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ABSTRACT

In recent years, unmanned aerial vehicles (UAVs) have found applications in many diverse

fields encompassing commercial, civil, and military sectors. These applications include surveil-

lance, search and rescue operations, aerial photography, mapping of geographical areas, aerial

cargo delivery, to name a few. This research addresses how to develop next-generation UAV sys-

tems, namely, effective modeling of UAVs, robust control techniques, and non-linear/robust state

estimation.

The first part addresses modeling and control of a six-degree-of-freedom unmanned aerial ve-

hicle capable of vertical take-off and landing in the presence of wind disturbances. We design a

hybrid vehicle that combines the benefits of both fixed-wing and rotary-wing UAVs. A non-linear

model for the hybrid vehicle is built, combining rigid body dynamics, the aerodynamics of the

wing, and the dynamics of the motor and propeller. Further, we design anH2 optimal controller to

make the UAV robust to wind disturbances. It is easy to achieve robustness in this design frame-

work with respect to wind gusts. The controller is determined by solving a convex optimization

problem involving linear matrix inequalities and simulated with a non-linear hybrid UAV model

developed in the first section, with a wind gust environment. Further, we compare its results against

that of PID and LQR-based control. Our proposed controller results in better performance in terms

of root mean squared errors and time responses during two scenarios: hover and level-flight.

In the second part of the research, we discuss robust Proportional-Integral-Derivative (PID)

control techniques for the quadcopters. PID control is the most commonly used algorithm for

designing controllers for unmanned aerial vehicles (UAVs). However, tuning PID gains is a non-

trivial task. A number of methods have been developed for tuning PID gains but these methods

do not handle wind disturbances, which is a major concern for small UAVs. In this paper, we

propose a new method for determining optimized PID gains in theH2 optimal control framework,

which achieves improved wind disturbance rejection. The proposed method compares the classical

PID control law with theH2 optimal controller to determine theH2 optimal PID gains and involves

ii



solving a convex optimization problem. The proposed controller is tested in two scenarios, namely,

vertical velocity control, and vertical position control. The results are compared with the existing

LQR based PID tuning method.

A good performance of the controller requires an accurate estimation of states from noisy mea-

surements. Therefore, the third part of the research concentrates on the accurate attitude estimation

of UAVs.

Most UAV systems use a combination of a gyroscope, an accelerometer, and a magnetometer

to obtain measurements and estimate attitude. Under this paradigm of sensor fusion, the Extended

Kalman Filter (EKF) is the most popular algorithm for attitude estimation in UAVs. In this work,

we propose a novel estimation technique called extended H2 filter that can overcome the limita-

tions of the EKF, specifically with respect to computational speed, memory usage, and root mean

squared error. We formulate our attitude-estimation algorithm using two distinct coordinate repre-

sentations for the vehicle’s orientation: Euler angles and unit quaternions, each with its own sets

of benefits and challenges. The H2 optimal filter gain is designed offline about a nominal operat-

ing point by solving a convex optimization problem, and the filter dynamics is implemented using

the nonlinear system dynamics. This implementation of this H2 optimal estimator is referred to

as the extended H2 estimator. The proposed technique is tested on four cases corresponding to

long time-scale motion, fast time-scale motion, transition from hover to forward flight for VTOL

aircrafts and an entire flight cycle (from take-off to landing). Its results are compared against that

of the EKF in terms of the aforementioned performance metrics.

Last but not least, in this research, we propose a robust Kalman filtering framework for systems

with probabilistic uncertainty in system parameters. We consider two cases, namely discrete-time

systems, and continuous-time systems with discrete measurements. The uncertainty, characterized

by mean and variance of the states, is propagated using conditional expectations in a framework

based on polynomial chaos expansion. The results obtained using the proposed filter are compared

with existing robust filters in the literature. The proposed filter demonstrates better performance in

terms of root mean squared error and rate of convergence.
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1. INTRODUCTION TO THE PROBLEM

1.1 On demand UAVs

The UAVs Market Report 2019 from the corporation of UAVs Industry Insight projects the

global UAVs market to grow from 14 billion in 2018 to over 43 billion in 2024 at a CAGR (Com-

pound Annual Growth Rate) of 20.5 shown in Fig. 1.1. Further, in the military domain, applica-

tions of UAS have grown far beyond the normally expected scope of operations, as per the report

of Unmanned Systems Integrated Road ma p 2017-2042 [12].

Figure 1.1: Drone market size and forecast reprinted from [1]
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1.2 Problems on demanding various type of application of UAVs

Unmanned aerial vehicles (UAVs) have found applications in many diverse fields encompass-

ing commercial, civil, and military sectors [13]. Their popularity is increasing in applications such

as surveillance, search and rescue, aerial photography, mapping of geographical areas, and aerial

cargo delivery, to name just a few [14, 15]. To meet the requirements of such varied applications

[16], many types of UAVs have been developed [17].

LILIUM

Amazon

Airbus

Boeing

Figure 1.2: Developed hybrid drones in major companies reprinted from [2, 3, 4, 5]

Broadly speaking, there are two categories of UAVs based on configuration: rotary-wing and

fixed-wing. Each has its own sets of advantages and disadvantages, and either one is picked de-

pending on the operational aims of the user. Rotary wing UAVs can take-off and land vertically

and also hold a single position (hovering). Therefore, they need little more than a small space for

takeoff and landing. However, these UAVs cannot move fast and fly long distances as they are not

energy efficient. Fixed-wing UAVs are more power-efficient because of the lift-producing wing.

It can fly longer duration of time and with longer flight ranges as well. Despite these advantages,

fixed-wing UAVs are limited by their need for a runway to take-off and land. A hybrid UAV, on
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the other hand, intelligently combines the advantages of these two configurations without being

burdened by the limitations of either. Major companies are opting to design in this direction, as

shown in Fig. 1.2.

1.3 Problems on control algorithm

At present, the PID (Proportional-Integral-Derivative) control method is the most-used in the

market because it is far simpler than other controllers to set up. However, they may not work in

the presence of uncertainties and disturbances. In fact, wind is a major concern for small UAVs,

resulting in undesired trajectories of the vehicle as shown in Fig. 1.3. Therefore, designing a wind-

resistant controller is a challenging problem. Algorithms for tuning PID gains robustly are hence,

quite important for operating UAVs on an industrial scale.

Figure 1.3: UAV flight paths in different wind fields reprinted in [6]

1.4 Problems on estimation algorithm

Firstly, as unmanned air vehicles keep getting smaller and cheaper with MEMS sensors [18],

the need for efficient attitude estimation is exploding. Attitude estimation is a crucial component

of the flight control and navigation system [19, 20, 21, 22]. While we can recover states relating

3



to translational motion from sensor data, we cannot get the orientation of a vehicle from the same.

In that context, developing efficient and fast sensor-fusing non-linear algorithms to estimate the

attitude/orientation of these vehicles is challenging.

Secondly, every dynamic system is prone to modeling uncertainties. Although many researchers

try to achieve an accurate model as close to the real world, there are limitations. Moreover, every

measurement has uncertainties since sensors are riddled with noise. Thus, the problem of quanti-

fying the uncertainties and handling them with robustness is necessary to solve.
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2. MODELING AND ROBUST CONTROL OF HYBRID UAVS*

This chapter addresses modeling and control of a six-degree-of-freedom unmanned aerial ve-

hicle capable of vertical take-off and landing in the presence of wind disturbances. We design a 

hybrid vehicle that combines the benefits of both the fixed-wing and the rotary-wing UAVs. A non-

linear model for the hybrid vehicle is rapidly built, combining rigid body dynamics, aerodynamics 

of wing, and dynamics of the motor and propeller. Further, we design an H2 optimal controller 

to make the UAV robust to wind disturbances. We compare its results against that of PID and 

LQR-based control. Our proposed controller results in better performance in terms of root mean 

squared errors and time responses during two scenarios: hover and level-flight. This chapter is 

written based on paper [7].

2.1 Introduction

Researchers and tech companies are developing different UASs to serve various applications 

[16, 17]. We divide UAVs into two categories on the basis of their configurations: the rotary-wing 

UASs and the fixed-wing UASs. Rotary wing UAVs can take-off,land vertically, and hover at one 

position[23]. While they need a small space for takeoff and landing, these UAVs can neither move 

fast nor fly long distances since they are not energy e fficient. Compared to them, a fixed-wing of 

UAV is more power-efficient, hence it can fly for a longer duration of time and for further distance 

[24]. Despite these advantages, fixed-wing UAVs cannot take-off and land in small spaces because 

they need a runway to do so. Our proposed hybrid design aims to combine the advantages of the 

rotary-wing and the fixed-wing design.

There are several hybrid UAV concepts [25] such as a the dual system (combining fixed wing 

and rotary-wing), the tail-sitter, and the tilt-rotor. We classify these concepts according to their 

thrust direction. The simplest structure involves a dual system, which is a combination of two 

thrust directions: vertical and forward. In the tail sitter case, the heading of the vehicle is same

*Reprinted with permission from “Modeling and optimal control of hybrid uavs with wind disturbance,” by Sunsoo 
Kim, N. Das, and R. Bhattacharya, arXiv preprint arXiv:2006.11192, 2020.
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as that of the thrust direction. A tail sitter vehicle takes off vertically and then rotates pitch angle

of body for the level flight. Unlike the tail-sitter type, in a tilt rotor/wing type of vehicle, it is the

actuators that control the thrust direction. It takes-off, tilts the wing or rotor direction for level

flight [26, 27], and lands vertically. For our research, we focus on the dual system type of UAV

shown in Fig. 2.1. This is because the vehicle is mechanically simpler than the other hybrid UAVs

and has the capability for VTOL and level flight. This UAV can take-off and land in smaller areas

while having a large range of operation.

For the modeling of our hybrid UAV, we start with a conceptual design that satisfies our pre-

liminary requirements. First, we calculate the forces and moments coefficients on the wing using

the vortex lattice method (VLM). After this aerodynamic analysis, we move on to the propulsion

system. Here, we experimentally gather data on the thrust and torque from motor-propeller pair

and generate a lookup table for our final model. Next, we formulate the equations of motions based

on rigid body dynamics. We use the detailed 3D model of our vehicle which includes properties

like mass and inertia to complete our modeling. To perform simulations on this rigid body, we

import the CAD (Computer Aided Design) model and lookup tables generated during propulsion

analysis to SimScape [28]. We exploit the built-in functionality of SimScape to import 3D design

parameters and experimental data into the dynamic model of our UAV.

