7.32 %, 5.26 %, 12.20 %, 

respectively. 

 

Figure 3.23  Damped natural frequency vs. spin speed in the rotor-fixed coordinates for 

interface model 2 in Table 4 with a 50 kN preload 
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Figure 3.24  Damped natural frequency vs. spin speed in the inertial coordinates for 

interface model 2 in Table 4 with a 50 kN preload 
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Figure 3.25  Damped natural frequency vs. spin speed vs. surface roughness at preload 

1000 kN 
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Figure 3.26  Critical speeds vs. preload for three interface models 

 

3.5. Conclusion 

The author presented a new high-fidelity, 3D solid element, finite contact method 

for the rotordynamic modeling of a rotor assembly with multiple preloaded parts and 

joints. A contact element for 3D solid finite element rotordynamic model was 

introduced, and a finite element formulation for the contact element was presented. The 

contact element can be used for direct applications of statistics-based contact theories to 

the 3D solid finite element rotordynamic model. A test rig was built to validate the 

proposed contact modeling method. Multiple configurations, for various degrees of 
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roughness at contact interfaces, were tested along with varying internal shaft preloads, 

and natural frequencies were measured. A prediction model for the test configurations 

was developed. An iterative calculation algorithm was introduced in order to solve the 

implicit equations between contact stiffness and stress distribution. Converged stress 

distributions of the rotor assembly, and contact stiffness at the interfaces in the test 

configurations were obtained for various degrees of interface roughness and preloads. 

Next, the natural frequencies of the rotor assembly were calculated and compared with 

the experimental results. The prediction results accurately follow the trend of the 

measurement with respect to the level of interface surface roughness and the increase of 

preloads. An overhung impeller type rotor bearing system simulation model was 

presented for demonstrating practical applications of the proposed modeling method. 

The simulation results demonstrate that the predicted critical speeds vary with respect to 

preload and contact surface roughness. The largest deviation of the predicted critical 

speeds between two different surfaces was 12.20 % for the rotor-bearing system. 
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4. STANDALONE 3D SOLID FINITE ELEMENT ROTORDYNAMIC (SFER) CODE  

 

Although many commercial finite element codes provide finite element system 

matrices and their solutions for general structures, special treatments are necessary when 

it comes to rotating machinery with spin speeds [1]. Furthermore, in such cases of 

complicated algorithms with multiple computational steps, considering thermal and 

structural aspects of the structure simultaneously, an integrated finite element simulation 

environment is required. The integrated finite element simulation environment provides 

a comprehensive understanding of each step and deals with complex problem efficiently 

by minimizing communication traffic loads. 

 

4.1. Element Matrices 

4.1.1. Hexahedron Elements 

8-node linear hexahedron elements are one of the common elements for finite 

element analyses along with 10-node quadratic tetrahedron elements. This element is 

also called brick element. The element satisfies acceptable accuracy in broad ranges of 

applications with good computational efficiency [76]. The detailed derivation can be 

found in several finite element text books [9]. The hexahedron elements are used to 

generate structured mesh of rotor structures.  

A simple geometry annular steel shaft is used to validate the hexahedron finite 

element code as shown in Figure 4.1. The outer diameter of the shaft is 50.8 mm, the 

inner diameter of the shaft is 25.4 mm, and the axial length of the shaft is 609.6 mm. 



 

102 

 

Nominal values for elastic modulus and Poisson’s ratio of 210 GPa and 0.3 are used in 

natural frequency calculation, respectively. Density of the shaft is obtained by measured 

mass of the shaft: 7.27 kg. The calculated results by SFER and the measured results are 

compared for the 3 lowest natural frequencies, and the values are listed in Table 4.1. The 

average error is within 2.0 %. The detailed information of the measurement devices are 

provided in ‘Test Apparatus’ of Chapter 3. 

 

 

Figure 4.1  Photo of the simple annular steel shaft 

 

 

 

Figure 4.2  Hexahedron finite element mesh for the simple annular steel shaft 
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Table 4.1  Comparison between experimenta and SFER 
 Experiment SFER Error 

1st bending mode (Hz) 683.9 672.0 1.7% 

2nd bending mode (Hz) 1807.0 1770.2 2.0% 

3rd bending mode (Hz) 3340.0 3272.3 2.0% 

Average 1.9% 

 

 

4.1.2. Tetrahedron Elements 

10-node quadratic tetrahedron elements are employed in solid finite element 

modeling of the code. Tetrahedron element is widely used in the area of finite element 

modeling with its advantage of automatic mesh generation with unstructured mesh. A 

10-node quadratic tetrahedron element contains 10 nodes and 6 faces. There is a simpler 

tetrahedron element, which is called linear tetrahedron with 4 nodes. Using linear 

tetrahedron can reduce computation load for it has smaller number of node. However, 

linear tetrahedron is considered improper finite element in structural analysis. On the 

contrary, 10-node quadratic tetrahedron elements show robust performance in finite 

element analysis [76]. There are several commercial meshing software available, such as 

ANSYS Meshing, ICEM CFD, Gambit, SolidWorks, and MATLAB. 

The developed 10-node quadratic tetrahedron solid finite element model are 

validated by comparing with two other methods and linear tetrahedron model. Two 

different spinning speed range are used for validation of rotordynamic analysis 
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performance. Circular pipe with 0.1m outer diameter, 0.05m inner diameter and 1m 

length is modeled by 4-kind method: Timoshenko beam, ANSYS, 4-node tetrahedron, 

10-node tetrahedron.  

 

Table 4.2  10-node tetrahedron element validation (0 rpm)  
Timoshenko ANSYS 

brick 

4-node 

 Tetrahedron 

4-node 

w.r.t. 

Beam 

4-node 

w.r.t. 

ANSYS 

10-node 

Tetrahedron 

10-node 

w.r.t. 

Beam 

10-node 

w.r.t. 

