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ABSTRACT 

 

With the recent development of unconventional reservoirs, attention has been geared towards the 

integration of the geomechanical models with traditional flow simulation. A case in point is 

quantifying rock-fluid interactions in hydraulic fracturing operations. Although much effort has 

gone into the creation and advancement of commercial simulation software for coupled flow and 

geomechanics, it is still in its infancy. The models are considerably oversimplified and poorly 

representative of the problem’s complex nature. Throughout history, several contributions have 

been made into the development of efficient model-order reduction (MOR) techniques for “flow 

only” simulations. Yet – to date – contributions to the mechanical models in coupled simulations 

have been minimal. 

This study tackles this challenging aspect, by proposing a novel model reduction adaptive 

workflow, especially for the mechanics simulators, that (1) can be coupled with any simulator that 

can export mass, stiffness, and load matrices; (2) can achieve 2 orders of magnitude in 

computational time reduction; and (3) do not add more complexity to the solution. 

In the first part of this research, several – widely used – reduction techniques for structural 

mechanics were implemented based on the construction of the dynamic condensation matrix. 

Single-step reduction methods were first executed; in particular, Guyan DOFs based reduction 

techniques. Following that, two-step methods were implemented; where corrections were made to 

the results obtained from the former. Finally, iterative (three-step) reduction methods were applied; 

handling the problem of master DOFs selection through consistent updates of the dynamic 

condensation matrix until convergence is achieved. To that end, two schemes are presented; based 

on the convergence of the dynamic condensation matrix, as well as, the eigenvalues of the reduced-

order model.  

In the second part of this research, we provide a rigorous framework for testing the 

completeness, efficiency, and convergence for all the presented reduction techniques. Regarding 

the completeness of the reduced models, two main criteria were investigated; namely, modal 

assurance criterion (MAC) and singular value decomposition (SVD). For efficiency testing, 

percent error (PE) of natural frequencies and the correlation coefficient for modal vector (CCFMV) 
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values were considered. Finally, the efficiency of the convergent criterion was demonstrated 

through the errors associated with the column vectors of the condensation matrix. Several 

numerical examples are presented to show the efficiency of the presented framework, particularly 

for coupled simulations.  

Based on the adopted framework, we managed to reduce the scale of the finite element 

models to less than 9% of the full model with error as low as 1%. In terms of computational speed 

and runtime, we achieved substantial speedups; up to 20X. Given the proposed workflow, large-

scale complex simulations – similar to those associated with hydraulic fracturing – could be more 

feasible and less costly. This, ultimately, would give allowance for incorporating the complex 

physics pertinent to unconventional reservoirs and motivate the advent of their development at no 

additional cost. 
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CHAPTER I  

INTRODUCTION 

 

In oil and gas industry, with the recent development of unconventional reservoirs, attention has 

been geared towards the integration of the geomechanical models with traditional flow simulation. 

There are a number of cases in which conventional reservoir simulators fall short in accurately 

accounting for the effects of rock deformation on flow and vice versa by using the rock 

compressibility concept and simplistic reservoir property evolution models that are related to 

pressure/porosity changes via empirical correlations. A case in point is the impact of 

geomechanical effects on well production [Jun Xiong et al. 2012; T. Kidambi et al. 2017; Alpak 

F.O. 2019]. 

Production of oil and gas reservoirs changes the reservoir pore pressure and stress state. These 

changes in the pore pressure and in-situ stress cause changes in the volume of both reservoir fluids 

and the reservoir rock. The prediction of the variation of the fluid volume and rock  volumetric 

deformation, and their interaction and influence on the flow conditions, is essential when 

examining different operating strategies for stress-sensitive reservoirs. 

The simultaneous interaction between changes in the pore pressure and variation in the in-situ 

stress lead to the coupling of two different, yet fully connected, processes: (1) motion of the pore 

fluid and (2) deformation of the rock solid skeleton. Any attempt to model the interaction of the 

rock-fluid system should not separate these two processes. 

An instance of failure of conventional flow simulations during oil well production operation 

was presented in Osorio J.G. at al. 1997. In this study, a 3D finite-difference model for the 

simulation of stress-sensitive reservoirs had been developed. The reservoir was treated as a 

multiphase poroelastic system consisting of a deforming solid skeleton and a moving compressible 

pore fluid. The governing equations describing the deformation of the solid and the motion of the 

pore fluid were fully coupled. Solid displacement and fluid pressure were chosen as the primary 

variables. Discretization was accomplished by using a 15-point and 7-point operators for  the solid-

displacement and fluid-flow equations, respectively. 
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The coupled simulator [used in Osorio et al. 1997] was developed such that a single-input-

parameter change permits choosing between explicit, iterative, and implicit coupling approaches. 

Due its improved stability and rapid convergence characteristics for challenging flow-induced 

deformation problems, where the geomechanical responses occur on comparable time-scales to 

flow, the above-described multiphysics system of equations is solved via a fully-implicit 

formulation in the default mode [Alpak F.O. 2014]. 

The porosity relative to the initial undeformed bulk volume is defined as follows: 

𝜙 − 𝜙0 = 𝑏(휀𝑣 − 휀𝑣
0) +

1

𝑀
(𝑝 − 𝑝0) − 𝛽𝜙(𝑇 − 𝑇0) 

(1) 

where 𝑏 and 1/𝑀 are the Biot constants, and 𝛽𝜙 denotes the volumetric thermal expansion 

coefficient for porosity. The pore volume is then  𝜙𝑉𝑏
0 where 𝑉𝑏

0 is the original undeformed volume 

of a region containing both the solid and pores. It is important to highlight that the porosity is 

defined relative to the original volume, not with respect to the current volume. 

Numerical results obtained from the application of this model to a centered-well producing at 

a constant flow rate from a poroelastic medium had been analyzed. The discretization grid 

consisted of 15 blocks in each x- and y-direction, and 5 blocks in the z-direction, each block having 

a length of 10 ft. At the boundaries, the pore pressure was constant and equal to the initial pore 

pressure, and the displacements were zero. 

 

 

Figure 1: Pore pressure distribution at: (a) 5 days (b) 200 days [Reprinted from Osorio, 1997] 

 

Figure 1 shows the pore pressure distribution at 5 and 200 days. After 5 days of production, 

the radius of investigation had already arrived to the outer boundaries and, consequently, the 
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pressure maintenance at the boundaries became active. As production time increased, a 

conventional fluid-flow model will predict, for this particular example, a constant pore pressure 

distribution with time. In Osorio’s study, with using fluid-flow/geomechanical model, a stress-

transfer effect was observed. As the solid part of the rock expanded, the pore fluid received the 

load change caused by the rock expansion. Accordingly, after the radius of investigation reached 

the outer boundaries the pore pressure distribution didn’t remain constant with time, but rose until 

equilibrium conditions were attained, as observed in Figure 1b after 200 days of production. 

Figure 1a also shows that after 5 days of production, the pore pressure in the region close to 

the outer boundaries reaches values slightly greater than the initial pore pressure. This behavior is 

possible because the load caused by the initial expansion of the solid skeleton is higher than the 

decrease in the pore pressure which results in pressure rises above the initial pressure. After 

equilibrium condition is reached, this excess in pore pressure is dissipated as observed after 200 

days of production (Figure 1b). 

Besides the pore pressure, the stress state also alters the physical properties (e.g., permeability 

and porosity) which are important to the performance of stress-sensitive reservoirs. A convenient 

way of expressing the stress state of the rock is through the effective stress, which is a measure of 

the “actual” stress acting on the solid part of the porous system. Figure 2 shows the distribution 

of the change in the effective stress in the x-direction (compressive stress is taken negative). Note 

that after 5 days of production (Figure 2a), the change in effective stress (with respect to the initial 

effective stress) switches from compression to extension. The region under compressive stress is 

due to production and, therefore, is located around the wellbore where the pore pressure is always 

minimum. The region in extension is close to the outer boundaries where zero-displacement is 

specified. After 200 days of production, the increment in pore pressure (caused by the pressure 

maintenance and the load received from the rock expansion) reduces the magnitude of the change 

in the effective stress in the tensile region (Figure 2b). 
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Figure 2: Change of effective stress in x-direction at: (a) 5 days (b) 200 days [Reprinted from 

Osorio, 1997] 

 

Although much effort has gone into the creation and advancement of commercial simulation 

software for coupled simulations, this area of research is still in its infancy. The models are 

considerably oversimplified and poorly representative of the problem’s complex nature. Detailed 

and complex coupled flow and geomechanics simulations can model such systems, but they are 

computationally expensive. This is due to the nonlinear nature of governing equations, and the 

complex domain over which geomechanical problem must be solved. Moreover, computational 

demands can be excessive in applications such as optimization and uncertainty quantification, 

where hundreds or thousands of simulation runs might be required. 

In general, finite element methods (FEM) is used for the mechanics part of the solution, 

whereas finite difference (FD) methods are used for the flow part. On field-scale problems, 70 to 

80% of the run time is spent in the geomechanics model solving the system of linear equations. 

The compute-intensive nature of this model is a function of several items. First, the finite element 

formulation of the geomechanics model has a 27-point stencil compared to the standard seven-

point stencil in the reservoir-simulation model [Figure 3]. Another factor is the number of 

unknowns in the geomechanics model, which is three at each node compared to one at each cell in 

an IMPES finite-difference simulation model [Aziz, K., & Settari, A., 2002]. In addition, the total 

number of gridblocks used in the geomechanics model, is larger because of the overburden, 

underburden, and side-burden regions that are simulated in this model in addition to the reservoir 

gridblocks [Thomas L.K. et al. 2002]. Moreover, computational demands can be excessive in 

applications such as optimization and uncertainty quantification, where hundreds or thousands of 

simulation runs might be required [Alpak F.O. 2019].  
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Figure 3: (a) Seven-point stencil shown as three adjacent planes (b) twenty seven-point stencil 

shown as three adjacent planes [Reprinted from Bui et al., 2020]. 

 

Traditionally, the reservoir simulation community has emphasized flow modeling and 

oversimplified the mechanical response of the formation through the use of the rock 

compressibility, taken as a constant coefficient or a simple function of porosity [Hyun C. Yoon et 

al., 2019; Ertekin et al. 2001]. However, with the recent development in computational techniques, 

a number of efficient schemes for the simulation of coupled flow and geomechanics problems have 

been presented [Jihoon Kim et al., 2015; Alpak F.O., 2019; Yoon HC et al., 2019]. 

The coupled process between mechanics and flow in porous media is described through 

“poroelasticity”. Its theoretical basis goes back to the mid-1920s when Terzaghi described 

analytically the one-dimensional consolidation of a soil column under a constant load [Terzaghi, 

1923, 1943]. Biot [Biot, 1941] developed the first three-dimensional coupled poroelastic system 

to describe the dynamics of porous media with the coupling between the fluid flow and the stress. 

This pioneering work is a basic isothermal theory with saturated single phase flow inside solid 

matrix, which is based on a linear stress-strain constitutive relationship and a linear form of Darcy's 

flow law. An important reformulation of Biot’s theory was done by Rice and Cleary [Rice and 

Cleary, 1976]. They formulated the equations by using material coefficients which are more 

concise and easier to use in practical applications [Liu, 2004]. Other more sophisticated approaches 

have been recently proposed, e.g. [Coussy, 2004], however, Biot’s theory still remains the most 

popular approach used in geomechanics. 

Lewis and Schrefler [Lewis and Schrefler, 1998] presented and applied finite element methods 

(FEM) to one- and two-dimensional problems in consolidation and to the problem of subsidence 

in Venice. Other numerical works have been conducted at the Center for Subsurface Modeling, at 
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the University of Texas at Austin. There, Liu [Liu, 2004] implemented a scheme involving Taylor– 

Hood elements and, subsequently, a Discontinuous Garlekin (DG) variant based on the work of 

Phillips and Wheeler [Phillips and Wheeler, 2007]. Gai [Gai, 2004] used continuous elements for 

displacements and a cell-centered finite difference method for pressure and implemented an 

iteratively coupled scheme to find the numerical solution. She also studied the multiphase flow 

version of the poroelasticity equations. Phillips and Wheeler [Phillips and Wheeler, 2007] 

presented the theoretical convergence of two-dimensional models that couple both continuous and 

discontinuous Galerkin elements for the displacements with mixed spaces for the fluid flow. In 

addition, [Girault et al., 2009] presented a domain decomposition method for solving linear 

elasticity. Their algorithm uses mortar spaces as displacement boundary conditions and was 

designed to eliminate rigid body motions. Information is transferred by jumps, and mortars are 

introduced at the interfaces to dissociate the computation between neighboring subdomains 

[Girault et al., 2009]. 

One of the first applications of the Continuous Galerkin Finite Element Method (CG-FEM) 

was published in 1969 by Sanhu and Wilson [Sandhu and Wilson, 1969]. They applied a Finite 

Element Method (FEM) formulation to three-dimensional soil consolidation problems which was 

later revisited by Yokoo [Muller et al., 2009; Santarelli et al., 1992]. Fluid's compressibility was 

considered by Ghaboussi and Wilson [Belayneh, 2004]. They briefly commented on the stability 

of Continuous Galerkin (CG) schemes as well [Kim et al., 2009]. Zienkiewicz et al. [Zienkiewicz 

et al., 1977] introduced the compressibility of the solid grains. The stability analysis in time was 

performed by Booker and Small [Booker and Small, 1987]. 

Zienkiewicz and Shiomi [Zienkiewicz and Shiomi, 1984] discussed various CG formulations 

for soil consolidation problems. Mixed finite elements [Phillips, 2005; Phillips and Wheeler, 

2007], reduced integrations [Souza-Neto et al., 2008] and penalty methods [Wheeler, 1978], which 

were studied and used for dealing with incompressible elasticity problems, were proposed for 

consolidation problems with incompressible fluid models. Multiple CG applications have been 

applied to various practical poromechanics problems. In particular, applications in the area of 

petroleum engineering can be found in [Chin et al., 2000; Dean et al., 2006; Settari and Walters, 

2001; Shao, 1997]. 
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Domain decomposition methods (DDM) are very efficient algorithms to compute the solution 

of large scale problems on parallel computers. These methods mainly consist of splitting the global 

domain into several subdomains and to compute the solution on the global domain through the 

resolution of the problem associated with each subdomain [Maday and Magoules, 2006]. The 

theory for DDM can be found elsewhere [Quarteroni and Valli, 1999; Toselli and Widlund, 2004]. 

However, for porous media problems, a DDM with optimal scalability has yet to be found 

[Ferronato et al., 2008; Girault et al., 2009; Turska and Schrefler, 1993; Turska et al., 1994]. 

 The interactions between flow and geomechanics have been modeled using various coupling 

schemes [Prevost, 1997; Settari and Mourits, 1998; Settari and Walters, 2001; Mainguy and 

Longuemare, 2002; Minkoff et al., 2003; Thomas et al., 2003; Tran et al., 2004, 2005; Dean et al., 

2006; Jha and Juanes, 2007]. Coupling methods are typically classified into four types: fully 

coupled, iteratively coupled, explicitly coupled, and loosely coupled [Settari and Walters, 2001; 

Dean et al., 2006]. 

For the fully coupled solution schemes, the coupled governing equations of flow and 

geomechanics are solved simultaneously at every time step. On the contrary, for iteratively coupled 

(or sequential) solution schemes, either the flow, or mechanical, problem is solved first, and then 

the other problem is solved using the intermediate solution information. Similar to sequential 

solution schemes, staggered solution schemes offer to solve the governing equations of flow and 

geomechanics in a sequential manner. However, the staggered methods implement only one 

iteration at each time step. That is why staggered methods are also known as single-pass sequential 

methods. Finally, regarding loosely coupled solution schemes, the coupling between the two 

problems is resolved only after a certain number of flow time steps. 

Given the enormous investment in software development and the high computational cost of 

fully coupled flow–mechanics simulation, sequential solution methods seem to be a more 

preferable solution option as compared to the fully coupled approach. Sequential, or staggered, 

solution schemes offer wide flexibility and are highly desirable from a software engineering 

perspective. Moreover, sequential schemes allow for using specialized numerical methods for each 

of the mechanics and flow problems [Felippa and Park, 1980].  

However, the pertinent computational time and cost of the coupling flow/geomechanics 

simulations are much higher in comparison to conventional reservoir flow simulation. This is 
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owing to the dramatic increase in the scale of coupled simulation models, as well as, number of 

iterations taken with increasing geometric complexity and involvement of non-linearity in problem 

of interest. This motivates the implementation of model-order reduction (MOR) techniques 

together with coupling solution schemes. MOR techniques have proven to handle those effects 

(i.e. geometric complexity and non-linearity) efficiently through providing a much smaller, yet 

representative, reduced model (ROM) for the full-order model (FOM) in hand.   

Model-order-reduction (MOR) techniques represent a broad family of computational 

techniques that have received significant attention in the last decade [Athanasios C.A., 2005; 

Benner P. et al., 2015].  MOR has been successfully applied for reservoir simulation (flow only) 

to alleviate the high computational cost [Cardoso M.A. et al., 2010; He J. et al. 2014; Ghommem 

M. et al., 2015; Jansen J.D. et al., 2017; Tan X. et al. 2019] but, its application to coupled 

multiphysics, as in the problem herein, has been minimal [Florez H. 2017; Florez H. et al., 2018; 

Jin Z.L. et al., 2019]. MOR, in this setting, has been developed based on the so-called snapshot-

based MOR, whereby the reduction is attained by projecting these snapshots in smaller subspaces, 

known as the proper orthogonal decomposition (POD) method [Cardoso M.A., 2010]. Generally, 

this involves two major steps: (a) an offline step (preprocessing) where training runs are performed 

- at least one run of the full order system is required -  and relevant solution information is 

processed and saved;  (b) an online step (run-time) where new test runs are performed based on a 

set of reduced states.   This technique has been enhanced for nonlinear systems so that only a small 

set of nonlinear terms need to be computed. The reader can refer to published work of the Discrete 

Empirical Interpolation (DEIM) or the POD-DEIM [Ghommom M. et al., 2015; Tan X. et al., 

2019] and the Trajectory-Piecewise-Linear (POD-TPWL) [Cardoso M.A. et al. 2010; He J. et al., 

2014] frameworks. However, it is well known that POD heavily depends on the set of collected 

snapshots obtained in the offline step of the algorithm, and judicious selection of such snapshots 

is an important step in our framework. Several combinations of training and tuning are required to 

create a robust reduced model thereof.  

As mentioned before,  POD is a posteriori  method and requires previous computation of the 

solution of the problem (snapshots)  using the simulation of the full order model (original model) 

to build the reduced basis. Although it implementation is somewhat easy and it has been 

successfully implemented in the reservoir simulation community, its applicability to parametric 
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systems is dauting, given the optimal basis are as good as the input used to obtain the snapshots. 

If the boundary conditions or model parameters vary during the online phase to the model 

reduction implementation, the solution may not converge or be not be accurate. A different 

approach proposed in the partial differential community is the use of Proper Generalized 

Decomposition (PGD),  which is a priori  method, that is, it does not need any previous 

computation of the solution. The reduced order model (ROM) is directly built by means of the 

solution as a separation of variables in an iterative fashion. The reader may refer to [Cueto E. et 

al. 2014; Keunings R. et al., 2013]. There has been serval applications of PDG to thermodynamics 

and mechanics problems, especially in the field of linear elastic solid mechanics [Garikapati H.Z. 

et al., 2013], and recently for fracture mechanics problems [Oliver J. et al. 2017].  

In this study, we propose a less laborious alternative to POD or PDG for computing the 

projection. To do so, we recall methods streaming from the structural mechanics community 

[Guyan R.J. 1965; Qu Z.Q., 2004; Gildin E. et al., 2009].  There exists a vast literature of model 

reduction for structural mechanical problems [Qu Z.Q., 2004] and in particular, for the structure 

persevering MOR for second-order systems whereby, the mass, stiffness and damping matrices 

are preserved as in the original form. This has not been the path taken in the area of geomechanics 

so far [Florez H., 2017; Florez H. et al., 2018; Florez H. et al., 2019; Jin Z.L. et al., 2019], and 

thus, to the author’s best knowledge, the methodology proposed here is novel. The reader can find 

a helpful summary of recent MOR developments in geomechanics in the very same publications 

[Florez H., 2017; Florez H. et al., 2018; Florez H. et al., 2019; Jin Z.L. et al., 2019].  

1.1. Thesis Objective 

Owing to the high computational cost associate with simulating coupled flow and geomechanics, 

we propose here to reduce the computational cost by means of the application of  practical model 

reduction frameworks to handle the mechanics part. To this end,  this study aims at: 

• Creation and advancement of an in-house simulation software that utilizes numerous 

computational techniques to capture and integrate mechanical responses of reservoir rocks 

with conventional flow simulations. 

