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ABSTRACT 

 

Many cities around the world are exposed to extreme flooding events. As a result 

of rapid population growth and urbanization, cities are also likely to become more 

vulnerable in the future and subsequently, more disruptions would occur in the face of 

flooding. Resilience, an ability of strong resistance to and quick recovery from 

emergencies, has been an emerging and important goal of cities. Uncovering mechanisms 

of flooding emergencies and developing effective tools to sense, communicate, predict 

and respond to emergencies is critical to enhancing the resilience of cities. To overcome 

this challenge, existing studies have attempted to conduct post-disaster surveys, adopt 

remote sensing technologies, and process news articles in the aftermath of disasters. 

Despite valuable insights obtained in previous literature, technologies for real-time and 

predictive situational awareness are still missing. This limitation is mainly due to two 

barriers. First, existing studies only use conventional data sources, which often suppress 

the temporal resolution of situational information. Second, models and theories that can 

capture the real-time situation is limited. 

To bridge these gaps, I employ human digital trace data from multiple data sources 

such as Twitter, Nextdoor, and INTRIX. My study focuses on developing models and 

theories to expand the capacity of cities in real-time and predictive situational awareness 

using digital trace data. In the first study, I developed a graph-based method to create 

networks of information, extract critical messages, and map the evolution of infrastructure 

disruptions in flooding events from Twitter. My second study proposed and tested an 
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online network reticulation theory to understand how humans communicate and spread 

situational information on social media in response to service disruptions. The third study 

proposed and tested a network percolation-based contagion model to understand how 

floodwaters spread over urban road networks and the extent to which we can predict the 

flooding in the next few hours. In the last study, I developed an adaptable reinforcement 

learning model to leverage human trace data from normal situations and simulate traffic 

conditions during the flooding. All proposed methods and theories have significant 

implications and applications in improving the real-time and predictive situational 

awareness in flooding emergencies.  
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CHAPTER I  

INTRODUCTION  

 

“Never let a good crisis go to waste.” 

- Winston Churchill (1940) 

 

1.1 Problem Statement 

Globally, over seven hundred thousand people lost their lives, over 1.4 million 

were injured, and approximately 23 million were made homeless as a result of 

emergencies in the past ten years (UNISDR, 2015). A critical factor causing human and 

property loss in emergencies is the large-scale infrastructure disruptions in the built 

environment (Lu et al., 2018). The National Academy of Engineering (NAE) in the United 

States has defined a global challenge, “restore and improve urban infrastructure.” They 

aim to globally bring the researchers, engineers, and society to address current innovative 

and technological challenges worldwide, including effective responses to infrastructure 

disruptions in emergencies (National Academy of Engineering, 2004). The effectiveness 

of emergency response not only depends on the resilience of infrastructure systems itself, 

but also is greatly associated with the performance of humans and existing technologies 

such as the comprehensiveness of situational awareness, the efficiency of risk 

communication, and accuracy of situation prediction (Y. Kryvasheyeu et al., 2016).  

Situational awareness including the temporal unfolding and geographical 

distribution of disruptive events can inform the public, first responders, local government 
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and other stakeholders about the response strategies such as resource allocation and 

transportation (Sutton et al., 2015). Hence, comprehensive and timely awareness of on-

going situations in emergencies is essential for effective emergency response (Department 

of Homeland Security, 2008). The problem that exists in situational awareness is the 

difficulties in answering questions such as “where disruptions are occurring” and “how 

much relief is needed” at the time of an emergency. The problem is usually caused by the 

rapid evolution of the situation and data scarcity (Kumar et al., 2014). With the wide use 

of smartphones and social media sites, situational information is often posted and recorded 

by humans on digital platforms (Rosser et al., 2017). The massive human-generated data 

provides a unique opportunity for tracking and monitoring the situation in emergencies to 

inform decision making (Wang and Ye, 2018). Over the past decade, researchers have 

been attempted to explore the utility and values of human-generated data for situational 

awareness. However, existing techniques for getting insights from these digital trace data 

are mainly token-based methods, which investigated the frequency distribution of words 

and phrases and extracted the events or topics by grouping discrete words together 

(McMinn et al., 2013). The credibility and meaning of such collections of words are 

ambiguous and would confuse people who use these techniques. Hence, getting credible 

and non-ambiguous information is a great challenge in existing studies, especially in the 

context of unfolding temporal and spatial evolution of emergencies.  

In addition to the cyber informatics techniques to get a sense of the situation, online 

social networks also play an important role in amplifying the transmission of risk 

information in emergencies. Unlike traditional broadcast information channels such as 
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radio and television which may be limited by time and space constraints, online social 

networks allow people to communicate with others from anywhere over the world without 

time constraints. Hence, risk communication in online social networks enables messages 

to reach individuals beyond the sender’s direct contacts, increasing exposure and 

potentially leading to lifesaving actions (Sutton et al., 2015). This phenomenon 

extensively presents in emergencies due to the high demand for information by people at 

risk for sense making. However, the emergency situation is dynamic and evolving rapidly 

over time, which may influence the properties and performance of online social networks 

in risk communication and collective sense-making (Fischer-Preßler et al., 2019). Existing 

literature is limited to data collected under normal and stationary circumstances, capturing 

the regular social networks (Bagrow et al., 2011). However, efficient risk communication 

requires quantitative and dynamic features of the online social networks when the 

population encounters unfamiliar conditions. This highlights the need of understanding 

underlying relationships between disruptive events, user activities and network 

reticulation, with particular attention on social connections and mixing patterns in the 

networks. Such an understanding can inform evidence-based strategies to improve 

information communication in online social networks under emergent conditions.  

Finally, with the comprehensive awareness of the situation in emergencies, the 

next critical step is to think ahead and predict the situation in near future. In particular, the 

urban road network plays an important role in emergency response, provision of essential 

services, and maintenance of economic well-being (Ganin et al., 2017). Disruptions of 

road segments will significantly reduce the capabilities of road networks in transporting 
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relief resources and people evacuation. In times of hurricanes and flooding, urban road 

networks are susceptible to floodwaters, meaning that flooding tends to spread on road 

networks over time and space (Paprotny et al., 2018). Developing effective and efficient 

response strategies essentially relies on the estimation and prediction of flood propagation 

in road networks. Hence, there is a real need for tools to forecast flood situations in road 

networks and assist emergency response to road disruptions. Multiple studies (Wang et 

al., 2019) have been conducted to explore the spatial-temporal properties of floodwaters 

in urban networks, including hydrodynamic models and machine learning techniques. 

However, the performance of hydraulic models often relies on various types of hydro-

geomorphological monitoring datasets and intensive computation (Guan and Chen, 2018). 

Due to delay and computational cost, these models may not be able to provide timely and 

reliable predictions for the spatial-temporal spread of floodwaters in road networks. 

Although existing machine learning methods requiring fewer types of input data can 

complement the hydraulic models, these models are limited due to their dependence on 

large sets of historical data for model training (Tsakiri et al., 2018). In addition, existing 

machine learning models are designed to capture only the propagation of floodwaters in 

urban areas. The flood recession process, which is also critical for assessing the resilience 

of urban networks, is often ignored by existing machine learning models (Mosavi et al., 

2018). Hence, bridging this critical methodological gap is to develop a tool that can be 

simply implemented to provide a timely and fairly accurate prediction of flooding 

propagation and recession in urban road networks. 
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1.2 Research Objectives 

The overarching goal of this study is to improve urban resilience in coping with 

flooding emergencies by analyzing human dynamics with integrated human and artificial 

intelligence. In particular, this study aims to enhance real-time and predictive situational 

awareness using information retrieval techniques, understanding collective-sense making, 

and developing prediction tools based on human digital trace data. Through detection and 

prediction, people at risk can better respond to adverse impacts of flooding. To attain this 

overarching goal, this research will accomplish three specific objectives: 

Objective 1: Develop techniques that can automatically detect and map the 

situations in the built environment from human digital trace data in emergencies; 

Objective 2: Understand the underlying mechanisms of risk communication and 

collective-sense making in online social networks in the face of service disruptions; 

Objective 3: Develop predictive methods that can model and predict physical 

disruptions and human mobility in emergencies. 

 

1.3 Research Questions 

While existing studies have developed tools for detecting flooding situations and 

unveiled insightful properties of online social networks for information spread, the tools 

and findings are limited for applications in emergency response and urban resilience. That 

is because existing tools for situation detection can only generate coarse-grained results 

using geotagged data that only accounts for a small proportion of the entire dataset. In 

addition, prior communication theories in existing studies cannot capture the interactions 



 

6 

 

between the human and physical environment, which do not apply to examine the 

dynamics of online social networks in emergencies for information spread. Finally, 

existing predictive methods tend to rely on an extensive set of situational data and take 

significant computational cost, which may not be able to predict the situation promptly. 

With these limitations in prior studies, a key research question that has not been addressed 

with depth is: to what extent do human digital traces can inform, spread and predict the 

situations in emergencies? Human-generated data on mobile apps during the occurrences 

of emergencies provides us with an unprecedented opportunity to detect, understand and 

predict situations in flooding to save human lives and protect properties at risk. 

To address the knowledge and methodological gaps raised by the key research 

question, this research seeks answers for the following three important questions: 

Question 1: What situational information can be retrieved from social media for 

capturing the spatial and temporal evolution of situations in flooding? 

Question 2: To what extent do physical disruptions trigger the dynamics of online 

social networks for risk communication and collective sense-making in service disruption? 

Question 3: To what extent can the physical disruptions (e.g., road conditions and 

human trajectories in emergencies) be predicted using human digital trace data? 

 

1.4 Research Methodology 

To address these research questions, my Ph.D. study specifically focuses on the 

human digital trace data generated during emergencies to retrieve information, understand 

the patterns, and predict the situations in a short time period. Per these needs, my studies 
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are in three major directions, aiming to use and develop tools from artificial intelligence, 

communication theories, and mathematical modeling to explore the capabilities of digital 

trace data for real-time and predictive situational awareness in flooding emergencies (see 

Figure 1).  

In my first effort, I developed a method to first identify the bursts of the relevant 

tweets during environmental disruptions. Then, natural language processing techniques 

such as word embedding are adopted to convert the tweets to vectors. Furthermore, I 

employed network metrics, weighted degree centrality, from network science to identify 

the critical tweets in the semantic networks. I defined multiple parameters in the methods 

and conducted multiple analyses to map and examine the evolution of the situation from 

social media data in Hurricane Harvey. 

My second effort studied the mechanisms of risk communication among affected 

populations on social media under the context of physical environment disruptions. I 

adopted the communication theory, network reticulation theory, and further extend the 

theory to adapt the characteristics of online social networks. This theoretical approach 

enables us to capture the impacts of environmental disruptions on human behaviors on 

social media. In addition, I also adopted network metrics including network assortativity 

to quantify the mixing patterns of online social networks and its evolution over time.  

The third effort adopted a mathematical model from epidemiology and applied 

math to model the flood propagation and recession in urban road networks. The proposed 

method integrated the differential equation systems and network percolation process that 

allows us to predict the changes in the magnitude and locations of flooded road segments 
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efficiently. The predictive approach can be used as an early warning system to inform the 

public and decision-makers with effective response strategies and policies. 

In the final study, I developed an adaptable reinforcement learning model to learn 

the human mobility patterns from mobile phone data in normal conditions and simulate 

the traffic condition in emergencies. The proposed model aims to maximize the 

cumulative rewards by choosing the destination and route that are most closed to the 

empirical traces. Using the situational data during flooding, the models are allowed to 

modify the reward table accordingly so that we can expand the capacity of the model to 

capture the movements of the population in flooding. The application of the model has 

been demonstrated in a case study of the 2017 Hurricane Harvey. The results from 

applications show very good performance of the proposed models. 

 

Figure 1 Research methodologies. 
 

 

1.5 Dissertation Structure 

The results presented in this dissertation follow the “four journal paper” format. 

Chapters 2, 3, 4 and 5 are each crafted to act as a document publishable in a peer-reviewed 

Research methodologies

Information retrieval Burst detection; word embedding; semantic network;
degree centrality.

Collective sense-making Network reticulation theory; network assortativity;
degree centrality.

Situation prediction Differential equations; network percolation;
reinforcement learning.
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academic journal. The structure of this dissertation, the overarching research question that 

served as the basis for my general academic exploration that corresponds to specific 

chapters in this dissertation are outlined in Figure 2. 

 

Figure 2 Structure of the dissertation. 

 

In Chapter 2, the first paper presents a graph-based method for detecting 

disruptions and analyzing evolutions of the situation about critical infrastructure. This 

chapter includes details about the mathematical definitions and the programming steps, 

and also presents a case study of Hurricane Harvey in 2017 in Houston. The results 

highlight the capabilities of the proposed method of detecting credible situational 

information and capturing the temporal and spatial patterns of infrastructure disruptions. 

The article was co-authored with Dr. Ali Mostafavi and was published in the Computer-

aided Civil and Infrastructure Engineering (Fan and Mostafavi, 2019a). 

In Chapter 3, I propose a network reticulation theoretical framework to examine 

the dynamic relationships among triggering events, human activities on social media, and 

Overarching
research
question:

To what extent do human digital traces can inform, spread and predict the situations in 
emergencies? 

Information
retrieval

Collective-sense
making Predictive situational awareness

Research
themes and
sub research
questions:

What situational 
information can be 
retrieved from social 
media for capturing 
the spatial and 
temporal evolution of 
situations in flooding
emergencies?

(Chapter 2)

To what extent do 
physical disruptions 
trigger the dynamics 
and adaptation of 
online social networks 
for collective-sense 
making in service
disruptions?

(Chapter 3)

To what extent can 
the physical 
disruptions (e.g., 
road conditions and 
human trajectories) 
can be predicted 
using human digital 
trace data?

(Chapter 4)

To what extent can 
the model learned
from human mobility
data in normal
conditions simulate
the traffic condition
in flooding
emergencies?

(Chapter 5)
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network reticulation.  The results of this study uncover the importance of weak social tiles 

bridging online communities for collective sense-making in emergencies. The article was 

co-authored with Dr. Mostafavi and was published in the Journal of Royal Society 

Interface (Chao Fan et al., 2020b). 

In Chapter 4, I develop and test a mathematical model for predicting the spatial 

spread and temporal evolution of the onset and recession of floodwaters in urban road 

networks. The model captures the situation of flooding with three parameters: propagation 

rate, incubation rate, and recovery rate. Integrating with the network percolation process, 

the model can not only predict the temporal evolution of flooding in urban road networks, 

but also the spatial spread of flooded road segments. The article was co-authored with Dr. 

Ali Mostafavi and was published in Scientific Reports (Chao Fan et al., 2020a). 

 In Chapter 5, I create and test an adaptive reinforcement learning model that can 

predict the destinations of movements, estimate the trajectory for each origin and 

destination pair, and examine the impact of perturbations on humans’ decisions related to 

destinations and movement trajectories. The application of the proposed model in 

Hurricane Harvey shows that the model can perform very well in predicting traffic patterns 

and congestions resulting from urban flooding. The article presented in this chapter has 

been submitted to a peer-reviewed journal and is under-review now.  
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CHAPTER II  

CREDIBLE INFORMATION EXTRACTION FROM SOCIAL MEDIA FOR 

SITUATIONAL AWARENESS IN DISASTERS* 

 

Damages in critical infrastructure occur abruptly, and disruptions evolve with time 

dynamically. Understanding the situation of critical infrastructure disruptions is essential 

to effective disaster response and recovery of communities. Although the potential of 

social media data for situation awareness during disasters has been investigated in recent 

studies, the application of social sensing in detecting disruptions and analyzing evolutions 

of the situation about critical infrastructure is limited. To address this limitation, this study 

developed a graph-based method for detecting credible situation information related to 

infrastructure disruptions in disasters. The proposed method was composed of data 

filtering, burst time-frame detection, content similarity calculation, graph analysis, and 

situation evolution analysis. The application of the proposed method was demonstrated in 

a case study of Hurricane Harvey in 2017 in Houston. The findings highlighted the 

capability of the proposed method in detecting credible situational information and 

capturing the temporal and spatial patterns of critical infrastructure events that occurred 

in Harvey, including disruptive events and their adverse impacts on communities. The 

proposed methodology can improve the ability of community members, volunteer 

                                                

* This chapter is reprinted with permission from “A graph-based method for social sensing of infrastructure 
disruptions in disasters.” by Fan, C., and Mostafavi, A., 2019. Computer-Aided Civil and Infrastructure 
Engineering. Dec;34(12):1055-70. 
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responders, and decision makers to detect and respond to infrastructure disruptions in 

disasters. 

 

2.1 Introduction 

Situational awareness about evolving and life-threatening impacts of natural 

disasters like hurricanes, wildfires, and earthquakes is crucial for effective disaster 

response and recovery (Yury Kryvasheyeu et al., 2016; Lu and Brelsford, 2014). A key 

component of a community is critical infrastructure systems, the damages and failures of 

which will make severe impacts on human systems (Kadri et al., 2014; Kim et al., 2018) 

and physical environment (Lu et al., 2018). 

The situations of critical infrastructure in disasters change over time due to 

disruptions and cascading failures. For example, overflow of flood control reservoirs can 

cause the water level of rivers to rise, and consequently inundate roads and destroy bridges. 

In response to disasters, first responders and other stakeholders require near real-time 

situational information as the disaster unfolds (Kim et al., 2018; Troy et al., 2008). Usually, 

physical and remote sensing techniques (e.g., satellite and unmanned aerial vehicle 

platforms) are primary approaches for collecting infrastructure data in normal situations 

and disasters (Chen et al., 2017; Hackl et al., 2018; Jongman et al., 2015). While regional 

or federal stakeholders may have the access to multiple accurate sources about the status 

of critical information, local stakeholders such as community members, volunteer 

responders, relief organizations, residents do not have access to the accurate local data 

about infrastructure disruptions. In addition, using other sources of information such as 
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satellite data, decision-makers can examine the spatial distribution of flooding of streets; 

however, detailed information regarding the local disruptions (e.g., whether a certain road 

is passible) and also community impacts (e.g., access to critical facilities is disrupted due 

to flooding of a certain road) cannot be obtained at local level. Besides, satellite data is 

expensive, only accessible to a few stakeholders, and suitable for regional situation 

monitoring. Alternatively, humans (as sensors on social media) share information about 

disaster situations, including critical infrastructure disruptions (Huang et al., 2017; Nik-

Bakht and El-diraby, 2016). Hence, the information obtained via social sensing 

methodology complements the information from physical sensing in three ways: (1) the 

detected information is free and accessible to the public including relief organizations, 

volunteer responders, community members, and other various stakeholders; (2) the 

detected information, such as power outage, road damage, and water release is at local 

scale and difficult to be detected by physical sensors; and (3) the information obtained via 

this approach also informs about the impacts of disruptions on communities. Accordingly, 

this information can help decision-makers and residents better understand the unfolding 

of events, gather information about the impacts, and respond to the events. 

Recent studies (Arthur et al., 2018; Li and Zhang, 2018; Long et al., 2011) have 

highlighted the importance and applications of social sensing in detecting relevant events 

and understanding the situation for disaster response and recovery. Social sensing is a 

technique for collecting and analyzing social posts which deliver online users’ 

observations and sentiments regarding their physical environment. For example, Scollon 

(2013) developed an analytics method for urban crisis management covering human 
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emotion mapping and behavior analysis in response to Singapore Haze on social media 

(Scollon, 2013). Scollon’s study only focused on human networks and their mutual 

communications. Another example of social sensing for disaster response investigated the 

dynamics of social networks and the formation and evolution of online communities in 

the 2011 Japanese Earthquake and Tsunami (Lu and Brelsford, 2014). This study 

processed the content of social posts and provided insights for understanding how patterns 

of human interaction evolved due to external attacks. Another stream of studies (Fohringer 

et al., 2015; Yury Kryvasheyeu et al., 2016) related to social sensing focus on flood 

inundation maps leveraging the geo-coordinates and inundation images in social posts. 

For example, Fohringer et al. (2015) utilized quantitative data (e.g., water levels and 

geolocations) derived from images in social posts in disasters to map the inundation area. 

This approach enables rapid flood mapping, estimation of flood risks, and determination 

of response actions. However, this approach does not enable detecting events related to 

infrastructure disruptions (e.g., road closures or power outages) due to flooding. 

While the use of social sensing in disasters is growing, little of the existing work 

focuses on detecting critical infrastructure disruptions. One of the reasons for this 

limitation is that, in the context of infrastructure disruptions, the output of the 

methodologies should include the timing and severity of disruptions, effects of disruptions 

on people, and actions that have been taken to adjust to the disruptions. Thus, to address 

this methodological limitation, this paper proposed a graph-based method, to detect the 

situation and corresponding changes of critical infrastructure on social media. A case 

study related to the situation of critical infrastructure in the Houston area during and after 
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Hurricane Harvey was conducted to illustrate the feasibility and capability of the proposed 

method. The application of the proposed method focuses on the functionality of the critical 

infrastructure such as road closures, power outage, and water supply contamination for 

communities rather than the structural damages (e.g., road rapture and bridge crack). 

 

2.2 Related Work 

Detecting situational information including human activities and physical events 

on social media in the occurrences of disasters (i.e., event detection) has been investigated 

in a great number of studies. In a review of the related work, we focused on the approaches 

that could be applied to large-scale datasets (such as millions of tweets). The existing 

techniques for event detection include clustering (Alvarez-Melis and Saveski, 2016; Lee 

et al., 2012), and network analysis (Cordeiro, 2012; Liu et al., 2016; Misra et al., 2017). 

Most of the techniques for unspecified event detection from social media data are 

based on clustering (Becker et al., 2012; Imran et al., 2013). Features such as words and 

phrases extracted from social posts are the primary objects in the existing clustering 

processes. For example, Weng and Lee (2011) developed an Event Detection approach 

which assigns signals to individual words based on their frequencies and applies wavelet 

analysis on the raw signals to obtain the correlation between the signals (Weng and Lee, 

2011). Then, it can cluster the words according to the wavelet-based signals. However, 

this approach treats each word independently. The identified events are likely to be a group 

of words associated with different events. Thus, the information related to events detected 

from this approach cannot be reliable to be used for detecting infrastructure disruptions. 
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In another study, Pohl, Bouchachia, and Hellwagner (2012) proposed a two-phase 

clustering approach to identifying individual sub-events within a crisis automatically 

(Pohl et al., 2012). The first phase uses the geo-referenced data from social posts to locate 

a sub-event, and then the second phase describes the details of the sub-event by analyzing 

the images and videos in the social posts. This clustering approach has the potential to 

detect crisis-related events, but the results are limited to geo-tagged tweets. To detect and 

categorize significant events, Ritter et al. (2012) developed event categories and classified 

events based on latent variable models in an open-domain system for Twitter. However, 

this approach is limited to specific domains (Ritter et al., 2012). Thus, the outcomes of 

this approach are comparatively generic and cannot identify specific infrastructure 

disruptions in the context of disasters.  

Another stream of the existing studies focuses on event detection on social posts 

by analyzing graphs or networks (Ahmadlou et al., 2010; Nguyen and Jung, 2017; Palen 

et al., 2009). However, the majority of the existing graph-based approaches focuses on 

detecting activities in social networks and did not fully demonstrate the relations between 

activities of social media users and events. For example, Zhao and Mitra (2007) proposed 

an approach to detect events by combining text-based clustering, temporal segmentation, 

and graph cuts in order to construct hierarchical topic clustering and distinguish different 

events within the same topic (Zhao and Mitra, 2007). The study provided insights into 

exploring temporal and social information together with text content. However, the results 

were still token-based, which lacked clear logic among the extracted tokens and failed to 

comprehensively show the situations. Thus, this approach is limited in improving 
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situational awareness of specific infrastructure disruptions. Another technique was 

developed by Wang and Taylor (2018), who explored geographical and semantical 

dimensions of events from tweets, mapped the semantic network, and ranked the tweets 

with their importance (Wang and Taylor, 2018). However, the approach can only be 

applied to geotagged tweets which are very limited in the entire Twitter dataset of a 

disaster (usually less than 1% of tweets that are geotagged in disasters). In addition, Ipsen 

et al. (2006) analyzed Google’s PageRank which can be used to measure the importance 

of the nodes. However, this approach did not consider the similarity of the tweets and did 

not focus on infrastructure situation (Ipsen and Wills, 2006). Another study conducted by 

Benson (2011) presented a factor-graph model to discover event records from social media 

feeds (Benson et al., 2011). The output of the model is an event-based clustering of 

messages, and needs a seed set of example records. As such, it is difficult to explore burst 

events using this approach without historical data. 

Beyond the state-of-the-art event detection techniques, a number of studies 

(Juffinger et al., 2009; Li and Zhang, 2018) also investigated the credibility of the 

information retrieved from social media. However, existing approaches for rating 

credibility of social media posts relied on other sources or labeled data (Castillo et al., 

2011). For example, Castillo, Mendoza, and Poblete (2013) proposed a supervised 

learning approach to determine whether a tweet is credible or not (Castillo et al., 2013). 

The approach employed crowdsourcing tools to obtain labeled data and then trained the 

classifier to identify credible tweets. Thus, the approach has limitations in applications 

with real-time detection and unlabeled data. In another study, Juffinger, Granitzer, and 
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Lex (2009) compared the quantity structure of a set of blogs to a reference corpus and 

examined the similarity of each separate blog content with a verified news corpus 

(Juffinger et al., 2009). Then, a ranking function was derived to sort the blogs by their 

credibility levels. However, this technique is constrained by the robustness of news corpus.  

In summary, existing techniques for event detection on social media data are 

mainly feature-based methods, which investigated the frequency distribution of words in 

social media posts and documents and detected the events or topics by grouping discrete 

words together (McMinn et al., 2013). The credibility and meaning of such collections of 

words are ambiguous and would confuse people who use these techniques. Hence, getting 

credible and non-ambiguous information is a great challenge in existing studies, especially 

in the context of detecting disruptions in critical infrastructure in disasters. 

 

2.3 A Graph-based Method 

We propose a Graph-based event detection method as a computational method to 

identify credible and non-ambiguous situational information regarding infrastructure 

disruptions on social media. Infrastructure disruptions occur abruptly and evolve over time 

in disasters. Understanding the situation of critical infrastructure requires time-sensitive 

and credible information including when disruptions happened, how it affected residents, 

what caused this disruption and what actions were taken. Twitter as a popular social media 

platform has 336 million active users and is active in spreading situational information 

associated with critical infrastructure situation in disasters. In addition, credible 

information related to high-impact events is often reported and retweeted many times on 
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Twitter (Yury Kryvasheyeu et al., 2016). Hence, the frequencies of related tweets are 

supposed to show bursts of events in a short period, and the similarities of a tweet to other 

tweets can be used to demonstrate the credibility of the situational information in tweets. 