For UAV control, we mostly use the PID control method because of its ease of implemen-

tation [29, 30, 31]. However, tuning PID gains to achieve the desired performance is a fairly

challenging problem. Experimental methods involving trial and error are used to tune these gains

[32, 33]. Thus, when UAVs encounter multiple uncertain stimuli such as wind gust, actuator noise,

or just modeling errors, the controller may not work properly. Therefore, we need a more robust

controller. Researchers have developed adaptive control algorithms using model identification to

handle uncertainties in the inertia and motor failure scenario [34, 35]. They have also applied the

robust control methods to handle the uncertainty in the system parameters like mass, inertia [36],

and actuator characteristics [37]. However, there is little or no work on controller to reject wind

disturbances with H2 control. Therefore, in this research, we focus on a robust optimal control of
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our hybrid UAV, which can reject wind disturbance.

The chapter is organized as follows. In section §2.2, we present modeling of our proposed

hybrid UAV. Here, wing and thrust dynamics are presented in detail. This is followed by the

control algorithms, i.e. PID, Linear Quadratic Regulator (LQR), andH2 control in section §2.3. In

section §2.4, we introduce the simulation setup and show the results, followed by conclusions.

2.2 Modeling of the hybrid UAV

In this chapter, we consider both fixed and rotary wing dynamics for our hybrid UAV. We

choose the flying wing shape, which does not have a tail wing as shown in Fig. 2.1. In this

section, we are going to first discuss its design (its payload and flight characteristics), followed by

its non-linear dynamics. A linearized dynamics model is also developed at the end of this section.

2.2.1 Aircraft design

Aircraft design is based on the desired capabilities we specify for our vehicle. Our aim is to

develop a hybrid UAV which combines the advantages of both fixed wing and rotary wing type

UAVs. The desired capabilities of the vehicle are set for a multi-functional application and are

listed in Table 2.1. They encompass that which is required broadly for applications such as drone

deliveries, air surveillance and aerial photography, etc. We start with an initial configuration.

Table 2.1: Vehicle desired capabilities reprinted from [7]

Type of operation VTOL Growth weight 3.2 kg

Flight time 30 min Range 3 km

Level flight speed 22 m/s Flight control Auto Flight

This configuration is able to sustain level flight, desired range, and satisfy payload characteristics.

The final design of our UAV is selected after aerodynamic analysis of the initial configuration and

through successive iterations of analysis.
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Aerodynamic stability analysis of the initial hybrid UAV configuration is an important step. We

used a numerical method called Vortex lattice method (VLM). This is a university-level technique

used in computational fluid dynamics, which aids in the early stages of aircraft design. In this

work, AVL (Athena Vortex Lattice) [38, 39] and XFLR5 [40] softwares are used to implement

VLM. This numerical method models a wing, the primary lifting surface, as an unbounded thin

sheet of discrete vortices and calculates the induced drag and lift coefficients. It is also capable of

calculating the air profile around an arbitrary wing with its rudimentary configuration alone.

For our UAV, we create batch codes and check the stability of our preliminary designs, followed

by calculating forces and moments coefficients. One can see in Fig. 2.1 that our UAV does not

have a tail wing, for the ease of manufacturing. Hence, achieving longitudinal stability turns out

to be the most challenging aspect of our design iterations. To address this problem, we select the

re-flexed airfoil, Martin Hepperle (MH) 45 [41] and place the center of gravity (CG) in front of

the neutral point (NP). The optimal CG point is finally fixed. The corresponding level flight speed

characteristics are shown in Table 2.2.

For other payloads, we place the flight controller over the CG of the vehicle. The flight con-

troller consists of an IMU (Inertial Measurement Unit) with integrated 3 axes accelerometer and

gyroscope to measure accelerations and angular velocities. A telemetry radio for communication,

RC receivers for manual controls, and a 6-cell LIPO battery for the power supply are placed in

the vehicle. To ensure both hover flight and level flight, four propellers with a diameter of 9 inch

and one propeller with a diameter 12 inch are chosen, which are rotated by 1100 (kv) brush-less-

electric motors. In the following subsection, we are going to first develop the rigid-body dynamics

followed by modeling the wing dynamics and the thrust dynamics, which are then all combined to

generate the full non-linear model for our proposed UAV.

2.2.2 Rigid body dynamics modeling

We used Newton-Euler equations to develop the rigid body dynamics of the UAV. The 6-DoF

dynamic model is shown in Fig. 2.1 with the inertial frame (Ix, Iy, Iz) and body frame (Bx, By,

Bz) which follow the North-East-Down (NED) coordinate system. φ, θ, ψ are the Euler angles
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Table 2.2: Wing configuration reprinted from [8]

Wing span (b) 120 cm Wing area (S) 3360 cm2

Root chord (Cr) 28 cm Mean Aerodynamics Chord 21.2 cm

Tip chord (Ct) 15 cm XCG 15 cm

Sweep angle 25 ◦ Height of winglet 15 cm2

Figure 2.1: Hybrid UAV configuration reprinted from [7]

in the inertial frame, and p, q, r are angular velocities in the body frame about each axis. These 6

variables are the states for the rotational motion of the UAV. Similarly, x, y, z are the position in

the inertial frame, and u, v, w are velocities in the body frame about each axis. These 6 variables

are states for translational motion. Hence a total of 12 states of the vehicle dynamics are defined

as

x :=

(
x, y, z, u, v, w, φ, θ, ψ, p, q, r

)T
. (2.1)

2.2.3 Wing dynamics modeling

The VLM is used to generate the aerodynamic coefficient of the wing body. The vortex lattice

methods are based on solutions to Laplace’s Equation. Although VLM is a classical method in
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computational fluid dynamics, it can derive quite accurate results of aerodynamics for 3D Lifting

surface, especially, in subsonic flow which we are concerning for modeling [42]. The VLM cal-

culations are mainly processed with the boundary condition and Kutta-Joukowski theorem [43].

The wing is discretized to small panels as Fig. 2.2. Vortices are placed on each panel and the

corresponding strength Γi is obtained to satisfy the boundary condition theorem. Finally, forces

and moments are computed by the Kutta-Joukowski theorem, which are presented as

Li = ρV∞ × Γi∆bi (Lift of the panel i), (2.2a)

L =
N∑
i=1

Li (Lift of the Wing) (2.2b)

Di = ρV∞ × Γi∆bi (Drag of the panel i), (2.2c)

D =
N∑
i=1

Di (Drag of the Wing) (2.2d)

where, ρ is the air density, V∞ is the free stream velocity, Γi is the vortex strength in panel i, and b is

the length of the vortex segment along the quarter-chord line. The AVL software is used to obtain

Figure 2.2: The vortex lattice method panel reprinted from [7]

the aerodynamic variables of the wing. The result sets, which depend on seven input variables,

are made up of a look-up table. The seven input factors are as follows: angle of attack, side slip

angle, roll/pitch/yaw rate, elevator, and aileron deflection angle. One of the aerodynamic results

from AVL is shown in Fig. 2.3. The resulting coefficients are then used to calculate the forces and
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moments for each body axis using

Fx = q∞SCFy , Fy = q∞SCFy , Fz = q∞SCFz , (2.3a)

Mx = q∞SCMx , My = q∞SCMy , Mz = q∞SCMz , (2.3b)

where q∞the dynamic pressure is q∞ = 1
2
ρV 2
∞.
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Figure 2.3: Aerodynamic coefficients: angle of attack varies from -5 to 8 ◦ reprinted from [7].

2.2.4 Thrust dynamic modeling

Since the hybrid UAV is intended to perform level flights, free stream velocity should be con-

sidered when the thrust and torque of propellers are derived. Conventionally, DC motor parameter

identification and blade element theory [44] are applied to get dynamic model. However, for more

accurate modeling, we use the experimental method to derive brushless DC motor and propellers

performance data, wind tunel test data [45], and generate lookup tables. The result of experiment

on brushless DC motor with varying pulse width modulation (PWM) signal input is shown in Fig.

2.4.

The results of thrust and torque from the propeller 12 × 6 SF (Slow Flight) that depend on
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Figure 2.4: The motor RPM result from the experiment with motor reprinted from [7]

wind velocity acting on the wing (free stream velocity) and RPM of motor are shown in Fig 2.5b.
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(b) Torque values according to air speed and pro-
peller RPM reprinted from [7].

Figure 2.5: The 12 × 6 propeller thrust and torque from the propeller performance data reprinted
from [7]

2.2.5 Final non-linear model

Our hybrid vehicle is developed as a 3D model using CAD. This 3D model which include mass,

inertia, and coordinate information is imported to Simscape software in Simulink [28]. The final

non-linear 3D model is constructed by combining wing, motor, and propeller dynamics which are
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previously discussed as shown in Fig. 2.6. This is the rapid modeling representing the equations

of motion of UAVs.

Figure 2.6: 6-DOF non-linear simulation of the hybrid UAV reprinted from [7]

2.2.6 Linearized model

We linearize the non-linear model of our hybrid UAV. Our aim is to design the controller for

the attitude control during level flight and during hovering. The following linear model is used

in designing a H2 optimal control to make the system robust to wind gusts. Since we are only

interested in attitude control, we consider the corresponding state space [θ u w q]T for level flight

(Longitudinal motion) and [φ θ ψ p q r]T for hover flight. We calculate the linearized dynamics

separately for level flight and hovering. For level flight, trim states are:

p = q = r = 0, V∞ = 22.49m/s, (2.4)

and for hovering, trim states are

p = q = r = 0, u = v = w = 0. (2.5)
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The linearized error dynamics about the trim points are modeled as

ẋ(t) = Ax(t) +Buu(t) +Bww(t), (2.6a)

y(t) = Cx(t), (2.6b)

with states x := (δθ δu δw δq)T for level flight and x := (δφ δθ δψ δp δq δr)T for hovering, which

are perturbations on states about trim point. The system matrices for level flight are

A =



0 0 0 1

0 0.0002 −0.0235 −0.1360

0 0.0011 −0.1793 20.4845

0 0.0135 −2.1745 −3.2657


, Bu =



0

0.0009

−0.0407

−0.6544


,

Bw =

[
0 0 0 1

]T
, C = I4×4, (2.7)

where u(t) is elevon deflection (δe). And for hover flight

A =

03×3 I3×3

03×3 03×3

 , Bu =



03×4

−153.5 153.5 153.5 −153.5

36.9 −37.1 36.9 −37.1

−1.8 −1.8 1.8 1.8


,

Bw =

[
0 0 0 1 1 1

]T
, C = I6×6, (2.8)

where u(t) is four motor input (PWMi, i = 1 ∼ 4).

