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ABSTRACT 

 

Fast and reliable reservoir simulation is a key for the successful decision making 

in integrated reservoir studies. Large and complex multiphase reservoir models usually 

require expensive computational infrastructure. Physics-based model order reduction 

(MOR) methods, especially snapshots-based methods such as the proper orthogonal 

decomposition (POD), have been introduced and applied especially for mitigating the 

computational cost of black oil models in workflows that require multiple calls of the 

reservoir simulator. However, only a limited number of methods have looked deeper at the 

effectiveness of these techniques to multiphase and compositional simulation where 

expensive flash and phase equilibrium calculations are added to the level of complexities 

associated with obtaining robust solutions. In this work, we develop coupled physics-

based and artificial neural network (ANN)-based MOR techniques for rapid compositional 

simulations that accelerate calibrating of phase equilibrium during expensive 

computations. We base our framework on the so-called the POD-DEIM, which uses the 

discrete empirical interpolation method (DEIM) step to overcome the cost associated with 

the nonlinear terms.  

Rapid flash calculation can be accomplished by use of machine learning method 

such as ANN. The fully connected trained network yields reliable estimation for the 

solutions of the composition related variables. Therefore, the process for obtaining the 

solutions for the flash calculation is substituted without the expensive computation of 
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Newton-Raphson iteration. 

In this study, we introduce a new formulation for the POD-DEIM method applied 

to a compositional simulator. The new formulation allows the tracking and approximation 

of each component individually as opposed to only pressures and saturations. We test the 

robustness of the POD-DEIM method integrated with the ANN-based rapid flash 

calculation to reduce the computational cost for multi-phase, multi-components 3D 

reservoir model. Our results show that the POD-DEIM technique enables us to 

approximate the conventional model with high levels of accuracy up to more than 99%. 

And it also enables a faster simulation due to the reduced order system. The reduced order 

modeling using the POD-DEIM reduces the CPU time of the compositional simulation by 

around 14% comparing to the fine scale model. Machine learning method makes the model 

get to the solutions much faster without a solver for the Newton-Raphson method. ANN-

based MOR accelerates the flash calculation and the coupled the POD-DEIM and ANN 

technique reduces the CPU time of the compositional simulation by around 14.5% 

comparing to the fine scale model. When the rapid flash calculation using ANN is 

combined with the POD-DEIM, one can save the overall simulation time in both solving 

the system and calculating the EOS-based equilibrium equations.  
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NOMENCLATURE 

 

𝐴  area, ft2 

𝜅𝑖𝑗  binary interaction coefficient between components 𝑖 and 𝑗  

𝑝𝑤𝑓   bottomhole flowing pressure for perforated gridblock, psia  

𝑧𝑐  central gridblock depth, ft  

𝑝𝑜𝐶   central gridblock oil phase pressure, psia  

𝑍𝛼  compressibility factor of phase 𝛼, dimensionless  

𝑝𝑐𝑖
  critical pressure of component 𝑖, psia  

𝑇𝑐𝑖
  critical temperature of component 𝑖, °F or R  

𝐴  cubic EOS coefficient  

𝐵  cubic EOS coefficient  

𝜌  density, lb/ft3  

𝐷  diameter, in or ft  

𝑏  EOS mixture parameter (linear mixing rule) 

(𝑎𝛼)  EOS mixture parameter (quadratic mixing rule) 

𝑎𝑖  EOS parameter for component 𝑖  

𝑏𝑖  EOS parameter for component 𝑖  

𝐾𝑖  equilibrium ratio of component 𝑖  

𝜀  error tolerance  

𝜑̂𝑖
𝛼  fugacity coefficient of component 𝑖 in phase 𝛼  
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𝑓𝑖
𝛼  fugacity of component 𝑖 in phase 𝛼  

𝑅𝑓𝑢𝑔𝑖
  fugacity residual for component 𝑖  

𝑝𝑐𝑔𝑜  gas-water capillary pressure, psi  

𝑅  gas constant, 10.7316 ft3.psi/°R/lbmol or 8.31446 J/K/mol  

𝑆𝑔  gas saturation, V/V fraction  

𝑔𝑐  gravity constant  

𝑉𝑏   gridblock rock bulk volume, ft3  

Δ𝑥  gridblock size in x-direction  

Δy  gridblock size in y-direction  

Δz  gridblock size in z-direction  

𝑅𝑖  hydrocarbon component residual, lbmol/day  

𝑇𝜂  interblock geometric transmissibility  

𝜆𝛼𝜂   interblock phase 𝛼 mobility  

𝐽 
 Jacobian matrix  

𝐿  length, ft  

𝑓𝑙  liquid molar fraction  

𝑥𝑖  liquid molar fraction of component 𝑖  

𝑊  mass of water per unit volume, lb/ft3  

𝜌̃𝛼  molar density of phase 𝛼, lbmol/ft3  

𝓋𝛼  molar volume of phase 𝛼, ft3/lbmol  
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𝑀𝑤𝑖
  molecular weight of component 𝑖, lb/lbmol  

𝑀𝑤
𝛼   molecular weight of phase 𝛼, lb/lbmol  

𝑧𝜂  neighbor gridblock depth, ft  

𝑝𝑜𝜂  neighbor gridblock oil phase pressure, psia  

𝑚̇𝑠/𝑠  net mass rate from source/sink  

𝑛̇𝑖𝑠/𝑠  net molar rate of component 𝑖 from source/sink  

𝑛𝑐  number of hydrocarbon components  

𝐹𝑖  number of moles of component 𝑖 per unit volume, lbmol/ft3  

𝑛𝑔𝑟𝑖𝑑𝑏𝑙𝑜𝑐𝑘𝑠   number of reservoir gridblocks  

𝑝𝑐𝑜𝑤  oil-water capillary pressure, psi 

𝑝𝑜  oil phase pressure, psia 

𝑘𝑟𝑜𝑔  oil relative permeability at actual gas saturation and connate water saturation  

𝑘𝑟𝑜𝑤  oil relative permeability at actual water saturation  

𝑘𝑟𝑜𝑐𝑤  oil relative permeability at connate water saturation  

𝑆𝑜  oil saturation, V/V fraction  

𝛷𝛼  potential of phase 𝛼, psia  

𝑝  pressure, psia  

𝑅𝑅𝑅   Rachford-Rice residual  

𝑝𝑟𝑒𝑓   reference pressure, psia  

𝑘𝑟𝛼  relative permeability of phase 𝛼, dimensionless  
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𝑘⃑⃑
⃑⃑

 
 rock permeability tensor, mD  

𝜙  rock porosity, V/V fraction  

𝑅𝑠𝑎𝑡  saturation (volume constraint) residual  

𝑇  temperature, °F or R  

𝑡  time, day 

Δ𝑡  time step size, day  

Δ𝜏  time differential operator  

𝑧𝑖  total molar fraction of component 𝑖  

𝐹  total number of moles per unit volume, lbmol/ft3  

𝑎𝛼𝜂   transmissibility of phase α between central gridblock and neighbor gridblock 

in 𝜂 direction, lbmol/day/psi v  

𝛽  unit conversion factor  

𝑓𝑣   vapor molar fraction  

𝑦𝑖  vapor molar fraction of component 𝑖  

𝑅⃑⃑  vector of residuals  

𝑥⃑  vector of unknowns  

𝑉⃑⃑  velocity of fluid, ft/day  

𝜇𝛼  viscosity of phase 𝛼, cP  

𝑉  volume, STB or ft3  

𝑞𝛼  volumetric rate of phase 𝛼, STB/day, MSCF/day, or ft3/day  
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𝑞𝑤𝑠/𝑠
  volumetric water rate from a well, ft3/day  

𝑅𝑤  water residual, lb/day  

𝑆𝑤  water saturation, V/V fraction  

𝐵𝑤  water volumetric factor, bbl/STB  

𝐵𝐻𝑃  well bottomhole pressure (at reference depth), psia  

𝑊𝐼𝛼  well index for phase 𝛼, lbmol/day/psi  

𝑊𝐼𝑔𝑒𝑜𝑚   well index geometric component  

𝑟𝑤  wellbore radius, ft  
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1. INTRODUCTION 

 

1.1. Background 

Reservoir simulation predicts the flow of fluids by using numerical models. 

Although the underlying equations for any porous media flow simulation are based on 

conservation of mass, typically, two families of reservoir simulators are used based on the 

rock-fluid structure of a particular case study. Black oil models are used to study the fluid 

model which can be expressed as a function of pressure and saturation with fixed 

composition. While compositional models are used when either the in-place or injected 

fluid causes fluid properties to be dependent on composition (Young and Stephenson 

1983). As the industry drills the wells deeper in which accompanied by high pressure and 

high temperature, there has been more needs for compositional simulation. Furthermore, 

the importance of the enhanced oil recovery using gas injection and the development of 

unconventional reservoirs increase the demand for compositional reservoir modeling. 

As the reservoir simulation plays an important role in reservoir engineering, 

especially to understand reservoir dynamics and to forecast production in more complex 

reservoirs, methods to reduce simulation turnarounds, e.g., the computational time and the 

nonlinearity of problems in high fidelity reservoir simulation models, become paramount 

to fast decision-making processes. Particularly, compositional reservoir simulation 

includes phase equilibrium calculation and many numbers of variables, therefore it 

requires higher computational infrastructure. Due to the rapid improvement of high-
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performance computing one can solve large problems much faster than ever before (Figure 

1.1), however, the efforts to develop techniques making simulation models more efficient 

and more concise should be accompanied by the development of hardware in order to 

achieve an optimized simulation. 

 

 

Figure 1.1 Parallel computing for high fidelity reservoir model. Improvement of 

high-performance computing allows more complex reservoir simulation with a 

reduced CPU time. 

 

To this end, there have been many different techniques to reduce the computational 

cost for simulation models. Upscaling for flow computation or multi-scale method are the 

examples of the methods which yield approximations that preserve local characteristics of 

the fluid model. In addition, many model reduction approaches and rapid simulation 

techniques such as proper orthogonal decomposition-discrete empirical interpolation 

method (POD-DEIM), proper orthogonal decomposition-trajectory piecewise 

linearization (POD-TPWL), which retain the global features, have been introduced and 
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applied to mostly black oil models.  

In this study, we focus on two different MOR methods, one is physics-based MOR 

and the other is ANN-based MOR technique. The physics-based MOR is a technique for 

reducing the computational complexity of mathematical models in numerical simulations. 

It is one of the most appealing approaches for faster numerical simulation. Hence, various 

MOR methodologies have been introduced in the field of reservoir simulation, and they 

have shown very good performance and accuracy in the approximation to the original fully 

implicit reservoir simulation. ANN-based MOR is realized by machine learning technique. 

A trained model based on a given dataset provides prediction when a new data is employed. 

Reservoir simulation enhanced by machine learning is one of the most promising field of 

study in petroleum engineering, since the derived proxy models provide direct solutions 

for the given problems, i.e., without being intrusive to the simulator code, at a very small 

amount of CPU time, in contrast with the physics-based MOR. 

1.2. Literature Review 

1.2.1 Multi-phase Compositional Reservoir Simulation 

The system of equations in black oil models can be explained as a function of 

pressure and saturation, and phase composition is considered constant. In contrast with 

black oil models, the compositional models handle each hydrocarbon component 

separately. 

There are many different ways to build compositional reservoir models depending 
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on the approaches how to set the variables and the system of equations. 

Molar variables method was introduced using saturation constraint and 𝑛𝑐 phase 

equilibrium equations which account for the state when the phase fugacities for each 

component are equal (Fussell and Fussell 1979). Variables for this method are pressure, 

phase fraction, phase composition, and overall composition of each component. 

Natural variables method used variables such as pressure, phase saturation, and 

phase composition of each component (Coats 1980). The characteristic of this method is 

that one needs to replace component mole fraction in the oil phase with another primary 

variable if the oil phase disappears in the process of simulation (He et al. 2014). 

Another molar variables method was introduced using the similar variables as the 

previous molar formulation (Young and Stephenson 1983). The difference between the 

two molar methods is that Young and Stephenson’s method computes the composition of 

the second (oil) phase using the composition of the first (gas) phase. 

Volume-balance formulation used extensive molar variables (Acs et al. 1985). The 

sequence of computations in simulation is similar to the molar formulations. 

Even though each formulation has its own advantage in analyzing nonlinear 

behaviors, the natural variables method or molar variables method is the preferred 

approach for isothermal compositional simulation. In this study, we base molar variables 

method. 
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1.2.2. Model Order Reduction 

Compositional simulators essentially include phase flash calculations with 

equilibrium checking in order to obtain thermodynamically consistent models. Therefore, 

the system of equations in compositional models comprises of a greater number of 

variables in addition to pressure and saturation, and it results in a larger system to solve. 

The additional nonlinear terms in the equations are also an issue since they disrupt the 

efficiency of calculations. In essence, they are more complex and computationally 

expensive processes than black oil models. All these complexities in compositional model 

pose challenges to attain accurate solutions in a timely manner. 

Over the decades, many efforts have been made in the field of reservoir simulation 

in order to achieve faster and more efficient simulations while retaining the reliability and 

accuracy.  

The combination of POD and DEIM is one of the widely used and robust MOR 

methods (Chaturantabut and Sorensen 2011). POD reduces the size of the system to be 

solved, and DEIM contributes to approximate the nonlinear terms for faster computation 

by supplementing the disadvantage of solving the full-order model when applying POD. 

These snapshot-based methods work in a two-step process. In the training step one can 

obtain the snapshots, which are the solutions of the states (pressures, saturations, 

compositions) at each time step for the full simulation model. These solutions are to be 

used to derive the POD basis in a later step. Similarly, the DEIM basis is obtained from 

the snapshots of nonlinear functions. Then the test case, i.e., simulation with inputs 
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different than the training, is utilized to validate if the reduced model works for the 

different well control schedule cases and to compare the speed of the simulation run time. 

POD-DEIM has been used in black oil models to reduce the complexity of the 

system as well as to approximate the mobility related the nonlinear term (Gildin et al. 

2013). This POD-DEIM approach has been extended to the localized model reduction 

(LPOD-LDEIM) by computing several local subspaces (Ghasemi and Gildin 2015). Yoon 

et al. proposed hyper-reduction that consists of state reduction, constraint reduction, and 

nonlinearity treatment based on POD, Petrov-Galerkin projection, and “gappy” 

reconstruction (Yoon et al. 2016). Also, the use of the trajectory-based DEIM (TDEIM) to 

approximate the nonlinear terms has been introduced (Tan et al. 2017). They interpolate 

the perturbed term which is defined as the difference between the test and the training 

terms instead of the original nonlinear term. Figure 1.2 shows the schematic diagram of 

the studies for physics-based MOR in black oil models. All the MOR methods work in a 

two-step process which are offline processing and online processing. For example, the 

physics-based MORs for black oil models such as POD-DEIM, LPOD-LDEIM reduce the 

orders of states, residuals, and Jacobians in material balance based on the training controls. 

And these MOR basis that are pre-computed in offline are used in online process for new 

controls. 
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Figure 1.2 Physics-based MOR: Black oil models. In offline processing, physics-

based MORs reduce the orders in material balance, and the pre-computed MOR 

basis are utilized for new controls in online processing. 

 

When it comes to compositional models, there has been an attempt to apply the 

MOR using the technique combining POD and trajectory-piecewise linearization (TPWL) 

(Cardoso and Durlofsky 2010a; He and Durlofsky 2014). This method uses linearization 

around the states generated during previous training runs. Figure 1.3 illustrates the 

schematic diagram of physics-based MOR in compositional models. Physics-based MOR 

applied to compositional simulation follows the same structure as of MOR implemented 

for black oil models. However, in compositional simulators, the conventional flash 

calculation is necessary to track individual components, which may impose challenges to 

attain accurate solutions after the application of MOR. To overcome this limitation, a 

recent study applied the POD to solve the flow equation and the DEIM is used to solve 

the Peng-Robinson equation of state, in the calculation of compressible single-phase gas 
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reservoir flow (Li et al. 2020). 

 

 

Figure 1.3 Physics-based MOR: Compositional models. Physics-based MORs in 

compositional simulation reduce the orders in material balance, however the 

conventional flash calculation is still necessary in online processing. 

 

For the data-driven MOR, artificial (recurrent) neural networks (RNNs) based 

reservoir simulation was developed to capture nonlinear interaction between wells, fluid 

and rock to predict production rates. Figure 1.4 displays that data-driven MOR replaces 

the entire material balance equations, and the results are utilized for the new control cases. 
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Figure 1.4 Data-driven MOR: Black oil models. Machine learning techniques can 

substitute the entire material balance without solving the system iteratively. 

 

The limitations of these studies stem from the fact that the physics-based MOR 

were applied mostly to the black oil models. A few studies applied the physics-based MOR 

to the compositional models. The POD-TPWL technique for the compositional model was 

only used for the mass balance calculation while performing the flash calculation in a 

conventional way. Furthermore, a recent study of the POD-DEIM for the compositional 

model (Lee and Gildin 2020) also had a limitation such as the POD-DEIM were used 

separately in solving the flow equation and solving the equation of state, thus they were 

unable to completely reduce the nonlinearities of the model. In addition, data-driven MOR 

has not been entirely validated in the compositional cases. 
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1.2.3. Machine Learning 

Phase equilibrium calculations that are based on the equation of state (EOS) is 

essential to predict accurate phase behavior in compositional simulation. However, phase 

calculation process requires expensive computational cost through multiple iterations due 

to its nature of nonlinearity. Moreover, as the number of components increases the 

computational time increases accordingly. 

The efforts for rapid flash calculation have been presented in various studies. The 

reduced flash calculation by decomposing the binary interaction parameters (BIPs) into 

two parts using a simple quadratic expression shows speedup by a factor of 3 to 20 over 

conventional flash calculations, depending on the number of components (Li and Johns 

2006). For non-intrusive methods, data-driven model reduction has been applied in 

material balance type modeling such as the capacitance resistance model (CRM) (Yousef 

et al. 2005; Weber et al. 2009), artificial neural networks (ANN), and surrogate reservoir 

models (SRMs) (Mohaghegh et al. 2012). These methods are not based on the physics of 

the problem therefore, they usually require significant amount of dataset and time to train 

the model. Even if one can have a well-structured model with reliable dataset, there still 

exists a possibility of obtaining the unexpected solutions. However, recent advancement 

of technology on machine learning enables us to train the model more efficiently and 

rapidly with providing highly accurate solutions. 

In compositional models, machine learning techniques such as ANN can be 

utilized for the rapid simulations that accelerate calibrating of phase stability test and 
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phase splitting during expensive computations. Neural networks predict the vapor/liquid 

equilibrium 𝐾 values for light hydrocarbon mixtures (Habiballah et al. 1996). ANN can 

accelerate flash calculation by predicting the stability for phase stability test and by 

providing a good initial guess for phase splitting calculations without the need to 

iteratively solve the nonlinear equations which are computationally expensive (Gaganis 

and Varotsis 2012; Wang et al. 2019). Proxy flash calculation using deep neural network 

enables to speed up the time-consuming flash calculation in tight oil and shale gas 

reservoirs (Wang et al. 2019). The schematic diagram in Figure 1.5 shows that the data-

driven flash calculation can accelerate the conventional flash calculation in new control 

cases, however it still requires computationally expensive material balance. 

 

 

Figure 1.5 Data-driven MOR: Compositional models. ANN-based MORs that are 

automated in offline accelerate the conventional flash calculation, however 

computationally expensive material balance is still required. 
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The proposed method in this study aims at reducing the system of material balance 

equations using physics-based MOR and, simultaneously, simplifying the phase 

equilibrium calculation using ANN, as shown in Figure 1.6. Specifically, the POD-DEIM 

reduces the computational cost of the mass balance calculation using a reduced subspace 

by POD and a selected small set of gridblocks for evaluating nonlinear terms by DEIM. 

In addition, ANN accelerates the process of solving the states with respect to the flash 

calculation. Consequently, the online processing for the new controls can be more efficient 

and, thus faster. 

 

 

Figure 1.6 Physics- and ANN-based MOR: Compositional models. Combining 

physics and ANN-based MORs can speed up in both material balance and flash 

calculation. 
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1.3. Research Scope 

To sum up, two main reasons have motivated us to this study. One is that the POD-

DEIM has only been validated to the black oil models, and to the best of our knowledge, 

has not been applied to true compositional models; and the other is that the machine 

learning techniques can enhance the ability of the flash calculations in compositional 

models to achieve further speedups when integrated with MOR. To this end, the principal 

objectives of this thesis are to: 

• Develop a multi-phase, multi-component reservoir simulator in heterogeneous 

porous media based on the concept of a modified molar variables formulation; 

• Develop a new framework to implement physics-based reduced order 

modeling using the POD-DEIM for faster flow compositional simulation 

tracking components individually; 

• Create a stand-alone ANN model to estimate the values related to the flash 

calculation; 

• Develop a new framework to embed the ANN model into the POD-DEIM 

applied simulator for further speedups. 

1.4. Thesis Outline 

In this study, the proposed MOR technique combines POD with DEIM for the 

compositional model to reduce the dimension of the system and computational time. 

This thesis is organized as follows: In Chapter 2, we first introduce the 
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characteristics of the compositional reservoir simulation and present a developed 

compositional simulator based on a modified molar variables formulation. In Chapter 3, 

the proposed MOR techniques, which are POD and DEIM will be presented. In order to 

apply POD-DEIM to the compositional simulation, we show the modification of the 

typical compositional model by using primary and secondary variables. Numerical 

examples will be followed to demonstrate the performance of the proposed methodology. 

Chapter 4 introduces the basic concepts of machine learning technique using ANN, and 

the development of the ANN-based flash calculation is described. The applications using 

POD-DEIM with ANN-based flash calculation are followed. Finally, in the very last 

chapter we discuss the conclusions and suggestions for future work.  
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2. COMPOSITIONAL RESERVOIR SIMULATION 

 

In general, methods for compositional reservoir modeling can be divided into two 

categories: mass balance methods and volume balance methods. Mass balance method is 

based on the mass conservation of hydrocarbon components and water, and it utilizes the 

hydraulic diffusivity equation to account for the mass transport between the grid blocks. 

On the other hand, volume balance method is based on the premise that pore is filled with 

hydrocarbon and water. Since pore volume is only a function of pressure, formulation for 

volume balance method is expressed as a function of pressure and compositions for setting 

the total fluid volume. 

In this study, we focus on the mass balance method to build a multi-phase, multi-

component reservoir model. More details about formulating the underlying equations for 

the fully implicit compositional reservoir simulator in fine scale (full-order model) are 

described in this chapter.  

2.1. Model Assumptions 

To have a simulation simple while satisfying the underlying physics, one can make 

assumptions in relation to the reservoir formulation as below. 

• There are oil, gas, and water phases in the porous media. 

