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ABSTRACT

Preliminary design is a complicated problem that is often solved using topology optimization.

In this work, a heuristic approach to topology optimization is considered. This approach involves

the coupling of a genetic optimization with a parallel rewriting system, known as an L-System.

This approach encodes design variables into a string of characters that are then coupled with an in-

terpreter to develop a structure in a given domain. By considering a heuristic bio-inspired approach

over more traditional density and level set topology approaches, we are able to avoid numerical

issues and rapid increasing design space dimensionality associated with complicated multi objec-

tive problems. In this work a new interpreter for L-Systems, called the Spatial Interpretation for

the Design of Reconfigurable Structures (SPIDRS), is applied to several design problems. This

work seeks to show SPIDRS as a powerful preliminary design tool for difficult problems that lack

traditional engineering intuition.

First, a morphing airfoil inspired by the rotor blade of the UH-60 is considered. SPIDRS is

utilized to determine the internal structural layout as well as the placement of actuators to facilitate

morphing to meet a shape objective while minimizing mass. A coupled fluid structure interaction

(FSI) evaluation is performed using the finite element method (Abaqus) and vortex lattice method

(XFOIL). The resulting final shape of the airfoil, as determined by the FSI evaluation, and the mass

are used as objectives in a genetic optimization

Second, a set of origami fold design problems are considered. SPIDRS is first validated using

the well established square twist pattern and the results are compared to previous work in the

literature. SPIDRS is then used with an arbitrary continuous kinematic objective to determine its

ability to evolve towards an unknown solution pattern. The standard square twist pattern is also

utilized to evaluate the efficacy of altering the original SPIDRS production rules for use specifically

in origami.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

As engineering problems increase in complexity with the introduction of smart materials and

multiphysical objective problems, the traditional intuition of engineers becomes less applicable to

design. For example, the structural layout of a static aircraft wing is a well studied problem and

there are developed methods for designing these wings through a combination of prior knowledge

and computational analysis methods. However, when the idea of optimizing the wing shape to

perform well for an electromagnetic objective (i.e. be stealthy under radar detection), as well as the

original aerodynamic and structural objectives, the intuition of design engineers is less established.

This example demonstrates the need for preliminary design processes that are capable of working

with limited human intuition, as problems become inherently multidisciplinary.

Biological systems are considered the best examples of solutions to these complex multidisci-

plinary problems, as they have been observed to optimize and adapt to the varying challenges con-

tinuously faced by organisms on Earth. Some examples of complex multidisciplinary topological

layouts found in nature include leaf venation and the root systems of plants [5], venation of insect

wings [6], and the circulatory systems of animals [7]. Engineers have long taken inspiration from

nature to design their own versions of these systems and solutions. One of the earliest and most

recognizable examples of this being Leonardo da Vinci’s flying machines based on biomimicry of

avian flight in the 15th century. More recently in the field of topology optimization, bio-inspired

branching structures have been utilized to generate structural topologies for complex engineering

problems [8, 9, 10].

The bio-inspired branching methods depend on a sequence of encoded genes and an interpreter,

to decode the genes and execute a sequences of functions to generate a structure. The genes are

encoded using a biological system called the Lidenmayer System [11, 12]. Previously, a method

called Turtle interpretation has been used to interpret genes and build topologies by growing struc-
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tures from a given point within a boundary. This method was developed with the intent to generate

various types of images computationally [4, 13, 14]. This method has proven to be effective at

developing interesting engineering structures [15, 16, 17], but has also shown issues with the lim-

ited nature of the Turtle graphics with respect to the assignment segment angles and lengths during

the interpretation of the genes [18]. Notably, Turtle graphics also result in many "hanging" (i.e.

non-load bearing) branches, which are unnecessary for structural design and often require removal

via post processing.

The short comings of this popular methods for interpretation of L-Systems has inspired a new

interpretation scheme called Spatial Interpretation for the Design of Reconfigurable Structures

(SPIDRS) [18]. In this work, we will examine two areas of topology optimization, morphing

airfoils and origami fold patterns, that could benefit from implementing an optimization scheme

including SPIDRS. These two areas were chosen due to the lack of prior work existing for these

problems, as well as the complicated objectives associated with successful designs. The current

state of these fields are discussed below.

1.2 Literature Review

1.2.1 Topology Optimization

Topology optimization is the design of material distribution in a given domain subject to con-

straints and boundary conditions in order to maximize specific performance conditions of the sys-

tem. This method is generally utilized during the preliminary stage of design and then refined

to generate final products, thus making topology optimization extremely influential on the perfor-

mance of the final design [19]. Density based methods, including Solid Isotropic Material with

Penalization (SIMP), are the most popular approach to topology optimization, and consider a do-

main of finite elements and work to minimize an objective by determining whether a given element

consists of solid material or is void [20, 21]. This method is easy to implement, but has difficulty

with high dimensionality associated with the high resolution of elements often required for ac-

curacy [19]. Density based methods also suffer from checker boarding, where the formation of

2



adjacent solid-void elements are arranged in a checker board pattern resulting in non-physical so-

lutions [19, 20], and mesh dependencies, where different topologies result from the same design

domain depending on the level of discretization.

The level set method is another well known topology optimization technique. Level set rep-

resents structural boundaries as the zero-level curve of a scalar level set function [19, 22]. This

method is popular due to its convenient treatment of topological changes, which allows the bound-

aries of the structure to be modified by using optimization conditions to control the output of

the level set function. The level set function is generally parameterized using the finite element

method (FEM) or radial basis functions (RBFs) [22]. The accuracy of the local structural response

is dictated by how the level set function is mapped to the structural model, meaning more accurate

results often have a significantly higher computational expense [23]. As such, the dimensionality

of the design space increases rapidly with the number of parameters used to define the level set

function. Aditionally, this method also suffers from poor convergence rates and convergence to

local minima [24].

There are also less popular methods used to approach topology optimization, like evolutionary

structural optimization (ESO) and the ground structure method (GSM). ESO is based on the idea

that optimal structures are composed of members that experience equivalent stress, and material is

gradually removed from the design domain based on heuristic criteria like stress in the elements

[25]. GSM represents the initial domain of the structure as a series of structural members that

connect every member in a set of nodes to every other member in that set. The topology is then

determined by varying the cross-sectional area of each member in the structure [26], and removing

members with zero cross sectional area from the structure. This process is very good at finding

solutions to truss problems, but the ultimate quality of the result is dependent on the initial locations

and number of nodes included in the structural domain. Increasing the number of nodes results in

an increase in design variables therefore increasing computational time needed to evaluate the

initially dense configurations [26]. These methods also require intuition about the connectivity of

the nodes and initial members to consider, making them a poor fit for the targeted problems in this
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work.

Gradient optimization methods have been used extensively in order to find Pareto-optimal so-

lutions using the methods mentioned above [20, 24, 26]. However, gradient optimization meth-

ods tend to have difficulties when problems contain multiple local minima, discontinuous design

spaces, or discrete variables [27]. All three of these criteria are likely to be encountered in novel

multidisciplinary design, which necessitates an alternative to account for these challenges. There-

fore a non-gradient optimization approach should be utilized. Non-gradients methods utilize func-

tion evaluations of objectives to converge to a solution rather than gradients. A common form of

non-gradient optimizer is the genetic algorithm (GA). The GA functions by utilizing the principles

of natural selection to construct an optimization process that requires minimal information about

the problem [27]. Similar to the genes that control a living being’s observerable traits, the GA uses

pseudo-chromosomal representations of design parameters to create designs. Generally, a GA is

initialized with a random population of designs, those designs are then evaluated to determine a

fitness value and then they are modified through reproduction, crossover, and mutation. Multi-

disciplinary design is well suited to utilize the GA, due to the inherent multi objective nature of the

problems. The GA’s stochastic nature is well suited to prevent convergence to local minima and is

able to handle discrete variables, unlike most gradient based optimizers.

Recently, a class of bio-inspired topological representation methodologies was developed as

an alternative to the more rigorous methods presented previously. These methods use the Linden-

mayer System (a biological model), which, when coupled with an interpreter, creates and executes

a series of operations to develop the topology in stages. A GA is used to govern the evolution

of the L-System encoding, which in turn governs the topology of the structure[28]. This method

imitates natural selection by choosing designs with high performance scores and modifying the

genes of each design via crossover or mutation to arrive at a group of Pareto optimal designs. This

process couples a biologically inspired topology creation method with the GA to present a truly

biologically inspired design approach. These L-System based topology design approaches include

two classes of processes, those inspired by cell division and those inspired by branching structures.
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Kobayashi et al., for example, is inspired by cell division and operates by iteratively subdividing

the structural domain [15]. This method has been used to optimize a flapping wing mechanism

[29, 30] and aircraft wing structures [31, 32, 33].

The branching class of L-System approaches rely on an interpretation scheme to replicate sim-

ple biological structures, like the veins in leaves, circulatory systems in animals, and branch growth

in plants. Traditionally, these methods have utilized a vector-base graphical method for interpre-

tation known as turtle graphics [34]. Turtle graphics constructs straight 2D line segments in a

given design domain and is based on geometry, meaning the turtle operator tracks its geographi-

cal location in the design domain at all times. This method has been utilized to create structural

topologies [16, 17, 18], but the formulation of turtle graphics limits the modeling capability of the

L-System[18]. As a response to the limitations of the turtle graphics interpreter, the Spatial Inter-

pretation for the Development of Reconfigurable Structures (SPIDRS) was developed by Bielefeldt

et al [35] to utilize a graph based approach, enabling the interpretation of the L-System as a func-

tion of the nodes, edges, and faces of the structure instead of being based on geometry. SPIDRS

has previously been utilized to design compliant mechanisms [18], morphing airfoils [36, 37], and

tailorable stiffness structures [38].

1.2.2 Morphing Airfoils

The idea of enabling shape change on the aerodynamic surfaces of airplanes is as old as manned

flight itself. The first manned aircraft, the Wright Flier, enabled roll control through the change of

twist in the wing using cables controlled by the pilot [39]. The desire for increases in cruise speed

and payloads caused aircraft to shift towards rigid aerodynamic surfaces, but the idea of morphing

never completely left the aircraft industry. Current aircraft are designed as a compromise between

several high level mission objectives, like performance at cruise, take-off, and landing, resulting in

modern aircraft utilizing a static lifting surface shape coupled several methods to alter properties

through the different flight conditions, such as flaps and slats.

This approach has been challenged by researchers who have proposed a solution that avoids the

initial compromise between objectives and instead allows aircraft to fly optimally at all conditions
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by morphing between flight conditions. Morphing of aircraft wings can generate changes in twist,

span, geometry, and camber [39]. In this work the camber morphing of airfoils is considered

specifically. Changes in camber work to adjust the outer mold line of the airfoil, which has been

shown to improve the lift/drag ratio in changing flight conditions [40], and can serve to increase

performance in the transonic regime [41].

Over the last three decades, several of camber morphing concepts have been presented and

tested. Champanile discusses two types of structures that allow for camber morphing in airfoils,

mechatronic solutions and structronic solutions [42]. Mechatronic solutions are presented as inter-

nal structures where mechanisms like hinges or linear bearings are used to give the internal struc-

ture the degrees of freedom required to morph. Some examples of mechatronic solutions include

traditional high-lift devices and the multi-section variable camber wing presented by Poonsong

[43]. These solutions do not rely on compliant mechanisms or regions in structure to achieve the

desired shape change unlike structronic solutions, which are classified as solutions that use the

distributed flexibility of the structure to achieve shape change.

Solutions that rely on distributed compliance of the structure or specific members of the struc-

ture have become very popular in academia. One of the first examples of these compliant designs

is the ’fish-bone’ morphing airfoil. This type of airfoil is generally built using a spine that is

somewhat compliant with many ribs protruding from this central spine to support the skin, then

the airfoil is morphed by changing the shape of the central spine. In the last decade this method

has been very popular and used with many types of actuators including piezoelectric composites

[44, 45] and linear actuators [45, 46, 47]. The belt-rib concept is another example, where a compli-

ant structural member (the rib) is coupled with an actuator [42, 48]. Several designs also utilize the

buckling of internal structural members to produce bi-stable camber morphing [49, 50], and there

are even designs that rely solely on the compliance of the structure to deform under specific flow

conditions [51, 52]. Both mechatronic and structronic solutions rely on actuators to achieve camber

morphing. Researchers have used a variety of traditional (electric and pneumatic [53, 54, 55, 56])

and SMART materials (piezoelectrics and shape memory alloys [57, 3, 58]) actuators for this pur-
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pose.

In many of these design problems, the structural layout is predetermined and the problem pre-

sented is an optimization of actuator placement or structural parameters such as spar thickness or

skin thickness [57, 58, 3]. In others, simple triangulation meshing is utilized to represent topology

generation [49]. L-System cellular division based design has specifically been applied to morphing

aerodynamic surfaces by Kobayashi et al. [31] and Kolonay et al. [33, 32]. However in all of these

applications, camber morphing is not considered. Branching L-Systems that utilize turtle graph-

ics have not been implemented in camber morphing airfoil design, but the SPIDRS interpretation

scheme has been used. Bielefeldt et al. presents the first attempt at camber morphing via L-System

optimization, but is only applicable to supersonic diamond shaped airfoils [36]. The first attempt

at camber morphing a traditional subsonic airfoil is presented by Mikkelsen et al. [37], but this

work produced undesirable results due to skin buckling during morphing.

Overall, there has been no overarching system for the design of morphing airfoils. The ac-

tuation concepts vary widely and the implementations even more so. In this work, a system to

approach the design optimization of a morphing airfoil is presented using the SPIDRS interpre-

tation scheme due to its ability to generalize to many problems in the morphing airfoil domain.