Accordingly, the underlying premise of the proposed method in this study is to identify 

and analyze credible tweets that inform us critical infrastructure disruptions and the 

situational evolutions.  

The proposed method includes five steps: data filtering, burst detection, content 

similarity, critical tweets identification, and infrastructure situational evolution analysis. 

This study defined critical tweets as the tweets delivering complete and non-ambiguous 

situational information related to critical infrastructure disruptions in burst time-frames. 

The input of this method is a complete set of relevant tweets across the entire duration of 

disasters. One reason for the need of utilizing a complete dataset is that a change in 

frequency of relevant tweets is a signal indicating infrastructure disruptions because 

disruptions often result in changes in human behaviors on social media, such as reporting 

damages and complaining its adverse effects (Weiler et al., 2016; Zhang et al., 2015). In 

this study, the frequency means the number of relevant tweets posted per hour. Hence, a 

complete dataset is essential for continuously mapping the frequency change of relevant 

tweets and identifying signals. The outputs of the graph-based method are critical tweets 

containing complete situational information about high-impact critical infrastructure 

disruptions within each detected time-frame. In addition, this method aligns the content of 

critical tweets with the unfolding of events in disasters to better understand the dynamic 
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changes in critical infrastructure disruptions and corresponding influences. The details in 

each step are discussed in the following sections. 

2.3.1 Data Filtering and Preprocessing 

To understand the situation specific to certain critical infrastructure, the first step 

is to filter the tweets using specific names of critical infrastructure, or their abbreviations. 

For example, in the context of Hurricane Harvey in Houston, specific names of 

infrastructure include “Interstate Highway 10 (1-10 or I10)”, “George Bush Airport (IAH)” 

and “Barker reservoir (Barker)”. Relevant tweets will be filtered without any omission, as 

long as they contain any of those keywords in their texts, no matter the keywords are in 

hashtags or not, and no matter the tweets are complete or not. This keyword-based 

searching is implemented to set a strict restriction for data filtering to ensure the 

completeness of filtered data, which contributes to tagging the tweets and the results with 

specific infrastructure.  

Once the relevant data is filtered, we should preprocess the data before performing 

content analysis. This is needed since uninformative characters can have adverse effects 

on the analysis. For example, uninformative characters, such as “is”, “I”, “!”, URL, and 

“@”, if considered elements in tweet vectorization, will lead to an increase in vector 

dimensions and computational complexity. Such complexity significantly reduces the 

calculation efficiency and accuracy in content similarity analysis. To alleviate the adverse 

effects of uninformative words and characters, the filtered data should be preprocessed. 

The preprocessing approaches that are used commonly in existing studies include 

lowercase (lower case every letter in the tweet), tokenization (split the tweets as a set of 
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tokens), stop-words removal (remove some words that commonly appear in other 

documents), and lemmatization (return the base or dictionary form of a word) (Imran and 

Castillo, 2015; Zhang et al., 2018). In addition, in this study, we not only use these 

common preprocessing approaches, but also employ regular expressions to remove the 

punctuations, URLs, and emojis. After pre-processing is completed, the dataset is ready 

for graph-based analysis. 

2.3.2 Burst Detection of Time-frames 

As mentioned earlier, the frequency of relevant tweets indicates the severity and 

impacts of critical infrastructure disruptions on humans (Buntain et al., 2015). Thus, a 

burst of frequencies of relevant tweets within a short period can imply a change of situation 

or a disruption event of critical infrastructure. During a burst period, the frequency of 

relevant tweets increases significantly, then reaches a peak. Finally, the frequency 

decreases with the dissipation of adverse effects of a disruption event. High-impact 

failures of critical infrastructure (such as major road closures, wide-spread power outage, 

and reservoir overflow) would lead to significant differences in frequencies of associated 

tweets over time. This step of the proposed method identifies these burst time-frames 

based on the trend of tweets’ frequencies for a specific infrastructure in a disaster.  

Prior to a disruption event, the average frequency of relevant tweets related to a 

specific infrastructure (e.g., a road or bridge) remains within a comparatively low-

frequency range. When a disruption occurs, the frequency of tweets related to a specific 

infrastructure grow abruptly. Based on the understanding of bursts related to certain 

critical infrastructure on social media, the following equations are derived to calculate a 
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frequency (Eq. (1)) in a certain time period and the average frequency (Eq. (2)) prior to a 

disruption event. The frequency of relevant tweets can be computed as: 

𝑓(𝑡, 𝑆) = 	 ) 𝑁(𝑤, 	𝑆,)
-∈/

 (1) 

𝑓(̅𝑘, 𝑆) = 	
∑ 𝑓(𝑗, 	𝑆)4
567

𝑘  (2) 

where 𝑆 is a stream of tweets between 𝑡 − 1 and 𝑡, 𝑡 is the time slice in hours, 𝑤 is a 

relevant tweet, 𝑊 is a set of relevant tweets, 𝑁(𝑤, 	𝑆,) returns the frequency of token 𝑤 

in the stream 𝑆 during time slice 𝑡. and 𝑘 is the number of time slices before the events. 

In Eq. (2), we define the average frequency of relevant tweets 𝑓(̅𝑘, 𝑆) as the number of 

relevant tweets in a time slice before the events.  This method is an improved extension of 

an existing technique developed to identify key moments on social media streams from a 

set of keywords (Buntain et al., 2015). A burst is detected based on the comparison 

between average frequency and time-slice frequency. Thus, a burst can be identified as: 

𝑓(𝑡, 	𝑆)
𝑓(̅𝑘, 𝑆)

> 	𝛿 (3) 

where 𝛿  is the threshold for burst frequency in social media streams. The value of 𝛿 

typically ranges from 2 to 15 and is determined by the requirement of precision (Buntain 

et al., 2015). The larger the value, the more distinguishing the burst frequency in a time 

slice. There could be cases in which a certain infrastructure component or facility may be 

rarely or never noticed and discussed on social media, until it is impacted by extreme 

events causing major disruptions to services. However, the perceived impacts of damage 

(service disruptions) on users are as important as the damages to components for disaster 
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response and recovery. For example, the information obtained from social sensing may 

not inform about damages to a power substation, but rather informs about electricity 

outages based on impacts on residents (e.g., inability to cook). Hence, the tweets collected 

and analyzed by the proposed method enable capturing the impacts of service disruptions, 

as well as damages to infrastructure components and facilities. 

In addition, infrastructure disruptions happen abruptly, but the consequent effects 

tend to take more than one-time slices to dissipate. During that period, people would report 

a situation (such as power outage) as well as impact information (such as an inability to 

cook) on social media. Hence, the situation in continuous time slices would be relatively 

stable (Ebina et al., 2011). To identify the situation and its changes, first, we group the 

continuous time slices together to form a time-frame. Then, the tweets posted in each time-

frame are extracted as a subset. These tweets are considered to describe the same situation 

for a particular infrastructure disruption (such as inundation of a particular road). The 

result from this subset can represent the situation in the entire time-frame. 

This study filters the relevant tweets within a certain burst time-frame, converts 

the content of the tweets into vectors, and then calculate the similarity between two vectors 

as the edge weight. After these steps, the generic graph measures can be implemented on 

our datasets. While the pace of progression for infrastructure disruption events might be 

different from generic events, the proposed method enables identifying burst time-frames 

with unlimited width and numbers, which makes the method fit for different types of 

events. If an infrastructure disruption event is fast-paced with single burst time-frame, the 

event is represented by the most critical tweet in the burst time-frame. If the disruptive 
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event is relatively slower-paced with several burst time-frame, the event is described via 

several critical tweets in several burst time-frames respectively. 

2.3.3 Content Similarity and Graph Mapping 

The content in relevant tweets is the key to understand the situation of critical 

infrastructure disruptions. However, obtaining complete and non-ambiguous information 

from a large set of tweets is very difficult because of the existence of noise (Atefeh and 

Khreich, 2013). For example, some tweets only have general and brief descriptions about 

the situation such as “The road is flooded”. Also, some tweets may be spreading 

misinformation. Hence, to determine credible and complete information, the comparison 

of contents in tweets is important (Gupta and Kumaraguru, 2012). The similarity of 

content between tweets posted by different users can indicate the extent of the credibility 

of the situational information that these tweets deliver (Castillo et al., 2013). To take the 

credibility of content into account, we integrate content similarity into semantic graphs. 

The cosine similarity approach can normalize a tweet vector by dividing each of its 

components by its length. As such, the negative effects of the length of the vector can be 

eliminated when comparing the similarity of the tweets. The equation for calculating 

content similarity is computed as (Zhou and Chen, 2014): 

𝑐𝑜𝑠𝜃A5 = 	
𝑣CDDD⃗ ∙ 𝑣GDDD⃗

‖𝑣CDDD⃗ ‖‖𝑣GDDD⃗ ‖
 (4) 

where 𝑣CDDD⃗  and 𝑣GDDD⃗  are the vectors of two different tweets. There are multiple well-established 

methods to convert the list of tokens into vectors. We use one of the most common 

methods, TF-IDF (i.e., term frequency-inverse document frequency) to obtain numeric 
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metrics of tweets (Fan et al., 2018). In this study, each tweet is considered as a document, 

and a tweet is represented based on the frequencies of tokens. The infrastructure-related 

keywords frequent in each dataset have low weights, while other situation-related words 

that are not as frequent as infrastructure keywords have high weights in the vector 

representations. Once vectors of tweets are obtained, we can calculate the content 

similarity between these tweets using Eq. (4). The results vary from 0 to 1, showing the 

extent of content similarity between two tweets. The higher the value, the greater the 

content similarity. Unlike machine learning methods such as recurrent neural networks, 

cosine similarity does not require massive data for training and tuning parameters. 

In semantic graphs, the edges represent the relationships between different nodes. 

Here, tweets can be considered as nodes, and their content similarity can be exhibited by 

edges. Thus, we established the undirected weighted semantic graphs 𝐺 among the tweets. 

The graph is composed by nodes 𝑣	𝜖	𝑉(𝐺) and edges 𝑒	𝜖	𝐸(𝐺). The weights of edges are 

defined based on the content similarity between two tweets: 

𝑤(𝑒4) = N10 × 𝑐𝑜𝑠𝜃A5 + 0.5T, 	𝑒4 = (𝑣A, 𝑣5) 

0.2 < 	𝑐𝑜𝑠𝜃A5 	< 0.9 
(5) 

where 𝑒4 is one of the edges in graph 𝐺, and 𝑣A and 𝑣5 are the nodes connected by 𝑒4. ⌊𝑥⌋ 

is the floor function that takes as input a real number 𝑥 and gives as output the greatest 

integer less than or equal to 𝑥. It should be mentioned that the weights of edges are integers 

obtained from the integer conversion. As shown in Eq. (5), an edge can be established if 

the content similarity is greater than 0.2 and smaller than 0.9. If the content similarity is 

lower than 0.2 between two tweets, it shows that these tweets are quite different, and in 
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most cases, they are talking about different situations. Therefore, we ignore the relations 

between these tweets and do not consider the edges between those tweets. In addition, as 

we discussed earlier, credible tweets tend to be repeated many times by different users. A 

number of retweets could also be a result of confounding effects of various factors such 

as credibility, homophily, influence, and novelty (Aral et al., 2009; Vosoughi et al., 2018a). 

Thus, retweets, the content similarity of which is greater than 0.9, cannot be the unique 

evidence of the credibility of the tweets. When parsing the retweets, some additional 

information would be generated automatically in the body of the retweets, such as “RT” 

showing that it is a retweet, and “@XXX” showing that the retweet is retweeting XXX’s 

tweet. As such, the retweet is not completely same as the original tweets. Based on the 

results of the experiments, we set the similarity threshold as 0.9. Nevertheless, the retweets 

can be the supplementary information to show the importance of the information delivered 

by these tweets. Thus, in the proposed method, we set the weight of the edges between 

retweets to be the lowest weight (i.e., a value of 2 in our semantic graphs). Once the nodes, 

edges, and weights are obtained, the semantic graph can be mapped in each time-frame. 

Such representation provides a simplified model of complex relationships among tweets. 

2.3.4 Critical Tweets Identification 

Critical tweets are defined as the tweets containing the most complete and non-

ambiguous situational information related to certain critical infrastructure disruptions in 

certain time-frame. In the context of this study, critical tweets have the closest similarity 

to other tweets. The degree in the semantic graphs represents the similarity of a tweet to 

other tweets. Thus, a tweet with the highest degree can be considered as the critical tweet. 
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However, the weights of edges vary depending on the extent of similarity of a tweet to 

other tweets. A tweet with greater weighted edges should be more critical than a tweet 

with a few high weighted edges given the same number of low weighted edges. Hence, 

we defined a weighted degree to take the weights into account: 

𝑑𝑒𝑔]^ = 	 ) (𝑤(𝑒))_
`a]^×b

 
(6) 

where 𝑣A ∈ 𝑉(𝐺) are the nodes, and 𝛼  is a parameter that contributes to reducing the 

impacts of a large number of low weight edges. For example, some tweets contain widely 

used words (e.g., “flooding”, “hurricane”, and “help”). Thus, these tweets may connect to 

many tweets that actually they are talking about totally different situations. To address this 

issue, the value of 𝛼 should be greater than 1. Here, the value of 𝛼 is defined to distinguish 

the contributions of various weights on the assessment of criticality of the tweets. Through 

the power operation by 𝛼, the edges with high weights would have much larger impacts 

on the weighted degree of a tweet. As such, the edges with low weights would have fewer 

impacts on the weighted degree of a tweet. The larger the value of 𝛼, the more significant 

the close similarity between tweets for identifying critical tweets. The definition and 

implementation of 𝛼 ensure that the identified critical tweets are more representative than 

the tweets with a number of low similarities. The semantic comparison and weighted 

degrees enable the elimination of misinformation (false positive and false negative 

information) in the results.  

It should be noted that there may be multiple discrete components in a semantic 

graph. It would be possible that a critical tweet is identified from a small component 
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(rather than a giant component of the network), when a topic is the focus of only a small 

group of people. To overcome this challenge, we derived an equation by using a weighted 

degree to identify the giant component in the graph before identifying critical tweets: 

𝑀𝑎𝑥fΩ(𝐻4)|Ω(𝐻4) = ) 𝑑𝑒𝑔]^
]^∈b(jk)

, 𝐻4 ∈ 𝐺	l (7) 

where 𝐻4 ∈ {𝐻7,𝐻n, … , 𝐻p	} is a component in the graph 𝐺, where the nodes connect to 

each other within the component and disconnect to the nodes in other components. As 

shown in Eq. (7), the giant component is obtained from the sum of weighted degrees in a 

component rather than the size of a component. The weighted degree is the representation 

of content similarity which emphasizes the criticality and credibility of a tweet. Hence, 

the giant component in the tweets graph is a collection of tweets with critical and credible 

information. Then, the critical tweet can be identified in the giant component as: 

𝑀𝑎𝑥r𝑑𝑒𝑔]^|𝑑𝑒𝑔]^, 𝑣A𝜖𝑉(𝐻4)	s (8) 

As shown in Eq. (8), and also in the definition of critical tweets earlier, there could be a 

case that more than one tweet has the highest weighted degree. The most common example 

is retweeted tweets which have the same connections to other tweets as the original tweets. 

Our method enables to detect all the tweets with the highest weighted degrees and convert 

them to their original tweets. 

2.3.5 Situational Evolution of Critical Infrastructure 

Mapping the timing of critical infrastructure disruptions provides a temporal 

dimension of the disaster situation. Combined the geolocation of critical infrastructure, 

temporal and spatial information enables identification of potential interdependencies and 
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co-evolution of critical infrastructure. In this step, thus, the proposed method maps critical 

infrastructure disruptions in a timeline and performs temporal and spatial analysis to 

understand the situational evolution of critical infrastructure. In the temporal analysis, 

there are different important cases that need to be investigated. For example, the tweets 

discussing the situation of two or more critical infrastructure systems might indicate that 

these critical infrastructure systems are interdependent or affected by the same impacts. In 

addition, identifying the geographic proximity of infrastructure is important to assess co-

location interdependencies. Disruptions of different critical infrastructure systems may 

happen or be detected at the same time. Such temporal synchronicity might also indicate 

interdependencies among these critical infrastructure systems. Hence, detecting such 

temporal and spatial proximity provides insights into interdependencies among multiple 

critical infrastructure systems in a disaster. Furthermore, the identified interdependencies 

and co-evolution are important to develop response actions as a disaster unfolds. In 

addition, this information can convey the story of critical infrastructure through a disaster 

to inform mitigation planning in the aftermath of disasters. 

 

2.4 Case Study of Hurricane Harvey 

To demonstrate the capabilities of the proposed graph-based method, we 

conducted a case study of Hurricane Harvey in Houston. Hurricane Harvey, a category 

four tropical storm landed in Texas from August 25 to August 29 in 2017. Harvey caused 

significant infrastructure disruptions. For example, more than 200 road sections were 

closed or flooded, all flights were suspended at Houston Intercontinental Airport System, 
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and the water level in Addicks and Barker reservoirs reached their maximum capacity, 

which led to water release from the reservoirs (ENR Editors, 2017). After Hurricane 

Harvey passed, flooding continued in the affected areas and major roads such as sections 

of Interstate Highway 10 remained closed. 

 

Figure 3 Programming framework for implementation of the graph-based method. 

 

To investigate the impacts of Hurricane Harvey on critical infrastructure in its 

entire life cycle, we collected around 21 million tweets over the Houston area from August 

22 to September 30. This dataset includes all the tweets that posted by users whose profiles 

have a location of Houston, and the tweets that are geotagged in our predefined bounding 
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boxes of Houston. People whose profiles mentioned Houston might be in other places. 

They may or may not comment on the state of infrastructure (e.g., what they learned from 

news pages or word of mouth). The collection of tweets with localized information about 

infrastructure is a subset of our total dataset. Hence, the requirement for data collection 

proposed in this study would need acquiring a complete dataset of tweets with critical 

situational information and improve the accuracy of our findings.  

To implement the graph-based method on this dataset, a programming framework 

is developed as shown in Figure 3. Once we filter the relevant tweets using relevant 

keywords, first, we detect the burst time-frames in the dataset based on the temporal 

information embedded in the tweets and the hourly frequency of the relevant tweets. Then, 

we tokenize each tweet into a list of separate words and characters, named tokens (Fan 

and Mostafavi, 2018). Next, we remove some stop-words that are not informative or less 

than 2 characters and lemmatize the words by grouping together the inflected forms of a 

word. After that, the remaining words in a tweet will be de-tokenized into a sentence for 

Term Frequency-Inverse Document Frequency (TF-IDF) vectorization so that computer 

can compute the similarity of two tweets by comparing the corresponding vectors. Once 

the similarity between every pair of tweets is calculated, the edges between those tweets 

can be established and weighted in three conditions using Eq. (5). Finally, we can map the 

semantic graphs and identify critical tweets using Eq. (6)-(8). The output of this method 

is the critical tweets which contain situational information about the evolution and impacts 

of critical infrastructure disruptions in disasters, which will be presented in a timeline of 

the related events (e.g., Figure 7 in the case study). 
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Table 1 Numbers of collected tweets about each critical infrastructure during 

investigated period. 

Critical infrastructure Number of tweets 

Buffalo Bayou 6595 

Addicks and Barker reservoir 14728 

Interstate Highway 10 8008 

Ben Taub Hospital 1090 

 

2.4.1 Data Filtering and Burst Detection 

To understand the performance of critical infrastructure in Harvey, we only need 

to analyze the data before and during the disaster. Hence, we filter the tweets related to 

example infrastructure such as Buffalo Bayou, Addicks and Barker reservoirs, Interstate 

Highway 10 (I10), and Ben Taub Hospital from August 22 to September 4 (because 

flooding continued until September 4). The numbers of collected tweets associated with 

each critical infrastructure are listed in Table 1.  

Once the relevant datasets are prepared, we could map the frequencies of tweets at 

the interval of one hour (Figure 4). For example, in Figure 4(b), there is a burst at midnight 

on August 26 when Hurricane landed in Texas. After that, many bursts appeared on 

different days because of the rapid changes in the situation of reservoirs and their adverse 

impacts on nearby residents. In addition, even though different infrastructure (e.g., I10 and 

reservoirs) in Houston experienced the same extreme weather conditions due to Harvey, 

the situations and their changes varied. For example, the bursts in frequencies of Interstate 
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Highway 10 distributed across the entire duration of Hurricane Harvey and subsequent 

flooding, while Ben Taub Hospital only had bursts at the beginning of Harvey. From the 

perspective of the magnitude of frequencies, the reservoirs were the most mentioned 

critical infrastructure because the number of relevant tweets was around 800 per hour. All 

the bursts shown in Figure 4 were detected by the proposed method. In the following 

sections, we map the tweets and their relationships into semantic graphs, identify the 

critical tweets with credible situational information, and further examine how the situation 

evolved and what potential interdependencies existed between the critical infrastructure 

detected from our study. 

 

Figure 4 Frequencies of tweets related to investigated critical infrastructure. The 

horizontal axis is the time point represented by the number of hours from 00:00 on 

August 26th. The vertical axis is the scale of frequencies. 
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Figure 5 Information about semantic graphs in burst time frames. 

 

2.4.2 Content Similarity and Graph Mapping 

The burst time-frames were detected and shown in Figure 5. The spans of the time-

frames varied because of the duration of the disruption and the impacts on people. Thus, 

the numbers of tweets in different time-frames varied as well. For example, the tweets 

related to Addicks and Barker reservoirs, Buffalo Bayou, and Ben Taub hospital are 

primarily concentrated in the semantic graphs in the early stage of Hurricane Harvey, 

while the tweets related to Interstate Highway 10 are primarily concentrated in the 

semantic graphs in the middle of Hurricane Harvey. Compared to the bursts shown in 

Figure 4, the detected time-frames were consistent with the crests of the frequencies of 

relevant tweets.  
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To implement the content similarity calculation, first, we extracted and grouped 

the tweets posted in these burst time-frames into clusters. Then, the content similarity 

calculation was conducted on the vectors of tweets which were converted by TF-IDF. 

Using Eq. (5), we converted the content similarity to the weights of edges between two 

tweets. Figure 6 depicts examples of semantic graphs constructed in different burst time-

frames related to the four investigated critical infrastructure systems. The weighted 

degrees vary from 0 to 800, which are distinguished by the intensity of the color and the 

size of the nodes in all graphs. The coordinates of the nodes are randomly generated by 

Python code (NetworkX package) and the distance between two connected nodes is only 

calculated by the number of nodes in a graph (𝑑 = 1/sqrt(𝑛), where n is the number of 

nodes). Distinctly, there should be only one critical tweet having the closest similarity to 

other tweets in Figure 6(a), (b), and (c). Meanwhile, a large number of tweets with lower 

weighted degrees in these graphs can be found as well. These low-degree tweets were 

associated with the situation of critical infrastructure, but they may not convey informative 

messages or may not be related to high-impact disruptive events. For example, the content 

of tweets such as “Reservoir Engineering Technician job at Nearterm Corporation – 

United States” or “Let's help find man's family guys. He’s at Barker Cypress Rd.” were 

not recognized as important situational information. Thus, these tweets had low 

similarities to other tweets and are drawn in small sizes and light colors in our semantic 

graphs. Furthermore, both Figure 6(a) and (d) have the same pattern that only one or two 

nodes are significantly larger than other nodes. This finding shows that the situational 

information in these critical nodes is representative of other nodes, while the information 
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in other nodes is marginal. However, Figure 6(b) and (c) show a different pattern, the 

importance of the information in some nodes is very close to the information in the critical 

nodes. The results indicate that the most important situational information is repeated 

many times on Twitter. The finding also illustrates the robustness of the proposed method 

that can capture situational evidence from different patterns on Twitter. The proposed 

method only extracts the content from the critical node in each graph and map the 

information based on their temporal stamps in order to provide concise and useful 

evidence to disaster management teams and other stakeholders. 

2.4.3 Critical Tweets Identification and Event Unfolding Analysis 

Analyzing temporal and spatial patterns of disruptions is important to understand 

the evolution of the situation in critical infrastructure. Hence, in this case study, we explore 

the temporal and spatial patterns from the situational information (Lauw et al., 2005). To 

this end, we mapped the content of the tweets in a timeline (Figure 7 and Table 2). Based 

on the detected information, there are two primary patterns of situational evolution for the 

investigated critical infrastructure during Hurricane Harvey.  

One situational evolution pattern among the infrastructure investigated in this 

study is the interdependency and co-evolution of Buffalo Bayou, Interstate Highway 10, 

Addicks and Barker reservoirs. According to the identified critical tweets, we deduced the 

temporal unfolding of events related to Barker and Addicks reservoirs as well as the 

interaction between reservoirs and other interdependent critical infrastructure. At the 

beginning of Hurricane Harvey, there was an early warning on social media, which 

indicated that an extreme weather condition with potential impacts on the reservoirs. Then, 
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when Harvey landed in Houston, the reservoirs had to release water to eliminate possible 

breach (dam safety) on August 30. These events led to flooding in nearby neighborhoods 

(in the downstream of Addicks and Barker reservoirs) and affected other critical 

infrastructure such as Interstate Highway 10 and Buffalo Bayou. Starting on August 30, 

Buffalo Bayou continued rising, and the height and flow were updated on Twitter 

frequently, which indicated the water level increased very fast in Buffalo Bayou during 

that period. To protect Interstate Highway 10, crews built a temporary dam on this 

highway on August 31 because water from two reservoirs would swell Buffalo Bayou. 

Nevertheless, as shown in Figure 7 and Table 2, multiple sections of Highway 10 were 

closed due to flooding. For example, eastside on Highway 10 in Baytown was closed on 

August 29. After August 31, Harvey past and water released from reservoirs began to slow 

down. Water levels in the reservoirs fell, while water levels along Buffalo Bayou were 

nearly steady or slowly decreasing. Even though mandatory evacuation was still active, 

some flooded or closed sections on Highway 10 began to reopen. For example, Highway 

10 eastbound from Houston to Beaumont was opened on September 2. From the 

perspective of geographical co-locations, Figure 8 shows the interdependencies among 

reservoirs, Interstate Highway 10, and Buffalo Bayou. Water released from reservoirs to 

Buffalo Bayou when the reservoirs reached their capacities. Also, there was uncontrolled 

outflow from reservoirs affecting nearby neighborhoods and infrastructure (e.g., Highway 

10). Then, the water overflowed from Buffalo Bayou and flooded nearby neighborhoods. 

