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ABSTRACT

Capabilities of detecting events and recognizing temporal, subevent, or causal relations among

events can facilitate many applications in natural language understanding. However, supervised

learning approaches that previous research mainly uses have two problems. First, due to the lim-

ited size of annotated data, supervised systems cannot sufficiently capture diverse contexts to distill

universal event knowledge. Second, under certain application circumstances such as event recog-

nition during emergent natural disasters, it is infeasible to spend days or weeks to annotate enough

data to train a system. My research aims to use weakly-supervised learning to address these prob-

lems and to achieve automatic event knowledge acquisition and event recognition.

In this dissertation, I first introduce three weakly-supervised learning approaches that have

been shown effective in acquiring event relational knowledge. Firstly, I explore the observation

that regular event pairs show a consistent temporal relation despite of their various contexts, and

these rich contexts can be used to train a contextual temporal relation classifier to further recognize

new temporal relation knowledge. Secondly, inspired by the double temporality characteristic of

narrative texts, I propose a weakly supervised approach that identifies 287k narrative paragraphs

using narratology principles and then extract rich temporal event knowledge from identified narra-

tives. Lastly, I develop a subevent knowledge acquisition approach by exploiting two observations

that 1) subevents are temporally contained by the parent event and 2) the definitions of the parent

event can be used to guide the identification of subevents. I collect rich weak supervision to train

a contextual BERT classifier and apply the classifier to identify new subevent knowledge.

Recognizing texts that describe specific categories of events is also challenging due to language

ambiguity and diverse descriptions of events. So I also propose a novel method to rapidly build a

fine-grained event recognition system on social media texts for disaster management. My method

creates high-quality weak supervision based on clustering-assisted word sense disambiguation and

enriches tweet message representations using preceding context tweets and reply tweets in building

event recognition classifiers.
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1. INTRODUCTION

Events describe the interactions between agents (e.g., people, organizations, countries, etc.)

and objects involved. Understanding text-internal events is a critical step to interpret complicated

dynamics of the world evolving every day. It is feasible only when we can accurately detect partic-

ular event types and comprehensively recognize how different events are interconnected through

relational links. Therefore, developing computational models to recognize specified events and

their relations (e.g., temporal, subevent and causal relations) is a long-held goal in Natural Lan-

guage Processing (NLP) research. For example, automatic recognizing relations among events

helps us to model the world, which supports event prediction, crisis forecast and risk management.

Automatic detecting life-threatening events during natural disasters provides us real-time event

sensing, which can help local authorities and responders to facilitate evacuation operations or find-

ing victims in need of help. However, both event relation identification and event recognition are

very challenging.

First, recognizing the relation between two events is very challenging as the relation can be

described in dramatically different contexts depending on domains and pairs of events, signifying

different semantic meanings. In order to capture various contexts, large amounts of labeled data

are needed to train a high-coverage relation classifier. However, almost all existing datasets that

contain event-event relation annotations are limited in size and context diversity, such as Auto-

matic Context Extraction (ACE) [Strassel et al., 2008] and TimeBank [Pustejovsky et al., 2003],

HiEve [Glavaš et al., 2014] which generally contain one to two hundred documents. Most of the

existing relation classifiers are trained using these small manually annotated datasets, relying on

sophisticated lexical, grammatical, linguistic (e.g., tenses and aspects of events), semantic (e.g.,

semantic roles and lexicon derived features) and discourse (e.g., discourse connectives [Mirza and

Tonelli, 2014b]) features.

Luckily, certain events often co-occur in a particular event relation, which can be extracted as

general event ontology knowledge. For example, people often go to work after graduation with a
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degree, people often order, eat and pay when dining in a restaurant, hurricanes often cause flooding

that may further cause houses collapse. Such event “before/after” temporal knowledge, “subevent-

parentevent” knowledge and “cause-effect” knowledge can be extracted as general event ontology

knowledge. Event ontology knowledge reveals relations between events despite of their complex

contexts, which facilitates comprehensive reasoning in documents thus benefits various NLP ap-

plications, including event tracking, event timeline generation, text summarization and question

answering. While being in high demand, event ontology knowledge is lacking and difficult to ob-

tain. Existing knowledge bases, such as Freebase [Bollacker et al., 2008] or Probase [Wu et al.,

2012], often contain rich knowledge about entities, e.g., the birthplace of a person, but contain

little event knowledge. Several approaches have been proposed to acquire event knowledge from

a text corpus, by either crowdsourcing knowledge from human [Baker et al., 1998, Havasi et al.,

2007, Rashkin et al., 2018], utilizing textual patterns [Chklovski and Pantel, 2004b] or applying

pretrained discourse parser [Zhang et al., 2020].

Second, recognizing texts that describe specified event categories is also challenging due to

language ambiguity and diverse expressions of events. In order to recognize life-threatening emer-

gency events on social media for reducing life and property losses during natural disasters, previous

research focuses on supervised classification approaches or burst topics detection. However, it is

critical to build this event recognizer rapidly during natural disasters but supervised approaches

require a carefully labeled dataset that is collected by asking human annotators to label a large

number of data instances one by one. Such data labeling process usually takes days or weeks,

which makes supervised learning schema not suitable during natural disasters. While burst topics

detection may reliably identify a disaster is happening but cannot recognize fine-grained types of

life-threatening events (e.g., mandatory evacuations, road closures, etc.).

In this dissertation, I propose several weakly-supervised learning approaches to address the

above challenges. Specifically, I have successfully applied three weakly-supervised learning ap-

proaches to acquire event temporal knowledge and subevent knowledge. I also have developed a

weakly-supervised event recognition system to recognize fine-grained event categories on social
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Figure 1.1: Overview of the Bootstrapping System for Temporal Knowledge Acquisition.
Reprinted with permission from Yao et al. [2017].

media texts during natural disasters. My approaches can effectively collect weak supervision au-

tomatically from texts and has been shown effective in acquiring event relational knowledge and

detecting fine-grained event types on social media texts.

1.1 Weakly-supervised Learning for Acquiring Event Knowledge

1.1.1 Temporal Knowledge Acquisition via CNN Contextual Classifiers

First, I observed that event pairs presenting regularities tend to show the same temporal relation

despite of various contexts they may occur in. For instance, arrest events tend to happen after

attack events, and the following sentential contexts all indicate the same temporal relation:

Under pressure following suicide attacks, police arrested scores of activists on Monday.

Two men were arrested on suspicion of carrying out the Mumbai attacks.

Carlos was arrested in Sudan in August in connection with two bomb attacks in France in 1982.

Mamdouh Habib was arrested in Pakistan three weeks after the Sept.11 attacks.

Leveraging this key observation, I propose a bootstrapping approach (Figure 1.1) that focuses

on recognizing after or before temporal relations and substantially reduces the reliance on human

annotated data. I start by identifying regular event pairs that have occurred enough times with an

explicit temporal pattern, i.e., EV_A after (before) EV_B. I then populate these seed event pairs

in a large unlabeled corpus to quickly collect hundreds of thousands of sentences that contain a

regular event pair, which are then used as training instances to obtain an initial contextual temporal
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Michael Kennedy graduated with a bachelor’s degree
from Harvard University in 1980. He married his wife,
Victoria, in 1981 and attended law school at the Uni-
versity of Virginia. After receiving his law degree,
he briefly worked for a private law firm before join-
ing Citizens Energy Corp. He took over manage-
ment of the corporation, a non-profit firm that deliv-
ered heating fuel to the poor, from his brother Joseph
in 1988. Kennedy expanded the organization goals and
increased fund raising.

Beth paid the taxi driver. She jumped out of
the taxi and headed towards the door of her
small cottage. She reached into her purse for
keys. Beth entered her cottage and got un-
dressed. Beth quickly showered deciding a
bath would take too long. She changed into
a pair of jeans, a tee shirt, and a sweater.
Then, she grabbed her bag and left the cot-
tage.

Figure 1.2: Two narrative examples. Reprinted with permission from Yao and Huang [2018].

relation classifier. Next, the classifier is applied back to the text corpus and label new sentential

contexts that indicate a specific after or before temporal relation between events. Then new regular

event pairs can be identified, which are event pairs that have a majority of their sentences labeled

as describing a particular temporal relation. The newly identified regular event pairs will be used to

augment seed event pairs and identify more temporal relation sentential contexts in the unlabeled

corpus. The bootstrapping learning process iterates. Through this weakly supervised learning

method, I obtain both a contextual temporal relation classifier and a list of regular event pairs that

usually show a particular "after/before" temporal relation.

1.1.2 Temporal Knowledge Acquisition via Identifying Narratives

Second, inspired by the double temporality characteristic of narrative texts, I propose a novel

approach for acquiring rich temporal “before/after” event knowledge across sentences via iden-

tifying narrative stories. The double temporality states that a narrative story often describes a

sequence of events following the chronological order and therefore, the temporal order of events

matches with their textual order [Walsh, 2001, Riedl and Young, 2010, Grabes, 2013]. Therefore,

we can easily distill temporal event knowledge if we have identified a large collection of narrative

texts. Consider the two narrative examples in figure 7.5, where the top one is from a news article

of New York Times and the bottom one is from a novel book. From the top one, we can easily

extract one chronologically ordered event sequence {graduated, marry, attend, receive, work, take
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Figure 1.3: Overview of the Narrative Learning System. Reprinted with permission from Yao and
Huang [2018].

over, expand, increase}, with all events related to the main character Michael Kennedy. While

some parts of the event sequence are specific to this story, the event sequence contains regular

event temporal relations, e.g., people often {graduate} first and then get {married}, or {take over}

a role first and then {expand} a goal. Similarly, from the bottom one, we can easily extract another

event sequence {pay, jump out, head, reach into, enter, undress, shower, change, grab, leave} that

contains routine actions when people take a shower and change clothes.

There has been recent research on narrative identification from blogs by building a text classi-

fier in a supervised manner [Gordon and Swanson, 2009, Ceran et al., 2012]. However, narrative

texts are common in other genres as well, including news articles and novel books, where little

annotated data is readily available. Therefore, in order to identify narrative texts from rich sources,

I develop a weakly supervised method (shown in Figure 1.3) that can quickly adapt and identify

narrative texts from different genres, by heavily exploring the principles that are used to charac-

terize narrative structures in narratology studies. It is generally agreed in narratology [Forster,

1962, Mani, 2012, Pentland, 1999, Bal, 2009] that a narrative is a discourse presenting a sequence

of events arranged in their time order (the plot) and involving specific characters (the characters).

First, I derive specific grammatical and entity co-reference rules to identify narrative paragraphs

that each contains a sequence of sentences sharing the same actantial syntax structure (i.e., NP VP
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describing a character did something) [Greimas, 1971] and mentioning the same character. Then,

I train a classifier using the initially identified seed narrative texts and a collection of grammatical,

co-reference and linguistic features that capture the two key principles and other textual devices

of narratives. Next, the classifier is applied back to identify new narratives from raw texts. The

newly identified narratives will be used to augment seed narratives and the bootstrapping learning

process iterates until no enough new narratives can be found.

Then by leveraging the double temporality characteristic of narrative paragraphs, I distill gen-

eral temporal event knowledge. Specifically, I extract event pairs as well as longer event sequences

consisting of strongly associated events that often appear in a particular textual order in narrative

paragraphs, by calculating Causal Potential [Beamer and Girju, 2009, Hu et al., 2013] between

events.

1.1.3 Subevent Knowledge Acquisition via Fine-tuning a BERT Classifier

The third model focuses on subevent knowledge acquisition. Subevents, which elaborate and

expand an event, widely exist in event descriptions. For instance, when describing election events,

people usually describe typical subevents such as “nominate candidates”, “debates” and “people

vote”. Knowing typical subevents of an event can help with analyzing several discourse relations

(such as expansion and temporal relations) between text units and recognizing the subevent relation

between events in a story. Furthermore, knowing typical subevents of an event is important for

understanding the internal structure of the event (what is the event about?) and its properties (is

this a violent or peaceful event?), and its relations with other events (e.g., causal and temporal

relations), and therefore has great potential to benefit various event oriented applications such as

event detection, event tracking, event visualization and event summarization among many other

applications.

While being in high demand, little subevent knowledge can be found in existing knowledge

bases. Therefore, I aim to extract subevent knowledge from text and build the first subevent knowl-

edge base covering a large number of commonly seen events and their rich subevents.

Little research has focused on identifying the subevent relation between two events in a text.
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Several datasets annotated with subevent relations Glavaš et al. [2014], Araki et al. [2014], O’Gorman

et al. [2016] exist, but they are extremely small and usually contain dozens to one/two hundred

documents. Subevent relation classifiers trained on these small datasets are not suitable to use to

extract subevent knowledge from text, considering that subevent relations can appear in dramati-

cally different contexts depending on topics and events.

I propose to conduct weakly supervised learning and train a wide-coverage contextual classifier

to acquire diverse event pairs of the subevent relation from text. Figure 5.1 provides the overview

of my subevent knowledge acquisition system. I start by creating weak supervision, where I aim to

identify the initial set of subevent relation tuples from a text corpus. With no contextual classifier

at the beginning, it is difficult to extract subevent relation tuples because subevent relations are

rarely stated explicitly. Instead, I propose a novel two-step approach to indirectly obtain the initial

set of subevent relation tuples, exploiting two key observations that (1) subevents are temporally

contained by the parent event, and thus can be extracted with linguistic expressions that indicate

the temporal containment relationship1, and (2) the definition of the parent event is useful to prune

spurious subevent tuples away to improve the quality.

Specifically, I first use several preposition patterns (e.g., ei during ej) that indicate the tempo-

ral relation contained_by between events to identify candidate subevent relation tuples. Then, I

conduct an event definition-guided semantic consistency check to remove spurious subevent tuples

that often include two temporally overlapping but semantically incompatible events. For example,

a news article may report a bombing event that happened in parallel during a festival, but the intense

bombing event is not semantically compatible with the entertaining event festival, as informed by

the common definition of festival:

A festival is an organized series of celebration events, or an organized series of concerts, plays, or

movies, typically one held annually.

Next, I identify sentences from the text corpus that contain an event pair, and use these sen-

tences to train a contextual classifier that can recognize the subevent relation in text. I train the con-

1While subevents are also spatially contained by the parent event, I did not use this observation to identify candidate
subevent relations because the spatial contained_by relation between two events is not frequently stated in text.
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Figure 1.4: Overview of the Subevent Knowledge Acquisition System. Reprinted with permission
from Yao et al. [2020a].

textual subevent relation classifier by fine-tuning the pretrained BERT model Devlin et al. [2019].

I then apply the contextual BERT classifier to identify new event pairs that have the subevent

relation.

I have built a large knowledge base of 239K subevent relation tuples. The knowledge base

contains subevents for 10,318 unique events, with each event associated with 20.1 subevents on

average. Intrinsic evaluation demonstrates that the learned subevent relation tuples are of high

quality (90.1% of accuracy) and are valuable for event ontology building and exploitation.

The learned subevent knowledge has been shown useful for identifying subevent relations in

text, including both intra-instance and cross-sentence cases. In addition, the learned subevent

knowledge is shown useful for identifying temporal and causal relations between events as well, for

the challenging cross-sentence cases where we usually have little contextual clues to rely on. Fur-

thermore, when incorporated into a recent neural discourse parser, the learned subevent knowledge

has noticeably improved the performance for identifying two types of implicit discourse relations,

expansion and temporal relations.
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1.1.4 Constructing Event Knowledge Graph and Learning Distributed Representations of

Events

I have introduced three weakly-supervised approaches for acquiring event temporal knowledge

and event subevent knowledge. Besides temporal and subevent relations, causal relations are also

important in NLP applications, particularly event prediction and causal reasoning. Recall that my

weakly-supervised approach developed for subevent knowledge acquisition only relies on weak

supervision, where I use linguistic patterns to identify the initial set of an event relation from a big

text corpus. Thus, I replace initial subevent linguistic patterns with causality linguistic patterns to

fine-tune a BERT classifier to extract event causal knowledge. Finally, I merge all acquired event

knowledge into a general event knowledge graph. The final event knowledge graph contains 126K

event nodes, 174K happens-before edges, 239K parent-subevent edges and 49K cause-effect edges.

To facilitate downstream NLP usage, I investigate different ways to learn distributed representa-

tions of events on constructed event knowledge graph. Experiments show that event knowledge

graph embeddings can improve the baseline performance on several benchmark datasets.

1.2 Weakly-supervised Learning for Detecting Events on Social Media

Identifying events of specified types (e.g., life-threatening events) in texts is crucial in event

tracking and crisis management. Recently, people increasingly use social media to report emer-

gencies, provide real-time situation updates, offer or seek help or share information during natural

disasters. During the devastating hurricane Harvey for example, the local authorities and disas-

ter responders as well as the general public had frequently employed Twitter for real-time event

sensing, facilitating evacuation operations, or finding victims in need of help.

Considering the large volume of social media messages, it is necessary to achieve automatic

recognition of life-threatening events based on individual messages for improving the use of social

media during disasters. This task is arguably more challenging than the well-studied collection-

based event detection task on social media that often relies on detecting a burst of words over a

collection of messages, especially considering the unique challenges of social media texts being
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Figure 1.5: Examples of three senses of the word “dead”. Reprinted with permission from Yao
et al. [2020b].

extremely noisy and short.

To facilitate disaster management, especially during the time-critical disaster response phase,

it is vital to build event recognizers rapidly. However, the typical supervised learning paradigm

requires a carefully labeled dataset that is normally created by asking human annotators to go

through a large number of data instances and label them one by one, and the data labeling pro-

cedure usually takes days at least. For fast deployment, I propose a novel data labeling method

and an overall weakly supervised learning approach that quickly builds reliable fine-grained event

recognizers.

Specifically, to quickly label data, I explore the idea of identifying several high-quality event

keywords and populating the keywords in a large unlabeled tweet collection. But, I quickly realize

that it is essentially impossible to find an event keyword that is not ambiguous and has only one

meaning in social media. Taking the word “dead” for example, in addition to the meaning of

“losing life”, “dead” is also frequently used to refer to phones being out of power or a TV series

“walking dead”, with example tweets shown in Figure 1.5. It is a challenging problem because
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current automatic word sense disambiguation systems only achieve mediocre performance and

may not work well on tweets with little in-domain training data, especially considering that many

word senses appearing in tweets may even not appear in conventional sense inventories at all, e.g.,

the word “dead” referring to the TV series “walking dead”.

Luckily, I observe that tweets adopting one common sense of an event keyword often share

content words and can be easily grouped together. This observation is consistent with previous

research on unsupervised word sense disambiguation Yarowsky [1995], Navigli and Lapata [2010].

Therefore, I first cluster keyword identified noisy tweets using an automatic clustering algorithm

and rank tweet clusters based on the number of tweets in each cluster. Next, I conduct manual

Word Sense Disambiguation (WSD) by simply asking a domain expert to quickly go through the

top-ranked clusters and judge whether each tweet cluster show the pertinent meaning of an event

keyword, based on an inspection of five example tweets randomly sampled from a cluster. The

domain expert is instructed to stop once 20 pertinent clusters have been identified. In this way, I

significantly improved the quality of keyword identified tweets, requiring only 1-2 person-hours

of manual cluster inspection time. Note that this is the only step in the overall weakly supervised

approach that requires human supervision.

Next, I use the rapidly created labeled data to train a recurrent neural net classifier and learn

to recognize fine-grained event categories for individual Twitter messages. But tweets are often

rather short, and it is difficult to make event predictions solely based on the content of a tweet

itself. Instead, I use preceding context tweets posted by the same user as well as replies from

other users, together with the target tweet, in a multi-channel neural net to predict the right event

category. The observation is that the context tweets as well as reply tweets can both provide

essential clues for inferring the topic of the target tweet. For instance, the upper example of Figure

1.6 shows that the two preceding tweets from the same user indicate the third tweet is asking about

the location for evacuation; and the lower example shows that based on the reply tweet messages,

I can infer the first tweet is regarding water release of reservoir even having no external knowledge

about Addicks/Barker.
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Figure 1.6: Examples with context and reply tweets. Reprinted with permission from Yao et al.
[2020b].