The overarching objective is a system by which preliminary design can be efficiently and reliably

conducted for camber morphing airfoils without the requirement of extensive design intuition to

establish the problem boundary or objectives.

1.2.3 Origami

Origami is the Japanese art of paper folding. Originally, the purpose of this art form was purely

for recreation or art, but has since evolved into a well studied field of mathematics and engineering

[59]. Engineers have utilized origami inspired design principles to create a variety of systems

including deployable space structures [60, 61], biomedical applications [62], and metamaterials

[63]. Origami facilitates novels methods of fabrication, assembly, storage, and even morphing

[64].

The design of origami structures provides the opportunity to design materials and structures that
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control shape, energy, and multi physical properties. However, efficient design tools are needed to

design these structures computationally, due to the vast design space available to map 2D patterns

to complex 3D structures [65]. The most common approach in origami design is to define a target

3D surface and then insert material and fold lines to ’unfold’ the 3D surface back to a 2D sheet.

Tachi developed an unfolding method by considering tucking-based folding approach where the

target surface is discretized into panels and projected into 2D. The resulting panels are then as-

sembled with infinitesimal thickness material between the panels that can be tucked away when

folded [66]. Lang proposed a tree-based approach to reach a target shape, where a stick figure

representation of the final shape is used to decompose the fold pattern into 2D. Demaine et al.

developed methods for generating orthogonal folded structures used a simple universal hinge pat-

tern [67], but this method only applies to structures with orthogonal elements. Pereza-Hernandez

et al. eventually expanded on the tucked folding approach of Tachi by introducing smooth folds

and accounting for material thickness [68]. The common feature of all of these methods is their

deductive design nature, meaning they build the crease patterns on the geometric analysis of the

desired shape. As a consequence, these methods are better suited for mapping optimal shapes to

fold patterns than finding the optimal shapes to meet physical objectives.

The alternative to deductive origami design, is abductive design. In this approach, a function

evaluation is utilized to evaluate and improve fold patterns iteratively. This enables design to

satisfy geometric and functional requirements rather than just accurately defining targeted shapes.

The ice cracking technique is one such method. Ice cracking operates in the 2D domain by placing

nodes and then evolving a topology using an encoded array from a genetic algorithm [69]. Ice

cracking guarantees design foldability by basing the encoding scheme off of several well known

origami foldability theorems, and can be implemented to guarantee flat foldability as well, but

the encoding does not allow for the creation of any new nodes thus limiting the topology to some

subdomain containing the prescribed initial nodes.

A lot of abductive origami design work has also been completed by a the RXAS group at the Air

Force Research Laboratory. This work originates with Fuchi and Diaz utilizing a ground structure
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based approach to origami design coupled with rigid origami mechanics to achieve targeted macro-

scopic objectives [70]. The group then started to explore modified frame elements to enable higher

fidelity origami modeling. Using this higher fidelity modeling, the ground structure approach was

coupled with the new modified frame elements and fold patterns optimized by tuning the stiffness

of the folds in the original ground structure [71], enabling true abductive origami design optimiza-

tion. Sequenced folding was then utilized for the discovery of auxetic structures [?]. Finally, the

tool was formalize by Gillman et al. [1] and utilized in the discovery of sequenced origami fold

patterns [65]. This work has also been applied to multi physical electromagnetic problems as well

by Sessions et al. [72], where a coupled origami and EM design approach is presented. However,

in all of this work, the abductive method is limited by the necessity of a ground structure for topol-

ogy creation. The initial ground structure approach with tunable stiffness parameters is effective

at producing simple bench marking designs like the Chomper, but unable to match more difficult

cases like the well known Square Twist pattern [65], which requires a coupled twisting and upward

motion to achieve the folded configuration.

In this work the SPIDRS design approach will be applied to the abductive origami design

problem in conjuction with the non-linear truss based solver developed by Gillman et al. [1]. This

method should enable the origami design process to be facilitated quickly and without the need for

a ground structure, therefore reducing the required prior knowledge of the solution.
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1.3 Thesis Summary

The overarching goal of this work is to demonstrate the SPIDRS interpretation scheme as a

tool to facilitate the design of preliminary topological layouts for difficult engineering problems.

This methodology requires three distinct parts: i) topology generation, ii) functional evaluation,

iii) genetic optimization. In this work, the SPIDRS interpretation scheme is implemented and

adapted for various problems in order to generate structural topologies. Function evaluations are

performed using various physical analysis tools and then utilized to inform a genetic optimization

process towards the evolution of optimal topologies. This process is demonstrated graphically in

Figure 1.1.

Topology Generation

Encoding Interpretation

Graphical Operations

SPIDRSParameterized 
L-System 
Encoding

Structural 
Topology Function Evaluation

Simulation Manager

Genetic Optimization in 

DEAP

Population's Performance Vairiables

Population's Design Vairiables

i ii

iii

Figure 1.1: Topology design and optimization approach using SPIDRS.
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This work utilizes tools built developed by previous researchers, but assembles then in a novel

configuration to perform the function evaluations. In this thesis two novel design problems will be

considered to evaluate the effectiveness of this approach. The presentation of this work is organized

as follows:

• Chapter 2 provides an overview of the algorithms and computational tools used in this work

to facilitate topology creation and functional evaluations. This chapter includes a descrip-

tions of the SPIDRS algorithm, a non-linear truss based origami folding code, and overviews

of the computational methods and software used to facilitate this work.

• Chapter 3 discusses the application of this design method to the structural topology optimiza-

tion of a morphing airfoil. This section describes the problem setup, the implementation of

the genetic optimizer, the structural and aerodynamic modeling, as well as the results of the

optimization.

• Chapter 4 discusses the application of this design method to the topology optimization of

origami fold patterns for kinematic objectives. First, the well known square twist pattern is

considered and compared to previous work as a verification activity. Second, a continuous

kinematic response objective without a known solution is presented. The SPIDRS design

process is applied to this problem, an optimization is performed, and the results are reported.

• Chapter 5 summarizes the results of this work, presents the conclusions to be drawn from

this work, and discusses possible future work.
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2. OVERVIEW OF EXPERIMENTAL AND COMPUTATIONAL ENGINEERING TOOLS

In this work, the SPIDRS algorithm is utilized in conjunction with several different analysis

tools to model physical reactions of interest. This process involves coupling specific tools with the

SPIDRS code. In this chapter, the tools utilized to generate topologies are discussed in Section

2.1 and Section 2.2. Various tools utilized to model the physical responses of these topologies in a

given problem are then described by Sections 2.3 through 2.6.

2.1 Parameterized Lindenmeyer System

A parallel rewriting system that uses a set of production rules to govern the evolution of a

string of characters (ω) was developed by Aristid Lindenmayer in 1968, with the intent to pro-

vide a mathematical description of the development of simple organisms[11]. These Lindenmayer

Systems (L-Systems) are composed of an alphabet, an axiom, and a set of production rules [12].

The alphabet consists of constant characters that are used to define actions in the topology drawing

algorithm and/or assign material functionalities. The axiom is a string of N variable characters that

provides the foundation for the full topology string of a structure. The production rules are a set of

rules which are applied to the axiom recursively to create a new string of characters. The recursive

application production rules leads to the increasing possible complexity of each level of recursion.

In this application, L-Systems are used to generate strings of characters that encode topological

information to be interpreted later.

Here we will consider an example of a simple L-System from Prusinkiewicz & Lindermayer

[4]. There is a binary alphabet V = {A,B}, an axiom ω0 = B, and production rules P = {A→

AB,B → A}. The production rules are applied to the axiom recursively, resulting in a series

of developmental stages of the string of characters. The axiom itself represents that zeroth stage,

i.e. ω0 = B. Each subsequent stage is developed by simultaneously applying the production

rules to each character. The first stage, ω1 = A, is obtained by substituting B with A as defined

by the production rules, P . Similarly, applying the production rules to ω1 results in ω2 = AB
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ω0 = B
ω1 = A
ω2 = AB
ω3 = ABA

ω4 = ABAAB
ω5 = ABAABABA

ω6 = ABAABABAABAAB

Table 2.1: Example of L-System from Prusinkiewicz & Lindermayer [4]

by substituting A with AB. The first six steps of this process are shown below in Table 2.1.

The resulting string has no inherent geometric representation and therefore must be paired with a

graphical interpreter to generate structural topologies. A graphical interpreter for this purpose is

presented in Section 2.2.

To increase the modeling capability of the L-System, an addition of numerical parameters

was introduced by Lindenmayer to allow for variable angle and distance definitions [12]. In this

work, a parameterized L-System is consider consisting of the following: 1) an alphabet, 2) a set

of formal parameters, Σ, 3) a set of production rules, P , and 4) an axiom, ω0. The alphabet

for this system is composed of six variable character, α = {A,B,C,D,E} and β = {−,+},

and two constant characters, γ = {[, ]}. The first set of four variable characters, α, describe

operations which govern the creation of topology and/or material assignments. The second set of

two variable character, β indicate the movement of the operator inside the given topology. The last

set of constant characters, γ, signify beginning and end of markers which are utilized to traverse

the topology. The set of formal parameters, Σ, are associated with the variable characters of the

alphabet such that characters in α and β are defined as αi = αi(σα1 , σα2) and βi = βi(σβ1),

where σα1 , σα2 , and σβ1 are real numbers from Σ. The meaning of σα1 , σα2 , and σβ1 take on

different meanings depending on which variable character they are associated with. The axiom

consists of two variable letter characters (ω0 = ω1, ω2, ωi ∈ α) and is used to initiate the recursive

development of the final command string.

This particular system considers a set of five production rules,P . Each production rule consists

13



of ten characters and is written as 1 Pi : αi(σα1 , σα2) → λi1λ
i
2(σα1 , σα2)2λ

i
3(σα1 , σα2)3λ

i
4(σβ1)4λ

i
5

... λi6λ
i
7(σα1 , σα2)7λ

i
8(σα1 , σα2)8λ

i
9(σβ1)9λ

i
10, where i = 1, . . . , 5 for all αi ∈ α, and λi1λ

i
2 . . . λ

i
10

is a string of ten characters such that λij ∈ Λj and Λ1 = {[, } ,Λ2 = α,Λ3 = α,Λ4 = β,Λ6 =

{[, } ,Λ7 = α,Λ8 = α,Λ9 = β. Assignments for Λ5 and Λ10 are made such that if the begin

branch indicator, "[", is assigned in Λ1 and Λ6, it is closed Given the definition of the production

rule above, and the need for each character in α and beta to have two parameters and one parame-

ter, respectively, each production rule requires 10 independent parameters. The 10 parameters plus

8 alphabet characters mean that 18 independent variables are required to define each production

rule. Since there are five production rules and a two character axiom, this means that the entire

L-System requires 92 independent variables.

2.2 Spatial Interpretation for the Design of Reconfigurable Structures

A tool is required to create two dimensional closed cell topologies within a given domain.

To achieve this, the Spatial Interpretation for the Design of Reconfigurable Structures (SPIDRS)

algorithm is utilized. This algorithm both interprets instructions from a parametrized L-System

and performs graphical operations towards the creation of structure [35].

The SPIDRS algorithm operates on a half edge data structure, which represents the planar

graph, I ′, in a way that is easy to manipulate and traverse [18]. This structure contains record of

the nodes, edges and faces of the graph, I ′, and follow three rules. First, the graph must be simple,

meaning that no nodes are connected to themselves via an edge, and no two edges connect the

same two nodes. Second, edges are defined by the idea that each edge is composed of two half

edges that are oriented in opposite directions and each belong to two distinct faces. Third, faces

are defined as directed walks, meaning a face is an enclosed set of half-edges which are oriented

such that one can start at a given node, traverse around the graph based on the orientation of the

half-edges in the face, and return to the original node. This structure is also capable of carrying

attribute information relating to specific nodes, edges, and faces, like material assignments.

In this algorithm, the graph, is defined by the nodes, N , edges, E, faces, F , and mate-

1Parameters belonging to λji are independent of any other parameters, i.e. (σα1 , σα2)i 6= (σα1 , σα2)i+1
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rial (i.e. attribute information), M . For example, consider the graph, I ′, shown in Figure 2.1.

The set of nodes, edges, and faces making up I ′ are defined as N(I ′) = {1, 2, 3, 4}, E(I ′) =

{e12, e23, e34, e41}, and F (I ′) = [1, 2, 3, 4].

1

2

4

3
e23

e 34

e 41

e 12

Node

Edge

Face

f
1

Figure 2.1: Example graph represented using half-edge data structure

A half-edge data structure is used in computational geometry to describe polygonal subdivi-

sions due to ease of which the topological information of a planar graph. For instance, we will

consider the graph, I ′, depicted in Figure 2.2 and observe what occurs when a subdivision is made

in the graph between nodes 6 and 4. Before subdivison, the faces and materials of I ′ are described

as F (I ′) = {f1, f2} = {[1, 2, 3, 6], [3, 4, 5, 6]} and M(I ′) = {[S1, S2, S3, S4], [S5, S6, S7, S3]}.

Notice that the material assignment is consistent for both half edges between nodes 3 and 6.

Now consider the graph after subdivison occurs in f2 between nodes 6 and 4. The faces and

materials of I ′ are now defined as F (I ′) = {f1, f2, f3} = {[1, 2, 3, 6], [3, 4, 6], [4, 5, 6]} and

M(I ′) = {[S1, S2, S3, S4], [S5, S8, S4], [S6, S7, S8]}. This subdivision results in the creation of a

new face, f3, and a new pair of half edges, e46 and e64. The material set is also updated to reflect the

changes to I ′ regarding the new face and half edges written, in order to stay consistent. This half

edge data structure is applicable only to convex graphical subdomains, because if the subdomain is

not convex there is a possibility for newly created edges to intersect with preexisting non-convex

edges.
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Figure 2.2: Example of how the half-edge data structure is updated to modify topology

2.2.0.1 Move-Integer

The move-integer command is represented in the L-System encoding as A(σα1). This com-

mand operates by moving the SPIDR by bN × σα1c nodes in the current face, where N is total

number of nodes in the current face. In this action, the SPIDR location is updated, but the topol-

ogy of the graph is not modified (i.e. F and M are unchanged). An example of the move-integer

command, A(0.72), is shown below in Figure 2.3. In this example, assume that the SPIDR begins

at node 1 and receives the command, A(0.72). Since N = 4, bN ×σα1c = bN ×0.72c = 2, which

causes the SPIDR to advance two nodes to node 3.