• Development of a rigorous reduced-order modeling (ROM) framework for scale reduction 

of complex simulation models using various condensation techniques, as well as, modal 

analysis. 
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• Modification of the developed workflow so it can be easily coupled with commercial 

simulation software without adjustment to their source code. 

• Optimization of the developed workflow through testing the completeness, efficiency, and 

convergence for all the implemented reduction techniques. 

• Adjustment of developed workflow to adapt to coupled flow/geomechancis systems. 

1.2. Thesis Outline 

In chapter 2, we provide a review of some mathematical preliminaries that prove to be useful in 

the formulation of mathematical models for structured problems in general and geomechanical 

models in particular. Various numerical methods are presented including conventional variational 

methods, such as the Ritz, Galerkin, Collocation and least-squares methods, as well as finite 

element methods. In addition, key distinctions between various numerical techniques are presented 

to justify the use of the specific numerical techniques in the sequel.   

In chapter 3, several – widely used – reduction techniques for structural mechanics were 

implemented based on the construction of the dynamic condensation matrix. Single-step reduction 

methods were first executed; in particular, Guyan DOFs-based reduction techniques [Guyan R.J., 

1965; Qu Z.Q., 2004]. Following that, two-step methods were implemented; where corrections 

were made to the results obtained from the former [Qu Z.Q., 2004]. Finally, iterative (three-step) 

reduction methods were applied; handling the problem of master DOFs selection through 

consistent updates of the dynamic condensation matrix until convergence is achieved. To that end, 

two schemes are presented; based on the convergence of the dynamic condensation matrix, as well 

as, the eigenvalues of the reduced-order model [Friswell M.I. et al., 1994; Qu Z.Q. et al., 1998]. 

In the second part of chapter 2, we provide a rigorous framework for testing the completeness, 

efficiency, and convergence for all the presented reduction techniques [Allemang R.J. et al., 1982; 

Penny J.E.T. et al., 1994]. Regarding the completeness of the reduced models, two main criteria 

were investigated; namely, modal assurance criterion (MAC) and singular value decomposition 

(SVD). For efficiency testing, percent error (PE) of natural frequencies and the correlation 

coefficient for modal vector (CCFMV) values were considered. Finally, the efficiency of the 

convergent criterion was demonstrated through the errors associated with the column vectors of 
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the condensation matrix. Several numerical examples are presented to show the efficiency of the 

presented framework. 

In chapter 4, we present a general framework for linear formulations of coupled flow and 

geomechanics, and we describe the constitutive relations consistent with Biot’s theory [Biot, 

1941]. The formulation integrates the approaches proposed by several researchers [Coussy, 1995; 

Lewis and Schrefler, 1998; Borja, 2006]. Numerical demonstration is presented to show the 

efficiency of the presented framework. Then, we extend the formulation to nonlinear formulation 

of coupled systems.  
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CHAPTER II  

INTRODUCTION FOR MATHEMATICAL MODELING FOR GEOMECHANICS 

 

Virtually every phenomenon in nature can be described in terms of algebraic, differential, and/or 

integral equations relating various quantities of interest. A case in point is hydraulic fracturing 

processes in oil and gas industry; where multistage fractures are created in unconventional 

reservoir. The set of equations that expresses the essential features of a physical system in terms 

of variables that describe the system are called mathematical models.  Mathematical models of a 

process are developed using assumptions concerning how the process works and using appropriate 

axioms or laws governing the process, and they are often characterized by very complex 

differential and/or integral equations posed on geometrically complicated domains. While the 

derivation of the governing equations for most problems is not unduly difficult, their solution by 

exact methods of analysis is often difficult due to geometric and material complexities. 

 

 

Figure 4: Geomechanical Effect in Hydraulic Fracture Process. Here the hydraulic fractures are 

represented by red color, wellbore trajectory represented by grey color and geomechanical 

deformations represented by blue color. Hydraulic fractures are created by the injection of a fluid 

at high pressure at particular positions of the wellbore. The black swarms represent possible 

fracture propagation in the geological media with different intensity as shown by the thickness of 

the ramifications. Multiple hydraulic fracture stages (3 in this case) are used to enhance reservoir 

production in unconventional reservoirs. 

 

Historically, the processes were drastically simplified so that the governing equations can be 

solved analytically. Over the last few decades, however, computers have made it possible, with 
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the help of suitable mathematical models and numerical methods, to solve many practical problems 

of engineering. Numerical methods typically transform differential equations governing a 

continuum to a set of algebraic equations of a discrete model of the continuum that are to be solved 

using computers. There exist a number of numerical methods, many of which are developed to 

solve differential equations.  

This chapter is devoted to review some of the mathematical preliminaries that prove to be 

useful in the sequel and to study integral formulations and more commonly used variational 

methods such as the Ritz, Galerkin, collocation, and least-squares methods. Since the finite 

element method can be viewed as an elementwise application of a variational method, it is useful 

to learn how variational methods work. 

2.1. Mathematical Model for Geomechanics 

The starting point for the discussion of the numerical methods is the differential equations 

governing the physical phenomena under study. We start our derivation with the model shown 

below. Here – on the left panel – we have a reservoir; represented by one layer (the middle green 

layer), surrounded by various stresses; in our case an overburden (the top red layer) and an 

underburden (the bottom blue layer). A further simplification of the case on the left can be done 

by studying the stresses on a little specimen (or mesh element) of that reservoir [as shown on the 

right panel]. 

  

Figure 5: Geomechanical Model for Reservoir Simulation: (Left) A one-layer reservoir [ 

represented in green color] surrounded by overburden stresses [top red layer] and underburden 

layer [bottom blue layer] (Right) A simplified representation of the reservoir model showing all 

acting forces at equilibrium. 
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Below we consider a simple example drawn from solid mechanics to illustrate how mathematical 

model of geomechanical problem is formulated. This example is concerned with the mathematical 

formulation of the axial deformation of a bar of variable cross section as shown below. The term 

bar is used in solid and structural mechanics to mean a structural element that carries only axial 

loads (tensile as well as compressive). 

 

 

Figure 6: An element of length ∆x with axial forces acting at both ends of the element. 

 

For an elastostatic structural problem, it is assumed that masses are displaced so slowly that 

no significant inertia forces are generated. Application of Newton’s second law in the 𝑥 direction; 

where all applied forces on the elastic body sum to zero and the displacements are not a function 

of time,  yields  

−[Aσx]x + [Aσx]x+∆x + gA∆x = 0 (2) 

where 𝑔 is the body force, 𝜎𝑥 denotes stress in the 𝑥 direction, [𝐴𝜎𝑥]𝑥 and [𝐴𝜎𝑥]𝑥+∆𝑥 are the net 

tensile force on the volume element at 𝑥 and 𝑥 + ∆𝑥, respectively.  

Dividing throughout by ∆𝑥 and taking the limit ∆𝑥 → 0, we obtain 

d

dx
Aσx + Ag = 0 (3) 

which represents the equilibrium of forces in the x-direction. 

Using Hooke's law, the stress 𝜎𝑥 can be related to the axial displacement  

σx = E ∙ εx = E ∙
du

dx
 (4) 

where 𝐸 is Young's modulus, u denotes the axial displacement, and 휀𝑥 is the axial strain.  
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Now using Eq. (4) in Eq. (3), we arrive at the equilibrium equation in terms of the displacement 

d

dx
(EA

du

dx
) + gA = 0 (5) 

Application of the finite element method [Reddy J., 2006] to the second-order differential 

equation [Eq. (5)], the equation of equilibrium can be written in variational form as 

𝐊𝐗 = 𝐅 (6) 

where 𝑲 is the stiffness matrix; which gives the relationship between the stresses and the strains 

(resulting deformations). 𝑭 is the vector of applied forces (e.g. external stresses). 𝐗 is the 

displacement (response) vector.  

For an elastodynamic structural problem, the static equilibrium of applied forces is disturbed, 

and the material undergoes accelerations. Such accelerations generate inertia forces acting on all 

masses in the structure. 

According to Newton’s second law, when a body is acted on by a nonzero net force, the net 

force is equal to the time rate of change of the body’s linear momentum. 

𝐅𝒊𝒏𝒆𝒓𝒕𝒊𝒂 =
d

dt
[𝐌�̇�(t)] 

(7) 

where 𝑴 is the mass matrix. �̇�(𝑡) is the velocity vector. 𝐅𝒊𝒏𝒆𝒓𝒕𝒊𝒂 is the total external applied force 

vector. 

Using the chain rule, Eq. (7)can be defined as 

𝐅𝒊𝒏𝒆𝒓𝒕𝒊𝒂 = �̇��̇�(t) + 𝐌�̈�(t) 
(8) 

where �̇� is the time derivative of mass matrix. �̈�(t) is the acceleration vector. 

In many applications, the masses are constant, then Eq. (8) reduces to 

𝐅𝒊𝒏𝒆𝒓𝒕𝒊𝒂 = 𝐌�̈�(t) (9) 

where 𝐌�̈�(t) is defined as the inertial force. 

According to D'Alembert's Principle [Reddy J., 2006] which states that a system may be set 

in a state of dynamic equilibrium by adding to the external forces a fictitious force that is the 

inertial force, Eq. (9). Accordingly, the equation of dynamic equilibrium will take the form 
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𝐊𝐗(t) = 𝐅(t) + 𝐅𝒊𝒏𝒆𝒓𝒕𝒊𝒂 (10) 

𝐌�̈�(t) + 𝐊𝐗(t) = 𝐅(t) 
(11) 

2.2. Weighted-Integral Statements 

In almost all approximate methods used to determine the solution of differential and/or integral 

equations [Eq. (5)], we seek a solution in the form 

𝑈(𝑿) = 𝑈𝑁(𝑿) = ∑ 𝑐𝑗∅𝑗(𝑿)

𝑁

𝑗=1

 (12) 

where 𝑼 represents the solution of a particular differential equation and associated boundary 

conditions, and 𝑼𝑵 is its approximation that is represented as a linear combination of unknown 

parameters 𝒄𝒋 and known functions ∅𝑗 of position 𝑿 in the domain 𝜴 on which the problem is 

posed.  

Consider the problem of solving the differential equation 

−
𝑑

𝑑𝑿
[𝑎(𝑿)

𝑑𝑢

𝑑𝑥
] + 𝑐(𝑿)𝑢 = 𝑓(𝑿) (13) 

 subjected to the boundary conditions 

𝑢(0) = 𝑢0, [𝑎(𝑿)
𝑑𝑢

𝑑𝑿
]

𝑿=𝐿
= 𝑄0 (14) 

where 𝑎(𝑿), 𝑐(𝑿), and 𝑓(𝑿) are known functions, 𝑢0 and 𝑄0 are known parameters, and 𝑢(𝑿) is 

the function to be determined. 

We seek an approximate solution over the entire domain 𝛺 = (0, 𝐿)  in the form 

𝑈𝑁(𝑿) = ∑ 𝑐𝑗∅𝑗(𝑿) + ∅0(𝑿)

𝑁

𝑗=1

 (15) 

where the 𝑐𝑗 are coefficients to be determined and ∅𝑗(𝑿) and ∅0(𝑿) are functions chosen such that 

the specified boundary conditions of the problem are satisfied by the N-parameter approximate 

solution 𝑈𝑁. 
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2.3. Computational Methods 

Ideally speaking, an effective computational method should have the following features: 

a) It should have a sound mathematical as well as physical basis (i.e., yield convergent 

solutions and be applicable to practical problems). 

b) It should not have limitations with regard to the geometry, the physical composition of the 

domain, or the nature of the “loading.” 

c) The formulative procedure should be independent of the shape of the domain and the 

specific form of the boundary conditions. 

d) It should be flexible enough to allow different degrees of approximation without 

reformulating the entire problem. 

e) It should involve a systematic procedure that can be automated for use on digital 

computers. 

2.3.1. Classical Variational Methods 

Our objective in this section is to study the variational methods of approximation as they provide 

a background for the development of finite element models [Reddy J., 2006]. The methods to be 

discussed include:  

1. The Rayleigh Ritz Method.  

2. The weighted-residual Methods  

a) The Petrov-Galerkin Method.  

b) The Galerkin Method.  

c) The Least-squares Method.  

d) The Collocation Method.  

Various variational methods, e.g., the Ritz, Galerkin, collocation, and least-squares methods, 

differ from each other in the choice of the integral form, weight functions, and/or approximation 

functions.  

The classical variational methods, which are truly meshless methods, are powerful methods 

that provide globally continuous solutions but suffer from the disadvantage that the approximation 

functions for problems with arbitrary domains are difficult to construct. 
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Table 1: Solution scheme of differential equation using classical variational methods 

Step 1. The equation is put into an equivalent weighted-integral form.  

Step 2. The approximate solution over the domain is assumed to be a linear combination 

(∑𝑗𝑐𝑗∅𝑗) of appropriately chosen approximation functions ∅𝑗 and undetermined 

coefficients𝑐𝑗 . 

𝑈(𝑿) = 𝑈𝑁(𝑿) = ∑ 𝑐𝑗∅𝑗(𝑿) + ∅0(𝑿)

𝑁

𝑗=1

 

Step 3. The coefficients 𝑐𝑗 are determined such that the residual error associated with the 

approximate solution to differential equations is minimized.  

 

2.3.1.1. The Rayleigh Ritz Method 

In the Ritz method, we seek an approximate solution 

𝑈𝑁(𝑿) = ∑ 𝑐𝑗∅𝑗(𝑿) + ∅0(𝑿)

𝑁

𝑗=1

 (16) 

to be the solution to the variational form (or the weak form) to the boundary-value problem (BVP) 

𝐵(𝑤, 𝑢) = 𝑙(𝑤) (17) 

where the constants 𝑐𝑗, called the Ritz coefficients, are determined such that Eq. (17) holds for each 

𝑤 = 𝜙𝑖  (𝑖 = 1,2, … , 𝑁) (18) 

 Substituting Eq. (16) and Eq. (18) in Eq. (17) yields 

𝐵 (𝜙𝑖 , ∑ 𝑐𝑗∅𝑗 + ∅0

𝑁

𝑗=1

) = 𝑙(𝜙𝑖) (19) 

Since 𝐵(⋅,⋅) is linear in 𝑢, we have 

∑ 𝐵(𝜙𝑖 , ∅𝑗) ∙ 𝑐𝑗

𝑁

𝑗=1

= 𝑙(𝜙𝑖) − 𝐵(𝜙𝑖, ∅0) (20) 

Or 
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∑ 𝐾𝑖𝑗 ∙ 𝑐𝑗

𝑁

𝑗=1

= 𝐹𝑖 (21) 

Where 

𝐾𝑖𝑗 = 𝐵(𝜙𝑖 , ∅𝑗) (22) 

𝐹𝑖 = 𝑙(𝜙𝑖) − 𝐵(𝜙𝑖, ∅0) (23) 

  

2.3.1.2.The Method of the Weighted Residuals 

The weighted-residual method is a generalization of the Ritz method in that the weight functions 

can be chosen from an independent set of functions, and it requires only the weighted-integral form 

to determine the parameters.  

The method of weighted residuals can be described in its generality by considering the operator 

equation 

𝒜(𝑢) = 𝑓 (24) 

where 𝒜 is an operator (linear or nonlinear), often a differential operator, acting on the dependent 

variable 𝑢, and 𝑓 is a known function of the independent variables. 

Similar to the Ritz method, , the solution 𝑢 is approximated by the expression 

𝑈𝑁(𝑿) = ∑ 𝑐𝑗∅𝑗(𝑿) + ∅0(𝑿)

𝑁

𝑗=1

 (25) 

Substitution of the approximate solution 𝑈𝑁 into the left-hand side of Eq. (24) gives a 

function 𝒜(𝑈𝑁) that, in general, is not equal to the specified function 𝑓. The difference 𝒜(𝑈𝑁) −

𝑓, called the residual of the approximation, is nonzero: 

𝑅 = 𝒜(𝑈𝑁) − 𝑓 = 𝒜 (∑ 𝑐𝑗∅𝑗 + ∅0

𝑁

𝑗=1

) − 𝑓 ≠ 0 (26) 

Note that the residual 𝑅 is a function of position as well as of the parameters 𝑐𝑗.  

In the weighted-residual method, as the name suggests, the parameters 𝑐𝑗 are determined by 

requiring the residual 𝑅 to vanish in the weighted-integral sense: 
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∫ 𝛹𝑖(𝑿) ∙ 𝑅(𝑿, 𝑐𝑗)

Ω

𝑑𝑿 = 0 (27) 

where Ω is a multi-dimensional domain and 𝛹𝑖 are weight functions, which, in general, are not the 

same as the approximation functions ∅𝑗. The set {𝛹𝑖} must be a linearly independent set; 

otherwise, the equations will not be linearly independent and hence will not be solvable. 

2.3.1.2.1. The Petrov-Galerkin Method 

The weighted-residual method is referred to as the Petrov–Galerkin method when 𝛹𝑖 ≠ ∅𝑖. Using 

linear operator 𝒜, Eq. (27) can be simplified to the form 

∑[𝛹𝑖 ∙ 𝒜(∅𝑗)𝑑𝑿] ∙ 𝑐𝑗

𝑁

𝑗=1

= ∫ 𝛹𝑖 ∙ [𝑓 − 𝒜(∅0)]

Ω

𝑑𝑿 (28) 

∑ 𝐴𝑖𝑗 ∙ 𝑐𝑗

𝑁

𝑗=1

= 𝐹𝑖 (29) 

Where 

𝑨𝒊𝒋 = ∫ 𝛹𝑖 ∙ 𝓐(∅𝑗)

Ω

𝑑𝑿 ≠ 𝑨𝒋𝒊 (30) 

𝑭𝒊 = ∫ 𝛹𝑖 ∙ [𝑓 − 𝓐(∅0)]

Ω

𝑑𝑿 (31) 

2.3.1.2.2. The Galerkin Method 

If the weight function 𝛹𝑖 is chosen to be equal to the approximation function ∅𝑗, the weighted-

residual method is better known as the Galerkin method. The algebraic equations of the Galerkin 

approximation are 

𝑨𝒄 = 𝑭 (32) 

where 

𝑨𝒊𝒋 = ∫ ∅𝑖 ∙ 𝓐(∅𝑗)

Ω

𝑑𝑿 ≠ 𝑨𝒋𝒊 (33) 
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𝑭𝒊 = ∫ ∅𝑖 ∙ [𝑓 − 𝓐(∅0)]

Ω

𝑑𝑿 (34) 

Once again, the coefficient matrix [𝐴] is not symmetric.  

In general, the Galerkin method is not the same as the Ritz method. This should be clear from 

the fact that the former uses the weighted-integral form whereas the latter uses the weak (or 

variational) form to determine the coefficients 𝑐𝑗. Consequently, the approximation functions used 

in the Galerkin method are required to be of higher order than those in the Ritz method. 

If the equation permits, differentiation from the dependent variable(s) can be transferred to the 

weight function 𝑤 = ∅𝑗, thereby obtaining the weak form. Then there is no difference between the 

Galerkin method and the Ritz method. Thus, Ritz and Galerkin methods yield the same solutions 

in two cases: (a) when the specified boundary conditions of the problem are all of the essential 

type, and therefore the requirements on ∅𝑗 in the two methods become the same and the weighted-

integral form reduces to the weak form; and (b) when the approximation functions of the Galerkin 

method are used in the Ritz method. 

2.3.1.2.3. The Least-Squares Method 

In least-squares method, we determine the parameters 𝑐𝑗 by minimizing the integral of the square 

of the residual Eq.(26): 

𝜕

𝜕𝑐𝑖
∫ 𝑅2(𝑿, 𝑐𝑗)

Ω

𝑑𝑿 = 0 (35) 

or 

∫
𝜕𝑅

𝜕𝑐𝑖
∙ 𝑅

Ω

𝑑𝑿 = 0 (36) 

Comparison of Eq. (35) with Eq. (27) shows that 𝛹𝑖 = 𝜕𝑅/𝜕𝑐𝑖. If 𝒜 is a linear operator, 𝛹𝑖 =

𝓐(∅𝑗), and Eq. (35) becomes 



   

22 
 

∑[𝒜(𝛹𝑖) ∙ 𝒜(∅𝑗)𝑑𝑿] ∙ 𝑐𝑗

𝑁

𝑗=1

= ∫ 𝒜(𝛹𝑖) ∙ [𝑓 − 𝒜(∅0)]

Ω

𝑑𝑿 (37) 

𝑨𝒄 = 𝑭 (38) 

Where 

𝑨𝒊𝒋 = ∫ 𝛹𝑖 ∙ 𝓐(∅𝑗)

Ω

𝑑𝑿 ≠ 𝑨𝒋𝒊 (39) 

𝑭𝒊 = ∫ 𝛹𝑖 ∙ [𝑓 − 𝓐(∅0)]

Ω

𝑑𝑿 (40) 

Note that the coefficient matrix 𝑨𝒊𝒋 is symmetric, but it involves the same order of differentiation 

as in the governing differential equation 𝐴(𝑢) − 𝑓 = 0. 