• Reservoir has no flow boundaries. 

• Rock is slightly compressible. 
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• Gravity effect is considered. 

• We have 𝑛𝑐 number of hydrocarbon components in the model. 

• For the Equation of State (EOS), vapor-liquid equilibrium (VLE) by Peng-

Robinson equation of state (PR-EOS) is used.  

• No interaction is assumed between water and hydrocarbon components in VLE 

calculation. 

• There are no chemical reactions or adsorption between components. 

• Reservoir is isothermal. 

Simulations in this study are based on the finite difference method (FDM) with 

discretization in space and time. The fully implicit reservoir simulator is developed, and 

the system of equations are given to obtain the solutions at each iteration and at each time 

step. Here, we build on the work done by Valbuena Olivares (2015). 

2.2. Multi-Phase Flow Equations in Porous Media 

The system of equations in a compositional simulation has a total of 3𝑛𝑐 + 15 

unknown variables (Table 2.1), and these unknown variables are solved using constitutive 

governing equations which are mass balance, momentum conservation, and equation of 

state. The related auxiliary equations support the governing equations and explain the 

additional physics occurring in the given simulation model. Furthermore, the total number 

of variables can be reduced by introducing alternate formulations, so that one can have 

more compact simulator having less numerical complexity. 
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Table 2.1 Unknown variables per gridblock. 

Unknown Variable Description Number 

𝑝𝛼  Phase pressure 3 

𝑆𝛼  Phase saturation 3 

𝑧𝑖  Total mole composition 𝑛𝑐 

𝑥𝑖 Liquid phase mole composition 𝑛𝑐 

𝑦𝑖  Gas phase mole composition 𝑛𝑐 

𝜌𝛼  Phase density 3 

𝜇𝛼  Phase viscosity 3 

𝑘𝛼 Phase permeability 3 

  Total 𝟑𝒏𝒄 + 𝟏𝟓 

 

The general multi-phase flow equations are derived from two conservation laws, 

which are mass conservation equation and momentum conservation equation, and they are 

reviewed in this section. 

2.2.1. Mass Conservation Equation 

A mass conservation equation or a continuity equation (also called mass balance 

or material balance) explains the conservation of mass in the physical system by 

accounting for that the rate change of mass in a material is zero. In other words, if mass is 

to be conserved, the accumulation of mass inside the material (control volume) should be 
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equal to the net influx of mass through the surface (Eq. 2.1). 

(𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑖𝑛𝑡𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡) − (𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑜𝑢𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡)

= (𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡)

+ (𝑆𝑜𝑢𝑟𝑐𝑒/𝑆𝑖𝑛𝑘) 

(2.1) 

This relationship can be written as follows considering an element of porous 

material, where we have a single-phase flow through a unit of control volume (Eq. 2.2). 

𝜕𝜌

𝜕𝑡
= ∇ ∙ (𝜌𝑉⃑⃑) + 𝑚̇𝑉𝑠

𝑠

= 0 (2.2) 

Where, 

𝜌: fluid density, [lb/ft3] 

t: time, day 

𝑉⃑⃑: fluid velocity, [ft/day] 

𝑚̇𝑉𝑠
𝑠

: well sink/source, [lb/day/ft3] 

In case of compositional models having multi-component, one needs to define 

mass fraction of a component in a phase. And mass balance of hydrocarbon components 

can be expressed using moles of components relationship instead of using mass 

relationship, as shown in Eq. 2.3. 
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𝜕𝜌̃𝑖

𝜕𝑡
= ∇ ∙ (𝜌̃𝑖𝑉⃑⃑) + 𝑛̇𝑖𝑉𝑠

𝑠

= 0 
(2.3) 

Where, 

𝜌̃𝑖: molar density of component 𝑖, [lbmol/ft3] 

t: time, day 

𝑉⃑⃑: fluid velocity, [ft/day] 

𝑛̇𝑖𝑉𝑠
𝑠

: sink/source, [lb/day/ft3] 

2.2.2. Momentum Conservation Equation 

Momentum is defined as the multiplication of the mass and its velocity. And the 

conservation of momentum states that the momentum of an isolated system is a constant, 

which means that the vector sum of the momentum in a system cannot be changed by 

interactions. 

In multi-phase flow in porous media, the momentum equation is expressed by 

Darcy’s law (Eq. 2.4). 

𝑢⃑⃑𝛼 = −𝛽
𝑘𝑟𝛼

𝜇𝛼
𝑘⃑⃑
⃑⃑ (∇Φ𝛼) 

(2.4) 

Where, 

𝑢⃑⃑𝛼: velocity of phase 𝛼, [ft/day] 



 

20 

 

 

𝛽: conversion factor for field units, 0.00633 

𝑘𝑟𝛼: relative permeability of phase 𝛼, [dimensionless] 

𝜇𝛼: viscosity of phase 𝛼, [cP] 

𝑘⃑⃑
⃑⃑

: permeability tensor, [mD] 

Φ𝛼: potential of phase 𝛼, [psia] 

In multi-phase flow model, the momentum conservation and mass conservation 

equations are combined with a set of transport equations, and it forms a general multi-

phase flow equation. The differential form of this flow equations yields hydrocarbon 

hydraulic diffusivity equation as shown in Eq. 2.5. 

∇ ∙ [𝛽𝑐 𝑘⃑⃑
⃑⃑
𝐴 (𝑥𝑖

𝑘𝑟𝑜

𝜇𝑜
∇Φ𝑜 + 𝑦𝑖

𝑘𝑟𝑔

𝜇𝑔
∇Φ𝑔)] = 𝑉𝑏

𝜕

𝜕𝑡
[𝜙𝐹𝑖] + 𝑛̇𝑖, 𝑖 = 1𝑡𝑜 𝑛𝑐 (2.5) 

Where, 

𝑘𝑟𝑜  𝑎𝑛𝑑 𝑘𝑟𝑜: oil and gas relative permeability, [dimensionless] 

𝜇𝑜  𝑎𝑛𝑑 𝜇𝑔: oil and gas viscosity, respectively, [cP] 

𝑥𝑖 𝑎𝑛𝑑 𝑦𝑖: liquid and vapor molar fractions of component 𝑖, respectively, [lbmol/lbmol] 

𝑘⃑⃑
⃑⃑

: rock permeability tensor, [mD] 

Φ𝑜: oil potential, [psia] 
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Φ𝑔: gas potential, [psia] 

𝐴: area perpendicular to flow direction, [ft2] 

𝑉𝑏: gridblock rock bulk volume, [ft3] 

𝜙: rock porosity, [ft3/ ft3] 

𝐹𝑖: number of moles of component 𝑖 per unit pore volume, [lbmol/ ft3] 

𝑛̇𝑖: molar rate of component 𝑖 from a well, [lbmol/ day] 

𝑛𝑐: the number of hydrocarbon components 

𝛽𝑐 = 0.00633: the conversion constant for field units 

Eq. 2.6 describes the differential form of the flow equation for water hydraulic 

diffusivity. 

∇ ∙ [𝛽𝑐 𝑘⃑⃑
⃑⃑
𝐴

𝑘𝑟𝑤

𝜇𝑤
∇Φ𝑤] = 𝑉𝑏

𝜕

𝜕𝑡
[𝜙W] + 𝜌𝑤𝑞𝑤 (2.6) 

Where, 

𝑘𝑟𝑤: water relative permeability, [dimensionless] 

𝜇𝑤: water viscosity, [cP] 

𝑘⃑⃑
⃑⃑

: rock permeability tensor, [mD] 
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Φ𝑤: water potential, [psia] 

𝐴: area perpendicular to flow direction, [ft2] 

𝑉𝑏: gridblock rock bulk volume, [ft3] 

𝜙: rock porosity, [ft3/ ft3] 

W: mass of water rate from a well, [ft3/ day] 

𝜌𝑤: water density, [lb/ft3] 

𝛽𝑐 = 0.00633: the conversion constant for field units 

2.2.3. Energy Conservation Equation 

The equation for energy balance can be added when the thermal processes affect 

the system of flow equations, and a variable for total energy or temperature need to be 

included to describe the impact of the thermal treatment. The detailed energy conservation 

equation can be found in the thermal recovery literatures (Prats 1982; Green and Wilhite 

1998; Fanchi 2006). 

Since consideration of the energy balance equation imposes additional nonlinear 

terms to the system, it requires more computationally intensive solutions with substantial 

additional complexities. Therefore, in many realistic and practical systems, thermal 

processes are neglected by assuming isothermal approximation. In this study, we also 

assume the isothermal condition, and therefore the energy conservation term or variable 
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is not included in the overall framework of the compositional simulation. 

2.3. Constraint Equations 

2.3.1. Phase Equilibrium Relationships 

Equation of state (EOS) is a mathematical relationship of state variables such as 

pressure, volume, temperature at a given set of physical conditions. EOS is utilized in 

describing compositions of fluid mixture and in properties of fluids. There are several 

different forms of cubic EOS, for example Van der Waals EOS, Redlich-Kwong EOS (RK 

EOS), Soave-Redlich-Kwong EOS (SRK EOS) (Redlich and Kwong 1949; Soave 1972). 

In this study, we use Peng-Robinson EOS (PR EOS) to compute compositions and 

properties of fluid. The PR EOS was developed in 1976 as a modification of Van der Waals 

EOS (Peng and Robinson 1976). The advantage of PR EOS is that it enables us to have 

more accurate predictions of the volumetric behavior of the coexisting phases in vapor-

liquid equilibrium (VLE) calculations with the improved liquid density values and 

equilibrium ratios, comparing to the SRK EOS. VLE describes the distribution of a 

chemical components between the vapor phase and the liquid phase. Through VLE 

calculation, one can get the concentration of phases as well as the properties of fluid such 

as molecular weight, density, and others. Phase equilibrium relationships such as VLE can 

be expressed in terms of the fugacities or 𝐾 values as shown in Eq. 2.7 through Eq. 2.8. 

𝑓𝑜𝑖 = 𝑓𝑔𝑖 , 𝑖 = 1,⋯ , 𝑛𝑐 (2.7) 
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𝑦𝑖 = 𝐾𝑖𝑥𝑖, 𝑖 = 1,⋯ , 𝑛𝑐 (2.8) 

Where, 

𝑓𝑜𝑖: fugacity of liquid phase of component 𝑖 

𝑓𝑔𝑖 : fugacity of vapor phase of component 𝑖 

𝑥𝑖: liquid molar fraction of component 𝑖 

𝑦𝑖: vapor molar faction of component 𝑖 

𝐾𝑖: equilibrium ratio of component 𝑖 

The constraint equations for compositional models arise from the requirement that 

the sum of the mass or mole fraction in each phase should be unity, as shown in Eq. 2.9 

through Eq. 2.11. 

∑𝑥𝑖

𝑛𝑐

𝑖=1

= 1 (2.9) 

∑𝑦𝑖

𝑛𝑐

𝑖=1

= 1 (2.10) 

∑𝑧𝑖

𝑛𝑐

𝑖=1

= 1 (2.11) 

More detailed descriptions on the phase equilibrium calculation and PR EOS are 

presented in chapter 4. 
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2.3.2. Saturation Equation 

The constraints equation on saturation ensures the pore space is completely filled 

with fluids and summation of each phase saturations is unity (Eq. 2.12). 

𝑆𝑜 + 𝑆𝑔 + 𝑆𝑤 = 1 (2.12) 

Here, 𝑆𝑜 , 𝑆𝑔 , and 𝑆𝑤  are the saturation of oil, gas and water. The overall 

composition can be defined as presented in Eq. 2.13. 

𝑧𝑖 = (1 − 𝑣)𝑥𝑖 + 𝑣𝑦𝑖 , 𝑖 = 1,⋯ , 𝑛𝑐 (2.13) 

Therefore, the above saturation constraint equation can be rewritten as shown in 

Eq. 2.14. 

1 − 𝐹 [
(1 − 𝑣)

𝜌𝑜
+

𝑣

𝜌𝑔

] −
𝑊

𝜌𝑤
= 0 (2.14) 

2.4. Types of Compositional Simulation 

Over the decades, various types of compositional models have been developed. 

Several most widely used formulations for general compositional reservoir simulation are 

introduced and compared in this section (Voskov and Tchelepi 2012). They are essentially 

based on the EOS and the fully implicit method with the full Jacobian matrix as a function 

of primary and secondary variables to solve the nonlinear system. 

Natural variables formulation (Coats 1980) is one of the most well-known 

isothermal compositional simulation using the unknown variables of pressure, phase 
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saturation, phase composition of each component. 

Molar variables formulation (Young and Stephensen 1983) uses pressure, phase 

fraction, phase composition for gas phase, and the overall composition for each component 

as the unknown variables. The unknowns are obtained similarly in the way of solving the 

natural variables formulation except phase density and phase saturation calculation. The 

advantage of molar formulation is that it is independent of the appearance or 

disappearance of a particular hydrocarbon phase. 

Another molar variable formulation (Chien et al 1985) is a variant of the original 

molar variables method in which the equilibrium ratio, 𝐾𝑖 is introduced instead of the 

phase fraction, 𝑥𝑖. This formulation was more linearized by Wang et al. (1997) by using 

ln𝐾𝑖 instead of 𝐾𝑖 in the thermodynamic equilibrium equation. The unknown variables 

for the formulation are pressure, phase fraction, natural logarithm of phase equilibrium 

ratio, and the overall phase composition of each component. 

Overall composition variables formulation (Collins et al. 1992) uses pressure, and 

composition of each component for the unknowns. This formulation is essentially identical 

to the molar formulation if instantaneous thermodynamic equilibrium is assumed. But the 

advantage of this method is that every gridblock has the consistent form of variables and 

equation, therefore solutions can be achieved in more concise manner.  

Finally, the volume balance formulation (Acs et al. 1985) uses molar variables 

instead of overall composition variables. 
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In this study, we utilize a fully implicit method with a modified molar variables 

formulation which is composed of the primary and the secondary variables, as a base case. 

We adapt the formulation given by Wang et al. (1997) with a modification. 

2.5. Choice of Independent Variables 

Since we assume three phases (oil, water, gas) and multi-component reservoir 

model in this study, the system of equations are functions of pressure, phase variables, and 

component variables. As depicted in Table 2.1, a total 3𝑛𝑐 + 15 unknown variables need 

to be included in the reservoir system (see section 2.2 for more details). There are various 

ways to select the type and the number of independent variables to form a system of 

equations depending on the chosen methodology. In this study, the way of selecting the 

reservoir variables follows Wang et al. (1997)’s molar variables formulation, which is also 

a variant of conventional Young and Stephenson’s and Chien et al.’s method. As stated in 

section 2.4, the advantage of molar variables formulation is that it is not affected by the 

appearance or disappearance of a particular hydrocarbon phase. Furthermore, using ln𝐾𝑖 

instead of 𝐾𝑖 makes the thermodynamic equilibrium equation more linear. 

In particular, there is an additional reason why we choose a modified molar 

variables formulation of Wang et al. in this study. The application of the MOR methods 

introduced in the following chapter, is based on the solution of the state variables in the 

system. Therefore, molar formulation is well suitable for applying the MOR method 

considered here since it maintains the variables regardless of the phase change. More 
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details about the concept of MOR method and its application to the molar variables based 

compositional model will be discussed in a later chapter. 

Table 2.2 displays that the system consists of 2𝑛𝑐 + 3 independent variables for 

each grid blocks used in this study. 

 

Table 2.2 Independent variables for reservoir system of equations. 

Variable Description Number 

ln𝐾𝑖 Natural logarithm of equilibrium ratio 𝑛𝑐 

𝑝𝑜 Oil-phase pressure 1 

𝐹𝑖 Moles of component 𝑖 per pore volume 𝑛𝑐 

𝑊 Mass of water per pore volume 1 

𝑓𝑣  Molar vapor fraction 1 

  Total 2𝑛𝑐 + 3 

 

As seen in Tables 2.1, the total number of variables to be solved for each discretized 

gridblock aggregates to 3𝑛𝑐 + 15. This is due to the following. The 𝑛𝑐 + 12 unknown 

variables and equations in addition to 2𝑛𝑐 + 3 independent variables and equations are 

required to construct a full system comprised of 3𝑛𝑐 + 15, so the auxiliary equations are 

employed to complete it. 
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2.6. Residual Equations 

The numerical solution of the partial differential equations described in Eq. 2.5 

and 2.6 are usually obtained by the finite differences (volume) discretization method. The 

reader is referred to Aziz and Settari (1986), Ertekin et al. (2001) for a complete 

mathematical derivation of the discretized equations. Here, it suffices to say that given the 

solution of the nonlinear equations by the Newton-Raphson method, we need to obtain the 

residual and Jacobian matrices to be used in the solver portion of the numerical solution 

(see section 2.10 for more details). The residual equations can be derived from differential 

material balances describing component flow, phase equilibrium, and constraints 

equations that are explained in section 2.2 and 2.3. 

Material balance equations are discretized in time and space by use of finite 

difference, specifically space is discretized using central difference in the block-centered 

geometry with 6-directions (E-east, W-west, N-north, S-south, T-top, B-bottom), and time 

discretization is conducted by backward difference for fully implicit method. 

Residual equations for hydrocarbon component and water are shown in Eq. 2.15 

and Eq. 2.16. 
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𝑅𝑖 =
𝑉𝑏

∆𝑡
[𝐹𝑖

𝑛∅′(𝑝𝑜𝐶
𝑛+1 − 𝑝𝑜𝐶

𝑛 ) + ∅𝑛+1(𝐹𝑖
𝑛+1 − 𝐹𝑖

𝑛)]

− ∑[𝑎𝑜𝜂
𝑛+1𝑥𝑖

𝑛+1(∆𝑝𝑜𝜂 − 𝛾𝑜𝜂
𝑛+1∆𝑧𝜂)]

6

𝜂=1

− ∑[𝑎𝑔𝜂
𝑛+1𝑦𝑖

𝑛+1(∆𝑝𝑜𝜂 − 𝛾𝑔𝜂
𝑛+1∆𝑧𝜂)]

6

𝜂=1

− ∑ [(𝑎𝑔𝜂𝑦𝑖𝑝
′
𝑐𝑔𝑜𝜂

𝑆′
𝑔𝜂)𝑛+1𝛥𝐹𝑖 ]

6

𝜂=1

+ 𝑊𝐼𝑜
𝑛+1𝑥𝑖

𝑛+1(𝑝𝑜𝐶
𝑛+1 − 𝑝𝑤𝑓

𝑛+1)

+ 𝑊𝐼𝑔
𝑛+1𝑦𝑖

𝑛+1(𝑝𝑜𝐶
𝑛+1 + 𝑝𝑐𝑔𝑜

𝑛+1 − 𝑝𝑤𝑓
𝑛+1) 

(2.15) 

𝑅𝑤 =
𝑉𝑏

∆𝑡
[𝑊𝑛𝜙′(𝑝𝑜𝐶

𝑛+1 − 𝑝𝑜𝐶
𝑛 ) + 𝜙𝑛+1(𝑊𝑛+1 − 𝑊𝑛)]

− ∑ [𝑎𝑤𝜂
𝑛+1(Δ𝑝𝑜𝜂

𝑛+1 − 𝛾𝑤𝜂
𝑛+1Δ𝑧𝜂)

6

𝜂=1

−
𝑎𝑤𝜂

𝑛+1𝑝′
𝑐𝑜𝑤𝜂

(𝑛+1)

𝜌𝑤𝜂
𝑛+1 Δ𝑊𝜂

𝑛+1]

+ 𝑊𝐼𝑤
𝑛+1(𝑝𝑜𝐶

𝑛+1 − 𝑝𝑐𝑜𝑤
𝑛+1 − 𝑝𝑤𝑓

𝑛+1) 

(2.16) 

Where, 

𝑅𝑖: hydrocarbon component residual, [lbmol/day] 

𝑅𝑤: water residual, [lb/day] 
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∆𝑡: size of time step, [day] 

∅′: porosity time chord-slope, [1/psi] 

𝑝𝑜: oil phase pressure, [lbmol/day] 

𝑎𝛼𝜂: transmissibility of phase 𝛼 between central gridblock and neighboring gridblock in 

𝜂 direction, [lbmol/day/psi] 

𝑝𝑐
′ : capillary pressure spatial chord-slope, [psi] 

𝑆′
𝑔: gas saturation spatial chord-slope, [fraction] 

𝑊𝐼𝛼: well index of phase 𝛼, [lbmol/day/psi] 

𝑝𝑤𝑓: bottomhole flowing pressure, [psia] 

𝑛: current time level [dimensionless] 

𝑛 + 1: next time level [dimensionless] 

Phase transmissibility 𝑎𝛼𝜂  in each residual equation is defined as the product of 

the geometric interblock transmissibility and phase mobility between center gridblock and 

a neighbor gridblock in 𝜂 flux direction (Eq. 2.17). 

𝑎𝛼𝜂 = 𝑇𝜂𝜆𝛼𝜂 = 𝑇𝜂 (𝑘𝑟𝛼

𝜌̃𝛼

𝜇𝛼
)

𝜂

, 𝜂 = 𝐸,𝑊, 𝑁, 𝑆, 𝐵, 𝑇 (2.17) 

The reader is referred to section 2.6 for the definition of the set (E-east, W-west, 

N-north, S-south, T-top, B-bottom). In addition, capillary pressure needs to be considered 
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in the residual equations, however since it is expressed as a function of saturation which 

is not the primary independent variable in the system, some treatment is required to rewrite 

it with the concept of spatial chord-slope of capillary pressure and mass (mole) of phase 

(component). Eq. 2.18 and Eq. 2.19 are the examples of chord-slope for capillary pressure. 

𝑝′𝑐𝑜𝑤𝜂
=

𝑝𝑐𝑜𝑤𝜂
− 𝑝𝑐𝑜𝑤𝑐

𝑆𝑤𝜂
− 𝑆𝑤𝐶

 (2.18) 

𝑝′
𝑐𝑔𝑜𝜂

=
𝑝𝑐𝑔𝑜𝜂

− 𝑝𝑐𝑔𝑜𝐶

𝑆𝑔𝜂
− 𝑆𝑔𝐶

 (2.19) 

The detailed process of discretization for hydrocarbon component and water are 

referred in Appendix A. 

Component fugacity residual is one of the equations related to VLE. 

Thermodynamic equilibrium or VLE for a compositional fluid is reached when the phase 

fugacities for each component are equal. When it comes to the chemical potential concept, 

this implies that the molecular transfer rate from liquid to vapor phase equals the molecular 

transfer rate from vapor to liquid phase for all components (Valbuena Olivares 2015). 