Finally, I further improve the multi-channel neural net classifier by applying it to label tweets

and using the newly labeled tweets to augment the training set and retrain the classifier. The

whole process goes for several iterations. The overview of the full system is shown in Figure

1.7. The evaluation on two hurricane datasets, hurricane Harvey and Florence, shows that the

rapidly trained weakly supervised systems using the novel data labeling method outperforms the

supervised learning approach requiring thousands of carefully annotated tweets created in over 50

person-hours.

1.3 Thesis Outline

The outline of this dissertation is summarized as follows.

• Chapter 2 provides relevant background and previous work. I will discuss different event

representations in previous work and the event representation in this dissertation, a summary

of weakly-supervised approaches, classical event-event relation identification tasks, existing

methods of acquiring event knowledge, relevant work of narrative identification, and other

related NLP research.
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Figure 1.7: Overview of the Weakly-supervised Event Recognition System for Disaster Manage-
ment. Reprinted with permission from Yao et al. [2020b].

• Chapter 3 introduces my first weakly-supervised approach to train a temporal relation classi-

fier and acquire event temporal knowledge simultaneously. In this chapter, I will first discuss

how to prepare event temporal pair seeds and candidates. Next, I consider two variations of

sentential contexts, i.e., local windows or dependency paths in contextual classifier training.

Evaluation shows my full system (argument generalization together with dependency path

contexts) performs the best on acquiring event temporal pairs.

• Chapter 4 presents my second weakly-supervised approach to acquire event temporal knowl-

edge by identifying narratives. I will discuss some key elements in narratology that can be

used to identify narratives. My learning method contains two stages. Stage one uses boot-

strapping learning to extract narrative paragraphs based on key elements of narratives. Stage

two applies Causal Potential metric to distill event temporal knowledge from narratives. Fi-

nally, I evaluate acquired narrative paragraphs and event temporal knowledge separately.

• Chapter 5 demonstrates a weakly-supervised approach to acquire subevent knowledge. To

collect high-quality weak supervision to train a contextual classifier, I conduct definition-

guided semantic check to remove spurious subevent pairs that only include two temporally
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overlapping. Next, I will talk about how to train a contextual classifier that can recognize

subevent relations by fine-tuning a BERT model. Finally, the section of intrinsic and extrin-

sic evaluations show acquired subevent knowledge are of high quality and can be used to

improve three event relation classification tasks and the discourse parsing task.

• In Chapter 6, I present details of how to apply a similar approach of Chapter 5 to causal

knowledge acquisition. I next discuss how to incorporate different event knowledge into an

event knowledge graph and how to learn event distributed representations using knowledge

graph embedding. This chapter includes a visualization of learned event embeddings to give

insights on how learned event embeddings are semantically different from traditional word

embeddings.

• Chapter 7 proposes a fine-grained event recognition system for detecting life-threatening

emergencies in hurricanes on Social Media. This Chapter illustrates three phrases one by

one. In phrase one, I apply the novel clustering-assisted manual Word Sense Disambiguation

(WSD) to label data. Phase two conducts multi-channel classification based on context posts

from the same authors and replies from other authors. Phase three further improves the

coverage of the multi-channel classifier through bootstrapping learning. Finally, evaluation

experiments show that my approach can significantly outperform multiple baseline systems.

• Chapter 8 summarizes the conclusions that we can draw from the dissertation. Follow-

ing the conclusions, I will discuss promising future topics that may move forward weakly-

supervised learning on event knowledge acquisition and event detection.
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2. BACKGROUND AND RELATED WORK

This dissertation focuses on applying weakly-supervised learning approaches to acquire event

relational knowledge and detecting fine-grained events on social media during natural disasters. In

the following sections, We first introduce what are events and the event representation in my event

knowledge learning. We then review weakly-supervised learning approaches that are commonly

used in NLP research. Next, we discuss conventional event relation identification tasks that mainly

contain temporal relation identification, subevent relation identification, and causal relation iden-

tification between events. Moreover, we talk about existing knowledge bases that contain event

knowledge as well as corresponding approaches to construct those knowledge bases. Regarding

the second part of this dissertation - fine-grained event detection on social media, we review previ-

ous work related to social sensing on social media platforms, with emphasis on event sensing. My

research also benefits from recent advances of neural representation learning in NLP, so we lastly

cover recent work on contextual word embedding learning, knowledge graph embedding learning

in the last section.

2.1 Background: Event and Event Representations

“An event is something that happens. People use events to describe all the things that are

happening in a particular situation.” However, there is a range of different representations of

event [Bies et al., 2016]. Most commonly used event representation is based on Automatic Content

Extract (ACE) [Doddington et al., 2004] where each event mention annotation contains an event

trigger, the event type/subtype, and participating event arguments together with time expressions.

Other previous event representations are “Light Entities, Relations, and Events (Rich ERE)”, “Rich

Entities, Relations, and Events (Light ERE)” [Song et al., 2015], “Event Nugget (EN)” [Mitamura

et al., 2015], “Richer Event Descriptions (RED)” [O’Gorman et al., 2016], etc. Light ERE reduces

entity and relation types with fewer attributes, while Rich ERE expands event ontology, adds realis

attribute (Actual, Generic, Other) and other event argument types. “Event Nugget” simplifies event
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representation as a tuple of an event trigger, event type/subtype, and realis attribute. RED focuses

more on annotating event-event relations (e.g., coreference, temporal and causal relations) in a

document, so RED annotates all occurrences and timeline-relevant states as events but without

any arguments. We can see that previous work mainly represents an event as a trigger together

with multiple participants (arguments). In this dissertation, I represent an event as a trigger word

(normally a noun or a verb word) together with some syntactic elements (e.g., subject and object)

to support weakly-supervised learning.

2.1.1 Event Representation in this Dissertation

My weakly-supervised learning approach relies on identifying event pairs that tend to unam-

biguously show a particular event relation. However, an event word can refer to a general type of

events or more than one type of events, and therefore has varied meanings depending on contexts.

To make individual events expressive and self-contained, I find and attach arguments to each event

word to form event phrases. Specifically, I consider both verb event phrases (Section 2.1.1.1) and

noun event phrases (Section 2.1.1.2). I further require that at least one argument is included in an

event pair which may be attached to the first or the second event. In other words, I do not consider

event pairs in which neither event has an argument.

2.1.1.1 Verb Event Phrases

To ensure a good coverage of regular event pairs, I consider all verbs1 as event words except

reporting verbs2. The thematic patient of a verb refers to the object being acted upon and is essen-

tially part of an event, therefore, I first include the patient of a verb in forming an event phrase. I

use Stanford dependency relations [Manning et al., 2014a] to identify the direct object of an active

verb or the subject of a passive verb. The agent is also useful to specify a event especially for a

intransitive verb event, which does not have a patient. Therefore, I include the agent of a verb event

in an event phrase if its patient was not found. Agents are usually the syntactic subject of an active

1I used POS tags to detect verb events.
2Reporting verbs, such as “said”, “told” and “added”, are commonly seen in news articles. I determined that most

of event pairs containing a reporting verb are not very interesting and informative and I therefore discarded these event
pairs.
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verb or by prepositional object of a passive verb.

For instance, in the sentence “They win the lottery.”, the verb win can refer to various win

events, but with its direct object, win lottery refers to a specific type of event. For another instance,

“Water evaporates when it’s hot.”, the verb evaporates itself is not very meaningful without con-

texts, but after including its subject, the event water evaporates becomes self-contained. If neither

a patient nor an agent was found, I include a prepositional direct object of a verb in the event

representation to form an event phrase.

2.1.1.2 Noun Event Phrases

I include a prepositional object of a noun event in forming an noun event phrase. I first consider

an object headed by the preposition of, then an object headed by the preposition by, lastly an object

headed by any other preposition. Note that many noun words do not refer to an event, therefore,

I apply two strategies to compile a list of noun event words. First, I obtain a list of deverbal

nouns (5028 event nouns) by querying each noun in WordNet [Miller, 1995] and checking if its

root word form has a verb sense. Second, I use five intuitive textual patterns (i.e., participate in

EVENT, involve in EVENT, engage in EVENT, play role in EVENT and series of EVENT), and

extract their prepositional direct objects as potential noun events. I rank extractions first by the

number of times they occur with these patterns and then by the number of unique patterns they

occur with. I next quickly went through the top 5,000 nouns and manually removed non-event

words, which results in 3154 noun event words.

2.1.1.3 Generalizing Event Arguments Using Named Entity Types

Including arguments into event representations generates specific event phrases though. In

order to obtain generalized event phrase forms, I replace specific name arguments with their named

entity types [Manning et al., 2014a]. I also consider replacing pronouns with their types, but

concerned with poor quality of full coreference resolution, I only replace personal pronouns with

their type PERSON. I observed that this strategy greatly improves generality of event phrases and

facilitates the bootstrapping learning process.
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2.2 Weakly-supervised Learning in NLP

Traditional supervised learning approaches strongly rely on labeled data that are limited in size

and diversity to train the model. Thus, weakly-supervised learning and semi-supervised learning

are developed to address this problem. Weakly-supervised learning is closely related to semi-

supervised learning, but semi-supervised learning addresses this problem by using abundant unla-

beled data, together with labeled data, to build better models.

Two most popular algorithms for semi-supervised learning are self-training and co-training.

Riloff et al. [2003] introduces two bootstrapping algorithms, Meta-bootstrapping and Basilisk.

Two algorithms exploit mining patterns to learn words in a specific semantic category. Meta-

bootstrapping and Basilisk start with syntactic templates as extraction patterns and then calculates

a score for each pattern based on the seed words and save the best patterns to a pool. Next, a

pattern in the pool can extract candidate words and score those words based on their collective

association with the seed words. Top words are labeled automatically as the semantic category

targeted. Co-training [Blum and Mitchell, 1998, Zhou and Li, 2005] assumes that each instance

can be viewed using two dissimilar feature sets that provide different, complementary information

about the instance. Preferably, two views are conditionally independent and each view is sufficient

to predict the class of each instance. Co-training starts with learning separate classifiers over each

feature set. Predictions on unlabeled data with highest confidence scores are added to augment

labeled data. Then, it iteratively rebuilds each classifier using an augmented labeled set.

In contrast, my proposed weakly-supervised approaches adopt and develop bootstrapping learn-

ing idea to event relational knowledge acquisition and fine-grained event detection on social media.

My approaches rely on weak supervision that is generated by applying linguistic patterns, recog-

nizing narrative key elements, and clustering-assisted Word Sense Disambiguation, which does not

require any labeled instances.

18



2.3 Event-Event Relation Identification

Since my event knowledge acquisition focuses on event relational knowledge, I will review

some previous work on event-event relation identification in this section.

2.3.1 Temporal Relation Recognition

Supervised temporal relation classifier has been well studied in previous work. Most of existing

temporal relation classifiers were learned in a supervised manner and depend on human annotated

data. In the TempEval campaigns [Verhagen et al., 2007, 2010, UzZaman et al., 2013], various

classification models and linguistic features [Bethard, 2013, Chambers et al., 2014, Llorens et al.,

2010, D’Souza and Ng, 2013, Mirza and Tonelli, 2014b] have been applied to identify temporal

relations between two events. For example, a recent study by [D’Souza and Ng, 2013] applied

sophisticated linguistic, semantic and discourse features to classify temporal relations between

events. They also included 437 hand-coded rules in building a hybrid classification model. Simi-

larly, Mirza and Tonelli [2014b] shows basic information on the position, the attributes of events,

as well as other information obtained from external lexical resources outperforms sophisticated

features. CAEVO, a CAscading EVent Ordering architecture by Chambers et al. [2014], applied

a sieve-based architecture for event temporal ordering. CAEVO is essentially a hybrid model as

well. While the first few sieves are rule based and deterministic, the latter ones are machine learned

using human annotated data. More recently, Choubey and Huang [2017] uses three bi-directional

LSTMs to get the embeddings of three sequences (i.e., word forms, POS tags, and dependency

relations) of context words that align with the dependency path between two event mentions. The

final fully connected layer maps the concatenated embeddings of all sequences to 14 fine-grained

temporal relations.

2.3.2 Subevent Relation Recognition

Only a few studies have focused on identifying subevent relations in text. Most of existing

work on recognizing subevent relations is learned in a supervised manner that depends on human

annotated data. [Araki et al., 2014] built a logistic regression model to classify the relation be-
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tween two events into full coreference (FC), subevent parent-child (SP), subevent sister (SS), and

no coreference (NC). They improved the prediction of SP relations by performing SS prediction

first and using SS prediction results in a voting algorithm. [Glavaš and Šnajder, 2014] trained a

logistic regression classifier using a range of lexical and syntactic features and then used Integer

Linear Programming (ILP) to enforce document-level coherence for constructing coherent event

hierarchies from news. Recently, [Aldawsari and Finlayson, 2019] outperformed previous models

on two datasets using a linear SVM classifier, by introducing several new features, in particu-

lar discourse features (i.e., rhetorical structure, reported speech, etc.) and narrative features (i.e.,

non-major mentions).

In addition, I want to make aware of previous research that study subevents for event tracking

applications specifically for social media (e.g., Twitter) applications Shen et al. [2013], Meladianos

et al. [2015], Pohl et al. [2012], in terms of both its definition of subevents and methodologies. For

example, in previous research by Shen et al. [2013], a subevent is defined as a topic that is discussed

intensively in the Twitter stream for a short period of time before fading away. Accordingly, the

subevent detection method relies on modeling the “burstiness” and “cohesiveness” properties of

tweets in the stream.

2.3.3 Causal Relation Recognition

Detecting causality between events is challenging and has been addressed by several pilot stud-

ies [Girju, 2003, Bethard and Martin, 2008, Riaz and Girju, 2010, Do et al., 2011, Riaz and Girju,

2013] via supervised classification models. Recently, researchers have also employed unsupervised

causality detection. Riaz and Girju [2010] proposed Effect-Control Dependency (ECD) metric to

determine causality. Later, Do et al. [2011] used PMI and ECD to predict causal relation in verbal

and nominal event pairs. Riaz and Girju [2013] proposed a set of metrics (i.e., Explicit Causal

Association (ECA), Implicit Causal Association (ICA) and Boosted Causal Association(BCA)) to

learn the likelihood of causal relations between verbs and identified three categories of verb pairs:

strongly causal, ambiguous and strongly non-casual. Recently, Mirza and Tonelli [2014a] pre-

sented annotation guidelines and annotated explicit causality between events in Timebank. With
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the resulted corpus, called Causal-TimeBank, they built supervised models to identify causal rela-

tions. Then Mirza and Tonelli [2016] proposed a sieve-based method called CATENA, to perform

joint temporal and causal relation extraction, exploiting interactions between temporal and causal

relations. Ning et al. [2018] trained a constrained conditional model (CCM) by combining tem-

poral and causal relations. Their constrains include 1) a cause must happen before the effect; 2)

symmetry constrains, e.g., work after graduation implies graduation before work; 3) transitivity

constraints, e.g., order before eat together with eat before pay can imply order before pay.

2.4 Event Knowledge Acquisition

Most existing knowedge bases such as Freebase [Bollacker et al., 2008] and Probase [Wu

et al., 2012] often contain rich knowledge about entities (e.g., people, country, movie, etc.). In

this section, I will talk about a few knowledge bases that contain some event knowledge and the

corresponding methods to acquire them.

2.4.1 Crowdsourcing Methods

FrameNet project [Baker et al., 1998] that is launched in 1997 aims to build both human and

machine readable knowledge resources. A frame is a event (or state) representation involving vari-

ous participants (frame elements), relations between frames (frame relations) and other conceptual

roles. More than 200,000 sentences are manually annotated and linked to more than 1,200 se-

mantic frames. Similarly, inspired by the distributed projects on the Web, ConceptNet [Havasi

et al., 2007] that is built upon Open Mind Common Sense (OMCS) website asks human volunteers

to write down common sense knowledge of daily activities. Among its predefined interlingual

relations, three are related to events, i.e., HasSubevent, HasLastSubevent, HasFirstSubevent. To

support commonsense inference on events, Event2Mind [Rashkin et al., 2018] crowdsources 25K

event phrases covering everyday events and situations from stories, blogs, and Wiktionary idioms

and proposes a new task that aims to generate descriptions of intents and reactions of event partic-

ipants.
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2.4.2 Pattern-based methods

Related to my approach, Pattern based methods have been applied to acquire event pairs in

a specific semantic relation. Specifically, VerbOcean [Chklovski and Pantel, 2004a] extracted

fine-gained semantic relations between verbs including the happens-before relation using lexico-

syntactic patterns. It turns out that the temporal relation patterns used in VerbOcean (e.g., “to X and

then Y”) are too specific and not capable of identifying many event pairs that are rarely seen in one

of the specified patterns. The first approach I proposed (Chapter 3) can gradually learn a collection

of regular event pairs using more diverse contexts by using the weakly supervised trained temporal

relation classifier to recognize diverse contexts that describe a particular temporal relation. In

the meanwhile, these prior works are limited to identifying temporal relations within individual

sentences. In contrast, my approach to acquire event temporal knowledge by identifying narratives

(Chapter 4) was inspired by the double temporality property of the narrative genre and is designed

to acquire temporal relations across sentences in a narrative paragraph. Evaluation shows that my

approach induces very different event pairs from VerbOcean. Based on my comparison, only 1%

out of all event pairs acquired by my two approaches can be found in VerbOcean [Chklovski and

Pantel, 2004a].

The pilot research on subevent knowledge acquisition Badgett and Huang [2016] relies on two

heuristics, 1. subevent phrases often occur in conjunction constructions as a sequence of subevent

phrases, and 2. they often appear in sentences that start or end with characteristic phrases such as

“media reports” and “witness said”. and only learns several hundred subevent phrases for one type

of parent events, civil unrest events.

2.4.3 Generation-based Methods

More recently, [Bosselut et al., 2019, Sap et al., 2019] investigated a semi-automatic approach

to generate commonsense knowledge on events. Specifically, they train generative language mod-

els (based on LSTM or Transformer) to generate subevent knowledge among many other types of

commonsense knowledge.
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2.4.4 Hybrid Methods

Knowlywood [Tandon et al., 2015] presents a pipeline with semantic parsing and knowledge

distillation from movie scripts and narrative texts to acquire semantic frames about human ac-

tivities. Knowlywood first uses semantic parsing to extract human activities (verb+object) and

apply Probabilistic Soft Logic (PSL) to derive connections between activity frames, such as hyper-

nyms, similarities, and temporal order. ASER [Zhang et al., 2020] builds a large-scale eventuality

knowledge graph of 194M eventualities and 64M relation edges among them. ASER knowledge

extraction has two big steps. It first preprocesses raw texts with the dependency parser and applies

predefined patterns to extract all eventualities. Next, by applying a discourse parser trained on

PDTB [Prasad et al., 2008] dataset, ASER extracts relations between eventualities based on less

ambiguous connectives. Compared to my weakly-supervised approaches, ASER strongly relies

on the performance of discourse parser pretrained on PDTB, which may limit its coverage and

accuracy of acquired eventuality knowledge.

2.5 Narratives Identification

Our design of the overall event knowledge acquisition also benefits from recent progress on

narrative identification. Gordon and Swanson [2009] annotated a small set of paragraphs present-

ing stories in the ICWSM Spinn3r Blog corpus [Burton et al., 2009] and trained a classifier using

bag-of-words features to identify more stories. [Ceran et al., 2012] trained a narrative classifier us-

ing semantic triplet features on the CSC Islamic Extremist corpus. My weakly supervised narrative

identification method is closely related to Eisenberg and Finlayson [2017], which also explored the

two key elements of narratives, the plot and the characters, in designing features with the goal of

obtaining a generalizable story detector. But different from this work, my narrative identification

method does not require any human annotations and can quickly adapt to new text sources.

2.6 Learning Script Knowledge

Temporal event knowledge acquisition is related to script learning [Chambers and Jurafsky,

2008], where a script consists of a sequence of events that are often temporally ordered and repre-
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sent a typical scenario. However, most of the existing approaches on script learning [Chambers and

Jurafsky, 2009, Pichotta and Mooney, 2016, Granroth-Wilding and Clark, 2016] were designed to

identify clusters of closely related events, not to learn the temporal order between events though.