ANSYS 

1st bending 29057 29056 29708 2.2% 2.2% 28493 1.9% 1.9% 

1st bending 29060 29064 29740 2.3% 2.3% 28602 1.6% 1.6% 

2nd bending 75327 75198 77225 2.5% 2.7% 74041 1.7% 1.5% 

2nd bending 75377 75222 77358 2.6% 2.8% 74312 1.4% 1.2% 

3rd bending 137674 136308 141136 2.5% 3.5% 135274 1.7% 0.8% 

3rd bending 137926 136356 141838 2.8% 4.0% 135588 1.7% 0.6% 

4th bending 212334 206616 200513 5.6% 3.0% 207438 2.3% 0.4% 

4th bending 213037 206700 216323 1.5% 4.7% 207797 2.5% 0.5% 

1st torsional 94297 93900 99443 5.5% 5.9% 94054 0.3% 0.2% 

2nd torsional 190924 187800 200513 5.0% 6.8% 189514 0.7% 0.9% 

AVG 3.3% 3.8% 
 

1.6% 1.0% 
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Table 4.3  10-node tetrahedron element validation (5000 rpm)  
Timoshenko ANSYS 

brick 

4-node 

Tetrahedron 

4-

node 

w.r.t. 

Beam 

4-node 

w.r.t. 

ANSYS 

10-node 

Tetrahedron 

10-

node 

w.r.t. 

Beam 

10-node 

w.r.t. 

ANSYS 

1st bending 28887 28882 30263 4.8% 4.8% 28700 0.7% 0.6% 

1st bending 29231 29240 29959 2.5% 2.5% 28365 3.0% 3.0% 

2nd 

bending 

75047 74856 77742 3.6% 3.9% 74471 0.8% 0.5% 

2nd 

bending 

75658 75564 77125 1.9% 2.1% 73860 2.4% 2.3% 

3rd 

bending 

137409 135810 141969 3.3% 4.5% 135831 1.1% 0.0% 

3rd 

bending 

138192 136860 141152 2.1% 3.1% 135011 2.3% 1.4% 

4th 

bending 

212200 205974 217703 2.6% 5.7% 208085 1.9% 1.0% 

4th 

bending 

213171 207342 216894 1.7% 4.6% 207133 2.8% 0.1% 

1st 

torsional 

94297 93900 99442 5.5% 5.9% 93919 0.4% 0.0% 

2nd 

torsional 

190924 187806 200511 5.0% 6.8% 189443 0.8% 0.9% 

AVG 3.3% 4.4% 
 

1.6% 1.0% 

 

Table 4.2 and Table 4.3 show the validation result with 0 rpm and 5000 rpm of spinning 

speed respectively. 10-node tetrahedron element shows better performance than 4-node 

tetrahedron element and it has 1.6% and 1.0% differences from Timoshenko beam 

model and ANSYS model respectively.  

An experiment is set up to validate the developed solid finite element code. The 

shaft-disk assembly was built mainly for the validation of the Morton code of VCEL as 

shown in Figure 4.3. The free-free vibration test results are exploited to validate SFER 

code. The test rotor weighs 365.83 lbs (165.94 kg). The rotor is hung by a pair of ropes 

and excited by an impact hammer. The corresponding acceleration data is obtained by an 

accelerometer, and an FFT analyzer is used to obtain the natural frequencies of the rotor.  
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Figure 4.3  Photo of Morton test rotor (free-free vibration test) 

 

To develop a numerical FE model, a 3D solid drawing is developed as shown in Figure 

4.4. Then the drawing is imported to generate quadratic tetrahedron element mesh. 

 

 

Figure 4.4  3D drawing for Morton test rotor 

Figure 4.5 plots a grid test of the test rotor by SFER code. It shows that the 4 lowest 

natural frequencies of the bending modes tend to converge around 80,000 dofs. 
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Figure 4.5  Grid test for Morton test rotor SFER results 
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Figure 4.6  Mode shapes of Morton test rotor 

 

Table 4.4  Comparison between SFER and measurement for Morton rotor 
 Experiment SFER error 

1st bending mode 146 Hz 143 Hz 2.0 % 
2nd bending mode 389 Hz 370 Hz 4.8 % 
3rd bending mode 687 Hz 727 Hz 5.8 % 
4th bending mode 893 Hz 906 Hz 1.4 % 

Average Error 3.5% 
 

As shown in Figure 4.6, mode shapes of the test rotor are plotted to distinguish each 

mode from the calculated natural frequencies, and the converged results are illustrated. 

Table 4.4 shows the comparison results between experimental measurement data and the 

calculated results from SFER code, and the average error is within 3.5 %.  

 

4.2. Multiphysics Analysis Algorithm 

Solid finite element model accounts for the detailed geometrical characteristics 

of the complex-shaped rotor. In addition, this approach may also improve accuracy of 

the numerical model by considering thermal and stress distribution of the rotor in regard 
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to rotordynamic analyses. As illustrated in Figure 4.7, thermal and stress distribution of 

the rotor affects the rotordynamic behavior of rotor-bearing systems, and these effects 

can be explained by adopting stress-stiffening effect. There are various sources that have 

the rotor thermally assorted within itself. Temperature variation within the rotor induces 

thermal expansion and thermal stress. Besides, centrifugal stress and preloads introduce 

stress distribution of the rotor. These various sources of stress within the rotor are taken 

in the form of stress-stiffness into the system stiffness matrix as shown in equation 

(3.32). 

 

 

Figure 4.7  Flowchart for Multiphysics rotordynamic analysis 
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4.3. Floquet Method 

The theoretical derivation of Floquet method is provided in section 2.2.1. This 

section is intended to provide specific details of the implementation of Floquet method 

into the code.  

 

4.3.1. Integration Algorithm 

The selection of the reference coordinate differs the algorithm significantly. 