Therefore, VLE allows us to estimate compositions of fluid mixtures and fluid properties 

such as fugacities. Since the equilibrium ratio 𝐾𝑖 is the ratio of vapor molar fraction to 

liquid molar fraction, which can also be rewritten as the ratio of fugacity coefficient of 

vapor phase to fugacity coefficient of liquid phase, final form of fugacity residual is 

expressed as follows (Eq. 2.20). 
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𝑅𝑓𝑢𝑔𝑖
= ln𝐾𝑖 + ln 𝜑̂𝑖

𝑣 − 𝜑̂𝑖
𝑙   ;   𝑖 = 1 𝑡𝑜 𝑛𝑐 (2.20) 

Where, 

𝜑̂𝑖
𝑣: fugacity coefficient of component 𝑖 in vapor phase 

𝜑̂𝑖
𝑙: fugacity coefficient of component 𝑖 in liquid phase 

Saturation constraint residual implies that the summation of saturations of all fluids 

which fill the pore of rock should be unity. The following residual equation in Eq. 2.21 

explains the pore is fully saturated with oil, gas, and water. 

𝑅𝑠𝑎𝑡 = 𝐹 [
1 − 𝑓𝑣

𝜌̃𝑜
+

𝑓𝑣
𝜌̃𝑔

] +
𝑊

𝜌̃𝑤
− 1 (2.21) 

Residual for correct molar vapor fraction by the Rachford-Rice (1952) is another 

residual equation arises from VLE (Eq. 2.22). This residual is used to calculate the vapor 

molar fraction 𝑓𝑣  for a mixture of composition 𝑧𝑖 at known 𝐾 values. 

𝑅𝑅𝑅 = ∑
𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑓𝑣(𝐾𝑖 − 1)

𝑛𝑐

𝑖=1

 
(2.22) 

2.7. Auxiliary Equations 

As mentioned in section 2.2 and 2.5, there are essentially 3𝑛𝑐 115 unknown 

variables in the system, however the use of auxiliary relationships can reduce the number 

of independent variables, resulting in reducing the complexity of the system with a smaller 
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number of nonlinear equations. Several auxiliary – or supplemental – equations are 

specified in this section. 

2.7.1. Rate Equations 

In general, a reservoir simulator needs to include rate equations for modeling wells 

and phase potential calculation. For the wells modeling that represents the fluid flow 

between well and gridblocks, Peaceman’s equation is utilized in this study with the use of 

well index (WI) concept (Peaceman 1978). Rate equation is written as Eq. 23 using well 

index, which is defined as the multiplication of 𝑊𝐼𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦  and 𝑊𝐼𝑓𝑙𝑢𝑖𝑑 . 

𝑊𝐼𝛼 = 𝑊𝐼𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑊𝐼𝑓𝑙𝑢𝑖𝑑  (2.23) 

𝑊𝐼𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦  is a constant that doesn’t change in the process of simulation and can 

be pre-computed, and 𝑊𝐼𝑓𝑙𝑢𝑖𝑑   is represented by dynamic phase mobility for the 

perforated gridblock (Eq. 2.24). 

𝑊𝐼𝛼 = 𝑊𝐼𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝜆𝛼𝐶  (2.24) 

Calculation of geometric well index for a vertical well is shown in Eq. 2.25 through 

Eq. 2.26. 

𝑊𝐼𝑔𝑒𝑜𝑚 = 2𝜋𝛽𝑐

Δ𝑧√𝑘𝑥𝑘𝑦

ln (
𝑟𝑜
𝑟𝑤

) + 𝑆
 (2.25) 

With, 
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𝑟𝑜 = 0.28

(Δ𝑥2√
𝑘𝑦

𝑘𝑥
+ Δ𝑦2√

𝑘𝑥

𝑘𝑦
)

1
2

√
𝑘𝑦

𝑘𝑥

4

+ √
𝑘𝑥

𝑘𝑦

4

 (2.26) 

Where, 

Δx, Δy, Δ𝑧: gridblock dimensions, [ft] 

𝑘𝑥, 𝑘𝑦, 𝑘𝑧: permeability in each coordinate direction, [mD] 

𝑟𝑤: wellbore radius, [ft] 

𝑆: well skin, [dimensionless] 

Dynamic phase mobility for a producing well is computed using fluid properties 

and relative permeability of the perforated gridblocks (Eq. 2.27), and the calculation of 

dynamic phase mobility for an injection well is based on total fluid mobility, as shown in 

Eq. 2.28 (Schlumberger, 2014). 

𝜆𝛼𝐶𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟
= (𝑘𝑟𝛼

𝜌̃𝛼

𝜇𝛼
)

𝐶

 (2.27) 

𝜆𝛼𝐶𝐼𝑛𝑗𝑒𝑐𝑡𝑜𝑟
= (

𝑘𝑟𝑜

𝜇𝑜
+

𝑘𝑟𝑔

𝜇𝑔
+

𝑘𝑟𝑤

𝜇𝑤
)

𝐶

𝜌̃𝛼𝐶  (2.28) 

Consequently, the rate equation can be expressed as water mass rate and 
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hydrocarbon component molar rate by use of the well index concept, as shown in Eq. 2.29 

and Eq. 2.30, respectively. 

𝑚̇𝑤𝑠
𝑠

= 𝜌𝑤𝑞𝑤𝑠
𝑠

= 𝑊𝐼𝑤(𝑝𝑜𝐶 − 𝑝𝑐𝑜𝑤 − 𝑝𝑤𝑓) (2.29) 

𝑛̇𝑖𝑠
𝑠

= 𝑊𝐼𝑜𝑥𝑖(𝑝𝑜𝐶 − 𝑝𝑤𝑓) + 𝑊𝐼𝑔𝑦𝑖(𝑝𝑜𝐶 + 𝑝𝑐𝑔𝑜 − 𝑝𝑤𝑓) (2.30) 

Another auxiliary equation for rate equations is phase potential calculation (Eq. 

2.31). 

𝛷𝛼 = 𝑝𝛼 − 𝛾𝛼𝑧 = 𝑝𝛼 − 𝑔𝑐𝜌𝛼𝑧 (2.31) 

Where, 

𝑝𝛼: pressure of phase 𝛼, [psia] 

𝜌𝛼: density of phase 𝛼, [lb/ft3] 

𝑧: depth, [ft] 

𝑔𝑐: gravity constant 

An example of calculation of interblock water phase potential between central and 

neighboring gridblocks is shown in Eq. 2.32. 
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∆𝛷𝑤𝜂 = (𝛷𝑤𝜂 − 𝛷𝑤𝐶) = ∆𝑝𝑜𝜂 − ∆𝑝𝑐𝑜𝑤𝜂
− 𝛾𝑤𝜂∆𝑧𝜂

= (𝑝𝑜𝜂 − 𝑝𝑜𝐶) − (𝑝𝑐𝑜𝑤𝜂
− 𝑝𝑐𝑜𝑤𝐶

)

− 𝑔𝑐 (
𝜌𝑤𝜂 + 𝜌𝑤𝐶

2
) (𝑧𝜂 − 𝑧𝐶) 

(2.32) 

The subscripts 𝐶 and 𝜂 indicates central gridblock and neighboring gridblocks, 

respectively. 

2.7.2. Rock-Fluid Interaction 

Two auxiliary equations to express rock-fluid interaction are relative permeability 

and capillary pressure. Three-phase relative permeability is used when oil, water, and gas 

are flowing in a porous media simultaneously. Relative permeability curves are provided 

by laboratory tests, and correlations are used instead of direct measurements since three-

phase relative permeabilities are difficult to measure. The correlation used in this study is 

based on the assumptions that the water relative permeability curve (𝑘𝑟𝑤) obtained for a 

water-oil system depends only on water saturation, and the gas relative permeability curve 

(𝑘𝑟𝑔) obtained for a gas-oil system depends only on gas saturation (Fanchi 2006). The 

three-phase oil relative permeability (𝑘𝑟𝑜) is then calculated as a function of water and gas 

relative permeability (Eq. 2.33). 

𝑘𝑟𝑜 = 𝑘𝑟𝑜𝑐𝑤 [(
𝑘𝑟𝑜𝑤

𝑘𝑟𝑜𝑐𝑤
+ 𝑘𝑟𝑤)(

𝑘𝑟𝑜𝑔

𝑘𝑟𝑜𝑐𝑤
+ 𝑘𝑟𝑔) − 𝑘𝑟𝑤 − 𝑘𝑟𝑔] (2.33) 

Where, 
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𝑘𝑟𝑜: oil relative permeability  

𝑘𝑟𝑜𝑐𝑤: oil relative permeability at irreducible water saturation 

𝑘𝑟𝑜𝑤: oil relative permeability at actual water saturation 

𝑘𝑟𝑜𝑔: oil relative permeability at actual gas saturation and irreducible water saturation 

𝑘𝑟𝑤: water relative permeability at actual water saturation 

𝑘𝑟𝑔: gas relative permeability at actual gas saturation 

Eq. 2.33 is based on the methods by Stone (1973), and Dietrich and Bondor (1976). 

One needs to assure that the relative permeability constraints, for example 𝑘𝑟𝑜𝑤(1 −

𝑆𝑤𝑟) = 𝑘𝑟𝑜𝑔(𝑆𝑜 + 𝑆𝑤 = 1.0)  for the irreducible saturation 𝑆𝑤𝑟  and 𝑆𝑔 = 0 , are 

satisfied to get the realistic values. 

Capillary pressure is defined as the difference between the pressure of a non-

wetting phase 𝑝𝑛𝑜𝑛−𝑤𝑒𝑡𝑡𝑖𝑛𝑔 and the pressure of a wetting phase 𝑝𝑤𝑒𝑡𝑡𝑖𝑛𝑔 , as shown in 

Eq. 2.34, and is used to determine initial fluid contact and transition zones of two 

immiscible fluids. 

𝑝𝑐 = 𝑝𝑛𝑜𝑛−𝑤𝑒𝑡𝑡𝑖𝑛𝑔 − 𝑝𝑤𝑒𝑡𝑡𝑖𝑛𝑔  (2.34) 

Oil-water capillary pressure and gas-oil capillary pressure can be expressed as Eq. 

2.35 and Eq. 2.36 respectively. 
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𝑝𝑐𝑜𝑤 = 𝑝𝑜 − 𝑝𝑤 (2.35) 

𝑝𝑐𝑔𝑜 = 𝑝𝑔 − 𝑝𝑜 (2.36) 

2.7.3. Other Auxiliary Equations 

Saturation-dependent rock-fluid interaction data, rock compressibility equation, 

and viscosity of oil and gas can also be used for auxiliary equations to complement the 

solutions of the system. Volume translation method is also applied in this study to match 

the hydrocarbon phase volumetric properties obtained from EOS to the measured 

properties from laboratory (Péneloux et al. 1982).  

2.8. Vector of Independent Variables, Residuals, and Jacobians 

We use the Newton-Raphson method to solve the system of nonlinear equations in 

this study. Newton’s method can be derived by considering the linear approximation of 

the nonlinear vector-valued functions, given an initial guess. Ultimately, the method yields 

a solution of large-scale linear systems. The initial guess for the independent variables is 

obtained from the solution of previous time step to form the vector of unknown variables 

𝑥⃗, and the residual vector 𝑅⃗⃑ is computed based on the vector of independent variables 

and boundary conditions. The Jacobian matrix 𝑗  is formed by taking the partial 

derivatives of the residual with respect to the unknown variable. Usually numerical 

derivatives are used. Finally, the system of equations is solved by use of various solvers 

such as direct method, conjugate gradient method (CG), generalized minimum residual 
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method (GMRES), and biconjugate gradients stabilized method (BiCGSTAB), from 

MATLAB® libraries (Valbuena Olivares 2015) in this study. 

The vector of independent variables can be setup in any order, but in this study, it 

follows the ascending order of 𝑖, 𝑗, 𝑘⃗⃑, one after another, and is expressed as shown in Eq. 

2.37. Eq. 2.38 presents the size of 𝑥⃗. 

𝑥⃗ =

[
 
 
 
 
 
 ln 𝐾⃗⃑⃑𝑖∀(𝑖,𝑗,𝑘⃗⃑)

𝑝𝑜∀(𝑖,𝑗,𝑘⃗⃑)

𝐹⃗𝑖∀(𝑖,𝑗,𝑘⃗⃑)

𝑊∀(𝑖,𝑗,𝑘⃗⃑)

𝑓𝑣∀(𝑖,𝑗,𝑘⃗⃑) ]
 
 
 
 
 
 

 (2.37) 

𝑠𝑖𝑧𝑒(𝑥⃗) = (2𝑛𝑐 + 3) × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑖𝑑𝑏𝑙𝑜𝑐𝑘𝑠 (2.38) 

Similarly, the vector of residuals is structured in accordance with the order of 𝑥⃗ 

(Eq. 2.39). The size of 𝑅⃗⃑ is equal to the size of 𝑥⃗ as in (Eq. 2.40). 

𝑅⃗⃑ =

[
 
 
 
 
 
 𝑅⃗⃑𝑓𝑢𝑔𝑖∀(𝑖,𝑗,𝑘⃗⃑)

𝑅𝑠𝑎𝑡∀(𝑖,𝑗,𝑘⃗⃑)

𝑅⃗⃑𝑖∀(𝑖,𝑗,𝑘⃗⃑)

𝑅𝑤∀(𝑖,𝑗,𝑘⃗⃑)

𝑅𝑅𝑅∀(𝑖,𝑗,𝑘⃗⃑) ]
 
 
 
 
 
 

 (2.39) 

𝑠𝑖𝑧𝑒(𝑅⃗⃑) = (2𝑛𝑐 + 3) × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑖𝑑𝑏𝑙𝑜𝑐𝑘𝑠 (2.40) 

Jacobian matrix is the matrix of all residuals’ first-order partial derivatives. There 
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are two ways of computing Jacobian; one is numerical Jacobian and the other is analytical 

Jacobian. We use numerical Jacobian which is easier to implement in the numerical 

simulation. The size of Jacobian is shown in Eq. 2.41. 

𝑠𝑖𝑧𝑒 (𝑗) = 𝑠𝑖𝑧𝑒(𝑅⃗⃑) ×  𝑠𝑖𝑧𝑒(𝑥⃗) (2.41) 

Since 𝑠𝑖𝑧𝑒(𝑅⃗⃑)  equals 𝑠𝑖𝑧𝑒(𝑥⃗) , the shape of Jacobian is square as seen in Eq. 

2.42.  

𝑗 = [
𝜕𝑅⃗⃑

𝜕𝑥⃗
]

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑅𝑓𝑢𝑔1

𝜕 ln𝐾1
⋯

𝜕𝑅𝑓𝑢𝑔1

𝜕 ln𝐾𝑛𝑐

𝜕𝑅𝑓𝑢𝑔1

𝜕𝑝𝑜

𝜕𝑅𝑓𝑢𝑔1

𝜕𝐹1
⋯

𝜕𝑅𝑓𝑢𝑔1

𝜕𝐹𝑛𝑐

𝜕𝑅𝑓𝑢𝑔1

𝜕𝑊

𝜕𝑅𝑓𝑢𝑔1

𝜕𝑓𝑣
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕 ln𝐾1
⋯

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕 ln𝐾𝑛𝑐

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕𝑝𝑜

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕𝐹1
⋯

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕𝐹𝑛𝑐

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕𝑊

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕𝑓𝑣
𝜕𝑅𝑠𝑎𝑡

𝜕 ln𝐾1
⋯

𝜕𝑅𝑠𝑎𝑡

𝜕 ln𝐾𝑛𝑐

𝜕𝑅𝑠𝑎𝑡

𝜕𝑝𝑜

𝜕𝑅𝑠𝑎𝑡

𝜕𝐹1
⋯

𝜕𝑅𝑠𝑎𝑡

𝜕𝐹𝑛𝑐

𝜕𝑅𝑠𝑎𝑡

𝜕𝑊

𝜕𝑅𝑠𝑎𝑡

𝜕𝑓𝑣
𝜕𝑅1

𝜕 ln𝐾1
⋯

𝜕𝑅1

𝜕 ln𝐾𝑛𝑐

𝜕𝑅1

𝜕𝑝𝑜

𝜕𝑅1

𝜕𝐹1
⋯

𝜕𝑅1

𝜕𝐹𝑛𝑐

𝜕𝑅1

𝜕𝑊

𝜕𝑅1

𝜕𝑓𝑣
⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮

𝜕𝑅𝑛𝑐

𝜕 ln𝐾1
⋯

𝜕𝑅𝑛𝑐

𝜕 ln𝐾𝑛𝑐

𝜕𝑅𝑛𝑐

𝜕𝑝𝑜

𝜕𝑅𝑛𝑐

𝜕𝐹1
⋯

𝜕𝑅𝑛𝑐

𝜕𝐹𝑛𝑐

𝜕𝑅𝑛𝑐

𝜕𝑊

𝜕𝑅𝑛𝑐

𝜕𝑓𝑣
𝜕𝑅𝑤

𝜕 ln𝐾1
⋯

𝜕𝑅𝑤

𝜕 ln𝐾𝑛𝑐

𝜕𝑅𝑤

𝜕𝑝𝑜

𝜕𝑅𝑤

𝜕𝐹1
⋯

𝜕𝑅𝑤

𝜕𝐹𝑛𝑐

𝜕𝑅𝑤

𝜕𝑊

𝜕𝑅𝑤

𝜕𝑓𝑣
𝜕𝑅𝑅𝑅

𝜕 ln𝐾1
⋯

𝜕𝑅𝑅𝑅

𝜕 ln𝐾𝑛𝑐

𝜕𝑅𝑅𝑅

𝜕𝑝𝑜

𝜕𝑅𝑅𝑅

𝜕𝐹1
⋯

𝜕𝑅𝑅𝑅

𝜕𝐹𝑛𝑐

𝜕𝑅𝑅𝑅

𝜕𝑊

𝜕𝑅𝑅𝑅

𝜕𝑓𝑣 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(2.42) 

2.9. Compositional Simulation Workflow 

The flow chart in Figure 2.1 displays the overall compositional simulation 

workflow used in most commercial software. Firstly, input data is read, and then the 
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parallel computing is set up. Parallel computing can accelerate the computations by 

breaking down larger problems into smaller problems and computing them using multiple 

processors simultaneously. Miscellaneous calculations such as geometric transmissibility 

calculation and well index calculation are performed. After the initialization of 

independent variables using the given initial conditions, time steps for fully implicit 

method using Newton-Raphson iteration are solved until final simulation time. There are 

several subroutines in the workflow, and one example is the flash calculation in Newton-

Raphson iteration. The detailed procedure for the flash calculation is discussed in Chapter 

4. 
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Figure 2.1 Compositional simulation workflow adapted from the work done by 

Valbuena (2015). Time steps for fully implicit method using Newton-Raphson 

iteration are solved until final simulation time. Several subroutines such as flash 

calculation is included in the process of time step. 
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2.10. Matrix Solvers 

There are multiple ways to solve the matrix-type system of equations. One can use 

direct methods which is expensive for large-scale computations, or iterative methods 

which is relatively cheaper than direct solvers. Examples of Krylov subspaces in iterative 

methods are CG (Hestenes and Stiefel 1952; Saad 2003), GMRES (Saad and Schultz 1986; 

Saad 2003), and BiCGSTAB (van der Vorst 1992). The text by Chen (2005) describes 

several preconditioning techniques used in conjunction with iterative methods. In this 

study, we use a direct solver (LU Decomposition) as a default matrix solver, that usually 

requires less than 5 iterations to convergence. This selection is purely based on the size of 

problems studied here, but implementation of iterative methods is the way to go for larger 

problems. 

2.11. Physical Limits and Convergence Criteria 

Newton-Raphson iteration stops when the error meets the convergence criteria. In 

order to get the reliable and acceptable solution from the iteration process, we use multiple 

physical limits and convergence criteria as follows. 

𝑝 > 14.7 (2.43) 

0 ≤ 𝑆𝛼 ≤ 1 (2.44) 
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‖𝑅⃑⃑‖
2

→ 0 (2.45) 

‖𝑝𝑘+1 − 𝑝𝑘‖2 ≤ 𝜀𝑝, 𝜀𝑝 = 1.47 (2.46) 

‖𝑓𝑖
𝑙𝑘+1

− 𝑓𝑖
𝑙𝑘‖

2
≤ 𝜀𝑓, 𝜀𝑓 = 0.001 (2.47) 

‖𝑓𝑖
𝑣𝑘+1

− 𝑓𝑖
𝑣𝑘

‖
2

≤ 𝜀𝑓, 𝜀𝑓 = 0.001 (2.48) 

Note that the convergence criteria for the norm of pressure change, phase fugacity 

change is referred from Schlumberger (2014). 

 

  



 

46 

 

 

3. PROPOSED NEW WORKFLOW OF PHYSICS-BASED MODEL ORDER 

REDUCTION FOR COMPOSITIONAL SIMULATION* 

   

Model order reduction techniques aim to reduce the computational cost of large-

scale simulation models by finding an approximation to the solution using a less complex 

model. We should emphasize that here, reduction in model complexity is achieved by 

reducing the number of variables in the system of equation, or by approximating the 

attributes of gridblocks in case of reservoir simulation. Furthermore, the full-order system 

can be approximated by either linear or nonlinear model depending on the nature of the 

system. 

Proper Orthogonal Decomposition (POD) is one of the well-established and most 

fundamentally used MOR method in the field of reservoir simulation owing to its 

simplicity, accuracy and overall efficiency. We should note that although the POD method 

is endowed with many positive qualities, its robustness is not well studied to yield always 

convergence results in our particular application. Many variants of the method have been 

introduced to overcome some of its drawbacks, such as the lack of material balance 

guarantees, the proper selection of basis and general convergence issues. The reader is 

referred to Gildin et al. (2013) and Ghasemi et al. (2015) for more information. 

One of the additional works introduce to extend the POD to highly nonlinear 

systems is the Discrete Empirical Interpolation Method (DEIM) (Chaturantabut and 

 
*Part of this section is reprinted with permission from SPE-198946-MS "A New Framework for 

Compositional Simulation Using Reduced Order Modeling Based on POD-DEIM" by J. Lee and E. Gildin, 
July 2020, SPE Latin American and Caribbean Petroleum Engineering Conference, Society of Petroleum 

Engineers. 



 

47 

 

 

Sorensen 2010). DEIM approximates the nonlinear properties by interpolating them from 

certain selected gridblock locations in the reservoir domain. In this case, the Jacobian and 

residuals do not need to be reconstructed entirely for every Newton step, that is, only a 

small portion needs to be evaluated. Therefore, DEIM is efficiently utilized to reduce the 

complexity of the nonlinear system when combined with POD technique (Ghasemi et al. 

2015). In what follows, we describe mathematically the POD-DEIM method and its 

modifications for the compositional simulation shown in Chapter 2. 