1 2

4 3

Figure 2.3: Example of a move-integer operation A(0.72)
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1 2

4 3
5

Figure 2.4: Example of a move-real operation B(0.7)

2.2.0.2 Move-Real Operation

The move-real command is represented in the L-System encoding as B(σα1). This command

operates by the moving the SPIDR by bN × σα1c nodes in the current face, and then to a newly

created node N × σα1 − bN × σα1c in between the current node and next node. An example of

the move-integer command, B(0.5), is shown below in Figure 2.4. In this example, assume that

the SPIDR begins at node 1 and receives the command, B(0.7). Since N = 4, bN × σα1c =

bN × 0.7c = 2, which causes the SPIDR to advance two nodes to node 3. Next, node 5 will be

created between nodes 3 and 4 by moving the SPIDR N ×σα1−bN ×σα1c = 2.8−2 = 0.8 of the

distance between them. Since this action created a new node, the topology of the structure must be

updated to reflect this change and is modified by updating F and M as follows:

F = {[1, 2, 3, 4]} → {[1, 2, 3, 5, 4]} ,

M = {[S1, S2, S3, S4]} → {[S1, S2, S5, S3, S4]} .

The addition of the new node requires the addition of a material assignment to ensure that

the edge and material descriptions remain consistent. The material assigned to the new edge is

consistent with the preexisting edge, i.e. S2 = S5. Notably, this command is restricted such that

0.1 ≤ N × σα1 − bN × σα1c ≥ 0.9. Commands that result in 0.1 < N × σα1 − bN × σα1c < 0.9

are set to 0.1 and 0.9 respectively.
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2.2.0.3 Create-Integer Operation

The create-integer command is represented in the L-System encoding as C(σalpha1 , σalpha2).

This command operates by moving the SPIDR by bN × σα1c nodes in the current face before con-

structing and edge back to it’s starting location. The σalpha2 parameter determines what material the

newly constructed edge will be assigned. An example of the create-integer command,C(0.51, 0.2),

is shown below in Figure 2.5. In this example, again assume that the SPIDR begins at node one

when receiving the command. Since N = 4, the SPIDR advances bN × σα1c = b4 × 0.51c = 2

nodes forward to node three, similarly to the move-int command. Next, the SPIDR creates a new

edge from the current node, node three, to the original node, node one. This edge is assigned

the material associated σα2 . Since this action subdivided a prexsisting face, the topology of the

structure must be updated to reflect this change and is modified by updating F and M as follows:

F = {[1, 2, 3, 4]} → {[1, 2, 3][1, 3, 4]} ,

M = {[S1, S2, S3, S4]} → {[S1, S2, S5][S5, S3, S4]} .

After the subdivision occurs, the SPIDR is defined to be along its original half edge. In this

example, the SPIDR originates from node one, meaning its initially along edge e12 and as such

will stay in the new face which contains edge e12. This command will not perform any action if

the two nodes between which a new edge will be created are colinear. This constraint is enforced

to prevent overlapping faces or material assignments.

2.2.0.4 Create-Real Operation

The create-real command is represented in the L-System encoding as D(σα1 , σα2). This com-

mand operates by moving the SPIDR by bN × σα1c nodes in the current face, then to a newly

created node N × σα1 − bN × σα1c in between the current node and next node, and then creating

a new edge between the newly created node and the original node and returning the SPIDR to the

original node. The σalpha2 parameter determines what material the newly constructed edge will be
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4 3

Figure 2.5: Example of a create-integer operation C(0.51, 0.2)

assigned. An example of the create-real command, D0.7, 0.2 is shown belown in Figure 2.6. In

this example, again assume that the SPIDR begins at node one when receiving the command. Since

N = 4, the SPIDR advances bN ×σα1c = b4×0.7c = 2 nodes forward to node three. Next, node 5

will be created between nodes 3 and 4 by moving the SPIDRN×σα1−bN×σα1c = 2.8−2 = 0.8

of the distance between them, similarly to the move-real command. Lastly, the SPIDR will create

an edge between the current node, node 5, and the original node, node 1, and return to the original

node. The material of the newly created edge is a function of σalpha2 . Since this action subdivided

added a node to the topology and divided a preexisting face, the topology of the structure must be

updated to reflect this change and is modified by updating F and M as follows:

F = {[1, 2, 3, 4]} → {[1, 2, 3, 5][1, 5, 4]} ,

As described before, the SPIDR is defined to be along its original half edge after this operation is

performed. This action will also subdivide the applicable half edges (i.e. e34 → [e35, e54]) and their

applicable twins (i.e. e43 → [e53, e45]). This command is also restricted by the ability to create

nodes within a certain range of other nodes and the creation of collinear nodes.

2.2.0.5 Change Material Operation

The change material command is represented in the L-System encoding as E(σα1). This com-

mand operates by changing the material of the current half edge to a material specified by σα1 , and
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1 2

4 3
5

Figure 2.6: Example of a create-real operation D(0.7, 0.2)

then moving the SPIDR by one node. An example of the command, E(0.63), is shown below in

Figure 2.7. In this example, the SPIDR starts at node one, on the half edge e12, with the material S1

(shown as black lines). The SPIDR changes the material of the current half-edge e12 to H1, which

is the material associated with a σα1 value of 0.63. The material H1 is shown in blue in the figure.

The SPIDR also advances forward one node to node 2. It is important to note that the material

assignment for the twin of the modified half edge, e21, will also be updated to maintain material

consistency in the graph. This command does not change the face set F .

1 2

4 3

Figure 2.7: Example of a change material operation E(0.63)

2.2.0.6 Turning Operations

There are two turning commands defined in the L-System encoding, +(σβ1) and−(σβ1). These

commands are defined for clockwise and counterclockwise motion, respectively. Each of these
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commands are based on the number of faces, M , the current node is associated with. The SPIDR

will move in bM × σβ1c in the direction prescribed by the command. An example of both the

clockwise and counter clockwise commands are shown in Figure 2.8. First we will consider Figure

2.8a where a clockwise command, +(0.9), is depicted. In this example, the SPIDR is positioned at

node 5 along half edge, e45. Since node 5 is shared between two faces, M = 2, making b2×0.9c = 1,

the SPIDR proceeds to the next counter clockwise face. The SPIDR is now located in F = [5, 3, 4]

along half edge e53. An example of a counter clockwise turning operation, −(0.5) is depicted

in Figure 2.8b. In this example, the SPIDR again originates at node 5 along edge e54. In this

case, node 5 is associated with three faces, making M = 3. Therefore, the SPIDR advances

b3× 0.5c = 1 face in the counter clockwise direction. The SPIDR’s new location is updated from

F = [5, 4, 1]→ F = [1, 2, 5], and is now positioned along the half edge e51. When this command

is associated with a node that is only present in a single face, the command is ignored.

1 2

4 3

5

(a) +(0.9)

1 2

4 3

5

(b) −(0.5)

Figure 2.8: Examples of turning operations

2.2.0.7 Bracket Operations

Bracket operations are represented in the L-System encoding as [ and ]. These commands

represent the beginning and end, respectively, of a particular string of SPIDR commands. These
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commands operate in conjunction with one another by the open bracket saving a particular loca-

tion of the SPIDR agent, and the close bracket eventually returning the SPIDR to the most recently

saved location (with out the modification of the topology). Notably, any operations that are en-

coded into the command string between these two operators will be performed by the SPIDR

agent, meaning that these bracket operators can be nested. Saved locations are also continuously

updated to correspond to the current topology, in order to prevent face subdivision or new node

creations from invalidation the previously saved location.
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2.3 Truss-based Nonlinear Mechanical Analysis of Origami Structures

In order to evaluate a kinematic objective of folded origami patterns, a tool is required to

simulate the folding process. A modified nonlinear truss model that was derived for small small

strain/larger behavior rotation is used. This model was selected for its ability to balance efficiency

and accuracy as described by Gillman et al. [1]. This model is based off of a positional finite

element truss model and is modified to include a torsional spring around the elements to represent

the fold stiffness between adjacent facets. This section will outline the minimum energy principles

and their application to the modified truss element, the linearization of these non-linear equations,

the application of boundary conditions, and the numerical analysis tool used to solve the resulting

system of equations. This model was first developed and described by Gillman et al. [1].

Figure 2.9: Schematic of modified truss element[1]

The schematic of a single element of the modified truss is shown in Figure 2.9, where the fold

angle is depicted as the relative angle between the two triangular facets. The total energy, Π, of the

element is defined as the total energy difference between potential, Ut, and external P , as shown

in Equation 2.1. The potential energy of the truss element is given by Equation 2.2, where E is the

Young’s modulus of the truss, A is the cross sectional area of the truss, G is the torsional spring

constant (per unit length),and ζ is the non-dimensional integration length dimension along the axial
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direction of the truss. The energy per unit length of the truss is represented by ut and the energy

per unit length along the hinge is represented by uh.

Π = Ut − P (2.1)

Ut = l0

∫ 1

0

EA

2
ε(X1,X2)

2 +
G

2
φ̃(X1,X2,X3,X4)

2dζ = l0

∫ 1

0

ut + uhdζ (2.2)

The deformation in the element is captured by the axial strain, ε, and the rotation in the spring

is captured by, φ̃. Both ε and φ̃ are formulated in terms of the global position (Equations 2.3 and

2.4) and therefore naturally capture the non-linear geometry of the motion, despite the assumption

of a linear constitutive model for both axial and torsional deformation.

ε =
(|X2 −X1| − l0)

l0
=

√
(X2 −X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2 − l0

l0
(2.3)

φ̃(X1,X2,X3,X4) = φ(X1,X2,X3,X4)− φ0 (2.4)

A penalty function is used to enforce local contact and avoid singularities. This penalty func-

tion is defined as p(φ) = C((φ
π
)B) + 1, where C and B are constants. Equation 2.5 shows the

potential energy equation (Equation 2.2) with the addition of the penalty function. The constant

B is related to the rate of fold stiffness increase near the closed state, while C effects the nominal

amount of stiffening. Noticeably the penalty is a function of φ and not φ̃, meaning that the penalty

is a function of only fold angle between the two facets.

UP
t =0

∫ 1

0

ut + p(φ)uhdζ (2.5)

After the introduction of the penalty term, Equation 2.1 becomes Π = UP
t − P . Finally, the

external energy, P , is defined in Equation 2.6. In this equation, the forces at the end of the truss

element are multiplied by the displacement of the global nodes. In both Equations 2.2 and 2.6, i in

Xi, Yi, and Zi(i ∈ [1, 4]) are the local node numbers.
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P = FX1(X1 −X0
1 ) + FX2(X2 −X0

2 ) + FY1(Y1 − Y 0
1 ) + FY2(Y2 − Y 0

2 )

+ FZ1(Z1 − Z0
1) + FZ2(Z2 − Z0

2)

(2.6)

The principle of minimum potential energy is utilized to determine the equilibrium state of

the structure and results in the following system of nonlinear equations shown in Equation 2.7. To

solve this system of nonlinear equations numerically, a linearization of the residualRi(Xtri) is per-

formed using a Taylor’s series expansion and yields Equations 2.8, where Xtri = {X1, Y1, Z1, X2,

Y2, Z2, X3, Y3, Z3, X4, Y4, Z4} is the set of global coordinates for the local nodes that define the

fold angle φ and the index of i iterates through all of the components in the set Xtri.

∂Π

∂Xi

= l0

∫ 1

0

∂ut
∂Xi

+ (Gp(φ)φ̃+G
φ̃2

2

∂p(φ)

∂φ
)
∂φ

∂Xi

dζ − FXi
(2.7)

Ri(Xtri) =
∂Π

∂Xi

= Ri(Xtri, Fi) = f(Xtri − Fi) = 0

Ri(Xtri) ≈ Ri(X
0
tri) + ∆Ri(X

0
tri)∆Xtri = 0 (2.8)

The tangent term is defined as Kik = ∆Ri(X
0
tri) and expanded below in Equation 2.9. This

system of equations is solved iteratively until equilibrium is achieved using the Newton-Raphson

method. This system of equations is solved for each applied load step until either the entire load is

applied to the structure, or numerical convergence cannot be reached.

Kik = fi,k = l0
∫ 1

0
∂ut

∂Xk∂Xi
+Gp(φ)( ∂φ

∂Xk

∂φ
∂Xi

+ φ̃ ∂2φ
∂Xk∂Xi

)

+G∂2p(φ)
∂φ2

φ̃
2
( ∂φ
∂Xk

∂φ
∂xi

+ φ̃ ∂2φ
∂Xk∂Xi

) + 2Gφ̃∂p(φ)
∂φ

( ∂φ
∂Xk

∂φ
∂Xi

)dζ

(2.9)
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2.4 Finite Element Analysis

Finite element analysis (FEA) is a method utilized to solve for stresses and displacements in

structure. These models are utilized in order to solve problems that would otherwise be difficult to

obtain exact solutions for, due to complex geometries or boundary conditions. This form of com-

putational analysis is also much faster and cheaper than traditional prototyping, therefore making

it an ideal tool for preliminary design and optimization. In this work, FEA is completed in Chapter

3 using Abaqus, a commercial FEA software produced by Dassault Systems [73].