Properly isolated time-variant coefficients may enhance overall computational efficiency 

in the code. In order to evaluate stability of the system, it is required to obtain HM(K), 

the discretized Monodromy matrix in equation (2.37), is reproduced as,  

 

 𝑯𝑴(𝐾) = 𝑰𝑁𝑒𝑥𝑝(∆𝐾𝑩𝐾)𝑒𝑥𝑝(∆𝐾−1𝑩𝐾−1)⋯ 𝑒𝑥𝑝(∆1𝑩1) (4.1) 

 

BK is calculated nK times according to the number of discretization. The number nK 

should be determined after convergence tests. Equations (2.31) and (2.36) are also 

recalled as follows. 

 

 
𝑩(𝑡) = [

𝟎𝑁 𝑰𝑁

−(𝑴𝑅)
−1
𝑲𝑅(𝑡) −2Ω(𝑴𝑅)

−1
𝑪𝑅(𝑡)

] (4.2) 

 

 
𝑩𝑘 =

1

∆𝑘
∫ 𝑩(𝑠)𝑑𝑠
𝑡𝑘

𝑡𝑘−1

 (4.3) 
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As the time-variant components of the reduced system matrices are trigonometric 

functions, solutions exist for the integration of equation (4.3), vanishing numerical 

integration. The integration of equation (4.3) may be dissembled into four parts:  

 

 

𝑩𝑘 =
1

∆𝑘

[
 
 
 
 ∫ 𝟎𝑁𝑑𝑠

𝑡𝑘

𝑡𝑘−1

∫ 𝑰𝑁𝑑𝑠
𝑡𝑘

𝑡𝑘−1

−∫ (𝑴𝑅)
−1
𝑲𝑅(𝑠)𝑑𝑠

𝑡𝑘

𝑡𝑘−1

−2Ω∫ (𝑴𝑅)
−1
𝑪𝑅(𝑠)𝑑𝑠

𝑡𝑘

𝑡𝑘−1 ]
 
 
 
 

 (4.4) 

 

Each integration for the four parts proceeds as 

 

 

𝑩𝑘 =
1

∆𝑘
[

𝟎𝑁 𝑰𝑁∆𝑘

−(𝑴𝑅)
−1
∫ 𝑲𝑅(𝑠)𝑑𝑠
𝑡𝑘

𝑡𝑘−1

−2Ω(𝑴𝑅)
−1
∫ 𝑪𝑅(𝑠)𝑑𝑠
𝑡𝑘

𝑡𝑘−1

] (4.5) 

 

 KR(s) and CR(s) in equation (4.7) are time-variant and their minimum period is 2Ω. 

Hence, they can be rewritten as KR(2Ωs) and CR(2Ωs). KR(2Ωs) can be decomposed by 

K0
R, Kc

R(2Ωs), and Ks
R(2Ωs).  

 

 𝑲𝑹(2Ω𝑠) = 𝑲0
𝑅 +𝑲𝑐

𝑅(2Ω𝑠) + 𝑲𝑠
𝑅(2Ω𝑠) (4.6) 

 

Likewise, CR(2Ωs) can be decomposed by C0
R, Cc

R(2Ωs), and Cs
R(2Ωs). 
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 𝑪𝑹(2Ω𝑠) = 𝑪0
𝑅 + 𝑪𝑐

𝑅(2Ω𝑠) + 𝑪𝑠
𝑅(2Ω𝑠) (4.7) 

 

Then,  

 

 
∫ 𝑲𝑅(2Ω𝑠)𝑑𝑠
𝑡𝑘

𝑡𝑘−1

= 𝑲0
𝑅∆𝑘 +∫ 𝑲𝑐

𝑅(2Ω𝑠)𝑑𝑠
𝑡𝑘

𝑡𝑘−1

+∫ 𝑲𝑠
𝑅(2Ω𝑠)𝑑𝑠

𝑡𝑘

𝑡𝑘−1

 (4.8) 

 

 
∫ 𝑪𝑅(2Ω𝑠)𝑑𝑠
𝑡𝑘

𝑡𝑘−1

= 𝑪0
𝑅∆𝑘 +∫ 𝑪𝑐

𝑅(2Ω𝑠)𝑑𝑠
𝑡𝑘

𝑡𝑘−1

+∫ 𝑪𝑠
𝑅(2Ω𝑠)𝑑𝑠

𝑡𝑘

𝑡𝑘−1

 (4.9) 

 

Using equations (2.25) and (2.26), the solutions of (4.8) and (4.9) can be easily obtained. 

The program code performs the above integration repeatedly in a loop until it gets 

HM(K). One of the advantages of this approach is the fixed discretization size, which 

enables parallel calculations of nK of BK, improving computational efficiency 

significantly.  

 

4.4. Contact Model 

Multi-domains of a rotor structure can interact with various types of connection 

in the finite element model. In this work, 3 different methods are introduced: the rigid 

connection using kinematic constraint equations, the penalty method, and the asperity 

contact method. Besides, 2 types of mesh interface: conformal mesh interface and non-

conformal mesh interface are discussed in the following sub-sections. Besides, thermal 

contact resistance model is developed and verified as well. 
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4.4.1. Rigid Connection 

Rigid contact is intended to depict connection between two rigid surfaces. Since 

the surfaces are rigid, no deformation is expected during the contact. Thus, the 

connection is defined by kinematic constraint equations. The derivations of constraint 

equations and transformation matrix are given by the references [9, 11]. Using the 

constraint equations inevitably introduces reduced system matrices. Hence, the total 

number of dofs are reduced and it may result in additional multiplication computations 

during the integration of the multi-physics results. Different sizes of each system may 

lead unexpected errors in the code. To the author’s experience, using constraint 

equations in the complex multi-physics rotordynamic models may not be recommended 

except some unavoidable processes, such as rotor-bearing connections with rigid planes.  