Such temporal and spatial patterns for the unfolding of events for critical infrastructure 

systems was detected from our Twitter data using the proposed graph-based method.  
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Another pattern of situational evolution is the short-term disruption pattern which 

happen to Ben Taub Hospital during Hurricane Harvey. There might be only one high-

impact disruption related to critical infrastructure, and the situation of this disruption may 

not change significantly over time during the duration of a disaster. For example, in Figure 

7 and Table 2, an event that Ben Taub Hospital was flooded and in power outage, was 

detected on social media on August 27. Patients and staffs in Ben Taub Hospital were 

evacuated, and the hospital was closed from that moment. In the tweets posted after this 

event, when people talked about the Ben Taub Hospital, they were discussing the situation 

in historic flooding and the schedules when the hospital would reopen. Thus, there was 

only one-time disruption of Ben Taub Hospital. The proposed method is tested in a disaster 

setting, in which the bursts of the relevant tweets are closely associated with the 

occurrences of the disruptive events. After disasters pass, the relevant tweets will dissipate 

subsequently. 
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Table 2 Situational information about critical infrastructure in disasters (detected 
on Twitter). 
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Figure 6 Semantic graphs for critical infrastructure in burst time frames. 

 

 

Figure 7 Unfolding of critical infrastructure disruptions detected from Twitter. 

 

2.4.4 Validation 

To examine the reliability of our graph-based method and validate the credibility 

of the identified situational information and detected disruptions, we plotted the weighted 
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degree distribution on log-log scales for semantic graphs shown in Figure 9 and referred 

to news articles to validate the content of critical tweets. One reason for plotting the degree 

distribution in log-log scales is to shrink the scales on axis, which is to respond to skewness 

towards large weighted degrees in our semantic graphs. As we mentioned earlier, the 

weighted degree of tweets varies from 0 to 800, and a few tweets are much larger than the 

bulk of the data. The log-log plot can reduce the skewness caused by this phenomenon. 

Meanwhile, the log-log plot is beneficial for showing the percent change or multiplicative 

factors. For example, in Figure 9(b), the number of tweets with the lowest weighted degree 

is about 10 times the number of tweets with the greatest weighted degree. Thus, the log-

log plot can help us to better read the weighted degree distribution and identify the percent 

change in the number of tweets with different weighted degrees. 

Figure 9 shows that the weighted degree distribution of the semantic graphs in 

burst time-frames is consistent with the intensity of colors and the size of nodes in 

semantic graphs in Figure 6. The first feature of the weighted degree distributions is that 

they do not follow any classic probability distribution models. The numbers of certain 

weighted degree varied dramatically. For example, in Figure 9(a), there are multiple crests 

appearing along with the increase of weighted degree. However, only one node in a 

semantic graph can reach the highest weighted degree. This feature exists in Figure 9(a)–

(c), which validates the analysis in section 4.2 and the results in section 4.3. However, as 

shown in Figure 9(d), the count of nodes with the highest weighted degree is two. Our 

method gathered both tweets and found that these are retweets containing the same 
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credible and non-ambiguous information as the original tweets. Thus, both tweets and 

retweets reached the highest weighted degree in the semantic graph. 

Furthermore, to demonstrate the credibility of the identified situational 

information, we examined the content in critical tweets by comparing to recorded 

information from news articles published in the aftermath of infrastructure disruptions. 

For example, “It took Harris County officials until late Sunday, Aug. 27, to begin issuing 

similar warnings for communities upstream of both Barker and Addicks.” (Olsen, 2018) 

In addition, “Reservoir gates were opened on August 28, releasing storm water into 

Buffalo Bayou.” (Flood Control District, 2017) “the additional water will flow towards 

the Sam Houston Tollway, then south to the area around Interstate 10, known as the Katy 

Freeway and, eventually, Buffalo Bayou, which leads to downtown Houston.” (Fedschun, 

2017) This information demonstrated the impacts of released water from reservoirs on 

highways and Buffalo Bayou, which was identified from our critical tweets. Another news 

article stated, “Late Sunday night, local officials issued voluntary evacuation notices for 

residents around the reservoirs” (Wax-Thibodeaus et al., 2017) This information can 

validate that the mandatory evacuation in neighborhoods near the reservoirs. “HCFCD 

officials said the reservoir levels peaked on Aug. 30 at 109 feet at Addicks and 101.5 at 

Barker. With the releases, the reservoir levels are dropping.” (Tang and O’Neil, 2017) 

Also, “Water levels in the two reservoirs had already reached record levels Monday 

evening, measuring 105 feet at Addicks and 99 feet at Barker” (Wax-Thibodeaus et al., 

2017). The information that reported in these articles can demonstrate the event of 

declining water level identified in the critical tweets.  



 

43 

 

Multiple news articles also provided information to validate the content of critical 

tweets associated with Ben Taub Hospital. For example, “Ben Taub Hospital is 

surrounded by murky water. On Sunday, the hospital prepared to evacuate some of its 350 

patients.” (Khazan, 2017) In addition, “Ben Taub Hospital confirmed to NPR that they 

have reopened, that supply lines are steadily improving and that they have received a food 

delivery and are expecting another one today (August 30).” (Hus and Sullivan, 2017) This 

information is the same as the content in the critical tweets on August 27 and August 30.  

In summary, the situational information related to critical infrastructure 

disruptions and situational evolutions were validated by comparison between news articles 

and identified critical tweets. The proposed methodology is capable of eliminating the 

misinformation (false positive and false negative information) via the semantic 

comparison and weighted degrees. The information we detected is based on the most 

critical tweets, which have the closest semantic similarity to other relevant tweets. 

Meanwhile, by validating the detected information with actual events and news articles, 

there are no false positive/negative alarms exiting in the results. The findings show that 

all detected tweets are credible and non-ambiguous for the public and responders to 

understand the temporal and spatial patterns of the situation relative to critical 

infrastructure and help them better respond to these events. The method can be a 

complement to other less subjective mechanisms in social sensing. That is because social 

sensing can be negatively affected when it is precipitated by populated with rumors, 

misconceptions, deliberate or unintended information, particularly in the case of disasters 

that are prone to human panic and overreaction. 
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Figure 8 Reservoir map: main structures, locations, and water outflow. (Wax-

Thibodeaus et al., 2017) 

 

 

Figure 9 Weighted degree distribution on log–log scales in burst time frames. 
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2.5 Concluding Remarks 

This paper proposed a graph-based method, which focuses on social sensing of 

infrastructure functionality, to detect credible situational information relative to critical 

infrastructure disruptions and situational evolution from social media data in disasters. 

The application of this proposed method was demonstrated in a case study of Hurricane 

Harvey in Houston. The results showed that the primary disruptive events related to the 

investigated critical infrastructure (i.e., Buffalo Bayou, Addicks and Barker reservoirs, 

Interstate Highway 10, and Ben Taub hospital) and their adverse impacts on communities 

could be detected from the critical tweets. The findings also showed that the situational 

information related to the critical infrastructure on social media provided insights into the 

spatial and temporal unfolding of infrastructure disruptions. For example, this study 

captured two important situational evolvement patterns of infrastructure: co-evolution of 

interdependent critical infrastructure (the situation of reservoirs, Buffalo Bayou, and I10); 

and short-term disruption events (the situation of Ben Taub Hospital). In terms of the 

characteristics of the evolvement patterns, the information obtained from the proposed 

methodology can help stakeholders better understand infrastructure disruptions and their 

impacts on residents. This information plays an important role in improving disaster 

response and recovery. 

From the methodological perspective, the proposed graph-based method provided 

a new analytical and computational methodology for social sensing of infrastructure 

disruptions. All identified critical tweets contained detailed information about the situation 
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of critical infrastructure in disasters, as well as the societal impacts of infrastructure 

disruptions. Hence, the results are more insightful than groups of tokens based on the word 

frequencies in existing studies (e.g., topic modeling and clustering). In addition, this 

method distinguishes the credibility of online information on social media. For example, 

retweets are not sufficient in demonstrating the credibility of its original tweets. Rumors 

with sensitive words (e.g., “reservoirs will spill”, which would affect large-scale residents) 

would also be retweeted many times. To overcome this issue (that is not being addressed 

in existing studies), the proposed graph-based method put more weight on the content 

similarity between the tweets posted by multiple users. Hence, this method can improve 

the credibility of the critical tweets as well as the reliability of infrastructure disruption 

findings. 

From a practical perspective, the method proposed in the paper provides 

infrastructure agencies and disaster responders with a technical tool to determine the 

occurrence of the disruptions, the location of critical infrastructure, when disruptions 

happen, how severe the disruptions are, what communities are involved, and what actions 

have been taken for a response. The stakeholders can better capture the performance of 

critical infrastructure using such situational information, and make better decisions such 

as allocating shelters, distributing resources, and mobilizing relief crews. In addition, this 

method enables effective evaluation of critical infrastructure performance in the aftermath 

of disasters to inform future hazard mitigation planning and infrastructure prioritization. 

Social sensing of infrastructure disruptions involves dealing with semantic 

uncertainty, which causes some limitations to the proposed computational methodology. 
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First, the ontology uncertainty would affect the process of filtering relevant tweets. 

Despite the careful selection of the keywords, some relevant tweets may still be missing. 

For example, some residential users may not mention the name of the infrastructure. 

Specifically, residential users might say that “water released; my house is flooded”. This 

tweet is highly related to the case of water release from reservoirs in our study. However, 

due to the limitation of the keywords, this tweet is not included in our dataset. Second, 

semantic similarity uncertainty induced by the dimensionality of tweet vectors would 

affect the measurement of similarities among the tweets. For example, the size of the 

dataset for different infrastructure varies. The larger the dataset is, the more tokens would 

be included in the dataset, and subsequently, the higher the dimension of the tweet vectors 

is. In most cases, those uncertainties will not affect the outputs of our method, but these 

uncertainties should be considered to ensure the reliability of the results.  

A general limitation of social sensing approaches still persists in the proposed 

method. Tweets deliver the information about the functionality loss and impacts of critical 

infrastructure disruptions (e.g., power outage, road closure, and water release) on the 

residents. Due to that, social sensing methods may need to wait for the cumulation of the 

tweets within one hour, which makes the methods no faster than conventional surveillance 

or sensor monitoring-based methods in fast-paced events. Instead, social sensing methods 

can capture detailed and localized situational information which is critical for residents to 

adjust themselves and respond to the disruptions. The criticality of the tweets would be 

correlated to the extent of the adverse impacts of the damages, and subsequently indicates 

the criticality of the infrastructure. Other critical infrastructure such as police station, 
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schools, and churches may not make direct impacts on residents’ lives and is rarely 

reported on Twitter. Thus, it is difficult to detect their situation via social sensing.  

This computational methodology can be further extended in the following areas: 

(1) enhancing the algorithm of vectoring in tweets to make it more feasible in disaster and 

critical infrastructure domain; (2) developing algorithms to identify the relevant entities 

in critical tweets and exploring their relationships for better disaster preparedness planning 

and response; and (3) testing the capabilities of the method in regular daily setting to 

demonstrate its broader applications; (4) implementing visibility graph to analyze time 

series of the situation of critical infrastructure disasters. 
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CHAPTER III  

COLLECTIVE-SENSE MAKING IN ONLINE SOCIAL NETWORKS UNDER 

CRISIS STRESS* 

 

Social cohesion is an important determinant of community well-being, especially 

in times of distress such as disasters. This study investigates the phenomena of emergent 

social cohesion, which is characterized by abrupt, temporary, and extensive social ties 

with the goal of sharing and receiving information regarding a particular event influencing 

a community. In the context of disasters, emergent social cohesion, enabled by social 

media usage, could play a significant role in improving the ability of communities to cope 

with disruptions in recent disasters. In this study, we employed a network reticulation 

framework to examine the underlying mechanisms influencing emergent social cohesion 

in online social media while communities cope with disaster-induced disruptions. We 

analyzed neighborhood-tagged social media data (social media data whose users are 

tagged by neighborhoods) in Houston during Hurricane Harvey to characterize four 

modalities of network reticulation (i.e., enactment, activation, reticulation, and 

performance) giving rise to emergent social cohesion. Our results show that, unlike regular 

social cohesion, communication history and physical proximity do not significantly affect 

emergent social cohesion. The results also indicate that weak social ties play an important 

                                                

* This chapter is reprinted with permission from “Emergent social cohesion for coping with community 
disruptions in disasters” by Fan, C., Jiang, Y., and Mostafavi, A., 2020. Journal of the Royal Society 
Interface. Mar 25;17(164):20190778.  
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role in bridging different social network communities, and hence reinforce emergent social 

cohesion. The findings can inform public officials, emergency managers and decision-

makers regarding the important role of neighborhood-tagged social media, as a new form 

of community infrastructure, for improving the ability of communities to cope with 

disaster disruptions through enhanced emergent social cohesion. 

 

3.1 Introduction 

The objective of this study is to characterize the dynamics of emergent social 

cohesion in neighborhood-tagged social networks in coping with disaster disruptions. 

Information seeking, and sharing is one of the main components of human protective 

actions in facing with disasters. With the increasing use of social media, online 

communication is increasingly prominent in information gathering and sharing among 

community members, especially during times of crises (Sutton et al., 2015; Zhang et al., 

2019). This is because, when disasters cause inevitable disruptions in physical 

infrastructure and subsequent distress on humans, social networks enable information 

sharing and adjustment behaviors that play a key role in helping communities cope with 

disaster impacts (Akhtar et al., 2012; Balcik et al., 2010). Social cohesion has been shown 

to be an important element for human wellbeing (Misra et al., 2017; Roca and Helbing, 

2011), especially in times of distress and crises (Lazega et al., 2006). Particularly, the 

increasing use of social media during disasters could give rise to emergent social cohesion, 

which is characterized by abrupt, temporary, and extensive social ties with the goal of 

sharing and receiving information regarding a particular event influencing a community 
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(Kim and Kang, 2010). Existing literature have already examined online social networks 

(OSNs) from multiple important aspects such as: fundamental structure of social networks 

(Prasad et al., 2018; Sekara et al., 2016); information diffusion (Altay and Pal, 2014; 

Morone and Makse, 2015; Qiu et al., 2017; Vosoughi et al., 2018b); and social segregation 

(C Fan et al., 2020; Wang et al., 2018). Some methodologies and techniques have been 

employed to examine user activities, network structures, and information propagation on 

social media for different purposes. For example, community network analysis has been 

used for examining roles of different actors/organizations, as well as information diffusion 

(Chao Fan et al., 2020d; Papadopoulos et al., 2017). Or, topic analysis has been used to 

evaluate important topics discussed by communities. While each of these studies (and the 

adopted analytics) provide insights about a particular modality in online social networks, 

they do not inform about the relationship among various modalities influencing important 

phenomena such as emergent social cohesion. To this end, this study aims to examine 

various modalities and mechanisms in OSNs influencing emergent social cohesion in 

disaster-impacted communities using an integrated approach. Understanding emergent 

social cohesion in OSNs and its underlying dynamics may hold the key to promote formal 

policies for social media selection and usage during disasters by city officials, emergency 

managers, and community leaders. 

In this study, we specifically examine the dynamics of emergent social cohesion 

in neighborhood-tagged social media during disaster disruptions. Among different social 

media platforms, most of them, such as Twitter, tag their users with a city, a state, or a 

country in their profiles to enable a large-scale communication among massive users 
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regarding different topics and events (such as disaster-induced events) (Bagrow et al., 

2019). Community disruptions, however, tend to be localized and vary from one 

neighborhood to the other. For example, one neighborhood may be affected by flooded 

roads while another neighborhood might be dealing with sewage backup. Without tags of 

neighborhood information, it is hard for social media users to share and receive 

information regarding the same disruption event with users from the nearby neighborhood 

and cope with disruptions. The examination of the effect of geographic proximity on 

emergent social cohesion is not feasible to do using Facebook and twitter data since the 

distance and neighborhoods locations are not known. Hence, analyzing neighborhood-

tagged OSNs makes it possible to uncover the relationships among neighborhood-specific 

disruptive events, human activities, and cohesion in OSNs. Such characterization would 

be unattainable through the use of other communication technology tools such as Twitter 

(Chao Fan et al., 2020c; Y. Kryvasheyeu et al., 2016). In this study, we examine the 

underlying dynamics of emergent social cohesion in OSNs using a theoretical Network 

Reticulation framework and based on four modalities: enactment, activation, reticulation, 

and network performance in neighborhood-tagged OSNs. The study utilizes 

neighborhood-level social media data (from Nextdoor) related to the 2017 Hurricane 

Harvey in Houston in analyzing each modality of network reticulation and their 

relationship to the emergence and stability of social cohesion. 

Hurricane Harvey was a category-four tropical storm which affected Houston, the 

fourth largest city in the United States, from August 26 to August 29 in 2017 (Sebastian 

et al., 2017). The extremely high intensity of the rainfall brought by Hurricane Harvey led 
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to the water levels of Addicks and Barker reservoirs in the west of Houston to their 

maximum (Fan and Mostafavi, 2019b; Tang and O’Neil, 2017). To prevent the reservoirs 

from abrupt disruptions, a large amount of water was released from the reservoirs and 

flooded the nearby 28 neighborhoods. We collaborated with the volunteers living in these 

neighborhoods and collected unique and publicly available data from their Nextdoor 

accounts in which user profile’s location is verified by user’s physical address and tagged 

by a neighborhood name. The dataset spans 19 days, from August 20 to September 7, 

including 7 days before Hurricane Harvey and 12 days during Hurricane Harvey and the 

subsequent flooding. Surveying the affected area, the identified 28 neighborhoods has 

various number of users (SI Appendix, Table S1.). In total, our dataset includes 2,690 

active users who posted or commented at least one message, 1,939 posts, and 32,776 

comments. Daily OSNs are mapped based on this dataset, in which active users are 

abstracted as nodes and the post-comment relationships are abstracted as edges (i.e., social 

ties) (SI Appendix, Fig. S1.). 
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Figure 10 Modalities of the Network Reticulation Theoretical framework and 

empirical results for the case study. (a) Modalities of the NRT framework. Each 

modality (i.e. enactment, activation, reticulation and performance) is composed of 

two components: systemic phenomena and structural properties. (b) Disaster events 

happened in the neighbourhoods near reservoirs, including Hurricane Harvey and 

water release from reservoirs. The first day when the hurricane approached the 

neighbourhoods is tagged as 1. (c) Number of active users and communications on 

social media before and during the hurricane and flooding. (d) The proportion of 

eight themes in online communications among users from 28 neighbourhoods for 12 

days, in which the proportions were weighted by the number of communications 

under the posts regarding a certain theme. 
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3.2 Network Reticulation Theory 

Communication theories such as Corman’s Network reticulation theory (NRT) 

(Corman and Scott, 1994), Giddens’ structuration theory (Giddens, 1984), and Homans’ 

theory of the human groups (Homans, 1950) have defined basic concepts and processes 

related to communication networks, such as the concept of triggering events, activity foci, 

and communication relationships. These theoretical elements can enrich the existing 

analytics used for evaluating distinct modalities in online social networks and provide an 

integrative framework for examining the relationships among various modalities 

influencing important phenomena in online social networks. Hence, built upon these 

theoretical concepts from the communication field, we proposed an extended network 

reticulation theory as an integrative framework for examining four modalities and their 

relationships that affect emergent social cohesion in online social networks in disasters 

(see Figure 10(a)). The NRT framework utilized in this study characterizes the dynamics 

of social networks based on four modalities: enactment, activation, reticulation, and 

performance. Each modality is a concept that relates the systematic phenomena to 

structural features in online social networks (Giddens, 1984). Enactment modality 

represents disruptive events (e.g., community disruptions and infrastructure failures) 

which trigger human activities in social networks. Events tend to evolve, trigger activities 

in individuals, and cause transformation in the structure of online social networks. For 

example, the information sharing behavior is more active when the environmental events 

occur and situation evolves, comparing to the behaviors before the events. Activation 
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modality specifies user activities—posting and commenting about disruption events. 

Specifically, activities such as reporting and discussing situations in neighborhoods (e.g., 

house damages, floodwater levels, and road closures) stimulate communication instances 

in online social networks. Due to the dynamic nature of the unfolding of disaster-induced 

events, the activity themes (See the definition in Materials and Methods) vary from one 

activity foci to the other and over time. Accordingly, activity foci are identified to 

represent cohesive cluster of online users corresponding to a particular activity theme in 

OSNs during a specific time period. Reticulation modality characterizes the structural 

properties of communication instances among clusters of online social networks 

corresponding to different activity foci. Specifically, reticulation modality signifies the 

creation and reinforcement of social ties among users regarding specific activity foci. 

Finally, network performance modality determines the influence of user activities on the 

structure of online social networks. In particular, we determine the measure of network 

assortativity at both network level and activity foci level and its changes over time to 

signify the structural anatomy and stability of emergent social cohesion in OSNs. We 

employed the NRT framework and its four modalities in examining emergent social 

cohesion in neighborhood-tagged OSNs during the 2017 Hurricane Harvey and the 

subsequent flooding event in Houston. 

3.2.1 Enactment Modality  

The enactment modality in the NRT framework focuses on examining the nature 

and timing of the triggering events (e.g., Hurricane Harvey and water release from 

reservoirs), in order to better understand their impacts on the affected neighborhoods. As 
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shown in Figure 10(b), Hurricane Harvey started having impacts on the neighborhoods in 

the West of Houston on Day 0 (August 26, 2017). It dropped torrential and unprecedented 

amounts of rainfall over the Houston metropolitan area on Day 1 and 2, and then weakened 

and moved towards Louisiana after Day 3 (August 29, 2017). Due to the heavy rainfall, 

the two major flood control infrastructure, Addicks and Barker reservoirs, reached their 

maximum capacity. To protect the reservoirs from breaching, the U.S. Army Corps of 

Engineers decided to release the water from these two reservoirs without issuing any 

statement, inundating thousands of houses in nearby neighborhoods (Allen, 2017). The 

entire duration of the flooding sustained for 10 days spanning from the end of the hurricane 

until flood water receded. The houses in West Houston had never flooded before; and 80 

percent of the residents did not have any flood insurance (Shilcutt and Asgarian, 2017). 

Hurricane Harvey and the subsequent flooding event resulted in an extreme panic among 

the affected neighborhoods. People in those neighborhoods had to seek situational 

information, look for relief resources, and evacuate. As such, the communications of 

people on Nextdoor increased significantly during that period. As shown in Figure 10(c), 

more than 200 active users from these neighborhoods communicated on Nextdoor each 

day during Hurricane Harvey and flooding, generating more than 1,000 posts and 

comments (see details in Appendix A, Table 9). The posts and comments are analyzed in 

the same way, and both are considered as communications among online users. The peak 

of the communication and active users occurred at the end of Hurricane Harvey and the 

beginning of the flooding. When the flood started to recede, the activities of the users 

decreased as well. 
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3.2.2 Activation Modality  

In our NRT framework, the triggering events cause user activities related to 

seeking and sharing information to cope with disruptions. User activities on the 

neighborhood-tagged social media include posting queries to seek help or ask questions, 

as well as commenting posts to respond or share information. The activation modality 

helps linking the enactment modality (triggering events) to the reticulation modality 

(communication instances). In the activation modality, online users organize and create 

the conditions that necessitate communication instances and social ties with each other. In 

this study, the activation modality identifies activity themes and foci, around which the 

reticulation of communications unfolds. Hence, collectively, four modalities enable the 

understanding of emergent social cohesion in online social networks during disasters.  

From day 1 to day 2, when the hurricane landed, the most concerned activity theme 

was the status of infrastructure (accounting for 73.8% in all communications on day 1) 

including road, power, and water (Figure 10(d)). Beginning on day 3, water release from 

the flood control reservoirs started and the released water flooded the nearby 

neighborhoods. Hence, again, infrastructure-related communication was the main activity 

theme discussed by users (accounting for 67.4% in all communications on day 3). 

Meanwhile, more and more requests or coordination for help from the users in these 

affected neighborhoods were posted on the social media (7.98% of all communication on 

day 4). The damages to housing and properties became increasingly severe, whose theme 

increased from 9.49% of all communications on day 4, to 22.4% of all communications 

on day 5, and finally reached 48% of all communications on day 6. When the flood water 
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started to recede on day 7, residents focused more on relief and advisory information 

(65.1% in all communications on day 7). The relief theme included information related to 

insurance, recovery tips as well as federal aid (accounting for more than 50% of all 

communications between day 7 and 11). When the flood water receded on day 12, multiple 

activities including volunteering, requests for help, relief information seeking, and 

housing and properties had equal shares of communications. This indicates that, as the 

triggering events dissipated, the prominence of main activity themes dissipated as well. 

This analysis shows direct relationship of activity themes with the timing of triggering 

events. 

The primary activities and themes are the results of activity foci, which can be 

examined as structural clusters in OSNs communicating activity themes (Corman and 

Scott, 1994). We employed the Louvain algorithm to detect the activity foci in the OSNs 

(see Materials and Methods: Activity foci and network modularity) (Waltman and Van 

Eck, 2013). In the activity foci, users collectively drew up on information in order to co-

act with each other and cope with the disruptions. The more severe the triggering events 

in the physical environment, the more individuals tend to find and develop new activity 

foci (Lazega et al., 2006). Being consistent with the structural approach underlying the 

focus theory (Burt, 1984), the number of activity foci in the days at the beginning of 

flooding (especially from day 2 to day 6) is greater than other days. This is because, 

information seeking is an important component of human protective action and people had 

to look for a variety of information to cope with the adverse impacts flooding (Figure 

10(d)).  
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Evaluation of the activity foci based on the structural network properties enables 

evaluating what users and activity themes give rise to emergent social cohesion. For 

example, Figure 11(a) depicts the activity foci and their focused themes in OSN on day 6. 

The activity themes can be identified from the content generated by the users among the 

activity foci. Each activity focus has its own focused themes such as volunteer and 

infrastructure status, which bring users together to share the information and resources. 