FEA works by discretizing a structure into elements based on a mesh applied to the structure.

The displacements are then solved for at each of the vertices (nodes) in the mesh and assembled

to return the global displacements. Each element is assigned material properties and experiences

the forces applied to itself by its neighboring elements. The material properties and the shape

of the elements determine stiffness. The stiffness of each element is calculated and assembled

into a large global stiffness matrix, k. The boundary conditions are then utilized to describe a

global vector, F , in which the limited or imposed degrees of freedom are considered. The linear

FEA problem is defined by the equation F = ku, where u is a vector of nodal displacements.

In Abaqus, this equation is solved using by incrementing the applied loads through ’time’ (i.e.

load steps) and running the Newton-Raphson method to approximate u during each load step.

For more detailed information on FEA, reference Reddy[74]. For more specific information on

Abaqus/CAE, reference the Abaqus User Manual [73].

2.5 Aerodynamic Analysis

In order to determine the shape of an object under flow, like an airfoil, the structural implica-

tions of the aerodynamics forces need to be taken into consideration. In order to accomplish this,

a tool is necessary to approximate the aerodynamic properties of the given structure under flow. In

this work, a simple pressure distribution of the fluid onto the structure of interest is required. To

accomplish this, an aerodynamic analysis tool, called XFOIL is utilized.

The 2D aerodynamic analysis was performed using the XFOIL panel method code. XFOIL’s
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higher order panel method relies on a linear vorticity stream function to solve for the flow field and

streamlines along the boundary of the airfoil. Since the linear vorticity theory assumes inviscid

flow, the code also utilizes a viscous boundary layer component to predict drag coefficients and

improve fidelity compared to purely inviscid implementations. The wake and boundary layer are

described using a two-equation lagged dissipation integral boundary formulation with an en tran-

sition model. This viscous boundary layer model was presented and described in detail by Drela

and Giles in 1987 [75].

XFOIL is intended for use in application with small to moderate boundary layer thickness (low

Reynolds numbers) and angles of attack up to stall. XFOIL has been used previously as a low

fidelity aerodynamic analysis tool to evaluate morphing airfoil concepts in similar flow regimes in

work completed by Woods et al [46].

2.6 Genetic Algorithm

As previously mention in Section 1.2.1, preliminary design requires the coupling of a topology

creation method with an optimizer. In this work, a genetic optimizer is utilized due to its ability

to handle difficult design domains with non-continuous design parameters and multiple objectives.

Henceforth the genetic algorithm will be discussed in terms of the methods and process utilized

for optimization in Sections 3 and 4. In this work, all optimizations are performed using a single

set of optimization functions to perform initialization, selection, crossover, and mutation.

To initialize the GA, an initial population of sizeN is created using the uniform random number

function from the NUMPY Python package. The uniform random number function works by

returning a random number between given bounds with a uniform distribution between the upper

and lower bound. In this application the function is bounded from 0 to 1 for all applications. Next,

these arrays of numbers are mapped to the respective SPIDRS operational characters described in

Section 2.2. The L-System is then utilized to encode the genes as described in Section 2.1. Lastly,

the encoded genes are interpreted using the rules described in Section 2.2 leading to the creation

of structures to evaluate in the GA.

The next step of the GA is to evaluate the fitness of each individual in the population. The
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nature of this evaluation is dependent on the problem being considered, and for the purposed of this

chapter can be considered as a black box. The fitness values are then utilized to perform selection

between the current population and the offspring using the well known NSGA2 algorithm. NSGA2

is a non-dominated sorting algorithm for problems with multiple objectives [28].

The methods used to evolve the population are crossover and mutation. These functions operate

on the selected population to create a new population of a similar size, which will henceforth be

reference to as the offspring. Crossover is performed on two individuals in the population at a given

time using the a bounded simulated binary crossover. The bounded simulated binary crossover is

similar to the one described by Deb and Agrawal [76] and allows the user to assign a variable that

defines the probability of the offspring similarity to the parent. In this application, the parameters

used for the simulated binary boundary function are: a lower bound of 0, an upper bound of 1, and

a crowding degree value of 20.0 (meaning offspring should appear relatively similar to parent).

Notably, crossover is not performed on all individuals in the population in an attempt to preserve

good characteristics from previous generations. In this application, the crossover probability for

any given pair of individuals is 90%.

For mutation, a real-parameter mutation operation was conducted with a mutation probability

of 1/n, n being the length of the design variable. This operator serves to maintain diversity in the

evolving population. Mutation is performed on specific genes in individual when the mutation

probability is met. The new value of the gene is selected from a bounded polynomial distribution

from 0 to 1. The crossover, selection, and mutation operations are all similar to those utilized by

Deb at al. to develop the NSGA2 algorithm [28].

The Distributed Evolutionary Algorithms in Python (DEAP) is a software framework imple-

mented in the Python programming language that allows users to rapidly build evolutionary com-

putational systems to apply the methods described above. DEAP acts as a framework to provide

sophisticated and customizable evolutionary computational systems while maintaining also prior-

itizing code clarity and compactness [77]. These goals are accomplished by implementing two

main structures: the creator and the toolbox. The creator module allows the creation of classes
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for the individual genotype. These classes allow for updates through out the evaluation and enable

the algorithm to evaluate genotypes of various data types such as lists, dictionaries, or trees. The

toolbox acts as a container for the tools that are used as operators in the evolutionary computational

system. Each operator in the toolbox is populated manually by the user with selected tools. For

example, if a selection algorithm is required in the evolutionary computational system, the user

will register a "selection" tool into the toolbox and assign it to use the NSGA-ii algorithm for se-

lection. DEAP offers many options for the selections algorithm, so the user could then decided to

later adjust the selection tool by assigning a tournament style selection algorithm if needed without

altering the main body of the code.
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3. STRUCTURAL TOPOLOGY OPTIMIZATION OF A MORPHING AIRFOIL

3.1 Introduction

Helicopters are one application in which camber morphing airfoils are extremely useful. Unlike

most planes, helicopter blades are largely static without camber altering control surfaces. The

airfoil section used in these rotor blades ends up being a utilitarian design that is not optimized for

any single phase of the flight path, but instead is a compromise that can operate well under several

flight conditions. Mission performance can be significantly increased by implementing a camber

morphing rotor blade section to morph between optimal airfoil shapes during the different stages

of a mission. Traditionally the design of a morphing rotor blade is conducted using a combination

of density based topology optimization methods coupled with engineers prior knowledge of airfoil

strcutural design to parameterize a shape that can later undergo sizing optimization. An example

of this process is shown below in Figure 3.1.

In this work, students attempted to optimize the internal structure of a rotor blade section to

facilitate blade twist along the span. Their first step used the TOSCA structural topology optimiza-

tion package in Abaqus and applied it to a meshed solid region with the OML of the section. This

optimization iteratively deletes elements that experience low stress compared to other elements

in the mesh until the desired volume fraction is achieved or no elements can be deleted without

adverse side effects in the remaining elements. The resulting topology of this process is shown in

Figure 3.1b. The topology is then verified by repeating this process with several different meshes

in order to confirm the results, since this method’s solutions are prone to mesh dependency. Fi-

nally, a person is required to evaluate the resulting topologies and determine parameters that can

be mapped to a predetermined structural model. This method requires the user to subjectively map

the results to the structural optimization domain and does not consider the placement of actuators

in the domain. In Figure 3.1c, we can observed how the topological information from Figure 3.1b

is transformed into structural parameters that will later be optimized.
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(a) Meshed solid airfoil with stress contour (b) Resulting optimal topoglogy using TOSCA in
Abaqus with stress contour.

(c) Resulting parameterized topology dervied from b

Figure 3.1: Density based topology optimization on helicopter rotor airfoil

The SPIDRS design methodology is an alternative to this traditional approach and offers the

ability to evaluate many different topologies as well as the placement of actuators in the airfoil. In

order to apply SPIDRS to this design problem, a process was generated to create topologies inside

of an initial airfoil and then simulate morphing under aerodynamic loading. The initial airfoil shape

and final target shape were predetermined and corresponded to optimal airfoils under specific flight

conditions (i.e. hover and cruise). To generate internal topologies, the SPIDRS algorithm is altered

to accommodate non-linear domains (c.f. Appendix A) and then used to create the internal structure

and place actuators to morph the airfoil. The resulting designs are then evaluated to determine the

torsional stiffness of the airfoil and how well the shape change matched the final targeted airfoil.

This process is shown with the specific function evaluation method in Figure 3.2.

The UH-60 rotor blade was the motivation for this problem. The target shapes and internal

structures derived inspiration from the UH-60, but are unlikely to match exactly due to the propri-

etary nature of the UH-60 blade’s internal structure and exact outer mold line.
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Figure 3.2: Topology design and optimization approach using an updated SPIDRS interpretation
scheme and coupled aerodynamic and structural functional evaluations

3.2 Problem Setup

In order to apply L-System based design to the UH-60 blade, a schematic of the original internal

structure was needed. However, due to the proprietary nature of the UH-60, the internal structure

of the S-76 blade was used to inform the structure [2]. This rotor blade is dominated by a very stiff

spar near the leading edge and supported by a Nomex honeycomb core aft of the spar, as shown

in Figure 3.3. The Nomex honeycomb core prevents actuators from being inserted internally to

the airfoil, so we consider using SPIDRS to generate internal structures to replace the structural

support offered by the Nomex and enabling camber morphing by placing actuators in this domain.

The stiff spar near the leading edge is maintained, but the shape was adapted to a D-Spar to allow

for a simpler SPIDRS domain geometry.
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Figure 3.3: S-76 Main Rotor Details [2]

The blade cross section being considered in this problem has a chord of 0.57 meters and is con-

structed using carbon fiber reinforced composites for the structural members and skin. The initial

OML of the airfoil is given by a class shape transformation (CST) function, with the parameters

listed in Table 3.2. Actuation is provided by shape memory alloy plates embedded into the wing

structure. An internal shear spar is located at 30% chord and the leading edge of the wing is domi-

nated by a D-spar. Aft of the shear spar, the skin is defined by the outer mold line, but the internal

structure is empty. This empty domain is pictured in Figure 3.4 and is called the SPIDRS design

domain. In this area, the internal structural member and actuators are generated by the SPIDRS

algorithm described in Section 2.2. The material assignments for all of the sections of the airfoil

are shown in Table 3.1.
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Rigid D-Spar 
Section

SPIDRS Design Domain

V

Shear Spar
Skin + Non-Actuator Members

Actuator

Figure 3.4: Problem setup for camber morphing airfoil generated with SPIDRS

Part Material Layup Ply Thickness (mm)
D-Spar Graphite Epoxy [02/± 45/902/± 45/02]s 0.2

Shear Spar Graphite Epoxy [02/± 45/902/± 45/02]s 0.2
Skin Graphite Epoxy [02/± 45/± 45]s 0.2

Non-Actuator Members Graphite Epoxy [02/± 45/± 45]s 0.2
Actuators SMA - 2.0

Table 3.1: Class shape transformation parameters for initial and target airfoil shapes

The goal of this problem is to morph the airfoil to a target airfoil shape from an intial shape.

The shapes of both the final target shape and the initial shape are given by the sets of CST param-

eters listed in Table 3.2 and is shown in Figure 3.5. The final shape is aerodynamically favorable

during cruise and experiences both aerodynamic and structural loads due to morphing. The error

between the final morphed shape of the blade under load and the target shape is the objective of

this problem. Additionally, the internal structure of the airfoil must be able to provide a sufficient

amount torsional rigidity for the wing to eventually be scaled into a 3D model and enough static

rigidity to maintain its initial shape under aerodynamic loading.
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Initial Target Airfoil OML

Morphed Target Airfoil OML

Figure 3.5: Target shapes for the initial and morphed conditions as defined by the CST parameters
in Table 3.2.

3.2.1 Structural Analysis

In order to evaluate the structural properties of the 2D airfoil section outlined above, a common

finite element model was created. This section details the steps taken to create this model and

the methods utilized. First, the OML of the airfoil was sketched onto a 2D plane using a spline

sketching tool in Abaqus. This spline is constructed using a set number of non-dimensional points

along the chord, and then transformed into the problem domain. Notably, the trailed edge of

this airfoil is left open in the Abaqus model to prevent skin buckling during actuation, which

has previous occurred in similar problems [37]. The spline is also amended by including any

nodes from the SPIDRS topology that have been created along the OML. This inclusion later

allows for the effective assignments of materials, sections, loads, and boundary conditions. Second,

the internal topology is obtained from SPIDRS and sketched on the same 2D plane. The result

is a completely 2D sketch of the airfoil which is then extruded 0.02 m (2 cm) along the span.

This sketch consists of shells, meaning the the structures created during this phase of model must

eventually be meshed using shell elements. This type of element reduces the computational time

required by the FEA, because they do not consider stress in the direction perpendicular the shell

surface. This assumption is valid for shapes with very little relative thickness, like the skin and

actuator materials being utilized in this model.

Next, the materials for each part are generated with their respective material properties and

assigned. The graphite epoxy lamina considered has the following properties: E11 = 142e9 Pa,
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CST Parameters
Initial Target

Coefficient Upper Lower Upper Lower
c1 0.170605 0.134677 0.170837 0.134860
c2 0.163512 0.036237 0.136972 0.063118
c3 0.141582 0.110329 0.168583 0.082946
c4 0.1841999 -0.013120 0.371892 -0.013120

Table 3.2: Class shape transformation parameters for initial and target airfoil shapes

E22 = 0.979e9 Pa, ν12 = 0.42, G12 = G21 = 5.93e9, and /rho = 1580 kg/m3. This lamina is

assembled into the various composite layups listed in Table 3.1. The lamina’s thickness is 0.0002

m (0.2 mm). The layups utilized are all balanced and symmetric to avoid unpredictable mechanical

couplings in the material that could effect the morphing.