 

4.4.2. Contact Node Search Algorithm 

For the contact in a finite element model, it is important to determine contact 

locations [77]. Due to the nature of the discretized geometrical definitions of the finite 

element model using elements, faces, and nodes, the corresponding contact nodes at 

interfaces should be properly selected to prevent loss of accuracy in prediction. There 

are mainly two types of mesh interfaces: conformal mesh interface and non-conformal 

mesh interface. Both types are discussed in the following sections. 
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4.4.2.1. Conformal Mesh Interface 

Conformal mesh interface can be defined as whose nodes at the interface of two 

different domains are coincident. An example of the structure composed of two 

rectangular beams is given for illustration as shown in Figure 4.8. The mesh is generated 

for each domain, keeping conformity at the interface as illustrated in Figure 4.9 and 

Figure 4.10. Some special treatments are required to ensure the conformity at interfaces 

during mesh generation for unstructured mesh. Many commercial tools, for example, 

ANSYS Meshing, ANSYS ICEM, GAMBIT, etc., provide this function along with some 

open-source meshers, such as Gmsh. Although contact algorithm for conformal 

unstructured mesh is provided in this study, the developed code does not offer functions 

to generate conformal unstructured mesh at the moment. Whereas, conformal structure 

mesh is mainly used and provided by the code, which is to be discussed in the following 

sections.  

 

Figure 4.8  Drawing of a structure with two different domains in contact 
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In order to find the contact nodes at interface an algorithm called ‘contact node search 

algorithm’ is used. The algorithm searches the contact nodes based on geometrical 

proximity. The tolerance for the algorithm can be set as a certain ratio corresponding the 

mesh size.  

 

Figure 4.9  Mesh of a structure with two different domains in contact 

 



 

116 

 

 

Figure 4.10  Contact nodes at interface of a structure with two different domains in 

contact 

 

The boundary conditions set as fixed temperature to both ends as shown in Figure 4.8 

and Figure 4.11. The constant temperature at x=0.0 m location is set as 0 ̊ C and 100 ̊ C 

at x = 0.4 m.  



 

117 

 

 

Figure 4.11  Fixed temperature boundary conditions for multi-domain square beam 

structure with conformal mesh interface 

 

Figure 4.12 presents temperature distributions without and with the constraint equations 

between two beams. Without the constraint equations, two beams behave as separated 

bodies. On the other hand, the case where the constraint equations are applied shows 

smooth temperature gradient through the connected bodies. 

 

 

Figure 4.12  Temperature distribution for an integrated multi-domain structure  

 



 

118 

 

The connection algorithm for displacement field variables can also be built in the similar 

manner. Basic concepts are identical to thermal analysis except displacement field 

variables have x,y and z direction degree of freedoms while temperature field variables 

do not have directional degree of freedoms. Figure 4.13 and Figure 4.14 show 3D solid 

finite element model with displacement variable connection algorithm and its 

verification. 

 

 

Figure 4.13  Displacement field integration for a multi-domain beam structure 

 

 



 

119 

 

 

Figure 4.14  Displacement results from ANSYS APDL 

 

Table 4.5  Comparison between monolithic structure and multi-domain interpolated 

structure from ANSYS APDL and SFER 

 ∆z (μm) Error (%) 

Monolithic structure (ANSYS APDL) -56.80 - 

Monolithic structure (SFER) -56.63 0.3 % 

Multi-domain interpolated structure (SFER) -56.61 0.3 % 

 

 

4.4.2.2. Non-Conformal Mesh Interface 

For more general cases where the contact nodes are not coincident, non-

conformal mesh, an interpolation method should be used to define the relations between 

the nodes at two different domains. Element shape functions can be used to interpolate 

field variables of the multi-domains. For 10-node quadratic tetrahedron element is used 
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in isoparametric assumption, inherently quadratic integration functions are used to 

generate constraint equations for non-coincident contact nodes.   

 

 

Figure 4.15  Non-conformal mesh interface 

 

A misaligned set of square beams are designed to demonstrate non-conformal mesh 

interface as shown in Figure 4.15. As a first step, contact faces should be determined by 

the contact node search algorithm. The contact search algorithm searches a set of nodes 

based on their proximity. 

 

 𝑎𝑏𝑠(𝒙𝑖1 − 𝒙𝑖2) < 𝑡𝑜𝑙𝑖𝑛𝑡 (4.10) 

 

where xi1, xi2, and tolint mean the surface nodes at one domain of the interface, the 

surface nodes at the counter domain of the interface, and tolerance of node distance, 

respectively. A loop for the entire surface nodes obtains the contact nodes within the 

defined distance. With the obtained set of nodes, a group of contact faces can also be 
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collected. Figure 4.16 illustrates a method to find the corresponding surface in the 

counter domain for a contact node.  

 

Figure 4.16  Non-conformal mesh interface contact algorithm  

 

When it comes to planar connect as in Figure 4.15, the contact nodes at both domains lie 

in a flat plane. Thus, the previously described method can be directly applied. Figure 

4.17 plots a temperature distribution for the geometry shown in Figure 4.15.  
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Figure 4.17  Temperature distribution 

 

However, there should be another step for a non-planar contact, such as cylindrical 

contact, which is a common case for rotating machinery. For a non-planar contact case, a 

contact node is projected onto the counter face, generating an additional projected node 

as shown in Figure 4.18. Let a pair of a contact node and the corresponding counter face 

be found by the contact node search algorithm. A normal vector of the face can also be 

chosen. Following the vector, a projected node can be generated on the face from the 

contact node. The projected node is also exploited as a criterion to exclude the 

corresponding contact node as shown in Figure 4.19. The figure describes two different 

cases P1 and P2. The contact node search algorithm corresponds both P1 and P2 to a 

single face. The projected node from P1 lies on the face, while the one from P2 does not. 
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This additional step filters collected contact nodes, excluding ones outside of the contact 

boundaries. 