For example, Chambers and Jurafsky [2008, 2009] learned event scripts by first identifying closely

related events that share an argument and then recognizing their partial temporal orders by a sepa-

rate temporal relation classifier trained on the small labeled dataset TimeBank [Pustejovsky et al.,

2003]. Using the same method to get training data, Jans et al. [2012], Granroth-Wilding and Clark

[2016], Pichotta and Mooney [2016], Wang et al. [2017b] applied neural networks to learn event

embeddings and predict the following event in a context. Distinguished from the previous script

learning works, I focus on acquiring event pairs or longer script-like event sequences with events

arranged in a complete temporal order. Crowdsourcing has been used for acquiring script-like

event chains or stories [Regneri et al., 2010, Frermann et al., 2014, Modi and Titov, 2014, Modi

et al., 2016, Mostafazadeh et al., 2016]. Regneri et al. [2010] collected script-like event chains

by asking Amazon Mechanical Turk (AMT) to write down typical event sequences in a given sce-

nario (e.g., shopping or cooking). This collection of Event Sequence Descriptions (ESDs) is then

used to construct a temporal script graph using the Sequence Alignment algorithm. Similarly, In-

Script [Modi et al., 2016] predefined 10 scenarios and collected 1,000 stories that Instantiate Script

structure in natural language. Mostafazadeh et al. [2016] introduced a story-cloze task based on a

collection of five-sentence stories. Give four sentences as context, the task requires choosing the

correct ending sentence. Interestingly, the evaluation shows that my approach can yield temporal

event knowledge that covers 48% of human-provided script knowledge.

2.7 Event Detection on Social Media

Previous research for Twitter event detection mostly focuses on unsupervised statistical ap-

proaches, which can be categorized into three main streams. 1) Identifying burst topics. For ex-

ample, inspired by congestion control algorithms, TwitInfo Marcus et al. [2011] used a weighted

moving average and variance model to detect peaks of terms in Twitter data to track an event.

Alvanaki et al. [2011] examined the correlation between hashtag pairs within a time window and
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detected sudden increases of correlation as an indicator of an emergent topic. 2) Probabilistic topic

modeling. For example, Latent Event and Category Model (LECM) Zhou et al. [2015], Cai et al.

[2015] modeled each tweet as a joint distribution over a range of features (e.g., text, image, named

entities, time, location, etc.). 3) Unsupervised clustering approaches. New tweets are determined

to merge into an existing cluster or form a new cluster based on a threshold of similarity Becker

et al. [2011], and events are summarized from clusters using metrics such as popularity, freshness

and confidence scores.

Supervised classification approaches are used for Twitter event detection Zhang et al. [2019].

Different classification methods, Naive Bayes Sankaranarayanan et al. [2009], Support Vector Ma-

chines Sakaki et al. [2010], Decision Trees Popescu et al. [2011], and Neural Networks Caragea

et al. [2016], Nguyen et al. [2017] have been used to train event recognizers using human annotated

Twitter messages. However, annotating a large number of Twitter messages for a new disaster is

time-consuming, and systems trained using old labeled data may be biased to only detect informa-

tion specific to one historical disaster (e.g., local road names, local authorities, etc.). In contrast,

the weakly supervised classification approach I propose does not require slow brewed training in-

stances annotated one by one, and can quickly label data and train event recognizers from scratch

for a newly happened disaster.

2.8 Other Related NLP Research

2.8.1 Recent Advances of Contextual Word Representation

Conventional word embeddings such as GloVe [Pennington et al., 2014], word2vec [Mikolov

et al., 2013a], and fastText [Mikolov et al., 2018] map each word in a vocabulary into a contin-

uous space so that similar words (e.g., synonyms) are close in that space. These embeddings are

pretrained on large text corpora based on word co-occurrence. However, these embeddings are

trained globally which means one word corresponds to one embedding vector regardless of dif-

ferent contexts the word may occur in. Recently, ELMo embedding model [Peters et al., 2018]

generalizes conventional word embeddings by pretraining a language model to extract context-
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dependent representations in a sentence. ELMo pretrains a forward LSTM language model and a

backward LSTM language model, which maximizes the conditional probability of tokeni given a

sequence of previous tokens token1, token2, ..., tokeni−1. After training, the hidden representations

at tokeni of forward LSTM and backward LSTM are concatenated as the contextual embedding of

tokeni. BERT [Devlin et al., 2019] further develops this idea and designs two objectives to pretrain

a Transformer [Vaswani et al., 2017] encoder. The first objective is masked language modeling,

where randomly selected tokens of a given input sentence are masked, and BERT tries to maximize

the conditional probability of masked tokens given the corrupted sentence. The second objective is

next-sentence-prediction, where BERT predicts which candidate sentence is the next sentence of

the given sentence.

Previous work [Peters et al., 2018, Devlin et al., 2019, Yang et al., 2019, Raffel et al., 2019]

demonstrates that contextual embeddings pretrained on large language corpora achieve great per-

formance improvement on various NLP tasks, such as text classification, machine translation, and

text generation. Clark et al. [2019] has shown contextual embeddings can capture syntactic depen-

dency and semantic properties of words more effectively in different contexts.

2.8.2 Knowledge Graph Embedding Approaches

After acquiring different event relational knowledge, this dissertation also investigates em-

bedding models to generate a distributed representation of each event phrase. Intuitively, knowl-

edge graph embedding models try to map each graph node and relation type into a continuous

vector space so that the inherent structure of the knowledge graph is preserved. Wang et al.

[2017a] categorizes knowledge graph embedding models into translated distance models and se-

mantic matching models. Suppose we have a knowledge graph stored as a collection of tuples

(head, relation, tail), TransE [Bordes et al., 2013] map each node and relation type into a low-

dimentional space (h, r, t) so that p+ r ≈ c. The score function is defined as the distance function

fr(ℎ, t) = ‖h + r − t‖1∕2. However, TransE has flaws when deal with N-to-1, 1-to-N, and N-to-N

relations, therefore, TransH [Wang et al., 2014] introduce an idea that allows an entity to have

different representations when attending different relations. TransR [Lin et al., 2015] use a similar
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idea with TransH but applies relation-specific spaces instead of hyperplanes.
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3. A WEAKLY SUPERVISED APPROACH TO TRAIN TEMPORAL RELATION

CLASSIFIERS AND ACQUIRE REGULAR EVENT PAIRS SIMULTANEOUSLY1

The first weakly supervised approach focuses on detecting “before/after” temporal relations

and apply patterns to first extract thousands of regular event pairs and train a contextual temporal

relation classifier simultaneously. Figure 3.1 illustrates how the bootstrapping system works. I first

populate seed regular event pairs in the text corpus and identify sentences that contain a regular

event pair as training instances. I train a contextual temporal relation classifier, using Convolutional

Neural Nets (CNNs), to identify specific contexts describing a temporal after (before) relation. I

then apply the classifier to the corpus to identify new sentences that describe a particular temporal

relation, from which new regular event pairs can be extracted. Note that the classifier is only

applied to sentences that contain a candidate regular event pair. The bootstrapping process repeats

until the number of newly identified regular event pairs is less than 100.

3.1 Regular Event Pair Candidates

Considering that it is not feasible to test all possible pairs of events in Gigaword and often two

events that co-occur in a sentence have no temporal relation. In order to narrow down the search

space, I identify candidate event pairs which are likely to have temporal relations.

Two strategies are used to identify candidate event pairs. First, by intuition, if two event phrases

co-occur (within a sentence) many times, the likelihood of the two events being related and having

a temporal relation should be higher compared to event phrases that rarely co-occur. Therefore,

I select event phrase pairs that co-occur within a sentence for more than 100 times as candidate

event pairs. Second, I use two specific temporal relation patterns, EV_A after (before) EV_B, that

explicitly indicate two events are in a after (before) relation. I extract an event pair as a candidate

regular pair if it occurs three or more times with one of the patterns in the text corpus. The

1Reprinted with permission from “A Weakly Supervised Approach to Train Temporal Relation Classifiers and
Acquire Regular Event Pairs Simultaneously” by Wenlin Yao and Saipravallika Nettyam and Ruihong Huang, 2017.
Proceedings of the International Conference Recent Advances in Natural Language Processing (RANLP), pp.803-812.
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Figure 3.1: Overview of the Bootstrapping System for Temporal Knowledge Acquisition.
Reprinted with permission from Yao et al. [2017].

assumption is that if a pair of events shows a particular temporal relation regularly, it is likely to be

seen in the above textual patterns as well. Specifically, I extract the governor and dependent word

of the dependency relation prep_after (prep_before) in the annotated English Gigaword [Napoles

et al., 2012] and check whether each word is an event2. If yes, I form an event phrase for each

event and obtain an event pair. In addition, I expect regular event pairs to occur mostly in a single

temporal order, either before or after, and discard event pairs that have showed mixed temporal

orders. Specifically, a regular event pair is required to occur in a particular temporal relation more

than 90% of times.

Overall by applying the two strategies, I obtained a candidate event pair pool that consists of

40,278 event pairs.

3.2 Bootstrapping both Regular Event Pairs and a Temporal Relation Classifier

While I used the whole Gigaword [Napoles et al., 2012] to identify regular event pairs, I only

use the New York Times section of Gigaword for bootstrapping learning.

3.2.1 Regular Event Pair Seeds

In order to ensure high quality of seed pairs, I only consider event pairs that have occurred in

explicit temporal relation patterns, EV_A after (before) EV_B, as seed event pairs. Furthermore, I

require each seed regular event pair to have occurred in a temporal relation pattern for at least ten

2Note I consider any verb and a noun that is in my noun event list as an event.
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times. Specifically, I identified 2,110 seed regular event pairs using the Gigaword corpus3.

3.2.2 Contextual Temporal Relation Classification

I use a neural net classifier to capture compositional meanings of sentential contexts and avoid

tedious feature engineering. Specifically, I used a Convolutional Neural Net (CNN) as my clas-

sifier, inspired by recent successes of CNN models in various NLP tasks and applications, such

as sentiment analysis [Kalchbrenner et al., 2014, Kim, 2014], sequence labeling [Collobert et al.,

2011] and semantic parsing [Yih et al., 2014]. As shown in figure 3.2, my CNN architecture is a

slight variation of the previous models as described in [Kim, 2014, Collobert et al., 2011]. It has

one convolutional layer with 100 hidden nodes, one pooling layer and one fully connected softmax

layer.

Figure 3.2: CNN Model Architecture. Reprinted with permission from Yao et al. [2017].

The input are word embeddings of an array of sentential context words.

A convolution filter is applied to a sliding window of every ℎ words to provide input for each

hidden node. I use Rectified Linear Unit (ReLU) as the non-linear activation function.
3By populating seed regular event pairs in the New York Times section of the Gigaword corpus, I extracted 7191

sentences and 11339 sentences that contain an event pair in a “before” and “after” temporal relation respectively.
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I next apply a max-pooling operation to take the maximum value over a feature map. The final

softmax layer output probability distributions over three classes (AFTER, BEFORE and OTHER)

indicating the temporal relation between a pair of events in a sentence. Specifically, the temporal

relations are defined with respect to the textual order the two events are presented in a sentence.

If the first event is temporally BEFORE the second event as described in a sentence, this instance

will be labeled as BEFORE. Otherwise if the first event is temporally AFTER the second event as

described in a sentence, the instance will be labeled as AFTER. The class OTHER is to capture all

the rest contexts that may describe a temporal relation other than after (before) or do not describe

a temporal relation.

In my experiments, I use pre-trained 300-dimention word2vec word embeddings [Mikolov

et al., 2013b] that are trained on 100 billion words of Google News and I use a filter window size

of 5. In training, I used stochastic gradient descent with Adadelta update rule (Zeiler, 2012) and

mini-batch size of 100, in addition, I applied dropout [Hinton et al., 2012] with rate p = 0.5 to

avoid overfitting of the CNN model. I also randomly selected 10% of the training data as the

validation set and chose the classifier with the highest validation performance within the first 10

epochs.

3.2.2.1 Sentential Contexts: Local Windows v.s. Dependency Paths

I explore two types of contexts, local windows v.s. dependency paths, in order to identify

contexts that effectively describe temporal relations between two events.

First, the local window based context for an event pair includes five words before the first event,

five words after the second event and all the words between the two events. Note that two event

phrases can be arbitrarily far from each other and long contexts are extremely challenging for a

classifier to capture. In my experiments, I only consider sentences where two event mentions are

at most 10 words away.

Second, I observed that not every word between two events is useful to predict their temporal

relation. In order to concentrate on relevant context words,
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I further construct dependency path4 based context representation. Specifically, considering a

dependency tree as an undirected graph, I use breadth-first-search to extract a sequence of words

connecting the first event word to the second event word. In addition, to capture important infor-

mation in certain syntactic structures such as conjunctions, I extract children nodes for each word

in the path. Finally, I sort extracted words according to their textual order in the original sentence

and the sorted sequence of words is provided as an input to the CNN classifier.

3.2.2.2 Negative Training Instances

Reasonably, most sentences in a corpus do not contain an event pair that is in a temporal

“before/after” relation. Therefore, I use negative instances that are 10 times of the total number

of positive training instances (i.e., sentences that contain an event pair in a after (before) relation).

Specifically, I require a negative instance to contain an event pair that does not appear in seed pairs

nor the candidate event pair set. I randomly sampled negative instances satisfying the condition.

Then these deemed negative instances were labeled as the class OTHER, a class that compete with

the two temporal relation classes, BEFORE and AFTER.

Systems 0 (Seeds) 1 2 3 4 5 Total
Basic System 1057 213 102 48 – – 1420
+ Arg Generalization 2110 638 323 81 – – 3152
+ Dependency Path Contexts (Full System) 2110 1230 555 288 156 62 4401

Table 3.1: Number of New Regular Event Pairs Generated after Each Bootstrapping Iteration.
Reprinted with permission from Yao et al. [2017].

3.2.3 New Regular Event Pair Selection Criteria

Recall that regular event pairs are event pairs that tend to show a particular temporal relation

despite of their various contexts. Therefore, I identify a candidate event pair as a new regular event

pair if majority of its sentential contexts, specifically 60% of contexts, were consistently labeled

4Stanford CoreNLP [Manning et al., 2014a] were used to generate dependency trees.
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as a particular temporal relation (after or before) by the CNN classifier. In addition, I require that

at least 15 instances of a regular event pair have been labeled as the majority temporal relation. In

order to control semantic drift [McIntosh and Curran, 2009] in bootstrapping learning, I increase

the threshold by 5 after each iteration.

Furthermore, in order to filter out ambiguous event pairs that can be in either before or after

temporal order depending on concrete contexts, I require the absolute difference between number

of instances labeled as AFTER and labeled as BEFORE to be greater than a ratio of the total number

of instances, specifically, I set the ratio to be 40%.

3.3 Evaluation

My bootstrapping system learned regular event pairs as well as a contextual temporal relation

classifier. I evaluate each of the two learning outcomes separately.

3.3.1 Regular Event Pair Acquisition

3.3.1.1 System Variations

I compare three variations of my system:

Basic System: in the basic system, I did not apply event argument generalization as described in

section 2.1.1.3. In addition, I use local window based sentential contexts as input for the classifier.

+ Arg Generalization: on top of the basic system, I apply event argument generalization.

+ Dependency Path Contexts (Full System): in the full system, I apply event argument gener-

alization and use dependency path based sentential contexts as input for the classifier.

Table 3.1 shows the number of regular new pairs that were generated after each bootstrapping

iteration by each of the three systems. First, we can see that event argument generalization is useful

in obtaining roughly two times of seed regular event pairs. Second, event argument generalization

is useful in recognizing additional regular event pairs in bootstrapping learning as well. Third,

dependency path based sentential contexts are effective in capturing relevant sentential contexts

for temporal relation classification, which enables the bootstrapping system to maintain a learning

momentum and learn more regular event pairs.
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Systems Seed Pairs New Pairs
Basic System 0.73 0.55
+ Arg Generalization

0.71
0.63

+ Dependency Path Contexts 0.67

Table 3.2: Accuracy of 100 Randomly Selected Event Pairs. Reprinted with permission from Yao
et al. [2017].

3.3.1.2 Accuracy of Regular Event Pairs

For each of the three system variations, I randomly selected 50 pairs from seed regular event

pairs and 50 from bootstrapped event pairs5 and asked two human annotators to judge the correct-

ness of these acquired regular event pairs.

Specifically, for each selected event pair, I ask two annotators to label whether a temporal

AFTER or BEFORE relation exists between the two events. In addition to the two temporal relation

labels, I provide the third category OTHER as well. I instruct annotators to assign the label OTHER

to an event pair if the two events (i) generally have no temporal relation, (ii) have a temporal

relation other than AFTER or BEFORE, or (iii) one or both mentions do not refer to an event at

all.6 For each event pair, only one label is allowed. Before the official annotation, I trained the

two annotators with system generated event pairs for several iterations. The event pairs I used in

training annotators are different from the final event pairs I used for evaluation purposes.

Table 3.2 shows the accuracy of regular event pairs learned by each system variation. I deter-

mine that an event pair is correctly predicted by a system if the system predicted temporal relation

is the same as the label that has been assigned by both of the two annotators. The overall kappa

inter-agreement between the two annotators is 72%. We can see that with event argument gener-

alization, the quality of acquired seed regular event pairs is roughly equal to that using specific

name arguments. Furthermore, because I obtained two times of seed event pairs after using event

argument generalization, the second and third bootstrapping systems received more guidance and

5The seed pairs for the second and the third system are the same, so I evaluate the same 50 randomly selected seed
pairs for the two systems.

6This can happen due to Part-Of-Speech errors or ambiguous event words.
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Common
Sense

PERSON worked ← graduation
career → announced retirement
wash hands → eating
PERSON returned ← visit

Politics

government be formed ← elections
fled mainland ← losing war
imposed sanctions ← invasion of LOCATION
LOCATION split ← war

Business
reached agreement ← negotiations
hosted banquet ← meeting
trading → stock closed

Health

cause of death ← cancer
PERSON be hospitalized ← suffering stroke
PERSON died ← admitted to hospital

Sports

games → ended season
PERSON be sidelined ← undergoing surgery
PERSON be suspended ← testing for cocaine
PERSON returned ← recovering from injury

Crime

shooting → PERSON be arrested
spending in jail → PERSON be released
PERSON be arrested ← bombings
driver fled ← accident

Table 3.3: Examples of Learned Regular Event pairs. Reprinted with permission from Yao et al.
[2017]. → represents before relation and ← represents after relation.

continued to learn regular event pairs with a high quality. In addition, using dependency path based

sentential contexts enables the classifier to further improve the accuracy of bootstrapped regular

event pairs.

3.3.1.3 Examples and Constructed Knowledge Graphs

I have learned around 4,400 regular event pairs that are rich in commonsense knowledge and

domain specific knowledge for domains including politics, business, health, sports and crime. Ta-

ble 3.3 shows several examples in each category.

In addition, related event pairs form knowledge graphs, figure 3.3 shows two examples. The

first one describes various scenarios that cause deaths while the second one describes contingent

relations among events specific in sports.
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Figure 3.3: Example Temporal Event Knowledge Graphs. → denotes the happens_before temporal
relation. Reprinted with permission from Yao et al. [2017].

3.3.1.4 Causally Related Events

I observed that a large portion of the learned regular event pairs are both temporally and

causally related. I adopt the force dynamics theory and determine that two events are causally

related if one event causes, enables or prevents the other event to happen. Then I asked two anno-

tators 7 to annotate causal relations for the same set of 100 randomly selected regular event pairs

generated by the full bootstrapping system. Surprisingly, out of 69 event pairs that have been as-

signed with the same temporal relation by both annotators, 61 event pairs were deemed as causally

related. This shows that most of my temporally related regular event pairs are causally related as

well.

3.3.1.5 Using VerbOcean Patterns

VerbOcean Chklovski and Pantel [2004a] created lexico-syntactic patterns in order to extract

event pairs with various semantic relations from the Web. Specifically, for the temporal relation

happens-before, VerbOcean used ten patterns such as “to X and then Y”, “to X and later Y” and

acquired 4,205 event pairs with a temporal “before/after” relation from the Web.