3.1 Proper Orthogonal Decomposition (POD) 

POD is a mathematical method originated from statistical analysis that uses an 

orthogonal transformation to convert a given set of variables to a linearly independent set 

of variables which is called a POD basis. So, the main idea of POD is to reduce the 

dimension of a given data set consisting of many variables that are correlated with each 

other while retaining the variation present in the dataset to the maximum extent. POD is 

based on the singular value decomposition (SVD) (Golub and Van Loan 1996) and it is 

also called principal component analysis (PCA) or other different names depending on the 

field of application. 

POD has been investigated and successfully implemented in reservoir simulation 

by Cardoso et al. (2010a), Gildin et al. (2013), among others, as a way of reducing the 

computational cost when computing the solutions of the reservoir state (pressures and 

saturations). In this study, we follow the standard snapshot-based POD formulation and 

its main formulation and implementation is presented below. 
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The overall workflow starts with the run of many (3 to 4 from our experience) full-

scale simulations to obtain the system’s snapshots which are the solutions of the 

independent variables at each time step by running a high fidelity full-order model with 

training inputs. More explicitly, suppose that the simulation model has 𝑀 gridblocks and 

is run for 𝑁 time steps. Each snapshot can be expressed as 𝑁 column vectors having 

length 𝑀, that is 𝑀 × 𝑁 matrix (Eq. 3.1 and Figure 3.1). 

𝐴 = (𝑎1, ⋯ , 𝑎𝑁) (3.1) 

Given the correlations in the saved snapshot, we then use the well-known SVD to 

the snapshot matrix to obtain basis for the space spanned by the snapshots, as in Eq.3.2.  

𝐴 = 𝑈𝛴𝑉𝑇  (3.2) 

In this case, the left singular vector 𝑈 can be used to project the high order system 

into a smaller subsystem, as it can be seen from Figure 3.2. The 𝑅 value in Figure 3.2 is 

selected based on the energy level of the states. And the reduced 𝑈 matrix is used as the 

POD basis. 
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Figure 3.1 Snapshot matrix for POD. M: number of gridblock, N: number of time 

step. Each column of snapshot matrix indicates the solutions of unknowns at each 

time step. Reprinted with permission from SPE-198946-MS. 

 

 

Figure 3.2 Illustration of POD basis. The reduced 𝑼 matrix, 𝑼𝒓 is the POD basis 

that is used to project the high-order system into a smaller subsystem. Reprinted 

with permission from SPE-198946-MS.  

 

The POD basis is applied in the process of Newton Raphson iterations as depicted 

in Figure 3.3. In this case, the truncated vector of 𝑈, namely Φ is used to project the state, 

residual, and Jacobian into a smaller matrix. 
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Figure 3.3 Application of POD in Newton Raphson iterations. State, residual, 

Jacobian are projected into the reduced subspace by the projection matrix 𝚽 

(POD basis 𝑼𝒓). Reprinted with permission from SPE-198946-MS. 

 

The overall procedure of the POD algorithm is summarized in Table 3.1. 

 

Table 3.1 Procedure of the POD algorithm. 

Algorithm 1: POD Procedure 

1: while the error criteria are not met 

2: 𝑅 = 𝑅(𝑥𝑛+1, 𝑥𝑛 , 𝑢𝑛+1), 𝐽 = 𝐽(𝑥𝑛+1, 𝑥𝑛 , 𝑢𝑛+1) 

3: 𝐽𝑟 = 𝜓Τ𝐽Φ, 𝑅𝑟 = 𝜓Τ𝑅 

4: 𝛿𝑧 =  −𝐽𝑟
−1𝑅𝑟  

5: 𝛿𝑥̃ =  Φ𝛿𝑧   

6: 𝑥𝑛+1 ← 𝑥𝑛+1 +  𝛿𝑥̃  

7: End 
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3.2 Discrete Empirical Interpolation Method (DEIM) 

Even though we reduce the system by projecting the states into a smaller subspace 

using POD, the performance of the POD cannot be maximized to completely reduce the 

dimension of the system because POD still requires the nonlinear-function evaluations in 

the computation of residuals and Jacobian matrices on all the gridblocks. In general, a 

large portion of the CPU time is spent on computing the nonlinear equations, so it is 

essential to find ways to reduce the computational time for the nonlinear terms. Therefore, 

we apply DEIM to approximate these nonlinear functions for further system reduction. 

DEIM is based on the greedy algorithm and is an enhancement of POD that simplifies the 

evaluation of the nonlinear term in the reduced model. DEIM approximates a linear or 

nonlinear function by means of an interpolatory projection of a few selected global 

snapshots of the function. The idea is to represent a function over the full domain while 

using only information in some locations. DEIM is briefly introduced in this section, and 

more details about DEIM can be found in Chaturantabut and Sorensen (2010). 

Suppose 𝑓(𝜏) ∈ ℝ𝑛 denotes a nonlinear function in a high-dimensional space. 

The function 𝑓(𝜏) can be linearly approximated by projecting it into a subspace using 

the basis 𝑈𝑓  and low-dimensional coefficient 𝑐(𝜏) (Eq. 3.3). 

𝑓(𝜏) ≈ 𝑈𝑓𝑐(𝜏) (3.3) 
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Similar to the POD basis, the basis matrix 𝑈𝑓  is obtained by POD based on the 

snapshots of the nonlinear terms. To determine 𝑐(𝜏) , a selection matrix 𝑃  for the 

sampling points where the nonlinear terms are evaluated needs to be defined (Eq. 3.4). 

𝑃 = (𝑒℘1
, ⋯ , 𝑒℘𝑚

) ∈ ℝ𝑛×𝑚 (3.4) 

Where, 𝑒℘𝑖
= [0,⋯ ,0,1,0,⋯ ,0]𝑇 ∈ ℝ𝑛  is a column of an identity matrix 

corresponding to the indices ℘𝑖. If we multiply 𝑃𝑇 on both side of (3.3), we can rewrite 

𝑓(𝜏) as follows (Eq. 3.5). 

𝑓(𝜏) ≈ 𝑈𝑓𝑐(𝜏) = 𝑈𝑓(𝑃
𝑇𝑈𝑓)

−1
𝑃𝑇𝑓(𝜏) (3.5) 

Here we assume that 𝑃𝑇𝑈𝑓  is nonsingular. 𝑃𝑇𝑓(𝜏)  can also be replaced by 

𝑓℘𝑚
(𝜏), therefore the final form of the expression is shown in Eq. 3.6. 

𝑓(𝜏) ≈ 𝑓(𝜏) = 𝑈𝑓(𝑃𝑇𝑈𝑓)
−1

𝑃𝑇𝑓(𝜏) = 𝑈𝑓(𝑃𝑇𝑈𝑓)
−1

(

 

𝑓℘1
(𝜏)

𝑓℘2
(𝜏)

⋮
𝑓℘𝑚

(𝜏))

  (3.6) 

Figure 3.4 is an example of DEIM that represents the selected locations where the 

nonlinear functions are computed, and it is obviously noticeable that the computational 

cost can be significantly reduced when comparing the full-order model. 
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Figure 3.4 Example of DEIM locations (Tan et al. 2017). Left: map of log-

permeability. Right: DEIM sampling locations. DEIM locations are selected by the 

greedy algorithm. 

 

The overall DEIM procedure is summarized in Table 3.2. The interpolation indices 

℘𝑚 is decided by the greedy algorithm as shown in Algorithm 2. The greedy algorithm 

is a type of heuristic problem-solving algorithms that seeks the global optimal solution by 

choosing the local optimal solution at each decision-making stage. In DEIM, the greedy 

algorithm sorts the column of the DEIM basis 𝑈𝑓  in terms of the importance of the 

component. That is to say, the most important column is located at the first column and 

the least one is at the last column. The first sampling point from the first column of the 

basis matrix is simply the point with the largest absolute value. And then at the next 

column, the point with the largest absolute error between the actual function value and the 

estimated value, 𝑚𝑎𝑥{|𝑢𝑓ℓ
− 𝑈𝑓𝑐|}, is chosen for the next location in order to improve 
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the performance of the interpolation. This process is repeated until it reaches the last 

column of the basis matrix. 

This greedy algorithm is commonly used when determining the selection points 

not only for the DEIM but also for the Gauss-Newton approximate tensor (GNAT) which 

is a modification of Newton’s method to approximate nonlinear residual and left subspace 

basis by computing only a small subset of rows (Chaturantabut and Sorensen 2010; 

Carlberg et al. 2011, 2013). 

 

Table 3.2 Procedure of the DEIM algorithm. 

Algorithm 2: DEIM Procedure (Chaturantabut and Sorensen 2010) 

1: DEIM basis 𝑈𝑓 = (𝑢𝑓1,⋯ , 𝑢𝑓𝑚
) ∈ ℝ𝑛×𝑚 

2:  (|𝜌|,℘1) = 𝑚𝑎𝑥{|𝑢𝑓1
|} 

3:  𝑈𝑓 = (𝑢𝑓1
), 𝑃 = (𝑒𝜌1

) 

4: for ℓ = 2,⋯ ,𝑚 

5:  (𝑃𝑇𝑈𝑓)𝑐 = 𝑃𝑇𝑢𝑓ℓ
 

6:  𝑟 = 𝑢𝑓ℓ
− 𝑈𝑓𝑐 

7:  (|𝜌|,℘1) = 𝑚𝑎𝑥{|𝑟|} 

8:  𝑈𝑓 ← (𝑈𝑓𝑢𝑓ℓ
), 𝑃 ← (𝑃𝑒𝜌ℓ

) 

9: end 

10: ℘⃗⃑⃑⃑ = (℘1, ⋯ ,℘𝑚)𝑇  
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3.3. POD-DEIM for Compositional Simulation  

The concept of POD is very straightforward, but the implementation to highly 

nonlinear systems require additional manipulations and tuning. In particular, a modified 

version of the POD is necessary to handle efficiently compositional simulation. 

As seen in the flow chart of Newton Raphson iteration (Figure 3.5), we may collect 

and save snapshots from the fine scale training run. However, since we update the 

solutions of two independent variables (ln𝐾𝑖 and 𝑓𝑣) using flash calculation after solving 

the system of equations, they are not the direct solutions from the system of equations. 

More specifically, if the regular variables are used in the compositional simulator the 

variables derived from flash calculation are calibrated in the Newton Raphson iteration 

loop. Then, the solutions of these flash calculation variables are updated based on the 

solutions of other variables such as oil phase pressure once they are obtained from the 

Newton Raphson iteration. Therefore, one cannot use the POD at this point since the 

snapshots for POD basis should be derived from the solutions of the system of equations. 

In other words, POD basis of flash calculation variables should not be updated after we 

obtain the solutions. 
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Figure 3.5 Flowchart for collecting snapshot in training schedules in a general 

compositional simulator based on a modified molar formulation. Two independent 

variables 𝐥𝐧 𝑲𝒊 and 𝒇𝒗 are updated after convergence in Newton-Raphson 

method, which violates the concept of snapshot that must be the solution of the 

system. 

 

Therefore, if we run a test case using the POD basis obtained from a training case, 

obviously we get wrong solutions for 𝐾 value and molar vapor fraction, which are the 

independent variables related to flash calculation, because their POD bases are not based 

on the solutions of the system of equations (Figure 3.6). This occurs even when we run 

the same schedules of training case for the test case. The POD basis must be based on the 

solutions of the system of equations. 
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Figure 3.6 Flowchart of the POD application using snapshot from training 

schedules for test run in a general compositional simulator based on a modified 

molar formulation. Wrong solutions are obtained since the POD basis is not based 

on the system of equations. 

 

To this end, we modify the general molar variables formulation by dividing the 

independent variables into primary and secondary variables, so we can apply the POD-

DEIM method using the physically correct variable. Basically, primary variables are 

defined for the mass balance calculation whereas the secondary variables are related to the 

flash calculation as shown in Figure 3.7. 
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Figure 3.7 Primary and secondary variables. Secondary variables are the 

independent variables for the flash calculation. The POD is applicable with respect 

to primary variables. Reprinted with permission from SPE-198946-MS.  

 

Using this new formulation, the state variables along with the residual and 

Jacobian matrices of primary and secondary terms are shown in Eq. 3.7 through Eq. 3.12. 

Even though we separate primary and secondary variables and equations, residuals of the 

primary equations are still the functions of both primary and secondary variables. For 

example, the mass balance equation for hydrocarbon component is dependent on phase 

compositions. Therefore, we need to recast the original matrices to handle correctly the 

dependencies for the secondary constraints. 

𝑥⃗𝑅𝐸𝑆_𝑝𝑟𝑖𝑚𝑎𝑟𝑦 = [

𝑝𝑜

𝐹⃗𝑖

𝑊

]

∀(𝑖,𝑗,𝑘⃗⃑)

 (3.7) 

𝑅⃗⃑𝑅𝐸𝑆_𝑝𝑟𝑖𝑚𝑎𝑟𝑦 = [

𝑅𝑠𝑎𝑡

𝑅⃗⃑𝑖

𝑅𝑤

]

∀(𝑖,𝑗,𝑘⃗⃑)

 (3.8) 
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𝑗 = [
𝜕𝑅⃑⃑𝑅𝐸𝑆

𝜕𝑥⃑𝑅𝐸𝑆

]
(𝑖,𝑗,𝑘⃗⃑)

=

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑅𝑠𝑎𝑡

𝜕𝑥𝑝𝑜

𝜕𝑅𝑠𝑎𝑡

𝜕𝑥𝐹1

⋯
𝜕𝑅𝑠𝑎𝑡

𝜕𝑥𝐹𝑛𝑐

𝜕𝑅𝑠𝑎𝑡

𝜕𝑊

𝜕𝑅1

𝜕𝑥𝑝𝑜

𝜕𝑅1

𝜕𝑥𝐹1

⋯
𝜕𝑅1

𝜕𝑥𝐹𝑛𝑐

𝜕𝑅1

𝜕𝑊

⋮ ⋮ ⋯ ⋮ ⋮
𝜕𝑅𝑛𝑐

𝜕𝑥𝑝𝑜

𝜕𝑅𝑛𝑐

𝜕𝑥𝐹1

⋯
𝜕𝑅𝑛𝑐

𝜕𝑥𝐹𝑛𝑐

𝜕𝑅𝑛𝑐

𝜕𝑊

𝜕𝑅𝑤

𝜕𝑥𝑝𝑜

𝜕𝑅𝑤

𝜕𝑥𝐹1

⋯
𝜕𝑅𝑤

𝜕𝑥𝐹𝑛𝑐

𝜕𝑅𝑤

𝜕𝑊 ]
 
 
 
 
 
 
 
 
 
 

(𝑖,𝑗,𝑘⃗⃑)

 (3.9) 

𝑥⃗𝑅𝐸𝑆_𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = [ln𝐾𝑖
⃑⃑ ⃑⃑

𝑓𝑣
]
∀(𝑖,𝑗,𝑘⃗⃑)

 (3.10) 

𝑅⃗⃑𝑅𝐸𝑆_𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = [
𝑅⃑⃑𝑓𝑢𝑔𝑖

𝑅𝑅𝑅

]
∀(𝑖,𝑗,𝑘⃗⃑)

 (3.11) 

𝑗𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = [
𝜕𝑅⃑⃑𝑅𝐸𝑆

𝜕𝑥⃑𝑅𝐸𝑆

]
(𝑖,𝑗,𝑘⃗⃑)

=

[
 
 
 
 
 
 
 
𝜕𝑅𝑓𝑢𝑔1

𝜕 ln𝐾1
⋯

𝜕𝑅𝑓𝑢𝑔1

𝜕 ln𝐾𝑛𝑐

𝜕𝑅𝑓𝑢𝑔1

𝜕𝑓𝑣
⋮ ⋯ ⋮ ⋮

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕 ln𝐾1
⋯

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕 ln𝐾𝑛𝑐

𝜕𝑅𝑓𝑢𝑔𝑛𝑐

𝜕𝑓𝑣
𝜕𝑅𝑅𝑅

𝜕 ln𝐾1
⋯

𝜕𝑅𝑅𝑅

𝜕 ln𝐾𝑛𝑐

𝜕𝑅𝑅𝑅

𝜕𝑓𝑣 ]
 
 
 
 
 
 
 

(𝑖,𝑗,𝑘⃗⃑)

 (3.12) 

Thus, the chain rule is used to reconstruct the revised Jacobian matrix. In a fully 

implicit framework, the global system of primary equations is solved, and then the local 

system of secondary equations is solved on a gridblock basis for secondary variables, 

while keeping the primary variables fixed. Therefore, once the secondary equations are 

solved, all fluid and solid properties are updated accordingly. The secondary equations are 
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assumed to be fully converged for all Newton iterations. This is achieved by subjecting 

the solution of the primary equations to the constraints based on the secondary equations. 

Hence, the chain rule can be used to reconstruct the Jacobian matrix as shown in Eq. 3.13 

through 3.17. 

𝐽 =  
𝑑𝑅𝑝 (𝑋𝑝,  𝑋𝑠)

𝑑𝑋𝑝
=  

𝜕𝑅𝑝

𝜕𝑋𝑠

𝑑𝑋𝑠

𝑑𝑋𝑝
+

𝜕𝑅𝑝

𝜕𝑋𝑝
 (3.13) 

𝑑𝑅𝑠 (𝑋𝑝,  𝑋𝑠)

𝑑𝑋𝑝
=  

𝜕𝑅𝑠

𝜕𝑋𝑠

𝑑𝑋𝑠

𝑑𝑋𝑝
+

𝜕𝑅𝑠

𝜕𝑋𝑝
 (3.14) 

𝑑𝑋𝑠

𝑑𝑋𝑝
= −

𝜕𝑅𝑠

𝜕𝑋𝑠
\
𝜕𝑅𝑠

𝜕𝑋𝑝
 (3.15) 

𝑑𝑅𝑝 (𝑋𝑝,  𝑋𝑠)

𝑑𝑋𝑝
= −

𝜕𝑅𝑝

𝜕𝑋𝑠
(
𝜕𝑅𝑠

𝜕𝑋𝑠
\

𝜕𝑅𝑠

𝜕𝑋𝑝
) +

𝜕𝑅𝑝

𝜕𝑋𝑝
 (3.16) 

𝐽 = −𝐽𝑝𝑠(𝐽𝑠𝑠\𝐽𝑠𝑝) + 𝐽𝑝𝑝 (3.17) 

Here, 𝑅𝑝 and 𝑅𝑠 represent residuals corresponding to the primary and secondary 

equations, and 𝑋𝑝 and 𝑋𝑠 denote the sets of primary and secondary variables. The final 

form of Jacobian 𝐽  in Eq. 3.17 can be expressed using 𝐽𝑝𝑝 , 𝐽𝑝𝑠 , 𝐽𝑠𝑝 , 𝐽𝑠𝑠  that 

represent 
𝜕𝑅𝑝

𝜕𝑋𝑝
, 

𝜕𝑅𝑝

𝜕𝑋𝑠
, 

𝜕𝑅𝑠

𝜕𝑋𝑝
, 

𝜕𝑅𝑠

𝜕𝑋𝑠
, respectively. 

Saturation constraint residual, hydrocarbon component residual, and water 

residual are the residuals corresponding to the primary equations for the POD-DEIM 

application. These residual equations are composed of three different terms, which are 

accumulation term, convective flow term, source/sink term. Since residuals contain many 
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nonlinear terms, our approach for collecting the snapshot of nonlinear terms at every 

converged time step involves separating snapshot into an accumulation term, a convective 

flow term, and a source/sink term. These three terms have a quite different physical 

meanings and are non-zeros at convergence. Therefore, they are suitable for obtaining the 

DEIM basis (Figure 3.8, Figure 3.9). 

 

 

Figure 3.8 Division of hydrocarbon component residual to collect snapshot for 

DEIM. Three different terms have different physical meanings and are non-zeros at 

convergence. 

 

 

Figure 3.9 Division of water residual to collect snapshot for DEIM. Three different 

terms have different physical meanings and are non-zeros at convergence. 
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To make the snapshot matrix of hydrocarbon component residual and water 

residual simple, we concatenate snapshots of some nonlinear terms as shown in Eq. 3.18. 

𝑋𝑔 = [𝑔𝑎𝑐𝑐𝑢𝑚
1 , 𝑔𝑎𝑐𝑐𝑢𝑚

2 , … , 𝑔𝑎𝑐𝑐𝑢𝑚
𝑛𝑠 , 𝑔𝑐𝑜𝑛𝑣

1 , 𝑔𝑐𝑜𝑛𝑣
2 , … , 𝑔𝑐𝑜𝑛𝑣

𝑛𝑠 ] (3.18) 

Here, we concatenate only accumulation terms and convective flow terms since 

source term is the negative sum of the accumulation and convective flow term. This 

formulation was introduced by Tan et al. (2017) and subsequently expanded in the work 

by Jiang and Durlofsky (2018). Recalling the DEIM algorithm, we apply DEIM method 

using projection basis and indices from this concatenated snapshot (Eq. 3.19 through Eq. 

3.21).  

𝑋𝑔 = 𝑈𝛴𝑉𝑇 (3.19) 

𝑔(𝑥) ≈ 𝑈(𝑃𝑇𝑈)−1𝑃𝑇𝑔(𝑥) (3.20) 

𝑔𝑝(𝑥) ≈ 𝑈𝑝(𝑃𝑝
𝑇𝑈𝑝)

−1
𝑃𝑝

𝑇𝑔𝑝(𝑥) 

𝑤ℎ𝑒𝑟𝑒, 𝑝 = 𝐻𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡,  𝑊𝑎𝑡𝑒𝑟 

(3.21) 

The flow chart in Figure 3.10 summarizes the overall offline and online process of 

the POD-DEIM algorithm. In offline processing, snapshots of primary variables are 

collected for the POD basis and snapshots of primary residual equations are obtained for 

the DEIM basis from a fine scale model with training schedules. And then in online 

processing, mass balance calculation is performed in a reduced-order system by the POD-
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DEIM method. Note that the secondary variables and equations for flash calculation 

remain in a full-order system. 

 

 

Figure 3.10 Flow chart of the coupled POD and DEIM approaches. Snapshots for 

the POD basis and the DEIM basis are acquired in offline processing. In online 

processing, mass balance calculation is performed in a reduced-order system by the 

POD-DEIM method. 

 

The theoretical computational complexity of the full-order model and reduced 

model based on POD and POD-DEIM are compared in Table 3.3. (Chaturantabut 2012). 

Note that 𝛼(𝑛) denotes the floating-point operation per second (Flops) for evaluating the 

nonlinear function 𝐹  at 𝑛  components, and 𝛼𝑑(𝑛)  is the Flops for evaluating 

derivative of the nonlinear function 𝐹 at 𝑛 components. Practically, the CPU time may 
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not be always proportional to the predicted Flops, since there are many other factors 

affecting the actual CPU time (Gilbert 1992). Nevertheless, this analysis is meaningful to 

investigate the relative computational times and the performance of the POD-DEIM. 