The material assigned to the actuator is intended to mimic a piece of shape memory alloy.

However, full modeling of SMAs in Abaqus can be computational expensive, so an alternative

approach is utilized. The actuator material is assigned a similar Young’s Modulus (E = 74.24e9

Pa) and density (ρ = 6440.0 kg/m3) as the SMA, and actuated to a comparable actuation strain by

setting the thermal coefficient and heating the material to achieve the desired strain. In this case,

the actuation material has a 2% strain imposed during actuation by setting the thermal coefficient,

α, to 0.02, and applying a thermal field with a magnitude value of 1.

The result of this process is a 3D shell part onto which loads and boundary conditions can

be placed. The shell part is shown in Figure 3.6a. Depending on the analysis being done, the

method of load application is different. However, for both the torsional rigidity analysis and the

pressure displacement analysis, the meshing of the part is similar. The part is meshed using S4R

shell elements with a global seed size of 0.01. The resulting mesh is shown below in Figure 3.7.

Generally an extruded shell part would be meshed one with one element of depth, but in this

application the part is meshed with two elements in the span wise direction. This mesh was chosen

to allow for better elements aspect ratios in the smaller internal structural members.
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a) Common airfoil part sideview

c) Common airfoil part isometric view with 
material assignments and shell thickness 

rendered

b) Common airfoil part sideview with materials assignments and shell 
thickness rendered

Figure 3.6: Common structural model in Abaqus.

Figure 3.7: Mesh of common structural model in Abaqus.
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3.2.1.1 Torsional Rigidity

In order to find the torsional rigidity of the airfoil, Equation 3.1 is utilized. T represents the the

torque applied to a structure, θ represents the angle by which the structure rotates under a given T ,

L is the length along the axis of rotation, and GJ is the torsional rigidity of the structure.

T

θ
=
GJ

L
(3.1)

To model this testing processing Abaqus, a infinitely rigid part is created and tied to one of

the span wise edges in the common structural model. The other span wise edge is encastred to

prevent any translations or rotations. Then, a moment is applied to the rigid part, which imparts the

moment onto the structure. This application of the moment is meant to mimic the internal moment

that would be created along the span of a full rotor blade model that was being twisted. Finally,

the resulting change of angle is measured on the rigid part and utilized to calculate the torsional

rigidity of the part. The boundary conditions for this processes are shown below in Figure 3.8.

Loaded Edge
Fixed Edge

Figure 3.8: Boundary conditions applied to structural model in Abaqus.
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3.2.1.2 Outer Mold Line Displacement

In order to model the displacement of the OML, pressure loads and actuation loads are consid-

ered. This function evaluation is completed by applying a pressure load to the common structural

model described above as shown in Figure 3.10. These pressure distributions are generated by the

aerodynamic evaluation using XFOIL (c.f. Section 2.5). The pressure load is applied at the span

wise edges and the center line of the airfoil. In addition to the pressure loads, a thermal load is

applied to the entire structure. The thermal load is applied via a thermal field in Abaqus and has

a magnitude of 0 or 1, where 0 represents 0% actuation and 1 represents 100% actuation. This

thermal field is what induces morphing in the structure.

Z-Symmetry
Fixed Edge

Figure 3.9: Boundary conditions applied to structural model in Abaqus.

There are two boundary conditions applied to the airfoil. First, the leaded edge D-Spar and

Shear spar are encastered to prevent and translations or rotations. This condition is to ensure that

each design is fixed similarly in space regardless of the internal structure generated by SPIDRS.

Second, the span wise edges have a Z-symmetry condition imposed. This symmetry is used,

because this small spanwise section is theoretically a part of a much larger wing or rotor. These
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boundary conditions are displaced graphically in Figure 3.9.

After analysis is completed, the resulting output database of the model is post processed in

order to find out the displacements and stresses in the design. Post processing works by querying

elements that have been previously assigned to sections in the model based on geometric location

or material properties. The displacement is queried for all nodes on the OML surface of the airfoil

and saved as a Python dictionary for evaluation of the shape objective. The Von Mises stress is

queried for each element in its respective material section and the maximum value for each material

is saved. This stress is later used to check the stress constraint in the optimization.

Figure 3.10: Pressure load applied to structural model in Abaqus.

3.2.2 Aerodynamic Analysis

In order to evaluate the aerodynamic loads on on the 2D airfoil section, an aerodynamic anla-

ysis was performed using the XFOIL panel method code in conjunction with the AeroPy Python

package. XFOIL has been used previously as a low fidelity aerodynamic analysis tool to evaluate

morphing airfoil concepts in similar flow regimes in work completed by Woods et al [46]. In our

application, the AeroPy module is also utilized to facilitate easy data handling and transformations

[?]. Here, the steps taken to find the pressure distribution for the airfoil as well as the parameters

used, will be described in detail.

First, the shape of the airfoil is described by listing the upper and lower coordinates in or-

der from trailing edge to leading edge and leading edge to trailing edge respectively. The python

XFOIL Module developed by Leal[?] is then used to normalize these coordinates along the chord

and rotate the airfoil as appropriate for usage in the XFOIL program. Second, the normalized
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and rotated coordinates are saved to a text file for the XFOIL software to later read from. Third,

the XFOIL module is used to submit the command to open the XFOIL program with the correct

aerodynamic parameters and file names. In this work, the Reynolds number considered was ap-

proximately 3.2e6 and was calculated based on the dynamic viscosity of air at 2000 m, with a free

stream velocity of 81 m/s, and a chord of 0.57 m. The angle of attack utilized in the XFOIL evalu-

ation is 0 deg. From the XFOIL program, the pressure, lift, and drag coefficients are returned, but

not the forces imparted on the airfoil itself. Fourth and finally, from the pressure coefficients, the

geometry of the airfoil section, and the aerodynamic parameters, the pressure forces are calculated

using the XFOIL module. The result is an array of pressure values that can then be applied to the

structural model as shown in Figure 3.10.

3.2.3 Fluid Structure Interaction

In this problem, the structure needs to undergo an evaluation to determine the shape of the

airfoil under aerodynamic loading for both the initial and morphed configurations. This evaluation

must consider both the structural deformation caused by the aerodynamic pressure load and the

changes in the pressure load due to shape changes caused by structural deformation or actuation. A

coupled fluid structure interaction (FSI) analysis is utilized to concurrently solve for the boundary

conditions on the airfoil and the final OML of the morphed configuration. An FSI analysis operates

by coupling a method for structural and aerodynamic evaluations by sharing information about the

updated configurations between the two evaluations. In this work, a loosely coupled FSI analysis

in Abaqus and XFOIL is utilized. The data flow for this method is outline in Figure 3.11.

Figure 3.11: Loosely coupled fluid structure interaction scheme [3]
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In this coupling, the initial airfoil shape is utilized to determine the initial pressure distribution.

Next, the resulting deformed geometry is utilized to find the new pressure distribution and to create

an updated structural model that reflects the deformed shape. This process is iterated until geomet-

ric convergence is achieve or the maximum iterations occurs. In this work, geometric convergence

is defined by two points at the trailing edge of the airfoil. Therefore, convergence is reached when

the tip of the trailing edge converges to a single location in space (±0.001m) for two consecutive

solutions.

In an FSI analysis, there is always the possibility that the aerodynamic and structural solutions

are not able to find a concurrent solution for both the aerodynamic and structural models. To ac-

count for this, a limit on the number of iterations between the structural and aerodynamic analysis

is implemented. In this work, an upper limit of 15 iterations is used. This simple numeric upper

limit is used in other similar work [49] and guarantees a manageable run time for the coupled

evaluation.

3.2.4 Genetic Optimization Framework

To set up the genetic optimization, the objectives and constraints of the problem need to be

formalized. Previously, we have noted that the resulting airfoil design should be capable of main-

tain the prescribed initial shape under aerodynamic loads, should change shape when actuated to

match the targeted airfoil shape, and should not lack torsional rigidity. In order to evaluate these

requirements, a process was developed to describe the data flow required to evaluate each design

for the GA. This process is shown in Figure 3.12.

Notably, this flowchart does not depict an FSI evaluation to determine that the airfoil design

is capable of maintain the initial prescribed shape. To decrease the computational cost of this

problem, the airfoils are assumed to match the initial sufficiently well if they pass the torsional

rigidity check. This assumption is made, because member that provide torsional rigidity should

also provide stiffness in the airfoil to prevent major shape change due solely to the aerodynamic

loads.

This geometric mean square error is calculated by comparing the OML of the morphed airfoil
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Figure 3.12: Flowchart describing the data flow for any single design evaluation

under aerodynamic loading to the objective airfoil shape. To ensure consistency, the x-coordinates

of the list containing the deformed OML are used to calculate a list of objective y-coordinates

using a polynomial defined by the CST parameters. The square of the difference between each

y-coordinate is summed to represent the total shape error of the deformed configuration, and the

average of this value is taken as the mean square error.

Mass is considered as the second objective and is necessary to prevent the genetic algorithm

from populating solely with actuating members to provide stiffness. Without this objective, there

is no penalty for utilizing actuating members for structural stiffness, despite their much higher

density and cost of implementation.

The problem is constrained in order to penalize designs that violate stress constraints or without

sufficient torsional rigidity. If a design fails a constraint, a penalty value of 1000 is assigned to the

individual for the shape objective in the GA.

Using the methods, objectives, and constraints outlined above, an optimization is performed

with 100 members per generation and 100 generations. This totals to 10,000 function evaluations
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for the optimization. A large population size was utilized to ensure genetic diversity in the first

generations to prevent premature convergence to local minima.

Design Problem Statement
Minimize: Shape Error and Mass
by varying: 2 axiom characters,

5 rule assignments (18 genes each)
subject to: GJ ≥ 100000GPA/m,

σiV M < σicrit
NSGA-II Parameters

100 members for 100 generations
Pcross = 0.9, ηcross = 50

Pmutation = 1/92, ηmutation = 50

Table 3.3: Genetic optimization problem statement and NSGA-II parameters

The genetic optimization is conducted using the DEAP package (c.f. 2.6) to manage gener-

ation, selection, mutation, and crossover. A uniform random number generator is used for the

generation of each genome in the original population. Selection is performed using the NSGA2

algorithm (c.f. 2.6 for background on NSGA2). The original generation is evaluated and then

mating and mutation are performed. In this application, mating is performed using the cxSimulat-

edBinaryBounded tool in DEAP. This mating process executes a simulated binary crossover that

modfies in-place the input individuals, which is utilized due to it’s similarity to the cross over pre-

sented in the original NSGA2 work. Mutation is performed using the mutPolynomialBounded tool

in DEAP. This mutation scheme was also selected due to it’s original implementation in NSGA2.

The specific parameters for the crossover and mutation tools are listed in Table 3.3.
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3.3 Results

The optimization returned 48 Pareto optimal solution. Their objective values and associated

genes are listed in Table 3.4 and are plotted in Figure 3.13. The results shown in blue indicate all

of the viable designs from the optimization and the red dots show the Pareto optimal solutions,

with a red line connecting these solutions to approximate the Pareto frontier.

Figure 3.13: Pareto front for morphing airfoil design optimization.

Upon examination of the results, it is clear that the Pareto front is segregated into several

clusters that produce similar masses and shape performance values. Representative examples of

these clusters are shown in Figure 3.14. Interestingly, there is only one design on the pareto front

that includes actuator material on the OML of the airfoil, design a (Table 3.4 item 48). This design

also happens to be the best performer in terms of the shape matching objective and matches the

target airfoil with an objective value of 0.000158 as shown in Figure 3.15.
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(a) (b)

(c) (d)

(e) (f)

(g)

Unmorphed (Composite) 
Unmorphed (Actuator) 
Morphed OML 

ABCDE

F

G

Figure 3.14: Pareto front with 7 representative designs from areas of the Pareto front
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Figure 3.14b is representative of a cluster of 11 solutions (Table 3.4 items 38-47) that have

similar geometries and similar shape objectives values of approximately 0.0002. In this cluster, all

of the designs have the same number of structural and actuator members that have a very similar

topological layout. The nodal locations between these designs tend to vary slightly though, which

cause small differences in the length or angle of structural members. The differences between

these designs are a result of the real number parameters used by the SPIDRS algorithm to create

the topologies.

Figure 3.14c is representative of a single solution (Table 3.4 item 37) on the Pareto front. This

design is the most similar topology to traditional morphing airfoil design, in that it places several

spars throughout the structure and uses a single actuator to operate as a tendon to deform the

airfoil. On the other hand, Figure 3.14d represents the extreme version of this type of design. In

this cluster of 12 designs (Table 3.4 items 25-36) we notice very similar mas objectives and shape

objectives of roughly 0.00048. These designs operate similarly to item 37, in that they contain a

single actuator acting as a tendon to contract and deform the airfoil, but exhibit much less structure.

As a result, they are obviously lighter but also the resulting shape is not as close to the targeted

morphed condition.

Figure 3.14e is representative of the solution closest to the utopia point on the Pareto front (Ta-

ble 3.4 item 24). This design has very little structure, but is able to meet some shape requirements

by distributing the actuator material through the structural members that do exist. There are two

other points near e on the Pareto front that feature similar topologies, but have different location

of the actuation material (Table 3.4 item 22-23). Up to this point, all of the designs on the Pareto

have featured a small structural connection in the trailing edge of the airfoil. This makes sense for

this problem implementation, because the trailing edge of this airfoil is left open in the structural

model to prevent skin buckling upon actuation.

Figures 3.14f and 3.14g represent the rest of the designs on the Pareto front. These two designs

represent the topologies utilized by the remaining 21 Pareto optimal designs. These designs vary

much more significantly in terms of shape objective due to different placements of actuation ma-
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terial, but the mass stays relatively similar. Most of the deformation experienced by these designs

is a result of the aerodynamic loading and not the actuation material.