The presence of activity themes and foci further facilitates collective protective action, 

and hence enhances cohesiveness among users in activity foci. As shown in Figure 11(b), 

comparing to the density of the entire network, the densities of activity foci are 

significantly high. This implies, users in each activity foci are densely connected to the 

users within the same activity foci and have less edges connected to the users outside the 

activity foci. The results are consistent with the results of modularity, which measures 

internal (and not external) connectivity. The higher the modularity, the more connected 

the activity foci (i.e., nodes in the activity foci are closely connected, and are less connect 

to the nodes outside the activity foci) (Newman and Girvan, 2004). The information 

related to nodes and edges for each activity foci can be found in Appendix A, Table 7. 
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Figure 11 Network reticulation outcomes. (a) An illustration of the focused themes 

of activity foci in the OSN of day 6. (b) Densities of daily networks (black dots) and 

activity foci (boxes and colorful dots). (c) The proportion of existing social ties in 

OSNs during the disasters (see Material and methods). (d) The distribution and mean 

of weights of social ties in each OSN. There are two types of social ties with regard to 

the neighborhoods of the connected users: the social ties connect the users from the 

same neighborhood (orange), and the social ties connect the users from different 

neighborhoods (blue). The weights of social ties were the frequency of 

communications.  
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3.2.3 Reticulation Modality  

Activities by users on social media lead to the formation of communication 

instances (a.k.a. social ties). To examine the extent to which the increase in 

communication instances and social ties was due to triggering events, we examined the 

effects of two latent factors: communication history and user locations proximity. 

3.2.3.1 Effects of communication history and physical proximity 

Communication history was analyzed to determine whether the emergent social 

cohesion was more influenced by triggering disruption events or by the past 

communication of users. We calculated the proportion of existing social ties, which were 

established during 7 days before the hurricane landed (Figure 11(c)). The results show that 

the proportions of prior social ties to post-event social ties are very low across the entire 

12 days. All of the proportions do not exceed 4% and the proportions are even less than 

0.5% in 7 days (i.e., day 2, 3, 4, 5, 8, and 11). These results demonstrate that, unlike the 

case of regular social cohesion, the communication history did not have a significant 

influence on the formation of social ties in emergent social cohesion.  

Another latent factor is the physical proximity of users (Burt, 1987; Jackson et al., 

2018). As every user is tagged by their neighborhoods, we defined the physical proximity 

between users based on the distance between their neighborhoods (SI Appendix, Fig. 

S3A). The measurement of the distances between neighborhoods is defined in the 

Materials and Methods section. Appendix A, Figure 29B displays the communication 

frequencies between neighborhoods across the entire period of analysis (see the heatmaps 

for daily communication frequency in Appendix A, Figure 28). However, the Pearson’s 
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correlation coefficients indicate that physical proximity has weak correlation with the 

frequency of online communications between different neighborhoods. Thus, physical 

distance does not hinder the process of emergent social cohesion in the context of 

community disruptions, either. The findings imply that the main reticulation mechanisms 

(creation or reinforcement of social ties) were derived from activity themes triggered by 

disruptive events, and not the communication history and physical proximity. 

3.2.3.2 Spatial and temporal changes in social ties 

We mapped the weight distribution of social ties for each day in the OSNs (Figure 

11(d)). The distribution of weights for social ties vary across different days. Generally, the 

weight for most edges is 1 regardless of whether the users connected by an edge are from 

the same neighborhood or not. This is also shown by the median weights of the weight 

distribution in each day (see Appendix A, Table 8). In addition, the number of edges 

connecting the users from different neighborhoods is greater than the edges connecting 

the users from the same neighborhood. This phenomenon is more significant in the days 

when a disruption event occurred (e.g., day 1 when hurricane started to land in the area, 

day 3 when water release from the reservoirs started, day 7 when flood started to recede, 

and day 12 when flood water finally receded). This indicates that user activities 

immediately after triggering events goes beyond the boundaries of their own 

neighborhoods. Because the users in disasters are not self-contained or self-sufficient for 

information processing (Prasad et al., 2018), they rely on information shared by others, as 

well as reactions and sentiments of others in processing information regarding disaster 

threats. Thus, when disaster situation evolves (i.e., triggering events occur), online users 
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would create more weak social ties to gather new situational information from different 

users and examine their sentiments and reactions. This finding indicates that weak social 

ties connecting a large number of users from different neighborhoods play a primary role 

in emergent social cohesion. Unlike regular social cohesion with strong social ties 

(Kawachi and Berkman, 2000), weak ties are building blocks of emergent social cohesion. 

3.2.4 Performance Modality  

As discussed earlier, activity themes enable emergent social cohesion in groups of 

users (a.k.a., communities or activity foci) and create weak social ties between the users 

discussing the same topics. In this section, we investigate the network structural properties 

as a result of emergent social cohesion to gain deep insights into the role of neighborhood-

tagged social media in improving information propagation.  

Mixing patterns in networks is an important approach to study the tendency for 

nodes in networks to be connected to other nodes that are similar (or dissimilar) to them 

in terms of selected node attributes such as node degree and user profile features (see 

Materials and Methods) (Newman, 2003). To dissect the structure of emergent social 

cohesion and understand how the cohesion structure contributes to the information 

propagation, we examined the mixing patterns based on degree (Figure 12(a)) and 

neighborhood (Figure 12(b)) attributes of the nodes and analyzed difference of the mixing 

patterns at two levels: network level and activity foci level. 

3.2.4.1 Degree assortativity 

Degree assortativity measures the extent to which nodes with similar degrees 

connected to each other (do gregarious people tend to associate with other gregarious 
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people) (Newman, 2003). Figure 12(a) shows that most of the activity foci in OSNs across 

the 12 days of hurricane and flooding are disassortative. That is, the activity foci most 

often paired unlike nodes in which their degrees are quite different. In addition, the degree 

assortative mixing patterns also vary during the evolvement of the disaster situation, 

especially when new triggering events happened. For example, the mean of degree 

assortativity for the activity foci reached to 0 (non-assortative) on day 3 when the 

Hurricane Harvey passed and the flooding from the reservoirs started, and on day 7 when 

the flooding started to recede. During these days when new events happened, activity foci 

lost the mixing tendencies. At the network level, however, the daily OSNs exhibits a 

tendency of assortative mixing (i.e., users with the similar degree connect to each other) 

(Figure 12(a)). In evaluating the degree assortativity for each daily network, the social ties 

among different activity foci in OSNs are considered. These ties crossed the boundaries 

of activity foci and bridge the gaps among the users in different activity foci and discussing 

different themes. In doing so, the degree assortativity of the networks increased about 0.4 

from the means of degree assortativity of the activity foci in each daily network. 

Building upon this result, we can examine the structures of the social network 

emerging on Nextdoor by assembling the cliques in accordance with the mixing patterns 

(Figure 12(c)). The posting and commenting functionality on Nextdoor enable users to 

form cliques in which users who commented in the same post are fully connected with 

each other. Thus, the social networks formed on Nextdoor are the result of assembling the 

cliques with certain mixing patterns. Initially, cliques emerged when disaster-related posts 

were generated by users and attracted attentions of other users to comment. Different users 
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joined different posts based on their theme of interests. Users with similar interests in the 

themes form cohesive activity foci built upon multiple cliques. The activity foci gravitate 

more users with varying levels of degrees. This assembling mode contributes to the 

formation of the hierarchy in social networks with various degrees of users. 

3.2.4.2 Neighborhood assortativity 

To assess assortative mixing pattern for neighborhoods (the extent to which 

activity foci in OSNs include users from the same neighborhood), we calculated the 

assortativity coefficient of activity foci and examined the distribution and means of the 

assortativity over time (Figure 12(b)). As the result shows, the means of neighborhood 

assortativity coefficients for activity foci during Hurricane Harvey and flooding are 

around 0. The maximum value for the mean of assortativity coefficients is only 0.18. The 

result indicates that the majority of the activity foci in the emergent OSNs are non-

assortative regarding neighborhoods. That is, activity foci involved users from different 

neighborhoods to generate and share information in disasters. To further support this 

finding, we examined the proportion of neighborhoods in each activity foci in these 12 

OSNs (Figure 12(d)). Each pie chart was embedded in a node representing an activity 

focus. As shown in Figure 12(d), the majority of activity foci in OSNs are composed of 

multiple different neighborhoods, regardless of different sizes of the activity foci. This 

result also provides evidence that, instead of the geographical boundaries, cohesive 

activity foci are more driven by the information needs of users related to triggering events 

and their impacts. Existing studies on Twitter show that social media has not affected 

geographical homophily (i.e., individuals from the same location tend to connect with each 
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other) and recent empirical research on online social networks found that people still tend 

to connect more often to geographically close people (Choudhury et al., 2011; Kulshrestha 

et al., 2012). These studies did not consider geographic homophily at the neighborhood 

scale. Our results indicate that neighborhood-tagged social media can enable users to 

break the physical boundaries of neighborhoods and achieve cross-neighborhood 

communication for information sharing and seeking to form cohesive activity foci. 

Analyzing the neighborhood assortativity for the entire daily OSNs, we find that 

the majority of the daily OSNs have the neighborhood assortativity coefficients 0.2 to 0.6 

higher than 0 and the mean values of neighborhood assortativity coefficients for their 

activity foci (Figure 12(b)). The average value for the neighborhood assortativity 

coefficients for these 12 days is 0.3, which signifies a weak assortativity for the 

neighborhoods. In addition, the changes in the neighborhood assortativity coefficients are 

consistent with the unfolding of disruption events. Specifically, day 3 (when Hurricane 

Harvey affected these neighborhoods) and day 7 (the last day with high water level in 

neighborhoods) both have low neighborhood assortativity coefficients, which implies that 

users tend to get information from different neighborhoods as part of their protective 

action information seeking.  

Combining the findings at activity foci level and network level, we can identify an 

important mixing pattern. The neighborhood-tagged social media (Nextdoor) enabled 

users from different neighborhoods to form cohesive activity foci to share and seek 

information they needed. This also confirmed the role of activity foci in emergent social 

cohesion in OSNs, i.e., the primary reason for building social ties on social media is 
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communication activities which motivate users to seek/share information regarding a 

triggering event. However, the social ties that cross the boundaries of activity foci and 

enable the spread of information across different activity foci tend to be created by the 

users from the same neighborhood. These users play an important role as boundary 

spanners contributing to the emergent social cohesion within and across neighborhoods. 

 

Figure 12 Network mixing patterns during hurricane and flooding. (a) Degree 

assortativity for daily OSNs (black dots); and the mean and distribution of the 

activity foci (colourful violin plot) in each day during the hurricane and flooding. (b) 

Neighbourhood assortativity for daily OSNs (black dots); and the mean and 

distribution of the activity foci (colourful violin plot) in each day during the 

hurricane and flooding. (c) Structural anatomy of daily OSNs for understanding 

emergent social cohesion and information propagation. (d) Activity focus-level OSNs 

with the proportions of various neighbourhoods by counting the number of users 

from the same neighbourhoods. Each pie chart represents an activity focus. The size 
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of a pie chart is consistent with the number of users in the activity foci. The 

connections between communities depend on the connections between the users in 

both communities. There are three neighborhoods without any active users on social 

media during disasters because there are only a few residents and corresponding 

registered users on Nextdoor. Meanwhile, a small group of people outside the 

investigated neighborhoods joined the communication, labeled as other 

neighborhoods. 

 

3.3 Discussion 

Our proposed theoretical network reticulation framework uncovers the underlying 

modalities and structural network properties affecting emergent social cohesion in the 

context of community disruptions in disasters. Specifically, the findings in this study show 

that community disruption triggers user activities on social media, and users form activity 

foci for communicating information related to different themes. Then, weak social ties 

bridge communication instances (i.e., activity foci) to enable the reticulation in networks, 

which subsequently shows a disassortative mixing of users to promote information 

propagation across physical and online community boundaries. Although the case study 

focused on how residents cope with a hurricane and flooding event, the theoretical 

framework and our findings could be generalized to other crises and geographic contexts. 

One key finding was that disaster events trigger the emergence and evolvement of 

human protective activities in seeking information on social media. This information 

seeking and sharing behavior creates activity foci that gravitate additional users and leads 
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to creation of new links giving rise to emergent social cohesion. This finding implies the 

important role that neighborhood-tagged social media, such as Nextdoor, play in 

formation of activity foci related to different triggering events for which residents seek 

information, and hence improving the individual and collective protective action of the 

residents. This finding also has implication for online influential users or community 

leaders to initiate activity themes/foci and enhance cohesiveness of users (Patterson et al., 

2010; Yang et al., 2019). These individuals with boundary-spanning weak ties between 

neighborhoods play an important role in scaling up the communication among 

neighborhoods. Future studies can examine the bridging and boundary spanning roles of 

these individuals to inform the efficient and effective information spread among online 

users from different neighborhoods. 

Another key finding was that emergent social cohesion arises from cohesive 

activity foci which focus on specific disaster-related events and are constructed by weak 

social ties. In disaster contexts, activity foci become the gravitation centers that absorb 

users (create weak ties) across different neighborhoods with interest/need for information 

about the activity theme. Meanwhile, we observed that weak social ties were derived from 

activity themes, instead of communication history or physical proximity. This finding 

further confirms that people utilize social media during disasters for information seeking 

as part of their protective actions. In other words, the fundamental function of social media 

changes for people during disasters. Unlike regular social cohesion with strong social ties 

and physical homophily, the formation of inclusive activity foci and weak ties triggered 

by disaster events are the building blocks of emergent social cohesion. This result is also 
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consistent with the principles in Homophily/Heterophily theory that weak social ties are 

more heterophilous than strong ties (Brown and Reingen, 2002; Gross et al., 2006). 

Accordingly, creating weak social ties not only contributes to the inclusiveness of activity 

foci, but also makes an influence on emergent social cohesion and information spread. 

That is because, heterophilous communication facilitates the flow of information between 

diverse segments of a social network (Aral and Walker, 2014; Brown and Reingen, 2002).  

The third key finding was that different assortative mixing patterns for OSNs and 

activity foci improve the information spread. This happens because the assemblage of 

multiple activity foci makes OSNs assortatively mixed by creating social ties between the 

users with similar degrees and from the same neighborhoods. At the same time, activity 

foci themselves are composed of the ties between the users with different degrees and 

from different neighborhoods. The findings illustrate the assemblage process of OSNs and 

the formation of the hierarchy in terms of the node degree and neighborhood attributes. 

This self-organized mixing pattern could give rise to emergent influential users who could 

be identified and used to seed urgent safety related information and speed up the diffusion 

of the information (Aral and Dhillon, 2018). Identifying the users who bridge the 

boundaries of activity foci using the degree and neighborhood features and seeding the 

information to these users can optimize the information propagation. 

With the increased use of social media in disasters, emergency managers, public 

officials, and community leaders would need to optimize their strategies to improve 

information seeking protective action in communities. Understanding the structure and 

dynamics of social networks could inform about better intervention strategies to improve 
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the spread of situational information, the situation awareness of the affected population, 

and response and recovery of neighborhoods in disasters. Our theoretical network 

reticulation framework and the findings may provide important insights for public 

officials, emergency managers and community leaders regarding social media selection 

and usage policies for improving the capacity of communities in coping with disasters. 

Additionally, the proposed integrative framework can be further adopted in other studies 

and contexts to examine the dynamics of online social networks based on the 

characteristics and relationships among the four modalities. Therefore, the next critical 

question is how the identified emergent social cohesion vary from one disaster to another.  

Moreover, examining user behaviors on multiple social media tools could be examined in 

future studies to further inform about emergent social cohesion in disasters. A challenging 

problem, however, is to collecting quality data from different social media platforms for 

the same areas.  Moreover, future studies can combine the data about phone calls with 

social media data to further examine social network interactions (specifically when there 

are disruptions in internet and telecommunication services). Nevertheless, emergent social 

cohesion would primarily arise due to formation of weak social ties on online social 

networks (phone calls are usually made with existing contacts which reinforce the existing 

social ties rather than creation of new communication instances). 

 

3.4 Materials and Methods 

The data were gathered by volunteers in different neighborhoods one week after 

Hurricane Harvey. The neighborhoods in this study is defined by Nextdoor. Since 
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Nextdoor allows the users to access all their historical data, the volunteers could gather 

communications for the period before the disaster as well. The volunteers used their 

personal Nextdoor accounts to gather communications among users in their own and 

nearby neighborhoods using the public posts. A public post is a message that the user 

consents to be publicly available for all users from nearby neighborhoods rather than only 

to his designated users.  Communications among users through public posts were gathered 

anonymously. Nextdoor only allows the users to show their physical addresses, and no 

organizational or association identities are allowed to be disclosed. Social/institutional 

identity cannot be observed and collected from user profiles. Hence, there are no 

institutional mechanisms that affect the communication among the neighborhoods.  

The neighborhoods were selected based on two criteria. First, these neighborhoods 

were flooded when the water was released from the reservoirs in West Houston during 

Hurricane Harvey. The water release was a major disruption and caused significant 

impacts, and thus provided an ideal setting for examining emergent social cohesion. 

Severe damages happened in the downstream area (see Appendix A, Figure 30). Since the 

impact of flooding was almost the same across different neighborhoods, we assumed that 

the use of online communication is not differentiated by the extent of impact experienced 

by these neighborhoods. Second, Nextdoor has some constraints related to the 

neighborhoods that a user can communicate with. The neighborhoods that we selected are 

within the geographical area affected by the reservoirs water release whose users could 

communicate with each other. The sizes of the neighborhoods are shown in Appendix A, 

Table 4. 
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3.4.1 Activity Foci and Network Modularity 

Activity foci is a structural cluster in which the users connected to each other more 

closely than their connections to the users outside the activity foci. The idea of detecting 

activity foci was named as community detection in computer science. Modularity 

maximization (i.e., Louvain heuristic (Blondel et al., 2008)) is one of the widely used 

approaches for detecting communities, which measure the modularity of a network to 

examine how well a network is partitioned into communities. This approach compares the 

number of edges within a certain group to the expected number of edges in a null model. 

The modularity for a network is formulated as (Montes et al., 2017; Newman, 2003): 

𝑄 =
1
2𝑚)|𝐴A5 −

𝑑A𝑑5
2𝑚 ~ ∙ 𝛿�𝑑A, 𝑑5�

A5

 
(9) 

where 𝑚 is the number of edges in the network, 𝐴A5 is the adjacency matrix of the network, 

𝑑A and 𝑑5 are the degrees of the nodes 𝑖 and 𝑗. The higher the modularity (closer to 1), the 

more edges within the module that we expect by chance (Foster et al., 2010). Generally, 

the modularity higher than 0.3 means significant community structure. In this study, we 

adopted Louvain algorithm to detect communities by maximizing the modularity of the 

networks. 

3.4.2 Communication History 

Communication activities among the users on social media before the hurricane 

approached to the locations are considered as the communication history. In this study, 

the communication history is identified using the existing social ties established during 
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the 7 days before Hurricane Harvey. Then, we can measure the effect of communication 

history on the communication behaviors during hurricane and flooding by: 

𝑃 =
|𝐸�|
|𝐸|  (10) 

where |𝐸�|  is the number of social ties that have been created before Hurricane Harvey, 

and |𝐸|  is the total number of social ties in the online social network. Low proportion of 

the social ties created before can indicate the low effect of communication history on 

emergent social cohesion during disasters. 

3.4.3 Physical Proximity 

To examine the effects of physical proximity on social cohesion in OSNs, physical 

proximity was defined to measure the distance between different neighborhoods (Gibbons 

et al., 2018). This study developed three levels of physical proximity: “within a 

neighborhood”, i.e., both of the users live in the same neighborhood; “nearby 

neighborhoods”, i.e., the users live in the neighborhoods bordering on each other; and 

“distant neighborhoods”, i.e., the users live in the neighborhoods which do not border on 

each other. 

3.4.4 Communication Frequency 

Communication frequency within and between neighborhoods was a measurement 

to show the cohesiveness between two neighborhoods. The matrix of communication 

frequency between neighborhoods was used to calculate the correlation with physical 

proximity and illustrate the effects of physical proximity on emergent social cohesion. The 

communication frequency was computed by: 
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𝑓 =
∑ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑢, 𝑣)�∈�,]∈b

|𝑈| ∙ |𝑉|  (11) 

in which 𝑈 and 𝑉  are collections of users in neighborhoods. 𝑈 and 𝑉 can be the same 

neighborhood (i.e., |𝑉| = |𝑈| − 1 ), in which the results show the communication 

frequency of users within the same neighborhood. The communication frequency of users 

in different neighborhoods can be obtained when 𝑈  and 𝑉  represents the users from 

different neighborhoods. Whether users come from the same neighborhood or not, as 

shown in Eq. (11), we deem each communication is from two neighborhoods (they may 

be the same). This approach can overcome the discrepancy from the differences in number 

of users in different neighborhoods. 

3.4.5 Content Coding 

Two researchers manually coded each post for message content in our dataset by 

using a content-coding approach proposed in prior research (Sutton et al., 2014). Based 

upon the content themes presented by (Sutton et al., 2015), this study developed a new 

coding ontology, which is fit the content categories on our dataset, including 8 themes: 

housing and properties, i.e., information about damages of housing, loss of properties, and 

casualty; infrastructure status, i.e., information about infrastructure facilities; 

evacuation/shelter, i.e., information about pre-evacuations, mandatory evacuations, and 

sheltering information; disaster descriptions, i.e., descriptions of the disaster itself and its 

scales; relief/advisory information, i.e., relief information and response tips; request for 

help, i.e., actions about requesting for neighbors’ on-site help; volunteer, i.e., information 

about volunteering or providing individual help to neighbors; and off topic, i.e., the posts 
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are not within the scope of disaster-related topics. The specific definition and examples of 

posts are available in Table 5. A set of posts were split-recorded by two coders and they 

exchanged and checked the codes for intercoder agreement. The coders agreed on theme 

codes in 96% of cases and the disagreements were resolved through discussion and 

consensus. The proportion of each theme in daily communications were calculated by 

taking into account the number of comments belonging to the posts coded as the theme. 

This computing approach is beneficial to exhibit the contribution of themes to the 

formation of social ties as well as emergent social cohesion. 

3.4.6 Assortative Mixing in Networks 

A good measure of the extent to which the nodes with similar degree or attribute 

connect to each other is assortativity. To quantify the level of assortative mixing of 

attributes in a community, this study employed the Eq. (12) to compute the assortativity 

coefficient (Newman, 2003): 

𝑟 =
𝑇𝑟(𝑀) − ‖𝑀n‖
1 − ‖𝑀n‖  (12) 

where 𝑀  is the mixing matrix of the attribute, and ‖𝑀n‖  is the sum of all elements of the 

matrix 𝑀n . Here, for the purpose of our analysis, the examined attribute is users’ 

neighborhoods. The assortativity coefficient ranges from -1 to 1. The larger the 

assortativity coefficient, the more perfect the assortative mixing. Specifically, 𝑟 = 1 when 

there is perfect assortative mixing, 𝑟 = 0 when there is no assortative mixing, and 𝑟 is 

negative when there is disassortative mixing (Newman, 2003). 
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CHAPTER IV  

UNDERSTANDING DYNAMICS OF PHYSICAL NETWORKS FROM HUMAN 

DIGITAL TRACES IN EMERGENCIES* 

 

In this study, we propose a contagion model as a simple and powerful 

mathematical approach for predicting the spatial spread and temporal evolution of the 

onset and recession of floodwaters in urban road networks. A network of urban roads 

resilient to flooding events is essential for the provision of public services and for 

emergency response. The spread of floodwaters in urban networks is a complex spatial-

temporal phenomenon. This study presents a mathematical contagion model to describe 

the spatial-temporal spread and recession process of floodwaters in urban road networks. 

The evolution of floods within networks can be captured based on three macroscopic 

characteristics—flood propagation rate (𝛽), flood incubation rate (𝛼), and recovery rate 

(𝜇)—in a system of ordinary differential equations analogous to the Susceptible-Exposed-

Infected-Recovered (SEIR) model. We integrated the flood contagion model with the 

network percolation process in which the probability of flooding of a road segment 

depends on the degree to which the nearby road segments are flooded. The application of 

the proposed model is verified using high-resolution historical data of road flooding in 

Harris County during Hurricane Harvey in 2017. The results show that the model can 

                                                

* This chapter is reprinted with permission from “A Network Percolation-based Contagion Model of Flood 
Propagation and Recession in Urban Road Networks.” by Fan, C., Jiang, X., and Mostafavi, A., 2020. 
Scientific Reports, Aug, 10, 13481. 
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monitor and predict the fraction of flooded roads over time. Additionally, the proposed 

model can achieve 90% precision and recall for the spatial spread of the flooded roads at 

the majority of tested time intervals. The findings suggest that the proposed mathematical 

contagion model offers great potential to support emergency managers, public officials, 

citizens, first responders, and other decision-makers for flood forecast in road networks. 

 

4.1 Introduction 

Given the essential role transportation plays in emergency response, provision of 

essential services, and maintenance of economic well-being (Ganin et al., 2017), the 

resilience of urban road networks to natural hazards, especially flooding events, has 

received increasing attention (Ganin et al., 2017; Koks et al., 2019). Floodwaters in urban 

networks propagate over time and space, inducing a great deal of spatial-temporal 

uncertainty vis-a-vis protective actions, such as evacuation, and rapid emergency response 

(Wang et al., 2019). Developing effective prediction tools to forecast the characteristics 

of flooding events is critical to the enhancement of urban road network resilience (Chao 

Fan et al., 2020d). 

Multiple studies have explored the spatial-temporal properties of floods in urban 

networks, including impact evaluation of environmental stress (Lhomme et al., 2013; 

Pulcinella et al., 2019; Serre et al., 2018) and cascading effects in road networks (Guan 

and Chen, 2018; Lu et al., 2018). In particular, empirical studies adopting remote sensors 

(Mousa et al., 2016), hydraulic data (Ramsey et al., 2011), or satellite images (Dixon et 

al., 2006) have attempted to capture the properties of urban flooding. Temporal evolution 
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of flood status is driven by the time-dependent profile of environmental stress, such as the 

duration of rainfall in hurricanes (Ramsey et al., 2011). This temporal information 

facilitates identification of the outbreak and inflection points for flooding in affected 

networks. Flooding also exhibits high spatial correlation (Youssef et al., 2015) in which 

the co-located road segments are more likely to be flooded in the immediately succeeding 

time increments, indexed to digital timestamps on the model (Douglas et al., 2000). 