7I used the same two annotators that have conducted temporal relation annotations. For this task, the annotator
inter-agreement is 0.82 in kappa.
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0 (Seeds) 1 2 3 4 Total
Full System 112 179 271 95 – 657

Table 3.4: Bootstrapping Using VerbOcean Patterns. Reprinted with permission from Yao et al.
[2017].

Therefore, I replace my two straightforward temporal relation patterns, EV_A after (before)

EV_B, with the ten patterns proposed by VerbOcean and use these patterns to acquire seed regular

event pairs. However, with exactly the same settings and frequency threshold I used in seed iden-

tification, I can only identify seven seed regular event pairs using the same complete Gigaword

corpus. In order to obtain more seed event pairs, I lowered the frequency threshold of seeing an

event pair in patterns from ten to three. In this case as shown in table 3.4, I obtained 112 seed

event pairs, which is still much less than 2110 event pairs that I have acquired. Then with the

initial 112 seed regular event pairs, around 500 new event pairs were later learned using exactly

the same bootstrapping learning settings I have used. In total, only 657 event pairs were learned

by using VerbOcean patterns. Note that the Gigaword corpus I used is much smaller in volume

than the Web. Therefore, I hypothesize that VerbOcean patterns are too specific to be productive

in identifying regular event pairs from a limited text corpus.

In addition, I compared my learned 4,401 regular event pairs with the 4,205 verb pairs in

the happens-before relation acquired by VerbOcean8. Interestingly, among these two sets, only

eight event pairs are the same. This shows that my bootstrapping learning approach recognizes

diverse sentential contexts and learns a dramatically different set of temporally related event pairs,

compared with VerbOcean which mainly uses specific lexico-syntactic patterns to query the giant

Web.
8Because event pairs in VerbOcean do not contain arguments, I removed event arguments from my event pairs for

direct comparisons.
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3.3.2 Weakly Supervised Contextual Temporal Relation Classifier

3.3.2.1 Accuracy of the Classifier

Recall that the contextual temporal relation classifier was trained on the New York Times sec-

tion of Gigaword. In order to evaluate the accuracy of the classifier, I applied the weakly supervised

learned classifier (the full system) to sentential contexts between pairs of events extracted from the

Associated Press Worldstream section of Gigaword. I randomly sampled 100 instances from the

ones that were labeled by the classifier as indicating a after or before relation and with a confidence

score greater than 0.8. Then for each instance and its pair of events, I asked two annotators to judge

whether the sentence indeed describes a after (before) temporal relation between the two events.

According to the annotations9, the classifier predicted the correct temporal relation 74% of time.

3.3.2.2 Evaluation Using a Benchmark Dataset

To facilitate direct comparisons, I evaluate both my weakly supervised trained classifier and

two supervised trained systems using a benchmark evaluation dataset, the TempEval-3-platinum

corpus, which contains 20 news articles annotated with several temporal relations between events.

I only evaluate system performance on identifying temporal “before/after” relations.

I compare with two feature-rich supervised trained systems. ClearTK [Bethard, 2013] uses

event attributes such as tense, aspect and class, dependency paths and words between two events

as features in identifying temporal relations between events. More recently, [Mirza and Tonelli,

2014b] proposes even more sophisticated features including various lexical, grammatical and syn-

tactic features, event durations, temporal signals and temporal discourse connectives etc. In con-

trast, my neural net based temporal relation classifier is simpler and does not require feature engi-

neering.

Table 3.5 shows the comparison results between these three systems. Note that I ran the original

ClearTK system and I re-implemented the system described in [Mirza and Tonelli, 2014b]. In

addition, both supervised systems were trained using TimeBank v1.2 [Pustejovsky et al., 2006].

9The two annotators achieved a Kappa inter-agreement score of 0.71.

38



Approaches F1 P R
ClearTK [Bethard, 2013] 0.27 0.36 0.22
Mirza and Tonelli [2014b] 0.29 0.24 0.38
My classifier 0.28 0.35 0.24

Table 3.5: Performance on TempEval-3 Test Data. Reprinted with permission from Yao et al.
[2017].

The performance across the three systems is overall low, one reason is that the pairs of events

that are in a temporal relation were not provided to the classifiers. Therefore, the classifiers had

to identify temporally related event pairs as well as classify their temporal relations. I can see

that the weakly supervised classifier achieved roughly equal performance as ClearTK, while the

other supervised system presents a a different precision-recall tradeoff. Overall, without using any

annotated data or sophisticated hand crafted features, my weakly supervised system achieved a

F1-score comparable to both supervised trained systems.

3.4 Conclusion

I presented a weakly supervised bootstrapping approach that learns both regular event pairs

and a contextual temporal relation classifier, by exploring the observation that regular event pairs

tend to show a consistent temporal relation despite of their diverse contexts. Evaluation shows

that the learned regular event pairs are of high quality and rich in commonsense knowledge and

domain knowledge. In addition, the weakly supervised trained temporal relation classifier achieves

comparable performance with state-of-the-art supervised classifiers.
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4. TEMPORAL EVENT KNOWLEDGE ACQUISITION VIA IDENTIFYING

NARRATIVES1

The previous approach acquires temporal “before/after” knowledge by training an intra-sentence

contextual classifier. However, event temporal relations can also be described throughout several

sentences. Extracting event temporal knowledge by leveraging specific discourse structures can

significantly supplement previous temporal knowledge. According to the narratology theory, a

narrative is a discourse presenting a sequence of events arranged in their time order (the plot)

and involving specific characters (the characters). Therefore, my second weakly-supervised ap-

proach focuses on event temporal “before/after” knowledge acquisition by identifying narratives.

More precisely, while a large narrative may contain nonlinear narration such as flashbacks or flash-

forwards, this work tries to acquire temporal knowledge by identifying particular story paragraphs

that satisfy double temporality from large narratives. The double temporality states that some

narrative texts describe a sequence of events following the chronological order and therefore, the

temporal order of events matches with their textual order [Walsh, 2001, Riedl and Young, 2010,

Grabes, 2013]. For convenience, I will still use narrative identification in the following sections.

This weakly supervised method is designed to capture key elements of narratives in each of two

stages. As shown in figure 4.1, in the first stage, I identify the initial batch of narrative paragraphs

that satisfy strict rules and the key principles of narratives. Then in the second stage, I train a

statistical classifier using the initially identified seed narrative texts and a collection of soft features

for capturing the same key principles and other textual devices of narratives. Next, the classifier

is applied to identify new narratives from raw texts again. The newly identified narratives will

be used to augment seed narratives and the bootstrapping learning process iterates until no enough

(specifically, less than 2,000) new narratives can be found. Here, in order to specialize the statistical

classifier to each genre, I conduct the learning process on news, novels and blogs separately.

1Reprinted with permission from “Temporal Event Knowledge Acquisition via Identifying Narratives” by Wen-
lin Yao and Ruihong Huang, 2018. Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp.537-547
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4.1 Key Elements of Narratives

It is generally agreed in narratology [Forster, 1962, Mani, 2012, Pentland, 1999, Bal, 2009]

that a narrative presents a sequence of events arranged in their time order (the plot) and involving

specific characters (the characters).

Plot. The plot consists of a sequence of closely related events. According to [Bal, 2009], an event

in a narrative often describes a “transition from one state to another state, caused or experienced

by actors”. Moreover, as Mani [2012] illustrates, a narrative is often “an account of past events

in someone’s life or in the development of something”. These prior studies suggest that sentences

containing a plot event are likely to have the actantial syntax “NP VP”2 [Greimas, 1971] with the

main verb in the past tense.

Character. A narrative usually describes events caused or experienced by actors. Therefore, a

narrative story often has one or two main characters, called protagonists, who are involved in

multiple events and tie events together. The main character can be a person or an organization.

Other Textual Devices. A narrative may contain peripheral contents other than events and char-

acters, including time, place, the emotional and psychological states of characters etc., which do

not advance the plot but provide essential information to the interpretation of the events [Pentland,

1999]. I use rich Linguistic Inquiry and Word Count (LIWC) [Pennebaker et al., 2015] features to

capture a variety of textual devices used to describe such contents.

4.2 Phase One: Weakly Supervised Narrative Identification

In order to acquire rich temporal event knowledge, I first develop a weakly supervised approach

that can quickly adapt to identify narrative paragraphs from various text sources.

4.2.1 Rules for Identifying Seed Narratives

Grammar Rules for Identifying Plot Events. Guided by the prior narratology studies [Greimas,

1971, Mani, 2012] and my observations, I use context-free grammar production rules to identify

sentences that describe an event in an actantial syntax structure. Specifically, I use three sets of

2NP is Noun Phrase and VP is Verb Phrase.
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Figure 4.1: Overview of the Narrative Learning System. Reprinted with permission from Yao and
Huang [2018].

grammar rules to specify the overall syntactic structure of a sentence. First, I require a sentence to

have the basic active voiced structure “S → NP VP” or one of the more complex sentence structures

that are derived from the basic structure considering Coordinating Conjunctions (CC), Adverbial

Phrase (ADVP) or Prepositional Phrase (PP) attachments3. For example, in the narrative of Figure

7.5, the sentence “Michael Kennedy earned a bachelor’s degree from Harvard University in 1980.”

has the basic sentence structure “S → NP VP”, where the “NP” governs the character mention of

‘Michael Kennedy’ and the “VP” governs the rest of the sentence and describes a plot event.

In addition, considering that a narrative is usually “an account of past events in someone’s life

or in the development of something” [Mani, 2012, Dictionary, 2007], I require the headword of

the VP to be in the past tense. Furthermore, the subject of the sentence is meant to represent a

character. Therefore, I specify 12 grammar rules4 to require the sentence subject noun phrase to

have a simple structure and have a proper noun or pronoun as its head word.

For seed narratives, I consider paragraphs containing at least four sentences and I require 60%

or more sentences to satisfy the sentence structure specified above. I also require a narrative para-

graph to contain no more than 20% of sentences that are interrogative, exclamatory or dialogue,

3I manually identified 14 top-level sentence production rules, for example, “S → NP ADVP VP”, “S → PP , NP
VP” and “S → S CC S”. Appendix shows all the rules.

4The example NP rules include “NP → NNP”, “NP → NP CC NP” and “NP → DT NNP”.
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which normally do not contain any plot events. The specific parameter settings are mainly de-

termined based on my observations and analysis of narrative samples. The threshold of 60% for

“sentences with actantial structure” was set to reflect the observation that sentences in a narrative

paragraph usually (over half) have an actantial structure. A small portion (20%) of interrogative,

exclamatory or dialogue sentences is allowed to reflect the observation that many paragraphs are

overall narratives even though they may contain 1 or 2 such sentences, so that I achieve a good

coverage in narrative identification.

The Character Rule. A narrative usually has a protagonist character that appears in multiple sen-

tences and ties a sequence of events, therefore, I also specify a rule requiring a narrative paragraph

to have a protagonist character. Concretely, inspired by Eisenberg and Finlayson [2017], I applied

the named entity recognizer [Finkel et al., 2005] and entity coreference resolver [Lee et al., 2013]

from the CoreNLP toolkit [Manning et al., 2014b] to identify the longest entity chain in a para-

graph that has at least one mention recognized as a Person or Organization, or a gendered pronoun.

Then I calculate the normalized length of this entity chain by dividing the number of entity men-

tions by the number of sentences in the paragraph. I require the normalized length of this longest

entity chain to be ≥ 0.4, meaning that 40% or more sentences in a narrative mention a character 5.

4.2.2 The Statistical Classifier for Identifying New Narratives

Using the seed narrative paragraphs identified in the first stage as positive instances, I train

a statistical classifier to continue to identify more narrative paragraphs that may not satisfy the

specific rules. I also prepare negative instances to compete with positive narrative paragraphs in

training. Negative instances are paragraphs that are not likely to be narratives and do not present

a plot or protagonist character, but are similar to seed narratives in others aspects. Specifically,

similar to seed narratives, I require a non-narrative paragraph to contain at least four sentences

with no more than 20% of sentences being interrogative, exclamatory or dialogue; but in contrast

to seed narratives, a non-narrative paragraph should contain 30% of or fewer sentences that have

540% was chosen to reflect that a narrative paragraph often contains a main character that is commonly mentioned
across sentences (half or a bit less than half of all the sentences).

43



the actantial sentence structure, where the longest character entity chain should not span over 20%

of sentences. I randomly sample such non-narrative paragraphs that are five times of narrative

paragraphs 6.

In addition, since it is infeasible to apply the trained classifier to all the paragraphs in a large

text corpus, such as the Gigaword corpus [Graff and Cieri, 2003], I identify candidate narrative

paragraphs and only apply the statistical classifier to these candidate paragraphs. Specifically, I

require a candidate paragraph to satisfy all the constraints used for identifying seed narrative para-

graphs but contain only 30%7 or more sentences with an actantial structure and have the longest

character entity chain spanning over 20%8 of or more sentences.

I choose Maximum Entropy [Berger et al., 1996] as the classifier. Specifically, I use the Max-

Ent model implementation in the LIBLINEAR library9 [Fan et al., 2008] with default parameter

settings. Next, I describe the features used to capture the key elements of narratives.

Features for Identifying Plot Events: Realizing that grammar production rules are effective in

identifying sentences that contain a plot event, I encode all the production rules as features in the

statistical classifier.

Specifically, for each narrative paragraph, I use the frequency of all syntactic production rules

as features. Note that the bottom level syntactic production rules have the form of POS tag →

WORD and contain a lexical word, which made these rules dependent on specific contexts of a

paragraph. Therefore, I exclude these bottom level production rules from the feature set in order

to model generalizable narrative elements rather than specific contents of a paragraph.

In addition, to capture potential event sequence overlaps between new narratives and the al-

ready learned narratives, I build a verb bigram language model using verb sequences extracted

from the learned narrative paragraphs and calculate the perplexity score (as a feature) of the verb

sequence in a candidate narrative paragraph. Specifically, I calculate the perplexity score of an

6I used the skewed pos:neg ratio of 1:5 in all bootstrapping iterations to reflect the observation that there are
generally many more non-narrative paragraphs than narrative paragraphs in a document.

7This value is half of the corresponding thresshold used for identifying seed narrative paragraphs.
8This value is half of the corresponding thresshold used for identifying seed narrative paragraphs.
9https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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event sequence that is normalized by the number of events, PP (e1, ..., eN ) = N
√

∏N
i=1

1
P (ei|ei−1)

,

where N is the total number of events in a sequence and ei is a event word. I approximate

P (ei|ei−1) =
C(ei−1,ei)
C(ei−1)

, where C(ei−1) is the number of occurrences of ei−1 and C(ei−1, ei) is the

number of co-occurrences of ei−1 and ei. C(ei−1, ei) and C(ei−1) are calculated based on all event

sequences from known narrative paragraphs.

Features for the Protagonist Characters: I consider the longest three coreferent entity chains in

a paragraph that have at least one mention recognized as a Person or Organization, or a gendered

pronoun. Similar to the seed narrative identification stage, I obtain the normalized length of each

entity chain by dividing the number of entity mentions with the number of sentences in the para-

graph. In addition, I also observe that a protagonist character appears frequently in the surrounding

paragraphs as well, therefore, I calculate the normalized length of each entity chain based on its

presences in the target paragraph as well as one preceding paragraph and one following paragraph.

I use 6 normalized lengths (3 from the target paragraph 10 and 3 from surrounding paragraphs) as

features.

Other Writing Style Features: I create a feature for each semantic category in the Linguistic

Inquiry and Word Count (LIWC) dictionary [Pennebaker et al., 2015], and the feature value is the

total number of occurrences of all words in that category. These LIWC features capture presences

of certain types of words, such as words denoting relativity (e.g., motion, time, space) and words

referring to psychological processes (e.g., emotion and cognitive). In addition, I encode Parts-of-

Speech (POS) tag frequencies as features as well which have been shown effective in identifying

text genres and writing styles.

4.2.3 Identifying Narrative Paragraphs from Three Text Corpora

My weakly supervised system is based on the principles shared across all narratives, so it

can be applied to different text sources for identifying narratives. I considered three types of

texts: (1) News Articles. News articles contain narrative paragraphs to describe the background

10Specifically, the lengths of the longest, second longest and third longest entity chains.
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0 (Seeds) 1 2 3 4 Total
News 20k 40k 12k 5k 1k 78k
Novels 75k 82k 24k 6k 2k 189k
Blogs 6k 10k 3k 1k - 20k
Sum 101k 132k 39k 12k 3k 287k

Table 4.1: Number of new narratives generated after each bootstrapping iteration. Reprinted with
permission from Yao and Huang [2018].

of an important figure or to provide details for a significant event. I use English Gigaword 5th

edition [Graff and Cieri, 2003, Napoles et al., 2012], which contains 10 million news articles. (2)

Novel Books. Novels contain rich narratives to describe actions by characters. BookCorpus [Zhu

et al., 2015] is a large collection of free novel books written by unpublished authors, which contains

11,038 books of 16 different sub-genres (e.g., Romance, Historical, Adventure, etc.). (3) Blogs.

Vast publicly accessible blogs also contain narratives because “personal life and experiences” is

a primary topic of blog posts [Lenhart, 2006]. I use the Blog Authorship Corpus [Schler et al.,

2006] collected from the blogger.com website, which consists of 680k posts written by thousands

of authors. I applied the Stanford CoreNLP tools [Manning et al., 2014b] to the three text corpora

to obtain POS tags, parse trees, named entities, coreference chains, etc.

In order to combat semantic drifts [McIntosh and Curran, 2009] in bootstrapping learning, I

set the initial selection confidence score produced by the statistical classifier at 0.5 and increase

it by 0.05 after each iteration. The bootstrapping system runs for four iterations and learns 287k

narrative paragraphs in total. Table 4.1 shows the number of narratives that were obtained in the

seeding stage and in each bootstrapping iteration from each text corpus.

4.3 Phase Two: Extract Event Temporal Knowledge from Narratives

Narratives I obtained from the first phase may describe specific stories and contain uncommon

events or event transitions. Therefore, I apply Pointwise Mutual Information (PMI) based statistical

metrics to measure strengths of event temporal relations in order to identify general knowledge that

is not specific to any particular story. My goal is to learn event pairs and longer event chains with
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events completely ordered in the temporal “before/after” relation.

First, by leveraging the double temporality characteristic of narratives, I only consider event

pairs and longer event chains with 3-5 events that have occurred as a segment in at least one

event sequence extracted from a narrative paragraph. Specifically, I extract the event sequence (the

plot) from a narrative paragraph by finding the main event in each sentence and chaining the main

events11 according to their textual order.

Then I rank candidate event pairs based on two factors, how strongly associated two events are

and how common they appear in a particular temporal order. I adopt the existing metric, Causal

Potential (CP), which has been applied to acquire causally related events [Beamer and Girju, 2009]

and exactly measures the two aspects. Specifically, the CP score of an event pair is calculated using

the following equation:

cp(ei, ej) = pmi(ei, ej) + log
P (ei → ej)
P (ej → ei)

(4.1)

where, the first part refers to the Pointwise Mutual Information (PMI) between two events and the

second part measures the relative ordering or two events. P (ei → ej) refers to the probability that

ei occurs before ej in a text, which is proportional to the raw frequency of the pair. PMI measures

the association strength of two events, formally, pmi(ei, ej) = log P (ei,ej )
P (ei)P (ej )

, P (ei) =
C(ei)

∑

x C(ex)
and

P (ei, ej) =
C(ei,ej )

∑

x
∑

y C(ex,ey)
, where, x and y refer to all the events in a corpus, C(ei) is the number of

occurrences of ei, C(ei, ej) is the number of co-occurrences of ei and ej .

While each candidate pair of events should have appeared consecutively as a segment in at

least one narrative paragraph, when calculating the CP score, I consider event co-occurrences even

when two events are not consecutive in a narrative paragraph but have one or two other events

in between. Specifically, the same as in [Hu and Walker, 2017], I calculate separate CP scores

based on event co-occurrences with zero (consecutive), one or two events in between, and use the

weighted average CP score for ranking an event pair, formally, CP (ei, ej) =
∑3

d=1
cpd (ei,ej )

d
.