 

 

Figure 4.18  Inter-domain node projection for non-planar contact interfaces 
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Figure 4.19  Contact node search algorithm using a projected node 

 

As mesh gets refined, the projected distance between the contact node and the projected 

node decreases and the deviation between their field variables becomes small enough. 

Therefore, field variables can be determined by nodal values and shape functions. For 

example, the temperature of node P1 in Figure 4.18 can be calculated as 

 

 𝑇𝑃1 ≈ 𝑇𝑃𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑁1𝑇1 +𝑁2𝑇2 + 𝑁3𝑇3 + 𝑁4𝑇4 + 𝑁5𝑇5 + 𝑁6𝑇6 (4.11) 

 

Figure 4.20 shows a cylindrical contact between a shaft and a disk. The two different 

domains do not coincide at the interface. The contact node search algorithm finds 

contact nodes at each domain. The contact nodes at the disk side are projected to the 

counter domain. Then, the constraint equations between the projected nodes and the 

corresponding facial nodes are established. Finally, the projected nodes are deducted 

from the total dofs so that the number of total dofs remains unchanged.   
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Figure 4.20  Cylindrical non-conformal contact mesh interface of a shaft-disk structure  

 

In order to verify the non-conformal interpolation contact algorithm, two types of the 

same structure are compared: monolithic disk-shaft structure and interpolated two-

domain disk-shaft structure. Figure 4.21 plots the temperature distributions for 3 

different cases. The single-domain monolithic body plays a reference, and temperature 

value at point P(0.1 m, 0 m, 0.025 m) is compared to the multi-domain models. Table 4.6 
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lists the thermal properties of each case. The thermal properties of the impellers differ 

from one another, while the shaft maintain the same property for all the cases. 

  

Table 4.6  Thermal properties of shaft-disk structures 

 Thermal conductivity 

(W/m2K) 

Thermal expansion 

coefficient (W/mK) 

Shaft and impeller for 

monolithic body 
46 1.77E-05 

Impeller for case 1 (99.5%) 45.77 1.76E-05 

Impeller for case 2 (25.0%) 11.5 4.43E-06 

 

 

 

Figure 4.21  Temperature distributions for 3 types: monolithic single body, multi-

domain with similar thermal properties, multi-domain with different thermal properties 
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Case 1 shown in Figure 4.21 plots a thermal contour similar to the one of the monolithic 

body, which implies the non-conformal mesh contact interpolation method connects two 

separated domains properly. 8.40 % deviation from the monolithic body’s temperature at 

P(0.1 m, 0 m, 0.025 m) is seen in case 2 of the multi-domain model with different 

thermal properties.  

 

4.4.3. Thermal contact resistance algorithm 

When two objects are thermally connected, there may be thermal contact 

resistance which resists heat flow through interfaces [78]. Both conformal mesh 

interface and non-conformal mesh interface may include thermal contact resistance at 

their interface, and no constraint equation is used for both cases. In other words, thermal 

contact resistance separates the temperature variables of the two nodes at a contact point 

of two different domains. Including thermal contact resistance may improve the 

accuracy of the temperature prediction models.  

 

4.4.3.1. Finite Element Formulation 

The finite element formulation for the thermal contact resistance element can be 

derived from the potential energy of contact interface as [11] 
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𝛱𝑡𝑐
𝑒 =

1

2
∫ (𝑇)𝑇

1

𝑅𝑐
𝑒  𝑇𝑑𝑆𝑒

 

𝑆𝑒

=
1

2
∫ (𝑻𝒆)

𝑇
(𝑵𝒊

𝒆)
𝑇 1

𝑅𝑐
𝑒 𝑵𝒊

𝒆 𝑻𝑒𝑑𝑆𝑒

 

𝑆𝑒

=
1

2
(𝑻𝒆)

𝑇
∫ (𝑵𝒊

𝒆)
𝑇 1

𝑅𝑐
𝑒𝑵𝒊

𝒆𝑑𝑆𝑒

 

𝑆𝑒

 𝑻𝑒 

(4.12) 

 

 

where Πtc
e, T, Te, Rc

e, and Ni
e are the potential energy of the thermal contact element, the 

temperature of the element, the element nodal temperature vector, the element thermal 

contact resistance for a unit area, and the element inter-domain shape function matrix, 

respectively. 

 𝒉𝒕𝒄
𝒆 = ∫ (𝑵𝒊

𝒆)
𝑇 1

𝑅𝑐
𝑒 𝑵𝒊

𝒆  𝑑S𝑒

 

S𝑒

 (4.13) 

 

where htc
e is the element thermal contact resistance matrix. The inter-domain shape 

function matrix defines the temperature field across the contact plane between two 

elements in contact. For the case of a conformal mesh on the contact plane, Ni
e can be 

represented as 

 

 𝑵𝑖
𝑒 = [−𝑁1 ⋯ −𝑁𝑛𝑠| 𝑁1 ⋯ 𝑁𝑛𝑠 ] (4.14) 

 

where ns is the number of face nodes, and N1 and Nns are the shape functions of the first 

node and nsth node of the element, respectively. The element thermal contact resistance 

matrix is evaluated with the following Gauss quadrature formula [9] 
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 𝒉𝒕𝒄
𝒆 = ∑∑𝑤𝛼𝑤𝛽𝑵

𝒆(𝜉1𝛼, 𝜉2𝛽)
𝑇 1

𝑅𝑐
𝑒 𝑵

𝒆(𝜉1𝛼, 𝜉2𝛽)𝑑𝑒𝑡 (𝑱(𝜉1𝛼, 𝜉2𝛽))

𝑛𝐺

𝛽=1

𝑛𝐺

𝛼=1

 (4.15) 

 

where nG is the number of Gauss quadrature integration points, det(J) is the determinant 

of the Jacobian matrix, ξ1α, ξ2β are Gauss quadrature integration points in the natural 

coordinate system and wα, wβ are the corresponding weight factors. 