(a) Target morphed airfoil shape

(b) Final morphed airfoil with best shape fitting ob-
jective

(c) Target airfoil overlaid onto best shape fitting de-
sign

(d) Final morphed airfoil with lowest mass (e) Target airfoil overlaid onto lowest mass design

Figure 3.15: Best shape and mass objective airfoils in comparison to the target morphed shape

By comparing the best shape matching objective to the worst in Figure 3.15, we can see that

this process was able to find a very good shape match and very light designs. What this also shows

is that the shape objective matching for this problem is likely much more important than the mass

objective, because the ideal mass objective problem will return an empty airfoil design.
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Pareto Optimal Solutions

# Mass Objective Shape Objective # Mass Objective Shape Objective
(kg/0.02m) (kg/0.02m)

1 0.1109 0.003440 25 0.1486 0.000496
2 0.1109 0.003361 26 0.1487 0.000491
3 0.1109 0.003217 27 0.1487 0.000490
4 0.1111 0.003129 28 0.1487 0.000489
5 0.1111 0.003059 29 0.1487 0.000488
6 0.1112 0.002794 30 0.1488 0.000487
7 0.1112 0.002686 31 0.1488 0.000485
8 0.1153 0.002655 32 0.1488 0.000484
9 0.1173 0.002583 33 0.1488 0.000482

10 0.1173 0.002568 34 0.1489 0.000481
11 0.1174 0.002562 35 0.1490 0.000473
12 0.1178 0.002487 36 0.1494 0.000461
13 0.1201 0.002468 37 0.1521 0.000459
14 0.1214 0.002189 38 0.1650 0.000289
15 0.1214 0.001787 39 0.1832 0.000264
16 0.1218 0.001757 40 0.1833 0.000632
17 0.1219 0.001664 41 0.1841 0.000252
18 0.1223 0.001642 42 0.1843 0.000250
19 0.1223 0.001633 43 0.1843 0.000248
20 0.1295 0.0010429 44 0.1846 0.000247
21 0.1295 0.001034 45 0.1847 0.000246
22 0.1312 0.000763 46 0.1848 0.000244
23 0.1312 0.000759 47 0.1849 0.000243
24 0.1484 0.000505 48 0.2798 0.000158

Table 3.4: Objective values for Pareto optimal results.
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4. ORIGAMI FOLD PATTERN DESIGN AND OPTIMIZATION FOR KINEMATIC

OBJECTIVES

4.1 Introduction

In order to apply L-System based design to aductive origami design problems, a process was

generated to create topologies to represent origami fold patterns and then simulate the resulting

folded shape. In this process fold patterns are generated in a specific design domain according to

the rules describe in Sections 2.1 and 2.2. The fold patterns are then rotated and/or translated, if any

symmetry conditions are present in the problem that can simplify the design domain. Finally, the

fold pattern is evaluated by simulating the fold process as described in Section 2.3. This process

is shown graphically in Figure 4.1. The user is able to change to problem being evaluated by

changing the initial design domain of the problem, the boundary conditions applied to the pattern

during the folding simulation, and/or the objective being evaluated.

This work first considers the well establish square twist pattern, which has previously been

used for abductive origami design, as a validation problem. After validation this process is ap-

plied to a general continuous kinematic response objective. Here, the goal is to discover origami

fold patterns that enables an objective node in the fold pattern to follow a targeted kinematic re-

sponse throughout the folding process. The targeted response can be chosen somewhat arbitrarily,

because the overarching objective of the work is to valid this process as a design tool for these

types of problems. The specifics kinematics of these objectives will be discussed explicitly in their

respective sections.
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(L-System Genes)

Folding Simulation

Figure 4.1: Fold pattern generation and simulation
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4.2 Process Validation with Establish Fold Pattern

4.2.1 General Problem Setup

The square twist pattern was selected for evaluation due to the abundance of literature detailing

its kinematic folding process [78, 79, 80], as well as previous work utilizing the truss based folding

simulation (c.f. Section 2.3) to simulate this pattern [81, 1]. The ideal square twist pattern is

shown in Figure 4.2a. This pattern requires an inward twisting and folding motion to achieve the

flat foldable configuration shown in Figure 4.2b. The square twist is a well known pattern, but

displays a relatively complex kinematic motion to achieve the flat fordable configuration and has

not been modeled accurately using ground structure or ice cracking methods, making it an ideal

benchmark for this novel design process. As previously mentioned, the setup of any given origami

design problem is posed by determining the initial design domain and the boundary conditions and

meta-parameters for the folding simulation. The details of these setups are described below.

(a) Square twist fold pattern (b) Flat foldable configuration of the square twist
fold pattern

Figure 4.2: Square twist origami pattern in its flat and folded configuration
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4.2.1.1 Initial Design Domain and Symmetry

The design domain for the square twist pattern is the first quadrant of a square graph, as shown

in Figure 4.3. This initial design space has a domain and range of [0, 1] so that it can be easily scaled

to any other length as needed. The initial set of nodes (N ), edges (E), and faces (F ) considered in

the SPIDRS algorithm are

N = {1 : (0, 0), 2 : (0.5, 0), 3 : (1, 0), 4 : (1, 1), 5 : (0, 1), 6 : (0, 0.5)},

E = [[1, 2, 3], [3, 4], [4, 5], [5, 6, 1]],

F = [[1, 2, 3, 4, 5, 6]].

Nodes 2 and 6 are included to ensure consistent application of boundary conditions in the folding

simulation. The material assignments from the SPIDRS algorithm are not utilized and all generated

edges are considered active fold lines.

The initial domain is rotated counter clockwise about the origin to populate the three remaining

quadrants. Due to the rotationally symmetric nature of the square twist pattern, it is logical to

simplify the problem to a single repeatable unit cell of the pattern. This choice of design domain

decreases computational complexity and is an important step for solving any problem that exhibits

known symmetries in the solution. This process is demonstrated visually in Figure 4.3.

The entire pattern is then triangulated, using Delaunay triangulation1, to make it compatible

with the assumptions of the folding simulation. Any new edges are recorded and treated as inactive

fold lines by the simulation.

The selection of the initial domain and symmetry conditions are based largely on the kine-

matic objective that is being optimized and the boundary conditions required to facilitate that. The

application of boundary conditions in the folding simulation must be consistent across various de-

signs and necessitates the existence of nodes at specific points. In this problem, nodes are added

1a triangulation scheme to maximize the minimum angle of all angles of the resulting triangles [?]
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Figure 4.3: Population of origami fold pattern using rotational symmetry about the origin of the
SPIDRS graph (outlined in red)

at (0.0, 0.5) and (0.5, 0.0) to facilitate boundary condition application in the folding simulation.

Additionally, the rotational symmetry is selected to assist in facilitating boundary conditions by

allowing the fold pattern to have a central anchor point at the origin.

4.2.1.2 Boundary Conditions and Folding Simulation Parameters

The boundary conditions and loading for the square twist problem are shown below in Figure

4.4. To run the folding simulation, the center node is fixed, and two nodes are constrained to

move along the x-axis. These boundary conditions are needed to prevent rotation about the central

node in the folding simulation, since moments are not constrained in the truss element. The load

applied to the design in the folding simulation is a prescribed displacement on the two outer most

nodes on the x-axis. The displacement is in the X and Z direction and applied in an arc. The input

displacement in incrementally applied through 400 load steps in the folding simulation as described

in Section 2.3. In this example, the input displacements are determined based on the known loading

of the square twist pattern. The displacement arc is defined by a series of displacement steps, where

x1 = (1 − cos(θ)) ∗ d, x2 = (cos(θ) − 1) ∗ d and z = −sin(θ) ∗ d. The θ ranges from [0, 0.7π]

and has a moment arm d that is equivalent to 1/4 of the total length scale of the design.

In Figure 4.4, four nodes are indicated as output nodes. The objective of the folding opti-

mization is determined as a measure of the amount of actuation permitted in the prescribed output

direction. For the square twist pattern, the objective indicates that the interior nodes should move
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Input: (x , 0, z)Input: (x , 0, z)

Output: (0, -1, 1)

Output: (0, 1, 1)

Output: (-1, -1, 0)

Output: (0, 1, 1)

1 2

Figure 4.4: Boundary conditions, input, and output directions for the square twist problem

up out of plane and in towards the center. Further, the outer nodes should provide the twisting

motion required. The design that enables the greatest actuation in the indicated direction of the

output direction vectors (shown in Figure 4.4) is considered the optimal design.

In the folding simulation, several parameters are necessary to describe the material and penal-

ties. The Young’s Modulus, E in Equation 2.2 is 1e12 Pa. The spring constant, G, is different for

’normal’ and ’stiff’ fold lines, with stiff fold lines being the product of triangulation and not the

topology creation process. G is equal to 1e1 and 1e4 for normal and stiff folds, respectively. For

the penalty function presented in Equation 2.5, C is equal to 1.0, and B is equal to 10.0.

The constraint on triangulation mesh quality has been relaxed from 0.2 to 0.1 to allow for

more viable designs, as the SPIDRS topology creation methods has a tendency to create very small
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polygonal subdomains which could not otherwise pass the meshing constraint. The results of this

relaxation can cause designs to experience more deformation than preferred along the stiff foldlines

during the folding simulation process.

This implementation utilized the Newton-Raphson method to solve each non-linear iteration of

the imposed displacement. The displacement is applied over 400 loading steps, with a maximum

of 100 Newton-Raphson iterations per loading step allowed. The tolerance for convergence in each

load step is 1e−8.

4.2.1.3 Genetic Optimization Framework

The design objective is to find the optimal fold pattern to facilitate actuation in the specified

directions. In this framework, the objective is evaluated using the folding simulation tool described

in Section 2.3, which acts through tuning the fold stiffness. Here, the fold stiffness is modeled as a

torsional spring with stiffness, G. Lines generated from the SPIDRS topology in the initial graph

are considered active and given small values of G.

Lines generated from the Delaunay triangulation process are considered inactive folds and

assigned large values of G. The inactive folds also form a coarse discretization of facets to capture

facet bending in the design. The fold stiffness for active folds is Gactive = 10α1 , where α1 = 1,

and the fold stiffness for inactive folds is Ginactive = 10α2 , where α2 = 4.

The output nodes are prescribed by the the constant vector c associated with the selected output

degrees of freedom and the entries to this vector correspond with the vectors shown in Figure 4.4.

The formal objective is obtained by taking the product of the transverse of the vector c with the

global nodal displacements of the objective nodes, u. The physical objective is to maximize this

product, so the formal objective is multiplied by −1 to reframe the optimization statement as a

minimization. There are 78 genes that are varied to find the minimized objective and are related

to the 2 character axiom, ω0, and 4 production rules, P (c.f. Section 2.2). Notably, the change

material operation (c.f. Section 2.2.0.5) is not used in this optimization and therefore the 18 genes

associated with it are left out. The initial optimization is not subject to any constraints and is run

for 10 generations with a population of 240 individual designs.
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Design Problem Statement
Minimize: −cTu
by varying: 2 axiom characters,

4 rule assignments (18 genes each)
NSGA-II Parameters

240 members for 10 generations
Pcross = 0.9, ηcross = 50

Pmutation = 1/92, ηmutation = 50

Table 4.1: Genetic optimization problem statement and NSGA-II parameters

4.2.2 Specific Problem Extensions

4.2.2.1 Enforced Bisection

Many well known flat foldable origami patterns have observable symmetry and have foldlines

which only bisect faces, including the square twist pattern. These patterns have emerged naturally

due to the ability of foldline which bisect faces to meet both Kawasaki and Makawa’s theorems for

flat foldability [69]. This knowledge has been utilized to create ground structure based approaches

to generating origami fold patterns that incorporated bisection into the original ground structure

[81], and develop topologies creation approaches that follow these rules inherently in their encod-

ing [69]. However, this type of approach inherently limits the design space of the optimization to

designs in the preexisting ground structure as discussed in Section 1.2.3. In alternative methods

of origami creation, the a priori knowledge of bisection is generally not utilized due to the black

box nature of many topology creation algorithms. Due to the basis of SPIDRS being in 5 simple

production rules, it is easy to adapt the relevant production rules to specialize the algorithm to the

problem in question by enforcing bisection during new structure creation.

In order to dictate bisection in the design process, the move real (c.f. Section 2.2.0.2) and the

create real (c.f. Section 2.2.0.4) operations are altered. To do this, in both commands, α1 is used

to dictate the first part of the motion, where the operator proceeds bN × σα1c nodes around the

current face. In the second part of the command, the distance the node proceeds is altered from
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N × σα1 − bN × σα1c to 0.5. This change allows SPIDRS to traverse the design space as before,

while ensuring that any new nodes or edges are only generated at bisecting locations between

nodes.

To test the hypothesis that patterns with imposed bisection will outperform patterns without

bisection, two optimizations are run with the two different sets of production rules, P . The formal

optimization statement is identical for both optimizations as shown in Table 4.1. The difference

between the two optimizations is that the set of production rules are varied.

4.2.2.2 Self-Intersection Detection

Previous implementations of origami folding simulations using the method discussed in Section

2.3 have not tracked global self intersections [81]. In fact, the global self intersection problem is

generally not addressed during fold simulation and is addressed only as a post processing step

due to the computational expense of implementing full contact modeling. However, ignoring the

possibility of self intersection prevents true optimization due to the ability of patterns to be over-

folded and outperform physically realizable patterns.