 

Table 3.3 Comparison of the computational complexity for each Newton iteration in 

different systems. 𝒏: number of gridblocks, 𝒌: number of POD basis, and 𝒎: 

number of DEIM basis. 

System 

Computation in Newton 

iteration 

Complexity (1 iteration) 

Total 

complexity 

Full 

 

𝐺(𝑦) = 𝐴𝑦 + 𝐹(𝑦) 

𝐽(𝑦) = 𝐴 + 𝑑𝑖𝑎𝑔{𝐹′(𝑦)} 

𝑦 ← 𝑦 − 𝐽(𝑦)−1𝐺(𝑦) 

 

2𝑛2 + 𝛼(𝑛) + 𝑛 𝑜𝑟 𝑐𝑛

+ 𝛼(𝑛) 

𝑛2 + 𝛼𝑑(𝑛) 𝑜𝑟 𝑛

+ 𝛼𝑑(𝑛) 

Ο(𝑛3) 𝑜𝑟 Ο(𝑛2) 

 

c ~ nonzero per row of A 

Ο(𝑛3) 

Sparse:Ο(𝑛2) 
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Table 3.3 Continued 

System 

Computation in Newton 

iteration 

Complexity (1 iteration) 

Total 

complexity 

POD 

 

𝐺̂(𝑦) = 𝐴̂𝑦̂ + 𝑉𝑇𝐹(𝑉𝑦̂) 

𝐽(𝑦)

= 𝐴̂ + 𝑉𝑇𝑑𝑖𝑎𝑔{𝐹′(𝑉𝑦̂)}𝑉 

𝑦̂ ← 𝑦̂ − 𝐽(𝑦)−1𝐺̂(𝑦) 

 

2𝑘2 + 𝛼(𝑛) + 𝑘 + 4𝑛𝑘 

𝑘2 + 𝛼𝑑(𝑛) + 4𝑛𝑘

+ 2𝑛𝑘2 

Ο(𝑘3) 

Ο(𝑘3 + 𝑛𝑘2) 

POD-

DEIM 

 

𝐺̂(𝑦) = 𝐴̂𝑦̂ + 𝐵𝐹(𝑉℘⃗⃑⃑⃑𝑦̂) 

𝐽(𝑦)

= 𝐴̂ + 𝐵𝑑𝑖𝑎𝑔{𝐹′(𝑉℘⃗⃑⃑⃑𝑦̂)}𝑉℘⃗⃑⃑⃑ 

𝑦̂ ← 𝑦̂ − 𝐽(𝑦)−1𝐺̂(𝑦) 

 

Where 𝐵 = 𝑉𝑇𝑈𝑈℘⃗⃑⃑⃑
−1,  

𝑈℘⃗⃑⃑⃑ = 𝑃𝑇𝑈, 𝑉℘⃗⃑⃑⃑ = 𝑃𝑇𝑉 

 

2𝑘2 + 𝛼(𝑚) + 𝑘 + 4𝑚𝑘 

𝑘2 + 𝛼𝑑(𝑚) + 4𝑚𝑘

+ 2𝑚𝑘2 

Ο(𝑘3) 
Ο(𝑘3 + 𝑚𝑘2) 

 

3.4. Applications and Results 

The application of the proposed reduced order modeling using POD-DEIM in the 

developed compositional simulator is discussed in this chapter. Here we investigate the 
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ability of our novel MOR formulation to speed up the computation and efficiency along 

with its accuracy to handle multiple components as compare to the conventional full-order 

model. Hence, we develop the fully implicit compositional reservoir simulator that is 

coded in MATLAB®, and then, POD-DEIM is applied to the developed simulator. 

When it comes to the POD-DEIM, the snapshot-based method works in a two-step 

process: training case and test case. Essentially, one can retrieve the necessary information 

– snapshots which are the solutions of independent variables at each time step - from the 

full-order training case to derive the POD basis. And the DEIM basis is also collected from 

the snapshots of the solutions of the nonlinear functions in this step. Then, the POD-DEIM 

is applied for the test case which has a different well control schedules from the training 

schedules. The results of the test case using POD-DEIM are compared to those of full-

order test case in test schedules to validate the applicability of the POD-DEIM method. 

3.4.1. Model Description 

A synthetic reservoir model with heterogeneous and anisotropic permeability 

distribution is created to test the proposed MOR methods. The reservoir model has 

15 × 15 × 3 gridblocks of equal dimensions with length and width of 88 ft, thickness of 

30 ft.  

In order to investigate the variation of each component as time changes, it is 

necessary to run the gas injection case such as nitrogen injection or the enhanced oil 

recovery using 𝐶𝑂2 injection. However, as an initial step to validate the proposed MOR 
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method in the compositional model, we assume the waterflooding scenario in this study 

to make the cases as simple as possible. Thus, we have one injector and one producer as 

illustrated in Figure 3.11, and properties of the model are shown in Table 3.4.  

There exist 3 phases - oil, water, gas, and eight components are assumed in the 

model. They are 𝐶𝑂2,  𝐶1 − 𝑁2, 𝐶2 − 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7+, 𝐴𝑠𝑝ℎ𝑎𝑙𝑡𝑒𝑛𝑒. The detailed 

fluid EOS Parameters for flash calculation is displayed in Appendix C. Sum of the 

concentration of each component should be equal to 1. 

 

 

  

Figure 3.11 Reservoir model permeability map (Valbuena Olivares 2015). Injection 

well and production well are located at grid block (1, 1) and (15, 15) respectively. 
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Table 3.4 Reservoir model properties (Valbuena Olivares 2015). 

Property Value 

Reservoir top depth, ft 2,665 

Porosity, fraction 0.2 

kh Geometric mean, mD 400.2 

kv/kh, fraction 0.1 

Initial water saturation, fraction 0.35 

Initial gas saturation, fraction 0 

Initial pressure, psia 8,868 

Temperature, °F 200 

Water density at SC, lb/ft3 63.0 

Rock compressibility, psia-1 4x10-6 

Reference pressure, psia 5,868 

Oil in place, MMSTB 3.30 

Gas in place, MMSCF 929.48 

Water in place, MMSTB 1.94 

Simulated time, days 365 
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3.4.2. Validation of the Developed Simulator 

In this study, the specifications of the computer are Intel(R) Xeon(R) CPU E5-

1660 v3 with 3.00 GHz for the processor, and 64.0 GB RAM. For the parallel processing, 

8 cores in a single processor are used for computing. 

For the first step, we compare our developed simulator with the commercial 

software Schlumberger Eclipse (Schlumberger 2014) to verify its performance. The 

producer well is controlled by bottom hole pressure, and the injector well is controlled by 

injection rate, as shown in Figure 3.12. We simulate the reservoir for 365 days’ time span, 

and Figure 3.13 represents the comparisons for reservoir pressure, oil production rate, 

water production rate, and gas production rate, for both the in-house simulator and Eclipse. 

As can be seen in this picture, there are excellent agreements to the results of the 

commercial software. Since even the peaks caused by the abrupt injection in a very short 

amount of time are accurately realized in the developed simulator, our in-house simulator 

is then deemed accurate for further studies using reduced-order models. 
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Figure 3.12 Well schedules used for validating the developed model. Time span of 

the simulation is 365 days. The producer well is controlled by bottom hole pressure, 

and the injector well is controlled by injection rate. Reprinted with permission from 

SPE-198946-MS. 
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Figure 3.13 Comparison of the performance between the Eclipse and the developed 

simulator. The developed simulator shows excellent match to the result of the 

commercial software. Reprinted with permission from SPE-198946-MS. 

 

3.4.3. Application of POD-DEIM 

As mentioned earlier, we use a two-step process to obtain the reduced-order model. 

The training case is utilized for capturing snapshots, whereas test case is used for testing 

the proposed MOR method under different well schedules. 

In our examples, both training and test schedules are run for 365 days, and their 

initial time step (𝑑𝑡)  is set to 0.1 day. We use a variable time step, therefore, if 
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convergence is achieved within a specified maximum number of iterations, time step size 

is doubled up to a user-defined size. If convergence is not accomplished within a 

maximum number of iterations, time step size is reduced by half, and initial guess and 

iteration process is reset.  

In order to have enough number of snapshots with respect to the POD-DEIM basis, 

maximum time step for the training case is set to 1 day in training case, whereas that of 

test case is set to 15 days. Consequently, the training case has 378 time steps, and test case 

has 58 time steps (Table 3.5). 

 

Table 3.5 Comparison of training case and test case. The POD-DEIM is validated 

using the test cases that have different well schedules to the training case. The 

training case has 378 time steps to obtain the enough number of snapshots. 

 Training Case Test Case 

Purpose 

Capture and save snapshots 

(POD-DEIM Basis) 

Validate POD-DEIM using 

different well schedules 

Duration of Simulation 365 days 365 days 

Initial 𝑑𝑡 0.1 day 0.1 day 

Maximum 𝑑𝑡 1 day 15 days 

Number of Time Step 378 58 

 

The well schedules are perturbed by 10% for the test case to verify the performance 

of the POD-DEIM model as shown in Figure 3.14. 
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Figure 3.14 Original and perturbed well schedules used for training and test case. 

The well schedules of the training case are perturbed by 10% for the test case. 

Reprinted with permission from SPE-198946-MS. 

 

We validate the POD-DEIM by applying it to three different test cases (Table 3.6). 

All three cases share the same POD basis having dimension of 445. There are 10 

independent variables in 675 gridblocks (15×15×3), therefore the dimension of the full-

order system is 6,750. The POD basis, namely projection matrix Φ is selected by the 
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fraction of total energy to be captured, which is 99.99% in this study, and then the 

dimension of the POD basis becomes 6,750 x 445. If we multiply this POD basis by the 

full-order system, the dimension of the reduced system becomes 445 as well. We change 

the residuals selected for DEIM and the number of DEIM location for each case in order 

to verify the performance and sensitivity of the POD-DEIM. 

 

Table 3.6 Three cases for test run. The DEIM is applied to the different residuals 

with different number of sampling location for each test case. 

 Case 1 Case 2 Case 3 

Dimension of POD 

Basis 

6,750 × 445 6,750 × 445 6,750 × 445 

Residual Selected 

for DEIM 

𝑅𝑠𝑎𝑡 𝑅1,  ⋯ ,  𝑅8 

𝑅𝑠𝑎𝑡 

𝑅1,  ⋯ ,  𝑅8 

𝑅𝑤 

Number of DEIM 

Location 

100 150 300 

 

Because we do not have any prior knowledge about the appropriate number of 

sampling locations for the DEIM, we implement sensitivity analysis using three different 

cases by changing the number of sampling locations as well as the type of residual to apply 

the DEIM. 
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In case 1, POD is applied to all primary variables and DEIM is applied only to the 

saturation constraint residual with 100 sampling points out of 675 total gridblocks. The 

selected DEIM locations are presented in Figure 3.15. As the critical dynamic features 

arise around the wells, most of the grid cells are selected near the wells. 

POD reduces the dimension of the system from 6,750 to 445, and DEIM enables 

us to compute 6,175 nonlinear functions out of 6,750. To sum up, about 8.5% of nonlinear 

function computation is reduced. 

 

 

Figure 3.15 Sampling location for the DEIM in case 1. The selected 100 locations of 

the DEIM for 𝑹𝒔𝒂𝒕 are shown. 

 

Figure 3.16 shows the performance of the original simulator and the simulator with 

POD-DEIM. We compare reservoir pressure, oil, water, gas production rate. The orange 
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dashed lines are the simulation result from the original simulator using training schedules, 

and black solid line is the result from the original simulator using test schedules. Dots are 

the results of POD-DEIM application in test schedules. The well schedules are perturbed 

by 10% for the test schedules, therefore we can see the variation between the training and 

test schedules. All results show very good estimation within less than 0.1% error.  

 

  

  

Figure 3.16 Comparison of the performance of training and case 1. Results of the 

POD-DEIM application show very good estimation within less than 0.1% error. 

 

Table 3.7 describes the reduction of simulation run time by the POD-DEIM in a 

single time step. For case 1, when we apply POD-DEIM, simulation run time of a single 

time step is reduced around 0.7% (Figure 3.17). Note that about 98% of the total CPU 
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time is spent in Jacobian setup. Even though the dimension of the system is reduced by 

POD, the number of locations for nonlinear function evaluation is reduced a little by DEIM, 

thus we can only see a small amount of time reduction in this case. Time reduction in 

Jacobian setup and residual calculation arises from DEIM, and reduction in primary matrix 

solver mostly results from POD. 

 

Table 3.7 Simulation run time of a single time step for the full-order model and the 

reduced order model in case 1. The POD-DEIM reduces the CPU time for Jacobian 

setup, matrix solver (primary), and residual calculation. 

 Full-Order (sec) POD-DEIM (sec) 

Jacobian Setup 335.0 332.9 

Matrix Solver (Primary) 2.4 2.0 

Matrix Solver (Secondary) 1.2 1.1 

Linear/Nonlinear Eq. 3.0 2.1 

Other 1.1 2.0 
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Figure 3.17 Comparison of simulation run time of a single time step in case 1. Note 

that about 98% of the total CPU time is spent in Jacobian setup. Simulation run 

time of a single time step is reduced by 0.7% using the POD-DEIM. 

 

Table 3.8 shows the reduction of simulation run time by the POD-DEIM 

application in 1-year simulation in case 1. The total CPU time reduction of 1-year 

simulation is about 7% (Figure 3.18). More time reduction than a single time step mostly 

comes from the fact that some of time steps require a smaller number of iterations to 

convergence. 

 

Table 3.8 Simulation run time of 1-year for the full-order model and for the 

reduced order model in case 1. Total simulation run time is reduced by the POD-

DEIM application. 

 Full-Order (sec) POD-DEIM (sec) 

Total Simulation Run Time (1 Year) 20,788.4 18,556.9 
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Figure 3.18 Comparison of simulation run time of 1-year in test case 1. The total 

CPU time reduction of 1-year simulation is about 7% by using the POD-DEIM. 

 

Case 2 is the case where we change the residuals applying DEIM and the number 

of sampling locations. The POD is applied to all primary variables and the DEIM is 

applied only to the hydrocarbon component residuals with 150 sampling points out of 675 

total gridblocks (Figure 3.19). The POD reduces the dimension of the system to 445 as it 

does in case 1, and we compute 2,550 nonlinear functions out of 6,750 by taking advantage 

of the DEIM. In sum, about 62.2% of nonlinear function computation is reduced. 
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Figure 3.19 Sampling location for the DEIM in case 2. The selected 150 locations of 

the DEIM for 𝑹𝒊 are shown. 

 

The performance of the original simulator and the simulator with POD-DEIM are 

compared for case 2 (Figure 3.20). Case 2 also replicates very similar results to the full-

order simulator for test input with less than 0.1% error. 
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Figure 3.20 Comparison of the performance of training and case 2. Results of the 

POD-DEIM application show excellent estimation within less than 0.1% error. 

 

Table 3.9 displays the reduction of simulation run time by the POD-DEIM in a 

single time step in case 2. For case 2, when we apply POD-DEIM, simulation run time of 

a single time step is reduced by 4.2% (Figure 3.21). Since in case 2, the number of 

locations for nonlinear function evaluation is even more reduced than case 1, we can see 

further time reduction in Jacobian setup and residual computation. In addition, POD 

reduces the elapsed time for primary matrix solver by 60%.  
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Table 3.9 Simulation run time of a single time step for the full-order model and the 

reduced order model in case 2. Further time reduction than case 1 is shown in 

Jacobian setup and residual computation due to the larger time reduction in 

nonlinear function evaluation by the DEIM. 

  Full-Order (sec) POD-DEIM (sec) 

Jacobian Setup 335.0  322.1  

Matrix Solver (Primary) 2.4  1.0  

Matrix Solver (Secondary) 1.2  1.1  

Linear/Nonlinear Eq. 3.0  2.0  

Other 1.1  2.0  

 

 

Figure 3.21 Comparison of simulation run time of a single time step in test case 2. 

Simulation run time of a single time step is reduced by 4.2% by the POD-DEIM 

application. 

 

Table 3.10 describes the reduction of simulation run time by the POD-DEIM 
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application in 1-year simulation in case 2. Total CPU time reduction of 1-year simulation 

is about 14.1%, that is more than twice time reduction comparing to case 1 (Figure 3.22). 

 

Table 3.10 Simulation run time of 1 year for the full-order model and for the 

reduced order model in case 2. The reduction of total simulation run time in case 2 

is much greater than case 1 since the number of nonlinear function evaluation is 

further reduced by the DEIM in case 2. 

 Full-Order (sec) POD-DEIM (sec) 

Total Simulation Run Time (1 Year) 20,788.4 17,851.8 

 

 

Figure 3.22 Comparison of simulation run time of 1 year in test case 2. Total CPU 

time reduction of 1-year simulation is about 14.1% by the POD-DEIM application. 

 

Now we try even more reduction in DEIM sampling location by applying the 

DEIM to all residuals as illustrated in Figure 3.23 through Figure 3.25. When we select 

100 or 200 points out of 675, simulation runs okay but requires much greater number of 
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time steps due to the convergence issue. It seems that the convergence issue arises from 

the fact that we are approximating too many nonlinear functions at the same time. 

Therefore, we set case 3 as the case applying the POD-DEIM to all primary variables and 

residuals with 300 sampling points out of 675 total gridblocks. Case 3 has a little greater 

number of sampling points than case 2, but it is remarkable in the sense that we estimate 

all residuals using DEIM. The POD reduces the dimension of the system to 445 as case 1 

and 2, and we compute 3,000 nonlinear functions out of 6,750 using DEIM. In sum, about 

55.6% of nonlinear function computation is reduced. 
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Figure 3.23 Sampling location for the DEIM in case 3. The selected 100 locations of 

the DEIM for all residuals are shown. 
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Figure 3.24 Sampling location for the DEIM in case 3. The selected 200 locations of 

the DEIM for all residuals are shown. 
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Figure 3.25 Sampling location for the DEIM in case 3. The selected 300 locations of 

the DEIM for all residuals are shown. Reprinted with permission from SPE-

198946-MS. 

 

The performance of the original simulator and the simulator with POD-DEIM are 

compared for case 3 (Figure 3.26). Case 3 also shows a strong match to the full-order 

simulator in test schedules with less than 0.1% error. 
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Figure 3.26 Comparison of the performance of training and case 3. Results of the 

POD-DEIM application show strong match within less than 0.1% error. Reprinted 

with permission from SPE-198946-MS. 

 

Phase saturations in a full-order model and in a reduced model are compared to 

validate the consistency for three phase waterflooding scenario in Figure 3.27. They show 

a good match overall. 
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Figure 3.27 Comparison of phase saturation for training and test case 3. 

Comparisons shows a good match overall. Reprinted with permission from SPE-

198946-MS. 
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The sum of moles of each component per pore volume is compared. As shown in 

Figure 3.28, compositions in the MOR applied case are almost identical to those in the 

original simulator. This implies that the POD-DEIM retains the compositional properties 

of the full-order model with high accuracy. 

Since we assume the three phase waterflooding scenario in this study, the dynamic 

changes in compositions over time are not seen in the graph. However, because the simple 

compositional simulation with waterflooding using the proposed MOR method is 

validated, we can also extend it to gas injection scenarios to test the proposed MOR 

method. 
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Figure 3.28 Comparison of compositions. Variation of compositions over time in 

test case 3 are almost identical to that in the original simulator. The POD-DEIM 

retains the compositional properties of the full-order model with high accuracy. 

Reprinted with permission from SPE-198946-MS. 

 

Table 3.11 displays the reduction of simulation run time by the POD-DEIM in a 

single time step in case 3. For case 3, when we apply the POD-DEIM, simulation run time 

of a single time step is reduced by 3.3% (Figure 3.29). It is a little less time reduction than 

case 2 because case 3 has a little more DEIM sampling points than case 2.  
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Table 3.11 Simulation run time of a single time step for the full-order model and the 

reduced order model in case 3. Time reduction in case 3 is a little less than case 2 

because case 3 has a little more DEIM sampling points than case 2. 

  Full-Order (sec) POD-DEIM (sec) 

Jacobian Setup 335.0  324.7  

Matrix Solver (Primary) 2.4  1.2 

Matrix Solver (Secondary) 1.2  1.2 

Linear/Nonlinear Eq. 3.0  2.1 

Other 1.1  2.1 

 

 

Figure 3.29 Comparison of simulation run time of a single time step in test case 3. 

Simulation run time of a single time step is reduced by 3.3% by the POD-DEIM 

application. 

 

Table 3.12 shows the reduction of simulation run time by the POD-DEIM 

application in 1-year simulation in case 3. The total CPU time reduction of 1-year 
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simulation is about 9.0% as shown in Figure 3.30. 

 

Table 3.12 Simulation run time of 1-year for the full-order model and for the 

reduced order model. Reduction of total CPU time in case 3 is also a little less than 

that in case 2. 

 Full-Order (sec) POD-DEIM (sec) 

Total Simulation Run Time (1 Year) 20,788.4 18,922.6 

 

 

Figure 3.30 Comparison of simulation run time of 1-year in case 3. The total CPU 

time reduction of 1-year simulation in case 3 is about 9.0% by using the POD-

DEIM. 

 

In conclusion, one can confirm that the computational time is decreased by up to 

14% when we apply the POD-DEIM in the developed compositional model. This speedup 

mainly results from the reduced computational time in the evaluation of the linear and 

nonlinear functions. However, although the computational time for mass balance is 
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reduced by using the POD-DEIM method, it is not capable of applying the POD-DEIM 

for the flash calculation due to the characteristics of the molar variables formulations. 

Since the flash calculation is composed of many nonlinear terms and requires expensive 

computational cost, an additional methodology must be accompanied by the POD-DEIM 

to tackle this problem. 
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4. MACHINE LEARNING FOR PHASE EQUILIBIRUM CALCULATIONS 

 

Machine learning is generally defined as the study of computer algorithms that 

improve automatically through experience (Mitchell 1997). Machine learnings, which are 

the subsets of artificial intelligence, as illustrated in Figure 4.1, have been promising 

techniques in many of the field. There has been controversy on the credibility of machine 

learning and its range of application, however it is now one of the widely used techniques 

for statistics and engineering, among other areas, by proving its ability to produce high 

reliability and accuracy. 

Machine learning techniques are also extensively used in petroleum engineering 

in terms of prediction of reservoir performance, well design, well logging analysis, etc. 

This chapter investigate the applicability of machine learning techniques to the flash 

calculation in compositional simulation since the flash calculation is computationally 

expensive part containing complex nonlinear equations. 

Firstly, the basic concept and the general procedure of flash calculation are 

introduced. Then, machine learning is briefly introduced, and more specifically ANNs are 

reviewed for the application in flash calculation. In this study, ANN is utilized to predict 

the equilibrium ratios (𝐾  values) and molar vapor fraction (𝑓𝑣 ) in phase equilibrium 

calculation using reservoir pressure and fluid composition as inputs. Finally, stand-alone 

flash calculation case to investigate the performance of the applied ANN is shown, and 
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rapid flash calculation integrated with POD-DEIM is reviewed for a robust reduced order 

modeling.  