2.3.1.2.4. The Collocation Method 

In the collocation method, we seek an approximate solution 𝑈𝑁 to Eq. (24) in the form of Eq. (25) 

by requiring the residual to vanish identically at 𝑁 selected points within the domain 𝛺. 

𝑅(𝑿, 𝑐𝑗) = 0 (41) 

The selection of the points is crucial in obtaining a well-conditioned system of equations and 

ultimately in obtaining an accurate solution. The collocation method can be shown to be a special 

case of Eq. (26) with 𝜓𝑖 = 𝛿(𝑿), where 𝛿(𝑿) is the Dirac delta function, which is defined by 

∫ 𝑓(𝑿) ∙ 𝛿(𝑿 − 𝜉)

Ω

𝑑𝑿 = 𝑓(𝜉) (42) 

With this choice of weight functions, the weighted-residual statement Eq. (5) becomes 

∫ 𝛿(𝑿) ∙ 𝑅(𝑿, 𝑐𝑗)

Ω

𝑑𝑿 = 0 (43) 

The key distinctions between Rayleigh Ritz Method and Methods of Weighted Residuals are 

summarized below in Table 2. 
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Table 2: Comparison between Ritz method and weighted-residual methods 

Rayleigh Ritz Method Weighted-Residual Methods 

▪ The Ritz method uses the weak form to 

determine the parameters 𝑐𝑖. 

▪ The weighted-residual methods use the 

weighted-integral form to determine the 

parameters 𝑐𝑗. 

▪ The approximation solution, 𝑈𝑁, must 

satisfy the reduced differentiability 

requirements associated with the weak 

form of the boundary-value problem 

(BVP). 

▪ The approximation solution, 𝑈𝑁, must be 

differentiable in accordance with the 

operator equation: 𝒜(𝑢) = 𝑓. 

▪ The approximation functions, ∅𝑗, must 

satisfy the homogenous form of the 

essential boundary conditions (EBCs). 

▪ The approximation functions, ∅𝑗, must 

satisfy the homogenous form of all 

boundary conditions; essential (EBCs) 

and natural (NBCs). 

▪ The approximation functions, ∅0, must 

satisfy the essential boundary conditions 

(EBCs). 

▪ The approximation functions, ∅𝑗, must 

satisfy all boundary conditions; essential 

(EBCs) and natural (NBCs). 

▪ The order of the polynomial expressions 

used for the Ritz method is lower.  

▪ The order of the polynomial expressions 

used for the weighted-residual method is 

higher. 

2.3.2. The Finite Element Method 

The finite element method is a numerical method like the finite difference method but is more 

general and powerful in its application to real-world problems that involve complicated physics, 

geometry, and/or boundary conditions.  

In the finite element method, a given domain is viewed as a collection of subdomains, and 

over each subdomain the governing equation is approximated by any of the traditional variational 

methods. The main reason behind seeking approximate solution on a collection of subdomains is 

the fact that it is easier to represent a complicated function as a collection of simple polynomials, 

as can be seen from Figure 7. Each individual segment of the solution should fit with its neighbors 
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in the sense that the function and possibly derivatives up to a chosen order are continuous at the 

connecting points. 

 

 

Figure 7: Piecewise approximation of an arbitrary function [Reprinted from Reddy J., 2006] 
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2.3.2.1. The fundamental steps of the finite element method 

 

Table 3: Steps involved in finite element analysis (FEA) of a typical problem 

 

Step 1. Discretization of the given domain into a collection of preselected finite elements.  

▪ Construct the finite element mesh of preselected elements. 

▪ Number the nodes and the elements. 

▪ Generate the geometric properties (e.g., coordinates and cross-sectional areas) 

needed for the problem. 

Step 2. Derivation of element equations for all typical elements in the mesh. 

▪ Construct the variational formulation of the given differential equation over the 

typical element. 

▪ Assume that a typical dependent variable u is of the form 

𝑢 = ∑ 𝑢𝑖𝛹𝑖

𝑛

𝑖=1

 

and substitute it into Step 2a to obtain element equations in the form 

[𝐾𝑒]{𝑢𝑒} = {𝐹𝑒} 

▪ Select, if already available in the literature, or derive element interpolation functions 

𝛹𝑖 and compute the element matrices. 

Step 3. Assembly of element equations to obtain the equations of the whole problem. 

▪ Identify the interelement continuity conditions among the primary variables 

(relationship between the local degrees of freedom and the global degrees of 

freedom—connectivity of elements) by relating element nodes to global nodes. 

▪ Identify the “equilibrium” conditions among the secondary variables (relationship 

between the local source or force components and the globally specified source 

components). 

▪ Assemble element equations using Steps 3a and 3b. 

Step 4. Imposition of the boundary conditions of the problem. 

▪ Identify the specified global primary degrees of freedom. 
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▪ Identify the specified global secondary degrees of freedom (if not already done in 

Step 3b). 

Step 5. Solution of the assembled equations. 

Step 6. Postprocessing of the results. 

▪ Compute the gradient of the solution or other desired quantities from the primary 

degrees of freedom computed in Step 5. 

▪ Represent the results in tabular and/or graphical form. 

 

.  

In the preceding sections, a brief breakdown of the major steps involved in the finite element 

analysis is presented. 

2.3.2.2.1. Discretization of the Domain 

Here, the domain is represented as a collection of a finite number of subdomains. Each 

subdomain is called an element. The collection of elements is called the finite element mesh. The 

elements are connected to each other at points called nodes. 

The reason for dividing a domain into a set of subdomains is two-fold:  

a) Domains of most systems are a composite of geometrically and/or materially different 

parts, and the solution on these subdomains is represented by different functions that are 

continuous at the interfaces of these subdomains. Therefore, it is appropriate to seek 

approximation of the solution over each subdomain.  

b) Approximation of the solution over each element of the mesh is simpler than its 

approximation over the entire domain. Approximation of the geometry of the domain in 

the present case is not a concern, since it is a straight line. We must, however, seek a 

suitable approximation of the solution over each subdomain (i.e., finite element). 

The number of elements into which the total domain is divided in a problem depends mainly on:  

a) The geometry of the domain  

b) The desired accuracy of the solution.  
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In a given problem, the exact solution is not known a priori. Hence, we begin with a number 

of elements that are considered to be reasonable. Most often, the analyst has knowledge of the 

qualitative behavior of the solution, and this helps to choose a starting mesh.  

Whenever a problem is solved by the finite element method for the first time, it is required to 

investigate the convergence of the finite element solution by gradually refining the mesh (i.e., 

increasing the number of elements) and comparing the solution with those obtained by higher-

order elements. The order of an element refers to the degree of polynomial used to represent the 

solution over the element. This is made clearer in the sequel. 

2.3.2.2.2. Derivation of Element Equations 

We develop the algebraic equations among the unknown parameters, much the same way as we 

did in the classical variational methods. The main difference is that we work with a finite element 

as opposed to the total domain. This step results in a matrix equation of the form  

[𝐾𝑒]{𝑐𝑒} = {𝐹𝑒} 

which is called the finite element model of the original equation. Since the element is physically 

connected to its neighbors, the resulting algebraic equations will contain more unknowns than the 

number of algebraic equations. Then it becomes necessary to put the elements together to eliminate 

the extra unknowns.  

The derivation of finite element equations, i.e., algebraic equations among the unknown 

parameters of the finite element approximation, involves the following three steps: 

Step 1. Construct the weighted-residual or weak form of the differential equation. 

Step 2. Assume the form of the approximate solution over a typical finite element. 

Step 3. Derive the finite element equations by substituting the approximate solution into the 

weighted-residual or weak form. 

A typical element is isolated from the mesh. Then, we seek an approximate solution to the 

governing differential equation over the element. In principle, any method that allows the 

derivation of necessary algebraic relations among the nodal values of the dependent variable can 

be used.  
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2.3.2.2.3. Connectivity of Elements 

In deriving the element equations, we isolated a typical element from the mesh and formulated the 

variational problem (or weak form) and developed its finite element model. The finite element 

model of a typical element contains 𝑛 equations among 2𝑛 unknowns. Hence, they cannot be 

solved without using the equations from other elements to get rid of extra unknowns.  

To obtain the finite element equations of the total problem, we must put the elements back 

into their original positions. In putting the elements with their nodal degrees of freedom back into 

their original positions, we must require that the solution is uniquely defined, and their source 

terms are “balanced” at the points where elements are connected to each other. Of course, if the 

primary variable is not continuous, we do not impose its continuity, the primary variables are 

assumed to be continuous. The continuity of the primary variables refers to the single-valued 

nature of the solution; balance of secondary variables refers to the equilibrium of point sources. 

Thus, the assembly of elements is carried out by imposing those two conditions. 

2.3.2.2.4. Imposition of Boundary Conditions 

Each problem differs from the other in the specification of the data and boundary conditions on 

the primary and secondary variables. Generally, the boundary conditions of a problem (i.e. The 

known primary degrees of freedom and the known secondary degrees of freedom) are imposed on 

the assembled set of finite element (algebraic) equations.  

2.3.2.2.5. Solution of Equations 

As a standard procedure in finite element analysis, the unknown primary degrees of freedom are 

determined first by considering the algebraic equations corresponding to the unknown primary 

variables. Then, the unknown secondary variables are determined by considering the remaining 

equations; those that contain the unknown secondary variables. 

2.3.2.2.6. Postcomputation of the Solution 

The solution of the finite element equations gives the nodal values of the primary unknowns. Once 

the nodal values of the primary variables are known, we can use the finite element 

approximation to compute the desired quantities. The process of computing desired quantities in 
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numerical form or graphical form from the known finite element solution is 

termed postcomputation or postprocessing; these phrases are meant to indicate that further 

computations are made after obtaining the solution of the finite element equations for the nodal 

values of the primary variables. 

2.3.3. Comparison between Computational Methods 

In the preceding sections, various computational methods used for solving differential and/or integral 

equations of mechanical systems were introduced and a brief analysis of their key components was 

presented. In this section, a comprehensive comparison between the different computational methods and 

their major differences are presented in Table 4. Based on the provided analysis, it has been decided to 

implement finite element methods (FEM) in the sequel study for two reason: (1) their ability to handle the 

complexity of any system (e.g. nonlinearity and large scale) and (2) their consistency in deriving the 

solution of any system unlike the conventional variational methods.    

 

Table 4: Key distinctions between classical variational methods and finite element method 

Classical Variational Methods Finite Element Method 

▪ The construction of the approximation 

functions is arbitrary, moreover, is 

difficult when the given domain is 

geometrically complex.  

▪ The construction of the approximation 

functions is accomplished through a 

systematic scheme, that qualifies the FEM 

to be computationally competitive. 

▪ The solution 𝑢 is represented as a linear 

combination (𝑢ℎ = ∑ 𝑐𝑗∅𝑗) in terms of 

arbitrary parameters 𝑐𝑗. 

▪ The solution 𝑢 is represented as a linear 

combination (𝑢ℎ = ∑ 𝑐𝑗∅𝑗) in terms of 

the values  𝑢𝑗  of 𝑢ℎ (and possibly its 

derivatives as well) at the nodal points. 

▪ They are meshless methods. ▪ It includes the use of meshes.  

▪ They cease to be effective when the 

geometry of the problem is far more 

complex. 

▪ It Allows accurate representation of 

complex geometry and inclusion of 

dissimilar material properties. 

▪ Due to the fact that classical variational 

methods are meshless, they are powerful 

▪ Due to the subdivision of the whole 

domain, it has the ability of capturing 
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Classical Variational Methods Finite Element Method 

for capturing the global effects. Yet, they 

are hard to capture high gradient local 

effects.    

local effects (e.g., large gradients of 

solution), thus, enabling easy 

representation of the solution.  

 

2.4. The Sources of Error 

Although finite element methods (FEM) are more robust than conventional variational methods in 

different aspects, yet there are a variety of errors introduced during the process of implementing 

the FEM to any system that increase the complexity of their application. Accordingly, a huge 

attention must be paid in order to successfully implement these methods. The following is a listing 

of the major error sources introduced:    

2.4.1. Errors due to the Approximation of the Domain  

The division of the whole domain into finite elements may not be exact (i.e., the assemblage of 

elements, 𝛺ℎ, does not match the original domain 𝛺), introducing error in the domain being 

modeled.  

2.4.2. Errors due to the Approximation of the Solution  

During the derivation of element equations, typically, the dependent unknowns (𝑢) of the problem 

are approximated using the basic idea that any continuous function can be represented by a linear 

combination of known functions ∅𝑖 and undetermined coefficients 𝑐𝑖 (𝑢 ≈ 𝑢ℎ = ∑𝑐𝑖∅𝑖). 

Algebraic relations among the undetermined coefficients 𝑐𝑖 are obtained by satisfying the 

governing equations, in a weighted-integral sense, over each element. The approximation 

functions ∅𝑖 are often taken to be polynomials, and they are derived using concepts from 

interpolation theory. Therefore, they are termed interpolation functions. Thus, approximation 

errors in the second stage are introduced both in representing the solution u as well as in evaluating 

the integrals. 



   

31 
 

2.4.3. Errors due to Mesh Size 

Accuracy refers to the difference between the exact solution and the finite element solution, while 

convergence refers to the accuracy as the number of elements in the mesh is increased. 

The accuracy and convergence of the finite element solution depends on:  

▪ The differential equation that represents the problem  

▪ The integral form of the differential equation.  

▪ The finite elements being used.  

Meshes that are of irregularly shaped elements or don’t have sufficient number of elements in a 

region containing high gradients in the solution, both of which result in loss of accuracy or, in the 

case of nonlinear problems, nonconvergence of solutions. 

2.4.4. Errors in Solving the Assembled System of Equations  

Errors are introduced due to numerical computation (e.g., numerical integration and round-off 

errors in a computer). The estimation of these errors, in general, is not simple. However, under 

certain conditions, they can be estimated for an element and problem. 

2.4.5. Errors due to Approximation in Time 

For time-dependent problems, a two-stage formulation is usually followed. In the first stage, the 

differential equations are approximated by the finite element method to obtain a set of ordinary 

differential equations in time. In the second, the differential equations in time are solved exactly 

or further approximated by either variational methods or finite difference methods to obtain 

algebraic equations, which are then solved for the nodal values. 

Obviously, some of the errors discussed above can be zero. When all the errors are zero, we 

obtain the exact solution of the problem (which is not the case in most problems). 

Although great progress has been made on the theory and applications of the finite element 

method during the past several decades, yet more attention must be geared towards the accuracy, 

reliability and computational effort involved in finite element modeling (FEM). It is well known 

that the computational effort of finite element analysis is approximately proportional to the cubic 

of the size of a problem. The computational work , then, could be reduced drastically if the size of 
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the problem is reduced. Therefore, the development of efficient model reduction methods for 

creating accurate low-order dynamic models has recently become a major goal of simulation and 

modeling research. 

Many techniques have been proposed to reduce the size of a large-sized model before a 

detailed analysis is performed. Some popular examples are component mode synthesis, dynamic 

condensation, dynamic substructure, and the Ritz vector approach. With the application of model 

reduction technique, the size of a full model may be reduced significantly. However, due to the 

truncated errors, the reduced model cannot retain all features of the full model. Even for the 

features within an interested frequency range, they may not be exactly kept in the reduced model 

resulting from most of the model reduction techniques. Therefore, there is a tradeoff between the 

size of the model and its accuracy. The crux of model reduction is to pursue a smallest model that 

contains the highest degree of information of the full model. 

Dynamic condensation (proposed in 1965) is considered one of the most efficient methods for 

model reduction. In this technique, the total degrees of freedom are first divided into the master 

and slave degrees-of-freedom (DOFs). Then, the relationship, called dynamic condensation 

matrix, of the responses or mode shapes between these two sets of degrees of freedom is defined 

by dynamic condensation schemes. Using the dynamic condensation matrix, the system matrices 

of a full model can be condensed to the size spanned only by the master degrees of freedom. Also, 

the measured data from a modal test can be expanded to the size of the full finite element model. 

Next chapter sets out to explain the principles and applications of dynamic condensation 

techniques. It covers all the potentially useful condensation methods including static condensation, 

exact condensation, and iterative dynamic condensation. The effects of the selection of master 

degrees of freedom on the accuracy and application of dynamic condensation technique are 

described in detail. The applications of these methods to the finite element analyses (FEA) are 

demonstrated through several examples. 
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CHAPTER III  

MODEL-ORDER REDUCTION TECHNIQUES FOR STRUCTURAL PROBLEMS 

 

The numerical simulation of the response of complex engineering systems usually requires the 

solution of large systems of simultaneous algebraic (and/or differential) equations, which may be 

computationally expensive, particularly for nonlinear and time-dependent (dynamic) problems.  

Many techniques have been proposed to reduce the size of a large-sized model. Some popular 

examples are component mode synthesis, dynamic condensation, dynamic substructure, and the 

Ritz vector approach. The techniques for reducing the degrees of freedom have been referred to as 

reduced-basis techniques, reduction methods, and condensation methods. 

Reduction methods can be applied to various linear and nonlinear boundary-value, initial-

value, and eigenvalue problems, sensitivity analysis, reanalysis and design optimization problems; 

as well as to different nonstructural problems (e.g., heat transfer, fluid-structure interaction, etc.). 

With the application of model reduction technique, the size of a full model may be reduced 

significantly. However, the reduced model cannot retain all features of the full model. Even for 

the features within an interested frequency range, they may not be exactly kept in the reduced 

model resulting from most of the model reduction techniques. Therefore, there is a tradeoff 

between the size of the model and its accuracy. The crux of model reduction is to pursue a smallest 

model that contains the highest degree of information of the full model. 

This chapter is intended to summarize and assess some recent developments of reduction 

methods and their application to various mechanics problems. To fix ideas, the details of 

application of reduction methods to linear problems are described in the succeeding sections. 

Numerical results are presented which demonstrate the effectiveness of reduction methods. Also, 

a number of research areas which have high potential for application of reduction methods are 

identified. 

3.1. The Basic Idea of Reduction Techniques 

The basic idea of model reduction methods is the condensation of a large system to a similar but 

much smaller substitute. In structural dynamic analyses [21], the dynamic equation of equilibrium 
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of the full-order model (FOM) can be expressed as a set of linear second-order differential 

equations: 

𝐌�̈�(t) + 𝐂�̇�(t) + 𝐊𝐗(t) = 𝐅(t) (44) 

in which 𝑴, 𝑪, and 𝑲 ∊  𝑅𝑛×𝑛  are the mass, damping, and stiffness matrices of the full order 

model; �̈�(𝑡), �̇�(𝑡), and 𝑿(𝑡) ∊  𝑅𝑛 are the acceleration, velocity, and displacement response 

vectors, respectively, of the full model under the external loads. The vector 𝑿 is also referred to as 

the full order coordinates; 𝑭(𝑡) ∊  𝑅𝑛 is the equivalent force vector acting on the model; 𝑛 denotes 

the number of degrees of freedom of the full model.  

Since the number 𝑛 is generally very large for a practical structural problem, dynamic 

analyses, simulations, and design require very expensive computational efforts. Thus, model 

reduction technique is usually introduced to reduce the size of the full model and leads to a reduced 

order model. 

The response of the large system, which was originally described in terms of a large number 

of degrees of freedom - components of a vector 𝑿, is approximated by a linear combination of few 

preselected global approximation vectors (modes or basis vectors). The problem is then 

reformulated in terms of a few discrete variables - components of a vector 𝒁, which represent the 

amplitudes of the global approximation vectors. This is accomplished by using the following 

transformation (or mapping): 

𝐗(t) = 𝐓 𝐙(t) (45) 

where 𝑻 ∊ 𝑅𝑛×𝑚 is the coordinate transformation matrix, 𝒁 ∊ 𝑅𝑚 is the reduced-order coordinates. 

Knowing that the dimension of the reduced system, m, is much less than the problem dimension 

(or, full dimension), n, assuming appropriate selection of transformation matrix, T. 

Similarly, the derivatives of the response vector; velocity and acceleration. 

�̇�(t) = 𝐓 �̇�(t) (46) 

�̈�(t) = 𝐓 �̈�(t) (47) 
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Introducing Eqs. (45) to (47) into Eq. (44) and premultiplying both sides by the transpose of 

transformation matrix 𝑻 leads to the equilibrium equation of the reduced-order model (ROM) as 

follows 

𝐌𝐑�̈�(t) + 𝐂𝐑�̇�(t) + 𝐊𝐑𝐙(t) = 𝐅𝐑(t) (48) 

in which 𝑴𝑹, 𝑪𝑹, and 𝑲𝑹 ∊  𝑅𝑚×𝑚  are the mass, damping, and stiffness matrices of the reduced 

order model; �̈�(𝑡), �̇�(𝑡), and 𝒁(𝑡) ∊  𝑅𝑛 are the acceleration, velocity, and displacement response 

vectors, respectively, of the reduced model under the external loads. 𝑭𝑹(𝑡) ∊  𝑅𝑚 is the equivalent 

force vector acting on the model. 