As an example, Figure 4.5 shows the folded configuration of a square twist pattern. In Figure

4.5a, the pattern is folded to completion in the folding simulation and experiences self intersections

in faces 1 and 2 (circled for emphasis). In Figure 4.5b, the same pattern is displayed at the load step

before self intersection occurs. What is notable about these two configurations of the same designs,

is that the design that experiences self intersection outperforms the design that does not experience

self intersection in the kinematic objective posed for this problem. These non-realizable foldings

with better objective valuea are prone to bias the optimizer towards non-physical solutions. When

the optimal designs are post processed, they will not outperform the optimal design from a genetic

optimization that was able to account for these intersections during the folding simulation.

In order to test this hypothesis, a fast and reliable form of self-intersection detection needs to

be implemented in the folding simulation code. While full contact modeling is out of the question

due to computational expense and scope of the project, a quick geometric intersection check is

capable of meeting these requirements. Möller’s Algorithm for triangle triangle intersection in
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(a) Design folded through all load steps (b) Design folded until intersection de-
tected

Figure 4.5: Actuated square twist origami pattern with and without fold intersection checking
implemented

Design Problem Statement
Minimize: −cTu
by varying: 2 axiom characters,

4 rule assignments (18 genes each)
subject to: M = 0

NSGA-II Parameters
240 members for 10 generations

Pcross = 0.9, ηcross = 50
Pmutation = 1/92, ηmutation = 50

Table 4.2: Genetic optimization problem statement with self-intersection constraint

three dimensions [?] was implemented to perform this geometry check at the end of each loading

step in the folding simulation (c.f. Appendix B). Due to the element shape of the truss-based linear

code already having a triangular shape requirement, all were guaranteed to be discretized into

a triangular mesh making this a practical implementation. The resulting new formal optimization

statement with the self-intersection constraint is shown in Table 4.2, whereM is a value associated

with triangle-triangle intersection check the indicates if intersection has occured (1) or not (0).
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4.2.3 Results

4.2.3.1 Self-Intersection Detection

In order to test the hypothesis that co-current self intersection detection will perform better than

without intersection checking, two square twist optimizations are conducted with the same initial

design space and folding simulation parameters. In the first optimization, no self intersection

detection was performed and the minimum objective of each generation is shown by the blue line

in Figure 4.7. In the second optimization, self intersection detection was performed during the

folding simulations and the objective was determine to be the objective of the design at the loading

step before self intersection occurs. The minimum objective of each generation is shown by the

red line in Figure 4.7. From these results, one might conclude that the optimization without a self-

intersection constraint outperforms the optimization with the self-intersection constraint, but the

objectives that were determined without the self-intersection constraint are likely non-physically

realizable.

(a) Optimal fold pattern (b) Fully folded design (c) Partially folded design, prior to
self-intersection

Figure 4.6: Results of genetic optimization with and without self-intersection constraints before
and after post processing to physically viable designs.
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To demonstrate this concept, the a fold pattern without the self-intersection constraint is shown

in Figure 4.6a. The fully folded design is shown in Figure 4.5b and the partially folded design is

shown in Figure 4.6c. The fully folded design has an objective value of -2.149, while the partially

folded design has an objective value of -2.121. However, the fully folded design is not physically

realizable due to the self-intersections that occur.

Figure 4.7: Results of square twist genetic optimization with no post processing

In Figure 4.8, the results of the optimization without the self-intersection constraint are post

processed to determine where self-intersection occurs and the objectives at this point are re-plotted.

From this graph, it’s clear to see that imposing the self-intersection constraint improves the results

of the optimization process.
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Figure 4.8: Results of square twist genetic optimization with all designs only folded to physically
viable states (i.e. no self intersection in optimal designs)
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4.2.3.2 Enforced Bisection

The optimization proposed in Table 4.2 was run with the alter bisection production rules and

compared to the original SPIDRS production rules. The results of these optimizations are shown

in Figure 4.9. The altered production (bisection constraint) rules are able to converge to a perfect

square twist pattern very quickly, while the original (no bisection constraint) takes longer and does

not reach a perfect objective. This is expected, as the optimization without bisection constraints is

very unlikely to place an exact bisecting fold line. Instead, the optimization finds a fold line very

close to bisection and utilizes this design to evolve, eventually getting stuck in a local minimum.

Figure 4.9: Results of twist genetic optimization with enforced bisection and no enforced bisection
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This result points to the conclusion that bisection enforcement is useful for increasing conver-

gence speed for designs in which bisection is favorable. However, we can also see that without

the bisection constraint, the optimization framework laid out by SPIDRS is very good at finding

the general pattern without interference. While the exact square twist was not found, the design

without the bisection constraint would undoubtedly have been equally useful in preliminary design.
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4.3 Continuous Kinematic Response Objective

4.3.1 Problem Setup

Ideally, the SPIDRS design process should be applicable to any arbitrary objective. To test this,

an arbitrary kinematic objective was devised. In this objective, a single node is targeted to follow a

2D line in space during the folding process. This type of objective could be useful in any scenario

with limited initial volume that requires a prescribed movement, like the deployment of a structure

into space.

4.3.1.1 Initial Graph and Symmetry

The specific objective targeted in this section is a node that starts at (0.0, 0.0, 0.0) and moves

incrementally along the vector < 1, 1, 0 > to the point (0.5, 0.5, 0.0). This motion is depicted by

the green arrow labeled ’Output Path’ in Figure 4.10. The initial graph considered is the simplest

possible graph, as the goal is to determine a fold pattern to meet the kinematic objective without any

a priori knowledge of the solution. Also, due to the lack of intuition of the solution, no symmetry

conditions are applied. Without a strong intuition of symmetry in the final solution, a symmetry

condition will likely serve very litter purpose and would bias the pattern by placing a fold line at

the bisection point in all designs.

The graph for this objective is a square in the XY plane with the lower left corner situated at

the origin. This space has a domain and range of [0, 1] so that it can be easily scaled to any other

length as needed. The initial parameters utilized by SPIDRS are described as the nodes, N = {1 :

(0.0, 0.0), 2 : (1.0, 0.0), 3 : (1.0, 1.0), 4 : (0.0, 1.0)}, edges, E = [[1, 2], [2, 3], [3, 4], [4, 1]], and

faces, F = [[1, 2, 3, 4]]. The material assignments from the SPIDRS algorithm are not utilized and

all generated edges are considered active fold lines. As a result, the design variables associated with

the change material production rule (c.f. 2.2.0.5) are removed and only 78 total design variables

are necessary.
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Input Conditions: (0, y, 1)

Output Path: <1, 1, 0>

1 2

34

Figure 4.10: Boundary conditions, input, and output directions for the continuous kinematic re-
sponse objective

4.3.1.2 Boundary Conditions and Folding Simulation Parameters

The boundary conditions on the design are also very simple in order to minimize the need for

human intuition to solve the given problem. The boundary conditions are shown graphically in

Figure 4.10. The objective node, node 1, is completely free of boundary conditions and therefore

able to move in all 3D dimensions during the folding process. Node 2, is prescribed a displacement

in the Y direction. The displacement is only applied in the Y direction and starts at Y = 0.0 and

moves incrementally to Y = 0.5. This displacement is applied over 500 load steps in the folding

simulation. The Z component of the loaded node is also constrained at Z = 0, while the X

component of this node is free in space. This constraint was used to prevent rigid body rotation

about the pinned edge ([3, 4]) in the folding simulation code. Node 3, is completely fixed and

serves as the grounding point of the structure. Lastly, node 4 is fixed in the Y and Z directions,
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but given freedom in X . This condition was prescribed to allow for contraction of the design if

necessary along the upper pinned edge.

In the folding simulation, several parameters are necessary to describe the material and penal-

ties. The Young’s Modulus, E in Equation 2.2 is 1e12 Pa. The spring constant, G, is different for

’normal’ and ’stiff’ fold lines, with stiff fold lines being the product of triangulation and not the

topology creation process. G is equal to 1e1 and 1e4 for normal and stiff folds, respectively. For

the penalty function presented in Equation 2.5, C is equal to 1.0, and B is equal to 10.0.

The constraint on triangulation mesh quality has been relaxed from 0.2 to 0.1 to allow for

more viable designs, as the SPIDRS topology creation methods has a tendency to create very small

polygonal subdomains which could not otherwise pass the meshing constraint. The results of this

relaxation can cause designs to experience more deformation than preferred along the stiff fold

lines during the folding simulation process.

This implementation utilized the Newton-Raphson method to solve each non-linear iteration of

the imposed displacement. The displacement is applied over 500 loading steps, with a maximum

of 50 Newton-Raphson iterations per loading step allowed. The tolerance for convergence in each

load step is 1e−8.

4.3.1.3 Genetic Optimization Framework

The design objective is to move node 1 from (0.0, 0.0, 0.0) to (0.5, 0.5, 0.0) along the <

1.0, 1.0, 0.0 > vector incrementally. To evaluate this objective, the folding simulation tool is run

with the parameters described above, which acts through tuning the fold stiffness. Here, the fold

stiffness is modeled as a torsional spring with stiffness, G. Lines generated from the SPIDRS

topology in the initial graph are considered active and given small values of G.

Lines generated from the Delaunay triangulation process are considered inactive folds and

assigned large values of G. The inactive folds also form a coarse discretization of facets to capture

facet bending in the design. The fold stiffness for active folds is Gactive = 10α1 , where α1 = 1,

and the fold stiffness for inactive folds is Ginactive = 10α2 , where α2 = 3.

The location of the output node, node 1, is saved during each loading step in the folding sim-
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ulation. This collection of locations is considered the path of the node during folding and the

Hausdorff distance2, dH , is taken between this array and an ideal path that increments from 0, 0 to

0.5, 0.5 in 400 steps. Four hundred steps are used, because this is the number of load steps in the

folding simulation.

Design Problem Statement
Minimize: dH
by varying: 2 axiom characters,

4 rule assignments (18 genes each)
subject to: q > 0.1

max(|α(nload)|) > 0
NSGA-II Parameters

1000 members for 100 generations
Pcross = 0.9, ηcross = 50

Pmutation = 1/92, ηmutation = 50

Table 4.3: Genetic optimization problem statement with no constraints

The formal optimization statement for this problem is shown in Table 4.3. Here, the Hausdorff

distance between the objective node and a target path is minimize by varying the genes used by

the Parameterized L-System. Notably, material properties are not utilized in this optimization,

which reduces the required design parameters from 92 to 78. This optimization is performed on a

population of 1000 individuals for 100 generations. The population size is selected to be relatively

larger to ensure genetic diversity, because this process may result in many infeasible designs due

to triangulation constraints and/or convergence issues in the folding simulation.

There are two constraints on this optimization. The first constraint is a mesh quality constraint

to ensure that the resulting mesh from Delaunay triangulation does not produce poor quality el-

ements which could compromise the effectiveness of the folding simulation code. The second

constraint is that the maximum fold angle during the final loading step must be non-zero. This

2 Hausdorff distance is a measure of how far two subsets of a metric space are from each other and is a defined by
the longest distance one can travel between two points in two different sets [?].
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constraint is implemented to ensure that designs considered in the optimization are folding and

not experiencing only fact bending. Designs without this constraint can perform well under the

objective, but do not actually experience any folding, since the load is applied via a displacement

condition and there is no objective considering folding energy.

4.3.2 Results

The resulting objective for the optimization is shown in Figure 4.11a. The minimum objective

quickly decreases over the first 30 generations but then hits a local minima, then mutates and

decreases again at 59 generations, where the patterns is again repeated at 94 generations. One

reason for the convergence to local minima, may be the lack of genetic diversity in the population.

Due to the optimization constraints, over 90% of the initial population is filtered out. The number

of viable designs per generation is shown in Figure 4.11b. The percent of viable designs does

slowly increase, but one can assume this is a result of the crossover occuring between already

viable designs being selected by the genetic algorithm, meaning that this rise in viability does not

introduce genetic diversity.

The resulting best design is shown in Figure 4.12a in its flat configuration. The folded configu-

ration is shown in two different orientations in Figure 4.12b and 4.12c, which depict and isometric

view and an XY planar view of the folded pattern respectively. In the XY view, we can note that

the location of nodes 3 and 4 are identical to their relative location in flat configuration. The trian-

gular section formed on the right side of the design is initially folded up and under by the imposed

y-displacement puling the objective node in and to the right of its original location. The folding

process is difficult to visualize, but the path of the objective node is traced in 3D space in Figure

4.13. There is also a distinct second stage of folding where the fold line parallel to the bottom

edge of the design is folded 180 degrees back to the flat configuration. This fold coincides with the

rounded, out of plane, hump visible in Figure 4.13a and 4.13c.

There is also a small amount of facet bending visible in this best design that occurs in the

triangle on the upper left side of the flat configuration. In Figure 4.12b, on the left side at node

4, a difference in shading is visible and denotes deformation that occurs in the facet without the
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(a) Optimization objective values

(b) Number of viables designs per generation

Figure 4.11: Optimization Results
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presence of a fold line. This deformation occurs to allow for the complete flat folding of the

triangle in the upper right side of the design. This small deformation is the only facet bending that

occurs in this optimal design.

Overall, the path depicted in Figure 4.13 does not follow the linear path describe by the objec-

tive. However, this path does perform well in the XY plane near the end of the folding process.

Overall, this solution would likely not be considered to follow this line, but the success of the op-

timization process implementation is observable. Possibly with a much larger initial population or

by utilizing a process that has higher design viability, a better objective could be reached.

1 2

34

(a) Origami pattern
1

2
3

4

(b) Iso view of the folded configu-
ration

1

2

34

(c) XY view of the folded configuration

Figure 4.12: Best design for the continuous kinematic objective
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Fold Pattern

Objective Node Path
Target Path

Y x

Z

(a) Iso view of the objective node path

x

Y

(b) XY view of the objective node path

x

Z

(c) XZ view of the objective node path

Figure 4.13: Objective path during folding for best design
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this work, we have applied the SPIDRS design methodology to two different classes of prob-

lems in order to evaluate the effectiveness of the SPIDRS interpreter. The first problem required

the design of the internal structural layout for a camber morphing airfoil. The second problem

required the generation of origami fold patterns to meet kinematic objectives. In both of these

applications, a similar approach is taken in which the SPIDRS algorithm is coupled with a analysis

tool to evaluate a physical objective and an optimization is performed using this information. This

process is shown schematically for each problem in Figures 3.2 and 4.1.