2.3 Control

In this chapter, we present a H2 optimal controller for our proposed novel hybrid UAV. Our

hybrid vehicle harnesses the advantages of both fixed wing and rotor wing UAVs. We consider the
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following linear system which models the error dynamics about the trim points

ẋ(t) = Ax(t) +Bww(t) +Buu(t), (2.9a)

z(t) = Czx(t) +Duu(t), (2.9b)

y(t) = Cyx(t), (2.9c)

where x ∈ Rnx , y ∈ Rny , z ∈ Rnz are the state vector, the measured output vector, and the output

vector of interest, respectively. Variables w ∈ Rnw and u ∈ Rnu are the disturbances and the

control vectors, respectively.

We are interested in designing a full state feedbackH2 optimal controller for the system in Eq.

2.9, i.e.,

u(t) = Kx(t), (2.10)

such that the closed loop system is stable and the effect of the disturbance is attenuated to a desired

level. We perform a comparative study of the performance of the H2 optimal control with that of

the conventional PID control and the LQR, when applied to our system. H2 control is expected to

achieve better control performance in presence of disturbances since it incorporates the disturbance

termBw inside the optimization process. Now, we briefly discuss the three controllers.

2.3.1 PID controller

PID (Proportional-Integral-derivative) control is a model-free control algorithm. A PID con-

troller calculates an error value as the difference between the desired set point and measured point

and then applies a correction based on a proportional, integral, and derivative terms as

u(t) = KP e(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt
(2.11)
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Most UAV systems currently use the PID controller for attitude control [29]. Feedback measure-

ment or estimated Euler angles and angular velocities [46] are compared with the desired angle

and angular velocity, respectively. The PID control generates an input value to eliminate the error.

PID control framework for the attitude control is shown in Fig. 2.7. For PID gain tuning, one can

refer to [32, 33] for a more detailed analysis.

Figure 2.7: Attitude control structure of UAVs using PID control reprinted from [7]

2.3.2 LQR optimal control

The linear quadratic regulator (LQR) is a method used in determining the state feedback con-

troller u = KLQRx. This controller is designed to minimize the cost function, J , defined as

J =

∫ ∞
0

(xTQx+ uTRu)dt (2.12)

where Q ≥ 0 and R > 0 are symmetric weighting matrices. These matrices are the main design

parameters for defining the the control objective so that the state error and control energy is min-

imized. This cost function is solved with MATLAB function lqr(). The LQR problem can be

converted to the LMI (Linear Matrix Inequality) form as given by the following theorem.

Theorem 1 ([47]). The following two statements are equivalent:

1. A solutionKLQR to the LQR controller exists.

2. ∃ a matrix Y , a symmetric matrixW , and a symmetric matrix Y = P−1 such that:
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AY + Y AT +W TBT
u +BuW + Y QY +W TRW < 0 (2.13)

The optimal LQR control gain, KLQR, is determined by solving the following optimization prob-

lem.

min
P ,W ,Y

trace (P ) subject to (2.13).

The gainKLQR is recovered byKLQR = WY −1.

This optimal gain minimizes the cost function (2.12). To solve this optimized solution, we used

CVX [48] and MATLAB tool box [49].

2.3.3 H2 optimal control

With the linear system (2.9) and control law (2.10), theH2 control closed-loop has the follow-

ing form,

ẋ(t) = (A+BuK)x(t) +Bzw(t), (2.14a)

z(t) = (Cz +DuK)x(t), (2.14b)

Therefore, the influence of the disturbance w on the output z is determined in frequency domain

as z = Gzw(s)w(s) whereGzw(s) is the transfer function from the disturbancew to the output z

given by

Gzw(s) = Cz(Cz +DuK)[sI − (A+BuK)]−1Bw. (2.15)

The problem of H2 optimal control design is then, given a system (2.15) and a positive scalar

γ, find a matrixK = KH2 such that

‖Gzw(s)‖2 < γ. (2.16)
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where ‖G(.)‖2 is the corresponding 2-norm of the system. The formulation to obtainKH2 is given

by the following theorem.

Theorem 2 ([47, 50, 51]). The following two statements are equivalent:

1. A solutionKH2 to theH2 controller exists.

2. ∃ a matrixW , a symmetric matrix Z, and a symmetric matrixX such that:

AX +BuW + (AX +BuW )T +BwB
T
w < 0−Z CzX +DzW

∗ −X

 < 0

trace(Z) < γ2 (2.17)

The minimal attenuation level γ is determined by solving the following optimization problem

min
W ,X,Z

γ subject to (2.17).

TheH2 optimal control gain is recovered byKH2 = WX−1.

This optimal gain ensures that the closed-loop system is asymptotically stable and attenuates

the disturbance. To solve this optimization problem, we use CVX [48] and Matlab tool box [49].

LQR andH2 control framework for the attitude control is shown in Fig. 2.8.

Figure 2.8: Attitude control structure of UAVs using LQR andH2 controller reprinted from [7]

18



2.4 Results

2.4.1 Simulation set up

The proposed H2 optimal control is applied to attitude control of the linearized dynamics of

our UAV as modeled by Eq. 2.6. We compare its performance with the PID controller and LQR.

The comparison is done with respect to the control input, system response, and the amount of wind

disturbance rejection, in a Simulink based simulation environment, as shown in Fig. 2.10. In this

simulation, the Dryden wind turbulence model was used to generate the wind disturbance. The

generated wind disturbance is 10 m/s from north. Angular velocity components of the wind along

X and Y axes are shown in Fig. 2.9.
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Figure 2.9: Angular velocity component of wind disturbance about the X (Left), Y (Middle) and,
Z (Right) axis generated by the Dryden wind turbulence model in the Simulink software reprinted
from [7]

The final simulation environment which includes the UAV system, controller, and disturbance

model is shown in Fig. 2.10.

We simulated two cases: Case I – Level flight (Longitudinal motion) which considers param-

eters in Eq. (2.7) for level flight trim states in Eq. (2.4). Input of the system is deflection angle of

elevon surface and measurement is angular velocity q. Initial deviation of angular velocity about

Y axis in body frame p, is 0.5 rad/sec. Case II– Hover flight which consider parameters in Eq.

(2.8) for hover at trim states in Eq. (2.5). Input to the system is the PWM signals of four motors

and, measurement are all state, Euler angle and angular velocity. Initial deviation of pitch angle θ,

is 10◦. LQR (2.13), PID (2.11), and H2 (2.17) controllers are designed with these two linearized

systems and then tested in the non-linear model in Fig 2.10.
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Figure 2.10: 6-DOF non-linear simulation of the hybrid UAV with disturbance reprinted from [7]

2.4.2 Simulation results

We examine the performance of theH2 control by comparing it with that of the PID controller

and LQR in terms of root mean squared (RMS) error and time response.

Case I: Level flight – The simulation results for the proposed H2 control, the PID, and the

LQR are shown in Fig. 2.11 and TABLE 2.3. The proposed H2 control has the least RMS error

than the other controllers, as shown in TABLE 2.3. The time response and overshoot ofH2 control

is noted to be shorter than one of the PID controller and the LQR.

Table 2.3: RMS error for level flight: case I reprinted from [7]

Algorithm LQR PID H2

Anular rate, q (rad/sec) 0.0573 0.0859 0.0457

Case II: Hover flight – The simulation results for the proposedH2 control, PID, and the LQR

are shown in Fig.2.12, 2.13 and TABLE 2.4. The proposed H2 control has the least RMS error

compared to the other controllers, as shown in TABLE 2.4, especially in yaw angle (ψ). The time

response of proposed H2 control is comparable with one from the PID controller and LQR. Here,

note thatH2 is implicitly a better algorithm to deal with disturbance since it include disturbance as

a design factor.
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Figure 2.11: Error comparison of LQR, PID, and H2 control with wind disturbance in level flight
reprinted from [7]

Table 2.4: RMS error for the hover flight: case II reprinted from [7]

Algorithm Roll angle (◦) Pitch angle (◦) Yaw angle (◦)

LQR 0.8964 1.9441 3.0217

PID 0.0349 1.3169 5.7745

H2 0.1878 1.5935 0.4370

2.5 Conclusions of chapter

This chapter presents an approach to design a vertical take-off and landing hybrid UAV. We

elaborately describe its modeling and controller design that will make it robust to wind distur-

bances. We discuss methods that rapidly implements the modeling of our proposed hybrid UAV

satisfying the requirements with sufficient accuracy. We also propose a robust controller based on

H2 optimal theory for our hybrid UAV. This controller achieves better performance while rejecting

wind gusts compared to that of the PID and the LQR controller. For the future work, discrete time

21



0 2 4 6 8 10 12 14 16 18 20

Time (s)

-4

-2

0

2

4

A
n
g
le

 (
d
e
g
re

e
)

Phi

LQR

PID

H
2

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-5

0

5

10

A
n
g
le

 (
d
e
g
re

e
)

Theta

LQR

PID

H
2

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-5

0

5

10

A
n
g
le

 (
d
e
g
re

e
)

Psi

LQR

PID

H
2

Figure 2.12: Error comparison of LQR, PID, andH2 control with wind disturbance in hover flight
reprinted from [7]

system of UAV will be developed and tested in physical UAV model.
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Figure 2.13: Input comparison of LQR, PID, andH2 control with wind disturbance in hover flight
reprinted from [7]
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3. H2 OPTIMIZED PID CONTROL OF QUAD-COPTER PLATFORM

WITH WIND DISTURBANCE*

Proportional-Integral-Derivative (PID) scheme is the most commonly used algorithm for de-

signing the controllers for unmanned aerial vehicles (UAVs). However, tuning PID gains is a non 

trivial task. A number of methods have been developed for tuning the PID gains for UAV systems. 

However, these methods do not handle wind disturbances, which is a major concern for small 

UAVs. In this chapter, we propose a new method for determining optimized PID gains in the H2 

optimal control framework, which achieves improved wind disturbance rejection. The proposed 

method compares the classical PID control law with the H2 optimal controller to determine the H2 

optimal PID gains, and involves solving a convex optimization problem. The proposed controller 

is tested in two scenarios, namely, vertical velocity control, and vertical position control. The re-

sults are compared with the existing LQR based PID tuning method. This chapter is written based 

on paper [8].

3.1 Introduction

PID control is still the most popular algorithm among these algorithms in the industry because 

of its ease of implementation. Therefore, a number of algorithms have been developed to control 

for the quadcopters [52]. However, tuning PID gains in order to achieve the desired performance is 

a fairly challenging problem. In general, experimental methods involving trial and error are used 

to tune these gains [32, 33].