Specifically, a hydrologic study has shown that proximity to flooded areas is a significant 

predictor of regional flood frequency based on regionalized flood quantiles for 575 

Austrian catchments (Merz and Blöschl, 2005). While empirical studies illustrated the 

complex spatial-temporal dynamics of floods, their capabilities for flood prediction often 

rely on various types of hydro-geomorphological monitoring datasets and intensive 

computation (Nayak et al., 2005). Due to delay and computational cost issues, the existing 

physics-based hydrodynamic models may not be conducive to providing timely and 

reliable predictions for the spatial-temporal spread of floods and the failure of road 

segments within short time periods (Hossain et al., 2007).  

To overcome the limitations in empirical models, machine learning techniques 

have been proposed and tested for predicting the spread of floodwaters in urban areas (C 

Fan et al., 2020; Mosavi et al., 2018). Compared to the hydrodynamic methods, machine 

learning models, such as multiple linear regressions (Tsakiri et al., 2018), deep neural 

networks (Sankaranarayanan et al., 2019), and Bayesian forecasting models (Dong et al., 

2019b) require fewer input parameters, so that the models can be easily trained on 

historical flood event data. For example, Khosravi et al. tested four decision tree-based 
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machine learning models—logistic model trees, reduced error pruning trees, naïve Bayes 

trees, and alternating decision trees—for flood mapping (Khosravi et al., 2018). The 

results show that, with adequate training, these models can achieve greater than 80% 

accuracy for predicting the flooded locations. Youssef et al. integrated frequency ratio and 

logistic regression models to evaluate the correlation between flood occurrence and 

various potential factors and developed a model providing an acceptable prediction 

accuracy (Youssef et al., 2015). Although existing machine learning models can achieve 

good predictive performance to capture the flood propagation in urban networks, these 

models are limited due to their dependence on large sets of historical data for model 

training. In addition, existing machine learning models are designed to capture only the 

propagation of flood in urban areas. The flood recession process, which is also important 

for assessing the resilience of urban networks, is often ignored by the existing machine 

learning models.  

Recognizing the limitations of existing models, there is a real need for 

mathematical models that can capture the spatial-temporal evolution of flooding without 

relying on a variety of input parameters and historical data such as the volume of waters 

and the width of the roads. Recent studies have demonstrated a surprisingly significant 

similarity among spreading processes in different systems, including the spread of traffic 

congestion in transportation, the contagion of infectious disease in populations, the 

diffusion of ideas in social networks (Chao Fan et al., 2020b), as well as the evolution of 

flooding in urban road networks (Barabási, 2013; Saberi et al., 2019). Motivated by these 

studies, our goal in this research was to describe the floodwater spreading process using 



 

82 

 

generalized mathematical contagion models, such as classical epidemic models 

(McCluskey, 2010). Existing epidemic models offer an analytical and numerical 

framework to quantify and forecast multiple spread phenomena in a variety of contexts. 

In particular, the popular susceptible-infectious-recovered (SIR) model created the basic 

building blocks of epidemic modeling using infectious and recovery rates. These 

mathematical models have two fundamental hypotheses: compartmentalization, in which 

each entity is associated with a state or compartment; and homogenous mixing, in which 

each entity has the same chance of contacting an inflected entity (Barabási, 2013). In the 

context of flooding, each road cell is associated with a state, functional-flow or flooded. 

Hence, the flooding propagation problem fits this compartmentalization hypothesis. While 

these hypotheses simplify the modeling of contagion by eliminating the need to know the 

structure of the networks, the mathematical models can still capture the temporal evolution 

of the fraction of infected entities in the networks very well. 

Flood risk prediction is a task that should take into account both the temporal and 

spatial natures of the floodwater in road networks. Urban flood risk characterization 

requires not only knowledge of the fraction of flooded roads at each timestamp, but also 

needs to identify the geographic locations of flooded roads as flooding unfolds. Hence, 

pure mathematical models are not able to satisfy these requirements. To this end, the 

network percolation process has gained attention recently because it enables to capture of 

the propagation process through the topological connectivity in networks (Gao et al., 

2012). As defined in percolation theory, the spread of infection relies on the probability 

of the infected neighbors, in which the heterogenous mixing assumption is held in local 
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components of the networks (Ball et al., 1997). Specifically, the infection spreads from an 

initial node along edges of the percolated network (Miller, 2009). Hence, the percolation 

process reflects the “amplification” effect of neighbors and weakens global network 

interactions. An infection is more likely to be transmitted to those the node comes 

encounters. This characteristic is essential for flood propagation prediction in urban 

networks since it considers the spatial co-location and constraints of urban networks. 

Without the temporal information about the fraction of flooded roads, however, the 

percolation process would fail to capture the temporal evolution of flooding in urban 

networks. 

This study proposed and tested a network percolation-based contagion model that 

integrates the mathematical framework and network percolation process to predict the 

spatial propagation and temporal evolution of flooding in urban road networks. The 

mathematical framework fits the temporal dynamics of the flood situations, and the 

percolation process identifies locations of flooded road segments. To illustrate the 

performance of the model, we applied it to a case study of flood evolution in Harris County 

road networks during Hurricane Harvey. Potential control strategies are also identified 

based on the outcomes of the model in the case study. 

 

4.2 The network percolation-based contagion model 

The proposed model is composed of four components: road network modeling, 

flood spread characterization, flood percolation process, and model evaluation. This 

epidemic-like model of flood spread process in urban road networks considers both global 
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dynamics of flood scales and local probability of affecting other co-located roads within 

a set of neighbors. 

4.2.1 Road Network Modeling 

Road networks contain hundreds of thousands of road segments, most of which 

are quite short, about 100 meters to 800 meters each. The traffic status information 

collected at the road segment level provides sufficient spatial resolution to precisely 

estimate the scale of flooding in road networks.  

Definition 1. A road segment is a basic unit with a starting point and an ending 

point, which can be assembled into a whole road in the order of the points.  

Each point is associated with a longitude and a latitude so that it can be located on 

a geographical map. Then, a road segment can be represented as (𝑙𝑎𝑡�, 𝑙𝑛𝑔�, 𝑙𝑎𝑡`, 𝑙𝑛𝑔`), 

where 𝑙𝑎𝑡� and 𝑙𝑛𝑔� are the latitude and longitude of the starting point, while 𝑙𝑎𝑡` and 

𝑙𝑛𝑔` are the latitude and longitude of the ending point.  

Although road segments enable good resolution for understanding the situation in 

urban networks, flooded areas are usually not restricted in a banded road segment. 

Floodwaters tend to start from a point and spread in all directions. In addition, massive 

segments and their complex connections in the networks would also cause intensive 

computational cost. Hence, in modeling road networks, segment-to-segment modeling is 

limited to follow the nature of flood spread and achieve efficient computation. To this end, 

grid decomposition, a commonly used method (Zhou et al., 2016), is adopted in this study 

to generate equal-sized cells and divide the study area into small regions (see Figure 13).  



 

85 

 

Definition 2. A road cell is a square over a rectangular projection of the 

geographical map.  

 The spatial boundary of the cell can be represented as a set of geo-coordinates 

(𝑙𝑎𝑡��, 𝑙𝑛𝑔��, 𝑙𝑎𝑡��, 𝑙𝑛𝑔��), where 𝑙𝑎𝑡��  and 𝑙𝑛𝑔��  are the latitude and longitude of the 

bottom left corner, while 𝑙𝑎𝑡�� and 𝑙𝑛𝑔�� are the latitude and longitude of the upper right 

corner. To covert the road segments to grid, we apply the following criteria to the road 

network: 

𝑠A ∈ 𝑔𝑟𝑖𝑑5, if 𝑙𝑎𝑡�� ≤
��,����,�

n
≤ 𝑙𝑎𝑡�� and 𝑙𝑛𝑔�� ≤

�p����p��
n

≤ 𝑙𝑛𝑔�� (13) 

After grid decomposition, the road network assembled from road segments could 

be described as a series of cells. In practice, multiple factors would influence the outcome 

of grid decomposition. For example, a large cell would include many segments, which 

might lead to losing spatial resolution. Accordingly, the model would further lose the 

capability of capturing the spatial spread of flood. On the other hand, a small grid that 

cannot cover at least one road segment will partition the network into discontinuous 

components, and subsequently increase the computational cost. Hence, grid 

decomposition requires pre-testing to ensure that a cell in the grid is able to maintain 

spatial resolution without unduly burdening computation.  

Once the road segments are assigned to cells, we remove cells lacking segments to 

reduce computational cost. The remaining cells form a network in which the cells are 

considered as nodes, and their shared borderlines are considered as links. By doing so, we 

can construct an undirected grid network 𝒢 with average degree of 〈𝑘〉 to represent the 

topology of the road networks. Average degree of a road cell is the average number of 
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adjacent cells per cell in the road network. To model the flood propagation and process, 

we then associate a dynamical binary state variable 𝑥 to each of the 𝑁 cells (also called 

nodes) of the grid network 𝒢, such that 𝑥A(𝑡) ∈ {0,1} represents the flood status of node 𝑖 

at time 𝑡. Using a standard notation, we divide the cells into two classes, functional flow 

(𝐹) and flooded (𝐶) , corresponding respectively to the values 0 and 1 of the status 

variable 𝑥. Functional flow is a state in which traffic can utilize a road (regardless of traffic 

level). In the context of flooding spread process, the status 𝐶 represents the cells which 

have been flooded. At each time 𝑡, the macroscopic flooding situation is given by the 

fraction of flooded cells 𝑐(𝑡) = 7
�
∑ 𝑥A(𝑡)�
A67 . 

 

Figure 13 A schema of converting flooding status from a road network to grid. 

 

4.2.2 Flood Spread Characterization 

The flood propagation and recession process are temporally and spatially variant. 

To capture the temporal nature of flood evolution in urban road networks, the proposed 

model considers macroscopic characteristics to predict the temporal evolution of 

floodwater spread in urban networks.  
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In the first step, we define four flooding statuses for a cell: functional flow, 

exposed, flooded, and recovered, statuses by including the temporal attributes. 𝐶(𝑡) 

represents the number of flooded cells in the network at time 𝑡 ; 𝐹(𝑡) represents the 

number of functional flow cells at time 𝑡; 𝐸(𝑡) represents the number of cells that are in 

flood incubation stage (i.e., roads in the path of approaching floodwater but on which 

traffic still moves) at time 𝑡; and 𝑅(𝑡) represents the number of cells that have recovered 

from flooding at time 𝑡. Given a grid network 𝒢 with an average degree of 〈𝑘〉 and 𝑁 

nodes, each cell in the network has functional flow at time 𝑡 = 0. That is,	𝐹(𝑡 = 0) = 𝑁 

and 𝐶(𝑡 = 0) = 0 . The flood initially occurs at a set of nodes and then propagates 

throughout the network. From a macroscopic perspective, a cell in the undirected network 

is on average connected to 〈𝑘〉 other cells. The neighbors of a flooded cell are exposed to 

flood at a rate of 𝛽. In modeling the temporal evolution, the connections of the cells are 

assumed to be homogeneous, which forms the basis to formulate a general differential 

equation system. Then, the probability of a flooded cell being connected to a functional-

flow link is 𝐹(𝑡)/𝑁	at time 𝑡. Therefore, a flooded cell comes into contact with 〈𝑘〉𝐹(𝑡). 

Since 𝐶(𝑡) flooded cells have water flowing, each at a rate 𝛽 , and the exposed cells 

become flooded at a fixed rate 𝛼, the average number of new exposed cells 𝑑𝐸(𝑡) during 

a unit timeframe 𝑑𝑡 is determined as follows: 

𝑑𝐸(𝑡)
𝑑𝑡 = 𝛽⟨𝑘⟩

𝐶(𝑡)�𝑁 − 𝐶(𝑡) − 𝐸(𝑡) − 𝑅(𝑡)�
𝑁 − 𝛼𝐸(𝑡) (14) 

The exposed cells are not completely inundated, and traffic can still pass through, 

but they could be flooded within the next few timestamps. We call this stage, flood 
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incubation stage. The defined four statuses of the road cells are the only statuses that a 

road cell could have. Hence, the sum of the four status variables should be 𝑁. That is, 𝑁 =

𝐶(𝑡) + 𝐸(𝑡) + 𝐹(𝑡) + 𝑅(𝑡). To capture the fraction of the cells in each status, we use the 

following variables: 𝑐(𝑡) to represent the fraction of flooded cells in the grid network at 

time 𝑡; 𝑓(𝑡) to represent the fraction of functional-flow cells in which all road segments 

are accessible at time 𝑡; 𝑟(𝑡) to represent the fraction of recovered cells from flooding at 

time 𝑡; and 𝑒(𝑡) to represent the fraction of cells that are exposed to flooding but still in 

flood incubation at time 𝑡. Then, the differential equation for the change rate of exposed 

cells can be derived as follows: 

𝑑𝑒(𝑡)
𝑑𝑡 = 𝛽⟨𝑘⟩𝑐(𝑡)�1 − 𝑐(𝑡) − 𝑒(𝑡) − 𝑟(𝑡)� − 𝛼𝑒(𝑡) (15) 

where, the product of 𝛽⟨𝑘⟩  is called transmission rate or transmissibility. The 

transmissibility can be used to measure the capability of floodwater to spread in an urban 

network under the same propagation rate. This also allows us to understand the effects of 

the topological structure of an urban network on the transmission of floodwaters.  

Since a fraction of the functional-flow cells become exposed at each timestamp, 

the decreasing rate of the fraction of functional-flow cells can be represented by: 

𝑑𝑓(𝑡)
𝑑𝑡 = −𝛽⟨𝑘⟩𝑐(𝑡)�1 − 𝑐(𝑡) − 𝑒(𝑡) − 𝑟(𝑡)� (16) 

Simultaneously, in a unit timeframe, a fraction of exposed nodes would be flooded 

at a rate 𝛼, and some of the flooded cells recover at a rate 𝜇. Hence, the changing rate of 

the fraction of flooded cells and the fraction of recovered cells can be formulated as: 
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𝑑𝑐(𝑡)
𝑑𝑡 = −𝜇𝑐(𝑡) + 𝛼𝑒(𝑡) (17) 

𝑑𝑟(𝑡)
𝑑𝑡 = 𝜇𝑐(𝑡) (18) 

Evidently, in a large-scale network where 𝑁 is large, the probability of a flooded 

cell being connected to a functional-flow cell could be close to zero. At the macroscopic 

scale, the assumption of homogeneous mixing makes the prediction more tractable and 

robust. It should also be noted that the model does not include mortality (i.e., significantly 

damaged roads that would not be functional after the floodwater recedes). Since it is not 

often the case that a flooded road cell is severely damaged, excluding the mortality is 

reasonable and realistic. Based on the former constructs, the model component derived for 

capturing the temporal dynamics of flooding scale using macroscopic characteristics is 

established (Figure 14A). 

4.2.3 Network Percolation Process 

The spatial nature of floodwater spread in urban networks is modeled using a 

network percolation process. The network percolation process describes the contagion 

effects of a flooded cell on its network neighbors (Teng et al., 2016). Specifically, the cells 

whose neighbors are flooded are more likely to be flooded than the cells whose neighbors 

are not flooded (Barabási and Pósfai, 2016). Similarly, floodwater is more likely to recede 

first from the cells whose neighbors are not flooded compared to the flooded cells whose 

neighbors are also flooded. To characterize this spatial aspect of flood spread, we define 

the probability of a node to be flooded or to be recovered in the next timestamp based on 
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the number of flooded neighbors. The propagation and recession processes are modeled 

as described below, respectively (see Figure 14B). 

In the propagation process, the percolating cluster is a set of road cells which are 

flooded next to another bounded by functional-flow cells at a specific time interval. Since 

the extreme event, Hurricane Harvey in this study, affected a large area, multiple 

percolating clusters presented in the road network. They were spatially scattered across 

the network at the early stage of flooding. As the event progressed, some clusters broke 

through the bound and formed larger percolating clusters. We can obtain the number of 

flooded cells 𝑁¡
(,) at a unit timestamp 𝑡 by the predicted fraction of flooded nodes 𝑐(𝑡) 

and the total number of cells in the networks. The calculation can be formulated as: 

The flooded cells at the unit timestamp 𝑡 are composed of flooded cells 𝑁¡
(,¢7) at 

the last timestamp, plus the additional flooded cells 𝑁¡
(,) at timestamp 𝑡, excluding the 

recovered cells. In reality, however, the fraction of recovered cells is negligible during the 

propagation period before reaching the flooding peak. Hence, in our model, the number 

of additional flooded cells, 𝑁£
(,), in the current timestamp 𝑡 is obtained by: 

𝑁£
(,) = 𝑁¡

(,) − 𝑁¡
(,¢7) (20) 

As discussed earlier, the spatial pattern of the propagation process (𝐹 → 𝐸 → 𝐶) is 

controlled by the fraction of flooded neighbors of a cell. Hence, we assign the probability 

of flooding (i.e., the fraction of flooded cells among all neighbors) to the unflooded cells. 

Each unflooded cell will be assigned a probability 𝑝A
(,) ∈ ¦𝑝7

(,), 𝑝n
(,), 	⋯⋯ , 𝑝4

(,)¨, where 

𝑁¡
(,) = 𝑁 ∙ 𝑐(𝑡) (19) 
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𝑘 ≤ 𝑁. Then the cells are sorted based on their probabilities of flooding from high to low. 

The additional flooding cells at the timestamp 𝑡 are identified from the cells with high 

probabilities of flooding, subject to the number of additional flooded cells, 𝑁£
(,). Hence, 

the percolation threshold is selected based on the number of additional flooded cells 

predicted by the proposed contagion model and the sorted probabilities of flooding to other 

cells. 

Like the propagation process, flood recession (𝐶 → 𝑅) can also be modeled in a 

way similar to the network percolation process. The percolating cluster is the set of road 

cells with functional flow next to another bounded by flooded cells. We first calculate the 

number of recovered cells 𝑁�
(,) at the timestamp 𝑡 based on the value of r(𝑡) obtained 

from the flood dynamics model: 

𝑁�
(,) = 𝑁 ∙ 𝑟(𝑡) (21) 

Floodwater starts receding after the peak of flooding; in actual experience, 

additional flooded cells usually do not occur. Hence, in the spatial prediction, the number 

of flooded cells 𝑁¡
(,) at the current timestamp 𝑡 is equal to the number of flooded cells 

𝑁¡
(,¢7) at the last timestamp 𝑡 − 1, minus the number of recovered cells 𝑁�

(,) at the current 

timestamp 𝑡. The calculation can be formulated as: 

𝑁¡
(,) = 𝑁¡

(,¢7) − 𝑁�
(,) (22) 

In the next step, we assign the probabilities of flooding (i.e., the fraction of flooded 

cells among all neighbors) to the flooded cells. Each flooded cell is assigned a probability 

𝑝A
(,) ∈ ¦𝑝7

(,), 𝑝n
(,), 	 ⋯⋯ , 𝑝4

(,)¨. That is, the probability of floodwater receding is 1 − 𝑝A
(,). 
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In a manner different from the propagation process (in which the cells are sorted based on 

their probabilities of flooding from high to low), we sort the cells based on their 

probabilities of flooding from low to high (i.e., probabilities of floodwater receding from 

high to low). The recovered cells at timestamp 𝑡 are assigned a low probability of flooding.  

Using the above calibration in the percolation process, we can mitigate the 

homogeneous mixing assumptions in the flood spread characterization model by adopting 

local heterogenous flood probabilities and achieve high accuracy in predicting the spatial 

distribution of flooded cells in urban networks.  

 

Figure 14 The network percolation-based contagion model of flood propagation and 

recession in urban road networks. 

 

4.2.4 Model Evaluation 

We employed two metrics to evaluate the performance of the model for predicting 

the temporal evolution and spatial propagation of flooding spread in urban networks. The 

first component of the model is a system of differential equations to capture the magnitude 

of flooded cells in networks. The objective of this component is analogous to addressing 
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a fitting curve. Hence, we use the root mean square error (RMSE) (Chai and Draxler, 

2014) to measure the error of the model:  

𝑅𝑀𝑆𝐸 = ©)
(𝑦«A − 𝑦A)n

𝑛

p

A67
 (23) 

where, 𝑦«A  is the predicted value, 𝑦A  is the observed value, and 𝑛  is the number of 

observations. Ignoring the division by 𝑛  under the square root, the formula can be 

considered as a formula for Euclidean distance between the vector of predicted values and 

observed values. Hence, the RMSE is a normalized distance between the predicted 

outcomes and the observations which can be used to evaluate the model accuracy. This 

can also serve as a heuristic for a training model, which will be used in a pattern search 

algorithm to obtain the numerical solution for the model。 

The spatial nature of the flooding propagation and receding is captured by the 

outcomes of the flood spread characterization model and the network percolation process. 

The intersection between the set of predicted flooded road cells and the set of observed 

flooded road cells indicates the precision and recall of the model (Buckland and Gey, 

1994). They are formulated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (24) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (25) 

where true positive is an outcome where the model correctly predicts the flooded class, 

false positive is an outcome where the model incorrectly predicts the flooded class, and 
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false negative is an outcome where the model incorrectly predicts the unflooded class. The 

calculated precision and recall allow us to assess the performance of the model by 

identifying the specific correctly predicted road cells. 

 

4.3 Results 

4.3.1 Study Context and Data Collection 

To illustrate the application and performance of the proposed network percolation-

based contagion model of flood spread, we tested the model using high-resolution data 

related to flooded roads in Harris County during Hurricane Harvey in 2017. Hurricane 

Harvey was a Category 4 storm that made landfall in Houston (Harris County) on August 

26, 2017, dissipated inland August 30, 2017 (Sebastian et al., 2017). The torrential rainfall 

brought by Harvey caused intensive flooding in Harris County, where the floodwaters 

damaged more than 290 roads and highways (Ibrahim, 2017). The flooding occurred 

August 27 through on September 4, 2017. We collected the traffic data for 19,712 roads 

in Harris County from INRIX, a private company providing location-based data and 

analytics. The INRIX traffic data covers all available road roads - from interstates to 

intersections, country roads to neighborhoods. The data includes the average speed for 

each road segment in 15-minute intervals. The timeframe of data is August 1 to September 

30, covering the entire flooding period. In this case study, we used squares with a length 

of 400 meters for generating the grid network. 

In the INRIX dataset, the flooded road segments can be identified by a designation 

of NULL for average speed, meaning there was no vehicle driving through the segment. 
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Comparing the data before and after Hurricane Harvey, we found that the NULL average 

speed appears only during the flooding period. By cross-checking the flooded roads on 

government reports, most of the roads with NULL speed were flooded at that time. 

Although the average speed data was collected in 15-minute intervals, the flood situation 

did not evolve significantly in such a short time period. To better capture the flood 

propagation and receding process, we aggregated the data at 4-, 8-, and 12-hour intervals 

to test the performance of the model. Each interval was assigned a binary value of flooding 

status to the road segments based on their average speed. As documented in the model 

section, the value would be 0 if there is no NULL speed record, and the value would be 1 

if there is a NULL speed record in the dataset (indicating functional flow status for the 

roads). 

4.3.2 Pattern Search for Parameter Estimation 

It is often the case that the analytical solution to the differential equation system 

cannot be generated. That is because the functions are usually not continuous or 

differentiable (Davidon, 1991). To efficiently estimate the parameters in the proposed 

model, we applied a global pattern search algorithm (Raja, 2014) as a derivative-free 

numerical optimization method to fit the curves for each variable (i.e., 𝑓(𝑡), 𝑒(𝑡), 𝑐(𝑡), 

and 𝑟(𝑡)) (Saberi et al., 2019). The objective function in this optimization process is the 

RMSE, which will be minimized by searching for the optimal propagation rate 𝛽, recovery 

rate 𝜇, and exposed rate 𝛼. To start with this algorithm, we first specified initial values for 

the three parameters. The change of the parameters could be either increased or decreased 

in each step. The algorithm would compute the RMSE for each step until it finds an 
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optimal point at which the current RMSE is smaller than the previous one. If the algorithm 

cannot find the optimal point using the current step size, it will use half of the current step 

size and repeat the computing process. Then all three parameters will move to the optimal 

values. The algorithm runs iteratively until one of the stopping criteria is met: the 

maximum number of iterations is reached or the step size is smaller than a certain 

threshold. In this study, we set the maximum number of iterations to be 2,000, and the 

threshold for the step size is 0.0001. The initial values for models with time intervals are 

the same, 𝛽 = 1, 𝛼 = 1, and 𝜇 = 0. Through our tests, the selection of values around 

these initial values would yield similar results for the parameters. 

Table 3 shows the estimated values for the parameters and the optimized RMSE 

for three models. The RMSE increases a little bit with the increase of the length of the 

time intervals. That is because the fraction of road cells that are flooded (i.e., 𝑐(𝑡)) is 

greater in longer time intervals than in shorter time intervals. But, all three models fit the 

flood spread patterns in road cells well since the RMSE value accounts for only a very 

small proportion of the peak value of 𝑐(𝑡). In addition, the propagation rate 𝛽 remains the 

same across three models. This result indicates that the length of the time interval does not 

affect the capability of the model to predict flooding propagation. The flood incubation 

rate 𝛼 and recovery rate 𝜇, however, decrease with the increase in the length of the time 

interval. That is because the number of flooded road cells increases with the increase in 

time intervals. Hence, a great number of road cells would be in the flood incubation state, 

which leads to a low rate of 𝛼 (Figure 15D, E, and F). As such, the recovery rate must be 

small to represent a large number of flooded road cells. This result reveals that the length 
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of the time interval has an influence on parameter estimation, but it does not significantly 

affect the fitting performance. 

Table 3 Estimated values for the parameters in the contagion model. 
Length of time 

interval RMSE 𝛽 𝛼 𝜇 𝜷/𝝁 

4 hours 0.020 0.9998 0.1267 0.8348 1.1977 

8 hours 0.024 0.9998 0.0830 0.4073 2.4547 

12 hours 0.027 0.9998 0.0780 0.2702 3.7002 
 

4.3.3 Prediction results 

Once the optimal values for the parameters are obtained, we can capture the 

temporal evolution of flood propagation and recession in urban network by showing the 

spread curves for each variable (i.e., 𝑓(𝑡), 𝑒(𝑡), 𝑐(𝑡), and 𝑟(𝑡)) (Figure 15D, E, and F).  