The process of transforming the equilibrium equation of the full-order model (FOM) [Eq. 

(48)] into the equilibrium equation of the reduced-order model (ROM) [Eq. (44)] is sometimes 

called “Condensation” for reasons that will be explained in greater detail in the sequel. The 

resulting reduced-order model (ROM) should offer a good representation of the corresponding 

full-order model (FOM) and its solution (i.e. MOR solution) should be comparable to that of full-

order model (FOM). The aforementioned conditions are achieved contingent good selection of 

transformation matrix, T. 

3.2. Classification of Model Order Reduction Techniques 

Dynamic condensation is considered one of the most efficient methods for model reduction. In this 

technique, the total degrees of freedom are first divided into the master and slave degrees of 

freedom. Then, the relationship, called dynamic condensation matrix, of the responses or mode 

shapes between these two sets of degrees of freedom is defined by dynamic condensation schemes. 

Using the dynamic condensation matrix, the system matrices of a full model can be condensed to 

the size spanned only by the master degrees of freedom. 

Based on various criteria, the dynamic model order reduction techniques can be classified into 

four major categories. Each category may include several subcategories as follows:  

3.2.1. Based on the Type of Coordinates Retained as the Reduced Order Coordinates 

a. Physical Coordinate Reduction. 

b. Generalized Coordinate Reduction. 

c. Hybrid Coordinate Reduction. 
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3.2.2. Based on the Construction of the Dynamic Condensation Matrix 

a. Single-Mode-Dependent Dynamic Condensation Matrix. 

b. Multimode-Dependent Dynamic Condensation Matrix. 

c. Response-Dependent Dynamic Condensation Matrix.  

3.2.3. Based on the Information Required to Compute the Dynamic Condensation Matrix 

a. Physical-Type Dynamic Condensation. 

b. Modal-Type Dynamic Condensation. 

c. Hybrid Dynamic Condensation. 

3.2.4. Based on the Schemes used for Dynamic Condensation 

a. Single-Step Dynamic Condensation. 

b. Two-Step Dynamic Condensation. 

c. Iterative Dynamic Condensation. 

Basic definitions and key distinctions between the four major categories; as well as their 

subcategories are summarized in Table 5 through Table 8. 

  



   

37 
 

 

  

Table 5:  Classification Based on the Type of Reduced Order Coordinates 

Physical Generalized Hybrid 

Definition 

The coordinates of the reduced model 

belong to a subset of the physical 

coordinates of the full model. 

The coordinates of the reduced model 

belong to a subset of the Modal 

coordinates of the full model. 

The coordinates of the reduced model 

consist of some physical coordinates of 

the full model and part of the modal 

coordinates of the model. 

Coordinate Transformation Matrix 

𝑻 = [
𝑰
𝑹

] 

where 

• 𝑰 is an identity matrix of order 𝑚.  

• 𝑹 is the dynamic condensation matrix. 

𝑿 = 𝝓𝒎𝒒𝒎 

where 

• 𝝓𝒎 ∊ 𝑹𝒏×𝒎 is the eigenvector matrix 

of the full model. 

• 𝑿 is the physical space. 

• 𝒒𝒎 is the modal space. 

𝑻𝑪𝑴𝑺 = [
𝝓𝑵 𝑹𝑮𝒖𝒚𝒂𝒏

𝟎 𝑰
] 

where 

▪ 𝝓𝒎 ∊ 𝑹𝒏×𝒎 is the eigenvector matrix 

of the full model. 

▪ 𝑰 is an identity matrix of order 𝑚.  

▪ 𝑹 is the dynamic condensation matrix. 
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Table 6:  Classification Based on the Construction of the Dynamic Condensation Matrix 

Single-Mode-Dependent Multi-Mode-Dependent Response-Dependent  

Definition 

It represents the relation of an eigenvector 

between the master and slave degrees of 

freedom. 

It represents the relations of the multi-

eigenvectors, 𝑝, for example, between the 

master and slave degrees of freedom. 

It represents the relations of responses 

between the master and slave degrees of 

freedom 

Dynamic Condensation Matrix 

𝝓𝒔 = 𝑹 𝝓𝒎 

where 

• 𝝓𝒔 is the subvector of the eigenvector 

at the slave degrees of freedom. 

• 𝝓𝒎 is the subvector of the eigenvector 

at the master degrees of freedom. 

𝝓𝒔𝒑 = 𝑹 𝝓𝒎𝒑 

where 

• 𝝓𝒔𝒑 is the submatrix of the eigenvector 

matrix at the slave degrees of freedom. 

• 𝝓𝒎 is the submatrix of the eigenvector 

matrix at the master degrees of 

freedom. 

𝑿𝒔(𝑡) = 𝑹 𝑿𝒎(𝑡) 

where 

▪ 𝑿𝒔(𝑡) is the displacement vector at the 

slave degrees of freedom. 

▪ 𝑿𝒎(𝑠) is the displacement vector of the 

at the master degrees of freedom. 
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Table 7:  Classification Based on the types of information required to compute the dynamic condensation matrix 

Physical-Type Modal-Type Hybrid  

Definition 

Only the system matrices, stiffness and 

mass matrices, for example, of the full 

model are included in the dynamic 

condensation matrix. 

Only the mode shapes of the full model 

are included in the dynamic condensation 

matrix. 

Both the physical parameters and the 

mode shapes of the full model are 

included in the dynamic condensation 

matrix. 

Remarks 

•  More computationally efficient than 

the other two. 

• The accuracy or convergent rate 

depends on what and how many 

degrees of freedom are selected as the 

master degrees of freedom. 

• The reduced model preserves all the 

modes selected. 

• Because this reduction is exact, the 

selection of master degrees of freedom 

does not affect the accuracy of reduced 

model. 
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Table 8:  Classification Based on the Schemes Used for Dynamic Condensation. 

Single-Step Two-Step Iterative  

Definition 

The dynamic condensation matrix is 

explicitly defined by either the system 

matrices or the modal matrix or both of a 

full model. 

The results computed from the single-step 

condensation methods are usually 

considered as an initial prediction. Then, 

correction will be made in the second 

step. 

It is an extension of the two-step method. 

After the reduced model is obtained from 

the second step, it is used to estimate the 

dynamic condensation matrix in the next 

step. This process is repeated until the 

required accuracy is obtained 

Key Distinctions 

• All the interested modes can be computed from the reduced model one by one. ▪ All the interested modes are computed 

from the reduced model 

simultaneously. 

• The convergence of this technique strongly depends on the selection of the initial 

approximation and the approximation for the next mode. 

▪ The convergence of this technique is 

guaranteed. 

• The speed of convergence of the latter is generally faster. ▪ The speed of convergence of the latter 

is generally slower. 
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3.3. Formulation of Dynamic Equations of Motion 

This section lays  the foundation for the exact condensation techniques and iterative condensation 

techniques [sections 3.4.2 and 3.4.3, respectively] by offering an alternative solution to the 

dynamic equations of motion [Eq. (44)] through transformation into frequency-based space (using 

Fourier Transform) instead of the original physical space.  

We start with the general form of the dynamic equations of motion [Eq. (44)], that is defined as 

𝐌�̈�(t) + 𝐂�̇�(t) + 𝐊𝐗(t) = 𝐅(t) (49) 

where �̈�(𝑡), �̇�(𝑡) and 𝑿(𝑡) are the acceleration response vector, velocity response vector, and 

displacement response vector, respectively. 𝑴, 𝑪 and 𝑲 are the mass, damping, and stiffness 

matrices, respectively. 𝑭(𝑡) is the vector of applied forces. 

In the absence of damping and external forces, Eq. (49) reduces to 

𝐌�̈�(t) + 𝐊𝐗(t) = 0 (50) 

The motion of a dynamic structure may be represented by a set of simultaneous differential 

equations using some discretization scheme, such as the finite element method, if necessary. The 

dynamic characteristics (dynamic responses, strains, stresses, etc.) of the system can be obtained 

from these equations using the direct integration methods (finite difference method, Newmark 

method, for example) in the time domain. Alternatively, these coupled equations of motion may 

be solved by transforming them into a set of independent equations by a modal matrix.  

 Generally, the solution of Eq. (50) has the form 

𝐗(t) = 𝛗 sin(ωt + ∅) (51) 

where 𝝋 is the vector of amplitudes, 𝜔 is the frequency of harmonic response, and ∅ is the phase 

angle. Differentiation of Eq. (51) twice with respect to time produces 

�̈�(t) = −ω2𝛗 sin(ωt + ∅) (52) 

Substituting Eqs. (51) and (52) into Eq. (50) and rearranging it results in 

(𝐊 − ω2𝐌)𝛗 = 𝟎 (53) 
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Now, the 𝑛 simultaneous homogeneous differential equations are reduced to a set of 𝑛 

homogeneous algebraic equations. Eq. (53) has the form of an algebraic eigenvalue problem. It is 

usually simply termed as an eigenproblem. 

Nontrivial solutions exist if the determinant of the coefficient matrix is equal to zero (as shown 

in Figure 8) 

|𝐊 − ω2𝐌| = 𝟎 (54) 

 

 

Figure 8: Comparison between different solutions to eigenproblem 

 

The above equation leads to a polynomial of order 𝑛 in 𝜔2 that has 𝑛 distinct roots. These 

roots, denoted by 𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑛, and are called eigenvalues. Their square roots are called natural 

frequencies. Associated with each eigenvalue, 𝜔𝑖
2, there is an n-dimensional vector, 𝝋𝒊whose 

elements are real numbers. 

The vector 𝝋𝒊 is known as eigenvector (also, modal vector, mode shape or natural mode) and can 

be obtained by using Eq. (53) as follows 

(𝐊 − ωi
2𝐌)𝛗𝐢 = 𝟎 (55) 

For operational efficiency, an 𝑛 ×  𝑛 eigenvector matrix or normal modal matrix is defined by 

placing all of the eigenvectors columnwise in this matrix with the form 
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Փ = [𝛗𝟏 𝛗𝟐 ⋯ 𝛗𝐧] (56) 

Using this matrix, the compact form of the eigenproblem shown in Eq. (53) is given by 

𝐊Փ = 𝐌Փ𝚲 (57) 

Where the eigenvalue matrix 𝜦 is defined as 

𝚲 = diag(λ1 λ2 ⋯ λn) (58) 

It is an 𝑛 ×  𝑛 diagonal matrix whose diagonal elements are the eigenvalues of the model.  

The eigenvectors are orthogonal with respect to the mass matrix 𝑴 and stiffness matrix 𝑲. 

This orthogonality indicates that all the eigenvectors are linearly independent. The orthogonal 

conditions are given by 

Փ𝐓𝐌Փ = 𝐈 (59) 

Փ𝐓𝐊Փ = 𝚲 (60) 

 

3.4. Dynamic Condensation Techniques 

Based on the construction of the dynamic condensation matrix, the dynamic condensation 

techniques can be categorized as follows [see Figure 9]: 

3.4.1. Single-Step Dynamic Condensation 

In the single-step method, the dynamic condensation matrix is explicitly defined by either the 

system matrices or the modal matrices or both of a full model, as well as, the corresponding 

reduced model. Guyan condensation and its variants are examples of single-step methods. 

3.4.2. Two-Step Dynamic Condensation 

In the two-step method, the results computed from the single-step methods are usually considered 

as an initial approximation. These values usually have relatively high errors. Correction will be 

made in the second step. Accordingly, the two-step method is also referred to as the prediction-

correction method.  
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3.4.3. Iterative Dynamic Condensation 

The iterative dynamic condensation is considered an extension of the two-step method. After the 

reduced model is obtained from the second step, it is used to estimate the dynamic condensation 

matrix in the following step. This process is repeated until the reduced model with required 

accuracy is obtained. 

 

 

Figure 9: General Scheme for Dynamic Condensation Techniques 
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3.5. Guyan Condensation 

This technique was first proposed by Guyan and Irons (1965) and is considered as one of the most 

popular condensation techniques. This method is usually referred to as “static” condensation since 

the dynamic effect is ignored in the condensation. 

3.5.1 Basic Idea of Guyan Condensation 

Guyan condensation is considered as the initial approximation of exact dynamic condensation. Its 

valid frequency range is [0, 𝜔𝑐). 𝜔𝑐 is called the cut frequency and is equal to the lowest frequency 

of the full model with all its master degrees of freedom grounded. This model is referred to as the 

slave model.  

Because the frequencies of the full model will increase if some of its degrees of freedom are 

fixed, the frequencies in the lowest frequency range of the full model are usually smaller than the 

lowest frequency of the slave model, that is, the cut frequency. This is the reason why Guyan 

condensation is generally valid in the lowest frequency range of the full model and the 

corresponding results have reasonable accuracy within this range. The error in Guyan condensation 

depends upon the ratio of cut frequency to the interested frequency. The higher the ratio, the more 

accurate the reduced model. 

Based on the fundamental features of Guyan condensation, its accuracy may be improved 

from the ways listed below besides the partial and full inclusion of inertia effects: 

1. Optimal selection of master degrees of freedom. From the definition of a slave model, we 

know that different master degrees of freedom result in a different slave model with a 

different lowest frequency. Therefore, optimal selection of these degrees of freedom may 

increase the lowest frequency, that is, the cut frequency. As a result, the ratio will be 

increased. 

2. Increase of the number of master degrees of freedom. The lowest frequency of the slave 

model may be increasing significantly by increasing the number of master degrees of 

freedom.  



   

46 
 

3.5.2 Formulation of Guyan Condensation for Static Problems 

Considering the static equations of equilibrium, that is, 

𝐊𝐗 = 𝐅 (61) 

the total degrees of freedom of the full model are categorized as master degrees of freedom; 

retained in the reduced model and slave degrees of freedom; deleted from the model or condensed. 

Accordingly, the static Eq. (61) can be rewritten as 

[
𝐊𝐦𝐦 𝐊𝐦𝐬

𝐊𝐬𝐦 𝐊𝐬𝐬
] {

𝐗𝐦

𝐗𝐬
} = {

𝐅𝐦

𝐅𝐬
} (62) 

where m and s indicate the master degrees of freedom and slave degrees of freedom, respectively.  

The expansion of Eq. (62) leads to the following two equations: 

𝐊𝐦𝐦𝐗𝐦 + 𝐊𝐦𝐬𝐗𝐬 = 𝐅𝐦 (63) 

𝐊𝐬𝐦𝐗𝐦 + 𝐊𝐬𝐬𝐗𝐬 = 𝐅𝐬 (64) 

𝑿𝒔 the displacement vector at the slaves can be expressed in terms of 𝑿𝒎 the displacement vector 

at the masters as follows 

𝐗𝐬 = −𝐊𝐬𝐬
−𝟏𝐊𝐬𝐦𝐗𝐦 + 𝐊𝐬𝐬

−𝟏𝐅𝐬 (65) 

Assuming 𝑭𝒔 = 𝟎 in Eq. (65) leads to 

𝐗𝐬 = 𝐑𝐆𝐗𝐦 (66) 

where 𝑹𝑮 is called the static condensation matrix due to the ignorance of dynamic effects. This 

matrix relates the displacements between the masters and the slaves and is defined as 

𝐑𝐆 = −𝐊𝐬𝐬
−𝟏𝐊𝐬𝐦 (67) 

Substitution of Eq. (65) into Eq. (63) leads to 

𝐊𝐆𝐗𝐦 = 𝐅𝐆 (68) 

Where 𝑲𝑮 and 𝑭𝑮 are the reduced stiffness matrix and reduced force vector, respectively. They 

are defined as follows 

𝐊𝐆 = 𝐊𝐦𝐦 − 𝐊𝐦𝐬𝐊𝐬𝐬
−𝟏𝐊𝐬𝐦 (69) 

𝐅𝐆 = 𝐅𝐦 − 𝐊𝐦𝐬𝐊𝐬𝐬
−𝟏𝐅𝐬 (70) 
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3.5.3. Numerical Demonstration 

In this section, we present the performance of the proposed scheme through one structural problem. 

For the finite element modeling, we use the well-known 4-node quadrilateral flat shell finite 

elements. A detailed description of the problem is presented in Abousleiman et el. (1996). 

A two-dimensional reservoir [Figure 10] is considered with boundary conditioned as 

specified in Table 9. The specifications of our model are listed in Table 10. In the model, a uniform 

mesh of the size 20 × 10 is used, in which 231 nodes, 200 elements and 419 degrees-of-freedom 

are contained. 

 

Figure 10: Two-dimensional reservoir  

Table 9: Boundary Conditions for Two-dimensional Reservoir 

1. Constant vertical stress on the top (𝜎𝑦 = 𝐹 / 𝑎; where 𝐹 = 1.00𝐸08 𝑁 and 𝑎 = 100 𝑚). 

2. No vertical displacement in the bottom (i.e. 𝑢𝑦 = 0). 

3. No horizontal displacement on the right side (i.e. 𝑢𝑥 = 0). 

4. No horizontal displacement on the left side (i.e. 𝑢𝑥 = 0). 

 

Table 10: Data Input for Two-dimensional Reservoir 

Young’s Modulus, E *  = 0.10 GPa 

Poisson Ratio, v * = 0.20 fraction 

Stress, σ = 1.00 MPa 

* Only two elastic moduli are needed to describe fully material behavior of homogeneous, isotropic material 
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Two numerical cases are considered with different master degrees-of-freedom for the two-

dimensional reservoir. Summary of the two models is listed in Table 11. The master degrees-of-

freedom are selected as shown in Figure 11. 

a) 

 

b) 

 

 

Figure 11: (a) 70 degrees-of-freedom selected for the reduced-model of the two-dimensional 

reservoir (b) 40 degrees-of-freedom selected for the reduced-model of the two-dimensional 

reservoir. 

 

Table 11: Summary of Four Cases for Two-Dimensional Reservoir 

Model 
Number of Master 

DOFs 

Number of Slave 

DOFs 

Relative Size of Reduced-

Order Model 

A 70 347 17.1 % 

B 40 379 9.55 % 

 

  

(a) (b) 

Figure 12: (a) Exact (Black) and estimated (Cyan) node displacement for Static two-

dimensional reservoir using Guyan Condensation with 70 master degrees-of-freedom (b) Exact 

and estimated node displacement for Static two-dimensional reservoir using Guyan 

Condensation with 40 master degrees-of-freedom. 
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The exact and estimated node displacements are shown in Figure 12. As expected, Guyan 

condensation is exact for the static problem regardless of the choice of master degrees of freedom. 

 

3.5.4. Formulation of Guyan Condensation for Dynamic Problems 

Considering the dynamic equations of equilibrium without damping, that is, 

𝐌�̈�(t) + 𝐊𝐗(t) = 𝐅(t) (71) 

where �̈�(𝑡) is the acceleration vector of the full model, and 𝑴 is the mass matrix of the full-order 

model.. Similar to the static equations of equilibrium, Eq. (71) can be rewritten as 

[
𝐌𝐦𝐦 𝐌𝐦𝐬

𝐌𝐬𝐦 𝐌𝐬𝐬
] {

�̈�𝐦

�̈�𝐬

} + [
𝐊𝐦𝐦 𝐊𝐦𝐬

𝐊𝐬𝐦 𝐊𝐬𝐬
] {

𝐗𝐦

𝐗𝐬
} = {

𝐅𝐦

𝐅𝐬
} (72) 

where m and s indicate the master degrees of freedom and slave degrees of freedom, respectively.  