There exist several methods to tune PID gains in quadcopters to achieve better performance in 

stability, transient response, and steady-state accuracy. For example, the classic Ziegler-Nichols 

method[53] was used in [54]. LQR control can also be implemented to obtain optimized PID gains 

by solving the Riccati equation [55]. LQR-based tuning methods for quadcopters are discussed
*Reprinted with permission from “H2 optimized pid control of quad-copter platform with wind disturbance” by 

Sunsoo Kim, V. Deshpande, and R. Bhattacharya, arXiv preprint arXiv:2003.13801, 2020. And this paper is accepted 
in 2020 ICUAS conference.
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further in [56, 57]. In [23], PID gains are determined using the direct synthesis method [58], which

is also an optimization-based method with constant variation in time rate. Robust PID control

for quadcopters is discussed in [59], which analyzes the sensitivity to achieve robustness from

uncertainties like time delays incurred in actuation systems. However, there is little or no work

on algorithmically tuning PID gains to reject wind disturbances experienced in real-time flight. In

this chapter, we propose an H2 optimal PID controller that can reject the wind disturbance, and

compare the performance of the proposed controller with the existing LQR based tuning method

[56].

The rest of the chapter is organized as follows. We first present the details of the quadcopter

model in Section 3.2 followed by a brief discussion on the conventionalH2 optimal control frame-

work in Section 3.3. In Section 3.4, we discuss the proposed H2-optimal method for tuning the

PID gains. Simulation results obtained using the proposed controller are presented and compared

with the LQR-based controller in Section 3.5. Concluding remarks and future research directions

are provided in Section 3.6.

3.2 Quadcopter models

In this section, we discuss quadcopter configuration and the mathematical model relevant to this

work. Detailed mathematical models for a quadcopter can be found in the references mentioned in

Section 3.1.

For the purpose of this paper, we adopt the quadcopter model linearized about the hover state

discussed in [60]. The lateral, longitudinal, directional, and vertical controllers can be decoupled

in this model as shown in Fig. 3.2. The controller designed using this linearized model performs

well in the nonlinear model. We compare the results of the proposed controller with the one based

on LQR from [56] which also uses the same dynamics model.

3.2.1 Configuration

A quadcopter configuration is presented in Fig. 3.1, which has four motors and propellers that

generate force and torque at each position. Here, Ω is the rotor angular velocity used to control the
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vehicle.

Figure 3.1: The quadcopter configuration and frames of reference reprinted from [8]

3.2.2 Dynamics

Newton-Euler equations are used for representing the rigid body dynamics of the quadcopter.

The 6-DoF dynamics model is shown in Fig. 3.1 with the Inertial frame (Ix, Iy, Iz) and Body

frame (Bx, By, Bz). φ, θ, ψ are Euler angles in the inertial frame, and p, q, r are angular velocities

in the body frame about each axis. These 6 variables are states for the rotational motion. Similarly,

x, y, z are the position coordinates in the inertial frame, and u, v, w are velocities in the body frame

about each axis. These 6 variables are states for translational motion.

For the brevity of discussion, equations of motion for the quadcopter are omitted from this

paper. However, we would like to note that the vehicle can be controlled with four inputs, Ui,
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Figure 3.2: The quadcopter control system: The complex nonlinear coupled model are decomposed
into the four independent control subsystems with input combinations Ui, i = 1, 2, 3, 4 reprinted
from [8].

which are combinations of four rotor angular velocities, Ωi, given by

Altitude control: U1 = b (Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2) (3.1a)

Roll control: U2 = b (Ω2
2 − Ω4

2) (3.1b)

Pitch control: U3 = b (Ω1
2 − Ω3

2) (3.1c)

Yaw control: U4 = d (Ω1
2 − Ω2

2 + Ω3
2 − Ω4

2) (3.1d)

with thrust coefficient b, and drag coefficient d.

Therefore, the complex nonlinear coupled model is decomposed into four control subsystems

with input combinations (3.1), as illustrated in Fig. 3.2. This allows us to consider each subsystem

as a SISO (Single Input Single Output) system instead of a MIMO (Multi Input Multi Output)

system to control the vehicle. The control variables Ui are calculated independently from each

of the four control subsystems and fed into the mixer, which then calculates the individual rotor

angular velocities Ωi. We focus on the altitude control subsystem in this chapter.
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3.2.3 Linearized model

We will use the linearized model to design the controller for the altitude control in hover state.

The following equations are considered for the vertical motion of the quadcopter:

ż = wv (3.2a)

ẇv = −2 Ω0
b

m
(Ω1 + Ω3 − Ω2 − Ω4) + w (3.2b)

Ω̇i = −10 Ωi + 7u, i = 1, 2, 3, 4 (3.2c)

where z is the altitude, wv is vertical speed, w is disturbance, b is the thrust coefficient (=1.5108×

10−5 kgm), m is mass (=1.07 kg), u is motor input as PPM (Pulse Position Modulation) signal.

The numerical coefficients of Ωi and u in the above equations follow from the linearized transfer

function of motor at hover state. The set of equations (3.2) can represented in the state space form

as

ẋ(t) = Ax(t) +Buu(t) +Bww(t) (3.3a)

y(t) = Cx(t) (3.3b)

with states as

x :=

(
z, wv, Ω1, Ω2, Ω3, Ω4

)T
(3.4)
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and

A =



0 1 0 0 0 0

0 0 −0.0106 0.0106 −0.0106 0.0106

0 0 −10 0 0 0

0 0 0 −10 0 0

0 0 0 0 −10 0

0 0 0 0 0 −10


, Bu =



0

0

7

−7

7

−7


, Bw =



0

1

0

0

0

0



T

,

C =

1 0 0 0 0 0

0 1 0 0 0 0

 .
We consider the system given by (3.3) to design the controller using LQR and H2 optimal

control theory, which is discussed next.

3.3 LQR andH2 optimal control

In this section, we present very briefly, the necessary background forH2 optimal control theory

for linear systems. Additionally, for comparison, LQR theory is also presented.

3.3.1 Linear dynamic system

We consider the following linear system,

ẋ(t) = Ax(t) +Bww(t) +Buu(t) (3.5a)

z(t) = Czx(t) +Duu(t) (3.5b)

y(t) = Cyx(t) (3.5c)

where x ∈ Rn, y ∈ Rl, z ∈ Rm are respectively the state vector, the measured output vector,

and the output vector of interest respectively. Variables w ∈ Rp and u ∈ Rr are the disturbance

and the control vectors, respectively.

We are interested in designing a full state feedback controller for the system given by (3.5),
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i.e.,

u(t) = Kx(t), (3.6)

such that the closed loop system is stable and the effect of the disturbance is attenuated to the

desired level.

3.3.2 LQR optimal control

The linear quadratic regulator (LQR) is a method used to determine the state feedback gain

KLQR. This controller is designed to minimize the cost function, J , defined as

J =

∫ ∞
0

(xTQx+ uTRu)dt (3.7)

where Q ≥ 0 and R > 0 are symmetric weighting matrices. These matrices are main design

parameters for defining the the control objective such that the state error and control energy is

minimized. The LQR problem can be converted to the LMI (Linear Matrix Inequality) form as

given by the following theorem.

Theorem 1 (LQR Optimal Control) [47] : The following two statements are equivalent:

1. A solutionKLQR to the LQR controller exists.

2. ∃ a matrix Y , a symmetric matrixW , and a symmetric matrix Y = P−1 such that:

AY + Y AT +W TBT
u +BuW + Y QY +W TRW < 0 (3.8)

The optimal LQR control gain, KLQR, is determined by solving the following optimization prob-

lem.

min
P ,W ,Y

trace (P ) subject to (3.8).
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The gain KLQR is recovered by KLQR = WY −1. This optimal gain minimizes the cost function

(3.7).

3.3.3 H2 optimal control

With the linear system (2.9) and control law (3.6), theH2 control closed-loop has the following

form,

ẋ(t) = (A+BuK)x(t) +Bzw(t), (3.9a)

z(t) = (Cz +DuK)x(t), (3.9b)

Therefore, the influence of the disturbance w on the output z is determined in frequency domain

as

z = Gzw(s)w(s) (3.10)

whereGzw(s) is the transfer function from the disturbance w to the output z given by

Gzw(s) = Cz(Cz +DuK)[sI − (A+BuK)]−1Bw. (3.11)

The problem of H2 optimal control design is then, given a system (3.11) and a positive scalar

γ, find a matrixKH2 such that

‖Gzw(s)‖2 < γ. (3.12)

The formulation to obtainKH2 is given by the following theorem.

Theorem 2 (H2 Optimal Control) [47, 50] : The following two statements are equivalent:

1. A solutionKH2 to theH2 controller exists.

2. ∃ a matrixW , a symmetric matrix Z, and a symmetric matrixX such that:
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AX +BuW + (AX +BuW )T +BwB
T
w < 0−Z CzX +DzW

∗ −X

 < 0

trace(Z) < γ2 (3.13)

The minimal attenuation level γ is determined by solving the following optimization problem

min
W ,X,Z

γ subject to (3.13).

The H2 optimal control gain is recovered by KH2 = WX−1. This optimal gain ensures that the

closed-loop system is asymptotically stable and attenuates the disturbance.

3.4 H2 PID tuning method

In this section, we present the proposed PID tuning method based on H2 framework, which is

an extension of the work in [55].

The control input u from a PID controller is given by

u = −KP y −KI

∫ t

0

y dt−KD ẏ (3.14)

whereKP , KI andKD are proportional, integral, and derivative feedback gains respectively. Elim-

inating y using linear system equations (2.9) yields the extended form of the control law

u = −KP Cx−KI

∫ t

0

y dt−KD C(Ax+Buu+Bww)

= −(KPC +KDCA)x−KDCBuu−KDCBww −KI

∫ t

0

y dt

= −(I +KDCB)−1(KPC +KDCA) x

− (I +KDCB)−1KDCBw w

− (I +KDCB)−1KI

∫ t

0

y dt (3.15)
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We can rewrite this equation as

u = −Mx−Nw −L
∫ t

0

y dt (3.16)

where

M = (I +KDCB)−1(KPC +KDCA) (3.17a)

N = (I +KDCB)−1KDCBw (3.17b)

L = (I +KDCB)−1KI . (3.17c)

Note that the PID control law depends on signals from states (x), disturbance (w), and integration

of the measurements (
∫ t

0
y dt). Also, contribution of the disturbance signal w to the control input

u is affected by the gain KD in PID control.