Basic reproduction number 𝑅® = 𝛽/𝜇  is used as a measure of the number of 

secondary flooded cells generated by the first flooded cell over the course of the flooding 

unfolding (Weitz and Dushoff, 2015). Mathematically, when 𝑅®  is smaller than 1, the 

propagation will not occur as the recovery rate is greater than the propagation rate 

(Chowell et al., 2004). In the Hurricane Harvey case study, the estimated 𝑅® is greater 

than 1 across all three models and increases with the length of time interval (see Table 3). 

This result explains how rapidly floodwaters spread. The closer the value of 𝑅® to 1, the 

more stable the flooding situation is. In this case, we can observe that the flood situation 

would change more slightly if the time interval is shorter than 4 hours, since 𝑅® would be 

close to 1. When the time interval increases from 4 hours to 8 hours, the value of 𝑅® jumps 
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from 1.20 to 2.45, meaning that in every 4- to 8-hour increment, the flood situation would 

change more drastically.  

In addition, the changes in 𝑐(𝑡) allow us to predict the extent of flood in the 

networks and critical timestamps for breakout and peak (see Figure 15A, B, and C). The 

figures show the flood spread characterization in Eq. (15)-(18) are fit to the empirical 

flooding data very well. We can observe that at the beginning of the hurricane (the hourly 

timestamps in day 1 and day 2), the number of flooded cells grew exponentially between 

every 4-, 8-, or 12-hour increment, and reached the peak in the middle of day 3. After that 

timestamp on day 3, the flood receded gradually. Using the results, we can estimate the 

time that the urban road network needs to recover from flooding. In this case, evidently, 

the recovery rate was slow, which led to a long period for recovery at some severely 

flooded locations.  

In the next step, we examined the predictive performance for both spatial spread 

and temporal evolution for the flooding, shown in Figure 16. All models perform very 

well in terms of predicting the specific locations of flooded segments based on the flooding 

data at the last timestamp. The best performance of these models appears during the peak 

and receding period, while the performance is not particularly good at the beginning of 

the flooding. That is because the locations of the initial flooded cells depend on the rainfall 

magnitude and spatial patterns of precipitation in different areas. The emergence of initial 

flooded cells is difficult to be identified by the model without additional information about 

the precipitation pattern. After a few hours, however, the flood propagation and recession 

closely follow the percolation process since the majority of the initial flooded cells were 
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identified correctly at that time. Hence, the model could predict the spatial spread of 

flooding after the locations of initial flooding are identified. In terms of the precision 

metric, the best model is the model based on a 4-hour time interval, and with the increase 

of the length of the time interval, the performance of the model decreases a little bit. In 

terms of the recall metric, these three models show similar performance and show promise 

for special and temporal floodwater characteristics, especially during the peak and 

recession period. 

The three sets of figures in Figure 17 show the true positive and false positive 

results for the road segments in the network. Here we converted the cells back to their 

segments. All segments in the flooded cells are considered flooded segments. We plotted 

three figures for each model at different timestamps: beginning, peak, and recession 

periods. As we observed in the figure, the flooding initially occurred at different locations 

in the timestamp of the beginning period (Figure 17, left panel). With the continuous 

rainfall, the floodwater propagated from the initial flooded road segments to their 

neighbors (middle panel of Figure 17). After Hurricane Harvey dissipated on August 30, 

the flood started to recede from the road segments at the edge of the flooded area (Figure 

17, right panel). The figures show that more than 90% of the flooded segments are 

captured by the proposed model, and the predictive performance decreases a bit with the 

increase of the length of the time interval. These findings support that the proposed model 

can accurately predict the spatial and temporal characteristics of flooding spread in urban 

networks. 
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Figure 15 Four-state model of flood propagation and recession in the road network. 

Analogous to the susceptible-exposed-infected-recovered model subject to a time-

varying disaster profile. Day 0 is August 26, 2017; and Day 9 is September 4, 2017. 

A and D are the results from the model for 4-hour time interval; B and E are the 

results from the model for 8-hour time interval; and C and F are the results from the 

model for 12-hour time interval. 

 

 

Figure 16 Prediction performance of the proposed model for flood propagation and 

receding. (A) Precision of the model for different time intervals; and (B) Recall of the 
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model for different time intervals. Day 0 is August 26, 2017; and Day 9 is September 

4, 2017. 

 

 

Figure 17 Examples of three prediction models for different phases of the flooding 

period (i.e., propagating, peak, and receding phases). (A) the model for predicting 

the situation in next 4 hours; (B) the model for predicting the situation in next 8 

hours; and (C) the model for predicting the situation in next 12 hours. The true 

positive (yellow) and false positive (red) road segments are all actual flooded road 

segments from the empirical INRIX data in a specific time interval. 
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4.3.4 Adaptation of the model 

The proposed network percolation-based contagion model could be used to model 

flood spread in other regions and flooding events. Different extreme events have different 

attributes such as varying durations, intensities and geographical scales, which result in 

varying numbers and durations of flooded roads. To demonstrate the adaptation of the 

model in other contexts, we conducted further controlled experiments to examine the 

adaptation of the model to different topological properties of urban networks (average 

degree), the propagation rate which reflects the stress of rainfall, and flood incubation rate 

and recovery rate. We change the value of one parameter that was learned from the INRIX 

data and control other parameters to be constant as shown in Table 3. The results show the 

extent to which different parameters could affect the predicted outcomes. This experiment 

also provides evidence for supporting the generalizability of the proposed contagion 

model for different cities and various intensities of flooding.  

First, we tested the effect of average degree of an urban network on the flood 

dynamics by keeping the same values for other parameters. Figure 18A shows the changes 

in model results for predicting the flood status in 4-hour time intervals. With the increase 

of the average degree ⟨𝑘⟩ of the networks, the growth rate of the flooded cells increases 

significantly during the propagation phase. That is because the network with a large ⟨𝑘⟩ 

will allow the flooded road cells to infect more neighbors, which expedites the spread of 

flood even when the propagation rate remains the same. In addition, a large ⟨𝑘⟩ would 

decrease the time to reach the peak of flooding since the flooded cell would have more 
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connected neighbors. In contrast, a small ⟨𝑘⟩ would lead to a longer period of flooding, 

although the fraction of flooded cells will not reach to the same flooding scale as the urban 

networks with a large ⟨𝑘⟩.  

 

Figure 18 Test results for the adaptation of the model using different topological 

structures of urban road networks (A); different propagation rate (B); different 

incubation rate (C); and different recovery rate (D). 

 

We further tested the effects of the three macroscopic parameters (i.e., 𝛽, 𝛼, and 

𝜇) on the predicted flood spread (see Figure 18B, C, and D). On the one hand, similar to 

the impact of the average degree, the increase in the propagation rate 𝛽 and the flood 

incubation rate 𝛼 would decrease the time to reach the peak of flooding and the number 

of flooded cells at the peak, but increase the time to recover to the normal situation. On 

the other hand, an increase in the recovery rate 𝜇 significantly decreases the number of 

flooded cells at the peak, but the time to reach the peak and the time to recover to a normal 
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situation are not changed significantly. The results of these experiments show that by 

adjusting parameters, the model can be adapted to different scenarios with various 

intensities of flood events and topological structures of urban networks. 

 

4.4 Discussion and Concluding Remarks 

We have presented a predictive model which integrates flood spread 

characterization and network percolation processes to forecast the propagation and 

recession of flood in urban road networks. The model is formulated as a system of ordinary 

differential equations relying on three characteristics: flood propagation rate 𝛽 , flood 

incubation rate 𝛼, and recovery rate 𝜇, analogous to the SEIR model. Using the output of 

the model, the network percolation process is obtained to model the spatial patterns of the 

flooded road cells over time. The study showed the application of the proposed model in 

an empirical case study of urban flooding in Harris County road networks during 

Hurricane Harvey in 2017. The application of the model using empirical data informs 

about some key findings and implications for urban flood risk prediction. 

First, the extent to which flooding builds up in a network and how fast it recovers 

are shown to be dependent on the basic reproduction number 𝑅® = 𝛽/𝜇, which can help 

us infer the effective time period in response to the flooding in road networks. In the case 

study, we found that the basic reproduction number changed significantly when the time 

interval increased from 4 hours to 8 hours. This result indicates that flood situation evolves 

slightly in time intervals shorter than 4 hours, but, the situation changes dramatically for 

time intervals that are longer than 4 hours. Hence, to better monitor the flood in road 
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networks, the status of roads should be observed in every 4 hours. While urban networks 

in different cities may have different topological properties and experience different 

rainfall magnitudes, the proposed model can be adapted by adjusting the parameters. 

Results can inform the decision-makers about the spatial propagation and temporal 

evolution of flooding. 

Second, the spatial mechanisms of flood propagation and receding in urban 

networks is captured based on a network percolation process. This finding highlights the 

contagion effects of a flooded cell on its neighbors. Since the road cells are spatial 

networks, different from social contact networks, the spread of flood would be limited by 

geographical constraints. Hence, the local contagion from a cell to another cell through 

the link connecting them would be the main spreading pattern. Practically, this finding 

provides an important implication for flood control in urban systems. One effective control 

strategy would be to increase drainage capacity and to build retention ponds around the 

roads with a high likelihood of flooding. This strategy can reduce the proportion of flooded 

cells among the unflooded cell neighbors, which can contribute to reducing the probability 

of flooding in the next timestamp.  

Third, the model and its application show good performance in predicting the scale 

and locations of flooded road cells in disasters. In addition to the response strategies, this 

model could also support proactive strategies for coping with future flood events. In 

particular, the proposed model can be incorporated in an early warning system. The system 

can help officials and the public be aware of the flood situations in the coming hours so 

that they can perceive flooding risks surrounding them and make proactive preparations. 
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For example, cars and buses drove through floodwater during Hurricane Harvey (Bajaj et 

al., 2017). With the predicted outcomes of this contagion model, people can be informed 

about roads at a high risk of flooding in the next few hours. This predictive information 

could significantly contribute to reducing the economic loss of transportation agencies, 

and possible loss of life of residents.  

Finally, the model we introduced in this paper is simple and robust and can be 

adapted to various phenomena. Unlike hydrodynamic models and machine learning 

models that rely on significant data and computational resources, the proposed 

mathematical model provides a simple but powerful tool for predicting the spatial-

temporal evolution of flooding in urban networks. Also, the proposed network 

percolation-based contagion model can be adapted for modeling other network spread 

phenomena. Future studies can further investigate the proposed model in other general 

predictive tasks, such as the spread of traffic congestions in road networks (Gehlot et al., 

2020), infectious diseases in human contact networks (Valdez et al., 2020), and 

innovations in global communities (Chao Fan et al., 2020c). This model also has some 

limitations; for instance, for initial flooded segments that without flooded neighbors, it is 

usually difficult to predict these segments without other information. Future studies can 

focus on improving the model to precisely predict initial flooded road segments based on 

rainfall magnitude and capacity of urban drainage systems. In addition, the model 

considers the parameters such as propagation rate being constant throughout the process, 

in order to provide a simple but fairly accurate tool for flood prediction. Future studies 
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could extend our model by considering the dynamics of the beta to improve the 

performance of the model. 
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CHAPTER V  

SIMULATING URBAN MOBILITY NETWORK DYNAMICS IN EMERGENCIES 

FOR IMPACT ANALYSIS 

 

The objective of this study is to propose and test an adaptive reinforcement 

learning model that can learn the patterns of human mobility in a normal context and 

simulate the mobility during perturbations caused by crises, such as flooding, wildfire, and 

hurricanes. Understanding and predicting human mobility patterns, such as destination 

and trajectory selection, can inform emerging congestion and road closures raised by 

disruptions in emergencies. Data related to human movement trajectories are scarce, 

especially in the context of emergencies, which places a limitation on applications of 

existing urban mobility models learned from empirical data. Models with the capability of 

learning the mobility patterns from data generated in normal situations and which can 

adapt to emergency situations are needed to inform emergency response and urban 

resilience assessments. To address this gap, this study creates and tests an adaptive 

reinforcement learning model that can predict the destinations of movements, estimate the 

trajectory for each origin and destination pair, and examine the impact of perturbations on 

humans’ decisions related to destinations and movement trajectories. The application of 

the proposed model is shown in the context of Houston and the flooding scenario caused 

by Hurricane Harvey in August 2017. The results show that the model can achieve more 

than 76% precision and recall. The results also show that the model could predict traffic 

patterns and congestion resulting from to urban flooding. The outcomes of the analysis 
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demonstrate the capabilities of the model for analyzing urban mobility during crises, 

which can inform the public and decision-makers about the response strategies and 

resilience planning to reduce the impacts of crises on urban mobility. 

 

5.1 Introduction 

The resilience of communities to crises such as flooding, wildfires, pandemics and 

other extreme events hinges on a deep understanding and effective simulation of the 

impacts of the crisis on human and physical environment (Zhu et al., 2019). Urban 

mobility plays a vital role in community resilience to crises by enabling populations to 

access critical facilities, such as healthcare, pharmacies, and grocery stores, for instance,  

(Liu et al., 2019); hence, the ability to simulate and examine the impacts of crises on urban 

mobility is essential to effectively improve the resilience of cities (Sadri et al., 2020). 

Studies, including Lei et al. (Lei et al., 2020), have examined the vulnerability and 

resilience of transportation systems during natural disasters and other crises. The majority 

of existing studies focus primarily on examining the vulnerability of physical road 

networks (Fan et al., 2020; Dong et al., 2020) and quantifying the effects of crises on 

traffic patterns (Oh et al., 2020; W. Wang et al., 2020). A critical missing component is 

the capability to simulate crisis perturbation scenarios for predictive evaluation of the 

impacts on movement trajectories and traffic patterns at urban scale to inform emergency-

response and resilience-planning decisions. To address this gap, the goal of this study is 

to create and test a deep learning model that can capture individuals’ movement patterns 
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during normal situations and impose crisis-induced perturbations to simulate impacts on 

movement trajectories and traffic patterns.  

With the wide use of smartphones and apps with location services, a person’s 

digital footprints can be generated based on daily trips, which allow researchers to gather 

fine-grained data related to individuals’ movement trajectories during normal situations 

for model training and prediction (Olmos et al., 2018). Prior studies have attempted to 

address mobility simulation through statistical models and machine-learning techniques 

at different scales (Yan et al., 2017). One stream of the existing studies focuses on 

quantitative assessments of the dynamical and statistical properties of human travel 

(Kitamura et al., 2000). With more prevalence of location data related to mobile phone 

users, González et al. (2008) demonstrated that human movement trajectories have a high 

degree of temporal and spatial regularity, as they follow simple reproducible patterns. This 

finding has significant implications for the predictability of individual mobility patterns 

in normal conditions. Furthermore, measuring the entropy of an individual’s trajectory, 

Song et al. (Song et al., 2010b) showed a 93% potential predictability of human mobility 

under normal situations. The statistical metrics provide essential knowledge about the 

travel distance, radius, and frequently visited locations of humans (Song et al., 2010a). 

Despite these advances in the statistical characterization of aggregated human mobility 

patterns, limited models exist that could capture the temporal sequence of activities and 

spatial distribution of activities of each individual. The majority of the standard mobility 

models have limited capability for predicting individual mobility at a local scale, such as 

a neighborhood, in a specific timestamp.  
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With advances in machine-learning techniques and enhanced computational 

power, it is now possible to learn and simulate finer-grained mobility patterns, such as the 

sequential patterns of individual location histories (Tang et al., 2019). In particular, deep 

neural networks (DNN) are prevalent in learning and simulating human dynamics and 

density from large data sets (Li et al., 2017). For example, Wang et al. (S. Wang et al., 

2020) designed a DNN architecture with an alternative-specific utility using behavioral 

knowledge to analyze human choices of their travel mode in normal circumstances. 

Hosseini et al. (Khajeh Hosseini and Talebpour, 2019) introduced a deep learning-based 

methodology to predict traffic state using convolutional neural networks (CNN) by taking 

the individual vehicle-level data as inputs. The CNN model is further improved to capture 

citywide crowd activities with parameter efficiency and stability (Liang et al., 2020). 

These deep learning techniques offer significant improvements in predicting individual 

mobility patterns with high resolution in terms of locations and timestamps (Wang and 

Sun, 2020).  

Human mobility, including origin-destination matrixes and the trajectories for 

each  origin and destination pair, however, is strongly influenced by the condition of road 

networks, specific gathering events, friendship effects (Cho et al., 2011), and residents’ 

travel habits and lifestyles (Zong et al., 2019). In particular, crises such as natural disasters 

cause perturbations in physical infrastructure and roads that influence human movement 

trajectories. For example, inundated road segments and buildings would necessitate 

evacuation of affected residents, thus reducing travel demand in certain areas (Chao Fan 

et al., 2020a). Human trajectory data in the context of crises for model training and 
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mobility simulation are scarce, as this data is rarely recorded in historical record (Deville 

et al., 2014), necessitating adaptive models for simulating human mobility under crisis 

scenarios (e.g., flooding, wildfires, and blizzards.) Information related to movement 

trajectories and traffic patterns in such extreme and complex situations is rarely recorded 

in historical data. The lack of data makes the simulation of  human mobility during crisis 

conditions challenging (Lu et al., 2012) 

To address this information gap, this study tested an adaptive reinforcement 

learning model that can (1) learn individual mobility patterns from data collected from 

regular daily activities; and (2) simulate mobility under extreme events. The model 

incorporates both time and location factors as the input features and allows users (e.g., 

practitioners and decision makers) to adjust the environmental parameters for various 

application objectives in depending upon scenarios. To illustrate the application as well as 

the performance of the model in both prediction and application, we trained the model 

using data related to human mobility activities in Houston during March and April 2017, 

and used the model to simulate movement trajectory densities and traffic patterns during 

the flooding caused by the Hurricane Harvey in August 2017. The potential of the model 

for applications in emergency response and pandemic prediction is also discussed. 

 

5.2 Related Work 

5.2.1 Resilience of Urban Mobility to Crises 

The role of urban mobility in a crisis such as access by emergency responders has 

been emphasized in the existing literature (Wang, 2015). Assessing strategies to enhance 
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the resilience of urban mobility is essential to mitigate the negative effects of crises and 

to improve the effectiveness of response efforts. To this end, existing studies (Dong et al., 

2019a; Wang and Taylor, 2016) have put forth methodologies to evaluate the vulnerability 

of physical road networks and have proposed appropriate strategies for enhancement of 

urban mobility resilience. In another stream of work, Fan et al. developed a mathematical 

contagion model to predict the spread of floodwaters over road networks that informs 

about the disruptions of the urban mobility networks in flooding events (Chao Fan et al., 

2020a). Dong et al. proposed a machine-learning model that coupled road networks and 

water channels to examine the impacts of flooding on road networks through the lens of 

network dependencies (Dong et al., 2020). Despite the success of prior models, the 

majority of their efforts are focused on physical road networks, such as the accessibility 

to critical facilities. To expand the understanding of collective mobility patterns in crises, 

Wang et al. (2016) used empirical data to examine the impact of natural disasters on 

population travel distances and radius of gyrations. The result of their study indicates 

inherent resilience of urban mobility in crises. The majority of the existing studies (such 

as Lu et al., 2012) have used empirical approaches or analytical methods (such as network 

science-based models) to examine mobility patterns when a population is hit by a crisis. 

A critical missing piece, however, is predictive data-driven models that can realistically 

simulate the spatial-temporal patterns of urban mobility during a crisis. Such predictive 

models and their resulting information should inform about the spatial distribution of the 

vehicles on road networks and emerging traffic jams caused by crisis perturbations, such 

as road inundations. This information is crucial for emergency response and mobility 
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resilience enhancement; however, using empirical data from past crises, one could only 

evaluate one scenario of crisis impacts. The key to addressing this gap is a predictive data-

driven model that can learn the patterns of movements by individual vehicles during 

normal situations and which is capable of imposing crisis-related perturbations to 

simulated changes in mobility patterns. Such models for urban mobility simulation in a 

crisis situation could offer a unique and effective approach that enables city planners, 

emergency managers, and decision makers to capture the spatial and temporal patterns of 

population movements during extreme events, and facilitate contingency and hazard 

mitigation planning. 

5.2.2 Mobility Destination and Trajectory Prediction 

Simulating urban mobility is an important problem with a wide range of 

applications, such as traffic control, accident warning, pandemic prediction, and urban 

planning (Chao et al., 2020). Therefore, there is a need for general and robust methods to 

predict the destinations and trajectories for drivers, especially in populated urban areas 

(Zhao et al., 2018a). A number of prior studies have explored multiple methods to 

quantify, model and simulate human mobility, ranging from destination (next place) 

prediction (Noulas et al., 2012) to route selection. This section discusses existing research 

work to show the achievements in addressing the challenge and to highlight the need for 

adaptive models to simulate urban mobility under crises situations.  

First, a number of existing studies have proposed and tested methods for next-

place prediction (Ma et al., 2013). Next-place prediction, also called destination prediction 

in local urban scale, predicts the movement patterns of individuals and accordingly 
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estimates the flow of population in both spatial and temporal manners. In next-place 

prediction, the majority of the methods deal with the pairs of origins and destinations 

based on individuals’ historical trip data. As mentioned earlier, statistical evidence shows 

the presence of regularity in human daily mobility patterns (Song et al., 2010b). Hence, to 

detect and learn this regularity, one commonly adopted approach is to develop clustering 

algorithms such as k-means and DBSCAN (Density-based Spatial Clustering of 

Applications with Noise) algorithm based on historical travel data and to identify 

association rules between the origin and destination (Chu and Chapleau, 2010). Multiple 

studies (Du et al., 2019) indicated that the clustering-based approaches have achieved very 

high performance in next-place prediction under normal circumstances. Location 

embedding is another method to capture location semantics with comprehensive numerical 

representations (Cheng et al., 2013; Wang and Li, 2017). For example, Shimizu et al. 

proposed a place-embedding method that can learn fine-grained representation with spatial 

hierarchical information and which achieved higher accuracy in predicting the next place 

of human trips in urban areas (Shimizu et al., 2020). 

Second, in addition to single destination prediction, existing studies have also 

explored models for sequential patterns of individual travel to places (Zhao et al., 2018b). 

In this task, Markov chain-based models, including Mobility Markov Chain (Gambs et al., 

2012), Mixed Markov Chain (Asahara et al., 2011), and Hidden Markov Model (Mathew 

et al., 2012), are commonly used to predict the location sequence of a given 

person/vehicle. Associated with location sequences but more related to route selection, 

other research is concerned with predicting the trajectory selected by an individual from 
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an origin to a destination has garnered significant attention over the past few years (Qiao 

et al., 2015). The predicted trajectories allow researchers to not only estimate travel time 

(Tang et al., 2018), but also to analyze travel demand over urban road networks (Dabiri et 

al., 2020). Due to the complexity of trajectory prediction and required data scale, only a 

limited number of studies have examined this problem. The most commonly used 

approach is the shortest-path algorithm that constructs routable graphs from historical 

trajectory data and then computes the route based on travel frequencies (Wei et al., 2012). 

This approach relies on traffic flow on specific road segments, but does not consider origin 

and destination pairs, that significantly influence route selection (Yang et al., 2017). More 

recent studies direct attention to the behavioral mobility patterns of individuals by 

inferring home and workplace, duration of activities. and other relevant temporal and 

spatial features for route prediction (Alexander et al., 2015). For example, Jiang et al. 

proposed a mechanistic modeling framework, called TimeGeo, that can generate mobility 

behaviors with a resolution of 10 minutes and hundreds of meters (Jiang et al., 2016).  

In summary, recent works have significantly advanced methods of simulating 

urban mobility and trajectory prediction under normal conditions based on the evidence 

of regularity in human movement and activity patterns. Still unsolved, however, is the 

challenge of adaptability of a model for simulating urban mobility when people are 

exposed to disruptive conditions, such as life-threatening situations during crises such as 

flooding, wildfires, and even pandemics. Modeling approaches with limited adaptability 

would not be useful in assessing movement trajectories and traffic under crisis situations. 

Advances in adaptive reinforcement learning models provide opportunities for simulating 
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mobility under crises situations. In the following section, we will elaborate the proposed 

adaptive reinforcement learning model and then show its application in the context of 

flood impact analysis in Houston during Hurricane Harvey in 2017. 

 

5.3 Methodology 

The proposed adaptive reinforcement learning model comprises three modules: 

destination prediction, trajectory prediction, and crisis scenario application (Figure 19). 

The proposed model uses the human movement trajectory data as input, learns mobility 

patterns in regular situations, then simulates the trajectories and traffic conditions in crisis 

situations through adjusting the reward table. The mathematics and steps are formulated 

and elaborated in the following sub-sections. 

5.3.1 Preliminary Definitions 

In this section, we first define the notations and terminologies that are used in this 

study. 

Definition 1. A trajectory 𝑇A, also named as waypoints, route or path, is a spatial 

trace of a vehicle (or an individual) generated by their mobile apps in geographical space. 

𝑇A  contains a sequence of locations with specific latitudes and longitudes: 

¯�𝑥®A , 𝑦®A , 𝑡®A 	�, … , �𝑥4^
A , 𝑦4^

A , 𝑡4^
A �, … , �𝑥p^

A , 𝑦p^
A , 𝑡p^

A �° , where 𝑥4^
A ∈ ℝ  and 𝑦4^

A ∈ ℝ  are the 

latitude and longitude of a trace record 𝑖 at the 𝑘Ath location at time 𝑡4^
A ∈ ℝ, and 𝑘A ∈

¯0,1,… , 𝑛A	°.  

Definition 2. A trip 𝑡A, also called O-D pair, is a pair of origin and destination for 

a given trace record 𝑖. Trips can be extracted from trajectory data.  
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Definition 3. A provider is a service provider which is allowed to anonymously 

collect locations from mobile devices. The providers are sorted into four categories: 

consumer vehicles, taxi/shuttle/town car services, field service/local delivery fleets, and 

for-hire/private trucking fleets. Each provider’s services fall exclusively into one category. 

Definition 4. A grid world is a grid based on a geographical map. The cells in the 

grid world are in the same shape and with equal area. Each cell represents a specific state 

(or location) showing is the location of a vehicle. This term is used to address the Markov 

decision process (MDP).  

Definition 5. A policy, 𝜋, is a set of choices of actions for an agent (people or 

vehicle in this study) at each state.  