Then I rank longer event sequences based on CP scores for individual event pairs that are

included in an event sequence. However, an event sequence of length n is more than n − 1 event

11I only consider main events that are in base verb forms or in the past tense, by requiring their POS tags to be VB,
VBP, VBZ or VBD.
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pairs with any two consecutive events as a pair. I prefer event sequences that are coherent overall,

where the events that are one or two events away are highly related as well. Therefore, I define the

following metric to measure the quality of an event sequence:

CP (e1, e2,⋯ , en) =

∑3
d=1

∑n−d
j=1

CP (ej ,ej+d )
d

n − 1
. (4.2)

4.4 Evaluation

4.4.1 Precision of Narrative Paragraphs

From all the learned narrative paragraphs, I randomly selected 150 texts, with 25 texts selected

from narratives learned in each of the two stages (i.e., seed narratives and bootstrapped narratives)

using each of the three text corpora (i.e., news, novels, and blogs). Following the same definition

“A story is a narrative of events arranged in their time sequence” [Forster, 1962, Gordon and

Swanson, 2009], two human adjudicators were asked to judge whether each text is a narrative or a

non-narrative. In order to obtain high inter-agreements, before the official annotations, I trained the

two annotators for several iterations. Note that the texts I used in training annotators are different

from the final texts I used for evaluation purposes. The overall kappa inter-agreement between the

two annotators is 0.77.

Table 4.2 shows the precision of narratives learned in the two stages using the three corpora.

I determined that a text is a correct narrative if both annotators labeled it as a narrative. We can

see that on average, the rule-based classifier achieves the precision of 88% on initializing seed

narratives and the statistical classifier achieves the precision of 84% on bootstrapping new ones.

Using narratology based features enables the statistical classifier to extensively learn new narrative,

and meanwhile maintain a high precision.

4.4.2 Precision of Event Pairs and Chains

To evaluate the quality of the extracted event pairs and chains, I randomly sampled 20 pairs

(2%) from every 1,000 event pairs up to the top 18,929 pairs with CP score ≥ 2.0 (380 pairs
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Narratives Seed Bootstrapped
News 0.84 0.72
Novel 0.88 0.92
Blogs 0.92 0.88
AVG 0.88 0.84

Table 4.2: Precision of narratives based on human annotation. Reprinted with permission from
Yao and Huang [2018].

pairs
graduate → teach (5.7), meet → marry (5.3)
pick up → carry (6.3), park → get out (7.3)
turn around → face (6.5), dial → ring (6.3)

chains

drive → park → get out (7.8)
toss → fly → land (5.9)
grow up → attend → graduate → marry (6.9)
contact → call → invite → accept (4.2)
knock → open → reach → pull out → hold (6.0)

Table 4.3: Examples of event pairs and chains (with CP scores). → represents before relation.
Reprinted with permission from Yao and Huang [2018].

selected in total), and 10 chains (1%) from every 1,000 up to the top 25,000 event chains12 (250

chains selected in total). The average CP scores for all event pairs and all event chains I considered

are 2.9 and 5.1 respectively. Two human adjudicators were asked to judge whether or not events

are likely to occur in the temporal order shown. For event chains, I have one additional criterion

requiring that events form a coherent sequence overall. An event pair/chain is deemed correct if

both annotators labeled it as correct. The two annotators achieved kappa inter-agreement scores of

0.71 and 0.66, on annotating event pairs and event chains respectively.

As we know, coverage on acquired knowledge is often hard to evaluate because I do not have a

complete knowledge base to compare to. Thus, I propose a pseudo recall metric to evaluate the cov-

erage of event knowledge I acquired. Regneri et al. [2010] collected Event Sequence Descriptions

(ESDs) of several types of human activities (e.g., baking a cake, going to the theater, etc.) using

12It turns out that many event chains have a high CP score close to 5.0, so I decided not to use a cut-off CP score of
event chains but simply chose to evaluate the top 25,000 event chains.
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Figure 4.2: Top-ranked event pairs evaluation. Reprinted with permission from Yao and Huang
[2018].

# of top chains 5k 10k 15k 20k 25k
Precision 0.76 0.8 0.75 0.73 0.69

Table 4.4: Precision of top-ranked event chains. Reprinted with permission from Yao and Huang
[2018].

crowdsourcing. My first pseudo recall score is calculated based on how many consecutive event

pairs in human-written scripts can be found in my top-ranked event pairs. Figure 4.2 illustrates

the precision of top-ranked pairs based on human annotation and the pseudo recall score based on

ESDs. We can see that about 75% of the top 19k event pairs are correct, which captures 48% of

human-written script knowledge in ESDs. In addition, table 4.4 shows the precision of top-ranked

event chains with 3 to 5 events. Among the top 25k event chains, about 70% are correctly ordered

with the temporal “after” relation. Table 4.3 shows several examples of event pairs and chains.
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Models Acc.(%)
Choubey and Huang [2017] 51.2
+ CP score 52.3

Table 4.5: Results on TimeBank corpus. Reprinted with permission from Yao and Huang [2018].

4.4.3 Improving Temporal Relation Classification by Incorporating Event Knowledge

To find out whether the learned temporal event knowledge can help with improving temporal

relation classification performance, I conducted experiments on a benchmark dataset - TimeBank

corpus v1.2, which contains 2308 event pairs that are annotated with 14 temporal relations 13.

To facilitate direct comparisons, I used the same state-of-the-art temporal relation classification

system as described in my previous work Choubey and Huang [2017] and considered all the 14

relations in classification. Choubey and Huang [2017] forms three sequences (i.e., word forms,

POS tags, and dependency relations) of context words that align with the dependency path between

two event mentions and uses three bi-directional LSTMs to get the embedding of each sequence.

The final fully connected layer maps the concatenated embeddings of all sequences to 14 fine-

grained temporal relations. I applied the same model here, but if an event pair appears in my

learned list of event pairs, I concatenated the CP score of the event pair as additional evidence in the

final layer. To be consistent with Choubey and Huang [2017], I used the same train/test splitting,

the same parameters for the neural network and only considered intra-sentence event pairs. Table

4.5 shows that by incorporating my learned event knowledge, the overall prediction accuracy was

improved by 1.1%. Not surprisingly, out of the 14 temporal relations, the performance on the

relation before was improved the most by 4.9%.

4.4.4 Narrative Cloze

Multiple Choice version of the Narrative Cloze task (MCNC) proposed by Granroth-Wilding

and Clark [2016], Wang et al. [2017b], aims to evaluate understanding of a script by predicting the

13Specifically, the 14 relations are simultaneous, before, after, ibefore, iafter, begins, begun by, ends, ended by,
includes, is included, during, during inv, identity
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Method Acc.(%)
[Chambers and Jurafsky, 2008] 30.92
[Granroth-Wilding and Clark, 2016] 43.28
[Pichotta and Mooney, 2016] 43.17
[Wang et al., 2017b] 46.67
My Results 48.83

Table 4.6: Results on MCNC task. Reprinted with permission from Yao and Huang [2018].

next event given several context events. Presenting a chain of contextual events e1, e2, ..., en−1, the

task is to select the next event from five event candidates, one of which is correct and the others

are randomly sampled elsewhere in the corpus. Following the same settings of Wang et al. [2017b]

and Granroth-Wilding and Clark [2016], I adapted the dataset (test set) of Chambers and Jurafsky

[2008] to the multiple choice setting. The dataset contains 69 documents and 349 multiple choice

questions.

I calculated a PMI score between a candidate event and each context event e1, e2, ..., en−1 based

on event sequences extracted from my learned 287k narratives and I chose the event that have the

highest sum score of all individual PMI scores. Since the prediction accuracy on 349 multiple

choice questions depends on the random initialization of four negative candidate events, I ran the

experiment 10 times and took the average accuracy as the final performance.

Table 4.6 shows the comparisons of my results with the performance of several previous mod-

els, which were all trained with 1,500k event chains extracted from the NYT portion of the Gi-

gaword corpus [Graff and Cieri, 2003]. Each event chain consists of a sequence of verbs sharing

an actor within a news article. Except Chambers and Jurafsky [2008], other recent models uti-

lized more and more sophisticated neural language models. Granroth-Wilding and Clark [2016]

proposed a two layer neural network model that learns embeddings of event predicates and their

arguments for predicting the next event. Pichotta and Mooney [2016] introduced a LSTM-based

language model for event prediction. Wang et al. [2017b] used dynamic memory as attention in

LSTM for prediction. It is encouraging that by using event knowledge extracted from automati-

cally identified narratives, I achieved the best event prediction performance, which is 2.2% higher
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than the best neural network model.

4.5 Conclusion

This section presents a novel approach for leveraging the double temporality characteristic of

narrative texts and acquiring temporal event knowledge across sentences in narrative paragraphs. I

developed a weakly supervised system that explores narratology principles and identifies narrative

texts from three text corpora of distinct genres. The temporal event knowledge distilled from nar-

rative texts were shown useful to improve temporal relation classification and outperform several

neural language models on the narrative cloze task. For the future work, I plan to expand event

temporal knowledge acquisition by dealing with event sense disambiguation and event synonym

identification (e.g., drag, pull and haul).
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5. WEAKLY SUPERVISED SUBEVENT KNOWLEDGE ACQUISITION1

Previous two models mainly focuses on acquiring event temporal knowledge. Another event re-

lation - the subevent-parentevent relation also widely exist between events. The subevent-parentevent

relation indicates that several events (subevents) happen as parts of another event (parentevent)

spatio-temporally. Subevent knowledge is useful for discourse analysis and event-centric applica-

tions. Acknowledging the scarcity of subevent knowledge, I propose a weakly supervised approach

to extract subevent relation tuples from text and build the first large scale subevent knowledge base.

Figure 5.1 shows the overview of the weakly supervised learning approach for subevent knowl-

edge acquisition. The key of this approach is to identify seed event pairs that are likely to be of the

subevent relation in a two-step procedure (Section 5.1). I first use several temporal relation pat-

terns (e.g., ei during ej) to identify candidate seed pairs since a child event is usually temporally

contained by its parent event; and then, I conduct a definition-guided semantic consistency check

to remove spurious subevent pairs that are semantically incompatible and are unlikely to have the

subevent relation, e.g., (festival, bombing).

Next, I find occurrences of seed pairs in a large text corpus to quickly generate many subevent

relation instances, I will also create negative instances to train the subevent relation classifier (Sec-

tion 5.2). Then, the trained contextual classifier will be used to identify new event pairs of the

subevent relation by examining multiple occurrences of an event pair in text (Section 5.3). I use

the English Gigaword [Napoles et al., 2012] as the text corpus.

5.1 Weak Supervision

5.1.1 Seed Event Pair Identification

I use six preposition patterns (i.e., during, in, amid, throughout, including, and within) to ex-

tract candidate seed event pairs. Specifically, I use dependency relations2 to recognize preposition

1Reprinted with permission from “Weakly Supervised Subevent Knowledge Acquisition” by Wenlin Yao, Zeyu
Dai, Maitreyi Ramaswamy, Bonan Min, Ruihong Huang, 2020. In Proceedings of The 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp.5345-5356.

2I use Stanford dependency relations [Manning et al., 2014a], e.g., prep_during.
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... a debate to discuss ... during election of ... 
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... a campaign in which ... by persuading voters ... 
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... after a disputed election ... would begin his term ...
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Candidate New Pairs

Contexts

Contexts
New Pairs

Identifying New Pairs (Section 6)

Figure 5.1: Overview of the Subevent Knowledge Acquisition System. Reprinted with permission
from Yao et al. [2020a].

patterns, and extract the governor word and dependent word of each pattern. I then check whether

both words are event triggering words, and try to attach an argument to an event word to form an

event phrase that tends to be more expressive and self-contained than a single event word, e.g., sign

agreement v.s sign, or, attack on troops v.s attack. I consider both verb event phrases and noun

event phrases (Appendix 2.1 provides more details). I further require that at least one argument is

included in an event pair which may be attached to the first or the second event. In other words, I

do not consider event pairs in which neither event has an argument.

To select seed subevent pairs, I consider event pairs that co-occur with at least two different

patterns for at least three times. In this way, I identified around 43K candidate seed pairs from

the Gigaword corpus. However, many candidate seed pairs identified by the preposition patterns

only have the temporal contained_by relation but do not have the subevent relation. In order to

remove such spurious subevent pairs, I present an event definition guided approach next to conduct

semantic consistency check between the parent event and the child event of a candidate subevent

relation tuple.

5.1.2 Definition-Guided Semantic Check

The intuition is that the definition of a parent event word describes important aspects of the

event’s meanings and signifies its potential subevents. For example, based on the definition of
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festival, events related to “celebrations”, such as ceremony being held and set off fireworks, are

likely to be correct subevents of festival; however, bomb explosion and people being killed may be

distinct events that only happen temporally in parallel with festival.

Specifically, I perform semantic consistency checks collectively for many candidate event pairs

by considering similarities between events and similarities between the definition of an event and

its subevents, and I cluster event phrases into groups so that any two event phrases within a group

are semantically compatible. Therefore, when the clustering operation is completed, I will recog-

nize an event pair as a spurious subevent relation pair if its two events fall into different clusters.

Next, I describe details on graph construction and the clustering algorithm I used.

Graph Construction: Given a set of event pairs needing the semantic consistency check, I con-

struct an undirected graph G(V ,E), where each node in V represents a unique event phrase. I

connect event phrases with two types of weighted edges. First, for each candidate subevent rela-

tion tuple, I create an edge of weight 1.0 between the parent event and the child event. Second, I

create an edge between any two event phrases if their similarity3 is greater than a certain threshold4,

and the edge weight is their similarity score. If two event phrases are already connected because

they are a candidate subevent relation pair, I add their similarity score to the edge weight.

Next, I incorporate event definitions by adding new nodes and new edges to the graph. Specif-

ically, for each event phrase that appears as the parent event in some candidate subevent relation

tuples, I create a new node for its event word representing the event word definition. If the event

word has multiple meanings and therefore multiple definitions, I consider at most five definitions

retrieved from WordNet [Miller, 1995] and create one node for each definition, assuming each

definition of the parent event will attract different types of children events. Then, I connect each

definition node of a parent event with its children events, if their similarity5 is over the same simi-

3To calculate the similarity between two event phrases, I pair each word from one event phrase (either the event
word or an argument) with each word from the other event phrase and calculate the similarity between two word
embeddings, then the similarity between two event phrases is the average of their word pair similarities. I used
word2vec word embeddings.

4I set the similarity threshold as 0.3, after inspecting 200 randomly selected event pairs with their similarities.
5The similarity between a definition node and a child event is calculated by exhaustively pairing each non-stop

word from the definition sentence and each word from the child event phrase and taking the average of word pair
similarities.
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Figure 5.2: BERT-based Contextual Classifier

larity threshold used previously.

The Clustering Algorithm: I use a graph propagation algorithm called Speaker-Listener Label

Propagation Algorithm (SLPA) [Xie et al., 2011]. SLPA has been shown effective for detecting

overlapping clusters [Xie et al., 2013], which is preferred because multiple types of events may

share common subevents. For instance, people being injured is a commonly seen subevent of

conflict events (e.g., combat) as well as disaster events (e.g., hurricane). In addition, SLPA is

self-adapted and can converge to the optimal number of clusters, with no pre-defined number of

clusters needed.

After performing the semantic consistency check6, I retained around 30K seed event pairs. I

find occurrences of these event pairs in the Gigaword corpus and obtained around 388K7 sentences

containing an event pair. These sentences will be used as positive instances to train the contextual

classifier.

5.2 The Contextual Classifier Using BERT

Recently, BERT [Devlin et al., 2019] pretrained on massive data has achieved high performance

on various NLP tasks. I fine-tune a pretrained BERT model to build the contextual classifier for

6Event clusters often become stable soon after 50 iterations, to ensure convergence, I ran the algorithm for 60
iterations.

7Some event pairs appear very frequently in the corpus, to encourage diversity of the training data, I keep at most
20 sentences that contain an event pair.
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subevent relation identification.

BERT model is essentially a bi-directional Transformer-based encoder that consists of multiple

layers where each layer has multiple attention heads. Formally, given a sentence with N tokens,

each attention head transforms a token vector ti into query, key, and value vectors qi, ki, vi through

three linear transformers. Next, for each token, the head calculates the self-attention scores for

all other tokens of the input sentence against this token as the softmax-normalized dot products

between two query and key vectors. The output oi of each attention head is a weighted sum of all

value vectors:

oi =
N
∑

j=1
wijvj , wij =

exp(qTi kj)
∑N

l=1 exp(q
T
i kl)

In this way, I can obtain N contextualized embeddings {oi}Ni=1 for all words {wi}Ni=1 in a sentence

using the BERT model. Figure 5.2 shows the overall structure of the classifier. To enforce the

BERT encoder to look at context information other than the two event trigger words of a subevent

pair, e.g., war, person battle, I replace the two event trigger words in a sentence with a special

token [MASK] as the original BERT model did for masking. The contextualized embeddings at

two event triggers’ positions (two [MASK]’s positions) are concatenated and then fed into a feed-

forward neural network with a softmax prediction layer for three-way classification, i.e., to predict

two subevent relations (parent-child and child-parent relations depending on the textual order of

two events) and no subevent relation (Other).

In my experiments, I use the pretrained BERTbase model provided by [Devlin et al., 2019] with

12 transformer block layers, 768 hidden size and 12 self-attention heads8. I train the classifier using

cross-entropy loss and Adam [Kingma and Ba, 2015] optimizer with initial learning rate 1e-5, 0.5

dropout, batch size 16 and 3 training epochs.

Negative Training Instances: High-quality negative training instances that can effectively com-

pete with positive instances are important to enable the classifier to distinguish subevent relations

from non-subevent relations. I include two types of negative instances to fine-tune the BERT clas-

sifier.
8My implementation was based on https://github.com/huggingface/transformers.
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First, I randomly sample sentences that contain an event pair different from any seed pair or

candidate pair (Section 5.3.1) as negative instances. I sample such negative sentences equal to five

times of positive sentences, considering that most sentences in a corpus do not contain a subevent

relation. Second, I observe that the subevent relation is often confused with temporal and causal

event relations because a subevent is strictly temporally contained by its parent event. Therefore,

to improve the discrimination capability of the classifier, I also include sentences containing tem-

porally or causally related events as negative instances. Specifically, I apply a similar strategy -

using patterns9 to extract temporal and causal event pairs and then search for these pairs to collect

sentences that contain a temporal or causal event pair. Event pairs that co-occur with temporal

or causal patterns for at least three times are selected for population. I collected 63K temporally

related event pairs and 61K causally related event pairs, which were used to identify 371K sen-

tences that contain one of the event pairs. In total, I obtained around 1.8 million negative training

instances.

5.3 Identifying New Subevent Pairs

I next apply the contextual BERT classifier to identify new event pairs that express the subevent

relation. It is unnecessary to test on all possible pairs of events since two random events that co-

occur in a sentence have a small chance to have the subevent relation. In order to narrow down

the search space, I first identify candidate event pairs that are likely to have the subevent relation.

Then, I apply the contextual classifier to examine instances of each candidate event pair in order to

determine valid subevent relation pairs.

5.3.1 Candidate Event Pairs

I consider two types of candidate event pairs. First, the preposition patterns used to identify

seed subevent relation tuples are again used to identify candidate event pairs, but with less strict

conditions. Specifically, I consider event pairs that co-occur with any pattern for at least two

times as candidate event pairs. In this way, I identified 1.4 million candidate event pairs from the

9Three temporal patterns - “following”, “before”, “after” and seven causal patterns - “lead to”, “result in”, “result
from”, “cause”, “cause by”, “due to”, “because of” are used.
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Figure 5.3: Example Subevent Knowledge Graph ( → denotes the Parent→Child subevent rela-
tion). Four colors indicate four groups of parent events where parent events in the same group
commonly share children events. Children events circled by the same blue dash box describe a
stage of development of parent events. Reprinted with permission from Yao et al. [2020a].

Gigaword corpus.