 

 

Figure 4.1 Hierarchy in artificial intelligence. Machine learning is a subset of 

artificial intelligence, and deep learning is a technique for realizing machine 

learning. 

 

4.1. Phase Equilibrium Calculations 

This section describes the fundamentals of phase equilibrium calculation and the 

conventional flash calculation process based on equations of state (EOSs). 

4.1.1. Equilibrium Conditions 

In the chemical potential concept, thermodynamic equilibrium is the state when 

the molecular transfer rate from liquid to vapor phase is equal to the molecular transfer 

rate from vapor to liquid phase, for all components. Since fugacity is a measure of the 
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chemical potential, at thermodynamic equilibrium conditions, the fugacities for each 

component in the liquid-vapor mixture are equal (Eq. 4.1). 

𝑓𝑖
𝑙 = 𝑓𝑖

𝑣 , 𝑖 = 1,⋯ , 𝑛𝑐 (4.1) 

If we apply natural logarithm on both sides, Eq. 4.1 can be re-written as Eq. 4.2. 

ln(
𝑓𝑖

𝑣

𝑓𝑖
𝑙
) = 0, 𝑖 = 1,⋯ , 𝑛𝑐 (4.2) 

And by using the fugacity coefficient, the fugacity for a component in a mixture is 

re-written as Eq. 4.3 and Eq. 4.4 for vapor phase and liquid phase respectively. 

𝑓𝑖
𝑣 = 𝑦𝑖𝜑̂𝑖

𝑣𝑝 (4.3) 

𝑓𝑖
𝑙 = 𝑥𝑖𝜑̂𝑖

𝑙𝑝 (4.4) 

Namely, Eq. 4.3 and Eq. 4.4 must be equal from the relationship in Eq. 4.1, as 

shown in Eq. 4.5. 

𝑦𝑖𝜑̂𝑖
𝑣𝑝 = 𝑥𝑖𝜑̂𝑖

𝑙𝑝 (4.5) 

Since the equilibrium ratio is defined as the proportion of vapor to liquid molar 

composition, the equilibrium condition in Eq. 4.5 can be written as Eq. 4.6.  

𝐾𝑖 =
𝑦𝑖

𝑥𝑖
=

𝜑̂𝑖
𝑙

𝜑̂𝑖
𝑣 (4.6) 
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The above equation can provide the fugacity residual (Eq. 4.7) when combining it 

with Eq. 4.2 through Eq. 4.4. 

ln𝐾𝑖 + ln 𝜑̂𝑖
𝑣 − ln 𝜑̂𝑖

𝑙 = 0 (4.7) 

4.1.2. Formulations for Flash Calculations 

Two main formulations for flash calculations are discussed in this section: First, 

minimization of Gibbs free energy and second, direct solution of the nonlinear equations. 

After deriving the expression for the Gibbs free energy, several different algorithms for 

the minimization of the Gibbs free energy and the direct solution of the nonlinear 

equations are presented. 

Gibbs free energy is defined as a thermodynamic potential associated with a 

chemical reaction that can be used to do reversible or maximum work at a constant 

temperature and pressure. The molar Gibbs free energy of a multicomponent, multiphase 

system is given as Eq. 4.8 (Okuno 2009). 

𝐺 = ∑∑𝛽𝑗𝑥𝑖𝑗𝐺̅𝑖𝑗

𝑁𝑐

𝑖=1

𝑁𝑝

𝑗=1

 
(4.8) 

Where, 

𝛽𝑗: mole fraction of phase 𝑗 

𝑥𝑖𝑗: mole fraction of component 𝑖 in phase 𝑗 

𝐺̅𝑖𝑗: partial molar Gibbs free energy of component 𝑖 in phase 𝑗 
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𝑁𝑝: number of phases 

𝑁𝑐: number of components 

If we combine Eq. 4.3 and 4.4 with Eq. 4.8, the molar Gibbs free energy is 

expressed as shown in Eq. 4.9.  

𝐺 = 𝑅𝑇 ∑∑𝛽𝑗𝑥𝑖𝑗 ln(𝑥𝑖𝑗𝜑𝑖𝑗)

𝑁𝑐

𝑖=1

𝑁𝑝

𝑗=1

+ 𝐺𝐼𝐺 ∑∑𝛽𝑗𝑥𝑖𝑗

𝑁𝑐

𝑖=1

𝑁𝑝

𝑗=1

= 𝑅𝑇 ∑∑𝛽𝑗𝑥𝑖𝑗 ln(𝑥𝑖𝑗𝜑𝑖𝑗)

𝑁𝑐

𝑖=1

𝑁𝑝

𝑗=1

+ 𝐺𝐼𝐺 

(4.9) 

Where, 

𝐺𝐼𝐺: the molar Gibbs free energy of the ideal gas 

Since 𝐺𝐼𝐺  depends on pressure and temperature that are fixed in the flash 

calculation, Eq. 4.9 is rewritten as Eq. 4.10. Hence, the minimization of Gibbs free energy 

is equivalent to the minimizing the Eq. 4.10. 

𝐺𝑅 = 𝑅𝑇 ∑∑𝛽𝑗𝑥𝑖𝑗 ln(𝑥𝑖𝑗𝜑𝑖𝑗)

𝑁𝑐

𝑖=1

𝑁𝑝

𝑗=1

 
(4.10) 

Where, 

𝐺𝑅: the molar Gibbs free energy of the real gas 

The function 𝐺𝑅 is minimized subject to the conditions of Eq. 4.11 through Eq. 

4. 14 using iterative methods. 
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∑𝛽𝑗𝑥𝑖𝑗

𝑁𝑝

𝑖=1

= 𝑧𝑖 (4.11) 

∑𝑧𝑖

𝑁𝑐

𝑖=1

= 1.0 (4.12) 

∑ 𝛽𝑗
𝑁𝑝

𝑖=1
= 1.0 and 𝛽𝑗 ≥ 0 for 𝑗 = 1,⋯ , 𝑁𝑝 (4.13) 

∑ 𝑥𝑖𝑗
𝑁𝑐
𝑖=1 = 1.0 and 𝑥𝑖𝑗 ≥ 0 for 𝑖 = 1,⋯ , 𝑁𝑐 and 𝑗 = 1,⋯ , 𝑁𝑝 (4.14) 

Gibbs free energy is the thermodynamic requirement for the phase equilibrium. In 

other words, the correct solution to the phase equilibrium problem must satisfy not only 

the necessary condition which is the fugacity equilibrium but also the global minimum of 

the Gibbs free energy. Hence, the minimization method for Gibbs free energy that can 

guarantee the global minimum is utilized due to its reliability (Teh and Rangaiah 2002). 

Examples of the iterative method for the minimization of the Gibbs free energy are 

successive substitution (SS), dominant eigenvalue method (DEM), and Newton’s method 

(Pan and Firoozabadi 2003; Firoozabadi et al. 2007). The detailed derivation and 

procedure can be referred in the work by Pan and Firoozabadi (2003). The advantage of 

the SS is it eventually converges by keeping an appropriate direction however, it is 

extremely slow in the critical region. And Newton’s method converges quadratically, but 

only locally. Therefore, the combined SS-Newton method in the critical region is used in 

practice. 
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The fugacity equilibriums that can be expressed in terms of equilibrium ratio (𝐾 

value) and component mass balances form the set of equations for the direct solution of 

the nonlinear equations (Teh and Rangaiah 2002). Therefore, it is also called 𝐾 value 

method and the mass balance approach. In this method, the governing equations consisting 

of mass balance, fugacity equilibrium, and mole fraction summation are solved 

numerically. The fugacity equilibrium is a necessary condition for the minimization of the 

Gibbs free energy, and its solution can be local minimum or global minimum. Therefore, 

the direct solution of the nonlinear equations may not guarantee the minimum of Gibbs 

free energy. Nonetheless, due to its flexibility that satisfies the mass balance only when 

convergence is achieved, the direct solution of the nonlinear equations is used in most 

vapor-liquid phase split computations (Okuno 2009). The same iterative methods in the 

minimization of Gibbs free energy can also be used for the direct solution method, and 

Figure 4.2 illustrates the process of the direct solution of the nonlinear equations. 
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Figure 4.2 Process of conventional flash calculation using direct solution of the 

nonlinear equations. Flash calculation can be achieved through the numerical 

solution. 

 

In this study, we use the direct solution of the nonlinear equations with successive 

substitutions, and the detailed procedures and equations of the method is discussed in 

section 4.4. 

4.1.3. Equations of State 

In this study, fluid properties and phase fugacities in vapor-liquid calculations are 

based on the Peng-Robinson equation of state (PR EOS). The equation form of the PR 

EOS is as shown in Eq. 4.15. 
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𝑝 =
𝑅𝑇

𝓋 − 𝑏
−

(𝑎𝛼)

𝓋2 + 2𝓋𝑏 − 𝑏2
 (4.15) 

Eq. 4.15 can be expressed using the compressibility factor 𝑍 =
𝑝𝑉

𝑛𝑅𝑇
 as shown in 

Eq. 4.16. 

𝑍3 − (1 − 𝐵)𝑍2 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0 (4.16) 

The detailed equations and procedure for PR EOS are described in Appendix B. 

4.2. Basics of Machine Learning 

Machine learning, a subset of artificial intelligence, has a wide range of 

applicability in various field of study, thus has been deemed one of the appealing 

prediction techniques. 

This section briefly introduces the basic concepts of machine learning including 

its history, types, and applications. 

4.2.1. Concept of Machine Learning 

Machine learning is a field of computer science and a type of artificial intelligence 

that has evolved from pattern recognition and computational learning theory. In 1959, 

Arthur Samuel (1959) defined machine learning as a “Field of study that gives computers 

the ability to learn without being explicitly programmed”. After the definition of machine 

learning by Arthur Samuel, in 1997 Tom Mitchell (1997) provides a more modern 
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definition:” A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as measured 

by P, improves with experience E”. In other words, machine learning is a field of study to 

acquire new knowledge by providing a computer with a data set and by making it study 

as humans do. The goal of machine learning is to develop programs using algorithm that 

teach computers to learn and grow when exposed to new data, without any assistance of 

human. 

4.2.2. History of Machine Learning 

Machine learning was first studied in 1950’s from the field of games such as Chess 

or Go. And the concept of perceptron was first introduced in 1957. In 1969, Multi-layer 

perceptron was introduced, however as layers get more complex calculation becomes 

more complex, therefore it couldn’t solve the parameter value. In 1970’s and 1980’s, with 

the development of genetic algorithm, backpropagation, and others, machine learning 

began to flourish, and currently the breakthrough of deep learning, which is a technique 

for realizing machine learning based on artificial neural networks, drive artificial 

intelligence boom. 

4.2.3. Types of Machine Learning 

In general, there are 3 types of machine learning: supervised learning, 

unsupervised learning, and reinforcement learning. 

Supervised learning is a process to study a labeled dataset as input and its 
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corresponding output. The goal of the supervised learning is to approximate the mapping 

function from the input to the output, thus one can predict the output when the new input 

data is provided. Examples are classification and regression. 

Unsupervised learning studies only an input without an output, and most data 

mining techniques such as clustering, anomaly detection, association, and autoencoders 

are the examples of unsupervised learning. 

Reinforcement learning is a training to make a sequence of decisions through trial 

and error. It differs from the supervised learning in that it doesn’t need the labelled 

input/output. Therefore, reinforcement learning is performed without the information of 

relationship between an input and an output, and it focuses on maximizing the total reward.  

4.2.4. Applications of Machine Learning 

Machine learning is utilized in almost all fields in computer science, and is also 

applied in object (letters, face, etc.) recognition, language processing, voice recognition, 

search engine, bioinformatics, computer games, and robotics. 

In particular, in petroleum engineering, machine learning is widely used in well 

logging estimation, drilling automation, reservoir simulation, and in performance 

prediction workflows.  

4.3. Basics of Artificial Neural Networks 

This section describes the general concept of Artificial Neural Networks (ANNs) 
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which is used to develop the networks in this study. Specifically, feed forward neural 

networks with backpropagation is discussed in detail. 

4.3.1. Concept of Artificial Neural Networks 

Algorithm is a set of rules to reach the solution of a given problem. ANNs can be 

defined as a type of algorithms that aim to mimic the human brain’s decision-making 

process. As it becomes available to take advantage of more data, the field of neural 

networks are growing faster and bigger than ever. In conjunction with its rapid 

development, deep learning which is a branch of machine learning that uses various types 

of neural networks is also flourishing.  

ANNs are networks of simple processing elements operating in parallel that maps 

an input space to an output space (Priddy and Keller 2005). ANNs are also known as feed 

forward neural networks (FNNs) since inputs are processed only in the forward direction. 

FNNs consist of 3 layers - input, hidden, and output - are composed of neurons. Neurons 

receive information from previous neurons, and process the information using activation 

function which contains weights and bias, as shown in Eq. 4.17 and Eq. 4.18 (Priddy and 

Keller 2005; Aggarwal 2018; Goodfellow et al. 2016). 

α = 𝑓(𝑣) (4.17) 

𝑣 = ∑𝑤𝑖𝑥𝑖 + 𝑏𝑖

𝑁𝑖

𝑖=0

 

(4.18) 
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Where, 

α: output of a neuron 

𝑓: activation function 

𝑣: net stimuli of a neuron 

𝑁𝑖: number of inputs 

𝑤𝑖: weight 

𝑥𝑖: input value 

𝑏𝑖: bias 

Figure 4.3 illustrates an example of the fully connected feed forward neural 

network. 
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Figure 4.3 An example of ANNs. A fully connected FNN using backpropagation is 

illustrated.   

 

There are many different types of activation functions depending on the purpose 

of the neural network. In particular, the nonlinear activation function helps ANNs be 

capable of learning any complex nonlinear function and weights that map any input to the 

output. Hence, modern neural network models use nonlinear activation functions for 

learning and modeling complex data. The examples of nonlinear activation functions are 

shown in Eq. 4.19 through Eq. 4.23. 

Sigmoid: 𝑓(𝑣) =
1

1+𝑒−𝑣 (4.19) 
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Tanh: 𝑓(𝑣) =
𝑒2𝑣−1

𝑒2𝑣+1
 (4.20) 

ReLU: 𝑓(𝑣) = 𝑚𝑎𝑥{𝑣, 0} (4.21) 

Softmax: 𝑓(𝑣) =
𝑒

𝑣𝑗

∑ 𝑒
𝑣𝑗𝐽

𝑗=1

 for 𝑗 = 1,⋯ , 𝐽 (4.22) 

Hard Tanh: 𝑓(𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛[𝑣, 1], 0} (4.23) 

The model generalization is a process that trains the neural network to make 

accurate predictions by adjusting the weights for the given training data set. The training 

data is composed of set of paired input and output. And the weights in ANNs are adjusted 

based on the errors between the target and the prediction. The errors are evaluated by the 

loss function, and the mean square error 𝐽𝑀𝑆𝐸  and the mean absolute error 𝐽𝑀𝐴𝐸  are two 

commonly used loss functions (Eq. 4.24 and Eq. 4.25). 

𝐽𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅𝑖)

2

𝑛

𝑖=1

 (4.24) 

𝐽𝑀𝐴𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅𝑖)

𝑛

𝑖=1

 (4.25) 

Where, 

𝑛: number of data samples 

𝑦𝑖: target value at 𝑖 
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𝑦̅𝑖: predicted value at 𝑖 

The adjusted weights can be obtained by the backpropagation algorithm. 

Backpropagation algorithm adjusts the weights to find the accurate prediction by 

minimizing the value of loss function. The detailed procedure of backpropagation is 

described in Eq. 4.26 through Eq. 4.37 (Priddy and Keller 2005; Haykin 1994; Mejia 2019). 

In order to minimize the loss function, the gradient descent error minimization in terms of 

weights is introduced as shown in Eq. 4.26, and Eq. 4.26 can be rewritten using the chain 

rule as shown in Eq. 4.27.    

𝜕𝐽

𝜕𝑤𝑖𝑗
ℓ

≡ 0 (4.26) 

𝜕𝐽

𝜕𝑤𝑖𝑗
ℓ

=
𝜕𝐽

𝜕𝑣𝑖𝑗
ℓ

𝜕𝑣𝑖𝑗
ℓ

𝜕𝑤𝑖𝑗
ℓ

 (4.27) 

If we define the first term on the right in Eq. 4.27 as Eq. 4.28, and the second term 

on the right as Eq. 4.29 using Eq. 4.18, then Eq. 4.26 can be expressed as Eq. 4.30. 

∆𝑖𝑗
ℓ = −

𝜕𝐽

𝜕𝑣𝑖𝑗
ℓ

 (4.28) 

𝜕𝑣𝑖𝑗
ℓ

𝜕𝑤𝑖𝑗
ℓ

=
𝜕

𝜕𝑤𝑖𝑗
ℓ
∑(𝑤𝑖𝑗

ℓ 𝑥𝑖𝑗
ℓ−1) + 𝑏𝑖𝑗

ℓ

𝑁𝑖

𝑖=0

= 𝑥𝑖𝑗
ℓ−1 (4.29) 

𝜕𝐽

𝜕𝑤𝑖𝑗
ℓ

= −∆𝑖𝑗
ℓ 𝑥𝑖𝑗

ℓ−1 (4.30) 
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The first term on the right-hand side of Eq. 4.27 is also expanded using the chain 

rule (Eq. 4.31), and it is expressed as Eq. 4.32 by using Eq. 4.17. 

𝜕𝐽

𝜕𝑣𝑖𝑗
ℓ

=
𝜕𝐽

𝜕𝑥𝑖𝑗
ℓ

𝜕𝑥𝑖𝑗
ℓ

𝜕𝑣𝑖𝑗
ℓ

 (4.31) 

𝜕𝑥𝑖𝑗
ℓ

𝜕𝑣𝑖𝑗
ℓ

=
𝜕

𝜕𝑣𝑖𝑗
ℓ

𝑓ℓ(𝑣𝑖𝑗
ℓ ) = 𝑓′ℓ(𝑣𝑖𝑗

ℓ ) (4.32) 

Considered the mean square error, the final form of the derivative of the output 

error is expressed as shown in Eq. 4.33. 

𝜕𝐽

𝜕𝑥𝑖𝑗
ℓ

=
𝜕

𝜕𝑥𝑖𝑗
ℓ

[
1

𝑛
∑(𝑥̅𝑖 − 𝑥)2

𝑛

𝑖=1

] = −(𝑥̅𝑖 − 𝑥) 𝑓𝑜𝑟 ℓ = 𝐿 (4.33) 

Where, 

𝐿: output layer 

Since the variation of weight in a certain layer affects the next layer, one can 

describe the derivative of the output error as a sum of all the variations in the downstream 

network (Eq. 4.34). 

𝜕𝐽

𝜕𝑥𝑖𝑗
ℓ

= ∑
𝜕𝐽

𝜕𝑣𝑖𝑗
ℓ+1

𝜕𝑣𝑖𝑗
ℓ+1

𝜕𝑥𝑖𝑗
ℓ+1

𝑁ℓ+1

𝑘=1

 𝑤ℎ𝑒𝑛 ℓ < 𝐿 (𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟𝑠) (4.34) 

If we substitute the first and second terms on the right-hand side of Eq. 4.34 by 

using Eq. 4.18, Eq. 4.28 and Eq. 4.29, then Eq. 4.34 can be expressed as shown in Eq. 
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4.35. 

𝜕𝐽

𝜕𝑥𝑖𝑗
ℓ

= − ∑ ∆𝑖𝑘
ℓ+1𝑤𝑖𝑘

ℓ+1

𝑁ℓ+1

𝑘=1

 𝑤ℎ𝑒𝑛 ℓ < 𝐿 (𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟𝑠) (4.35) 

The delta terms for output layer and hidden layer are defined as Eq. 4.36 and Eq. 

4.37. As seen in Eq. 4.37, in order to obtain the delta term of hidden layer, the computation 

of the delta of output layer must be preceded. In other words, backpropagation stands for 

the error propagate backwards in the process of neural networks.  

∆𝑖𝑗
𝐿 = 𝑓′𝐿(𝑣𝑖𝑗

𝐿 )(𝑦𝑖 − 𝑦̅𝑖) 𝑤ℎ𝑒𝑟𝑒 ℓ = 𝐿 (𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟) (4.36) 

∆𝑖𝑗
ℓ = 𝑓′ℓ(𝑣𝑖𝑗

ℓ ) ∑ ∆𝑖𝑘
ℓ+1𝑤𝑖𝑘

ℓ+1

ℓ+1

𝑘=1

 𝑤ℎ𝑒𝑛 ℓ < 𝐿 (𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟𝑠) (4.37) 

One can find various resources for ANNs using backpropagation algorithm such 

as MATLAB® Toolbox or Theano, TensorFlow, Keras in Python. We used MATLAB® 

Toolbox for the estimation of the variables in flash calculation in this study. 

4.3.2. Data Treatment 

Data preparation is necessary to avoid undertraining or overfitting. Whereas 

undertraining results from the range of the data and the sensitivity of the model, overfitting 

occurs when the network memorizes the training examples but fails to learn to generalize 

to new situations. Both cases present poor performance with the testing data. 
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Data normalization minimizes the bias of the networks by transforming the values 

of the variables to a consistent scale when the range of the variables are on different scales. 

Many different data normalization techniques can be found in the literatures (Priddy and 

Keller 2005; Gulli 2017), but the most commonly used technique is the min-max 

normalization. 

In the min-max normalization, the matrices of a data set of both input and output 

are processed by normalizing the minimum and maximum values. In this study, we use 

the mapminmax keyword in MATLAB to map row minimum and maximum values to [-1, 

1]. Eq. 4.38 describes the data normalization of mapminmax. 

𝑦 = (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ×
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
+ 𝑦𝑚𝑖𝑛  (4.38) 

4.4. ANNs for Flash Calculation 

In chapter 3, the mass balance terms in residual equations including primary 

variables are reduced by using POD-DEIM method. As explained in chapter 3, the 

secondary variables - ln𝐾𝑖 and 𝑓𝑣  which are related to the phase equilibrium equations 

- are not able to be reduced through POD-DEIM due to its nature of the molar variables 

formulations. However, phase equilibrium calculation is quite complex and consumes 

many portions of the total CPU time in a compositional simulation. In particular, the flash 

calculation which is composed of lots of nonlinear terms becomes the reason of expensive 

computational cost for phase equilibrium calculation. To tackle this problem, there have 
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been many efforts for the rapid flash calculation. While the most of these efforts were 

focused on reducing the number of variables in the flash calculation in the past, more 

recent researches take advantage of the state-of-the-art machine learning techniques such 

as ANNs. The complex process of solving the phase equilibrium problem can thus be 

simplified, and faster solutions by ANNs can be obtained. As a result, the overall 

computational time of compositional model is reduced. 