The results of the camber morphing airfoil problem produced a populated Pareto front that

contained designs capable of minimizing the multiple objectives used in the optimization, shape

and mass. The inclusion of the SPIDRS algorithm allows this method to produce a variety of

topological designs that represent compromises between the two objectives with various actuator

placements, giving engineers a strong preliminary point for refining the design of non-intuitive

morphing structure. This method is also able to prevent designers from being boxed into a certain

design space by avoiding the requirement for a priori knowledge of the actuator placement, which

is required by more traditional methods. In the future, this method could be easily adapted to design

camber morphing airfoils for a variety of physical objectives. For example, the problem can easily

be altered by changing the method of actuation or changing the objective of the optimization to

increase the Cl/Cd ratio.

The application of SPIDRS to the abductive origami design process was very successful when

compared to well known solutions, but was unable to generate designs to meet the continuous

kinematic folding response objective. These results are indicative of the incompatibility between

the SPIDRS design methodology and the abductive origami problem posed. In order to effective

simulate the folding of origami computationally, the loading path and boundary conditions must
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be well defined. These conditions are easy to obtain through observation of the known solution

for square twist and allow the folding simulation to serve as a robust tool by which to evaluate the

objective and inform the optimizer. On the other hand, with the continuous kinematic response

objective, there is no known solution available by which loading paths and boundary conditions

can be observed. Arbitrary conditions are utilized to determine if the abductive design process is

robust enough to find a solution to the continuous kinematic response objective, but the process

is shown to be unreliable. With arbitrary loading conditions, that are not obtained from a preex-

isting solution, the kinematic folding simulation tool struggles to converge for simple topologies,

resulting in very low design viability and genetic diversity in the GA.

The application of boundary conditions is especially difficult for origami folding, due to the

relative nature of origami folding objectives. The objective of origami design is often to achieve a

certain final shape, but the success of that shape in the real world is not dependent on it’s location

in a global reference frame but rather in a local reference frame that is able to track the facets

relatively only to one another. Another difficulty of folding origami is that in real life, the boundary

conditions and load paths can often be sequenced. Deciding on the sequencing for an objective with

an unknown solution is difficult and using SPIDRS design for problems with predefined sequencing

from the known solution is trivial.

Overall, we can observe that the SPIDRS design methodology was easily adapted to both

classes of problems, but requires robust analysis tools that do not require intuition of the solu-

tion to implement function analysis. The creation of topology was also generalized to graphs

with non-linear functions on the boundaries and adapted to provide bisection. In addition to these

contributions relating to the SPIDRS algorithm, a useful implementation triangle intersection de-

tection was utilized for the first time in origami folding simulation and could later prove valuable

for origami design.
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5.2 Future Work

There are several paths in which future work should be conducted on this problem. The first

direction includes model validation and improvement on the currently implemented processes de-

scribed in this work and are listed below:

• Perform model validation with a bench top model of a morphing airfoil.

• Perform a morphing airfoil optimization with an updated aerodynamic objective to validate

the process for several types of objectives.

• Update the morphing airfoil optimization scheme with an uncoupled FSI aerodynamic model

to reduce computational cost and confirm accuracy.

• Adapt the 3D extension for SPIDRS into the morphing airfoil problem to allow for the opti-

mization of entire lifting surfaces.

• Utilize the SPIDRS approach for well defined origami problems, like the Chomper pattern

or the Waterbomb.

The second path for future work involves utilizing the latest SPIDRS advancements to imple-

ment sizing optimizations into any of the problems or the re-frame the problems as 3D optimiza-

tions. The third and final path of exploration should include the application of SPIDRS topology

design into new ares of engineering or included new functional analysis methods, like electromag-

netic or thermal analysis methods.
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APPENDIX A

AUGMENTATION OF SPIDRS FOR GRAPHS BOUNDED BY NON-LINEAR FUNCTIONS

The SPIDRS interpreter (c.f. 2.2) was augmented in order to be applied to the graph presented

in Section 3. This argumentation is required due to the previous assumption that all connections

between nodes could be represented by linear functions. This assumption assumption only effects

the creation of new nodes, as it interpolates the location of the new node along a line between the

two preexisting nodes. It is important to note that this adaptation does not invalidate the planar

graph assumption, meaning that half-edge data structure is still valid for the augmented version of

the SPIDRS interpreter. There are only two operations that cause node creation, therefore requir-

ing modification, Move-Real (c.f. 2.2.0.2) and Create-Real (2.2.0.2). In this application, SPIDRS

is only augmented to create nodes using non-linear functions to described outer boundaries of the

initial graph (i.e. all interior operations will remain linear and follow previous described proce-

dures).

In both operations the creation of the new node is dictated by the following procedures. First,

the SPIDRS operator proceeds bN × σα1c nodes forward in the current face. Next, the SPIDR

moves by the ratio N × σα1 − bN × σα1c = n of the length of the current edge. To find the

coordinates associated with this location, a linear interpolation is utilized as shown here, xi =

x0 + (xf − x0) × n and yi = y0 + (yf − y0) × n. To apply this process to a non-linear edge,

the arc length of the function is taken and multiplied by the ratio of the current edge the node

should move, as shown here n×
∫ xi
xf
s(x) =

∫ xi
x0
s(x). This value is then set equal to the arc length

function and can be solved to find the xi and yi values. However, solving these arc length functions

can be complicated for difficult shape equations, and for shapes like an airfoil, the arc length can

be approximated by the x-coordinate. In the following examples, this specific approximation is

utilized.
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A.1 Move-Real

Similarly to the original implementation, the move-real command is represented in the L-

System encoding as B(σα1). This command operates in the same way by the moving the SPIDR

by bN × σα1c nodes in the current face, and then to a newly created node N × σα1 − bN × σα1c

in between the current node and next node.

An example of the original and augmented move-integer commands, B(0.7), are shown be-

low in Figure A.1. In both examples, assume that the SPIDR begins at node 1 and receives the

command, B(0.7). Since N = 4, bN × σα1c = bN × 0.7c = 2, which causes the SPIDR to

advance two nodes to node 3. Next, node 5 will be created between nodes 3 and 4 by moving

the SPIDR N × σα1 − bN × σα1c = 2.8 − 2 = 0.8 of the distance between them. In Figure

A.1(a) a square graph is considered and a linear interpolation between nodes 3 and 4 is conducted.

This interpolation results in x5 = x3 + (x4 − x3) × 0.8 = 1.0 + (0.0 − 1.0) × 0.8 = 0.2 and

y5 = y3+(y4−y3)×0.8 = 1.0+(1.0−1.0)×0.8 = 1.0. In Figure A.1(b) a circular graph is consid-

ered with a radius of 1.0 and centered at the origin. In this example, x5 is determined using the same

linear interpolation as before (i.e. x5 = x3 + (x4− x3)× 0.8 = 0.0 + (−1.0− 0.0)× 0.8 = −0.8),

but the y-coordinate is now a function of the x-coordinate (i.e. y5 = f(x5)). In this specific ex-

ample, a circle with the equation x2 + y2 = 1 is considered, so we are able to determine the the

y-coordinate is y5 =
√

1− (−0.8)2 = ±0.6. Due to the initial edge definitions, it is determined

that this operation is occurring on the upper edge of the curved graph, therefore y5 = 0.6.

In the final augmented implementation, the function that determines yn(xn) is a polynomial

which utilizes the CST parameters to define the shape of the airfoil. This augmentation is only

applied to the creation of nodes on the outer boundary of the SPIDRS graph. This is quickly

determined by tracking the outer boundary of the graph with the first face in F . The upper edge of

the airfoil is defined as the first edge in the edge list and the lower edge of the airfoil is defined as

the second edge in the edge list, E.
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1:(0,0) 2:(1,0)

4:(0,1) 3:(1,1)
5: (0.2,1)

(a) Move-Real

1:(0,-1)

2:(1,0)4:(-1,0)

3:(0,1)

5: (-0.8,0.6)

(b) Augmented Move-Real

Figure A.1: Examples of original and augmented Move-Real command B(0.7).

A.2 Create-Real

Again, the create-real command is represented in the L-System encoding as D(σα1 , σα2). This

command operates by moving the SPIDR by bN × σα1c nodes in the current face, then to a newly

created node N × σα1 − bN × σα1c in between the current node and next node, and then creating

a new edge between the newly created node and the original node and returning the SPIDR to the

original node. The σalpha2 parameter determines what material the newly constructed edge will be

assigned.

An example of the original and augmented create-real commands, D0.7, 0.2 are shown belown

in Figure 2.6. In this example, again assume that the SPIDR begins at node one when receiving the

command. Since N = 4, the SPIDR advances bN × σα1c = b4× 0.7c = 2 nodes forward to node

three. Next, node 5 will be created between nodes 3 and 4 by moving the SPIDR N × σα1 −bN ×

σα1c = 2.8− 2 = 0.8 of the distance between them, similarly to the move-real command. Lastly,

the SPIDR will create an edge between the current node, node 5, and the original node, node 1, and

return to the original node. The material of the newly created edge is a function of σalpha2 . In Figure

A.2(a) the new node’s coordinates are generated using linear interpolation between the nodes of

interest, identically to the original move-real command. This results in a node created at (0.2, 1.0)
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1:(0,0) 2:(1,0)

4:(0,1) 3:(1,1)
5:(0.2,1)

(a) Create-Real

1:(0,-1)

2:(1,0)4:(-1,0)

3:(0,1)

5: (-0.8,0.6)

(b) Augmented Create-Real

Figure A.2: Examples of original and augmented Move-Real command B(0.7).

and a new edge being formed between this new node and the original node, located at (0.0, 0.0). In

Figure A.2(b), the new node’s x-coordinate is generated again using a linear interpolation between

the two nodes of interest, (i.e. x5 = x3 + (x4 − x3) × 0.8 = 0.0 + (−1.0 − 0.0) × 0.8 = −0.8).

The y-coordinate is now a function of the x-value and is found identically to the process described

for the augmented move-real command. Then a new edge is created from the new node located at

(−0.8, 0.6) to the original node located at (0.0,−1.0).

The process of finding the coordinates for the new nodes is identical between both the move-

real and create-real commands. In the final implementation of the augmented create-real command

the function used to determine the y-coordinate of newly created nodes is a polynomial which

utilized the CST parameters to define the shape and size of the airfoil. This augmentation is only

applied to nodes that are created on the curved boundary of the graph and does not apply to interior

members of the graph.
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APPENDIX B

TRIANGLE-TRIANGLE INTERSECTION DETECTION

Intersection detection was performed using the Möller’s algorithm to detect intersections be-

tween two triangles in three dimensional space [?]. This algorithm was developed to aid in the com-

putational efficiency of rendering hardware, and is uniquely applicable to the truss-based origami

folding tool described in Section 2 due to its triangular base element.

This algorithm considers two triangles T1 and T2, which both consist of three vertices, V i
0 , V

i
1 , V

i
2 , i ∈

[1, 2], and are located in the planes π1 and π2. The equation of the plane, π2 : N2Ẋ + d2 = 0,

is computed, where X is any point on the plane. N2 is the normal vector to the plane (N2 =

(V 2
1 − V 2

0 )× (V 2
2 − V 2

0 )), and d2 is the distance from the origin (d2 = −N2V̇
2
0 ).

Next, the distance between the vertices, dv2i ,of T1 and π2 are computed,

dv1i = N2V̇
1
i + d2, i = 0, 1, 2.

Overlap is rejected if no points of T1 are on the plane, i.e. all dv2i 6= 0, i = 0, 1, and 2, and all

dv2i have the same sign. If these criteria are met, T1 lies on one side of the plane π2 and overlap is

impossible. This process is then repeated for T2 and π1.

If all dv2i = 0, i = 0, 1, and 2, the triangles are known to be co-planar. When this occurs,

the triangles are projected to the axis aligned plane which maximizes their area (i.e. the axis of

the largest component of the normal vector). After projection, a simple two-dimensional triangle-

triangle overlap test is performed. First, test for an intersection between the closed edges of T1 and

T2. If the edges of the projected triangles intersect, the original triangles intersect. Otherwise, T1

must be tested to see if T2 is totally contained with in its boundary and vice versa.

If the two planes π1 and π2 intersect, but are not co-planar, they are intersected by a line, L.

The line of intersection is given by L = O + tD, where D = N1 ×N2 is the direction of the line
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and O is a point on the line. Due to the previous calculations, we know that the triangles T1 and

T2 intersect the line, L, however it’s possible that these triangle still do not intersect each other.

To determine this, a scalar interval that represents the intersection between Ti and L is computed.

First, the vertices are projected onto L, giving

pv1i = D(̇V 1
i −O).

Next, the line parameter value, t1, for B = ¯V 1
0 V

1
1 L = O+ t1D is computed. By letting K1

i denote

the projection of V 1
i onto pi2, it can be noted that ∆V 1

0 BK
1
0 is similar to V 1

1 BK
1
1 , therefore

t1 = pV 1
0

+ (pV 1
1
− pV 1

0
)

dV 1
0

dV 1
0
− dV 1

1

.

t2 is calculated similarly and the interval for T1 on L is between t1 and t2. The interval for T2 is

calculated the exact same way. If the two intervals overlap, then the triangles intersect.

There are many known optimization of this process, but due to the relatively small number of

intersection detection evaluations required for this work, they are not implemented.
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