The expansion of Eq. (72) leads to the following two equations: 

𝐌𝐦𝐦�̈�𝐦 + 𝐌𝐦𝐬�̈�𝐬 + 𝐊𝐦𝐦𝐗𝐦 + 𝐊𝐦𝐬𝐗𝐬 = 𝐅𝐦 (73) 

𝐌𝐬𝐦�̈�𝐦 + 𝐌𝐬𝐬�̈�𝐬 + 𝐊𝐬𝐦𝐗𝐦 + 𝐊𝐬𝐬𝐗𝐬 = 𝐅𝐬 (74) 

Assuming 𝑭𝒔 = 𝟎 in Eq. (74) and letting �̈�𝒎 = �̈�𝒔 = 𝟎 leads to 

𝐗𝐬 = 𝐑𝐆𝐗𝐦 (75) 

Differentiating Eq. (75) twice with respect to time leads to 

�̈�𝐬 = 𝐑𝐆�̈�𝐦 (76) 

Substitution of Eqs. (75) and (76)into Eq. (73) leads to 

𝐌𝐆�̈�𝐦 + 𝐊𝐆𝐗𝐦 = 𝐅𝐆 (77) 

Where 𝑴𝑮, 𝑲𝑮 and 𝑭𝑮 are the reduced mass matrix, stiffness matrix and reduced force vector, 

respectively. They are defined as follows 

𝐌𝐑 = 𝐌𝐦𝐦 − 𝐊𝐦𝐬𝐊𝐬𝐬
−𝟏𝐌𝐬𝐦 − 𝐌𝐦𝐬𝐊𝐬𝐬

−𝟏𝐊𝐬𝐦 + 𝐊𝐦𝐬𝐊𝐬𝐬
−𝟏𝐌𝐬𝐬𝐊𝐬𝐬

−𝟏𝐊𝐬𝐦 (78) 

𝐊𝐆 = 𝐊𝐦𝐦 − 𝐊𝐦𝐬𝐊𝐬𝐬
−𝟏𝐊𝐬𝐦 (79) 

𝐅𝐆 = 𝐅𝐦 − 𝐊𝐦𝐬𝐊𝐬𝐬
−𝟏𝐅𝐬 (80) 
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Notice that the reduced system of equations for dynamic system [ Eq. (78) through (80)] is similar 

– to some extent – and somehow a generalization to the reduced system of equations for the static 

system [Eqs. (69) and (70)]. The only difference is that the former [i.e. reduced system for dynamic 

problem] accounts for the inertia effects, unlike the latter [i.e. reduced system for static system].  

3.5.5. Numerical Demonstration 

In this section, we present the performance of the proposed scheme through one structural problem. 

For comparison reasons, we have adopted the same structural problem as in the static case [Figure 

10] with same specifications as in Table 9 and Table 10. The only difference that inertia effects 

were integrated in the calculations. 

Two numerical cases are considered with different master degrees-of-freedom for the two-

dimensional reservoir. Summary of the two models is listed in Table 11. The master degrees-of-

freedom are selected as shown in Figure 11. 

The exact and estimated node displacements are shown in Figure 13. It is clear that although 

Guyan Condensation is exact for static problems, its accuracy is very low for dynamic problems. 

  

(a) (b) 

Figure 13: (a) Exact (Black) and estimated (Cyan) node displacement for dynamic two-

dimensional reservoir using Guyan Condensation with 70 master degrees-of-freedom (b) Exact 

and estimated node displacement for dynamic two-dimensional reservoir using Guyan 

Condensation with 40 master degrees-of-freedom. 

 

The natural frequencies are selected to check the accuracy of the reduced model. If the 

frequencies of the reduced model are close to those of the full model, the reduced model is 
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considered a good approximation of the full model at that frequency range. The percent error of 

natural frequency is used for the comparison and is defined as follows 

PE (ωj
(i)

) =
ωj

(i)
− ωj

ωj
× 100 (%) (81) 

where 𝜔𝑗 and 𝜔𝑗
(𝑖)

 are the exact and the 𝑖𝑡ℎ approximation of the 𝑗𝑡ℎ(𝑗 = 1,2, … , 𝑚) frequency. 

The lowest 15 natural frequencies from the full-order model, and the reduced-order model are 

listed in Table 12 for the two cases; 70 master degrees-of-freedom and 40 master degrees-of-

freedom, respectively.  

Table 12: Comparison of natural frequencies of a two-dimensional reservoir 

 Full Model Reduced Model 

  
Case 1 

(70 Masters) 

Case 2 

(40 Masters) 

 Frequency Frequency Percent Error Frequency Percent Error 

Mode (𝒇) (𝒇𝑹) (𝑷𝑬) (𝒇𝑹) (𝑷𝑬) 

1 7.177045 7.342037 2.29889 7.403909 3.16096 

2 14.39838 15.57420 8.16631 16.02467 11.2949 

3 21.70855 24.95394 14.9498 26.23697 20.8601 

4 29.15246 34.27970 17.5876 36.10206 23.8388 

5 34.95285 37.71653 7.90687 39.21829 12.2033 

6 35.18489 37.83921 7.54391 39.41228 12.0148 

7 35.31034 37.95869 7.50019 39.43424 11.6789 

8 35.64859 38.12092 6.93526 39.52847 10.8836 

9 35.88522 38.46486 7.18857 39.86258 11.0835 

10 36.46714 39.62306 8.65414 42.05507 15.3231 

11 36.77536 41.09397 11.7432 42.68695 16.0748 

12 38.51842 44.53755 15.6266 46.4399 20.5654 

13 41.48070 47.70197 14.9980 51.29357 23.6564 

14 44.62237 48.96842 9.73962 52.42924 17.4954 

15 45.32531 54.35583 19.9237 57.26358 26.3390 
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As shown in Table 12, Guyan condensation shows some error for dynamic problems. The 

accuracy of the reduced model is highly dependent on the selection procedure of the master 

degrees-of-freedom. Generally, case 1 (70 master degrees-of-freedom) is better than case 2 (40 

master degrees-of-freedom) in terms of accuracy. This is due to the higher number of the master 

degrees-of-freedom. Also, the frequencies resulting from the reduced-order model are higher than 

those from the full-order model. This indicates that the reduced-order model will always be stiffer 

than the full-order model. Finally, the accuracy of the higher modes is normally lower than that of 

the lower modes. 

3.5.6. Selection of the Masters for Guyan Reduced Model 

In modal analysis [see Figure 14] of a structure by the Guyan reduction, two approximations are 

made: 

1. Selection of masters. 

2. Reduction of the size of the eigenproblem, i.e. Guyan condensation, etc.  

 

 

Figure 14: Modal Analysis of Complex Structure 

 

As shown in previous section, optimal selection of the masters is a necessary first step to 

increase the accuracy of the reduced-order model. Shah and Raymund (1982) introduced selection 

procedure that assures that a large number of lower frequencies are preserved in the reduced 

eigenvalue problem. 

There are two ways to implement the proposed guideline. The key distinctions between both 

techniques are summarized in Table 13 below 

Modal Analysis
Step (1)

Selection of masters

Step (2)

Reduction of the size 
of the eigenproblem
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Table 13: Comparison of implementation techniques for analytical selection scheme 

Scenario I Scenario II 

▪ All the master degrees-of-freedom are 

selected simultaneously. 

▪ Master degrees-of-freedom are selected 

one-by-one, or equivalently, one slave 

degree-of-freedom is eliminated at a time. 

▪ Iterative process is required to find a set of 

masters that satisfies the proposed 

guidelines. 

▪ Iterative process is not required in this 

case. 

▪ Has a higher computational cost, especially 

with large complex structures.  

▪ Has a lower computational cost due to the 

exclusion of recursive iteration.   

 

Based on the previous comparison, the second scenario has been chosen to proceed with, 

provided that the static coupling among slaves is stronger than dynamic coupling.  

3.5.7. The Basic Idea of the Proposed Scheme [Algorithm 1] 

The full eigenvalue problem of size [𝑛 × 𝑛], is given by 

𝐊𝐗 = 𝛚𝟐𝐌𝐗 (82) 

where 𝜆𝑖
(0)

= 𝜔𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 are the eigenvalues and are ordered in an ascending order. 

Elimination of one slave at a time requires finding a degree-of-freedom for which the ratio 

𝛾𝑖
2 = 𝐾𝑖𝑖 𝑀𝑖𝑖⁄  is the highest, provided that the ratio, 𝛾𝑖, is greater than the cut-off frequency, 𝜔𝑐. 

This would result in a reduced eigenvalue problem of size [(𝑛 − 1) × (𝑛 − 1)], and is given by 

𝐊(𝟏)𝐗 = 𝛚𝟐𝐌(𝟏)𝐗 (83) 

where 𝜆𝑖
(1)

= 𝜔𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 are the eigenvalues and are ordered in an ascending order. Note 

that 𝜆𝑖
(1)

 can be considered as an upper bound of 𝜆𝑖
(0)

. Also, the accuracy of the approximation will 

decrease as the superscript increases, or equivalently, as more slave degrees-of-freedom are 

eliminated.  
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This process is repeated successively until the ratio, 𝛾𝑖, becomes smaller than the cut-off 

frequency, 𝜔𝑐. The remaining degrees-of-freedom in the reduced system would represent the 

master degrees-of-freedom. 

 

Algorithm 1: Procedure to Select Master Degrees-of-freedom. 

Step 1. Find a degree-of-freedom for which the ratio 𝐾𝑖𝑖 ∕ 𝑀𝑖𝑖 is the largest. 

Step 2. If this ratio is greater than the cutoff frequency, 𝜔𝑐
2, eliminate this degree-of-freedom 

from mass and stiffness matrices by the Guyan reduction method. 

Step 3. Apply steps 1 and 2 to the reduced matrices obtained in step 2. 

Step 4. Repeat steps 1-3, until the largest ratio found in step 1 is less than or equal to 𝜔𝑐
2. 

Step 5. At this point, the degrees-of-freedom associated with the resultant reduced matrices 

represent the selected masters. 

 

One limitation of this procedure, however, is the critical choice of cut-off frequency since 

increasing the frequency ratio between cut-off frequency and calculated frequencies, increases the 

accuracy of the reduced model. 

3.6. Two-Step Dynamic Condensation 

To achieve reasonably accurate results, the inertia effects could be partially or fully included in 

the condensation. The corresponding condensation approaches are generally called dynamic 

condensation. 

 

3.6.1. Formulation of Equations for The Exact Condensation (Direct Back-Substitution) 

The general eigenproblem of full model is given by 

(𝐊 − λ𝐌)𝛗 = 0 (84) 

Similar to static problem, this equation may be rewritten as 

([
𝑲𝒎𝒎 𝑲𝒎𝒔

𝑲𝒔𝒎 𝑲𝒔𝒔
] − 𝝀 [

𝑴𝒎𝒎 𝑴𝒎𝒔

𝑴𝒔𝒎 𝑴𝒔𝒔
]) {

𝝋𝒎

𝝋𝒔
} = {

𝟎
𝟎

} (85) 
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A simple multiplication expands this equation into two equations, namely, 

(𝐊𝐦𝐦 − λ𝐌𝐦𝐦)𝛗𝐦 + (𝐊𝐦𝐬 − λ𝐌𝐦𝐬)𝛗𝐬 = 𝟎 (86) 

(𝐊𝐬𝐦 − λ𝐌𝐬𝐦)𝛗𝐦 + (𝐊𝐬𝐬 − λ𝐌𝐬𝐬)𝛗𝐬 = 𝟎 (87) 

The relation of the eigenvector between the masters and slaves may be obtained from Eq. (86) as 

𝛗𝐬 = 𝐑(𝛌)𝛗𝐦 (88) 

The condensation matrix is defined as  

𝐑(λ) = (𝐊𝐬𝐬 − λ𝐌𝐬𝐬)−𝟏(𝐊𝐬𝐦 − λ𝐌𝐬𝐦) (89) 

Unlike static condensation, inertia effects are considered in this condensation matrix. Hence, the 

condensation matrix is considered dynamic. One limitation is that the dynamic condensation 

matrix in Eq. (86) is single-mode dependent. Consequently, having different modes may lead to 

different dynamic condensation matrices. 

Back-substituting Eq. (88) into Eq. (86), we obtain is 

𝐃𝐑(λ)𝛗𝐦 = 𝟎 (90) 

The reduced dynamic stiffness matrix 

𝐃𝐑(λ) = (𝐊𝐦𝐦 − λ𝐌𝐦𝐦) + (𝐊𝐦𝐬 − λ𝐌𝐦𝐬)(𝐊𝐬𝐬 − λ𝐌𝐬𝐬)−𝟏(𝐊𝐬𝐦 − λ𝐌𝐬𝐦) (91) 

Because no error is introduced during the derivation of the condensation matrix in Eq. (89) and 

the reduced eigenproblem in Eq. (91), the condensation matrix is usually referred to as the exact 

condensation matrix and the corresponding method is called exact dynamic condensation or exact 

condensation. Therefore, the accuracy of the reduced model does not depend on the selection of 

masters except in the rare case when the energy of the system does not contribute to the whole set 

of masters and convergence to all the modes of interest is guaranteed. 

If the stiffness and mass matrices of a system are denoted by 𝑲∗ and 𝑴∗, the dynamic stiffness 

matrix is given by 

𝐃∗(λ) = 𝐊∗ − 𝛌𝐌∗ (92) 

The following equation may be used to exactly compute the stiffness and mass matrices from the 

dynamic stiffness matrix 
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𝐌𝐑 = −
𝛛𝐃𝐑(λ)

𝛛𝛌
 (93) 

𝐊𝐑 = 𝐃𝐑(λ) + λ𝐌𝐑 = 𝐃𝐑(λ) − λ
𝛛𝐃𝐑(λ)

𝛛𝛌
 (94) 

Introducing Eq. (91) into Eq. (93), we have 

𝐌𝐑 = −
𝛛𝐃𝐑(λ)

𝛛λ
= −

𝛛𝐃𝐦𝐦

𝛛λ
+

𝛛𝐃𝐦𝐬

𝛛λ
𝐃𝐬𝐬

−𝟏𝐃𝐬𝐦 + 𝐃𝐦𝐬

𝛛𝐃𝐬𝐬
−𝟏

𝛛λ
𝐃𝐬𝐦 + 𝐃𝐦𝐬

−𝟏𝐃𝐬𝐬

𝛛𝐃𝐬𝐦

𝛛λ
 (95) 

The reduced mass matrix is given by 

𝐌𝐑(λ) = 𝐌𝐦𝐦 − 𝐌𝐦𝐬𝐃𝐬𝐬
−𝟏𝐃𝐬𝐦 − 𝐃𝐦𝐬𝐃𝐬𝐬

−𝟏𝐌𝐬𝐦 + 𝐃𝐦𝐬𝐃𝐬𝐬
−𝟏𝐌𝐬𝐬𝐃𝐬𝐬

−𝟏𝐃𝐬𝐦 (96) 

The reduced stiffness matrix is given by 

𝐊𝐑(λ) = 𝐊𝐦𝐦 − 𝐊𝐦𝐬𝐃𝐬𝐬
−𝟏𝐃𝐬𝐦 − 𝐃𝐦𝐬𝐃𝐬𝐬

−𝟏𝐊𝐬𝐦 + 𝐃𝐦𝐬𝐃𝐬𝐬
−𝟏𝐊𝐬𝐬𝐃𝐬𝐬

−𝟏𝐃𝐬𝐦 (97) 

Similar to the full eigenproblem, the reduced stiffness and mass matrices given in Eqs. (96) and 

(97) are eigenvalue- or frequency-dependent. 

3.7. Iterative Dynamic Condensation 

As described in the preceding section. Dynamic condensation approaches – Generally – can 

significantly improve the accuracy of static condensation. Unfortunately, these methods have one 

or more disadvantages: 

1. The reduced model is frequency-dependent, and a special eigensolver is required to solve 

the reduced eigenproblem. Furthermore, it is difficult to use this reduced model in further 

dynamic analyses. 

2. The eigenpairs of the reduced model have to be computed one by one which is considered 

computationally expensive. 

3.7.1. Formulation of the Equations for Dynamic Condensation Matrix 

Assume that the 𝑖𝑡ℎ approximation of the first m eigenvectors is denoted by matrix Փ𝑚
(𝑖)

 (the size 

of 𝑛 × 𝑚). Considering Eq. (88), Փ𝑚
(𝑖)

 can be expressed in partitioned form as 

Փm
(i) = [

Փmm
(i)

Փsm
(i)

] = [
𝐈

𝐑(𝐢)] Փmm
(i)

 (98) 
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where the 𝑖𝑡ℎ approximate dynamic condensation matrix, 𝑹(𝒊), is defined as 

𝐑(𝐢) = Փsm
(i)

(Փmm
(i)

)
−1

 (99) 

According to subspace iteration method in eigenproblems, the (𝑖 + 1)𝑡ℎ approximation of  

eigenvector matrix Փ𝑚
(𝑖+1)

 is obtained by two steps: 

Step 1. A subspace, 𝑿𝒎
(𝒊+𝟏)

, is calculated with an inverse power method 

𝐗𝐦
(𝐢+𝟏)

= 𝐂Փ𝐦
(𝐢+𝟏)

 (100) 

where 𝑪 = 𝑲−𝟏𝑴 

Step 2. An orthonormalization process is adopted to construct new m eigenvectors. 

Փ𝐦
(𝐢+𝟏)

= 𝐗𝐦
(𝐢+𝟏)

𝚿(𝐢+𝟏) = [
𝐗𝐦𝐦

(𝐢+𝟏)

𝐗𝐬𝐦
(𝐢+𝟏)

] 𝚿(𝐢+𝟏) (101) 

Where the eigenvector matrix, 𝜳(𝒊+𝟏), is defined as 

�̅�𝐑
(𝐢+𝟏)

𝚿(𝐢+𝟏) = �̅�𝐑
(𝐢+𝟏)

𝚿(𝐢+𝟏)Ω(𝐢+𝟏) (102) 

Where 

�̅�𝐑
(𝐢+𝟏)

= (𝐗𝐦
(𝐢+𝟏)

)
−𝟏

𝐊𝐗𝐦
(𝐢+𝟏)

 (103) 

�̅�𝐑
(𝐢+𝟏)

= (𝐗𝐦
(𝐢+𝟏)

)
−𝟏

𝐌𝐗𝐦
(𝐢+𝟏)

 (104) 

Substitution of Eq. (101) in Eq. (99), we get 

𝐑(𝐢+𝟏) = 𝐗𝐬𝐦
(𝐢+𝟏)

(𝐗𝐦𝐦
(𝐢+𝟏)

)
−𝟏

 (105) 

Rewriting Eq. (100) in partitioned form leads to 

𝐗𝐦
(𝐢+𝟏)

= [
𝐗𝐦𝐦

(𝐢+𝟏)

𝐗𝐬𝐦
(𝐢+𝟏)

] = [
𝐂𝐦𝐦 𝐂𝐦𝐬

𝐂𝐬𝐦 𝐂𝐬𝐬
] [

𝐈
𝐑(𝐢)] Փ𝐦𝐦

(𝐢)
 (106) 

Eq. (106) can be expanded into 

𝐗𝐦𝐦
(𝐢+𝟏)

= (𝐂𝐦𝐦 + 𝐂𝐦𝐬𝐑(𝐢))Փ𝐦𝐦
(𝐢)

 (107) 

𝐗𝐬𝐦
(𝐢+𝟏)

= (𝐂𝐬𝐦 + 𝐂𝐬𝐬𝐑(𝐢))Փ𝐦𝐦
(𝐢)

 (108) 

Substitution of Eqs. (107) and (108) into Eq. (105) 
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𝐑(𝐢+𝟏) = (𝐂𝐬𝐦 + 𝐂𝐬𝐬𝐑(𝐢))(𝐂𝐦𝐦 + 𝐂𝐦𝐬𝐑(𝐢))
−𝟏

 (109) 

The reduced stiffness matrix would be 

𝐊𝐑 = 𝐊𝐦𝐦 + 𝐑𝐓𝐊𝐬𝐦 + 𝐊𝐦𝐬𝐑 + 𝐑𝐓𝐊𝐬𝐬𝐑 (110) 

The reduced mass matrix would be 

𝐌𝐑 = 𝐌𝐦𝐦 + 𝐑𝐓𝐌𝐬𝐦 + 𝐌𝐦𝐬𝐑 + 𝐑𝐓𝐌𝐬𝐬𝐑 (111) 

The equivalent force vector would be 

𝐅𝐑 = 𝐅𝐦 + 𝐑𝐓𝐅𝐬 (112) 

As noticed, the reduced system of equations (using iterative techniques) [Eq. (110) through (112)] 

shows a huge progress over the reduced system of equations (using Guyan Condensation) [Eq. 

(69) and (70)] for two major reasons: (1) the former reduced system (using iterative techniques) 

accounts for the inertia effects represented by inclusion of mass matrix and (2) guarantees 

convergence to true solution (of full system) regardless of masters selection due to the 

implementation of inverse power theory for construction of condensation matrix. 

3.7.2. Solution Schemes for Dynamic Condensation Matrix 

Two iterative schemes are provided in this section, which are based on the convergence of the 

eigenvalues of the reduced model and the column vectors of the dynamic condensation matrix, 

respectively. The key steps for the two schemes are provided in Table 14 and Table 15, 

respectively. The pseudo-codes for both schemes are provided in Algorithm 2 and Algorithm 3.  
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Table 14: Key Steps for iterative scheme (I) 

Step 1. Formulate the matrix, C. 

Step 2. Calculate the initial approximation of dynamic condensation matrix, 𝑅0. 

Step 3. For 𝑖 =  0,  1,  2, … 

i. Calculate the (𝑖 + 𝑘)𝑡ℎ approximate dynamic condensation matrix, 

R(i+k).  

ii. Calculate the condensed stiffness, 𝐾𝑅
(𝑖+𝑘)

, and mass, 𝑀𝑅
(𝑖+𝑘)

, matrices. 

iii. Solve the eigenproblem of the condensed model. 

iv. Check the convergence. 