 

4.4.3.2. Verification 

The thermal contact resistance element developed in the preceding section is 

verified by analytical solutions. To make an analytical solution available, a simple 

cylindrical shaft structure is introduced as shown in Figure 4.22. The shaft is divided 

into two identical parts. The two separated shaft domains are in contact via thermal 

contact resistance. The thermal contact resistance coefficient, Rct in unit of m2K/W 

ranges from 1.0e-4 to 1.0e-1 in the following parametric study. Figure 4.23 draws the 

corresponding equivalent thermal circuit for the simple cylindrical shaft. Analytical 

solutions are obtained using the circuit and utilized as the reference values for 

verification of the developed thermal contact element. Table 4.7 lists properties of the 

assembly. 
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Figure 4.22  Simple cylindrical shaft structure assembly 

 

 

 

Figure 4.23  Equivalent thermal circuit for the simple cylindrical shaft structure 

assembly 

 

 

Table 4.7  Properties of the simple cylindrical shaft structure 

Part a b1 b2 

Conductivity, k (W/mK) 60.5 15.125 15.125 

Length, L (m) 0.1 0.05 0.05 

 

Figure 4.24 plots temperature contours for four different thermal contact resistances: 

1.0e-4 m2K/W, 1.0e-3 m2K/W, 1.0e-2 m2K/W, 1.0e-1 m2K/W. Temperature deviations 

become great as thermal contact resistance increases. Table 4.8 and Figure 4.25 compare 



 

131 

 

the results from the finite element analyses and preliminary solutions from the 

equivalent thermal circuit. The average difference is within 0.39%. 

 

 

Figure 4.24  Temperature contours for various thermal contact resistances 

 

Table 4.8  Comparison between FE model and preliminary solution from equivalent 

thermal circuit 

Thermal contact 

resistance (K 

m2/W) 

1.00E-04 1.00E-03 1.00E-02 1.00E-01 

 T3(degC) q(W) T3(degC) q(W) T3(degC) q(W) T3(degC) q(W) 

Preliminary 

solution 
60.48 23.47 64.32 21.19 81.90 10.75 96.95 1.81 

FE model 60.57 23.28 64.40 21.02 81.92 10.68 96.95 1.80 

Error 0.15% 0.82% 0.12% 0.81% 0.02% 0.68% 0.00% 0.55% 
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Figure 4.25  Comparison between FE model and preliminary solution from equivalent 

thermal circuit 

 

 

4.4.4. Penalty-Based Contact Algorithm 

A contact model based on the penalty method is developed. The penalty method 

is one of the contact modelling method using penalty number [11]. To derive the contact 

stiffness matrix and the contact force vector, a constraint equation is introduced as 

 

 𝒕 = 𝑪 ∙ 𝑫 − 𝑸 (4.16) 
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where t, C, and D are the indicator of violation for the impenetrate condition, the 

coefficient matrix, and the gap function vector, respectively. t = 0 defines satisfaction of 

the constraints. And the potential energy function is augmented by a penalty function as 

 

 𝜫𝒑 =
𝟏

𝟐
𝑫𝑻𝑲 𝑫 − 𝑫𝑻𝑹 +

𝟏

𝟐
𝒕𝑻𝜶 𝒕 (4.17) 

 

where tTα t /2 and α are the penalty function and a diagonal matrix of penalty number αi. 

Then the stationary condition is 

 

 
𝜕𝜫𝒑

𝜕𝑫
= 𝟎 (4.18) 

 

By the chain rule, 

 

 
𝜕

𝜕𝑫
(
𝟏

𝟐
𝒕𝑻𝜶 𝒕) =

𝜕𝒕

𝜕𝑫

𝜕

𝜕𝒕
(
𝟏

𝟐
𝒕𝑻𝜶 𝒕) = 𝑪𝑻𝜶 𝒕 = 𝑪𝑻𝜶 (𝑪 ∙ 𝑫 − 𝑸) (4.19) 

 

Hence, the stationary condition becomes 

 

 
𝜕𝜫𝒑

𝜕𝑫
= (𝑲 + 𝑪𝑻𝜶 𝑪) ∙ 𝑫 − 𝑹 − 𝑪𝑻𝜶 𝑸 = 𝟎 (4.20) 

 (𝑲 + 𝑲𝒄) ∙ 𝑫 = 𝑹 + 𝑹𝒄 (4.21) 
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In equation (4.21),  

 

 𝑲𝒄 = 𝑪𝑻𝜶 𝑪 (4.22) 

 𝑹𝒄 = 𝑪
𝑻𝜶 𝑸 (4.23) 

 

where Kc and Rc are the contact stiffness matrix and the contact force vector. 

Figure 4.26 illustrates two domains in contact. Let the two domains overlap with a 

distance -gn between two arbitrary points at each domain. This penetrated condition is 

unrealistic and gn should be always greater than or equal to zero.  

 

 

Figure 4.26  Two domains with penetration gap -gn 

 

Figure 4.27 depicts the contact stiffness and the contact forces between these two points 

in Figure 4.26. As defined in equations (4.22) and (4.23), the contact stiffness and the 
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contact force can be defined by penalty number. For a simple application, both terms are 

set as simple function of penalty number as 

 

 𝑘𝑐 = 𝛼 (4.24) 

 𝑓𝑐 = 𝛼𝑔𝑛 (4.25) 

 

The contact forces are exerted in the directions which reduces the penetration, while the 

contact stiffness resists the deformation due to the contact forces as described in Figure 

4.27.  