Second, when a subevent relation tuple appears in a sentence, it is common to observe other

subevents of the same parent event in the surrounding context. Therefore, I collect sentences that

contain a seed subevent relation tuple, and identify additional subevents of the same parent event

in the two preceding and two following sentences. Furthermore, I observe that the additional

subevents often share the subject or direct object with the subevent of the seed tuple, as a con-

sequence, I only consider such event phrases found in the surrounding sentences and pair them

with the parent event of the seed tuple to create new candidate event pairs. Using this method, I

extracted around 89K candidate event pairs from the Gigaword corpus.

5.3.2 New Subevent Pair Selection Criteria

I identify a candidate event pair as a new subevent relation pair only if the majority of its

sentential contexts, specifically more than 50% of them, were consistently labeled as showing the

subevent relation by the BERT classifier. In addition, I disregard rare event pairs and require that
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Seed Pairs P/R/F1
Before Semantic check 44.9/25.3/32.4
After Semantic check 55.9/26.2/35.7

Table 5.1: Performance of the Contextual Classifier. Reprinted with permission from Yao et al.
[2020a].

at least three instances of an event pair have been labeled as showing the subevent relation.

The full weakly supervised learning process acquires 239K subevent relation pairs, including

30K seed pairs and 209K classifier identified pairs. The subevent knowledge base has 10,318

unique events shown as parent events, and each parent event is associated with 20.1 children events

on average.

5.3.3 Example Subevent Knowledge Graph

The initial exploration of the learned subevent knowledge shows two interesting observations

of event hierarchies. Figure 5.3 shows an example event graph. First, I can draw a partition of the

event space at multiple granularity levels by grouping events based on subevents they share, e.g.,

the upper and the lower sections of the example event graph illustrate two broad event clusters shar-

ing no subevent, and within each cluster, I see smaller event groups (colored) that share subevents

extensively within a group while sharing fewer subevents between groups. Second, subevents en-

code event semantics and reveal different development stages of the parent events, e.g., subevents

of natural disaster events (top left corner) reflect disaster response and recovery stages.

5.4 Intrinsic and Extrinsic Evaluations

5.4.1 Precision of the Contextual Classifier

The contextual classifier is a key component of my learning approach. I evaluate the perfor-

mance of the BERT contextual classifier on identifying subevent relations against all the other types

of event-event relations (e.g., temporal, causal relations, etc.), using the Richer Event Description

(RED) corpus [O’Gorman et al., 2016] that is comprehensively annotated with rich event-event
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Method RED HiEve
Train and test on intra-sentence event pairs

Basic BERT Classifier 61.8/52.3/56.6 49.0/46.7/47.9
+ Subevent links 64.8/55.1/59.5 52.5/49.2/50.8
+ Event embeddings 67.4/54.2/60.0 52.8/46.3/49.4

Train and test on cross-sentence event pairs
Basic BERT Classifier 65.0/64.8/64.9 33.8/37.4/35.5

+ Subevent links 69.6/66.3/67.9 34.0/37.9/35.8
+ Event embeddings 69.2/62.9/65.9 32.5/40.8/36.2

Table 5.2: Subevent Relation Identification. P/R/F1 (%). I predict Parent-Child and Child-Parent
subevent relations and report the micro-average performance. Reprinted with permission from Yao
et al. [2020a].

relations. Since the contextual classifier mainly performs at the sentence level, I only consider to

identify intra-sentence subevent relations in the RED dataset10. Table 5.1 shows the comparisons

between two training settings - the BERT classifier trained on seed pairs before v.s after applying

the semantic check (43k vs 30k seed pairs) and their identified training instances. Conducting

the semantic check improves the precision of the trained classifier by 11% with no loss on recall.

Overall, without using any annotated data, the classifier achieves the precision of 56%11.

5.4.2 Accuracy of Acquired Subevent Pairs

I randomly sampled around 1% of acquired subevent pairs, including 300 from seed subevent

pairs and 2,090 from newly learned subevent pairs, and asked two human annotators to judge

whether the subevent relation exists between two events. The two annotators labeled 250 event

pairs in common and agreed on 93.6% (234) of them, and the remaining subevent pairs were

evenly split between the two annotators. According to human annotations, the accuracy of seed

pairs is 91.6% and the accuracy of newly learned event pairs is 89.9%, with the overall accuracy

of 90.1%.
10RED has 2635 intra-sentence event relations, 530 of them are subevent relations.
11While the precision is not perfect, note that I only retain a candidate subevent relation pair if the majority (3+) of

its sentential contexts show the subevent relation.
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Method Macro Acc Comparison Contingency Expansion Temporal
Base Model 50.8/47.8/49.0 56.42 43.8/39.0/41.3 44.7/51.3/47.8 66.6/65.7/66.2 48.2/35.0/40.6
+ Subevent(ours) 53.2/49.5/51.0 59.08 44.3/34.9/39.1 49.2/46.1/47.6 66.3/73.3/69.6 52.8/43.8/47.9

Table 5.3: Multi-class Classification Results on the PDTB dataset. I report accuracy (Acc), macro-
average (Macro) P/R/F1 (%) over four implicit discourse relation categories as well as performance
on each category. Reprinted with permission from Yao et al. [2020a].

5.4.3 Coverage of Acquired Subevent Pairs

To see whether the acquired subevent knowledge has good coverage of diverse event types, I

compare the unique events appearing in the acquired subevent relation tuples with events annotated

in two datasets, ACE [Doddington et al., 2004] and KBP [Ellis et al., 2015], both with rich event

types annotated and being commonly used for event extraction evaluation. I found that 73.8%

(656/889) of events in ACE and 66.9% (934/1396) of events in KBP match12 with events in the

acquired subevent pairs.

In addition, I compare my learned 239K subevent pairs with the 30K ConceptNet subevent

pairs. Interestingly, the two sets only have 311 event pairs in common, which shows that my

learning approach extracts subevent pairs from real texts that are often hard to think of by crowd

sourcing workers, the approach used by ConceptNet.

5.4.4 Subevent Relation Identification

To find out whether the learned subevent knowledge can be used to improve subevent relation

identification in text, I conducted experiments on two datasets, RED13 and HiEve14 [Glavaš et al.,

2014]. In my experiments, I consider intra-sentence and cross-sentence event pairs separately. I

randomly split data into five folds and conduct cross-validation for evaluation. I fine-tune the same

12I ignore event arguments and only consider to match event word lemmas, because I aim to evaluate the coverage
on general event types instead of specific events.

13RED has 530 intra-sentence and 415 cross-sentence subevent relations.
14HiEve annotated 3,200 event mentions and their subevents as well as coreference relations in 100 documents. I

first extended the subevent annotations using transitive closure rules and coreference relations [Glavaš et al., 2014,
Aldawsari and Finlayson, 2019], which produces 490 intra-sentence and 3.1K cross-sentence subevent relations.
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Method RED TimeBank
Train and test on intra-sentence event pairs

Basic BERT Classifier 59.9/68.2/63.8 66.8/62.2/64.4
+ Subevent links 61.3/69.1/65.0 65.4/67.0/66.2
+ Event embeddings 59.8/69.8/64.4 64.1/68.1/66.1

Train and test on cross-sentence event pairs
Basic BERT Classifier 38.4/37.4/37.9 44.1/48.4/46.1

+ Subevent links 51.8/40.7/45.5 45.3/40.7/42.8
+ Event embeddings 52.4/42.3/46.8 43.5/47.6/45.4

Table 5.4: Temporal Relation Identification. P/R/F1 (%). I predict Before and After temporal
relations and report the micro-average performance. Reprinted with permission from Yao et al.
[2020a].

Method RED ESC
Train and test on intra-sentence event pairs

Basic BERT Classifier 64.7/62.6/63.6 44.9/52.2/48.3
+ Subevent links 64.1/66.5/65.3 44.9/54.5/49.2
+ Event embeddings 65.2/66.8/66.0 45.9/53.4/49.4

Train and test on cross-sentence event pairs
Basic BERT Classifier 20.0/14.3/16.7 30.3/23.9/26.7

+ Subevent links 28.4/26.1/27.2 34.0/22.7/27.2
+ Event embeddings 28.0/25.2/26.6 32.1/25.4/28.4

Table 5.5: Causal Relation Identification. P/R/F1 (%). I predict Cause-Effect and Effect-Cause
relations and report the micro-average performance. Reprinted with permission from Yao et al.
[2020a].

BERT model using RED or HiEve annotations to predict subevent relations vs others1516. Note

that for cross-sentence event pairs, I simply concatenate two sentences and insert in between the

special token [SEP] used in the original BERT.

I propose two methods to incorporate the learned subevent knowledge. 1) Subevent links. For

a pair of events to classify in the RED or HiEve dataset, I check if they match with my learned

15For the RED dataset, I consider all the annotated event-event relations in RED other than subevent relations as
others.

16For the HiEve dataset, I exhaustively create event mention pairs among all the annotated event mentions in HiEve
and consider all the mention pairs that were not annotated with the subevent relation as others. In this way, I generated
3.5K intra-sentence and 59.5K cross-sentence event mention pairs as others.

64



subevent relation tuples. I ignore event arguments for matching events and only consider to match

event word lemmas, for this reason, one pair of events might match with multiple learned subevent

relations. I count subevent relations that match with a given event pair, (X, Y), in two directions (X
subevent
→ Y) and (Y

subevent
→ X) separately, and encode the log values of the two counts in a vector. 2)

Event embedding. Subevent relations can be used to build meaningful event embeddings to have

the embeddings of a parent event and a child event preserve the subevent relation between them.

Therefore, I train a BiLSTM encoder17 to build event phrase embeddings, using the knowledge

representation learning model TransE [Bordes et al., 2013]18 such that p + r ≈ c given a parent-

child event pair (p, c) having the subevent relation r. I will use the trained BiLSTM encoder to

obtain an embedding for an event phrase in the RED or HiEve dataset.

Finally, for subevent relation identification, I concatenate two event word representations ob-

tained by the BERT encoder with either a subevent link vector or two event embeddings obtained

using the above two methods. Results are shown in Table 5.2. We can see that compared to the

basic BERT classifier, incorporating learned subevent knowledge achieves better performance on

both datasets, for both intra-sentence and cross-sentence cases.

5.4.5 Temporal and Causal Relation Identification

Subevents indicate how an event emerges and develops, and therefore, the learned subevent

knowledge can further be used to identify other semantic relations between events, such as tem-

poral and causal relations. For evaluation, I use the same RED19 dataset plus two more datasets,

TimeBank v1.220 [Pustejovsky et al., 2003] and Event Storyline Corpus (ESC) v1.521 [Caselli and

Inel, 2018], dedicated to evaluate temporal relation and causal relation identification systems re-

17The BiLSTM has the hidden size of 50 and uses max-pooling to encode an event phrase.
18I trained TransE for 20 iterations.
19RED has 1104 (1010) intra-sentence and 182 (119) cross-sentence temporal (causal) relations. I consider all the

annotated event-event relations in RED other than temporal (causal) relations as others.
20TimeBank has 1,122 intra-sentence and 247 cross-sentence “before/after” temporal relations. I consider all the

annotated event-event relations in TimeBank other than “before/after” relations as others.
21ESC has 1,649 intra-sentence and 3,952 cross-sentence causal relations. I exhaustively create event mention pairs

among all the annotated event mentions in ESC and consider all the mention pairs that were not annotated with the
causal relation as others. In this way, I generated 4.1K intra-sentence and 34K cross-sentence event mention pairs as
others.
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spectively. I use the same experimental settings, including 5-fold cross-validations and evaluating

predictions of intra- and cross-sentence cases separately. In addition, I repurpose the BERT model

to predict temporal relations v.s others or predict causal relations v.s others, and I use the same two

methods to incorporate the learned subevent knowledge.

Table 5.4 and 5.5 show results of temporal and causal relation identification. We can see that

subevent knowledge has little impact for identifying intra-sentence temporal and causal relations

that may heavily rely on local contextual patterns within a sentence. However, for identifying

the more challenging cross-sentence cases that usually have little contextual clues to rely on, the

learned subevent knowledge has noticeably improved the system performance on both datasets.

This is true for both temporal relations and causal relations. Overall, the systems achieved the best

performance when using the event embedding approach to incorporate subevent knowledge.

5.4.6 Implicit Discourse Relation Classification

I expect subevent knowledge to be useful for classifying discourse relations between two text

units in general because subevent descriptions often elaborate and provide a continued discussion

of a parent event introduced earlier in text. For experiments, I used a recent discourse parsing

system proposed by Dai and Huang [2019] which can easily incorporate external event knowledge

as a regularizer into a two-level hierarchical BiLSTM model (Base Model) for paragraph-level

discourse parsing. The experimental setting is exactly the same as in [Dai and Huang, 2019] 22.

Table 5.3 reports the performance of implicit discourse relation classification on PDTB 2.0 [Prasad

et al., 2008]. Incorporating the acquired subevent pairs (239K) into the Base Model improves the

overall macro-average F1-score and accuracy by 2.0 and 2.6 points respectively, which is non-

trivial considering the challenges of implicit discourse relation identification. The performance

improvements are noticeable on both the expansion relation and the temporal relation categories.

22I use the source code provided by the first author of Dai and Huang [2019].
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5.5 Conclusions

I have presented a novel weakly supervised learning framework for acquiring subevent knowl-

edge and built the first large scale subevent knowledge base containing 239K subevent tuples.

Evaluation showed that the acquired subevent pairs are of high quality (90.1% of accuracy) and

cover a wide range of event types. I performed extensive evaluations showing that the harvested

subevent knowledge not only improves subevent relation extraction, but also improve a wide range

of NLP tasks such as causal and temporal relation extraction and discourse parsing. In the future,

I would like to explore uses of the subevent knowledge base for other event-oriented applications

such as event tracking.
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6. INCORPORATING EVENT KNOWLEDGE INTO A GRAPH AND LEARNING

DISTRIBUTED REPRESENTATIONS OF EVENTS

Understanding the semantics of texts requires comprehensive understanding of different rela-

tions among events. In this chapter, I will first discuss learning event causality knowledge. Next, I

will talk about constructing a general event knowledge graph based on all acquired knowledge and

learning event distributed embeddings.

6.1 Incorporating All Event Knowledge into A General Ontology Graph

Besides temporal and subevent relations, causal relations are also important in NLP applica-

tions, particularly event prediction and causal reasoning. The weakly-supervised approach pre-

sented in Chapter 5 only relies on weak supervision, where I identify the initial set of an event

relation from a big text corpus using linguistic patterns and fine-tune a powerful contextual BERT

classifier to extract more knowledge tuples. Therefore, in this chapter, I apply the same approach to

acquire event temporal knowledge and causal knowledge. Specifically, I consider three temporal

patterns that indicate temporal happen_before, happen_after relations and seven causal patterns

that indicate cause_effect relation to identify seed and candidate event pairs. Next, I populate the

identified event pairs in the text corpus to collect sentences containing a seed pair, which are used

to fine-tune a contextual BERT classifier. After training, BERT classifier is applied to sentences

containing candidate pairs to identify new event pairs in temporal or causal relations. In this way,

I have built a temporal event knowledge base of 117K event tuples in after or before relation and

49K event tuples in cause_effect relation.

To incorporate event temporal knowledge extracted from 287K narrative paragraphs (Chap-

ter 4) with other event relational knowledge, I adopt the same event representation in Section 2.1

to event extraction by attaching arguments to verb and noun events. Recall that I apply Point-

wise Mutual Information (PMI) based metrics to measure strengths of event temporal relations

in order to identify general knowledge that is not specific to any particular story. I rank event
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Method Temporal pairs Subevent pairs Causal pairs
CNN intra-sentence classifier 4.4K - -
Acquision via identifying narratives 57K - -
BERT intra-sentence classifier 117K 239K 49K

Table 6.1: Statistics of Event Pairs Acquired by Each Weakly-supervised Approach.

drive car parking

meetingsummit in Location
dinner

person sit discussion

Person sip

shake hand

wine flow

leave Location

watch TV play game

arrival

Person argue reach agreementsuggest way

Figure 6.1: Example Constructed Knowledge Graph. ⇨ denotes the temporal happens_before
relation and → denotes the Parent→Child subevent relation.

pairs extracted from narratives based on the same metric, Causal Potential (CP) - CP (ei, ej) =

pmi(ei, ej) + log P (ei→ej )
P (ej→ei)

. However, attaching event arguments makes event representations more

sparse than only considering verb predicates as events, so I apply the window size of 3 to count

the number of co-occurrence (C(ei, ej)) of ei and ej when calculating P (ei → ej). Formally,

pmi(ei, ej) = log P (ei,ej )
P (ei)P (ej )

, P (ei) =
C(ei)

∑

x C(ex)
and P (ei, ej) =

C(ei,ej )
∑

x
∑

y C(ex,ey)
, where, x and y refer to all

the events in a corpus, C(ei) is the number of occurrences of ei, and
∑

x C(ex) is the total number

of occurrences of all events in the corpus. C(ei, ej) is the number of co-occurrences of ei and ej

(two events occur within the window size 3). In this way, I extracted 57K event pairs with CP score

>= 1.0.

Table 6.1 shows the number of event pairs extracted from each weakly-supervised approach.

Finally, I construct an event knowledge graph G(V ,E) using all acquired event pairs. Formally,

V represents all event nodes where each node is an event phrase, and E represents directional

edges where each edge belongs to {happens-before, parent-subevent, cause-effect}. The final event
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knowledge graph contains 126K event nodes, 174K happens-before edges, 239K parent-subevent

edges and 49K cause-effect edges. In the following section, I will use temporal relation, subevent

relation, causal relation to refer to three relation types.

Figure 6.1 gives an example of the constructed knowledge graph. There are two chains of

events “drive car ⇨ parking ⇨ dinner ⇨ watch TV ⇨ play game” and “summit in Location ⇨

meeting ⇨ dinner ⇨ leave Location ⇨ arrival” that happen sequentially share a same event “din-

ner”. The upper event chain describes a script of people’s daily life, where the “dinner” event

further contains two subevents “Person sip” and “wine flow” about how people eat during a “din-

ner” event. The lower event chain describes a script related to a business vacation, where the

“dinner” event contains “shake hand”, “person sit” and “discussion”. Additionally, event “discus-

sion” further contains “suggest way”, “Person argue” and “reach agreement” about how people

exchange views during the “discussion”. We can see the final event knowledge graph can describe

human routine activities as a network of event nodes with temporal sequences depicting narrative

scripts and event hierarchies elaborating what subevents constitute the root event node. The final

knowledge graph can serve as a comprehensive common-sense knowledge base for interpreting

complicated world dynamics.

6.2 Learning Distributed Representations of Events

Recently, knowledge graph (KG) embedding that projects entities and relations into continuous

vector spaces has been shown to be effective to preserve the inherent structure of the knowledge

graph and has been successfully applied to many NLP applications. To investigate how event

semantics that is encoded in acquired event knowledge graph is different from word semantics,

I adopt the event knowledge graph embedding method (Chapter 5) to map each event phrase

representation into a vector representation so that their graph structure (i.e., typical neighbor events

connected by different edges) is encoded.

Event Knowledge Graph Embedding: Similar to Chapter 5, given an event pair (e1, r, e2), I

interpret the relation r as a translation vector r so that event node e1 and e2 can be connected by

vector r, namely, p + r ≈ c. Since the event knowledge graph here has three types of relation,

70



r will belong to {rtemporal, rsubevent, rcausal}. I also train a BiLSTM encoder to build event phrase

embeddings e1 and e2.

Intuitively, event nodes that are similar in semantics will have similar neighbor events in ac-

quired knowledge graph, for example, both event hurricane and event earthquake are natural

disasters, so they are likely to have similar “causality” events such as people become homeless

and houses collapse as well as similar “subevents” such as people seek shelter and rescue. To

see how learned event knowledge embeddings are different from traditional word embeddings,

I apply Principal Component Analysis (PCA) and extract the first two components to visualize

event nodes in a two-dimensional space. Visualization of sampled event words using traditional

word2vec [Mikolov et al., 2013c] embeddings or using event knowledge graph embeddings is

shown in Figure 6.2 and Figure 6.3 respectively. Overall, we can see both methods can group

event words that are similar in semantics to clusters. In both figures, disaster, earthquake as well

as storm are close to each other and birthday, wedding as well as ceremony are close to each other.