Step 4. Output the results and stop. 

 

 

 

 

Table 15: Key Steps for Iterative Scheme (II) 

Step 1. Formulate the matrix, C. 

Step 2. Calculate the initial approximation of dynamic condensation matrix, 𝑅0. 

Step 3. For 𝑖 =  0,  1,  2, … 

i. Calculate the (𝑖 + 𝑘)𝑡ℎ approximate dynamic condensation matrix, 

R(i+k).  

ii. Check the convergence. 

Step 4. Calculate the condensed stiffness, 𝐾𝑅
(𝑖+𝑘)

, and mass, 𝑀𝑅
(𝑖+𝑘)

, matrices. 

Step 5. Solve the eigenproblem of the condensed model. 

Step 6. Output the results and stop. 
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Algorithm 2: The pseudo-code for iterative scheme (I) 

 

Calculate the initial approximation of dynamic condensation matrix R 

𝑅(0) = 𝐶𝑠𝑚𝐶𝑚𝑚
−1 

for 𝑒𝑟𝑟𝑜𝑟 < 휀 

  Calculate the condensed matrices for the (𝑖)th approximate dynamic condensation matrix 𝑅(𝑖) 

  𝐾𝑅
(𝑖)

= 𝐾𝑚𝑚 + (𝑅(𝑖+𝑘))
𝑇

𝑘𝑠𝑚 + 𝐾𝑚𝑠𝑅(𝑖+𝑘) + (𝑅(𝑖+𝑘))
𝑇

𝑘𝑠𝑠𝑅(𝑖+𝑘) 

  𝑀𝑅
(𝑖)

= 𝑀𝑚𝑚 + (𝑅(𝑖+𝑘))
𝑇

𝑀𝑠𝑚 + 𝑀𝑚𝑠𝑅(𝑖+𝑘) + (𝑅(𝑖+𝑘))
𝑇

𝑀𝑠𝑠𝑅(𝑖+𝑘) 

  Solve the eigenproblem of the condensed model 

  [𝑈(𝑖), 𝐸(𝑖)] = 𝑒𝑖𝑔(𝐾𝑅
(𝑖)

, 𝑀𝑅
(𝑖)

) 

  Calculate the (𝑖 + 𝑘)th approximate dynamic condensation matrix 𝑅(𝑖+𝑘) by iteration. 

  for 𝑖 = 1: 𝑘 

    𝑅(𝑖+1) = (𝐶𝑠𝑚 + 𝐶𝑠𝑠𝑅(𝑖))(𝐶𝑚𝑚 + 𝐶𝑚𝑠𝑅(𝑖))
−1

 

     Update  

    𝑅(𝑖) = 𝑅(𝑖+1) 

  end 

  
Calculate the condensed matrices for the (𝑖 + 1)th approximate dynamic condensation matrix 

𝑅(𝑖+1) 

  𝐾𝑅
(𝑖+𝑘)

= 𝐾𝑚𝑚 + (𝑅(𝑖+𝑘))
𝑇

𝑘𝑠𝑚 + 𝐾𝑚𝑠𝑅(𝑖+𝑘) + (𝑅(𝑖+𝑘))
𝑇

𝑘𝑠𝑠𝑅(𝑖+𝑘) 

  𝑀𝑅
(𝑖+𝑘)

= 𝑀𝑚𝑚 + (𝑅(𝑖+𝑘))
𝑇

𝑀𝑠𝑚 + 𝑀𝑚𝑠𝑅(𝑖+𝑘) + (𝑅(𝑖+𝑘))
𝑇

𝑀𝑠𝑠𝑅(𝑖+𝑘) 

   Solve the eigenproblem of the condensed model 

  [𝑈(𝑖+𝑘), 𝐸(𝑖+𝑘)] = 𝑒𝑖𝑔(𝐾𝑅
(𝑖+𝑘)

, 𝑀𝑅
(𝑖+𝑘)

) 

   Check the convergence by using the following convergent criterion 

  for 𝑗 = 1: 𝑚 

    𝑒𝑟𝑟𝑜𝑟(𝑗, 1) = |
𝜆𝑗

(𝑖+𝑘)
− 𝜆𝑗

(𝑖)

𝜆𝑗
(𝑖+𝑘)

| 

  end 

  𝑅(𝑖) = 𝑅(𝑖+1) 

end 
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Algorithm 3: The pseudo-code for iterative scheme (II) 

 

 Calculate the initial approximation of dynamic condensation matrix R 

𝑅(0) = 𝐶𝑠𝑚𝐶𝑚𝑚
−1 

for 𝑒𝑟𝑟𝑜𝑟 < 휀 

  
Calculate the (𝑖 + 𝑘)th approximate dynamic condensation matrix 𝑅(𝑖+𝑘) by iterating the 

following equation for k times  

  for 𝑖 = 1: 𝑘 

    𝑅(𝑖+1) = (𝐶𝑠𝑚 + 𝐶𝑠𝑠𝑅(𝑖))(𝐶𝑚𝑚 + 𝐶𝑚𝑠𝑅(𝑖))
−1

 

    Update  

    𝑅(𝑖) = 𝑅(𝑖+1) 

  end 

   Check the convergence by using the following convergent criterion 

  for 𝑗 = 1: 𝑚 

    𝑒𝑟𝑟𝑜𝑟(𝑗, 1) = 1 −
(𝑟𝑗

(𝑖+𝑘)
)

𝑇

𝑟𝑗
(𝑖)

‖𝑟𝑗
(𝑖+𝑘)

‖
2

‖𝑟𝑗
(𝑖)

‖
2

 

  end 

  Update 

  𝑅(𝑖) = 𝑅(𝑖+𝑘) 

end 

 Calculate the condensed stiffness and mass matrices for the (𝑖 + 1)th approximate dynamic 

condensation matrix 𝑅(𝑖+1) 

𝐾𝑅
(𝑖+𝑘)

= 𝐾𝑚𝑚 + (𝑅(𝑖+𝑘))
𝑇

𝑘𝑠𝑚 + 𝐾𝑚𝑠𝑅(𝑖+𝑘) + (𝑅(𝑖+𝑘))
𝑇

𝑘𝑠𝑠𝑅(𝑖+𝑘) 

𝑀𝑅
(𝑖+𝑘)

= 𝑀𝑚𝑚 + (𝑅(𝑖+𝑘))
𝑇

𝑀𝑠𝑚 + 𝑀𝑚𝑠𝑅(𝑖+𝑘) + (𝑅(𝑖+𝑘))
𝑇

𝑀𝑠𝑠𝑅(𝑖+𝑘) 

Solve the eigenproblem of the condensed model 

[𝑈(𝑖+𝑘), 𝐸(𝑖+𝑘)] = 𝑒𝑖𝑔(𝐾𝑅
(𝑖+𝑘)

, 𝑀𝑅
(𝑖+𝑘)

) 
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3.7.3. Numerical Demonstration 

In this section, we present the performance of the proposed iterative technique (Iterative scheme 

I) through one structural problem. For comparison reasons, we have adopted the same structural 

problem as in the previous sections. 

Two numerical cases are considered with different master degrees-of-freedom for the two-

dimensional reservoir. Summary of the two models is listed in Table 11. The master degrees-of-

freedom are selected as shown in Figure 11. 

Comparison of natural frequencies of a full-order model, 𝑓, and reduced-order model, 𝑓𝑅, for 

the two cases: 70 masters and 40 masters, are listed in Table 16, for both Guyan condensation and 

iterative techniques. Graphical representation of the exact and estimated node displacements, and 

the exact and estimated natural frequencies are shown in Figure 15 and Figure 16, respectively. 

 

  

(a) (b) 

Figure 15: (a) Exact and estimated node displacement for dynamic two-dimensional reservoir 

problem using guyan condensation (cyan) and iterative technique (red) for the selected 70 

master degrees-of-freedom (b) Exact and estimated node displacement for dynamic two-

dimensional reservoir problem using guyan condensation (cyan) and iterative technique (red) 

for the selected 40 master degrees-of-freedom 
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Table 16: Comparison of natural frequencies of a full-order model and reduced-order model 

(using guyan condensation and iterative techniques) 

Mode 

Full Model Reduced Model 

 

Guyan Iterative 

Case 1 

(70 dofs) 

Case 2 

(40 dofs) 

Case 1 

(70 dofs) 

Case 2 

(40 dofs) 

Frequency Frequency Frequency Frequency Frequency 

𝒇 𝒇𝑹 𝒇𝑹 𝒇𝑹 𝒇𝑹 

1 7.177045 7.218943 7.403909 7.177045 7.177045 

2 14.398382 14.690802 16.024665 14.398382 14.398382 

3 21.708545 22.771715 26.236969 21.708545 21.708545 

4 29.152458 31.357743 36.102064 29.152458 29.152458 

5 34.952854 38.620170 39.218288 34.952854 34.952854 

6 35.184888 39.057133 39.412284 35.184888 35.184888 

7 35.310344 39.358188 39.434237 35.310344 35.310344 

8 35.648592 39.532995 39.528471 35.648592 35.648592 

9 35.885224 40.256565 39.862583 35.885224 35.885224 

10 36.467141 40.879297 42.055067 36.467141 36.467141 

11 36.775363 41.575773 42.686952 36.775363 36.775363 

12 38.518421 43.921807 46.439901 38.518421 38.518421 

13 41.480695 44.904219 51.293569 41.480695 41.480695 

14 44.622372 49.922279 52.429244 44.622372 44.622373 

15 45.325314 52.626637 57.263584 45.325314 45.325314 

16 50.005533 58.145880 64.336545 50.005533 50.005533 

17 51.731441 62.721284 65.018487 51.731441 52.737420 

18 52.737394 63.906454 72.494879 52.737394 55.471782 

19 53.981439 65.718173 77.824069 53.981439 61.161490 

20 55.471782 68.713754 81.715391 55.471782 61.673560 
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(a) (b) 

Figure 16: (a) Comparison of natural frequencies of a full-order model (blue) and reduced-

order model (red) for dynamic two-dimensional reservoir problem for the selected 70 master 

degrees-of-freedom (b) Comparison of natural frequencies of a full-order model (blue) and 

reduced-order model (red) for dynamic two-dimensional reservoir problem for the selected 40 

master degrees-of-freedom 

 

It is clear that the proposed iterative schemes assure the convergence of the estimated 

displacements towards the exact displacement regardless of the choice of the master and slave 

degrees-of-freedom unlike Guyan condensation that suffers from huge error when dynamic 

problem is considered. 

3.8. Assessment of the model efficiency 

To demonstrate the efficiency of the proposed iterative technique, three aspects were assessed: 

1. Assessment of the Convergent Criterion. 

2. Assessment of the Reduced Model Accuracy. 

3. Assessment of the Suitability of the Measurement Locations.  

3.8.1. Assessment of the Convergent Criterion 

One major criterion is used to assess the efficiency of the convergent criterion. The errors of the 

column vectors of the dynamic condensation matrix should decrease consistently as the number of 

iterations increases. This assures the convergence of the proposed method. 

The errors of the first 20 column vectors of the dynamic condensation matrix in every 

iteration for the two case; 70 masters and 40 masters, are listed in Table 17 and Table 18, 
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respectively. A graphical representation of the errors in column vectors of dynamic condensation 

matrix over iterations for the two cases is presented in Figure 17, as well.  

  

(a) (b) 

Figure 17: (a) The Errors for Reduced-Order Model (ROM) Using Iterative Technique for 

Dynamic Two-dimensional Reservoir Problem for the selected 70 master degrees-of-freedom 

(b) The Errors for Reduced-Order Model (ROM) Using Iterative Technique for Dynamic Two-

dimensional Reservoir Problem for the selected 40 master degrees-of-freedom 
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Table 17: The Errors of the Column Vectors of Dynamic Condensation Matrix (Case 1 ~ 70 

DOFs) 

 Iteration Number 

Column 

no. 
1 2 3 4 5 

1 0.196728 0.064519 0.015191 0.005431 0.002682 

2 0.208473 0.038028 0.02385 0.014232 0.008235 

3 0.207968 0.057544 0.010014 0.003160 0.002136 

4 0.173874 0.02399 0.01041 0.006140 0.005849 

5 0.194601 0.066862 0.022303 0.007194 0.002713 

6 0.154075 0.018048 0.012873 0.010358 0.00638 

7 0.212048 0.068038 0.013325 0.004838 0.003287 

8 0.144615 0.019572 0.014867 0.008871 0.006167 

9 0.219732 0.061151 0.013996 0.005989 0.002643 

10 0.141171 0.020707 0.014275 0.009102 0.006075 

11 0.219646 0.059836 0.014533 0.005308 0.002701 

12 0.140419 0.020692 0.014312 0.009041 0.006096 

13 0.218706 0.060221 0.01423 0.005422 0.002681 

14 0.140393 0.020598 0.014325 0.009048 0.006091 

15 0.218315 0.060309 0.01425 0.005411 0.002736 

16 0.140448 0.020582 0.014322 0.009048 0.006146 

17 0.218223 0.06029 0.014257 0.00542 0.002837 

18 0.140478 0.020583 0.014322 0.009055 0.006595 

19 0.21821 0.060285 0.014256 0.005442 0.003540 

20 0.140495 0.020584 0.014323 0.009134 0.010120 
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Table 18: The Errors of the Column Vectors of Dynamic Condensation Matrix (Case 2 ~ 40 

DOFs) 

 Iteration Number 

Column no. 1 2 3 4 

1 0.025542 0.005634 0.001883 0.000838 

2 0.051784 0.016211 0.006866 0.003488 

3 0.038214 0.008153 0.002141 0.000727 

4 0.045193 0.011116 0.004164 0.002179 

5 0.031824 0.00929 0.003692 0.001663 

6 0.036664 0.010643 0.005425 0.003174 

7 0.036834 0.009206 0.002832 0.001157 

8 0.036788 0.012843 0.005532 0.002706 

9 0.037759 0.008303 0.002738 0.001309 

10 0.040011 0.012819 0.005209 0.002765 

11 0.03714 0.008333 0.002859 0.001262 

12 0.042409 0.012483 0.005257 0.00279 

13 0.036718 0.008431 0.002816 0.001247 

14 0.043548 0.012404 0.005281 0.00278 

15 0.036599 0.008431 0.002806 0.001253 

16 0.043984 0.012415 0.005278 0.002787 

17 0.036593 0.008419 0.00281 0.001254 

18 0.044141 0.012424 0.005277 0.002817 

19 0.036605 0.008417 0.002811 0.001256 

20 0.044216 0.012426 0.005278 0.003088 
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As shown in Table 17 and Table 18, the errors of the column vectors of the dynamic 

condensation matrix decrease consistently as the number of iterations increases. This assures the 

convergence of the proposed method. 

3.8.2. Assessment of the Model Accuracy 

The natural frequencies and the corresponding mode shapes are selected to check the accuracy of 

the reduced model. If the eigenpairs of the reduced model are close to those of the full model, the 

reduced model is considered a good approximation of the full model at that frequency range.  

Two major criteria are used to assess the accuracy of the reduced models: 

3.8.2.1. The percent errors (PE) of natural frequencies 

PE (ωj
(i)

) =
ωj

(i)
− ωj

ωj
× 100 (%) (113) 

where 𝜔𝑗 and 𝜔𝑗
(𝑖)

 are the exact and the 𝑖𝑡ℎ approximation of the 𝑗𝑡ℎ(𝑗 = 1,2, … , 𝑚) frequency. A 

value of PE close to zero suggests that the two corresponding frequencies of the reduced model 

and full model are equivalent, hence the reduced model is a good representation of the full model. 

The percent errors (PE) of the lowest 20 frequencies obtained from the proposed iterative 

technique for the two cases; 70 masters and 40 masters, using Eq. (113) and are listed in Table 19 

and Table 20, respectively. A graphical representation of the percent errors (PE) for the two cases 

is presented in Figure 18, as well. 
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Table 19: The Percent Errors calculated with the Proposed Iterative Technique (Case 1 ~ 70 

DOFs) 

 Iteration Number 

 1 2 3 4 5 

Mode 
Percent Error 

(PE) 

Percent 

Error 

(PE) 

Percent 

Error 

(PE) 

Percent 

Error 

(PE) 

Percent 

Error 

(PE) 

1 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.0014 0.0000 0.0000 0.0000 0.0000 

3 0.0259 0.0000 0.0000 0.0000 0.0000 

4 0.1620 0.0004 0.0000 0.0000 0.0000 

5 0.3268 0.0028 0.0000 0.0000 0.0000 

6 0.5762 0.0042 0.0000 0.0000 0.0000 

7 0.1077 0.0011 0.0000 0.0000 0.0000 

8 0.0870 0.0009 0.0000 0.0000 0.0000 

9 0.0456 0.0005 0.0000 0.0000 0.0000 

10 0.1277 0.0012 0.0000 0.0000 0.0000 

11 0.0121 0.0000 0.0000 0.0000 0.0000 

12 0.1363 0.0018 0.0000 0.0000 0.0000 

13 0.1824 0.0033 0.0000 0.0000 0.0000 

14 1.4145 0.0238 0.0003 0.0000 0.0000 

15 0.2663 0.0070 0.0001 0.0000 0.0000 

16 0.4508 0.0211 0.0005 0.0000 0.0000 

17 2.6177 0.0939 0.0022 0.0001 0.0000 

18 2.9143 0.4871 0.0284 0.0017 0.0001 

19 10.0111 0.1999 0.0106 0.0006 0.0000 

20 8.7607 0.5904 0.0369 0.0024 0.0002 
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Table 20: The Percent Errors calculated with the Proposed Iterative Technique (Case 2 ~ 40 

DOFs) 

 Iteration Number 
 1 2 3 4 

Mode 
Percent Error 

(PE) 

Percent Error 

(PE) 

Percent Error 

(PE) 

Percent Error 

(PE) 

1 0.0000 0.0000 0.0000 0.0000 

2 0.0068 0.0000 0.0000 0.0000 

3 0.1108 0.0011 0.0000 0.0000 

4 0.5711 0.0183 0.0006 0.0000 

5 0.6551 0.0376 0.0014 0.0000 

6 1.6143 0.1152 0.0085 0.0006 

7 0.3267 0.0373 0.0050 0.0007 

8 0.2794 0.0384 0.0063 0.0010 

9 0.1534 0.0211 0.0044 0.0009 

10 0.3494 0.0275 0.0028 0.0003 

11 0.0909 0.0007 0.0000 0.0000 

12 0.2862 0.0258 0.0022 0.0002 

13 0.3767 0.0336 0.0030 0.0003 

14 3.4410 0.4143 0.0529 0.0064 

15 0.5259 0.0623 0.0080 0.0011 

16 0.8368 0.1763 0.0470 0.0135 

17 5.3804 1.013 0.1987 0.0375 

18 3.5683 2.5363 2.1398 1.8762 

19 12.9687 10.1452 8.6612 7.7263 

20 12.6351 8.1613 6.8100 5.2548 
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(a) (b) 

Figure 18: (a) The percent errors for the reduced-order model (ROM) using iterative technique 

for dynamic two-dimensional reservoir problem for the selected 70 masters degrees-of-freedom 

(b) The percent errors for the reduced-order model (ROM) using iterative technique for dynamic 

two-dimensional reservoir problem for the selected 40 masters degrees-of-freedom 

 

3.8.2.2. The correlated coefficient for modal vector (CCFMV) 

CCFMV (φmj
(i)

) =
φmj

T ∙ φmj
(i)

{[φmj
T ∙ φmj] ∙ [(φmj

(i)
)

T

∙ φmj
(i)

]}
1/2

 (114) 

where 𝜑𝑚𝑗 and 𝜑𝑚𝑗
(𝑖)

 are the exact and the 𝑖𝑡ℎ approximation of the 𝑗𝑡ℎ(𝑗 = 1,2, … , 𝑚) eigenvector, 

respectively. A value of CCFMV close to one suggests that the two corresponding eigenvectors 

(or, mode shapes) of the reduced model and full model are well correlated, hence the reduced 

model is a good representation of the full model. Equivalently, a value of one suggests that the two 

eigenvectors are uncorrelated.  