Based on these definitions, the destination prediction problem can be described 

thus:  given an origin with spatial coordinate �𝑥®A , 𝑦®A , 𝑡®A 	� and a specific scenario, predict 

the spatial coordinate of the destination �𝑥p^
A , 𝑦p^

A �. The trajectory prediction problem can 

further be described as: given a pair of origin �𝑥®A , 𝑦®A , 𝑡®A 	� and destination �𝑥p^
A , 𝑦p^

A � with 

time information, predict a trajectory, ¯�𝑥®A , 𝑦®A , 𝑡®A 	�, … , �𝑥4^
A , 𝑦4^

A �,… , �𝑥p^
A , 𝑦p^

A �°, that a 

vehicle (or an individual) will go through from the origin to the destination. The specific 

time in a location on the path to the destination is uncertain due to the dynamic traffic 

states and data collection frequency. Hence, in this study, the trajectory prediction task 

will predict only the route a vehicle (or an individual) will select from an origin to a 

destination, while the specific time for the location of the vehicle (or the individual) on 

the route will not be estimated. 
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Figure 19 A schema of the proposed adaptive reinforcement learning model for 

simulating urban mobility. 

 

5.3.2 Feature Generation 

Estimated The first module of the model is a tool that can predict the destination 

of a vehicle, given an origin at a specific time. As suggested by existing studies, human 

movements are spatial- and time-dependent, meaning that each pair of origin and 

destination should include both temporal and spatial features to ensure the model is both 

accurate and general. To achieve this, this section discusses the process of generating 

relevant features.  

For the temporal dimension, each trip sets the start time at the origin, showing the 

time of the day and day of the week. Empirical results show that urban mobility presents 

a significant weekly recurrent pattern (Cho et al., 2011). To incorporate this feature and 

to mitigate the effect of mobility variations across different days in a week, we converted 
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the time of the day and day of the week into an integrated feature, called 𝑡p. Specifically, 

we considered that any time within a week can be represented by a real number from 0 to 

1 (García, 2017). 0 represents the start of Monday (00:00 a.m., Monday), and 1 represents 

the end of Sunday (23:59 p.m., Sunday). Each day can be divided into 24 bins based on 

hours. Then, a specific time can be translated by: 

𝑡p =
³ℎ𝑜𝑢𝑟𝑠 + 𝑚𝑖𝑛𝑠60 + 24 ∙ 𝑤𝑒𝑒𝑘𝑑𝑎𝑦¶

7 ∙ 24  (26) 

where ℎ𝑜𝑢𝑟𝑠 represents the hours of the time in 24-hour system, 𝑚𝑖𝑛𝑠 represents the 

minutes of the time, and 𝑤𝑒𝑒𝑘𝑑𝑎𝑦 represents the number of the days from Monday (for 

example, 𝑤𝑒𝑒𝑘𝑑𝑎𝑦 = 2 for Wednesday). In this way, we can specify the time feature of 

a trip in a continuous manner across different times in a week.  

    Since people tend to have recurrent movement patterns during the weekday and 

special travels during the weekend (Saturday and Sunday), we also considered this 

difference in the model by using the category of weekday and weekend as a separate 

feature, 𝑤p. The value of the trips in this feature can be represented using the following 

rule: 

𝑤p = ¦0 𝑤𝑒𝑒𝑘𝑑𝑎𝑦
1 𝑤𝑒𝑒𝑘𝑒𝑛𝑑

 (27) 

    The location of the origin and destination is usually recognized by the latitude 

and longitude coordinates. The resolution of the coordinates tends to be in meters. This 

raises a significant challenge for the predictive models to accurately learn the locations 

from the training data and predict location for a given origin. Also considering extremely 
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high-resolution coordinates will also increase computational cost for the model. To 

simplify this process and maintain fairly high resolution, we round the coordinates into 

numbers with three decimals places, (This threshold is flexible and can be selected based 

on the requirement of the resolution.) Similar to the idea of grid, the coordinates are 

associated to a cell and represented by a centroid of the corresponding cell. Furthermore, 

since the earth is an ellipsoid which should be described as a three-dimensional space, we 

projected the latitude and longitude to a Euclidean 3D space using the following formula 

(García, 2017): 

𝑥�, = cos�𝑥®A � ∙ cos�𝑦®A� 

𝑦�, = cos�𝑥®A � ∙ sin�𝑦®A� 

𝑧�, = sin�𝑥®A � 

(28) 

Through this approach, we can obtain three location features to represent a location 

of an origin (𝑥�,, 𝑦�,, 𝑧�,). We also did the same transformation for the coordinates of the 

destination in the training data and obtain (𝑥`½, 𝑦`½, 𝑧`½). 

5.3.3 K-nearest Neighbor Regression for Destination Prediction and Evaluation 

Once the five features for an origin are prepared, we can train a supervised learning 

model to learn the movement patterns by extracting the association between origins and 

destinations from the historical data in regular conditions. Among the commonly used 

learning methods (Jia et al., 2017), k-nearest neighbor (k-NN) regression demonstrates 

high performance in predicting the location feature values of the destinations. The k-NN 

regression method assigns weights based on the contributions of the neighbors for the 
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predicted outcomes (location features in this study). The nearer the neighbors, the more 

contribution they can offer on the outcome values.  

Specifically, the k-NN model will take the list of trips 𝑡A = �𝑶A,𝑫A� as the training 

set, including all time and location features of origin and destination. 𝑶A =

�𝑡pA , 𝑤pA , 𝑥�,A , 𝑦�,A , 𝑧�,A � , and 𝑫A = �𝑥`½A , 𝑦`½A , 𝑧`½A � . Then, we defined the number (𝑘 ) of 

nearest neighbors that would contribute to predicting the destination. The value of 𝑘 

should be learned from the training data by minimizing the root mean square error (RMSE) 

which is defined below. The distance between every two neighbors (two origins: 𝑶A and 

𝑶5) is calculated using Euclidean norm (L2 norm), ‖∙‖, as shown below: 

À𝑶A − 𝑶5À

= Á�𝑡pA − 𝑡p
5�
n
+ �𝑤pA − 𝑤p

5�
n
+ �𝑥�,A − 𝑥�,

5 �
n
+ �𝑦�,A − 𝑦�,

5 �
n
+ �𝑧�,A − 𝑧�,

5 �
n
 

(29) 

The location feature values of the predicted destination are the average values of 

the location feature for the corresponding destinations of the 𝑘 -nearest origins. This 

process generates three location feature values for the predicted destination. We then 

convert the location features back to the latitude and longitude with three decimal places 

of accuracy, analogous to the centroid of the destination cell. This coordinate is the 

predicted coordinates for the destination. By adjusting the value of 𝑘  and calculating 

corresponding RMSE based on all pairs of predicted coordinates and actual coordinates, 

we can find an optimized value of 𝑘 which can minimize the RMSE with high predictive 

performance.  
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This process is analogous to addressing a regression problem. Hence, we use the 

RMSE (Chai and Draxler, 2014) to measure the error between the actual and the predicted 

values: 

𝑅𝑀𝑆𝐸 = ©
1
𝑁)

1
2
Â�𝑥p^

A − 𝑥p^
�A �n + �𝑦p^

A − 𝑦p^
�A �nÃ

�

A
 (30) 

where 𝑥p^
�A  and 𝑦p^

�A  are the latitude and longitude of the predicted destination for a trace 

record 𝑖, and 𝑁 is the number of traces in the test data. Since we calculate the RMSE for 

each trace, the value of 𝑁, here, should be 1. The RMSE takes the Euclidean distances 

between the predicted outcomes and the observations which are then normalized across 

distances among all test data. 

5.3.4 Markov Decision Process and Reinforcement Learning 

Once the destinations are predicted for given origins, the next step is to estimate 

the trajectories between the origins and destinations. An effective and commonly used 

approach is to structure the space of learned policies, which more generally called Markov 

decision process. The Markov decision process is a stochastic control process with a tuple 

of (𝑆, 𝐴, 𝑃, 𝑅), where 𝑆 is a set of states 𝑠A ∈ 𝑆, here meaning the cell in a representing 

vehicle location; 𝐴 is a set of actions 𝑎 ∈ 𝐴 which includes the four directions a vehicle 

can move from one cell to another in this context; 𝑃(𝑠A�|𝑠A, 𝑎) is the transition probability 

that action 𝑎 in state 𝑠A  for agent 𝑖 leads to state 𝑠A� in the next timestamp. Following a 

transition matrix 𝑇(𝑠A, 𝑎, 	𝑠A�); and 𝑅(𝑠A, 𝑎, 	𝑠A�) is the reward function that specifies the 
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reward a vehicle will immediately receive after transitioning from state 𝑠A to state 𝑠A� due 

to action 𝑎.  

To simplify the state space and also to enable the matrix computation, we create a 

grid world that represents all possible states of an agent in the environment. With a start 

state (i.e., the origin of a vehicle) and the terminate state (i.e., the destination), the 

objective of this MDP is to learn an optimal policy 𝜋: 𝑆 → 𝐴, that can maximize the total 

rewards for an agent to move in the grid world (Ziebart et al., 2008). To learn a policy, we 

first need to specify the parameters in the model, the probability distribution over a 

trajectory 𝑃(𝜁|𝑇, 𝜅) (𝜁 is a trajectory; and 𝜅 is the reward weights), transition matrix 𝑇, 

and the reward function 𝑅. The calculation starts with the transition matrix 𝑇. In this study, 

we assume that the agents have the same probability to go in each direction 𝑎 among the 

four directions. Hence, the transition probability is set to be equal (the value is 1 if the 

action can be taken) among the four directions. Since the agent is usually not allowed to 

move out of the grid and the destination, we set the transition probabilities of some actions 

at the border and destination cell to be 0.    

Then, the probability 𝑃Ç that an agent will be in the state 𝑠A� at next step given a 

state 𝑠A , an action 𝑎, and a transition matrix 𝑇, can be computed as 𝑃Ç(𝑠A�|𝑎, 𝑠A). The 

probability distribution over a trajectory 𝑃(𝜁|𝑇, 𝜅) would be proportional to the product 

of all probabilities over the path: 

𝑃(𝜁|𝑇, 𝜅) ∝ É 𝑃Ç(𝑠A�|𝑎, 𝑠A)
�^,�,	�^

Ê∈Ë

 
(31) 
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To learn the reward function from historical trajectory data, we maximize the 

likelihood of the historical trajectory data under the maximum entropy distribution: 

𝜅∗ = argmax
Ñ

) log𝑃�𝜁Ó|𝑇, 𝜅�
½�,�

 
(32) 

where 𝜁Ó specifically refers to the historical trajectories. Solving this function by gradient-

based optimization method, we can obtain the reward weights for the grid world. The 

reward value of a trajectory is simply the sum of the state rewards, which is calculated by 

the product of the path feature and the reward weights.  

𝑅�𝐟ËÕ � = )𝜅Ç𝐟�^
�^∈Ë

 
(33) 

where 𝐟ËÕ  is the path feature, which is the sum of the grid feature of each state, 𝐟�^ . The 

formula is shown as follows: 

𝐟ËÕ =) 𝐟�^�^∈ËÕ
 

(34) 

In implementing the model, the first challenge we encounter is the computational 

cost for training the agent on the grid world. That is because, in each step, when the agent 

wants to determine the action and next state, the model has to do matrix multiplications. 

Since we include the whole Houston metropolitan area to create the grid world, the matrix 

would be very large and, thus, calculating the reward would and informing the agent to 

make a decision would require an onerously long calculation time. This cost is usually not 

allowed for the model that wants to be applied to various contexts, especially in crisis 

settings. In fact, the cells distant from the origin and destination are not to make any impact 
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on the trajectory selection of an agent. To reduce the computational cost, hence, in the 

implementation process, we draw only a small bounding box that can incorporate both 

origin and destination. Then, all cells in the bounding box are considered to be in the 

reward matrix to do reward calculations. 

The second challenge would be the effect of the historical trajectories on the 

immediate reward values. As discussed earlier, the reward values in the reward table are 

learned from the historical trajectories that pass through the cell. For an origin and 

destination pair, we aim to find a trajectory to connect these two cells. The historical 

trajectories that connect other O-D pairs would, however, give weights to other cells in 

the reward table. Sometimes, the weights from the trajectories for other O-D pairs are quite 

high, inducing the agent to go other directions, moving around some high reward cells, 

and even leaving the actual destinations. To mitigate the effect of noisy historical 

trajectories, we include only the historical trajectories that pass through the given origin 

and destination to learn the reward table. This solution would effectively overcome the 

noise in the reward tables, reduce the training time, and finally improve the efficiency and 

performance of the model in learning reward tables. 

5.3.5 Transformation of the Reward Function 

The reward table for each pair of origin and destination is the key to predicting the 

trajectory that an agent would select under a specific circumstance. Through examining 

the reward function learned from the Markov decision process, some common problems 

hinder an agent to find the optimal policy.  
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First, due to the sparsity of the data, it is often the case that the immediate rewards 

among all cells are quite close to each other, meaning that an agent would be not able to 

effectively distinguish the benefits of two states to make an accurate choice of the next 

state. As a result, the model is usually unstable, generating different trajectories in 

different rounds of implementation. In addition, the reward values learned by the 

reinforcement learning model are always positive for all cells in the grid world. The agent 

tends to get stuck in some cells with relatively high rewards since the next state does not 

offer substantial reward to enable a moving action. To address these pitfalls, we conducted 

a normalization to project the values of the immediate rewards to a negative space with a 

range of [−1,0]. The normalized reward matrix is denoted as 𝑅� . The process can be 

formulated using the following equation: 

𝑟A5� =
𝑟A5 − 𝑟Ø�Ù
𝑟Ø�Ù − 𝑟ØAp

 (35) 

where 𝑟A5 is the immediate reward in cell at 𝑖th row and 𝑗th column in the grid in according 

to reward function 𝑅; 𝑟Ø�Ù and 𝑟ØAp are the maximum and minimum immediate reward 

respectively among all cells in the same grid. By doing so, the range of the reward values 

will be extended and distributed in a greater space. The negative values of the rewards can 

enable the agent to move out of some cells halfway on the trajectory and get a high reward 

only at the destination cell.  

Second, in the reward table, the reward of an action given to the agent does not 

always compel the agent to move towards the destination due to a high density of the road 

networks and concentration of historical trajectories. That means an agent tends to move 
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around the cells with high reward values, sometimes even moving back to the origin. The 

agent, however, should intentionally move towards the destination. The closer the next 

state to the destination, the higher reward the agent can obtain. To this end, we created a 

new matrix, 𝐿, that can be added up to the reward table to compensate for the effect of 

proximity to the destination on trajectory selection. Empirically, the reward distribution 

accounts for the closeness to the destination centers at the destination cell. The reward has 

to be reduced if the agent does not get to the destination or if the agent moves further from 

it. The idea of the reward distribution is similar to the Gaussian distribution. Hence, we 

employed the Gaussian distribution to assign rewards to the cells in the grid world. The 

reward regarding the closeness to a destination is denoted as 𝑙A5 for the cell at 𝑖th row and 

𝑗th column. The value of 𝑙A5 can be obtained using the following formula: 

𝑙A5 = 𝑓(𝑖) + 𝑓(𝑗) − 𝛿 (36) 

𝑓(𝑖) = 	
1

𝜎√2𝜋
𝑒¢

7
n³
A¢Ý
Þ ¶

ß

 (37) 

𝑓(𝑗) = 	
1

𝜎�√2𝜋
𝑒¢

7
nà
5¢ÝÊ
ÞÊ á

ß

 (38) 

where 𝑓(𝑖) and 𝑓(𝑗) are the reward values calculated based on the row and column; 𝜇 and 

𝜇� are the row and columns of the destination, respectively; 𝜎 and 𝜎� are calculated as the 

variance of rows and columns. 𝛿  is a parameter that controls the range of the reward 

values. Regarding the contribution of the closeness to the destination, the value of 𝛿 can 

be tuned to improve the prediction performance of the model.   
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Third, the model usually does not converge at the destination cell because the 

reward at the destination is not significantly higher than other states. The agent would go 

back and forth around the destination cell. To address this problem, we simply assigned a 

large reward to the destination cell so that and the process can be converged when the 

agent arrives at and stops at the destination. The matrix can be created based on the 

formula shown as follows: 

𝑑A5 = ¦500 𝑖𝑓	𝑖𝑗	𝑖𝑠	𝑡ℎ𝑒	𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (39) 

where 𝑑A5 is the extra reward given to the destination cell, while other cell would receive 

no reward. 

After all transformation matrices are prepared, finally, the reward table for a pair 

of origin and destination can be obtained by combining all of these matrixes: 

𝑅, = 𝑅� + 𝐿 + 𝐷 (40) 

Using this transformed reward table, we can train agents for each origin and 

destination pair to effectively learn the optimal policy. 

5.3.6 Optimal Trajectory Prediction and Evaluation 

Once the reward table for each pair of origin and destination is prepared, we define 

that the expected utility starting in 𝑠A and acting optimally is 𝑉∗(𝑠A). The expected utility 

starting out having taken the action 𝑎  from state 𝑠A  and thereafter acting optimally is 

defined as 𝑄∗(𝑠A, 𝑎). Here 𝑄∗(𝑠A, 𝑎) is computed by: 
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𝑄∗(𝑠A, 𝑎) = )𝑇(𝑠A, 𝑎, 	𝑠A�)[𝑅,(𝑠A, 𝑎, 	𝑠A�) + γ𝑉∗(𝑠A�)]
�^
Ê

 
(41) 

where γ is a hyperparameter that can be adjusted to balance the contributions of the reward 

function and the expected utility. Based on the historical data, we can maximize the value 

of a state by: 

𝑉∗(𝑠A) = max
�
𝑄∗(𝑠A, 𝑎) (42) 

Finally, we can learn the optimal policy:  

𝑉∗(𝑠A) = max
�
)𝑇(𝑠A, 𝑎, 	𝑠A�)[𝑅,(𝑠A, 𝑎, 	𝑠A�) + γ𝑉∗(𝑠A�)]
�^
Ê

 
(43) 

𝜋∗(𝑠A) = argmax
�

)𝑇(𝑠A, 𝑎, 	𝑠A�)[𝑅,(𝑠A, 𝑎, 	𝑠A�) + γ𝑉∗(𝑠A�)]
�^
Ê

 
(44) 

A deep Q-network (DQN) with prioritized experience replay is adopted to solve 

the behavioral policy and predict the optimal trajectory that the agent would select for a 

given O-D pair. Consider a historical trajectory where the model has learned and estimated 

the 𝑄∗ value for an action. The empirical trajectories should be encouraged to be sampled 

in the prediction. To prioritize the empirical trajectories, we first measure the difference 

between the predicted 𝑄∗ value and the experienced 𝑄∗ value in the same state for the 

same action, which is represented by 𝛿A: 

𝛿A = 𝑅,(𝑠A, 𝑎, 	𝑠A�) + γ𝑉äå∗ (𝑠A�) − 𝑄ä∗(𝑠A, 𝑎) (45) 
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where 𝜃¢ represents the target deep neural network, and 𝜃 represents the current deep 

neural network. The equation can further be reformulated as: 

𝛿A = 𝑅,(𝑠A, 𝑎, 	𝑠A�) + γ𝑄äå∗ à𝑠A�, argmax
�

𝑄ä∗(𝑠A�, 𝑎)á − 𝑄ä∗(𝑠A, 𝑎) (46) 

The left-hand side of the equation, 𝑅,(𝑠A, 𝑎, 	𝑠A�) + γ𝑄äå∗ à𝑠A�, argmax
�

𝑄∗(𝑠A�, 𝑎)á , is the 

target value, and the right-hand side of the equation, 𝑄ä∗(𝑠A, 𝑎), is the predicted value. This 

equation provides a quantitative measure of how much the deep neural network can learn 

from the given experience sample 𝑖. This is notated as the Double-Q temporal difference 

(TD) error. To find an appropriate 𝜃 and an optimal trajectory, the TD error is minimized 

by using expectation of the samples from the replay buffer D: 

min
ä
𝔼��^,�,ç,	�^Ê� 	~𝐷 éê𝑅,(𝑠A, 𝑎, 	𝑠A

�) + γ𝑄äå∗ à𝑠A�, argmax
�

𝑄ä∗(𝑠A�, 𝑎)á

− 𝑄ä∗(𝑠A, 𝑎)ë
n

ì 
(47) 

By doing so, we can predict the optimal trajectory for each pair of origin and 

destination. 

The performance of trajectory prediction is measured based on the overlaps 

between the actual and the predicted trajectory. Since we created the grid world for the 

Markov decision process and optimal policy learning, the trajectories are characterized by 

the cells. The intersection between the set of cells in the predicted trajectory and the set of 

cells in the actual trajectory indicates the precision and recall of the model for O-D pairs 
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(Buckland and Gey, 1994). Hence, we adopted the following formulas for measuring the 

precision and recall for each O-D pair to assess the performance of the model: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (48) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (49) 

where 𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 is the number passing cells that the model correctly predicts and 

that presents in the actual trajectory; 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 is the number of passing cells that 

the model incorrectly predicts and that are not in the actual trajectory; 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 is 

the number of cells that are incorrectly predicted to be out of the trajectory. The calculation 

of the precision and recall allows us to quantitatively assess the performance of the model 

for each O-D pair and to identify the specific correctly predicted cells. 

5.3.7 Crisis Scenario Application with Contextual Factors 

The adaptability of the model is an important feature that enables the model to be 

widely used in various contexts, especially in crises situations, such as flooding, 

hurricanes, wildfires, and pandemics. The major change in the model due to the variation 

of the contexts is the destination and immediate reward when agents make their decisions 

on the actions. Therefore, in this section, we discuss the steps and strategies to update the 

destination selection and the reward table. The detailed steps are shown below: 

• Step 1: sampling the origins based on the historical data (or the density of 

population); 
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• Step 2: predicting the destinations corresponding to each sampled origin using the 

well-trained first module of the model. In particular contexts, such as crises, some 

destinations might have been damaged or closed. Based on the observed situations, 

these destinations must be removed from results and only reachable destinations 

retained.  

• Step 3: generating the situation matrix 𝐹 to represent the situation between the 

origin and destination and updating the transformed reward table with the situation 

matrix 𝐹. Take the flooding event as an example. The value of each cell 𝑓A5  in the 

situation matrix 𝐹 can represent the extent of flooding in that cell, such as the 

number of flooded road segments or the area of the flooded cell. Then, multiplied 

by a parameter 1/𝛽  to normalize the values, we can add the matrix to the 

transformed matrix or subtract the transformed matrix with the situation matrix, 

following the formula shown below: 

𝑅, = 𝑅� + 𝐿 + 𝐷	 − 𝐹/𝛽 (50) 

where, the value of 𝛽 can be selected based on the contribution of the situation to 

the trajectory selection of the agents. 

• Step 4: predicting the trajectory of the given origin and destination using the 

updated reward table and the priority deep Q-network. 

• Step 5: augmenting the prediction results. It is important to note that the model can 

simulate only the trajectory for each origin and destination pair, instead of directly 
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predicting the number of vehicles on the road. The model, however, has the 

capability to simulate traffic conditions on the road based on the simulated 

trajectories. In this step, the algorithm can first simulate the trajectory for an origin 

and destination pair 50 times. Then the algorithm selects the cells with high pass-

through probability. We use the number of times, 𝑛A5, that the cell is included in 

the predicted trajectory as the weight of the cell, 𝑣A5, and other cells are considered 

as zero, as the equation shown below: 

𝑣A5
(4) = í𝑛A5

(4) 𝑔𝑟𝑖𝑑𝑠	𝑎𝑟𝑒	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (51) 

Each pair of origin and destination would have one vehicle matrix, 𝑉(4) , that 

encompasses the entire grid world. Since a cell would likely to be on multiple 

trajectories for different pairs of origins and destinations, for all pairs of origins 

and destinations, we use 𝑐A5 = ∑ 𝑣A5
(4)�

467  to represent the number of vehicles 

passing through this cell, where 𝑁 is the number of simulated pairs of origins and 

destinations.  

Through the implementation of all these steps, we can arrive at a final traffic matrix 

𝐶 to represent the number of vehicles simulated in the cells on the grid world. This matrix 

would not only show the common trajectories that people would choose to reach their 

destinations, but also can inform the emergency response and resource allocation based 

on perturbations in mobility and traffic patterns in the context of crises. The capabilities 
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of the model in simulation of urban mobility during crises is illustrated in following 

sections. 

 

5.4 Results 

To demonstrate the performance and capabilities of the proposed model, we first 

introduced the data sets and then elaborated a specific use case of the model with an 

application in flooding impact analysis in the Houston metropolitan area in the context of 

Hurricane Harvey in 2017. 

5.4.1 Data Collection and Preprocessing 

The data set, which is used to train, tune, and evaluate the adaptive reinforcement 

learning model, comes from INRIX, a private location intelligence company providing 

location-based data and analytics. The reason why we employ these data are twofold. First, 

the INRIX data provides very detailed coordinates along with the trajectory of the 

vehicles. That is, INRIX collected the coordinates of the vehicles every few seconds. 

Hence, the temporal and spatial resolution of the data is high. Second, the INRIX data are 

collected over the entire Houston metropolitan area over a time period of two months 

(March through April 2017) at all times of the day. This yielded a dataset of more than 26 

million trip records collected in a continuous timeframe. Third, the INRIX data contains 

the trips for hundreds of providers with four vehicle types. The vast volume of the trips 

and the diversity of vehicle types allow us to capture the various activity patterns and to 

enhance the robustness of the proposed approach in learning and simulating large-scale 

urban mobility.  
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To prepare this data for training, we selected providers with large record sizes and 

discarded roughly 20% of the trips that were too short (distance between origin and 

destination less than 5 miles) that might induce noise into the training process. Then, we 

randomly selected 80% of the trips as the training set and 20% of the remaining data as 

the testing set.   

5.4.2 Destination Prediction 

The first task is to predict the destinations, given the origins. We mainly train the 

model to automatically find an optimal value for the number of neighbors, 𝑘 , which 

indicates the number of neighbors that should be included for estimating the coordinates 

of the destinations. Since we have a large number of providers with different types, we 

trained the model on the dataset from each provider separately.  