 

 

Figure 4.27  Contact model schematic with contact stiffness and contact forces 

 

As an implement of the contact model, a rectangular beam shaft is utilized as shown in 

Figure 4.28. An overlap between the two shafts is set by locating them at certain 

positions manually. The contact nodes can be found by the contact node search 
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algorithm. Figure 4.29 illustrates the contact dynamics at the interface. The deformed 

structure by the application of the penalty method is plotted in Figure 4.30. The axial 

contact force distribution is plotted in Figure 4.31, and the calculated stress are 

compared with the one from ANSYS APDL simulation. ANSYS APDL calculates the 

maximum Von Mises stress as 8.11 GPa, while SFER predicts 8.12 GPa, which is within 

acceptable deviation ranges for a different numerical code. 

 

 

Figure 4.28  Rectangular beams with planar contact interface (penetrate condition) 

 

 



 

137 

 

 

Figure 4.29  Schematic diagram for the rectangular beams with planar contact interface 

 

 

Figure 4.30  Rectangular beams with planar contact interface (impenetrate condition) 
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Figure 4.31  Axial force distribution of the rectangular beam assembly 

 

 

Figure 4.32  ANSYS APDL Von Mises stress distribution for the rectangular beam 

assembly 

 

The contact model is applied to a cylindrical interface, such as shaft-disk assemblies as 

shown in Figure 4.33 and Figure 4.34. The shaft and the disk are assembled by 

interference fit. The penalty method is utilized to satisfy the impenetrate condition for 
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the assembly. Although the penalty algorithm satisfies the impenetrate condition within 

a tolerance, the stress distribution of the shaft-disk assembly may be undesirable as 

plotted in Figure 4.35. The irregularly distributed contact stress may be caused by the 

unstructured mesh and non-conformal mesh at the interface.   

 

 

Figure 4.33  Shaft-disk assembly with interference fit 
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Figure 4.34 Shaft-disk assembly with interference fit 

(zoom in) 

 

 

Figure 4.35  Von Mises stress distribution at the interface of the shaft-disk assembly 
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A structured mesh is generated for a shaft-disk assembly with conformal interface as 

shown in Figure 4.36. The conformity in the model implies the concentric alignment of 

each surface node set of the shaft and the disk. This constraint ensures the conformity for 

a deformed mesh after the penalty method is applied. The initial interference between 

the shaft and the disk is set as 0.05 mm. Then the contact node search algorithm pairs 

each node at the two domains, and the penalty algorithm finds the contact stiffness and 

contact forces at the interface. Figure 4.37 compares the undeformed structure and the 

deformed structure. Then the radial stress distribution is plotted in Figure 4.38. It is 

shown that no circumferential deviation is given in the solution, while the radial stress 

varies along with the axial direction. An analytical solution can be obtained as [65] 

 

 
𝑃 =

𝛿

𝑑
𝐸𝑜
(
𝑑𝑜2 + 𝑑2

𝑑𝑜
2 − 𝑑2

+ 𝜐𝑜) +
𝑑
𝐸𝑖
(
𝑑2 + 𝑑𝑜2

𝑑2 − 𝑑𝑜
2 − 𝜐𝑖)

 
(4.26) 

 

where P, δ, di, do, d, Ei, Eo, υi, and υo are the contact pressure in the radial direction at the 

interface, the diametral interference, the inner diameter of the shaft, the outer diameter of 

the disk, the nominal shaft diameter, Elastic modulus of the shaft, Elastic modulus of the 

disk, Poisson’s ratio of the shaft, and Poisson’s ratio of the disk, respectively. Table 4.9 

compares the results from the analytical solution and the results from the finite element 

model.  
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From the demonstration, the use of structured mesh with conformal mesh interface is 

recommended for a rotor assembly since the circumferential contact is a common 

practice in rotating machinery. 

 

 

Figure 4.36  Structured mesh for a shaft-disk assembly with conformal contact interface  

 



 

143 

 

 

Figure 4.37  Deformation of the shaft-disk assembly by the penalty method  

 

 

Figure 4.38  Radial stress distribution of the shaft-disk assembly with interference fit 
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Table 4.9  Comparison between analytical solution and FEM 

 2D theory 3D FEM 

σmax 

25.4 MPa 

29.49 MPa 

σmin 10.57 MPa 

σavg 21.69 MPa 

 

 

4.4.5. Asperity Contact Model 

The asperity contact model is another approach to deal with the rotor structure 

assembled with multiple parts. The theoretical derivation and validation is provided in 

Chapter 3. The asperity contact model is differentiated from general contact models, 

such as the penalty method, by several aspects as follows. The asperity contact model 

aims to find a physical contact stiffness which corresponds to the given preload, whereas 

the penalty method uses a numerical value for the contact stiffness. The contact stiffness 

in the penalty method may not reflect physical meanings. Instead, it is determined to 

satisfy the impenetrate condition. The value of t in the impenetrate condition of equation 

(4.16) becomes close to zero as penalty number increases, and it leads better compliance 

with the impenetrate condition. However, penalty number should be limited to prevent 

numerical singularity of the system stiffness matrix [77]. Hence, the asperity contact 

model may be an adequate choice for preloaded rotor assemblies.  

In finite element analyses, structured mesh is preferred since it can provide good mesh 

quality and computational efficiency in general. However, structured mesh would 

require manual mesh generation and even highly skilled meshing technique when it 
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comes to complicated geometries. As for the penalty method, it is shown that structured 

conformal mesh at interfaces is nearly necessary for robust solutions. This is mainly 

because the gap function between nodes are significantly affected by the mesh structure. 

Regarding the asperity contact method, however, unstructured non-conformal mesh can 

also be used since the compliance for the impenetrate condition is unnecessary. 
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5. CONCLUSIONS 

 

5.1. 3D Solid Finite Element Rotordynamics 

The influences of the geometrical characteristics of rotor structures on 

rotordynamic characteristics of stability and critical speed prediction have been studied 

in this dissertation. The methodologies for conventional rotordynamic problems may be 

inadequate for high-fidelity rotor structure dynamic analyses. To account for the 

unconventional structural rotordynamic characteristics, novel modelling and analysis 

approaches using 3D solid finite element rotordynamic models were proposed. Unique 

computational algorithms were implemented by the standalone in-house 3D solid finite 

element rotordynamic code. It was shown that the novel modelling method provides 

more accurate prediction on parametric stability and critical speeds for complex-shaped 

rotor-bearing systems.  