The correlated coefficient for modal vector (CCFMV) of the lowest 20 frequencies obtained 

from the proposed iterative technique for the two cases; 70 masters and 40 masters, using Eq. (114) 

and are listed in Table 21 and Table 22, respectively. A graphical representation of the correlated 

coefficient for modal vector (CCFMV) for the two cases is presented in Figure 19, as well. 
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Table 21: The Correlated Coefficient for Modal Vector (CCFMV) calculated with the 

Proposed Iterative Technique (Case 1 ~ 70 DOFs) 

Mode 

Iteration Number 

1 2 3 4 5 6 

CCFMV CCFMV CCFMV CCFMV CCFMV CCFMV 

1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

3 0.999987 1.000000 1.000000 1.000000 1.000000 1.000000 

4 0.999995 1.000000 1.000000 1.000000 1.000000 1.000000 

5 0.999914 0.999995 1.000000 1.000000 1.000000 1.000000 

6 0.998894 0.999929 0.999998 1.000000 1.000000 1.000000 

7 0.998250 0.999989 1.000000 1.000000 1.000000 1.000000 

8 0.999781 0.999971 0.999999 1.000000 1.000000 1.000000 

9 0.998802 0.999853 0.999999 1.000000 1.000000 1.000000 

10 0.999868 0.999984 1.000000 1.000000 1.000000 1.000000 

11 0.999202 0.999934 0.999999 1.000000 1.000000 1.000000 

12 0.999588 0.999987 1.000000 1.000000 1.000000 1.000000 

13 0.999688 0.999963 0.999999 1.000000 1.000000 1.000000 

14 0.999491 0.999916 0.999998 1.000000 1.000000 1.000000 

15 0.998309 0.999884 0.999997 1.000000 1.000000 1.000000 

16 0.997544 0.999634 0.999955 0.999998 1.000000 1.000000 

17 0.992602 0.995377 0.999710 0.999996 1.000000 1.000000 

18 0.991209 0.996787 0.999794 0.999997 1.000000 1.000000 

19 0.998336 0.999409 0.999939 0.999999 1.000000 1.000000 

20 0.989630 0.995096 0.999093 0.999972 1.000000 1.000000 
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Table 22: The Correlated Coefficient for Modal Vector (CCFMV) calculated with the 

Proposed Iterative Technique (Case 2 ~ 40 DOFs) 

Mode 

Iteration Number 

1 3 5 7 9 

CCFMV CCFMV CCFMV CCFMV CCFMV 

1 1.000000 1.000000 1.000000 1.000000 1.000000 

2 0.999998 1.000000 1.000000 1.000000 1.000000 

3 0.999955 0.999998 1.000000 1.000000 1.000000 

4 0.999948 0.999959 0.999997 1.000000 1.000000 

5 0.992178 0.999042 0.999869 0.999982 0.999998 

6 0.993297 0.998848 0.999794 0.999963 0.999994 

7 0.988820 0.999247 0.999926 0.999992 0.999999 

8 0.996927 0.999338 0.999853 0.999968 0.999993 

9 1.000000 1.000000 1.000000 1.000000 1.000000 

10 0.956178 0.997292 0.999997 0.999998 1.000000 

11 0.928158 0.990784 0.999716 0.999989 0.999999 

12 0.999994 0.999878 0.999975 0.999997 1.000000 

13 0.999941 0.999881 0.999977 0.999997 1.000000 

14 0.000000 0.996941 0.999530 0.999926 0.999988 

15 0.000112 0.999904 0.999978 0.999997 1.000000 

16 0.999954 0.999931 0.999979 0.999996 0.999999 

17 0.000000 0.000001 0.000000 0.000000 0.000000 

18 0.975819 0.000000 0.000000 0.000000 0.000000 

19 0.000000 0.000000 0.000003 0.000001 0.000000 

20 0.000177 0.000076 0.000000 0.000000 0.000000 
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(a) (b) 

Figure 19: (a) The correlated coefficient for modal vector (CCFMV) calculated using iterative 

technique for dynamic two-dimensional reservoir problem for the selected 70 master degrees-

of-freedom (b) The correlated coefficient for modal vector (CCFMV) calculated using iterative 

technique for dynamic two-dimensional reservoir problem for the selected 40 master degrees-

of-freedom 

 

3.8.3. Assessment of the Suitability of Measurement Locations 

Here two possible criteria are investigated: 

3.8.3.1. Modal Assurance Criterion (MAC) 

In any modal test, the mode shapes are useful when they can be distinguished from each other. 

That is, the mode shape vectors should be linearly independent. 

The easiest way to check the linear dependence of mode shapes is to use modal assurance criterion 

MACij =
[u(i)T

u(j)]
2

[u(i)T
u(i)][u(j)T

u(j)]
 (115) 

where 𝑢(𝑖) and 𝑢(𝑗) are the 𝑖𝑡ℎ and 𝑗𝑡ℎ mode shapes at the selected measurement locations. 

The off-diagonal terms are close to zero, which supports the fact that they are less dependent. 

Yet, the eigenvectors are not exactly zero due to the fact that they are orthogonal with respect to 

the mass and stiffness matrices and the MAC does not account for that.  
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A graphical representation of the MAC matrices is presented in Figure 20  for the two cases; 

72 masters and 40 masters, respectively. Due to the symmetry of the MAC matrix, the lower 

triangle for both cases was omitted. 

 

  

(a) (b) 

Figure 20: (a) Modal Assurance Criterion (MAC) for Reduced-Order Models Using Iterative 

Technique for Dynamic Two-dimensional Reservoir Problem for the selected 70 master degrees-

of-freedom (b) Modal Assurance Criterion (MAC) for Reduced-Order Models Using Iterative 

Technique for Dynamic Two-dimensional Reservoir Problem for the selected 40 master degrees-

of-freedom 

 

3.8.3.2. Singular Value Decomposition (SVD) 

A singular value decomposition of the eigenvector matrix based on the selected degrees-of-

freedom can be used to determine the suitability of the chosen masters. The method basically 

evaluates the ratio of the largest to the smallest singular value of the eigenvector matrix. The larger 

the ratio, the worst the choice of the masters.  

A graphical representation of the SVD results is presented in Figure 21 for the two cases; 72 

masters and 40 masters, respectively. The ratio of the largest to the lowest singular value for both 

cases is presented on both figures. 
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(a) (b) 

Figure 21: (a) Singular Value Decomposition (SVD) for Reduced-Order Models Using Iterative 

Technique for Dynamic Two-dimensional Reservoir Problem for the selected 70 master degrees-

of-freedom (b) Singular Value Decomposition (SVD) for Reduced-Order Models Using Iterative 

Technique for Dynamic Two-dimensional Reservoir Problem for the selected 40 master degrees-

of-freedom 

As shown from the above figure, the ratio for the two selections of master degrees-of-

freedom (DOFs) is close to unity which reflects the independency between the basis vectors for 

the reduced spaces for both cases; conforming with the fact that masters selections has no effect 

on the ROM obtained using iterative technique nor the quality of its solution.  

4. Computational Time 

From previous analysis, one-step methods (e.g. Guyan Condensation) have proven to be efficient 

for reduction of large-scale static geomechanical models. On the other hand, three-step/iterative 

methods have proven its efficiency in reducing the scale of large dynamic geomechanical models. 

Based on the numerical demonstrations – presented in this paper – both one-step and three-

step methods managed to achieve an intensive scale reduction (down to 10% of size of the full-

order model) for their corresponding cases. The reduction in scale was reflected – in turn – on the 

computational speed of model runs [as shown in Table 23]. 

Table 23 displays preliminary numerical results that correspond to the iterative 

condensation techniques applied to the geomechanical model.  As with any model reduction 

comparisons, this is a relative comparison for a particular computational platform. To this end, all 

of the simulations were performed using a laptop with the following specifications:  Processor 
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Intel(R) Core(TM) i7 - 8550U CPU @ 1.80GHz 1.99 GHz; RAM: 32.0; 64-bit operating system. 

Initial speedups – up to 200X – were achieved using the proposed iterative techniques. It should 

be noted that our problem in consideration is small and any model reduction techniques applied to 

such systems do not perform as well as compared with problems that are more realistic. They are 

consistent with the problem formulation,  given we are using a direct linear solver in MATLAB. 

 

Table 23. Comparison of Computational Time for FOM and ROM 

Model 
FOM 

DOFs 
FOM Runtime ROM DOFs ROM Runtime Speedup 

20 x 10 419 0.4156 secs 40 0.0018 secs 230 

40 x 20 1639 4.5152 secs 79 0.0152 secs 297 

60 x 30 3842 35.858 secs 121 0.0377 secs 951 

80 x 40 6479 172.33 secs 159 0.0645 secs 2671 

 

 

 

Figure 22: Computational Speedups achieved using iterative condensation techniques for 

various model sizes 
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CHAPTER IV  

APPLICATION OF ROM FRAMEWORK TO COUPLED FLOW/GEOMECHANCIS 

SIMULATIONS 

 

The integration of geomechanical effects with flow systems has received a great attention in 

various science and engineering fields including – but not limited to – soil science [28, 29], 

mechanical engineering [30], civil engineering [31], environmental engineering [32,33] and 

bioengineering [34]. 

Oil & Gas industry is no different as reservoir engineering is also concerned with the study of 

fluid flow and the mechanical response of the reservoir. Reservoir geomechanics affect reservoir 

deformation, well integrity, flow response, heavy-oil production and one of the main drivers of 

environmental aspects of reservoir exploration [1, 2, 3]. Well and cap-rock integrity issues are 

often encountered in CO2 sequestration problems (CCS) and reservoir deformation can affect flow 

response in hydraulic fracturing processes.  

Although coupled flow and geomechanics simulations can model such systems, they are 

computationally expensive. This is due to the nonlinear multiphysics nature of governing 

equations, and the complexity of the domain over which geomechanical problem must be solved. 

Moreover, computational demands can be excessive in applications such as optimization and 

uncertainty quantification, where hundreds or thousands of simulation runs might be required [3]. 

In this chapter, we are interested in developing a computational framework for modeling 

coupled flow and geomechanics in geologic systems. The focus is on sequential implicit solution 

methods that can solve coupled flow and geomechanics. Additionally, an extension of the 

previously adopted reduced-order modeling (ROM) framework to the coupled flow/geomechanics 

systems is implemented. 

4.1. Formulation of Coupled Equations in Flow and Geomechanics 

In coupled flow and geomechanics system, total stress affects bulk volume and – accordingly – 

pore volume. In addition, pore pressure affects pore volume and – accordingly – bulk volume. In 

the preceding discussion we will derive both system of equations concerned with the two – 

previously mentioned – driving forces/effects. 
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4.1.1. Derivation of the First Coupling Equation 

The variation in porosity is defined by both the variation in pore volume, 𝛿𝑉𝑝, and the variation in 

bulk volume, 𝛿𝑉𝑏. Variation in pore volume, 𝛿𝑉𝑝, can be defined as a function of pore pressure, 

𝑝𝑓, and volumetric stress, 𝜎𝑣. 

𝛿𝑉𝑝 = 𝑓(𝑝𝑓 , 𝜎𝑣) (116) 

Eq. (116) can be rewritten as 

𝛿𝑉𝑝 = [
𝜕𝑉𝑝

𝜕𝑝𝑓
]

𝜎𝑣

∙ 𝛿𝑝𝑓 + [
𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝜎𝑣 (117) 

where [𝜕𝑉𝑝 𝜕𝑝𝑓⁄ ]
𝜎𝑣

is the change in pore volume with changing pore pressure assuming constant 

volumetric stress. Similarly, [𝜕𝑉𝑝 𝜕𝜎𝑣⁄ ]
𝑝𝑓

 is the change in the pore volume with changing 

volumetric stress assuming a constant pore pressure. 

Simple mathematical manipulation of Eq. (117) leads to 

𝛿𝑉𝑝 = [
𝜕𝑉𝑝

𝜕𝑝𝑓
]

𝜎𝑣

∙ 𝛿𝑝𝑓 − [
𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝑝𝑓 + [
𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝜎𝑣 + [
𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝑝𝑓 (118) 

The definition in Eq. (118) can be rewritten in a relative sense as follows 

𝛿𝑉𝑝

𝑉𝑝
=

1

𝑉𝑝
∙ [

𝜕𝑉𝑝

𝜕𝑝𝑓
]

𝜎𝑣

∙ 𝛿𝑝𝑓 −
1

𝑉𝑝
∙ [

𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝑝𝑓 +
1

𝑉𝑝
∙ [

𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝜎𝑣 +
1

𝑉𝑝
∙ [

𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝑝𝑓 (119) 

𝛿𝑉𝑝

𝑉𝑝
= {

1

𝑉𝑝
∙ [

𝜕𝑉𝑝

𝜕𝑝𝑓
]

𝜎𝑣

−
1

𝑉𝑝
∙ [

𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

} ∙ 𝛿𝑝𝑓 +
1

𝑉𝑝
∙ [

𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿(𝜎𝑣 + 𝑝𝑓) (120) 

where 

1

𝑉𝑝
∙ [

𝜕𝑉𝑝

𝜕𝑝𝑓
]

𝜎𝑣

−
1

𝑉𝑝
∙ [

𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

= −
1

𝐾𝑠
 (121) 

𝐾𝑠 is defined as solid grain modulus. 

In a similar fashion, the variation in bulk volume, 𝛿𝑉𝑏, can be defined as a function of pore 

pressure, 𝑝𝑓, and volumetric stress, 𝜎𝑣. 
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𝛿𝑉𝑏 = 𝑓(𝑝𝑓 , 𝜎𝑣) (122) 

Then – as for Eq. (116) – Eq. (122) can be rewritten as 

𝛿𝑉𝑏 = [
𝜕𝑉𝑏

𝜕𝑝𝑓
]

𝜎𝑣

∙ 𝛿𝑝𝑓 + [
𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝜎𝑣 (123) 

where [𝜕𝑉𝑏 𝜕𝑝𝑓⁄ ]
𝜎𝑣

is the change in bulk volume with changing pore pressure assuming constant 

volumetric stress. Similarly, [𝜕𝑉𝑏 𝜕𝜎𝑣⁄ ]𝑝𝑓
 is the change in the bulk volume with changing 

volumetric stress assuming a constant pore pressure. 

Applying the same  mathematical manipulation [as for Eq. (117)]  for Eq. (123) leads to 

𝛿𝑉𝑏 = [
𝜕𝑉𝑏

𝜕𝑝𝑓
]

𝜎𝑣

∙ 𝛿𝑝𝑓 − [
𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝑝𝑓 + [
𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝜎𝑣 + [
𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝑝𝑓 (124) 

The definition in Eq. (124) can be rewritten in a relative sense as follows 

𝛿𝑉𝑏

𝑉𝑏
=

1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝑝𝑓
]

𝜎𝑣

∙ 𝛿𝑝𝑓 −
1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝑝𝑓 +
1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝜎𝑣 +
1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿𝑝𝑓 (125) 

𝛿𝑉𝑏

𝑉𝑏
= {

1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝑝𝑓
]

𝜎𝑣

−
1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

} ∙ 𝛿𝑝𝑓 +
1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿(𝜎𝑣 + 𝑝𝑓) (126) 

where 

1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝑝𝑓
]

𝜎𝑣

−
1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

= −
1

𝐾𝑠
 (127) 

𝐾𝑠 is defined as solid grain modulus. 

Depending on the imposed conditions/constraints Eqs. (120) and (126) can be customized to 

account for two different conditions: (a) undrained and (b) drained conditions. 

For the undrained conditioned, the increase (or generally, change) in both volumetric stress and 

pore pressure is assumed to be the same; leading to no fluid flow outside the solid rock. In other 

words, 

𝛿(𝜎𝑣 + 𝑝𝑓) = 0 (128) 

 By substitution of Eqs. (121), (127) and (128) in Eqs. (120) and (126), we get 
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𝛿𝑉𝑏

𝑉𝑏
=

𝛿𝑉𝑝

𝑉𝑝
= −

1

𝐾𝑠
𝛿𝑝𝑓 =

1

𝐾𝑠
𝛿𝜎𝑣 (129) 

Unlike undrained condition, for drained condition the fluid is allowed to flow outside. This is 

accomplished through prohibiting any changes to pore pressure. In other words 

𝛿𝑝𝑓 = 0 (130) 

Hence, pore pressure, 𝑝𝑓,would be same as boundary pressure. However, we are changing mean 

stress, 𝜎𝑣, so changing bulk volume, 𝑉𝑏.    

Substitution of Eq. (130) in Eq. (126) leads to 

𝛿𝑉𝑏

𝑉𝑏
=

1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

∙ 𝛿(𝜎𝑣 + 𝑝𝑓) (131) 

where 

1

𝑉𝑏
∙ [

𝜕𝑉𝑏

𝜕𝜎𝑣
]

𝑝𝑓

=
1

𝐾𝑑𝑟
 (132) 

𝐾𝑑𝑟 is defined as solid skeleton (drained) modulus. 

Substitution of Eqs. (127) and (132) in Eq. (126) leads to 

𝛿𝑉𝑏

𝑉𝑏
= −

1

𝐾𝑠
∙ 𝛿𝑝𝑓 +

1

𝐾𝑑𝑟
∙ 𝛿(𝜎𝑣 + 𝑝𝑓) (133) 

where 𝛿𝑉𝑏 𝑉𝑏⁄  is the volumetric strain, 𝛿휀𝑣. 

Simple manipulation of Eq. (133) leads to 

𝛿𝜎𝑣 = 𝐾𝑑𝑟 ∙ 𝛿휀𝑣 − (1 −
𝐾𝑑𝑟

𝐾𝑠
) ∙ 𝛿𝑝𝑓 (134) 

where 

1 −
𝐾𝑑𝑟

𝐾𝑠
= 𝑏 (135) 

𝑏 is the biot coefficient. Then, 

𝛿𝜎𝑣 = 𝐾𝑑𝑟 ∙ 𝛿휀𝑣 − 𝑏 ∙ 𝛿𝑝𝑓 (136) 

Eq. (136) is the first equation of coupling. 
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4.1.2. Derivation of the Second Coupling Equation 

Before we get into the derivation/formulation of the second equation of coupling, an equally 

important concept/theory needs to be addressed. That is Betti’s theorem (also known as, Maxwell-

Betti reciprocal work theorem). 

Betti’s theorem states that for a linear elastic structure subject to two sets of forces {𝑷} and {𝑸}, 

the work done by the set {𝑷} through the displacements produced by the set {𝑸}, ∆𝑸, is equal to 

the work done by the set {𝑸} through the displacements produced by the set {𝑷}, ∆𝑷. 

𝑷 ∙ ∆𝑸= 𝑸 ∙ ∆𝑷 (137) 

By extending this theorem to the coupling flow/geomechanics system, we get 

𝛿𝜎𝑣 ∙ ([
𝜕𝑉𝑏

𝜕𝑝𝑓
]

𝜎𝑣

𝛿𝑝𝑓) = 𝛿𝑝𝑓 ∙ ([
𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

𝛿𝜎𝑣) (138) 

Eq. (138) can be reduced to 

[
𝜕𝑉𝑏

𝜕𝑝𝑓
]

𝜎𝑣

= [
𝜕𝑉𝑝

𝜕𝜎𝑣
]

𝑝𝑓

 (139) 

Considering the definition of volumetric strain and true porosity, respectively 

1

𝑉𝑏
[
𝜕𝑉𝑏

𝜕𝑝𝑓
]

𝜎𝑣

=
1

𝐾𝑑𝑟
−

1

𝐾𝑠
 (140) 

𝜙 =
𝑉𝑝

𝑉𝑏
→

1

𝑉𝑏
=

𝜙

𝑉𝑝
 (141) 

Substitution of Eq. (141) into Eq. (140) 

1

𝑉𝑝
[
𝜕𝑉𝑏

𝜕𝑝𝑓
]

𝜎𝑣

=
1

𝜙
(

1

𝐾𝑑𝑟
−

1

𝐾𝑠
) (142) 

Substitution of Eq. (142) into Eq. (126) 

𝛿𝑉𝑏

𝑉𝑏
= −

1

𝐾𝑠
𝛿𝑝𝑓 +

1

𝜙
(

1

𝐾𝑑𝑟
−

1

𝐾𝑠
) 𝛿(𝜎𝑣 + 𝑝𝑓) (143) 

By taking the derivative of Eq. (141) and apply simple mathematical manipulation 
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𝛿𝜙 = 𝜙 (
𝛿𝑉𝑝

𝑉𝑝
−

𝛿𝑉𝑏

𝑉𝑏
) = 𝜙 (

𝛿𝑉𝑝

𝑉𝑝
− 𝛿휀𝑣) (144) 

 Substitution of Eq. (144) into Eq. (143) leads to 

𝛿𝜙 = 𝜙 [−
1

𝐾𝑠
𝛿𝑝𝑓 +

1

𝜙
(

1

𝐾𝑑𝑟
−

1

𝐾𝑠
) 𝛿(𝜎𝑣 + 𝑝𝑓) − 𝛿휀𝑣] (145) 

Rearranging Eq. (133) and applying simple mathematical manipulation leads to 

𝐾𝑑𝑟 (𝛿휀𝑣 +
1

𝐾𝑠
∙ 𝛿𝑝𝑓) = 𝛿(𝜎𝑣 + 𝑝𝑓) (146) 

Substitution of Eq. (146) into Eq. (145) leads to 

𝛿𝜙 = 𝜙 [−
1

𝐾𝑠
𝛿𝑝𝑓 +

1

𝜙
(

1

𝐾𝑑𝑟
−

1

𝐾𝑠
) 𝐾𝑑𝑟 (𝛿휀𝑣 +

1

𝐾𝑠
∙ 𝛿𝑝𝑓) − 𝛿휀𝑣] (147) 

Using the definition of biot coefficient [Eq. (135)], Eq. (147) can be rewritten as 

𝛿𝜙 =
𝑏 − 𝜙

𝐾𝑠
𝛿𝑝𝑓 + (𝑏 − 𝜙)𝛿휀𝑣 (148) 

where 𝛿𝜙 is the change in true porosity. Eq. (148) can be redefined in terms of reservoir porosity  

𝛿Փ =
𝑏 − 𝜙

𝐾𝑠
𝛿𝑝𝑓 + 𝑏 𝛿휀𝑣 (149) 

Eq. (149) is the second coupling equation. where (𝑏 − 𝜙) 𝐾𝑠⁄ = 1 𝑀⁄  and 𝛿Փ = 𝛿𝑚𝑓 𝜌𝑓⁄ . Then, 

Eq. (149) can be rewritten as 

𝛿𝑚𝑓

𝛿𝜌𝑓
=

1

𝑀
𝛿𝑝𝑓 + 𝑏 𝛿휀𝑣 (150) 

4.2. Solution Schemes for Coupled Systems 

Literature is rich with various coupling methods/schemes that can be used to model the interactions 

between flow and geomechanics. However, this study is limited to one family of these methods, 

namely Iterative methods (traditionally known as; sequential/staggered methods). These iterative 

methods require sequential updating of flow and mechanics problems until convergence to 

acceptable tolerance is attained. 