Figure 20 shows the prediction performance of the models in four example 

providers. As shown in the figure, the RMSE goes from a very small value, about 0.005, 

and then grows gradually to 0.1 when 80% of the O-D pairs are predicted. Only 20% of 

the O-D pairs have an RMSE greater than 0.1. The result indicates that the model can 

accurately predict the destinations for given origins based on the parameters learned from 

training data. Since we filtered out short-distance trips, the lengths of the remaining trips 

in the training and testing data are relatively long. By measuring the distances between the 

actual destinations and the predicted destinations, we find that a few predicted destinations 

are less than 0.3-mile from the actual destination, about 10% of the predicted destinations 

are less than 0.6-mile from the actual destination, and more than 50% of the predicted 

destinations are within the 3-mile distance from the actual destination. Considering the 
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length of the trips themselves, the differences between the actual and predicted 

destinations are much shorter. Hence, the accuracy of the results is acceptable. Figure 21 

further shows the spatial accuracy of some example O-D pairs. Figure 21 also shows the 

high performance of the model. Comparing the results among all providers, we also find 

that the model is quite stable with respect to the prediction performance and is not affected 

by the types of providers. This result demonstrates that the model is robust and 

generalizable to be applied to different data providers for destination prediction. 

 

Figure 20 The performance of the model for destination prediction in four example 

providers. The average RMSEs for providers 1 through 4 are 0.0288, 0.0701, 0.0780, 

and 0.0824, respectively. 

 

5.4.3 Trajectory Prediction 

Once we acquire the destinations for given origins, we further use them to predict 

the optimal trajectories between the origins and destinations. The first step is to compute 

the reward table for each O-D pair. As discussed in the methodology section, we include 

only the cells within the bounding box. Figure 22 shows examples of reward tables for 

some of O-D pairs. The bounding box is a bit larger than the actual box tightly covering 
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the origin and destination. In the majority of the example tables, such as R1, R2, and R5, 

we can find that the some significantly highlighted cells have high reward values, and the 

agent can effectively determine the optimal trajectories from the origin to the destination. 

Although historical data do not have a significant footprint for some O-D pairs, such as 

R3 and R4, the model can still impulse the agent to find an optimal trajectory.  

 

Figure 21 Example origin-destination pairs showing the performance of the model. 

(The blue polygon is the borderline of Harris County, Texas, USA.) 

 

 A quantitative assessment of the model performance is shown in Figure 23. We 

tested the model for multiple providers and O-D pairs. As the results suggest, the majority 

of the predicted trajectories are similar to the actual trajectories selected by the vehicles. 

Both average precision and recall are fairly high (although they are negatively affected by 

some extreme values). Figure 24 shows some examples of actual trajectories, predicted 

trajectories, and their overlaps. Despite the complexity of the historical trajectories 

transited by the vehicles, the model can still identify optimal trajectories for each pair of 



 

139 

 

origin and destination. The performance of the model is also stable when it is trained and 

tested on different types of providers and datasets. These results and findings indicate that 

the proposed model is robust and could be used for trajectory-finding tasks. 

 

Figure 22 Example reward tables for origin and destination pairs, learned from 

training data using reinforcement learning. 

 

     

Figure 23 Performance of the trajectory prediction using module 2 of the proposed 

model. Average precision: 0.765; and average recall: 0.766. 
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Figure 24 Example trajectories showing the performance of the model. The blue 

polygon is the borderline of Harris County. 

 

5.4.4 Simulation for Flooding Impact Analysis 

To illustrate the application and capabilities of the proposed adaptive 

reinforcement model, we implemented the model for the situation during Hurricane 

Harvey in late August 2017 in the Houston metropolitan area. Hurricane Harvey, a 

Category 4 tropical storm, landed in Houston on August 26, 2017, and dissipated inland 

August 30, 2017. August 27 is the date with extreme and sustained rainfall that 

subsequently caused large-scale flooding over the urban areas, especially on urban road 

networks. As reported in news articles and government reports, more than 115,000 

buildings were damaged, and 290 roads and highways were flooded (Ibrahim, 2017; 

Sebastian et al., 2017). To illustrate the performance of the model, we selected a specific 

short time interval, 10:00 a.m. through 12:00 p.m., August 29, 2017. We simulated 

vehicles that would move during this time interval and estimated their trajectory to 

understand the traffic conditions under the perturbation of urban flooding. Here we 

measured the traffic conditions in different locations by using the number of vehicles that 

move across a cell. 
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To be consistent, the data set used to validate the capability of the proposed model 

for scenario application was also obtained from INRIX. For each road segment, the dataset 

includes the average speed in 5-minute intervals and the speed in free-flow conditions 

(estimated as the speed limit for the roads). The flood situation on the road segments can 

also be reflected by the INRIX data. In the INRIX average speed dataset, the flooded road 

segments are identified by a designation of NULL for the traffic speed since no traffic 

records and no vehicles are driving through flooded road segments. To test the accuracy 

and validity of the data for identifying flooded roads, we also did a comparison of the 

NULL records between the datasets collected before and during the Hurricane Harvey, 

and also checked the records with flooded roads from government reports (Dong et al., 

2020). We found that the NULL records presented only during the flooding period and 

were consistent with the flooded locations.  

Using this dataset, we identified the flooded road segments and quantified the 

extent of flooding in a cell. In the grid map for Houston, Harris County, each cell contains 

multiple road segments. To measure the extent of flooding in a specific cell, we considered 

the number of flooded road segments within a cell as a metric. As shown in Figure 25(a), 

the flooded cells are concentrated on the central area of Houston and along the major roads 

such as highways.  

The traffic conditions in a cell can be captured by the actual traffic speed on the 

road segment. Since our model is mainly learned from the vehicles driving on major roads, 

here, we take into account only the road segments on which the speed limit is equal or 

greater than 50 km/hour so that all simulated results can be on the same road basis. This 



 

142 

 

step also contributes to eliminating the effect of speed limits (types) of roads on the results. 

Hence, we computed the average of the actual speed on these selected road segments as 

the metric for traffic conditions for each cell. Figure 25(b) shows areas where traffic was 

quite heavy due to flooding.  

To understand the impact of flooding on the population movement patterns, 

especially in the trajectory selection, we implemented the proposed adaptive 

reinforcement learning model by adopting the flood conditions to adjust the parameters in 

the model. The cells with more flooded road segments would have higher negative values 

added to the reward table. Accordingly, the agent would be less likely to transit the 

severely flooded cell to reach their destination. The simulated results are shown in Figure 

25(c) and (d). From these results, we found that the majority of the road segments hit 

hardest by the flood had fewer vehicles compared to the road segments where flooding 

was less severe (i.e., passable roads). This result indicates that, the model effectively 

simulated the trajectories selected by people who deliberately avoided flooded road 

segments. Hence, the road segments that were less flooded tend to have a great number of 

vehicles with low speed, or fewer vehicles with high speed. The results are quite realistic, 

which reveals the redistribution of vehicles and the utility of roads in urban road networks 

when flooding disrupted this area. 
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Figure 25 The simulation results in flooding scenario. (a) Number of flooded 

segments in Houston, Harris County (the blue borderline); (b) Actual average speed 

for major road segments during the investigated time period; (c) Predicted density 

of vehicles during the investigated time period; and (d) Relationships among three 

variables for simulation validation. 

 

5.5 Discussion and Concluding Remarks 

In this paper, we presented an adaptive reinforcement learning model that can 

simulate human mobility under crisis conditions based on the mobility patterns learned 

from historical data collected under normal circumstances. The proposed model can 

overcome the scarcity of mobility pattern data in crisis contexts, and also has the capability 

to simulate different crisis situations for impact analysis. The study showed the application 

of the proposed model using the digital trace data collected in Houston during regular 
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situations and demonstrated the adaptability of the model in the case of urban flooding 

during Hurricane Harvey in 2017. In the task of learning the devices’ collective utility 

function for movement trajectories in our road networks, the time complexity of the KNN 

model for training is 𝒪(𝑁 × 𝐷), where 𝑁 is the sample size and 𝐷 is the dimension of the 

sample. The reinforcement learning algorithm attains near-optimal average reward in 

polynomial time.  

Although the proposed model is general and can be adaptive to various phenomena 

and applications, future research could address some limitations. First, although this study 

achieves good performance for predicting the destinations and trajectories at a relatively 

fine-grained scale, the prediction of local movements, such as visits to nearby 

neighborhoods and points of interest, still needs to be improved. Local movements provide 

essential information about the lifestyle of residents. This study predicts the pure 

coordinates of destination and trajectories regardless of the specific locations visited and 

the roads traversed. Inclusion of this information in creating the movement profile of 

populations and predicting local movements would be of interest and importance in 

applications related to city and emergency planning. Second, the model has a great 

potential to be used as an application for rapid prediction. Training the proposed algorithm 

and attaining the reward table, however, are still time-consuming, which would take a 

great amount of computational cost. In addition, the flooding situation is dynamic and 

evolves rapidly. Hence, there is a need of improving the efficiency of the algorithm so that 

it can be used for learning rewards efficiently across more cities and crises contexts. 
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CHAPTER VI  

SUMMARY, CONTRIBUTIONS AND FUTURE WORK 

 

The research presented in this dissertation makes significant theoretical and 

practical contributions to the areas of urban resilience in flooding emergencies. Through 

characterization and analyses of information, human, road and mobility network dynamics 

in flooding events, this research offers important insights about the extent to which 

technologies could obtain real-time and predictive capacities and aid emergency response 

as well as the extent to which human behaviors could be improved in coping with service 

disruptions in flooding emergencies. Overall, this body of work provides a deeper 

understanding of how human digital trace data and various types of network dynamics can 

enhance urban resilience, and subsequently reduce the loss of properties and lives in 

flooding emergencies. The specific theoretical and academic contributions and practical 

contributions of each study are presented in the sections below with highlighted 

corresponding chapters. Future work along the path of these studies is proposed finally. 

 

6.1 Theoretical and Academic Contributions 

First, the presented research in this study makes critical contributions surrounding 

the use of human digital trace data and computational methods in understanding the real-

time and future situations in flooding emergencies. The results from the experiments in 

this dissertation provide empirical evidence about the performance of infrastructure and 

the reactions of populations in flooding emergencies. These empirical findings offer a 
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direct behavioral indication of the vulnerability of infrastructure systems and population 

groups, to the extent that specific infrastructure, locations and people are more sensitive 

to environmental perturbations, while others are more resilient. This evidence base 

addresses an important challenge in resilience research: unequal resilience capacities of 

urban systems in the face of the same emergencies. Hence, this research contributes to the 

theory of urban resilience by generating new knowledge about the characteristics of real-

time situations, which is often overlooked in existing resilience studies. In addition, the 

evidence base could also support policies guiding the delivery by emergency management 

organizations of important lifesaving information and reactions to the public in risks.  

 Second, the proposed online network reticulation framework enables 

understanding the relationships among disaster-induced disruptive events, user activities, 

network reticulation, and network performance in dynamic online space during flooding 

emergencies. To my knowledge, this research provides the first systemic study of 

addressing the relationships between the situation in urban space and human reactions in 

online space. The results of the experiments empirically verified that weak social ties play 

an important role in breaking the physical boundaries of people in emergencies and 

amplify information spread across different communities. The findings uncovered by the 

proposed theory deepen our understanding of online social network dynamics with 

consideration of triggering events in urban space. The knowledge could also inform the 

design of mechanisms to improve user activities, and thus achieve better network 

performance for risk communication among affected populations. Apart from disaster 

studies, adoption of the online network reticulation theory can also enrich studies of social 
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behavioral dynamics in other contexts such as politics and marketing to better understand 

the interplay among user activities, the influence of social, political and technological 

events, and the performance of online social networks. Such understanding could inform 

the planning of marketing and political campaigning strategies. 

 

6.2 Practical Contributions 

6.2.1 Real-time situational awareness 

This developed methods and tools in this dissertation have significant practical 

contributions and implications for real-time situational awareness in management 

processes. First, the methods and models enable the automatic mapping of credible 

situational information for critical infrastructure in disasters. This output can support 

multiple decision-making processes. For example, first responders can rapidly obtain 

information about disruptive events, and monitor the situation at different locations. In 

addition, by tracking the conditions of places with a variety of critical infrastructure, 

volunteers and relief organizations can be aware of the allocation of relief efforts so that 

they can deploy their resources to the locations where people’s needs are not satisfied. 

Second, the evolution of the events for an infrastructure system identified by the proposed 

methods from social media can be used for forensic disaster analysis. For example, the 

situational information on social media might indicate the interactions among multiple 

infrastructure entities. This information contributes to probing more deeply into the 

complex interdependencies of infrastructure entities, and the underlying causes of 

cascading impacts. Hence, the automatic mapping enabled by the proposed methods can 
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enable a timely forensic investigation to inform disaster recovery and future risk 

mitigation. Finally, the methods can be further scaled to address automated mapping for 

several disasters occurring at the same time, when it is put into production. The relevant 

tweets for each disaster can be filtered using keywords and geographical bounding boxes 

that are specified by disaster responders with domain knowledge. Then, multiple methods 

can work parallelly with specified inputs for different disasters to automated map the 

situations. 

 

6.2.2 Predictive situational awareness 

The predictive models proposed in this dissertation contribute to predictive 

situational awareness in flooding emergencies. First, the proposed models and its 

adaptability to different crisis contexts can contribute to hazard mitigation and resilience 

improvement of urban areas. Predictive emergency warning and situational awareness are 

key components of hazard mitigation, which would benefit from an effective simulation 

of crises. Simulating flood propagation and human mobility during flooding emergencies 

is an essential step to capture the crisis and further inform early warning and mitigation 

planning. For example, using the proposed models, city planners, emergency managers, 

and decision-makers can simulate scenarios of flooding (such as 100-year and 500-year 

flood scenarios) and road inundations to enable examination of the effects of movement 

trajectories and traffic congestions in urban road networks. This output information could 

inform about areas that would experience significant flooding damages or traffic 

congestions induced by flooding. With sufficient examination of such contingencies, first 
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responders and decision-makers can effectively assess the extent to which reducing the 

flood vulnerability of a major road or highway would mitigate the flooding spread and 

traffic congestions to improve the resilience of cities in flooding emergencies. Also, the 

proposed models could be used to simulate road inundation and mobility disruptions 

between critical origins (such as areas where vulnerable populations, such as the elderly 

and low-income households, are located) and critical destinations (such as healthcare 

facilities). In addition, the outcomes of the proposed model can help with a prediction of 

road inundation and traffic congestions in the next couple of hours based on the real-time 

information, such as the flooded areas, to improve the accessibility of critical facilities and 

efficiency of responder dispatch.  

Second, the presented studies also offer a new perspective on using mathematical 

models and deep learning techniques for flood prediction and mobility analysis. Although 

extremely big data related to human digital traces have been generated by the daily 

mobility activity of individuals, existing deep learning techniques are limited to the 

prediction of regular mobility patterns. The proposed models enable consideration of 

contextual factors, such as road conditions, road network connectivity and population 

distribution, in the simulation process, which would significantly extend the capabilities 

of existing deep learning models leaned from normal situations and applied to unfamiliar 

conditions, such as emergencies and traffic anomalies, to support decision-making and 

response strategies. For example, one can learn the mobility demand of the road networks 

from daily mobility data and predict the utility of each road segment by changing the 
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layout of the networks. This can help design efficient transportation networks and traffic 

control systems to improve the performance of urban road networks.   

 

6.3 Proposed Avenues of Future Research 

In this dissertation, I focus on real-time and predictive situational awareness using 

human digital trace data and computing techniques. The developed models and proposed 

theories provide insights into how we can design a powerful tool to enhance situational 

awareness in flooding emergencies. Beyond that, emergency management involves plenty 

of other components such as a diversity of relief organizations and their complex 

interactions in providing humanitarian relief actions. The need for improving the 

effectiveness and efficiency of organization coordination in emergency management has 

been widely recognized. To address this challenge, researchers from different disciplines 

such as information science, computer science, and social science have denoted efforts to 

employing information and communication technologies and developing advanced 

machine learning and mathematical approaches to capture the behaviors of organizations 

in the face of disasters and crises. Given the growing literature in the interdisciplinary field 

of emergency management, there is a dire need for interdisciplinary convergence towards 

a unified vision.  

Hence, I outline three proposed avenues of future research that could build on the 

models and theories established in this dissertation: 

• Data integration and knowledge distillation: The studies presented in this 

dissertation use textual content of social media posts and geographical 
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information from mobile phone data. Other types of data such as human 

speech, video streams, images and signal data could also provide important 

information regarding the situation in emergencies to complement the textual 

and geographical data. Yet, the utility of these data for emergency management 

and urban resilience remains unexploited. Future research work could extend 

our models and methods to other sources of data, develop an approach to 

integrate the information provided by these data, and create a knowledge graph 

to connect all entities, attributes, and their statuses together. The outcome of 

this work could not only contribute to precise and efficient situational 

awareness, but also significantly strengthen the predictive capability of 

existing methods and tools to project things unseen and future scenarios. 

• Multi-actor game-theoretic decision making: This dissertation developed tools 

to extract information for real-time situations in emergencies. Thus, we can 

now capture the needs of the residents at different locations. Built upon the 

outputs of our tools, future work could conduct experiments and develop 

simulations to understand how relief organizations are coordinating with each 

other to distribute their resources to the people in need. Serious Gaming 

Learning and Coordination Environment (SGLCE) could be a useful tool to 

solve decision-aware serious gaming, coordination, and visualization of 

emergency response actions. What makes SGLCE helpful is its ability to 

simulate the coordination, information flow, and dynamic interactions among 
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relief organizations and identify an optimal policy to maximize the benefit of 

collaborative operation with an acceptable cost. 

• Dynamic network analysis for performance assessment: I presented a study in 

examining the response of online social networks for risk communication and 

collective-sense making in this dissertation. However, emergency management 

for urban resilience involves a great number of entities such as human entities 

(e.g., residents and government officials), resource entities (e.g., food and 

driving water), and operation entities (e.g., a series of tasks directing the 

activities of stakeholders). Future work could create an integrative framework 

for performance analysis of the complex interactions among different types of 

entities. Using a dynamic network analysis approach, we could quantify the 

operational efficiency and coordination efficiency in the emergency 

management system, enabling increased visibility of the capacity and 

drawback in the synergy of heterogeneous entities.  

Overall, the studies in this dissertation and future research could be integrated into 

a unified paradigm, Disaster City Digital Twin (see Figure 26). The digital twin paradigm 

would offer important capabilities of cities with an integration of different streams of 

research and create AI-based converging solutions for emergency management and urban 

resilience. 
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Figure 26 The Disaster City Digital Twin paradigm. 
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APPENDIX A 

SUPPLEMENTARY INFORMATION FOR THE STUDY IN CHAPTER 3 

 

 

Figure 27 Daily online social networks during hurricane and flooding (different 

colors represent different activity foci). 
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Figure 28 Daily communication frequency between neighborhoods. 
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                               (a)                                                                    (b) 

Figure 29 The matrices of physical proximity (a), communication frequency (b) in 

pair-wise neighborhoods.  

 

 

Figure 30 Flood risk zones and building damages for studied area (Bajaj et al., 2017). 
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Table 4 Primary neighborhood investigated in this study. 

No. # of Users No. # of Users 

1 167 15 45 

2 377 16 66 

3 422 17 379 

4 115 18 509 

5 652 19 77 

6 18 20 17 

7 811 21 48 

8 16 22 125 

9 200 23 321 

10 226 24 114 

11 211 25 461 

12 841 26 21 

13 84 27 19 

14 444 28 13 
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Table 5 Definitions and Examples of Thematic Content Codes. 

Content Theme Theme Definition and Post Example 

Housing and 
properties 

Refers to posts that contain information about damages of housing 
(e.g., roofs, walls, windows, and houses), loss of properties (e.g., 
car, bike, TV and table), and casualty 

"Our home backyard fence is already under water on one side. 
Frontyard water is also creeping up (half mailbox under water)." 

Infrastructure 
status 

Refers to posts that contain infrastructure facilities (e.g., network, 
power, water, sewage, communication facilities, grocery stores, gas, 
roads, airport, reservoir, bayou, dam, school, canal and heating) 

"Has anyone found a way to get to I10 from south of the bayou? I 
am at Eldridge and Enclave." 

Evacuation/Shelter 

Refers to posts that contain information about pre-evacuations, 
mandatory evacuations, and sheltering information 

"I just received an email from my apartment complex strongly 
urging us to evacuate." 

Disaster 
descriptions 

Refers to posts that contain descriptions of the disaster itself, such 
as locations or containment, and/or descriptions of the disaster 
scales, such as damaged areas and weather conditions. 

"The weather is improving and they are expecting 1-2" of rain on 
our end of town today and tonight so fingers crossed the water levels 
will remain or possibly start to go down slowly." 
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Table 5 Continued. 

Relief/Advi
sory 
information 

Refers to posts that contain relief information, such as phone numbers, 
websites, locations, and service of help facility sites, insurance, law and 
preparedness, response and recovery tips 

"The Harris County Office of Homeland Security & Emergency 
Management invites residents affected by Hurricane Harvey to a recovery 
fair this weekend." 

Request for 
help 

Refers to posts that request for neighbors’ on-site help 

"Does anyone have a canoe/boat/float of some sort to use tomorrow 
morning to get to our homes on Ivy Wall and Silvergate?  XXX_1 and 
XXX_2 were one of the many wonderful men in our neighborhood helping 
with rescuing many of our neighbors. XXX_1  had 3 blowup kayaks that are 
gone now after rescue efforts.  If anyone can help us we would be so 
grateful.  Please call or text XXX.XXX.XXXX or XXX.XXX.XXXX.  

Thank you to the XXX's and all of our amazing neighbors who have helped 
everyone during this time of need.  XXX" 

Volunteer 

Refers to posts that contain information about volunteering, such as 
websites, phone numbers or locations of volunteer facilities, donation or 
providing individual help to neighbors 

"For my amazing neighbors affected by the flood. Please let me know if you 
need some baby food. We just outgrew this stage. God bless" 

Off Topic Refers to posts that are not within the scope of disaster-related topics 

Note: personal information such as name and phone numbers appearing in the examples 
are replaced with “XXX” or deleted. 
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Table 6 Basic information about social networks and activity foci detection. 

Days # of nodes # of edges Modularity # of activity foci 

1 230 1704 0.590 15 

2 440 4428 0.685 21 

3 427 2790 0.730 21 

4 440 3711 0.799 32 

5 479 4927 0.742 23 

6 367 2085 0.630 25 

7 295 3354 0.490 14 

8 282 1799 0.730 16 

9 251 1299 0.679 25 

10 224 1161 0.777 20 

11 254 2715 0.573 19 

12 161 945 0.733 19 
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Table 7 Number of nodes (N) and edges (E) in each activity foci during the 
hurricane and flooding. 
Activity 

foci 
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

N E N E N E N E N E N E 
1 44 621 61 1659 66 314 65 325 105 651 81 619 
2 41 229 58 283 58 536 53 1378 84 2051 58 199 
3 39 143 44 573 48 337 37 105 65 337 51 228 
4 24 92 37 162 48 176 34 376 36 630 34 132 
5 19 91 32 124 46 235 33 157 35 121 25 256 
6 16 120 31 147 34 209 27 351 30 294 24 97 
7 12 38 30 92 33 123 27 242 23 181 22 82 
8 9 36 25 95 22 77 25 111 22 121 14 43 
9 7 21 19 82 18 153 25 102 14 91 7 21 
10 5 10 19 105 11 55 18 111 11 31 7 16 
11 5 7 14 79 11 41 12 48 10 19 6 15 
12 3 3 12 42 6 15 10 25 8 13 4 6 
13 2 1 12 35 4 6 8 28 5 10 4 6 
14 2 1 11 28 4 6 8 18 5 6 4 6 
15 2 1 6 15 4 6 7 16 4 6 3 3 
16   5 10 4 6 6 9 4 6 3 3 
17   4 6 2 1 4 6 3 3 3 3 
18   3 3 2 1 4 6 3 3 3 3 
19   3 3 2 1 4 6 3 3 2 1 
20   2 1 2 1 4 6 3 3 2 1 
21   2 1 2 1 4 6 2 1 2 1 
22       3 3 2 1 2 1 
23       3 3 2 1 2 1 
24       3 3   2 1 
25       2 1   2 1 
26       2 1     
27       2 1     
28       2 1     
29       2 1     
30       2 1     
31       2 1     
32       2 1     
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Table 7 Continued. 
Activity 

foci Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 

 N E N E N E N E N E N E 
1 68 2020 55 407 37 165 37 164 42 861 29 253 
2 57 172 43 465 31 225 28 230 40 571 24 276 
3 36 225 33 95 29 90 27 124 40 525 22 90 
4 33 225 30 102 23 196 23 104 37 152 18 109 
5 29 129 25 102 21 54 23 74 24 75 15 42 
6 23 57 25 94 18 153 15 105 18 98 10 45 
7 15 105 21 117 18 51 13 58 10 20 4 6 
8 14 51 17 45 8 28 10 25 7 21 4 6 
9 10 21 10 45 7 21 9 36 7 10 4 6 
10 2 1 6 15 7 21 8 28 5 10 4 6 
11 2 1 5 10 6 15 6 15 5 10 4 6 
12 2 1 3 3 5 10 5 6 4 6 4 6 
13 2 1 3 3 5 10 4 4 3 3 4 4 
14 2 1 2 1 4 6 3 3 2 1 4 4 
15   2 1 4 6 3 2 2 1 3 3 
16   2 1 4 4 2 1 2 1 2 1 
17     3 3 2 1 2 1 2 1 
18     3 3 2 1 2 1 2 1 
19     3 3 2 1 2 1 2 1 
20     3 3 2 1     
21     3 3       
22     3 3       
23     2 1       
24     2 1       
25     2 1       
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Table 8 The medians of the weights of social ties in OSNs in each day. 

Day 1 2 3 4 5 6 7 8 9 10 11 12 

Median 
weight 

2 1 1 1 1 1 1 1 1 1 1 1 

 

 

Table 9 Number of active users and communications each day before and during 
the disaster. 

Days -6 -5 -4 -3 -2 -1 0 

Number of active users 38 10 29 61 29 77 35 

Number of communications 150 13 119 358 101 980 137 

 

Table 9 Continued. 

Days 1 2 3 4 5 6 7 8 9 10 11 12 

Number of 
active users 230 440 427 440 479 367 295 282 251 224 254 161 

Number of 
communications 1704 4428 2790 3711 4927 2085 3354 1799 1299 1161 2715 945 

 

 