4.4.1. Formulation and Algorithm for Flash Calculation 

The flash calculation can be implemented using successive substitution method or 

Newton-Raphson iteration (Michelsen and Mollerup 2007). The successive substitution 

method is used in this study, and procedures of the algorithm are summarized as follows. 

1. Specify pressure (𝑝), temperature (𝑇), component critical pressure (𝑝𝑐𝑖
) and 

temperature (𝑇𝑐𝑖
), acentric factor (𝑤𝑖), and molar fraction of the mixture. 

2. Calculate an initial guess for the equilibrium ratio (𝐾 values) using Wilson’s 

approximation in Eq. 4.39. 

ln𝐾𝑖 = ln
𝑝𝑐𝑖

𝑝
+ 5.373(1 + 𝑤𝑖) (1 −

𝑇𝑐𝑖

𝑇
) (4.39) 

3. Solve Eq. 4.40 for the vapor molar fraction 𝑓𝑣 . 

∑(𝑦𝑖 − 𝑥𝑖)

𝑛𝑐

𝑖=1

= ∑
𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑓𝑣(𝐾𝑖 − 1)

𝑛𝑐

𝑖=1

= 0 (4.40) 

4. Compute vapor and liquid molar fractions using Eq. 4.41 and Eq. 4.42. 
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𝑥𝑖 =
𝑧𝑖

1 + 𝑓𝑣(𝐾𝑖 − 1)
 (4.41) 

𝑦𝑖 =
𝑧𝑖𝐾𝑖

1 + 𝑓𝑣(𝐾𝑖 − 1)
 (4.42) 

5. Calculate the fugacity coefficient for each component 𝑖 and phase 𝛼 using Eq. 

4.43 through Eq. 4.45. 

ln(𝜑̂𝑖
𝛼) =

𝐵𝑖

𝐵
(𝑍𝛼 − 1) − ln(𝑍𝛼 − 𝐵𝛼)

+
𝐴𝛼

2√2𝐵𝛼
[
𝐵𝑖

𝐵𝛼
−

2∑ 𝑥𝑗
𝛼𝑛𝑐

𝑗=1
(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝛼
] ln(𝛽𝛼) 

(4.43) 

Where, 

(𝑎𝛼)𝑖𝑗 = √𝑎𝑖𝑎𝑗𝛼𝑖𝛼𝑗(1 − 𝜅𝑖𝑗) (4.44) 

𝛽𝛼 =
𝑍𝛼 + (1 + √2)𝐵𝛼

𝑍𝛼 − (1 − √2)𝐵𝛼
 

(4.45) 

6. Update the equilibrium ratio 𝐾 as shown in Eq. 4.46. 

𝐾𝑖
𝑘+1 = 𝐾𝑖

𝑘 (
𝜑̂𝑖

𝑣

𝜑̂𝑖
𝑙 ) (4.46) 

7. Check for convergence using the criteria shown in Eq. 4.47 and repeat from 

Step-2 unless the criteria are met. 

∑
𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑓𝑣(𝐾𝑖 − 1)

𝑛𝑐

𝑖=1

≤ 𝜀 (4.47) 
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4.4.2. Methodology for Application of ANNs in Flash Calculation 

The solutions of two independent variables, ln𝐾𝑖 and 𝑓𝑣 , that are related to flash 

calculation are obtained from two-step process in our deveoped simulator. In the first step, 

the system of equations for the second variables (variable for flash calculation) is solved 

in the Newton-Raphson iteration along with the primary variables (variables for mass 

balance), so that the solution of primary variables satisfies the condition of secondary 

variables. Then, in the second step, the solution of secondary variables is updated using 

flash calculation based on the obtained converged solution of primary variables such as 

pressure 𝑝 and moles of each component 𝐹𝑖.  

When it comes to the CPU time of the developed compositional simulator, the first 

step requires much more time than the second step. In addition, due to the sensitivity of 

the output of flash calculation, substituting the entire flash calculation with ANNs is very 

challenging. Therefore, we apply ANNs to replace the first step of solving the system of 

equations for logarithm of equilibrium ratio ln𝐾𝑖 and molar vapor fraction 𝑓𝑣 , in this 

study. The obtained estimations from ANNs are then used for the input of flash calculation 

in the second step. 

4.5. Applications and Results 

As a first step to train the ANN models, a database is established considering the 

application range of input data and compositions constraint. The parameters for the input 

set are moles of components and pressure, since flash calculation is a function of 
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composition and pressure. In this study, the number of components in the mixture is eight, 

and the summation of each component concentration must be unity. For pressure data, we 

vary the pressure from 3,400 to 8,900 psia considering the initial reservoir pressure of 

8,868 psia in the developed simulator. The pressure intervals are set to be 100 psia, and 

concentration intervals are set to be 0.1. Hence, the total of 45,936 dataset is created for 

training, and min-max data normalization is performed to scale the variables to the range 

of -1 to 1. Once the database is generated, it is randomly split into 3 different datasets: 

70% of training dataset, 15% of validation dataset, and 15% of testing.  

There can be many different combinations of settings to build an ANN architecture 

by varying the number of hidden layers, number of neurons per hidden layer, and type of 

activation function. In this study, we adapt the number of hidden layers and the number of 

neurons in hidden layer from the ANN architecture created by Mejia (2019) which show 

excellent estimations for our output. Table 4.1 summarizes the settings of ANN, and 

Figure 4.4 illustrates the Tanh activation function that are used in this study. 
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Table 4.1 The developed ANN architecture. 

Setting Value 

Activation function in Hidden layers Tanh 

Number of hidden layers 2 

Number of neurons per hidden layer 20 

Input Pressure and mixture composition 

Outputs 

Molar vapor fraction and Natural 

logarithm of equilibrium ratio 

 

 

Figure 4.4 Tanh activation function used in the ANN. 

 

The network for predicting flash calculation variables consists of an input layer, 

two hidden layers, and an output layer. Figure 4.5 shows the developed ANN architecture. 
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Figure 4.5 Artificial neural network model for flash calculation. Inputs are pressure 

and mixutre composition, and outputs are equilibrium ratio (𝐥𝐧 𝑲𝒊) and molar 

vapor fraction (𝒇𝒗). Since there are eight components in our model, nine ANN 

models are necessary for the prediction of each output. 

 

Prior to the application of the developed ANNs into our in-house compositional 

simulator, the stand-alone flash calculation using ANNs is investigated to verify the 

performance of the developed ANNs. The stand-alone case study shows that the trained  

ANN models yield the highly accurate estimation to the target value, as shown in Table 

4.2. 
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Table 4.2 Comparison between the target value from conventional flash calculation 

and the estimation from flash calculation using the developed ANN. Estimated 

values show a strong match to the target values. 

 Target Estimation Accuracy 

ln𝐾1 -4.9783 -4.9820 99.93% 

ln𝐾2 -0.4171 -0.4201 99.29% 

ln𝐾3 0.6007 0.6000 99.89% 

ln𝐾4 -1.5858 -1.5875 99.89% 

ln𝐾5 -3.1528 -3.1459 99.78% 

ln𝐾6 -4.1146 -4.1145 99.99% 

ln𝐾7 -17.9604 -17.9617 99.99% 

ln𝐾8 -41.1543 -41.2108 99.86% 

𝑓𝑣  0.0002 0.0000 99.98% 

 

We utilize the MATLAB® Toolbox to create, train and validate the ANN. Figure 

4.6 displays the network created by MATLAB® Toolbox. Figure 4.7 and Figure 4.8 show 

the regression plots and error performance plots, respectively. Regression plots show 

around 99% of accuracy on prediction by the developed ANNs, which means the 

application of the ANNs to flash calculation is consistent and of practical use. Error 

performance plots indicate the best performance taken from the epoch with the lowest 

validation error. 
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Figure 4.6 Function fitting neural network by MATLAB® Toolbox. 

 

 

 

Figure 4.7 Regression plots. Around 99% of accuracy on prediction by the developed 

ANNs implies the application of the ANNs to flash calculation is practical. 

ln 𝐾2   ln 𝐾3   

ln 𝐾4   ln 𝐾5   

ln 𝐾1   

ln 𝐾6   

ln 𝐾7   ln 𝐾8   𝑓
𝑣
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Figure 4.8 Error performance plots. Each parameter shows different number of 

epochs to take the best performance. 

 

Owing to the robustness of the ANN applied to the stand-alone flash, we extended 

its application to the full reduced-order model workflow. In this case, we combined the 

ANN into the POD-DEIM framework. In particular, we started by using the previous 

described case 2. In case 2, the performance of the POD-DEIM with ANN model shows 

an excellent match to the full-order simulator in test schedules with less than 0.1% error 

(Figure 4.9). 

𝑓
𝑣
 ln 𝐾8   ln 𝐾7   

ln 𝐾1   

ln 𝐾4   ln 𝐾5   ln 𝐾6   
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Figure 4.9 Comparison of training and test case 2. The performance of the POD-

DEIM with ANN model shows an excellent match to the full-order simulator. 

 

Table 4.3 and Figure 4.10 summarize the simulation run time reduction in a single 

time step in case 2. When we apply both POD-DEIM and ANN, simulation run time of a 

single time step is reduced by 4.5%, that is 0.4% more reduction comparing to the POD-

DEIM only case. Time reduction in Jacobian setup and residual calculation arises from the 

DEIM, and reduction in primary matrix solver mostly results from the POD application. 

Since we substitute the process of solving the system by ANNs, no time is consumed in 

secondary matrix solver. 
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Table 4.3 Simulation run time of a single time step for the full-order model and the 

reduced order model in case 2. Application of ANNs eliminates the CPU time for 

solving secondary variables. 

  Full-Order (sec) POD-DEIM with ANNs (sec) 

Jacobian Setup 335.0  321.8 

Matrix Solver (Primary) 2.4  1.0  

Matrix Solver (Secondary) 1.2  - 

Linear/Nonlinear Eq. 3.0  2.1 

Other 1.1  2.2 

 

 

Figure 4.10 Comparison of simulation run time of a single time step in test case 2. 

Simulation run time of a single time step is reduced by 4.5% by using the POD-

DEIM with ANNs. 

 

The total CPU time reduction of 1-year simulation is about 14.6%, that is 0.5% 
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further reduction than the POD-DEIM only case (Table 4.4 and Figure 4.11). 

 

Table 4.4 Simulation run time of 1-year for the full-order model and for the 

reduced order model in case 2. The total CPU time is reduced more when the ANNs 

are integrated with the POD-DEIM. 

 Full-Order (sec) POD-DEIM with ANNs (sec) 

Total Simulation Run Time (1 Year) 20,788.4 17,762.3 

 

 

Figure 4.11 Comparison of simulation run time of 1-year in test case 2. The total 

CPU time reduction of 1-year simulation is about 14.6% by using the POD-DEIM 

with ANNs. 

 

Coupled POD-DEIM and ANN is tested in case 3. In case 3, the performance of 

the POD-DEIM with ANN models also shows a strong estimation with less than 0.1% 

error (Figure 4.12). 
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Figure 4.12 Comparison of training and test case 3. The performance of the POD-

DEIM with ANN models shows a strong estimation with less than 0.1% error. 

 

Table 4.5 and Figure 4.13 summarize the simulation run time reduction in a single 

time step in case 3. For case 3, simulation run time of a single time step is reduced about 

3.8%, which is 0.5% more reduction comparing to the POD-DEIM only case. As seen in 

case 2, secondary matrix solver is skipped as we introduce ANN-based flash calculations. 
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Table 4.5 Simulation run time of a single time step for the full-order model and the 

reduced order model in case 3. Application of ANNs eliminates the CPU time for 

solving secondary variables. 

  Full-Order (sec) POD-DEIM (sec) 

Jacobian Setup 335.0  324.4  

Matrix Solver (Primary) 2.4  1.1 

Matrix Solver (Secondary) 1.2  - 

Linear/Nonlinear Eq. 3.0  2.1 

Other 1.1  2.0 

 

 

Figure 4.13 Comparison of simulation run time of a single time step in test case 3. 

Simulation run time of a single time step is reduced by 3.8% by using the POD-

DEIM with ANNs. 

 

The total CPU time reduction of 1-year simulation is about 10.7%, that is 1.7% 
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further reduction than POD-DEIM only case (Table 4.6 and Figure 4.14). 

 

Table 4.6 Simulation run time of 1-year for the full-order model and for the 

reduced order model in case 3. The total CPU time is reduced more when the ANNs 

are integrated with the POD-DEIM. 

 Full-Order (sec) POD-DEIM (sec) 

Total Simulation Run Time (1 Year) 20,788.4 18,556.9 

 

 

Figure 4.14 Comparison of simulation run time of 1-year in test case 3. The total 

CPU time reduction of 1-year simulation is about 10.7% by using the POD-DEIM 

with ANNs. 

 

In conclusion, one can see that the additional reduction in computational time is 

achieved by applying the ANNs for flash calculation. As mentioned in chapter 1, although 

there have been many efforts applying the MOR methods or machine learning techniques 
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for the faster computation in reservoir simulation, they were only capable of reducing the 

complexity and nonlinearity in either the mass balance calculation or the flash calculation. 

The robustness of this study is that the developed new framework combining the physics-

based MOR (POD-DEIM) and the ANN-based MOR (ANNs for flash calculation) reduces 

the system of material balance and accelerate the flash calculation, simultaneously. By 

using this new framework, the reduction of computational time in both the mass balance 

calculation and the flash calculation can be achieved in compositional reservoir simulation. 
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5. CONCLUSTIONS AND FUTURE WORK 

 

The demand for the compositional reservoir simulation has been increased as we 

develop reservoirs in deep water, unconventional gas reservoirs, and conventional 

reservoirs using gas injection. Nevertheless, the compositional simulation has been very 

challenging due to the complexity comparing to the black oil simulation and its expensive 

computational cost. In this study, we investigated the methodologies to enhance the 

efficiency of numerical computation and came up with a new framework for a faster but 

highly accurate compositional simulation using not only the physics-based MOR but also 

machine learning-based method. The robustness of the proposed new framework was 

validated in the various test cases. 

This chapter reviews the findings from the study and summarizes the conclusions 

and the contributions. Furthermore, some recommendations and future works for further 

improvements are presented. 

5.1. POD-DEIM 

In this work, we proposed a new framework for implementing reduced order 

modeling techniques for multi-phase, multi-component simulation.  

First, we developed our own compositional simulator based on the modified molar 

variables formulation method. We showed that our in-house simulator is as accurate as a 

commercial software. In order to apply the proposed MOR method, we additionally 

modified the simulator to have primary and secondary variables, so that we could apply 
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the MOR to the terms that are related to the primary variables, independent of the flash 

calculation related secondary variables.  

Then, we developed the reduced-order complexity-reduction techniques for 

simulations of multiphase compositional model. This technique reduces the system by 

projecting the governing on the subspace spanned by their POD-DEIM modes. DEIM in 

this case, is combined with POD to reduce the online computational cost for the nonlinear 

terms and to make it independent of the fine grid. 

We presented numerical examples of 3D reservoir model to test the performance 

and accuracy of the reduced order model. We tested 3 different cases by changing the 

number of sampling locations for DEIM. The result of the proposed MOR technique 

proves its robustness on accuracy by showing the excellent agreement to the conventional 

simulator with the errors less than 0.1%. As we reduce the number of DEIM sampling 

locations, the CPU time also reduced accordingly. And the reduced order modeling using 

the POD-DEIM reduces the CPU time of the compositional simulation by maximum 

around 14% comparing to the fine scale model. This is a modest speedup, but we believe 

that in case of more complex physics, such as miscible gas injection, we would obtain 

speedups compared as the black oil formulations. 

In summary, one can efficiently use the proposed model order reduction methods 

when performing fast and reliable compositional simulation. 
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5.2. Rapid Flash Calculation 

Rapid flash calculation using the ANN-based machine learning technique was 

developed. The developed neural networks enabled us to substitute the process of solving 

the secondary independent variables in Newton Raphson iterations. Since this approach 

still retained the process of conventional flash calculation, it had the robustness that the 

simulations for flash calculation were conducted based on both physics and machine 

learning technique. 

The result of the proposed ANN integrated with the physics-based MOR technique 

showed excellent agreement to the conventional simulator with the errors of less than 

0.1%. 

ANN-based MOR accelerated the flash calculation, and the coupled POD-DEIM 

and ANN technique reduced the CPU time of the compositional simulation by around 

0.5% more than the POD-DEIM only cases. And the total CPU time when applying both 

POD-DEIM and ANN reduced by maximum around 14.5% comparing to the fine scale 

model. 

5.3. Suggestions for Future Work 

5.3.1. POD-DEIM 

In this study, we implemented the compositional simulation with waterflooding 

scenario in order to make the cases as simple as possible. However, one cannot see the 

variation of compositions in the model through waterflooding. Therefore, gas injection 
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such as nitrogen injection or enhanced oil recovery by 𝐶𝑂2 or enriched gas injection need 

to be investigated for more realistic and practical validation of the proposed methods. This 

will be able to be achieved by extending the developed compositional simulator for the 

gas injection scenarios, and we will leave it for future work. 

The results of POD-DEIM application in compositional simulation showed case-

sensitiveness. We tested the POD-DEIM concept in the case that 8 different components 

exist in the model, which makes somewhat too complicated to solve the system. In other 

words, having 8 components in the model implies that the total primary independent 

variables that need to be solved are 10, including pressure and mass of water. Therefore, 

solutions of 10 variables are estimated by POD-DEIM, and it results in the incorrect 

solutions at the next time step. Consequently, this prevented us to select much smaller 

number of DEIM sampling location. Thus, it resulted in only about 15% reduction in the 

total simulation time. Only 8 components case are investigated in this study, however it is 

suggested to test the cases with a smaller number of components in the model which are 

expected to show better performance and time efficiency by the POD-DEIM application. 

As mentioned in chapter 2, one can build a compositional simulator using different 

set of variables and different system of equations. Even though the POD-DEIM technique 

is applied to the simulator based on a modified molar variables formulation in this study, 

it seems worthwhile to test them in any different type of compositional simulator. 
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5.3.2. Rapid Flash Calculation 

CPU time for calling a trained network in order to predict the new output is affected 

by the number of hidden layers as well as the number of neurons in the hidden layers. In 

this study, 2 hidden layers and 20 neurons in each hidden layer are used to yield a best 

performance for accuracy, however one can try to reduce them and optimize the network 

so that the required CPU time to call a trained network can be shorter. 

Due to the sensitiveness of the flash calculation it was unable to substitute the 

entire flash calculation with ANN, however one can try to apply ANN to replace the 

process of solving flow equations (expressed by primary independent variables) so that 

the solutions could be directly obtained from the input data without expensive 

computational cost of the Newton Raphson iterations. 
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APPENDIX A 

 

Residuals for hydrocarbon component and water using molar variables 

formulation in compositional simulation are detailed in this appendix. The derivation of 

the residual is based on the mass balance equations for hydrocarbon component and water, 

and the finite difference method is applied for each hydraulic diffusivity equation 

(Valbuena Olivares 2015). 

A.1. Hydrocarbon Component Diffusivity Equation 

The diffusivity equation for hydrocarbon component can be expressed in the 

differential form as follows (Eq. A.1). 

∇ ∙ [𝛽𝑐 𝑘⃑⃑
⃑⃑
𝐴 (𝑥𝑖

𝑘𝑟𝑜

𝜇𝑜
∇Φ𝑜 + 𝑦𝑖

𝑘𝑟𝑔

𝜇𝑔
∇Φ𝑔)] = 𝑉𝑏

𝜕

𝜕𝑡
[𝜙𝐹𝑖] + 𝑛̇𝑖, 𝑖 = 1𝑡𝑜 𝑛𝑐 (A.1) 

Where, 

𝑘𝑟𝑜  𝑎𝑛𝑑 𝑘𝑟𝑜: oil and gas relative permeability, [dimensionless] 

𝜇𝑜  𝑎𝑛𝑑 𝜇𝑔: oil and gas viscosity, [cP] 

𝑥𝑖 𝑎𝑛𝑑 𝑦𝑖: liquid and vapor molar fractions of component 𝑖 respectively, [lbmol/lbmol] 

𝑘⃑⃑
⃑⃑

: rock permeability tensor, [mD] 

Φ𝑜  𝑎𝑛𝑑 Φ𝑔: oil and gas potential, [psia] 
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𝐴: area perpendicular to flow direction, [ft2] 

𝑉𝑏: gridblock rock bulk volume, [ft3] 

𝜙: rock porosity, [ft3/ ft3] 

𝐹𝑖: number of moles of component 𝑖 per unit pore volume, [lbmol/ ft3] 

𝑛̇𝑖: molar rate of component 𝑖 from a well, [lbmol/ day] 

𝑛𝑐: the number of hydrocarbon components 

𝛽𝑐 = 0.00633: the conversion constant for field units 

The equation is comprised of three different terms to make up the mass balance 

relationship. The term on the left-hand side is convective flow, and the first term on the 

right represents accumulation. The last term on the right-hand side displays well 

source/sink. Each term can be expressed in the finite difference form using block-centered 

grid discretization in space and backward discretization in time for the fully implicit 

method. 

A.1.1. Hydrocarbon Component Convective Flow 

Convective flow term is a summation of fluxes from a gridblock to six different 

flux directions of neighboring gridblocks. For hydrocarbon component, fluxes of oil and 

gas phase are summed up as follows (Eq. A.2).  
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∇ ∙ [𝑎𝑜𝑥𝑖∇Φ𝑜 + 𝑎𝑔𝑦𝑖∇Φ𝑔]

= 𝑎𝑜𝐸𝑥𝑖𝐸∇Φ𝑜𝐸 + 𝑎𝑜𝑊𝑥𝑖𝑊∇Φ𝑜𝑊 + 𝑎𝑜𝑁𝑥𝑖𝑁∇Φ𝑜𝑁

+ 𝑎𝑜𝑆𝑥𝑖𝑆∇Φ𝑜𝑆 + 𝑎𝑜𝐵𝑥𝑖𝐵∇Φ𝑜𝐵 + 𝑎𝑜𝑇𝑥𝑖𝑇∇Φ𝑜𝑇

+ 𝑎𝑔𝐸𝑦𝑖𝐸∇Φ𝑔𝐸 + 𝑎𝑔𝑊𝑦𝑖𝑊∇Φ𝑔𝑊 + 𝑎𝑔𝑁𝑦𝑖𝑁∇Φ𝑔𝑁

+ 𝑎𝑔𝑆𝑦𝑖𝑆∇Φ𝑔𝑆 + 𝑎𝑔𝐵𝑦𝑖𝐵∇Φ𝑔𝐵 + 𝑎𝑔𝑇𝑦𝑖𝑇∇Φ𝑔𝑇  

(A.2) 

Where, 

𝑎𝑜𝜂: oil transmissibility, 𝜂 = 𝐸,𝑊,𝑁, 𝑆, 𝐵, 𝑇 

𝑎𝑔𝜂: gas transmissibility, 𝜂 = 𝐸,𝑊,𝑁, 𝑆, 𝐵, 𝑇 

And oil and gas interblock transmissibility can be expressed as the multiplication 

of geometric transmissibility (𝑇𝜂) and oil/gas mobility (𝜆𝑜𝜂  𝑎𝑛𝑑 𝜆𝑔𝜂) (Eq. A.3 and Eq. 