Now, we can compare the H2 control law u = KH2x with the PID control law (3.16) to get

the PID gains. However, there are two more terms in the control law which are dependent on w

and
∫ t

0
y dt. We can disregard the term associated with w for the purpose of comparison, because

w is already attenuated in H2 control framework. To handle the term associated with
∫ t

0
y dt, we

define a new state, ζ, as

ζ :=

∫ t

0

y dt (3.18a)

ζ̇ = y = Cx. (3.18b)

We define the augmented state vector as x̄ := [x ζ]T , and the augmented system is represented

in the state space form as

˙̄x(t) = Āx(t) + B̄ww(t) + B̄uu(t) (3.19)
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i.e.,

ẋ
ζ̇

 =

A 0

C 0


x
ζ

+

Bu

0

u+

Bw

0

w
Now, we can derive an optimal control law withH2 control theory for the augmented system as

ū = −K̄H2x̄ = −[K1 K2]

x
ζ

 (3.20)

Let us rewrite the PID control law (3.16) for the comparison as

u = −Mx−Lζ = −[M L]

x
ζ

 . (3.21)

Now, we can directly compare the two equations (3.20), (3.21) to get

M = K1 and L = K2. (3.22)

Once we knowM and L, equations (3.17a) and (3.17c) can be solved for KP , KD, and KI as

[KP KD] = M

 C

CA−CBM


−1

(3.23a)

KI = (I +KDCB)L (3.23b)

The PID gains obtained by (3.23) result in theH2 optimal PID controller.
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3.5 Results

3.5.1 Simulation set up

The proposedH2 optimal PID controller is applied to the vertical altitude system (3.2), and its

performance is compared with the LQR based PID controller. The comparison is done in terms of

control input, time response, and the amount of wind disturbance rejection, in a MATLAB based

simulation environment, as shown in Fig. 3.3. The Dryden wind turbulence model was used to

generate the wind disturbance in the Simulink software. The generated wind disturbance is 5 m/s

from north and component of z direction shown in Fig. 3.4.

Figure 3.3: Simulation structure for vertical altitude control reprinted from [8]
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Figure 3.4: Wind disturbance along the Z axis generated by the Dryden wind turbulence model in
the Simulink software reprinted from [8]
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3.5.2 Simulation results

As discussed below, we consider two cases to analyze the performance of the proposed H2

optimal PID control algorithm for the vertical altitude system presented in §3.2.3.

Case I: Vertical velocity control – In this case, we consider the vertical velocity control prob-

lem with the wind disturbance. To solve the control problem, we’ve done minimal realization of

the linearized model (3.2) with the input as PPM signal and the output as vertical velocity. The

transfer function from input to output for this case is given by

Gvelocity =
−0.2968

s(s+ 10)
. (3.24)

This transfer function is represented in the state space form with disturbance as

ẋ1

ẋ2

 =

−10 0

1 0


x1

x2

+

1

0

u+

 0

1/0.2968

w (3.25a)

y =

[
0 −0.2968

]
x. (3.25b)

Here, scaled disturbance matrix is multiplied with w, since state x2 is the scaled velocity in the

minimal realization of the system.

The augmented system of (3.25) follows from (3.19) as


ẋ1

ẋ2

ζ̇

 =


−10 0 0

1 0 0

0 −1
0.2968

0



x1

x2

ζ

+


1

0

0

u+


0

1
0.2968

0

w (3.26)

And, we set the performance output vector as

z =

[
0 0 100

]
x+ u (3.27)
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We can determine the H2 optimal solution for the augmented system (3.26) from (3.13) with

input weight Wu = 0.01. Herein, Wu is used to reflect the restrictions on the actuator signals.

And, we obtain the optimized PID gains with (3.22), (3.23) as

H2: KP = −1170.8, KI = −1, KD = −115.1. (3.28)

Note that, as expected, the large magnitude ofKD gain is obtained to counter the wind disturbance.

For the LQR tuned PID, we use Q = diag ([0 10000 10000]) and R = 1, and it results in the

following PID gains

LQR: KP = −354.1, KI = −1, KD = −25.6. (3.29)
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Figure 3.5: Vertical velocity control reprinted from [8]

The simulation results are shown in Fig. 3.5a. and Fig. 3.5b. As shown in Fig. 3.5a, we

observe that the H2 tuned PID controller demonstrates better wind disturbance rejection than the

LQR tuned PID controller with similar response time.

When we consider energy consumption, as shown in Fig. 3.5b., we observe that the H2 tuned
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PID controller requires higher variance in control input to count wind disturbance. However, H2

method use slightly higher input energy than the LQR tuned PID controller when we check its

mean in Table 3.1.

Table 3.1: Comparison of vertical velocity control input reprinted from [8]

Tuning algorithm Mean (PPM) Covariance (PPM)

H2-PID 9.3751 294.5

LQR-PID 9.3909 267.9
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Case II: Vertical position control – In this case, we consider the vertical position control

problem with the wind disturbance. Similar to the previous case, we get the transfer function:

Gposition =
−0.2968

s2(s+ 10)
. (3.30)

This transfer function is represented in the state space form with disturbance as


ẋ1

ẋ2

ẋ3

 =


−10 0 0

1 0 0

0 1 0



x1

x2

x3

+


1

0

0

u+


0

0

1/0.2968

w (3.31a)

y =

[
0 0 −0.2968

]
x. (3.31b)

Here, scaled disturbance matrix is multiplied with w, since state x2 is the scaled velocity in the

minimal realization of the system.

The augmented system of (3.31) follows from (3.19) as



ẋ1

ẋ2

ẋ2

ζ̇


=



−10 0 0 0

1 0 0 0

0 1 0

0 0 −1
0.2968

0





x1

x2

x3

ζ


+



1

0

0

0


u+



0

0

1
0.2968

0


w (3.32)

And, we set the performance output vector z is defined as:

z =

[
0 0 100 1000

]
x+ u. (3.33)

We can determine theH2 optimal solution for the augmented system (3.32) from (2.17) with input

weight Wu = 0.1. Herein, Wu is used to reflect the restrictions on the actuator signals.
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The PID gains obtained usingH2 optimal tuning are:

H2: KP = −1370, KI = −1, KD = −881.7. (3.34)

For the LQR case, we use Q = diag([0 0 1000 10000]) and R = 1, and we obtain the following

PID gains :

LQR: KP = −192.6, KI = −1, KD = −128.7. (3.35)

The simulation results are shown in Fig. 3.6a. and Fig. 3.6b. Similar to the previous case, we

observe that H2 tuned PID controller rejects wind disturbance better than the LQR tuned PID

controller, with similar response time, as shown in Fig. 3.6a. Again, H2 tuned PID controller

requires slightly higher control energy than the LQR tuned PID controller as shown in Table 3.2.
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Figure 3.6: Vertical position control reprinted from [8]
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Table 3.2: Comparison of vertical position control input reprinted from [8]

Tuning algorithm Mean (PPM) Covariance (PPM)

H2-PID 10.4889 513.3045

LQR-PID 10.4681 317.9473

3.6 Conclusions of chapter

This chapter presented a new optimized PID control algorithm for quadcopter systems to

counter wind disturbance, based on H2 optimal control theory. We showed that the proposed

H2 optimal PID controller rejects the wind disturbance better than the existing LQR tuned PID

controller. Since all UAVs are affected by wind disturbance in the real world flight environments,

the ability of the proposed tuning method to reject these disturbances makes it very attractive for

designing PID controllers. This work considered models in the continuous time domain and results

were obtained solely through simulation. Our future work will address discrete time systems and

validation of the proposed controllers with experimental results.
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4. EXTENDEDH2 FILTERING FOR ATTITUDE ESTIMATION IN LOW POWER

MICROPROCESSORS*

Accurate state estimation using low-cost MEMS (Micro Electro- Mechanical Systems) sen-

sors present on Commercial-off-the-shelf (COTS) drones is a challenging problem. Most UAV

systems use a combination of a gyroscope, an accelerometer, and a magnetometer to obtain mea-

surements and estimate attitude. Under this paradigm of sensor fusion, the Extended Kalman Filter

(EKF) is the most popular algorithm for attitude estimation in UAVs. In this work, we propose a 

novel estimation technique called extended H2 filter that can overcome the limitations of the EKF, 

specifically with respect to computational speed, memory usage, and root mean squared error. We 

formulate our attitude-estimation algorithm using two distinct coordinate representations for the 

vehicle’s orientation: Euler angles and unit quaternions, each with its own sets of benefits and 

challenges. The H2 optimal filter gain is designed offline about a nominal operating point by solv-

ing a convex optimization problem, and the filter dynamics i s implemented using t he nonlinear 

system dynamics. This implementation of this H2 optimal estimator is referred as the extended H2 

estimator. The proposed technique is tested on four cases corresponding to long time-scale motion, 

fast time-scale motion, transition from hover to forward flight for VTOL a ircrafts, and an entire 

flight cycle (from take-off to landing). Its results are compared against that of the EKF in terms of 

the aforementioned performance metrics. This chapter is written based on papers [9, 10].

4.1 Introduction

In recent years, unmanned aerial vehicles (UAVs) have found applications in many diverse 

fields encompassing commercial, civil, and military sectors [15, 61, 1]. Moreover, as the sizes and 

costs associated with building UAVs keeps decreasing, the need for computationally efficient flight 

controllers is growing rapidly [62]. Attitude estimation algorithms that leverage the characteristics
*Reprinted with permission from “Nonlinear attitude estimation for small uavs with low power microprocessors” 

by Sunsoo Kim, V. Tadiparthi, and R. Bhattacharya, 2020 American Control Conference, pp. 2593– 2598, 2020.

Reprinted with permission from “Extended h2 filtering for attitude estimation in low power microprocessors” by 
Sunsoo Kim, V. Tadiparthi, and R. Bhattacharya, arXiv preprint arXiv:2006.14385, 2020.
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of the various low-cost sensors on board is key to developing such powerful control systems [19,

20, 21, 22].

While translational state information can be recovered easily from sensor data, states pertain-

ing to orientation cannot be directly obtained from the same. In that context, sensor fusing algo-

rithms are typically employed to estimate the attitude/orientation of these vehicles. In the recent

past, MEMS (Micro-Electro Mechanical Systems) sensors like MARG (Magnetic, Angular Rate,

and Gravity) sensor and IMU(Inertial Measurement Unit) have become increasingly common be-

cause of their low costs and small sizes [63]. A three-axis gyroscope, a three-axis accelerometer,

and a three axis magnetometer are used to measure the angular rate of the vehicle, the acceleration

of the vehicle, and the magnetic force vector respectively. It is important to note that measurements

from MEMS sensor are corrupted by noise and bias. Additionally, rapid movements and magnetic

disturbances can temporarily influence the attitude calculations [64, 65, 66].