Interestingly, recession, bankruptcy and reform are close in event knowledge graph embeddings

but are relatively far to each other in word embeddings. One explanation is that these event words

may be used differently in local context words but their neighbor events connected by temporal,

subevent or causal relation edges are relatively similar.

6.3 Applying Event Embeddings to Relation Identification Tasks

To investigate whether the comprehensive event knowledge graph that includes all temporal,

subevent and causal relations can further improve event-event relation identification tasks, I adopt

event relational links and event knowledge graph embedding (Chapter 5) together with aver-

aged neighbor event embedding as external event knowledge to event relation identification tasks

used before. Specifically, for event relational links, for a pair of events to classify in benchmark

datasets, I check if they match with event relation tuples of each relation type and encode the log

values of counts in two directions in a vector. For event knowledge graph embedding, I use the

trained BiLSTM event phrase encoder in the last section to get the event representation vector.
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Method RED HiEve
Train and test on intra-sentence event pairs

Basic BERT Classifier 61.8/52.3/56.6 46.7/52.4/49.4
+ Multi-relation links 69.0/54.5/60.9 50.3/50.6/50.5
+ Multi-relation Averaged Neighbor Emb. 65.0/53.6/58.7 48.5/54.5/51.3
+ Multi-relation KG Emb. 65.4/56.2/60.5 50.4/51.4/50.9

Train and test on cross-sentence event pairs
Basic BERT Classifier 65.0/64.8/64.9 32.6/34.7/33.6

+ Multi-relation links 68.2/66.0/67.1 32.7/34.8/33.7
+ Multi-relation Averaged Neighbor Emb. 71.2/60.2/65.3 31.5/34.4/32.9
+ Multi-relation KG Emb. 68.8/63.1/65.8 33.6/32.0/32.8

Table 6.2: Subevent Relation Identification. P/R/F1 (%). Micro-average performance Parent-Child
and Child-Parent on subevent relations.

Averaged neighbor event embedding: Neighbor events connected by different edges provide

different aspects of the central event. For instance, neighbor events connected by temporal relation

edges are regular consecutive events of the central event, which predicts possible future events

that are likely to happen; neighbor events connected by subevent relation edges are children events

which elaborate and expand the parent event; neighbor events connected by causal relation edges

provide possible effects which specify consequences of the central event. Therefore, all neighbor

events connected by different relation edges can provide meaningful content to enhance the rep-

resentation of the central event. To encode neighborhood information differently, each event node

has three channels where each channel encodes neighbors connected by one relation type (i.e.,

temporal, subevent or causal relation type). To do so, I retrieve all neighbor events connected by a

relation type for a central event and calculate the weighted mean of word embeddings considering

all the words in neighbor events1. The final event embedding representation is the concatenation

of three channels.

Consistently, I concatenate two event word representations obtained by BERT encoder with

either event knowledge embeddings using knowledge graph embedding or averaged neighbor

event embedding. Results on subevent relation identification, temporal relation identification and

1https://code.google.com/archive/p/word2vec/
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Method RED TimeBank
Train and test on intra-sentence event pairs

Basic BERT Classifier 59.9/68.2/63.8 63.4/68.0/65.6
+ Multi-relation links 61.1/69.7/65.1 65.8/67.4/66.6
+ Multi-relation Averaged Neighbor Emb. 61.4/68.8/64.9 63.9/67.9/65.9
+ Multi-relation KG Emb. 59.3/71.7/64.9 62.6/70.8/66.4

Train and test on cross-sentence event pairs
Basic BERT Classifier 38.4/37.4/37.9 53.3/42.1/47.1

+ Multi-relation links 52.4/42.3/46.8 52.6/48.6/50.5
+ Multi-relation Averaged Neighbor Emb. 41.0/42.3/41.6 56.7/44.5/49.9
+ Multi-relation KG Emb. 52.1/41.2/46.0 53.1/48.6/50.7

Table 6.3: Temporal Relation Identification. P/R/F1 (%). Micro-average performance on Before
and After temporal relations.

Method RED ESC
Train and test on intra-sentence event pairs

Basic BERT Classifier 63.9/66.6/65.2 44.9/52.2/48.3
+ Multi-relation links 63.6/66.8/65.2 45.3/54.4/49.5
+ Multi-relation Averaged Neighbor Emb. 65.3/67.2/66.2 46.6/53.1/49.7
+ Multi-relation KG Emb. 64.0/64.4/64.2 44.2/53.2/48.3

Train and test on cross-sentence event pairs
Basic BERT Classifier 22.5/15.1/18.1 21.6/28.5/24.6

+ Multi-relation links 28.5/29.4/28.9 21.1/35.8/26.6
+ Multi-relation Averaged Neighbor Emb. 22.8/19.3/20.9 22.5/29.8/25.6
+ Multi-relation KG Emb. 27.3/29.4/28.3 23.3/28.0/25.4

Table 6.4: Causal Relation Identification. P/R/F1 (%). Micro-average performance on Cause-
Effect and Effect-Cause relations.

causal relation identification are shown in Table 6.2, Table 6.3 and Table 6.4. We can see that

incorporating learned event knowledge in either way improves the baseline BERT classifier.
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Figure 6.2: Visualization of Event Words Using Word Embeddings [Mikolov et al., 2013c]
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Figure 6.3: Visualization of Event Words Using Knowledge Graph Embedding
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7. WEAKLY-SUPERVISED FINE-GRAINED EVENT RECOGNITION ON SOCIAL MEDIA

TEXTS FOR DISASTER MANAGEMENT1

Recognizing events of specified types (e.g., conflict events, life-threatening events) is a funda-

mental problem in event tracking and risk management. It is challenging because one event might

have various expressions and belong to different event types depending on different contexts. Tak-

ing the event word “dead” for example, in addition to the meaning of “losing life” that belongs

to Casualty type, “dead” is also frequently used to refer to phones being out of power. Recog-

nizing events in specified types automatically and accurately is an important topic in information

extraction. Especially during natural disasters, to meet the high communication and information

sharing demands during disasters, the local authorities, responders, and victims frequently use so-

cial media platform to provide real-time situation updates. How to recognize fine-grained types

of life-threatening emergency events in a timely manner is critical for reducing life and property

losses.

Therefore, I propose a weakly supervised approach for rapidly building high-quality classifiers

that label each individual Twitter message with fine-grained event categories. Figure 7.1 gives an

overview of my weakly-supervised learning approach with three phases. In phase one, I quickly

create high-quality labeled data. Specifically, I conduct clustering-assisted manual word sense

disambiguation on event keyword identified noisy tweets, to significantly clean and improve the

quality of automatically labeled tweets. In phase two, I train a multi-channel BiLSTM classifier

using tweets together with their context tweets and reply tweets. In phase three, I iteratively retrain

the multi-channel classifier to further improve its event recognition performance.

1Reprinted with permission from “Weakly-supervised Fine-grained Event Recognition on Social Media Texts for
Disaster Management” by Wenlin Yao, Cheng Zhang, Shiva Saravanan, Ruihong Huang and Ali Mostafavi, 2020.
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 01, pp. 532-539).
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7.1 Event Categories and Event Keywords

Disaster management generally consists of four phases - mitigation, preparedness, response,

and recovery. I focus on identifying events during the response phase of disasters, which is ar-

guably the most crucial and time-critical part of emergency management. Based on an existing

event ontology for hurricanes [Huang and Xiao, 2015], I identified nine types of events, including

three types of human activity events and six types of built environment related events, as briefly

described below.

Human activities. 1) Preventative measure (PRE). People look for shelters or process evacuation;

Any flood-proof processes (e.g., building waterproof facilities, etc.). 2) Help and rescue (RES).

People provide, receive, or seek face to face help in disastrous environments, including indirect

help such as donating money, supply, and providing services. 3) Casualty (CAS). Disaster-caused

death, injury, hurt, etc.

Built environment. 4) Housing (HOU). Reporting emergencies of a house, apartment, home, etc.

5) Utilities and Supplies (UTI). Problems with heating, gas, water, power, communication facility,

food, grocery stores, etc. 6) Transportation (TRA). The impact on the traffic, bus services, or the

closure of a road, airport, highway, etc. 7) Flood control infrastructures (FCI). The impact on or

damage to the reservoir, bayou, canal, dam, etc. 8) Business, Work, School (BWS). The changes

of schedule, e.g., business closed/open, school closed/open, etc. 9) Built-environment hazards

(HAZ). The damage or risks that may cause injury or death related to the built environment, such

as fire, explosion, contamination, electric shock, debris, etc.

Meanwhile, the event ontology [Huang and Xiao, 2015] contains event keywords, and I selected

at most five keywords for each event category that are not specific to any particular hurricane or

location, e.g., keywords “evacuate” and “shelter” for the category of Preventive measure (PRE),

and “help” and “rescue” for Help and rescue (RES), etc.
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Figure 7.1: Overview of the Weakly-supervised Event Recognition System for Disaster Manage-
ment. Reprinted with permission from Yao et al. [2020b].

7.1.1 Phase One: Rapid Data Labeling via Clustering Assisted Manual Word Sense Disam-

biguation

For each event category, I first retrieve tweets containing a predefined event keyword and then

apply a clustering algorithm to form tweet clusters. To facilitate manual word sense disambigua-

tion, I rank tweet clusters based on their sizes (number of tweets) and then ask a domain expert

to judge whether a cluster (from largest to smallest) shows the pertinent meaning of an event key-

word by inspecting five example tweets randomly sampled from the cluster. The annotator stops

scrutiny once 20 pertinent clusters are identified for each event category2. After cleaning, around a

third to half of keyword identified tweets were removed. Specifically, 6.6K out of 15.2K keyword

identified tweets and 5.8K out of 17.5K keyword identified tweets were removed in the Harvey and

Florence datasets respectively.

Next, I describe the clustering algorithm used here, the Speaker-Listener Label Propagation

Algorithm (SLPA) [Xie et al., 2011].

2If a cluster adopts a word sense that is irrelevant to any event category, I assign the catch-all label “Other” to it
and later use tweets in such clusters as negative training instances.
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7.1.1.1 The Clustering Algorithm

The SLPA algorithm is initially introduced to discover overlapping communities in social user

networks, where one user may belong to multiple communities. The basic idea of SLPA is to

simulate people’s behavior of spreading the most frequently discussed topics among neighbors. I

choose SLPA for two reasons. First, SLPA is a self-adaptation model that can automatically con-

verge to the optimal number of communities, so no pre-defined number of communities is needed.

Second, a tweet during natural disasters may mention more than one event, which corresponds to

one user belonging to multiple communities. SLPA has been shown one of the best algorithms for

detecting overlapping communities [Xie et al., 2013].

Clustering with Graph Propagation: SLPA is essentially an iterative algorithm. It first ini-

tializes each node as a cluster by itself. In listener-speaker propagation iterations, each node will

be chosen in turn to be either a listener or a speaker. Each time, a listener node accepts the label

that is the most popular among its neighbors and accumulates such knowledge in the memory. And

a speaker advocates one label based on the probability distribution updated in its memory. Finally,

based on the memories, connected nodes sharing a label with the probability over a threshold are

grouped together and form a community.

I modified the original SLPA to make it suitable for clustering Twitter messages. Formally,

given a set of tweets, I construct an undirected graph G(V ,E), where V represents all tweets and

E represents weighted edges between nodes. The weight of an edge e between two tweets u and

v is calculated based on content similarity of the two tweets. In label propagation, I consider

weighted voting to determine the cluster of a tweet.

The Similarity Measure: Determining similarities between nodes is important for clustering

algorithms. However, Twitter messages are informal and often contain meaningless words, there-

fore, I aim to first select important words before calculating content similarities between tweets.

Recently, [Conneau et al., 2017] proposed an approach for learning universal sentence represen-

tations using the Stanford Natural Language Inference (SNLI) dataset [Bowman et al., 2015] and

demonstrated its effectiveness in reasoning about semantic relations between sentences. I notice
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that Twitter messages and SNLI data have two common characteristics: short sentences in a casual

language. Hence, I apply their learned sentence representation constructor to tweets for identifying

important words.

Specifically, for a given tweet with T words {wt}t=1,2,...,T , I applied the pre-trained Bi-directional

LSTMs [Conneau et al., 2017] to compute T hidden vectors, {ℎt}t=1,2,...,T , one per word. Next, for

each dimension, I determine the maximum value over all the hidden vectors {ℎt}t=1,2,...,T . The im-

portance score for a word wt is calculated as the number of dimensions where its hidden vector ℎt

has the maximum value divided by the total number of dimensions. Then, I select words having

importance scores ≥ the average importance score (1.0 / the number of words) as important words.

For example, in the following tweet, the bolded words are selected: It has started a fundraiser for

hurricane Harvey recovery efforts in Houston, you can donate here.

I calculate the similarity score between two tweets by considering only selected words shared

by two tweets. Empirically, I found this similarity measure performs better than the straightforward

cosine similarity measure considering all words. Specifically, the similarity score between two

tweets u and v is the number of common words / (length of u × length of v). To construct the tweet

graph, I create an edge between two tweets when they share two or more selected words and the

edge weight is their similarity score.

7.1.2 Phase Two: Multi-channel Tweet Classification

The most unique characteristic of social media is the network structure which not only con-

nects users (e.g., friend network or follower network), but also makes Twitter messages connected.

Therefore, I exploit other related tweets for enhancing the representation of a target tweet. In

particular, I found the immediately preceding context tweets and reply tweets useful.

First, the past tweets written by the same user provide additional evidence for an event recogni-

tion system to infer the event topic of the current tweet. Interestingly, I observe that the event topic

engaging a user’s attention is usually consistent within a small time window, as shown in the upper

example of Figure 1.6 where the two relevant context tweets are within 2 minutes. I further observe

that the topic relatedness between the target tweet and context tweets decreases quickly over time.
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Figure 7.2: BiLSTM Classifier using Context and Reply Enriched Representation. Reprinted with
permission from Yao et al. [2020b].

In my experiments, I only consider a relatively small number of context tweets, specifically five of

the preceding tweets. In addition, I assign a weight to a context tweet as wi = 0.8mi , where mi is

the time distance (in minutes) between the itℎ context tweet and the target tweet.

Second, reply tweets usually provide information that is hidden in the original tweet, as shown

in the lower example of Figure 1.6. But compared to regular Twitter posts, replies are much noisier.

To select the most informative reply tweets for a given target tweet, I rank replies according to the

number of common words they share with the target tweet and pick a small number of them from

the top, specifically at most five replies.
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Figure 7.2 shows the overall structure of the classifier.

R1 = ΦT (twtarget)

R2 =
1

∑

wi

N
∑

i=1
wi ⋅ΦC(twcontext

i )

R3 =
1
M

M
∑

i=1
ΦR(tw

reply
i )

Rall = [R1, R2, R3]

(7.1)

Specifically, I apply three separate BiLSTM encoders [Graves and Schmidhuber, 2005] with max-

pooling [Collobert and Weston, 2008] to obtain sentence embeddings for the target tweet, context

tweets and reply tweets (i.e., ΦT , ΦC , ΦR). Then, the final enriched representation of the target

tweet (Rall) is the concatenation of the target tweet embedding (R1), weighted average of context

tweet embeddings (R2), and unweighted average of reply tweet embeddings (R3).

On top of Rall, I apply a feedforward neural net to directly map Rall to 10 classes (9 event

categories + Other). I optimizes a multi-label one-versus-all loss based on max-entropy, consider-

ing that one tweet may belong to multiple event categories. To deal with imbalanced distributions

of event categories, I re-scale the prediction loss of each class (proportional to 1
ClassSize

) so that

smaller classes are weighted more heavily in the final loss function. For all BiLSTM encoders, I

use one hidden-layer of 300 units, pre-trained GloVe [Pennington et al., 2014] word embeddings

of 300 dimensions, Adam optimizer [Kingma and Ba, 2015] with a learning rate of 0.0001.

In training, to compete with positive training instances (tweets labeled with any event category),

I randomly sample unlabeled tweets equal to the sum of labeled tweets in size and use them as

negative training instances (the category Other), to reflect the fact that there are generally more

tweets reporting no event.

7.1.3 Phase Three: Improve Coverage with Bootstrapping Learning

After the first two phases, we have labeled tweets by conducting time-efficient clustering-

assisted WSD on event keyword identified tweets and have used these quickly labeled tweets to
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Category PRE RES CAS HOU UTI TRA FCI BWS HAZ Other Sum
Harvey (Aug.28 1:00-2:00 pm)

Amount 374 1092 43 142 270 225 73 501 30 9165 11782
Percentage 3.2% 9.3% 0.4% 1.2% 2.3% 1.9% 0.6% 4.3% 0.3% 77.8% 100%

Florence (Sept.17 1:00-1:30 pm)
Amount 69 490 120 28 146 85 8 80 23 3031 4059
Percentage 1.7% 12.1% 3% 0.7% 3.6% 2.1% 0.2% 2% 0.6% 74.7% 100%

Table 7.1: Annotation: Number of Tweets in Each Event Category. Reprinted with permission
from Yao et al. [2020b].

train the multi-channel event recognizer. However, all the labeled tweets yielded in phase 1 contain

a predefined event keyword, while many event categories may have cases that do not contain a

keyword. Therefore, I further exploit bootstrapping learning and iteratively improve the coverage

of the multi-channel classifier.

Specifically, I apply the initial multi-channel classifier on unlabeled tweets and label new tweets

for each event category. Newly labeled tweets together with their context tweets and replies are

used to retrain the model. To enforce the classifier to look at new content words other than event

keywords, I randomly cover 20% of keywords occurrences in every training epoch, inspired by

[Srivastava et al., 2014]. In order to combat semantic drifts [McIntosh and Curran, 2009] in boot-

strapping learning, I initially apply a high confidence score for selecting newly labeled tweets used

to retrain the classifier and lower the confidence score gradually. Specifically, the confidence score

was initially set at 0.9 and lowered by 0.1 each time when the number of selected tweets is less

than 100. The bootstrapping process stops when the confidence score decreases to 0.53.

7.2 Experiments and Results

7.2.1 Data Sets

I apply the approach to datasets for two hurricanes, Harvey (the primary dataset) and Florence

(the second dataset). Hurricane Harvey struck the Houston metropolitan area and Southeast Texas

3In my experiment, the bootstrapping process stopped after 9 iterations, and each iteration took around 10 minutes
using a NVIDIA’s GeForce GTX 1080 GPU.
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Row Method PRE RES CAS HOU UTI TRA FCI BWS HAZ Macro Average
1 Keyword Matching 73.9 56.6 26.2 36.4 54.3 38.0 54.4 55.5 43.1 51.1/52.5/51.8
2 LDA 39.4 41.3 4.9 8.5 19.8 28.8 40.4 17.7 25.5 19.6/42.6/26.8
3 Guided LDA 43.4 45.8 10.1 8.6 21.1 40.7 53.4 20.4 24.5 25.1/45.2/32.3
4 SLPA 61.4 61.3 18.9 23.1 36.4 36.2 56.5 44.4 23.3 39.6/48.1/43.4

Seed with Keyword Identified Tweets with no Cleaning
5 Basic Classifier 82.6 63.8 18.8 36.9 60.2 36.8 61.7 61.0 45.5 50.3/60.5/54.9
6 + bootstrapping 82.6 64.1 20.1 37.3 60.6 36.5 62.8 60.6 45.7 50.2/61.2/55.3
7 Multi-channel Classifier 84.3 68.6 22.1 37.1 60.5 40.5 62.3 62.1 45.7 50.5/64.1/56.5
8 + bootstrapping 84.1 69.1 22.6 36.4 59.6 42.1 63.1 60.4 46.4 49.4/65.8/56.4

Seed with Keyword Identified Tweets Cleaned by Clustering-assisted WSD
9 Basic Classifier 82.6 68.4 34.4 45.1 65.8 56.4 63.3 68.4 49.0 68.3/57.2/62.3
10 + bootstrapping 83.5 68.8 36.9 45.0 65.8 58.4 66.7 68.5 51.9 67.1/59.9/63.3
11 Multi-channel Classifier 82.8 68.0 36.7 47.6 65.1 57.2 63.3 67.8 56.5 72.5/57.0/63.8
12 + bootstrapping 83.9 67.8 36.7 45.7 66.1 61.3 74.8 69.1 57.7 70.1/61.6/65.5
13 Supervised Classifier 80.8 72.2 48.0 45.3 56.3 67.9 65.9 71.2 45.3 73.2/53.6/61.9

Table 7.2: Experimental Results on Hurricane Harvey: F1-score for each event category and
macro-average Precision/Recall/F1-score (%) over all categories. Reprinted with permission from
Yao et al. [2020b].

in 2017, and ranks as the second costliest hurricane ($125 billion in damage) on record for the

United States [National Hurricane Center, 2017]. Hurricane Florence also caused severe damage

(more than $24 billion) in the North and South Carolina in 2018. To retrieve tweets in affected

areas, I consider two constraints in twitter crawling using GNIP API [Twitter, 2019]: 1) a tweet

has the geo-location within affected areas (Houston or major cities in Carolinas) or 2) the author

of a tweet has his/her profile located in affected areas. Since I aim to recognize original tweet

messages reporting events for disaster management purposes, I only consider original tweets as

target tweets for classifications across all the experiments and I ignore retweets and reply tweets.