Iterative family of methods can be divided into two major groups, based on the solution 

scheme: (1) one that assumes that the mechanical problem is solved first then the fluid-flow 
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problem and (2) the other major group addresses the fluid-flow first; followed by the mechanical 

problem. Examples of the first major group are the drained and undrained solution schemes, while 

examples of the second major group are fixed-stress and fixed-strain solution schemes. 

For comparison reasons, we will only consider the two solution schemes, i.e. drained and 

undrained,  pertinent to the first major group. Formulation of the two schemes, detailed discussion 

of key distinctions, as well as, computational considerations are presented in the preceding section. 

4.3. Coupling of Static Mechanical Model w/ Static Flow Model 

The linearized equations for the coupled problem are given below. The rock is assumed to be 

completely saturated with fluid or water. The equations are expressed in terms of the rock 

displacement 𝑢 and pore pressure 𝑝 variables as 

𝑲𝒅𝒖 − 𝑸𝒑 = 𝒇𝒖 (151) 

𝑸𝑻�̇� + 𝑺�̇� + 𝑯𝒑 = 𝒇𝒑 (152) 

where 𝑲𝒅 is stiffness matrix (for drained behavior) for the rock skeleton. 𝑺 and 𝑯 are the 

compressibility/accumulation and permeability/transmissibility matrices for the pore fluid, 

respectively. 𝑸 is the coupling/Biot matrix.   

The problems governed by Eq. (151) and Eq. (152) can be solved by the following procedure 

[Figure 23]: 

Step 1. Write the equilibrium of the Eq. (151) at a time step 𝑛 + 1 as 

𝑲𝒅𝒖𝒏+𝟏 = (𝒇𝒖)𝒏+𝟏 + 𝑸𝒑𝒏 (153) 

and obtain 𝒖𝒏+𝟏 from the known values of 𝒖𝒏, �̇�𝒏 and 𝒑𝒏 by using Newmark’s family method with 

appropriate parameters (e.g. 𝛽 and 𝛾) 

Step 2. writing Eq. (152) as 

𝑺�̇�𝒏+𝟏 + 𝑯𝒑𝒏+𝟏 = (𝒇𝒑)
𝒏+𝟏

− 𝑸𝑻�̇�𝒏+𝟏 (154) 
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we can solve for �̇�𝒏+𝟏 and 𝒑𝒏+𝟏 using known 𝒑𝒏, �̇�𝒏 and �̇�𝒏+𝟏 [evaluated in Eq. (153)] and a 

standard 𝜃 procedure.  

 

 

Figure 23: Iteratively coupled schemes for coupled Simulations (drained and undrained splits) 

 

4.3.1. Undrained Solution Scheme 

If the permeability approaches zero (i.e. the undrained condition is reached) then the contribution 

of permeability matrix 𝑯 vanishes and in that case the pressure can be obtained from Eq. (152) 

after integrating in terms of compressibility matrix 𝑺 (noting that under such condition 𝒇𝒑 = 𝟎): 

∆𝒑𝒏+𝟏 = −𝑺−𝟏𝑸𝑻∆𝒖𝒏+𝟏 (155) 

The equivalent force due to this additional pressure on the soil skeleton would be [from Eq. (151)]: 

𝑸∆𝒑𝒏+𝟏 = −𝑸𝑺−𝟏𝑸𝑻∆𝒖𝒏+𝟏 (156) 
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 Now if Eq. (151) and (152) is modified to consider this increased pressure, a staggered scheme of 

the form given below appears natural. This starts with Eq. (151) at time step 𝑛 + 1 written as 

(𝑲𝒅 + 𝑸𝑺−𝟏𝑸𝑻)𝒖𝒏+𝟏 = (𝒇𝒖)𝒏+𝟏 + 𝑸𝒑𝒏 + 𝑸𝑺−𝟏𝑸𝑻𝒖𝒏 (157) 

and proceeds with Eq. (152) at time step 𝑛 + 1 written as 

𝑸𝑻�̇�𝒏+𝟏 + 𝑺�̇�𝒏+𝟏 + 𝑯𝒑𝒏+𝟏 = (𝒇𝒑)
𝒏+𝟏

 (158) 

Indeed, this staggered solution with suitably predicted values of  𝒑𝒏+𝟏
𝒑

 and 𝒖𝒏+𝟏
𝒑

 and with suitable 

integration formulae turns out to be unconditionally stable when stable ranges of those formulae 

are used for each component equation. The selection of formulae and predictors for stable solution 

will be discussed in the next section. 

Although the process appears as simple mathematical manipulation, it has a physical significance 

as the new stiffness matrix is simply the undrained stiffness matrix, , defined as 

𝑲𝒖 = 𝑲𝒅 + 𝑸𝑺−𝟏𝑸𝑻 (159) 

The undrained split can then be written in matrix representation as follows 

[
𝑲𝒅 + 𝑼 𝟎

𝑸𝑻 𝑺 + ∆𝑡 ∙ 𝑯
] {

𝒖
𝒑}

𝑛+1

= [
𝑼 𝑸

𝑸𝑻 𝑺
] {

𝒖
𝒑}

𝑛

+ {
𝒇𝒖

𝒇𝒑
} (160) 

 

4.3.2. Drained Solution Scheme 

In this case, the mechanics problem is solved first with freezing the pressure field  

∆𝒑𝒏+𝟏 = 𝟎 (161) 

Now if Eq. (151) and (152) is modified to consider this effect, it will take the form 

𝑲𝒅𝒖𝒏+𝟏 = (𝒇𝒖)𝒏+𝟏 + 𝑸𝒑𝒏 (162) 

and proceeds with Eq. (152) at time step 𝑛 + 1 written as 
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𝑸𝑻�̇�𝒏+𝟏 + 𝑺�̇�𝒏+𝟏 + 𝑯𝒑𝒏+𝟏 = (𝒇𝒑)
𝒏+𝟏

 (163) 

Indeed, this staggered solution with suitably predicted values of  𝒑𝒏+𝟏
𝒑

 and 𝒖𝒏+𝟏
𝒑

 and with suitable 

integration formulae turns out to be unconditionally stable when stable ranges of those formulae 

are used for each component equation. The selection of formulae and predictors for stable solution 

will be discussed in the next section. 

The drained split can then be written in matrix representation as follows 

[
𝑲𝒅 𝟎

𝑸𝑻 𝑺 + ∆𝑡 ∙ 𝑯
] {

𝒖
𝒑}

𝑛+1

= [
𝟎 𝑸

𝑸𝑻 𝑺
] {

𝒖
𝒑}

𝑛

+ {
𝒇𝒖

𝒇𝒑
} (164) 

 

4.3.3. Time Stepping Algorithm for Coupled Systems 

In this section, we briefly present the basic equations used in the time integration scheme of 

Newmark family methods. Application of the Newmark scheme to both displacement and pressure 

terms is unconditionally stable for various possible. 

4.3.3.1. Formulation of Newmark set of Equations 

Considering the mechanics terms, the Newmark family would consist of the following equations:  

𝒅𝒏+𝟏 = 𝒅𝒏 + ∆𝑡𝒗𝒏 + ∆𝑡2(0.5 − 𝛽)𝒂𝒏 + 𝛽∆𝑡2𝒂𝒏+𝟏 (165) 

𝒗𝒏+𝟏 = 𝒗𝒏 + ∆𝑡(1 − 𝛾)𝒂𝒏 + 𝛾∆𝑡𝒂𝒏+𝟏 (166) 

The predictors will take the form: 

�̃�𝒏+𝟏 = 𝒅𝒏 + ∆𝑡𝒗𝒏 +
∆𝑡2

2
(1 − 2𝛽)𝒂𝒏 (167) 

�̃�𝒏+𝟏 = 𝒗𝒏 + ∆𝑡(1 − 𝛾)𝒂𝒏 (168) 

Eq. (165) and (166) may then be rewritten as  

𝒅𝒏+𝟏 = �̃�𝒏+𝟏 + 𝛽∆𝑡2𝒂𝒏+𝟏 (169) 

𝒗𝒏+𝟏 = �̃�𝒏+𝟏 + 𝛾∆𝑡𝒂𝒏+𝟏 (170) 

In single component equations, stability is assured if 𝛾 ≥ 0.5 and 𝛽 ≥ 0.25 
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Similarly, for the predictor for the pressure term will take the form 

�̃�𝒏+𝟏 = 𝒑𝒏 + 𝑎 ∆𝑡 �̇�𝒏 + 𝑏 
∆𝑡2

4
 �̈�𝒏 (171) 

allows various predictors when 𝑎 and 𝑏 take values ranging from 0 to 1, and on insertion of 𝑎 =

𝑏 = 1, Eq. (171) gives 

�̃�𝒏+𝟏 = 𝒑𝒏 + ∆𝑡 �̇�𝒏 +  
∆𝑡2

4
 �̈�𝒏 (172) 

Application of the aforementioned time-stepping scheme (i.e. Newmark family) for both 

undrained condition and drained condition are provided in Algorithm 4 and Algorithm 5, 

respectively. 
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Algorithm 4: Time-stepping scheme for displacement and pressure (Undrained Split) 

 

 Initialization: 

 1) Geomechanics Equation: 

 𝒅(𝟎) = 𝒅𝟎 

 2) Flow Equation: 

 𝒑(𝟎) = 𝒑𝟎 

 for 𝒏 − 𝒕𝒊𝒎𝒆 𝒔𝒕𝒆𝒑𝒔: 

  Predictors: 

  1) Mechanics Term: 

  �̃�𝒏+𝟏 = 𝒅𝒏 

  2) Pressure Term: 

  �̃�𝒏+𝟏 = 𝒑𝒏 

  Solution: 

  1) Mechanics Equation: 

  𝒅𝒏+𝟏 = (𝑲𝒅 + 𝑸𝑺−𝟏𝑸𝑻)−𝟏[(𝑭𝒖)𝒏+𝟏 + 𝑸�̃�𝒏+𝟏 + (𝑸𝑺−𝟏𝑸𝑻)�̃�𝒏+𝟏] 

  2) Flow Equation: 

  𝒑𝒏+𝟏 = (𝑺 + ∆𝑡 𝑯)−𝟏[(𝑭𝒖)𝒏+𝟏 + 𝑺�̃�𝒏+𝟏 + 𝑸𝑻�̃�𝒏+𝟏 − 𝑸𝑻𝒅𝒏+𝟏] 

  
Updates: 

1) Mechanics Term 

  𝒅𝒏 = 𝒅𝒏+𝟏 

  2) Flow Term 

  𝒑𝒏 = 𝒑𝒏+𝟏 

 end 
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Algorithm 5: Time-stepping scheme for displacement and pressure (Drained Split) 

 

 Initialization: 

 3) Geomechanics Equation: 

 𝒅(𝟎) = 𝒅𝟎 

 4) Flow Equation: 

 𝒑(𝟎) = 𝒑𝟎 

 for 𝒏 − 𝒕𝒊𝒎𝒆 𝒔𝒕𝒆𝒑𝒔: 

  Predictors: 

  3) Mechanics Term: 

  �̃�𝒏+𝟏 = 𝒅𝒏 

  4) Pressure Term: 

  �̃�𝒏+𝟏 = 𝒑𝒏 

  Solution: 

  3) Mechanics Equation: 

  𝒅𝒏+𝟏 = (𝑲𝒅)−𝟏[(𝑭𝒖)𝒏+𝟏 + 𝑸�̃�𝒏+𝟏] 

  4) Flow Equation: 

  𝒑𝒏+𝟏 = (𝑺 + ∆𝑡 𝑯)−𝟏[(𝑭𝒖)𝒏+𝟏 + 𝑺�̃�𝒏+𝟏 + 𝑸𝑻�̃�𝒏+𝟏 − 𝑸𝑻𝒅𝒏+𝟏] 

  
Updates: 

3) Mechanics Term 

  𝒅𝒏 = 𝒅𝒏+𝟏 

  4) Flow Term 

  𝒑𝒏 = 𝒑𝒏+𝟏 

 end 

 



   

91 
 

4.3.4. Numerical Demonstration 

In this section, we present the performance of the proposed scheme through one structural problem. 

Mandel’s problem is commonly used to validate simulators of coupled flow and geomechanics. 

For greater detail the reader can refer to Abousleiman et al. (1996). For the finite element 

modeling, we use the well-known 4-node quadrilateral flat shell finite elements. 

A two-dimensional reservoir [Figure 24] is considered with boundary conditioned as 

specified in Table 24. The specifications of our model are listed in Table 25. In the model, a 

uniform mesh of the size 20 × 10 is used, in which 231 nodes, 200 elements and 419 degrees-of-

freedom are contained. 

 

Figure 24: Two-dimensional reservoir 

 

Table 24: Boundary Conditions for Two-dimensional Reservoir 

5. Constant vertical stress on the top (𝜎𝑦 = 𝐹 / 𝑎; where 𝐹 = 1.00𝐸08 𝑁 and 𝑎 = 100 𝑚). 

6. No vertical displacement in the bottom (i.e. 𝑢𝑦 = 0). 

7. No horizontal displacement on the right side (i.e. 𝑢𝑥 = 0). 

8. No horizontal displacement on the left side (i.e. 𝑢𝑥 = 0). 
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Table 25: Data Input for Two-dimensional Reservoir 

Young’s Modulus, E *  = 2.900 GPa 

Poisson Ratio, v * = 0.000 fraction 

Biot coefficient, b = 1.000 fraction 

Permeability, K = 50.00 md 

Porosity, ∅0 = 0.300 fraction 

Bulk density, 𝜌𝑏 = 2400 Kg.m-3 

Fluid density, 𝜌𝑓,0 = 1000 Kg.m-3 

Fluid viscosity, µ = 1.000 cp 

Initial pressure, 𝑝𝑖 = 2.125 MPa 

Boundary pressure, �̅� = 2.125 MPa 

Overburden pressure = 2.125 MPa 

* Only two elastic moduli are needed to describe fully material behavior of homogeneous, isotropic material 

 

Three numerical cases are considered with different master degrees-of-freedom (i.e. different 

reduced model size) for the two-dimensional reservoir. Summary of the three models is listed in 

Table 26. 

Table 26: Summary of three Cases for Two-Dimensional Reservoir 

Model 
Number of Master 

DOFs 

Number of Slave 

DOFs 

Relative Size of Reduced-

Order Model 

A 40 379 9.55 % 

B 70 347 17.1 % 

C 188 231 44.8 % 

The exact and estimated pressure profile at monitoring point are shown in Figure 25. As 

expected, with coupling the geomechanical model with the flow model, some control is lost over 

coupling procedure. Accordingly, some error is introduced in the coupled system. Additionally, 

the choice of the measurement locations (i.e. the masters) is critical for the overall solution. As 

shown, with the increase in the size of the reduced model, the reduced solution approximates the 

full solution to acceptable degree. 
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Figure 25: Exact and estimated pressure profile (at monitoring point) for three reduced systems; 

where full system represented in black, first reduced system (Model A) represented in red, 

second reduced system (Model B) represented in blue and third reduced system (Model C) 

represented in green.  

 

Based on those results, a special attention should be geared towards the choice of master degrees-

of-freedom; both the number and the measurement location, for coupled simulation.  
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CHAPTER V 

CONCLUSION & FUTURE WORK 

 

5.1. Conclusion 

Throughout history, geomechanics modeling has proven its critical role in the development of oil 

and gas reservoirs, especially unconventional reservoirs. However, integration of geomechanical 

models in conventional simulations (flow only simulations) has been challenging in various 

aspects. One is the large scale of such models, which has been a major constraint due to the 

increased computational time and cost. 

Historically, the finite element methods (FEM) proved to be efficient for the discretization 

and the analysis of complex structure mechanics. Yet, with the constant increase in the systems 

complexity, the discrete model size is substantially large. In turn, this motivated the development 

of low-order, yet, accurate models (ROM) capable of capturing the main features of the full-order 

model (FOM). 

Much effort was devoted into the creation and development of efficient reduced-order 

modeling (ROM) techniques for flow only simulations. However, to date, the contributions to the 

mechanical models in coupled simulations have been minimal. Former ROM techniques applied 

to mechanics problems, such as DD and POD-DEIM, although efficient, yet they are not easy to 

implement and not robust. 

This study proposes a relatively easy, yet efficient, ROM workflow (based on system 

condensation) for geomechanical models, as well as, coupled flow/geomechanics models that can 

guarantee: 

• Easy coupling with any commercial simulation software. 

• Intensive scale reduction; down to 10% of full-order model (FOM) size.  

• High computational speedups; more than 20-fold, and error as low as 1%. 

• Continuity of solution over the whole domain unlike domain decomposition (DD). 
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Based on the provided analyses:  

• One-step methods (e.g. Guyan Condensation) have proven to be efficient for reduction of 

large-scale static geomechanical models. However, due to the ignorance of inertia effects, 

Guyan Condensation loses its accuracy for dynamic models. Besides, Guyan Condensation 

overall accuracy is dependent on the choice of master degrees-of-freedom (DOFs). 

• Two-step methods have shown a slight improvement over one-step methods for large-scale 

dynamic models due to the corrections for inertia effects. However, the dependence of the 

quality of overall results for ROM on the selection of master degrees-of-freedom (DOFs) 

limited the implementation of two-step methods to large-scale dynamic models.  

• Three-step (iterative) methods have proven its superiority over the aforementioned 

reduction, or condensation, techniques for two reasons: (1) the inclusion of inertia effects 

during the construction of condensation matrix for dynamic models, as well as, (2) 

independence of ROM accuracy from masters selection due to the iteration over reduced-

order model (ROM) parameters. 

Based on the presented results, an optimal choice for the reduced-order modeling (ROM) 

techniques was made; that is the implementation of three-step methods. Following that, 

optimization of the developed workflow was carried out through testing the completeness, 

efficiency, and convergence for all the implemented reduction techniques. 

Upon testing of proposed workflow on geomechanical models, extension of the application of the 

ROM workflow to coupled flow/geomechanics models was carried out. Sequential methods were 

used for integration of geomechanical effects with conventional flow simulation models. 

Verification of the workflow for coupled systems using Mandel’s problem has shown that:  

• Some control is lost over coupling procedure. Accordingly, some error is introduced in the 

coupled system.  

• The choice of the measurement locations (i.e. the masters) is critical for the overall solution 

accuracy.  

• More investigation has shown that, with the increase in the size of the reduced model, the 

reduced solution approximates the full solution to acceptable degree. 
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5.2. Future Work 

Based on the presented analyses, the proposed reduced-order modeling (ROM) framework shows 

a huge potential and comparable results as opposed to other reduction techniques. With that being 

considered, large-scale complex simulations – similar to those associated hydraulic fracturing – 

would be more feasible and less costly. This ultimately would motivate the advent of 

unconventional reservoirs development. However, a special consideration should be paid to the 

following: 

• Extension of adopted reduced-Order modeling (ROM) workflow to more realistic models 

(e.g. coupled flow/geomechancis dynamic systems). 

• Implementation of adopted workflow on far complicated systems with severe 

discontinuities (e.g. fractured reservoirs). 

• Adjustment of developed workflow to adapt to nonlinear system. 

• Integration of data analytics for control over coupling parameters.   
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