Attitude can be computed independently from each of the sensors present in MARG and IMU

[67, 68]. Integrating the angular rate obtained from gyroscope outputs can help determine the at-

titude of the vehicle. However, due to the presence of noise and bias in gyroscope measurements,

errors in estimation build up over long periods of time [18]. However, passing accelerometer mea-

surements through a low pass filter can improve the tilt angle estimated by comparing the measured

gravitational acceleration against that in the inertial frame. Although this computation is quite ac-

curate, we cannot determine the heading of the vehicle since the gravity vector is aligned to the

z-axis of the inertial frame [69]. In aircraft navigation systems, a magnetometer measuring the

magnetic field can be used to estimate the orientation as well, but is susceptible to magnetic inter-

ference [70]. Thus, a filtering framework that incorporates sensor fusion is essential to obtaining a

reliably accurate estimate of the vehicle’s attitude.

To perform attitude estimation, we can choose which coordinates to use to represent the ori-

entation of the vehicle. The most popular representation is quaternions, proven to be numerically

stable and efficient [71, 72]. These are followed by Euler angles, arguably the most understandable

to a human controller [73, 74, 75]. Both representations have pros and cons in the context of atti-
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tude estimation, and will be discussed in further detail in §4.2. Nonlinear sensor models with these

two different representations have been developed for estimation using the Allen variance model

[76, 77, 78]. The gyroscope dynamics model is developed for use as system equations while the

accelerometer and magnetometer models are used as measurement equations under the filtering

paradigm. However, the unique nature of the quaternion vector prohibits a direct application of the

general estimation algorithm. Hence, an error dynamics model of sensors is derived to estimate

the error quaternion.

A number of nonlinear sensor fusing algorithms have been proposed for attitude estimation

[79], especially for the flying vehicle [80, 81]. Among these methods, computationally intensive

algorithms like the unscented filter and particle filter etc. are not considered in this study, since

one of our primary goals is to reduce computation time for low-cost embedded processors. The

most widely used filter is the Extended Kalman Filter (EKF) [82, 83, 84]. EKF predicts attitude

with the gyroscope data and updates the prediction with the measurement from accelerometer and

magnetometer in a way that minimizes the mean square error. This estimation is very accurate and

widely used in practical scenarios, particularly on open-source autopilot softwares like Ardupilot

and PX4. However, the Extended Kalman filter has a few limitations of its own. Firstly, it can

be complicated to implement which is reflected by the numerous solutions [85, 86]. Secondly,

determining Kalman gain after every time interval requires two steps: prediction and update, thus

requiring more computations to calculate mean and covariance, and larger memory to store the

results. Finally, the EKF scheme also assumes Gaussian uncertainty in its modeling, which is

reasonable for uncertainty propagation over short intervals of time, but requires the algorithm to

run at a higher rate resulting in larger processor usage. These aspects make it difficult to implement

EKF in low power microprocessors.

In this chapter, we propose an extended H2 optimal estimator that can tackle the aforemen-

tioned limitations of the extended Kalman filter, and is capable of using either coordinate repre-

sentation, Euler angles or quaternions. Our primary contribution focuses on the update step during

estimation. The optimal filter gain for the update is derived offline about a nominal point by solv-
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ing a convex optimization problem. This offline process avoids the need to solve the associated

Riccati equation in real-time, however, at the cost of reduced performance. For attitude estimation

using an Euler angle representation, filtering occurs in a single step, since it is solved with equa-

tions that include both prediction and update steps at once. This is essentially why we observed in

our simulations that estimation using Euler angles is superior in computational speed when com-

pared to quaternions. For the case involving quaternions, extended H2 estimation is applied on

error state dynamics to compute the error between predicted quaternion from gyro dynamics and

the unknown final quaternion. This error is now multiplied with the prediction from gyroscope

dynamics in accordance with quaternion algebra to obtain the final estimate.

The chapter is organized as follows. In section §4.2, we present the choices for attitude rep-

resentation in various scenarios. This is followed by details of the measurement model for the

three sensors, i.e., the gyroscope, the accelerometer, and the magnetometer. In section §4.4, we

outline the estimation frameworks for both Euler Angles and quaternions. Next, we describe the

conventional H2 optimal attitude estimation algorithm. We elaborate upon our proposal for the

extended H2 attitude estimation algorithm in section §4.6. The changes that need to be addressed

for the proposed framework to allow a quaternion representation are also discussed in this section.

Proceeding further, we apply the proposed filter on an illustrative example using a commercially

available sensor and compare our performance with that of the popularly used EKF-based esti-

mator. The chapter concludes with a few final remarks and potential directions for further inves-

tigation. We have also attached an appendix with some preliminary background on the requisite

kinematics involved and the derivation of the error measurement equation.

4.2 Attitude representation

The Newton Euler approach is used to present the dynamics of a rigid body system in this

chapter [87]. Therefore, the dynamics of the vehicle is expressed in the inertial frame(I) and Body

frame(B) [88]. The axes orientation of the vehicle’s Body Frame with Bx, By, and Bz is specified

with respect to the Inertia Frame with Ix, Iy, and Iz. In the body frame, the Bx and By axes point

to the forward directions (heading of vehicle) and rightward (starboard), respectively while the
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Bz axis points downwards. The Ix and Iy axes point to the North and East parallel to the earth’s

surface respectively. The Iz axis points down to earth. This axes’ frame is commonly referred to

as NED for North, East, and Down.

The attitude or the orientation of the vehicle can be expressed in one of several different coor-

dinate representations [89]. Euler angles and quaternions are two of many such popular choices

[90]. In our case, the Euler angles are composed of 3-2-1 rotation with φ, θ, ψ angles, defining the

transformation between the inertial frame (I) to body frame (B):

Φ :=

(
φ θ ψ

)T
∈ R3 (4.1)

The rotation matrixCB
I (φ, θ, ψ)) ∈ SO(3) represents the orientation of the Body frame(B) relative

to a fixed inertial frame(I). CB
I (Φ) is the DCM (Direction Cosine Matrix) with 3−2−1 sequence

from the inertial frame (I) to body frame (B) as:

CB
I (Φ) =


1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

×


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

×


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (4.2)

Quaternions represent another way of describing the orientation of an aerial vehicle. This type

of representation is typically used as an alternative for modeling attitude dynamics whilst avoiding

the singularities inherent in other parameter sets like the Euler angles and Rodrigues parameters.

It is based on a four parameter representation that can be defined globally, i.e., it doesn’t face any.

A unit-norm quaternion, which defines the rotation between the inertial frame (I) to body frame

(B), is defined as:

q̄ =B
I q̄ =

[
q q4

]T
=

[
q1 q2 q3 q4

]T
∈ R4 (4.3)

where q4 and q are the scalar and the vector parts of the quaternion, respectively. The quaternion
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of rotation is a unit quaternion, i.e. norm of quaternion is 1 as

|q̄| =
√
q̄T q̄ =

√
q2 + q2

4 = 1 (4.4)

q̄ =

[
kx sin(θ/2) ky sin(θ/2) kz sin(θ/2) cos(θ/2)

]T
(4.5)

In this notation, k describes the unit vector along Euler’s principal axis and θ defines the principal

angle of rotation about that axis. The rotation matrixCB
I (q1, q2, q3, q4) ∈ SO(3) represents the ori-

entation of the body frame (B) relative to a fixed inertial frame (I). CB
I (q̄) is the DCM (Direction

Cosine Matrix) with 3− 2− 1 sequence from the inertial frame (I) to body frame (B) as:

CB
I (q̄) =


q2

1 − q2
2 − q2

3 + q2
4 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 (4.6)

For more details about quaternion algebra, refer to [91].

Each of these representations has its own advantages and disadvantages. Euler angles have the

well known gimbal-lock problem [89] but are fairly intuitive, i.e, they are easy to visualize and are

a minimal representation of attitude. On the other hand, quaternions are not as naturally understood

and involve over-parameterization by using 4 quantities to express three angles. However, more

importantly, they avoid singularities. In this chapter, we consider both representations for attitude

estimation.

4.3 Sensor measurement model

For small UAV systems, low-cost MEMS sensors are typically used. Data collected from cheap

sensors on such drones tends to be corrupted by noise and bias.

Following the Allan variance analysis [76, 77, 78], sensor models are described in this section.

During estimation, gyroscope model will be used for state prediction, whereas the accelerometer
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and magnetometer models will be used for state update.

4.3.1 Gyroscope model

Gyroscope sensor measurements are modeled as:

Bω = ωm − b− nω, (4.7a)

ḃ = nb, (4.7b)

where ω is the true angular rate of the body, ωm is angular rate measured by the gyroscope, b is

the bias of gyroscope, nω is gyroscope sensor noise, and nb represents gyroscope bias noise. In

this chapter, the gyroscope bias is non-static and we model it as a random walk process.

4.3.2 Accelerometer model

Accelerometer sensor measurements can be formulated as:

Ba = am − na (4.8)

with Ba: the true sum of the gravity and external acceleration of the body, am: the sum of the

gravity and external acceleration of the body measured by accelerometer, and na: accelerometer

sensor noise . The external acceleration of the vehicle is derived from position estimation and

subtracted from Ba to obtain acceleration due to gravity. In the context of attitude estimation, it

will initially be assumed that an accelerometer will measure only gravity.

4.3.3 Magnetometer model

Magnetometer sensor measurements can be formulated as:

Bm = mm − nm (4.9)

with the true magnetic field Bm, the magnetic field measured by the magnetometer mm, and

magnetometer sensor noise nm.
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4.4 Attitude estimation system structure for sensor fusion

Attitude estimation comprises two sets of equations representing the system dynamics and mea-

surement model. In this section, we present these equations using an Euler angle and quaternion

representation. The system equation is derived from the gyroscope dynamics and the measurement

equations are composed of accelerometer and magnetometer models. Additionally, error dynamics

is derived for estimation when using quaternions.

4.4.1 Euler angle attitude estimation system

4.4.1.1 System equations with Euler angle

The attitude kinematics equation in terms of a 3− 2− 1 Euler angle sequence is given by:

(
φ̇ θ̇ ψ̇

)T
= Tω, (4.10)

where

T (φ, θ, ψ) :=


1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 , (4.11)

and ω is the angular rate of the body with respect to inertial frame. Refer to §AppendixA for

the complete derivation of the attitude influence matrix T .

With the gyroscope measurement model (4.7), the system equations with the Euler angle rep-

resentation (4.1) is then given by:

Φ̇

ḃ

 =

03×3 −T (Φ)

03×3 03×3


Φ

b

+

−T (Φ) 03×3

03×3 I


nw
nb

+

T (Φ)

03×3

ωm, (4.12)
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The process noise covariance matrix for

nw
nb

 is given by:

Q =

Nw 03×3

03×3 N b

 =

n2
wI3×3 03×3

03×3 n2
bI3×3

 (4.13)

4.4.1.2 Measurement equations with Euler angle

The attitude of the vehicle with Euler angle is recovered from the DCM with Euler angle by

comparing data between body frame and inertia frames with accelerometer and magnetometer

model.