An efficient method was presented for rotordynamic stability simulation of 

systems with non-axisymmetric rotors and bearings, modeled with 3D solid finite 

elements. Ten (10) node quadratic tetrahedron elements were developed for modelling 

the non-axisymmetric rotor. Guyan reduction was utilized to reduce the dimension of the 

matrix differential equation to efficiently evaluate its monodromy matrices. Parametric 

instabilities in non-axisymmetric rotor-bearing systems were determined with Floquet 

theory, exploiting Hsu’s method to discretize the Monodromy matrix. Numerical 

integration and a Routh-Hurwitz test were utilized to validate the approach for a Jeffcott 

rotor model with rectangular cross section. Use of Hsu’s method and parallel 
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computation for evaluation of Monodromy matrices accelerated the computation time by 

a factor of 400 or more. The approximate Hsu approach was demonstrated to be highly 

accurate with a large order model example. Parametric studies were conducted to 

determine the effect of varying bearing and rotor asymmetry on the intensity of the 

instability and the speed ranges over which it will occur. The prior method using Hill’s 

infinite determinant was compared with the proposed method using Hsu’s method. The 

presented results imply that applications of Hill’s method may be limited to the inertial 

coordinate system or to small level of bearing asymmetry in the rotor-fixed coordinate 

system, whereas the proposed method in this paper using Hsu’s method accurately 

predicts the instability of the 3D solid rotor-bearing systems having complex geometries 

which require a large number of dofs and description in the rotor-fixed coordinate 

system without limitation of the level of bearing asymmetry. It was also shown that the 

proposed method becomes more advantageous as the number of dofs increases with 

respect to computational efficiency. A demonstration model with a Timoshenko beam 

rotor and fluid film journal bearings was developed to show that the proposed method 

can detect both parametric and non-parametric instabilities. A Root type impeller 

example was presented to illustrate the possibility of parametric instability (resonance) 

for practical, non-axisymmetric rotors. The system exhibited unstable behavior at spin 

speeds near the first bending modes, undamped natural frequencies.  

The study presented a new high-fidelity, 3D solid element, finite contact method 

for the rotordynamic modeling of a rotor assembly with multiple preloaded parts and 

joints. A contact element for 3D solid finite element rotordynamic model was 
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introduced, and a finite element formulation for the contact element was presented. The 

contact element can be used for direct applications of statistics-based contact theories to 

the 3D solid finite element rotordynamic model. A test rig was built to validate the 

proposed contact modeling method. Multiple configurations, for various degrees of 

roughness at contact interfaces, were tested along with varying internal shaft preloads, 

and natural frequencies were measured. A prediction model for the test configurations 

was developed. An iterative calculation algorithm was introduced in order to solve the 

implicit equations between contact stiffness and stress distribution. Converged stress 

distributions of the rotor assembly, and contact stiffness at the interfaces in the test 

configurations were obtained for various degrees of interface roughness and preloads. 

Next, the natural frequencies of the rotor assembly were calculated and compared with 

the experimental results. The prediction results accurately follow the trend of the 

measurement with respect to the level of interface surface roughness and the increase of 

preloads. An overhung impeller type rotor bearing system simulation model was 

presented for demonstrating practical applications of the proposed modeling method. 

The simulation results demonstrate that the predicted critical speeds vary with respect to 

preload and contact surface roughness.  

 

5.2. Future work 

The current industrial practice in rotordynamic analyses still may have 

preference on using beam-type finite element rotor models, since it has been firmly 

established through industry working environments from generation to generation. 
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Therefore, one of the main remaining goals of the work should be seamless 

implementation of the suggested high-fidelity structural rotordyanmic analyses into the 

conventional beam-type finite element rotordynamics. It may be achieved by employing 

optimization algorithms to get tuned or adjusted beam-element corresponding 3D solid 

finite element rotordynamic components, such as couplings, blade disks, and etc. 

The novel approach using 3D solid finite element Hsu’s method parametric 

instability was suggested for complex-shaped non-axisymmetric rotor-bearing system. It 

was numerically shown that Hill’s method may incorrectly predict unstable speed ranges 

when it comes to large non-axisymmetry for both rotor and bearings in the rotor-fixed 

coordinate system. Analytical demonstration should provide the limitations of these 

applications more clearly. Furthermore, experimental tests for rotor-bearing systems 

with large non-axisymmetry may prove the validity of the proposed method. Using the 

developed Hsu’s method, steady-state imbalance response may be obtained which 

accounts for operating margins for non-axisymmetric rotor-bearing systems. 

The contact model suggested in this dissertation is applicable to arbitrary 

geometries of coupling contact interfaces, while only demonstration models with flat 

contact interfaces were numerically investigated and experimentally validated. As the 

proposed method accounts for non-flat contact surface as well, such as Hirth-joint and 

Curvic-joint couplings, further studies on such non-flat contact interface cases can be 

conducted.  
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APPENDIX A 

 

Appendix A mainly describes constraint equations given in [11]. 

Provided constraint equations are given as 

 

 𝑪 ∙  𝑫 − 𝑸 = 𝟎 (A.1) 

 

 
[𝑪𝑟 𝑪𝑐] [

𝑫𝑟
𝑫𝑐
] − 𝑸 = 𝟎 (A.2) 
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𝑫𝒓
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]𝑫𝒓 + [
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𝑪𝒄
−𝟏 𝑸

] (A.3) 

 

 𝑫 = 𝑻 𝑫𝒓 + 𝑸𝟎 

 

(A.4) 

 