To create the official evaluation data (details in the next section), we exhaustively annotated

all the tweets posted from 1:00 to 2:00 pm, August 28, 2017 for Harvey and from 1:00 to 1:30

pm, September 17, 2018 for Florence, both among the most impacted time periods for the two

hurricanes. For training both my systems and the baseline systems, I used around 65k and 69.8k

unlabeled tweets for Harvey and Florence respectively that were posted 12 hours (half a day) pre-

ceding the test time period and are therefore strictly separated from the tweets used for evaluation.
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7.2.2 Human Annotations for Evaluation

In order to obtain high-quality evaluation data, I trained two annotators and refined annotation

guidelines for several rounds. A tweet is annotated with an event category if it directly discusses

events of the defined category, including sharing information and expressing opinions. A tweet

may receive multiple labels if it discusses more than one event and the events are of different

types. If one tweet does not discuss any event of an interested type, I label it as Other.

I first asked the two annotators to annotate a common set of 600 tweets from the Harvey set

and they achieved a substantial kappa score of 0.67 [Cohen, 1968]. I then split the remaining

annotations evenly between the two annotators. The distributions of annotated tweets are shown in

Table 7.1.4 Consistent across the two considered hurricane disasters, tweets describing interested

events cover only around one quarter of all posted tweets and their distributions over the event

categories are highly imbalanced.

7.2.3 Unsupervised Baseline Systems

Keyword matching: labels a tweet with an event category if the tweet contains any keyword in

the event category. A tweet may be assigned to multiple event categories if the tweet contains

keywords from more than one event category.

Topic modeling Approaches: Probabilistic topic modeling approaches have been commonly used

to identify latent topics from a collection of documents. I assign each topic to an event category

if the top ten words of a topic ranked by word probabilities contain any keyword of the category.

A topic may be assigned to multiple event categories if its top ten words contain keywords from

more than one category. Given a new tweet, I infer its topics and assign the event labels of the most

significant topic. I implement two topic modeling approaches. LDA (Latent Dirichlet Allocation)

[Blei et al., 2003] assumes a document can be represented as a mixture over latent topics, where

each topic is a probabilistic distribution over words. Guided LDA [Jagarlamudi et al., 2012] is

a stronger version of LDA, that incorporates my predefined event keywords to guide the topic

4A small number of tweets were annotated with more than one event category, 290 (11%) and 57 (6%) tweets for
Harvey and Florence datasets respectively.
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discovery process. For fair comparisons, I also apply important words selection used in my system

for LDA and GuidedLDA5. Note that both approaches require pre-defining the number of topics,

which is hard to estimate, I set this hyper-parameter as 100 in my experiments.

SLPA: I also apply the adapted SLPA clustering algorithm to form clusters and assign each cluster

to an event category if the top ten words in a cluster ranked by word frequencies contain any

keyword of the category. Given a new tweet, I identify its neighbor tweets using the same similarity

measure I used for clustering in phase one and label the tweet with the majority event label over

its neighbors.

7.2.4 Results on Hurricane Harvey

Table 7.2 shows the experimental results. The first section shows performance of baseline

systems. Among the four baselines, the simple keyword matching approach (row 1) performs the

best, and the clustering algorithm SLPA (row 4) outperforms both LDA-based approaches (row

2 & 3). The event recognition performance of these mostly unsupervised systems is consistently

low, presumably due to their incapability to resolve severe lexical ambiguities in tweets.

The second section of Table 7.2 shows results of four classifiers that directly use keyword

identified noisy tweets with no cleaning for training. Row 5 shows the results of the basic classifier

considering the target tweet only. Row 7 shows the results of the multi-channel classifier that

further considers contexts and replies, which yields a small recall gain compared to row 5. Row

6 & 8 show the results of the two classifiers after applying bootstrapping learning, which further

improves the recall a bit. However, the precision of all the four classifiers is around 50% similar to

the keyword matching baseline and consistently unsatisfactory.

The third section of Table 7.2 shows results of the same set of classifiers but using clustering-

assisted WSD cleaned tweets for training. Compared to its counterpart trained using noisy tweets

(row 5), the precision of the basic classifier (row 9) improves significantly by 18%. With a small

drop on recall, the overall F-score improves by 7.4%. The multi-channel classifier (row 11) further

improves the precision with an almost identical recall. Bootstrapping learning improves the recall

5I also tried LDA and Guided LDA without important words selection which yields a much worse performance.
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of both classifiers. The full system (row 12) outperforms its counterpart trained using noisy tweets

(row 8) by over 20% in precision and 9% in F-score. Meanwhile, using a little supervision, the

rapidly trained weakly supervised system greatly outperforms the unsupervised baseline systems,

yielding 20% (or more) and 15% (or more) of increases in precision and F-score respectively.

Comparisons with Supervised Learning: I train and evaluate a supervised classifier (multi-

channel) using annotated tweets under the 10-fold cross validation setting. The results of the

supervised classifier are shown in the last row of Table 7.2. Compared to the supervised classifier,

the weakly supervised approach yields a recall gain of 8% with a slightly lower precision, and

improves the overall F-score by 3.6%. Note that around 50 person-hours were needed to annotate

over 11K tweets following the normal tweet-by-tweet annotation process, while my data label-

ing method only required 1-2 person-hours for clustering-assisted WSD. Considering that a large

number of tweets are time-consuming to annotate, I conducted another group of experiments that

gradually add annotations in training to see how the size of training data affects the performance.

Specifically, under 10-fold cross validation, I randomly sample a certain percentage of tweets from

nine training folds as training data, ranging from 0.1 to 0.9 in increments of 0.1. The learning

curve (Figure 7.3) is steep in the beginning and then levels out as the remaining 70% of annotated

tweets (around 7K tweets) were continuously appended, which shows that the normal annotation

method may create many redundant annotations.

7.2.5 Results on Hurricane Florence

Table 7.3 shows the results. Similar to Hurricane Harvey, clustering-assisted WSD clearly

improves the precision of the trained classifier for Hurricane Florence as well. Enriching tweet

representations and conducting bootstrapping learning further improve the performance of the full

system, which clearly outperforms the supervised classifier.

7.2.6 Analysis

For Hurricane Harvey, I applied the full system to label tweets posted right after the test hour.

Figure 7.4 plots the number of tweets detected for each hour. Overall, the clear low point corre-
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Figure 7.3: Learning curve of 10-fold cross validation. Reprinted with permission from Yao et al.
[2020b].

sponds with the day-night shift. Taking a closer look at the curve for the flood control infrastructure

category, we can see an obvious burst at 8 pm Aug.28, 2017, triggered by an official update on wa-

ter release of two major reservoirs, as well as a burst at 10 am Aug.29, triggered by the collapse of

a bridge over Greens Bayou, with example tweets shown in Figure 7.5.

7.3 Conclusion

I have presented a weakly supervised event recognition system that can effectively recognize

fine-grained event categories for individual tweet messages. I highlight the novel clustering-

assisted manual word sense disambiguation data labeling method that is time-efficient and sig-

nificantly improves the quality of event keyword identified texts. The evaluation on two hurricanes

show the effectiveness and robustness of the overall approach. The weakly supervised system can

be easily adapted to other disaster types (e.g., earthquake, tsunami, etc.) with a relevant event

ontology to support real-time disaster management.
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Macro Average
Keywords 43.7/46.9/45.3

with no Cleaning
Basic Classifier 40.8/47.9/44.1

+ bootstrapping 39.8/52.8/45.4
Multi-channel Classifier 43.1/48.7/45.8

+ bootstrapping 41.2/52.6/46.2
with Clustering-assisted WSD

Basic Classifier 67.8/49.6/57.3
+ bootstrapping 63.4/54.9/58.8

Multi-channel Classifier 70.3/50.2/58.5
+ bootstrapping 65.1/55.1/59.7

Supervised Classifier 57.8/40.9/47.9

Table 7.3: Experimental Results on Hurricane Florence (Precision/Recall/F1-score %). Reprinted
with permission from Yao et al. [2020b].

Figure 7.4: Curves for all the categories (Upper) and for Flood Control Infrastructures only
(Lower). Reprinted with permission from Yao et al. [2020b].

HAPPENING NOW: @hcfcd live update on
Addicks Reservoir and certain levees. Watch
now on TV or here.
One of the dams they want to discharge is
near me.

BREAKING: The levee at Columbia Lakes
has been breached! GET OUT NOW!
PLEASE BE SAFE!
A bridge has collapsed at Greens Bayou. Be
careful!

Figure 7.5: Example tweets sampled from two bursts. Reprinted with permission from Yao et al.
[2020b].
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8. CONCLUSION

In this chapter, I will first summarize the contributions of four proposed weakly-supervised

learning systems including three systems that extract rich and diverse event relational knowledge

and one system that recognizes life-threatening events on social media during natural disasters.

Finally, I will discuss possible future research directions.

8.1 Research Summary

I began this dissertation with the significance of interpreting events and event-event relations

in computational applications to understand the dynamics of the world. I demonstrated the funda-

mental need for event relational knowledge to facilitate comprehensive reasoning in unstructured

texts and time-critical needs to achieve automatic recognition of life-threatening events based on

social media messages during natural disasters.

Traditional supervised learning approaches recognize text-internal event relations heavily re-

lying on human-annotated data. Labeled data are often limited in size and context diversity, as

labeling process requires tremendous efforts of well-trained human annotators. Therefore, classi-

fiers trained in a supervised way has difficulty to cover large and diverse event contexts and cannot

scale well on big data to acquire event knowledge.

To address the limitations of supervised-learning systems on knowledge acquisition, I proposed

three weakly-supervised approaches to acquire event temporal and subevent knowledge. For event

temporal knowledge acquisition, I developed two approaches, where the first approach bootstraps

event temporal pairs using a CNN intra-sentence classifier while the second approach distills even

temporal chains from narratives that are extracted using a document level narrative recognizer.

Specifically, the first weakly supervised bootstrapping approach focuses on knowledge acquisition

from intra-sentences. It learns both regular event pairs and a contextual temporal relation classifier,

by exploring the observation that regular event pairs tend to show a consistent temporal relation

despite of their diverse contexts. The evaluation shows that the learned regular event pairs are of
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high quality and rich in commonsense knowledge and domain knowledge. The second approach

focuses on knowledge acquisition from cross-sentences using discourse structure. It leverages the

double temporality characteristic of narrative texts and acquires event temporal knowledge across

sentences in narrative paragraphs. My method acquires event temporal knowledge from narratives

that are automatically identified using narratology principles, which substantially reduces the re-

liance on human-annotated data. The event temporal knowledge distilled from narrative texts has

a high quality, which was shown useful to improve temporal relation classification and outperform

several neural language models on the narrative cloze task.

Subevent relations that indicate that several subevents happen as parts of the parentevent spatio-

temporally also widely exist among events. For acquiring event subevent knowledge, I proposed

another weakly supervised learning framework that starts by collecting rich and high-quality weak

supervision from definition-guided semantic check. Specifically, I first obtained the initial set of

event pairs that are likely to have the subevent relation, by exploiting two observations that 1)

subevents are temporally contained by the parent event, and 2) the definitions of the parent event

can be used to further guide the identification of subevents. Then, I collected rich weak supervision

using the initial seed subevent pairs to train a contextual classifier using BERT and apply the clas-

sifier to identify new subevent pairs. In this way, I built the first large scale subevent knowledge

base containing 239K subevent tuples. The evaluation shows that our acquired subevent knowl-

edge has an overall accuracy of 90.1% and has great coverage of different event types. Empirical

experiments on three benchmark datasets show our learned knowledge is beneficial to subevent

relation recognition and discourse parsing.

After acquiring all event knowledge, I constructed a general event knowledge graph that has

126K event nodes, 174K happens-before edges, 239K parent-subevent edges and 49K cause-effect

edges. I further explored several learning methods to project each event phrase node to a distributed

vector representation so that the knowledge graph structure is encoded. The visualization and

evaluation provide us insights of acquired distributed event representations.

Event detection is also important in world modeling but current event detection systems also
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mainly rely on supervised-learning approaches. However, under some application circumstances,

such as event detection during emergent natural disasters, it is almost impossible to spend days or

weeks to collect labeled data to train a supervised system. Thus, I presented a weakly supervised

event recognition system that can effectively recognize fine-grained event categories for individual

tweet messages. The novel approach - clustering-assisted manual word sense disambiguation data

labeling method - is time-efficient and significantly improves the quality of event keyword identi-

fied texts. The evaluation on two hurricanes show the effectiveness and robustness of the overall

approach. Because of its weakly-supervised flavor, my system can be easily adjusted to a new

natural disaster type (e.g., earthquake, tsunami, etc.) by changing to a new event ontology, which

supports real-time disaster response and management based on social media during devastating

disasters.

8.2 Looking Forward

Experiments of my research have shown that event relational knowledge can help to improve

a range of NLP tasks. However, how to acquire and use event knowledge more precisely and

effectively is still a challenging and open-ended question. In the following sections, I will discuss

some specific research directions and present potential solutions that may lead to better event

knowledge acquisition and usage.

8.2.1 Improving Accuracy and Coverage of Event Knowledge

The first important research question is how to further improve the quality of acquired event

knowledge. The key task of acquiring event knowledge is to first recognize semantic relations

among events from various contexts and then to distill event knowledge to more general con-

ceptual statements. My proposed weakly-supervised approaches rely on distant supervision to

automatically obtain relation instances from big corpus so that we can train a classifier to rec-

ognize particular event relations. However, training instances obtained using distant supervision

inevitably contain noise. Therefore, we can apply some noise reduction methods [Roth et al.,

2013](e.g., at-least-one models [Riedel et al., 2010, Yao et al., 2010], topic-based models [Alfon-
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seca et al., 2012] or pattern correlations models [Takamatsu et al., 2012]) to improve the quality of

automatically generated data, which will consequently improve the performance of the classifier.

The second important topic is how to improve the coverage of acquired event knowledge.

Even I have constructed a knowledge base containing hundreds of K event knowledge tuples, it

is still very sparse in real-world applications. For example, many observed event phrases in real-

world applications may not appear in my acquired event ontology knowledge. One solution is that

we can consider more text genres and larger text corpus in knowledge acquisition and even use

multilingual data resources to acquire knowledge. Another solution is that we can apply a better

named entity recognizer that considers more named entity types to generalize event arguments. Or

we can build an event knowledge retrieval system to retrieve paraphrases or synonyms of the non-

observed event representations from acquired event knowledge. For example, with a knowledge

retrieval system, we can retrieve building collapse from our acquired event knowledge for a non-

observed event phrase mansion collapse and know flooding may cause mansion collapse. To do so,

we can either train a classifier based on annotated event paraphrase pairs or use semantic similarity

measures (e.g., use pretrained word embeddings) to retrieve similar event phrases from acquired

knowledge.

8.2.2 Learning Better Representations on Event Knowledge Graph

The second critical question is that how to use acquired event knowledge more effectively.

After acquiring event knowledge graph, I mainly consider static approaches (i.e., relation links

count and knowledge graph embeddings) that first encode event graph knowledge into knowledge

vectors and then incorporate such knowledge vectors to event context-specific representations to

improve event relation identification performance. However, sentence occurrences of the same

event might emphasize different aspects of the event. Take the event hurricane as an example,

we want the neural network to focus more on “happens-after” and “cause-effect” event neigh-

bors when its sentence talks about the consequences of hurricane, but focus more on “subevent”

neighbors when its sentence is about how people react during hurricane. Recently, Graph Neural

Networks (GNNs) have been successfully applied to tackle problems where data are represented
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in the form of graphs. GNNs consist of an iterative aggregation process to encode the node states

dynamically, which effectively propagates information from neighbors. Therefore, inspired by re-

cent advances of context-dependent word representation learning, one way to learn better event

representations is to learn context-dependent event representation using GNNs. By conditioning

on context words in different sentences, one graph neural network can dynamically assign weights

to aggregate information from the neighbor events. This approach can also help with event word

sense disambiguation.

8.2.3 Applying Event Knowledge to Other NLP Applications

In this dissertation, I have evaluated on applications directly relevant to events (i.e., narrative

cloze tasks, event relation identification tasks, and discourse relation classification tasks) to show

the usefulness of acquired event knowledge. As we know, events broadly exist in all forms of nat-

ural language usage, so event relational knowledge may benefit other high-level NLP applications

(e.g., question answering, dialogue systems, machine reading comprehension, etc.) that are not di-

rectly relevant to events. For instance, if a human user tells the dialogue system that he/she recently

suffers from insomnia and the dialogue system knows “take medicine normally happens_after in-

somnia”, it probably can suggest the user see a doctor and take some medicine. Therefore, how

to incorporate or apply event knowledge to many other NLP tasks is an open-ended question to

investigate.
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APPENDIX A

THE FULL LIST OF GRAMMAR RULES FOR IDENTIFYING PLOT EVENTS IN THE

SEEDING STAGE OF NARRATIVE IDENTIFICATION

Here is the full list of grammar rules for identifying plot events in the seeding stage (Section

4.2.1).

Sentence rules (14):

S → S CC S

S → S PRN CC S

S → NP VP

S → NP ADVP VP

S → NP VP ADVP

S → CC NP VP

S → PP NP VP

S → NP PP VP

S → PP NP ADVP VP

S → ADVP S NP VP

S → ADVP NP VP

S → SBAR NP VP

S → SBAR ADVP NP VP

S → CC ADVP NP VP

Noun Phrase rules (12):

NP → PRP

NP → NNP

NP → NNS

NP → NNP NNP
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NP → NNP CC NNP

NP → NP CC NP

NP → DT NN

NP → DT NNS

NP → DT NNP

NP → DT NNPS

NP → NP NNP

NP → NP NNP NNP
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APPENDIX B

THE FULL LIST OF KEYWORDS USED FOR EACH EVENT CATEGORY IN

FINE-GRAINED EVENT DETECTION ON SOCIAL MEDIA

Here is the full list of keywords used for each event category (Section Event Categories and

Event Keywords). Various word forms of the keywords are also considered, e.g., “evacuates, evac-

uated, evacuating” are also considered for the keyword “evacuate”.

1) Preventative measure (PRE): evacuate, evacuation, evacuee, shelter, refugee

2) Help and rescue (RES): rescue, boat, help, donate, guard

3) Casualty (CAS): die, dead, drown, injure, hurt

4) Housing (HOU): house, home, room, apt, apartment

5) Utilities and Supplies (UTI): power, electricity, gas, store, food, supply

6) Transportation (TRA): airplane, plane, flight, airport, “RoadTypes” (highway, freeway, road,

avenue, ave, dr, rd, st, hwy, fwy, blvd)

7) Flood control infrastructures (FCI): reservoir, bayou, canal, dam, levee

8) Business Work School (BWS): office, school, closed, open, work

9) Built-environment hazards (HAZ): fire, explosion, collapse, poison, electrocute
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