The relationship between the gravity vector Ig in the inertial frame and the acceleration vector

Ba in body frame from the accelerometer measurement (4.8) can be formulated as:

Ba = CB
I acc(Φ) Ig (4.14)

with CB
I acc is the DCM from inertial frame (I) to body frame (B) as defined in (4.2).

The relationship between the Earth’s magnetic vector Ih and the local magnetic vector Bm

from the magnetometer measurement (4.9) can be expressed as:

Bm = CB
I mag(Φ) Ih (4.15)

Therefore, the final measurement equations combining two sensor models (4.8) and (4.9) are for-

mulated as:  Bam

Bmm

 =

[
Cacc(Φ) Cmag(Φ)

]g
h

+

na
nm

 (4.16)
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and, the sensor noise covariance matrix for

na
nm

 is given by:

R =

N a 03×3

03×3 Nm

 =

n2
aI3×3 03×3

03×3 n2
mI3×3

 (4.17)

4.4.2 Quaternion attitude estimation system

4.4.2.1 System dynamics with Quaternion

a. System equations with Quaternion Using the definition of the quaternion derivative [92] and

the gyroscope sensor model (4.7), the system of differential equations is obtained as:

B
I

˙̄q =
1

2
Ω(ω)BI q̄, (4.18a)

ḃ = nω (4.18b)

where:

Ω(ω) :=



0 wz −wy wx

−wz 0 wx wy

wy −wx 0 wz

−wx −wy −wz 0


, q̄ :=

q
q4

 =



q1

q2

q3

q4


(4.19)

with ω is the angular rate of the body frame with respect to inertial frame.

b. Measurement equations with Quaternion

The attitude of the vehicle in quaternions is recovered from the DCM using quaternions by

comparing sensor values in the body frame against gravity or Earth’s magnetic field vector in the

inertial frame.

The relationship between the gravity vector Ig in the inertial frame and the acceleration vector

Ba in body frame from the accelerometer measurement (4.8) can be formulated with quaternions
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as:

Ba = CB
I acc(q̄) Ig (4.20)

with CB
I acc is the DCM from inertial frame (I) to body frame (B).

The relationship between the Earth’s magnetic vector Ih and the local magnetic vector Bm

from magnetometer measurement (4.9) can be expressed as:

Bm = CB
I mag(q̄) Ih (4.21)

Therefore, the final measurement equations combining two sensor model (4.8) and (4.9) are for-

mulated as:  Bam

Bmm

 =

[
Cacc(q̄) Cmag(q̄)

]g
h

+

na
nm

 (4.22)

and, the sensor noise covariance matrix for

na
nm

 is the same as in the Euler angles’ case and

given by:

R =

N a 03×3

03×3 Nm

 =

n2
aI3×3 03×3

03×3 n2
mI3×3

 (4.23)

4.4.2.2 Error dynamics with Quaternion

a. Error system equations with Quaternion

Instead of using the arithmetic difference between quaternion and quaternion estimate to define

the error, we will introduce the error quaternion δq̂; a small rotation between the estimated and the

true orientation of the body frame of reference.
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This error calculation is expressed as a multiplication in quaternion algebra [91] is:

B
I q̄ = B

B̂
δq̄ ⊗ B̂

I
ˆ̄q (4.24)

B
B̂
δq̄ = B

I q̄ ⊗ B̂
I

ˆ̄q−1 (4.25)

Note that here, ⊗ is used to indicate a product of two terms in quaternion algebra, and is NOT the

Kronecker product.

We can apply the small angle approximation to δq̄ assuming the rotation associated with the

error quaternion is very small. Consequently, the attitude error angle vector δθ is calculated as:

δq̄ =

δq

δq4

 =

δk̂ sin (δθ/2)

cos (δθ/2)

 ≈
1

2
δθ

1

 (4.26)

This error angle vector δθ is of dimension 3× 1 and will be used together with the bias error in the

error state vector. The bias error is defined as:

∆b = b− b̂ (4.27)

From [82], the definition of the error quaternion (4.24) results in the following set of error system

equations:

δθ̇ = −[ω̂×]δθ −∆b− nw (4.28a)

∆ḃ = ḃ− ˙̂
b = nb (4.28b)

or, in the state space form as:

 ˙δθ

∆̇b

 =

−ω̂× −I3×3

03×3 03×3


 δθ

∆b

+

−I3×3 03×3

03×3 I3×3


nw
nb

 , (4.29)
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The process noise covariance matrix for

nw
nb

 is also the same as in the Euler angles’ case and

given by:

Q =

Nw 03×3

03×3 N b

 =

n2
wI3×3 03×3

03×3 n2
bI3×3

 (4.30)

b. Error measurement equations with Quaternion

Error dynamics is used to estimate the error quaternion δq̂, defined previously in the error

system equation. Recall that the measurement equations with quaternion (4.22) are in terms of the

DCM and hence, we obtain the error in the estimate in the following manner.

ỹ = y − ŷ = (CB
I (q̄)−CB̂

I (ˆ̄q)) I

g
h

 (4.31)

where, y is actual measurement and ŷ is estimated measurement with ˆ̄q from the result of origi-

nal system equations (4.18). With this equation we can derive final error measurement equations,

formulated in detail in §Appendix C. With that, the final error measurement equations with ac-

celerometer and magnetometer model can be written using the DCM as:

ỹ = CB̂
I (q̂)

g
h

+Dww(t) (4.32)

where,

CB
I (q̂) =

[
Cacc(ˆ̄q) Cmag(q̂)

]
, Dw =

I3×3 03×3

03×3 I3×3


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4.5 H2 optimal estimation

We next present very briefly, the necessary background for H2 optimal estimation method for

linear systems. We consider the following linear system,

ẋ(t) = Ax(t) +Buu(t) +Bww(t) (4.33a)

y(t) = Cyx(t) +Duu(t) +Dww(t) (4.33b)

z(t) = Czx(t) (4.33c)

with x ∈ Rn, y ∈ Rl, z ∈ Rm are respectively the state vector, the measured output vector, and

the output vector of interest. Variables w ∈ Rp and u ∈ Rr are the disturbance and the control

vectors, respectively.

With the above defined system, theH2 state estimator has the following form,

˙̂x(t) = Ax̂(t) +Buu(t) +L(Cyx̂(t) +Duu(t)− y(t)), (4.34a)

ẑ(t) = Czx̂(t), (4.34b)

where x̂ is the state estimate, L is the estimator gain, and ẑ(t) is the estimate of the output of

interest. The error equations are then given by:

ˆ̇e(t) = (A+LCy)ê(t) + (Bw +LDw)w(t) (4.35a)

z̃(t) = Czê(t) (4.35b)

The problem of H2 state estimation design is then, given a system (4.35) and a positive scalar

γ, find a matrix L such that,

‖Gz̃w(s)‖2 < γ. (4.36)
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where the transfer functionGz̃w(s) of the system is:

Gz̃w(s) = Cz[sI − (A+LCy)]
−1(Bw +LDw). (4.37)

The optimization formulation to obtain L is given by:

Theorem (H2 Optimal Estimation) [47, 50] : The following two statements are equivalent:

1. A solution L to theH2 state estimator exists.

2. ∃ a matrixW , a symmetric matrixQ, and a symmetric matrixX such that:

XA+WCy + (XA+WCy)
T XBw +WDw

∗ −I

 < 0

−Q Cz

∗ −X

 < 0

trace(Q) < γ2 (4.38)

TheH2 optimal estimator gain is recovered by L = X−1W . This optimal gain ensures that:

e(t) = x(t)− x̂→ 0, as t→∞, (4.39)

In other words, x̂(t) is an asymptotic estimate of x(t).

4.6 ExtendedH2 optimal estimation

4.6.1 ExtendedH2 Euler angle estimation

The proposed extended H2 estimation framework is summarized in Fig.4.1. To express the

dynamics of the system using the state space notation, we can define a 6-element state vector with
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Figure 4.1: Estimation algorithm reprinted from [9]

Euler angle and gyroscope bias as:

x(t) =

Φ

b


Therefore, non-linear system of gyroscope dynamics with the Euler angle (4.12) can be rewritten

with states as:

ẋ = f(x,u,w, t), (4.40)

where u(t) := ωm(t) and w(t) := [nω(t) nb(t)]
T
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The measurement equations with accelerometer and magnetometer model (4.14, 4.15) can be

rewritten with states as the following nonlinear output equation:

y(t) = h(x,w, t) (4.41)

where w(t) := [na(t) nm(t)]T .

ExtendedH2 estimation isH2 estimation extended to nonlinear system models, along the lines

of the extended Kalman filter. In extended Kalman filtering, the uncertainty is propagated using the

linear system along the state trajectory, and the Kalman gain is computed at every time step with

the instantaneous linear system. In the extended H2 framework, in theory, we can solve for the

optimal H2 gain along the trajectory, however this may be computationally prohibitive for cheap

processors. Instead, we design the optimal H2 gain about the nominal operating point, but use the

nonlinear system dynamics to evolve the estimator’s states.

A linear approximation is implemented at nominal operating point (x0,u0,w0) = 0. The

linear equations are:

ẋ(t) ≈ Ax(t) +Buu(t) +Bww(t) (4.42)

i.e.,

Φ̇

ḃ

 =

 0 −I3×3

03×3 03×3


Φ

b

+

−I3×3 03×3

03×3 I


nw
nb

+

I3×3

03×3

ωm, (4.43)

A linear approximation of (4.41) is derived about the previously used nominal operating point

(x0,w0) = 0. The linear equations thus obtained are:

y(t) ≈ Cyx(t) +Dw(t)w(t) (4.44)

58



i.e.,

y(t) =

[g×] 03×3

[h×] 03×3

x(t) +

I3×3 03×3

03×3 I3×3

w(t) (4.45)

where g× and h× are the skew-symmetric matrix forms of the vectors g and h respectively.

The linear system, about the nominal operating point, is therefore:

ẋ = Ax+Buu+Bww (4.46a)

y = Cyx+Duu+Dww (4.46b)

The optimal H2 gain L0 can then be determined by solving the optimization problem in (4.38),

where the subscript 0 is used to indicate that it is determined about the nominal operating point.

Once the gain L0 is determined it is used to implement the H2 filter for the nonlinear system.