A.4).  

𝑎𝑜𝜂 = 𝑇𝜂𝜆𝑜𝜂  (A.3) 

𝑎𝑔𝜂 = 𝑇𝜂𝜆𝑔𝜂  (A.4) 

The interblock geometric transmissibility for the block-centered discretization is 

defined as the multiplication of permeability and area divided by the distance between the 

gridblocks. For the six neighboring gridblocks, the geometric transmissibility can be 

written as follows (Eq. A.5 through Eq. A.10), and these can be pre-computed before the 

time stepping since they are considered constant in the simulation. 
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𝑇𝐸 = 2𝛽𝑐 [
(𝑘Δ𝑦Δ𝑧)𝑖(𝑘Δ𝑦Δ𝑧)𝑖+1

(𝑘Δ𝑦Δ𝑧)𝑖Δ𝑥𝑖+1 + (𝑘Δ𝑦Δ𝑧)𝑖+1Δ𝑥𝑖

] (A.5) 

𝑇𝑊 = 2𝛽𝑐 [
(𝑘Δ𝑦Δ𝑧)𝑖(𝑘Δ𝑦Δ𝑧)𝑖−1

(𝑘Δ𝑦Δ𝑧)𝑖Δ𝑥𝑖−1 + (𝑘Δ𝑦Δ𝑧)𝑖−1Δ𝑥𝑖

] (A.6) 

𝑇𝑁 = 2𝛽𝑐 [
(𝑘Δ𝑥Δ𝑧)𝑗(𝑘Δ𝑥Δ𝑧)𝑗+1

(𝑘Δ𝑥Δ𝑧)𝑗Δ𝑦𝑗+1 + (𝑘Δ𝑥Δ𝑧)𝑗+1Δ𝑦𝑗

] (A.7) 

𝑇𝑆 = 2𝛽𝑐 [
(𝑘Δ𝑥Δ𝑧)𝑗(𝑘Δ𝑥Δ𝑧)𝑗−1

(𝑘Δ𝑥Δ𝑧)𝑗Δ𝑦𝑗−1 + (𝑘Δ𝑥Δ𝑧)𝑗−1Δ𝑦𝑗

] (A.8) 

𝑇𝐵 = 2𝛽𝑐 [
(𝑘Δ𝑦Δx)𝑘(𝑘Δ𝑦Δ𝑥)𝑘+1

(𝑘Δ𝑦Δ𝑥)𝑘Δ𝑧𝑘+1 + (𝑘Δ𝑦Δ𝑥)𝑘+1Δ𝑧𝑘

] (A.9) 

𝑇𝑇 = 2𝛽𝑐 [
(𝑘Δ𝑦Δ𝑥)𝑘(𝑘Δ𝑦Δ𝑥)𝑘−1

(𝑘Δ𝑦Δ𝑥)𝑘Δ𝑧𝑘−1 + (𝑘Δ𝑦Δ𝑥)𝑘−1Δ𝑧𝑘

] (A.10) 

Viscosity and density for oil/gas that are used to calibrate oil/gas mobility are 

volume-weighted and mass-weighted arithmetic averages as shown in Eq. A.11 and Eq. 

A.12. 

𝜆𝑜𝜂 = (𝑘𝑟𝑜

𝜌̃𝑜

𝜇𝑜
)

𝜂

 (A.11) 

𝜆𝑔𝜂 = (𝑘𝑟𝑔

𝜌̃𝑔

𝜇𝑔
)

𝜂

 (A.12) 

Oil potential in block-centered gird method is expressed using oil phase pressure 

p𝑜 and height difference ∆𝑧 (Eq. A.13 and Eq. A.14). 
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∆Φ𝑜𝜂 = (Φ𝑜𝜂 − Φ𝑜𝐶) = ∆p𝑜𝜂 − γ𝑜𝜂∆z𝜂 (A.13) 

∆Φ𝑜𝜂 = (𝑝𝑜𝜂 − 𝑝𝑜𝐶) − 𝑔𝑐 (
ρ𝑜𝜂 + ρ𝑜𝐶

2
) (z𝜂 − z𝐶) (A.14) 

Gas potential is also a function of oil phase pressure and height difference (Eq. 

A.15); however, the capillary pressure of oil and gas needs to be considered in this case 

(Eq. A.16). 

∆Φ𝑔𝜂 = (Φ𝑔𝜂 − Φ𝑔𝐶) = ∆p𝑜𝜂 + ∆p𝑐𝑔𝑜𝜂
− γ𝑔𝜂∆z𝜂 (A.15) 

∆Φ𝑔𝜂 = (𝑝𝑜𝜂 − 𝑝𝑜𝐶) + (𝑝𝑐𝑔𝑜𝜂
− 𝑝𝑐𝑔𝑜𝐶

) − 𝑔𝑐 (
ρ𝑔𝜂 + ρ𝑔𝐶

2
) (z𝜂 − z𝐶) (A.16) 

The final form of hydrocarbon component convective flow term can be rearranged 

and simplified using chain rule and chord-slope of capillary pressure as shown in Eq. A.17. 

The chord-slope of capillary pressure enables us to replace capillary pressure equation that 

are expressed as a function of saturation with the equation that is a function of water mass 

per pore volume, which is one of the primary independent variables. 
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∇ ∙ [𝑎𝑜𝑥𝑖∇Φ𝑜 + 𝑎𝑔𝑦𝑖∇Φ𝑔]

= ∑[𝑎𝑜𝜂𝑥𝑖(∆𝑝𝑜𝜂 − γ𝑜𝜂∆z𝜂)]

6

𝜂=1

+ ∑[𝑎𝑔𝜂𝑦𝑖(∆𝑝𝑜𝜂 − γ𝑔𝜂∆z𝜂)]

6

𝜂=1

+ ∑ [𝑎𝑔𝜂𝑦𝑖𝑝′𝑐𝑔𝑜𝜂
𝑆′𝑔𝜂

Δ𝐹𝑖]

6

𝜂=1

 

(A.17) 

A.1.2. Hydrocarbon Component Accumulation 

Accumulation term is discretized in time using backward difference in order to 

constitute a fully implicit system of equations, and its final form can be expressed using 

chain rule and chord-slope similarly to the convective flow term (Eq. A.18 and Eq. A.19). 

𝑉𝑏

𝜕

𝜕𝑡
[𝜙𝐹𝑖] =

𝑉𝑏

∆𝑡
[∆𝜏(𝜙𝐹𝑖)] =

𝑉𝑏

∆𝑡
[𝐹𝑖

𝑛∆𝜏(𝜙) + 𝜙𝑛+1∆𝜏(𝐹𝑖)] (A.18) 

𝑉𝑏

𝜕

𝜕𝑡
[𝜙𝐹𝑖] =

𝑉𝑏

∆𝑡
[𝐹𝑖

𝑛𝜙′(𝑝𝑛+1 − 𝑝𝑛) + 𝜙𝑛+1(𝐹𝑖
𝑛+1 − 𝐹𝑖

𝑛)] 
(A.19) 

A.1.3. Hydrocarbon Component Residual 

By combining all three terms which are discretized in space and in time, the final 

form of hydrocarbon component residual can be shown as follows (Eq. A.20). 
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𝑅𝑖 =
𝑉𝑏

∆𝑡
[𝐹𝑖

𝑛𝜙′(𝑝𝑜𝐶
𝑛+1−𝑝𝑜𝐶

𝑛 ) + 𝜙𝑛+1(𝐹𝑖
𝑛+1 − 𝐹𝑖

𝑛)]

− ∑[𝑎𝑜𝜂
𝑛+1𝑥𝑖

𝑛+1(Δ𝑝𝑜𝜂 − 𝛾𝑜𝜂
𝑛+1Δ𝑧𝜂)]

6

𝜂=1

− ∑[𝑎𝑔𝜂
𝑛+1𝑦𝑖

𝑛+1(Δ𝑝𝑜𝜂 − 𝛾𝑔𝜂
𝑛+1Δ𝑧𝜂)]

6

𝜂=1

− ∑ [(𝑎𝑔𝜂𝑦𝑖𝑝′𝑐𝑔𝑜𝜂
𝑆′𝑔𝜂

)
𝑛+1

Δ𝐹𝑖]

6

𝜂=1

+ 𝑊𝐼𝑜
𝑛+1𝑥𝑖

𝑛+1(𝑝𝑜𝐶
𝑛+1 − 𝑝𝑤𝑓

𝑛+1)

+ 𝑊𝐼𝑔
𝑛+1𝑦𝑖

𝑛+1(𝑝𝑜𝐶
𝑛+1 + 𝑝𝑐𝑜𝑤

𝑛+1 − 𝑝𝑤𝑓
𝑛+1) 

(A.20) 

A.2. Water Diffusivity Equation 

The diffusivity equation for water can be expressed in the differential form as Eq. 

A.21 in a similar way to the hydrocarbon component diffusivity equation. 

∇ ∙ [𝛽𝑐 𝑘⃑⃑
⃑⃑
𝐴

𝑘𝑟𝑤

𝜇𝑤
∇Φ𝑤] = 𝑉𝑏

𝜕

𝜕𝑡
[𝜙W] + 𝜌𝑤𝑞𝑤 (A.21) 

Where, 

𝑘𝑟𝑤: water relative permeability, [dimensionless] 

𝜇𝑤: water viscosity, [cP] 

𝑘⃑⃑
⃑⃑

: rock permeability tensor, [mD] 
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Φ𝑤: water potential, [psia] 

𝐴: area perpendicular to flow direction, [ft2] 

𝑉𝑏: gridblock rock bulk volume, [ft3] 

𝜙: rock porosity, [ft3/ ft3] 

W: mass of water rate from a well, [ft3/ day] 

𝜌𝑤: water density, [lb/ft3] 

𝛽𝑐 = 0.00633: the conversion constant for field units 

The equation is also composed of three different terms to make up the mass balance 

relationship, which are convective flow, accumulation, and well source/sink. Each term 

can be expressed in the finite difference form using central difference discretization in 

space and backward discretization in time for the fully implicit method similarly to the 

hydrocarbon component residual. 

A.2.1. Water Convective Flow 

Convective flow term for water is a summation of fluxes from a center gridblock 

to six different flux directions of neighboring gridblocks that are discretized in space using 

central difference (Eq. A.22). 
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∇ ∙ [𝑎𝑤∇Φ𝑤] = 𝑎𝑤𝐸∇Φ𝑤𝐸 + 𝑎𝑤w∇Φ𝑤𝑊 + 𝑎𝑤𝑁∇Φ𝑤𝑁 + 𝑎𝑤𝑆∇Φ𝑤𝑆

+ 𝑎𝑤𝐵∇Φ𝑤𝐵 + 𝑎𝑤𝑇∇Φ𝑤𝑇  

(A.22) 

And water interblock transmissibility can be expressed as the multiplication of 

geometric transmissibility (𝑇𝜂) and water mobility (𝜆𝑤𝜂) (Eq. A.23).  

𝑎𝑤𝜂 = 𝑇𝜂𝜆𝑤𝜂  (A.23) 

As explained in A.1.1. the interblock geometric transmissibility for the block-

centered discretization is the multiplication of permeability and area divided by the 

distance between the gridblocks, and these can be pre-computed before the time stepping 

since they are considered constant in the simulation (Eq. A.24 through Eq. A.29). 

𝑇𝐸 = 2𝛽𝑐 [
(𝑘Δ𝑦Δ𝑧)𝑖(𝑘Δ𝑦Δ𝑧)𝑖+1

(𝑘Δ𝑦Δ𝑧)𝑖Δ𝑥𝑖+1 + (𝑘Δ𝑦Δ𝑧)𝑖+1Δ𝑥𝑖

] (A.24) 

𝑇𝑊 = 2𝛽𝑐 [
(𝑘Δ𝑦Δ𝑧)𝑖(𝑘Δ𝑦Δ𝑧)𝑖−1

(𝑘Δ𝑦Δ𝑧)𝑖Δ𝑥𝑖−1 + (𝑘Δ𝑦Δ𝑧)𝑖−1Δ𝑥𝑖

] (A.25) 

𝑇𝑁 = 2𝛽𝑐 [
(𝑘Δ𝑥Δ𝑧)𝑗(𝑘Δ𝑥Δ𝑧)𝑗+1

(𝑘Δ𝑥Δ𝑧)𝑗Δ𝑦𝑗+1 + (𝑘Δ𝑥Δ𝑧)𝑗+1Δ𝑦𝑗

] (A.26) 

𝑇𝑆 = 2𝛽𝑐 [
(𝑘Δ𝑥Δ𝑧)𝑗(𝑘Δ𝑥Δ𝑧)𝑗−1

(𝑘Δ𝑥Δ𝑧)𝑗Δ𝑦𝑗−1 + (𝑘Δ𝑥Δ𝑧)𝑗−1Δ𝑦𝑗

] (A.27) 

𝑇𝐵 = 2𝛽𝑐 [
(𝑘Δ𝑦Δx)𝑘(𝑘Δ𝑦Δ𝑥)𝑘+1

(𝑘Δ𝑦Δ𝑥)𝑘Δ𝑧𝑘+1 + (𝑘Δ𝑦Δ𝑥)𝑘+1Δ𝑧𝑘

] (A.28) 
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𝑇𝑇 = 2𝛽𝑐 [
(𝑘Δ𝑦Δ𝑥)𝑘(𝑘Δ𝑦Δ𝑥)𝑘−1

(𝑘Δ𝑦Δ𝑥)𝑘Δ𝑧𝑘−1 + (𝑘Δ𝑦Δ𝑥)𝑘−1Δ𝑧𝑘

] (A.29) 

Viscosity and density for water that are used to compute water mobility are 

volume-weighted arithmetic averages (Eq. A.30). 

𝜆𝑤𝜂 = (𝑘𝑟𝑤

𝜌𝑤

𝜇𝑤
)

𝜂

 (A.30) 

Water potential in block-centered gird method is expressed using oil phase pressure 

𝑝𝑜 and height difference ∆𝑧 with the capillary pressure of oil and water (Eq. A.31 and 

Eq. A.32). 

∆Φ𝑤𝜂 = (Φ𝑤𝜂 − Φ𝑤𝐶) = ∆𝑝𝑜𝜂 − ∆𝑝𝑐𝑜𝑤𝜂
− γ𝑤𝜂∆z𝜂  (A.31) 

∆Φ𝑤𝜂 = (𝑝𝑜𝜂 − 𝑝𝑜𝐶) − (𝑝𝑐𝑜𝑤𝜂
− 𝑝𝑐𝑜𝑤𝐶

)

− 𝑔𝑐 (
ρ𝑤𝜂 + ρ𝑤𝐶

2
) (z𝜂 − z𝐶) 

(A.32) 

The final form of water convective flow term can be rearranged and simplified 

using chain rule and chord-slope of capillary pressure as shown in Eq. A.33. 

∇ ∙ [𝑎𝑤∇Φ𝑤] = ∑ [𝑎𝑤𝜂(∆𝑝𝑜𝜂 − γ𝑤𝜂∆z𝜂) −
𝑎𝑤𝜂𝑝′𝑐𝑜𝑤𝜂

ρ𝑤𝜂
∆W𝜂]

6

𝜂=1

 (A.33) 

Where the chord-slope of capillary pressure for oil-water and the difference of 

water mass per pore volume between center block and neighboring block are displayed as 
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follows (Eq. A.34 and Eq. A.35). 

𝑝′𝑐𝑜𝑤𝜂
=

𝑝𝑐𝑜𝑤𝜂
− 𝑝𝑐𝑜𝑤𝑐

𝑆𝑤𝜂
− 𝑆𝑤𝐶

 (A.34) 

∆𝑊𝜂 = 𝑊𝜂 − 𝑊𝐶  (A.35) 

A.2.2 Water Accumulation 

Water accumulation term is discretized in time using backward difference in order 

to form a fully implicit system of equations, and its final form can be expressed using 

chain rule and chord-slope similarly to the water convective flow term (Eq. A.36). 

𝑉𝑏

𝜕

𝜕𝑡
[𝜙W] =

𝑉𝑏

∆𝑡
[∆𝜏(𝜙W)] =

𝑉𝑏

∆𝑡
[𝑊𝑛∆𝜏(𝜙) + 𝜙𝑛+1∆𝜏(W)] (A.36) 

The above equation is further discretized using the chain rule in porosity as follows 

(Eq. A.37). 

∆𝜏(𝜙) =
𝜕𝜙

𝜕𝑡
=

𝜕𝜙

𝜕𝑝

𝜕𝑝

𝜕𝑡
=

𝜙𝑛+1 − 𝜙𝑛

𝑝𝑛+1 − 𝑝𝑛
∆𝜏(𝑝) = 𝜙′∆𝜏(𝑝) (A.37) 

And the final form is shown as Eq. A.38: 

𝑉𝑏

𝜕

𝜕𝑡
[ϕW] =

𝑉𝑏

∆𝑡
[𝑊𝑛𝜙′(𝑝𝑛+1 − 𝑝𝑛) + 𝜙𝑛+1(𝑊𝑛+1 − 𝑊𝑛)] (A.38) 
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A.2.3. Water Residual 

By combining convective flow, accumulation, and well source/sink terms which 

are discretized in space and in time, the final form of water residual can be shown as 

follows (Eq. A.39). 

𝑅𝑤 =
𝑉𝑏

∆𝑡
[𝑊𝑛𝜙′(𝑝𝑜𝐶

𝑛+1 − 𝑝𝑜𝐶
𝑛 ) + 𝜙𝑛+1(𝑊𝑛+1 − 𝑊𝑛)]

− ∑ [𝑎𝑤𝜂
𝑛+1(Δ𝑝𝑜𝜂

𝑛+1 − 𝛾𝑤𝜂
𝑛+1Δ𝑧𝜂) −

𝑎𝑤𝜂
𝑛+1𝑝′

𝑐𝑜𝑤𝜂

(𝑛+1)

𝜌𝑤𝜂
𝑛+1 Δ𝑊𝜂

𝑛+1]

6

𝜂=1

+ 𝑊𝐼𝑤
𝑛+1(𝑝𝑜𝐶

𝑛+1 − 𝑝𝑐𝑜𝑤
𝑛+1 − 𝑝𝑤𝑓

𝑛+1) 

(A.39) 
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APPENDIX B 

 

The Peng-Robinson cubic equation of state (PR EOS) (Peng and Robinson, 1978) 

with the van der Waals mixing rule is detailed in this appendix. It is generally used for the 

solution of the fugacity coefficient in vapor-liquid equilibrium (VLE). There are several 

different types of the equations of state, however Redlich-Kwong or Peng-Robinson is 

more popular for the correlation of fluid properties (Young and Stephenson,1983). 

The equation of the form of PR EOS is shown in Eq. B.1. 

𝑝 =
𝑅𝑇

𝓋 − 𝑏
−

(𝑎𝛼)

𝓋2 + 2𝓋𝑏 − 𝑏2
 (B.1) 

Eq. B.1 can be expressed using the compressibility factor 𝑍 =
𝑝𝑉

𝑛𝑅𝑇
 as shown in Eq. B.2 

with Eq. B.3 through Eq. B.11. 

𝑍3 − (1 − 𝐵)𝑍2 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0 (B.2) 

With, 

𝐴 =
𝑝(𝑎𝛼)

(𝑅𝑇)2
 (B.3) 

𝐵 =
𝑝𝑏

𝑅𝑇
 (B.4) 
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(𝑎𝛼) = ∑∑𝑥𝑖𝑥𝑗√𝑎𝑖𝑎𝑗𝛼𝑖𝛼𝑗(1 − 𝑘𝑖𝑗)

𝑗𝑖

 (B.5) 

𝑏 = ∑𝑥𝑖𝑏𝑖

𝑖

 (B.6) 

𝑎𝑖 = 0.45724
𝑅2𝑇𝑐𝑖

2

𝑝𝑐𝑖
2  (B.7) 

𝑏𝑖 = 0.07780
𝑅𝑇𝑐𝑖

𝑝𝑐𝑖
 (B.8) 

𝛼𝑖 = [1 + 𝑚𝑖 (1 − √
𝑇

𝑇𝑐𝑖

)]

2

 (B.9) 

𝑚𝑖 = 0.37464 + 1.54226𝜔𝑖 − 0.2699𝜔𝑖
2 𝑓𝑜𝑟 𝜔𝑖 < 0.49 (B.10) 

𝑚𝑖 = 0.379642 + 1.48503𝜔𝑖 − 0.164423𝜔𝑖
2 + 0.01667𝜔𝑖

3  

𝑓𝑜𝑟 𝜔𝑖 ≥ 0.49 

(B.11) 
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APPENDIX C 

 

Table C.1 Fluid EOS parameters for flash calculation. 

 𝒛𝒊 

Molecular 

Weight 

(lbm/lbmol) 

𝑻𝒄(°F) 𝒑𝒄𝒓𝒊𝒕 (psia) 

Acentric 

factor 

Parachor 

Volume 

shift 

CO2 0.0246 44.01 87.6 1070.2 0.225 0 -0.01313 

C1-N2 0.3694 16.22750162 -118.6883866 664.7012182 0.008493774 0 -0.09426 

C2-C3 0.0752 37.59375 152.1195479 658.6289894 0.127082447 0 -0.07819 

C4 0.0193 58.1 295.984456 544.5440415 0.187803109 0 -0.01798 

C5 0.0157 72.2 377.4757962 490.2070064 0.239687898 0 -0.00501 

C6 0.0162 86 453.5 477.2 0.275 0 -0.02941 

C71 0.47145 320 1089 180.8 1.022 0 0.00974 

Asphaltene 0.00815 800 2105 178.3 1.441 0 0.01648 
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Table C.2 Binary interaction coefficients (BIC) for fluid EOS characterization. 

BIC CO2 C1-N2 C2-C3 C4 C5 C6 C7+ Asphaltene 

CO2 0        

C1-N2 0 0       

C2-C3 0 0 0      

C4 0 0 0 0     

C5 0 0 0 0 0    

C6 0 0 0 0 0 0   

C71 0 0.053 0 0 0 0 0  

Asphaltene 0 0.135 0.135 0.135 0.135 0 0 0 

 