We present a new implementation, called the extended H2 filter, where the filter states are propa-

gated using the nonlinear dynamics. In conventionalH2 filters, the error propagation occurs using

the linear system. The filter dynamics and output equation for the extendedH2 filter are given by:

˙̂x = f(x̂(t),u(t), 0, t) +L0(h(x̂(t), 0, t)− y) (4.47a)

ẑ = Czx̂(t) (4.47b)

4.6.2 ExtendedH2 Quaternion estimation

The process for extended H2 estimation using quaternions is not too different from that devel-

oped for using Euler angles. The major distinction arises when solving for the error in the error

dynamics model, since quaternion vector algebra requires special attention. The error state between

the true quaternion and the predicted quaternion estimate expressed as δq̂ is used for estimation,

as stated in (4.26). Another distinguishing characteristic is the introduction of gain scheduling to

adequately cover all possible orientations of the vehicle. We obtain these gains as a function of the
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linearization points, and apply them during the nonlinear update step. The proposed extended H2

estimation framework for quaternion is outlined in Fig.4.2. Like any estimation procedure, this is

essentially composed of two steps: state prediction and state update.

Sensor 
Data

Linearization

Non-Linear
Error System

𝐿𝑤𝑚 : Angular Velocity
𝐿𝑔𝑚 : Gravity Vector
𝐿𝑚𝑚 : Magnetic Field Vector

Optimization
with LMI

Extended 𝓗𝟐 Estimator

Non-Linear 
System

Quaternion :   : : 

State Prediction State Update

Figure 4.2: Quaternion estimation algorithm reprinted from [10]

4.6.2.1 First step: State prediction

To express the dynamics of the quaternion system with state space notation, we define a 7-

element state vector.

x(t) =

q̄
b

 (4.48)
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using the definition of the quaternion derivative [91]. The non-linear system of gyroscope dynam-

ics with quaternion (4.18) can be rewritten with states as:

ẋ = f(x,u,w, t), (4.49)

where u(t) := ωm(t) and w(t) := [nω(t) nb(t)].

Taking the expectation of the above equation (4.49) derived from the quaternian gyroscope

dynamics (4.18), we can get prediction equations as:

˙̂x = f(x̂,u,w, t), (4.50)

i.e.,

B
I

˙̄̂q− =
1

2
Ω(ωm − b̂)BI ˆ̄q, (4.51a)

˙̂
b = 03×1 (4.51b)

With this dynamic equation, we can get an predicted estimate of ˆ̄q− in Fig.4.2, which will be

updated with a proposed extendedH2 estimation with error dynamics.

4.6.2.2 Second step: State update

a. Error state equations

We defined the error between the true quaternion and quaternion estimate as δq̂ and applied

small angle approximation it as δθ in (4.26) in previous section. We can now define a 6-element

state vector for the estimation of the error dynamics as:

x̃ =

 δθ

∆b

 (4.52)

With this state, error system equation with quaternion (4.29) can be rewritten as a nonlinear system
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as:

˙̃x = f(x̃,u,w, t). (4.53)

where u(t) := ωm(t) and w(t) := [nω(t) nb(t)].

A linear approximation is implemented at the chosen nominal operating point (x0,u0,w0) =

0. The linear equations are:

ẋ(t) ≈ Ax(t) +Bww(t) (4.54)

i.e.,

 ˙δθ

∆̇b

 =

−|ω̂ × | −I3×3

03×3 03×3


 δθ

∆b

+

−I3×3 03×3

03×3 I3×3


nw
nb

 , (4.55)

where ω̂ := ωm − b̂.

b. Error measurement equation

The measurement equation of the error system with accelerometer and magnetometer can be

written as the following nonlinear output equation:

ỹ = h(x̃,w, t) = CB̂
I (q̂)

g
h

+Dww(t) (4.56)

where,

CB
I (q̂) =

[
Cacc(ˆ̄q) Cmag(q̂)

]
, Dw =

I3x3 03x3

03x3 I3x3


We apply a linear approximation to (4.56) about eight points, each of which is the combination

of a point from each axis covering a range of [π
2
π
2
] and [π

2
−π

2
], i.e., the following eight points:
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(0, 0, 0), (0, 0, π), (0, π, 0), (π, 0, 0), (0, π, π), (π, π, 0), (π, 0, π), and (π, π, π). The linear system,

about the nominal operating point, is therefore:

ẋ = Aix+Buiu+Bwiw (4.57a)

y = Cyix+Duiu+Dwiw (4.57b)

i.e.,

y(t) =

[g×]i 03x3

[h×]i 03x3

x(t) +

I3x3 03x3

03x3 I3x3

w(t) (4.58)

where g× and h× are the skew-symmetric matrix forms of the vectors g and h respectively and

the signs vary with the linearization point in consideration. The optimal H2 gain Li can then be

determined by solving the optimization problem in (4.38), where the subscript i(= 1 ∼ 8) is used

to indicate that it is determined about the nominal operating point. Once the gainLi is determined,

it is used to implement theH2 filter for the nonlinear system in the same way as performed in Euler

angle estimation. Note that here, gain scheduling is applied, depending on the system states. This

is because signs of g and h in the measurement equation (4.58) are inverted while the vehicle is

rotating. The filter dynamics and output equation, for the extendedH2 filter, are given by:

˙̃̂x = f(ˆ̃x(t),u(t), 0, t) +Li(h(ˆ̃x(t), 0, t)− y) (4.59a)

ˆ̃z = Cz
ˆ̃x(t) (4.59b)

The error state of quaternion (δ̂θ) from the estimation result of previous step is recovered from

equation (4.26) as:

 δq̂
∆b̂

 =

δ̂θ/2
∆b̂

 (4.60)
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We need to ensure that the unit norm constraint of the estimated quaternion is not violated. The

full quaternion satisfying the unit norm constraint can be recovered from equation (4.4) as:

δˆ̄q =

 δq̂√
1− δq̂T δq̂

 or δˆ̄q =
1√

1− δq̂T δq̂
·

δq̂
1

 (if δq̂T δq̂ > 1) (4.61)

The final estimate is a quaternion multiplication of the two results from the prediction step ( ˆ̄q−)

and the update step (δ ˆ̄q), i.e.,:

ˆ̄q = δˆ̄q ⊗ ˆ̄q− (4.62)

4.7 Results

4.7.1 Simulation set-up

The implementation of the proposed extended H2 filter for the attitude estimation problem is

tested with the MATLAB simulation environment as shown in Fig. 4.3. Its performance is com-

pared with that from the extended Kalman filter based implementation, simulated using identical

sensor data. The comparison is done in terms of accuracy and computational time under multiple

scenarios of flight stages like take-off, landing, hovering, and transition flight.

Generate Flight 
Trajectory

Obtain
Sensor Data

Implement
Algorithm

Trajectory Sensor Data

Attitude
Estimation

Hover, Cruise, and 
Transition Flight, etc.

Sensor
Characteristics

Extended 𝓗𝟐

Or EKF

Figure 4.3: Simulation flow chart reprinted from [10]

For our experiment, we choose to simulate using the MPU 9250, an affordable commercial

sensor used most popularly in the Pixhawk flight computer. Sensor characteristics like noise lev-
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els, bias, etc. are imported to the MATLAB simulation from sensor data sheet [93] of MPU 9250.

We use MATLAB’s simulation function, imuSensor to generate MARG data [94]. This raw data

is shown in Fig. 4.4b with the trajectory shown in Fig. 4.4a. Four scenarios covering major flight

stages are used to verify the proposed extendedH2 estimation algorithm for both of the coordinate

representations discussed so far. The first two cases are used for both the Euler angle and quater-

nion representation whereas the last two cases correspond only to the quaternion representation.
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Figure 4.4: IMU data reprinted from [9]

Case I: Slow and small angular movements – Here we consider angular movements < 30◦

about all three axes of the vehicle independently. This case broadly covers forward/backward and

left/right cruise flight of popular quad-rotor based UAVs. Simulation is run for a time duration of

50 seconds and with an angular rate of π/50 rad/s. The simulated true state trajectories are shown

in Fig. 4.5a.

Case II: Fast and high angular movements – Here we consider angular variation> 30◦ about

all three axes of the vehicle simultaneously. It represents scenarios of rapid movements or motion

in the presence of wind disturbance during flight or aggressive maneuvers. Simulation is run for a
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duration of 10 seconds and with an angular rate of π/3 rad/s. The simulated true state trajectories

are shown in Fig. 4.6a.

Case III: Gimbal-lock test – Here we consider angular movements > 90◦ about pitch axis of

the vehicle. This case broadly covers transition flight of the increasingly popular VTOL (Vertical

Take Off and Land) UAVs. Simulation is run for a time duration of 10 seconds and with an angular

rate π/2 rad/s. The simulated true state trajectories are shown in Fig. 4.8a.

Case IV: Movement from 3D flight simulation – Here we consider flight trajectory generated

by SITL (Simulation In The Loop) with the Ardupilot firmware and Gazebo. This represents

scenarios that include taking off, cruise to three way points and then landing. The simulated true

state trajectories are shown in Fig. 4.9a.

4.7.2 Simulation results for Euler angle estimation

Here we examine the performance of the extendedH2 estimator for Euler angle with that of the

standard EKF in terms of root mean squared (RMS) error, memory use, and computational time

required.

Case I: The comparison of the two estimators for Case I is shown in Fig. 4.5b. We observe

that the error of extendedH2 estimator is less than that of EKF. The RMS error, and the upper and

lower bounds of the error, for both the filters are shown in Table 4.1. From the plots and the data

in the tables, we can conclude that the performance of extendedH2 estimator is better than that of

EKF.

Table 4.1: RMS error for case I reprinted from [9]

Algorithm Roll angle(◦) Pitch angle(◦) Yaw angle(◦)

ExtendedH2 0.0331 0.0538 0.1107

EKF 0.0533 0.0988 0.2298
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Figure 4.5: Estimation result on case I: slow and small angular movements reprinted from [9]

Case II: The results of the two estimators for case II are shown in Fig. 4.6b. And, here, we

observe that the extended H2 filter has lower error bounds. From Table 4.2, we observe that the

RMS errors are comparable for both the filters.

Table 4.2: RMS error for case II reprinted from [9]

Algorithm Roll angle(◦) Pitch angle(◦) Yaw angle(◦)

ExtendedH2 0.3045 0.3260 0.3121

EKF 0.3073 0.2656 0.5275

Based on the estimation errors for Case I and Case II, we can conclude that both the filters

perform equally well, with the extended H2 filter performing slightly better. The main advantage

of the extended H2 filter is in the implementation efficiency. The results for the average exe-

cution time are shown in Table 4.3, which reveals that the extended H2 estimator requires 50%

less computational time than EKF, making it 2× more efficient than EKF. Table 4.3 also shows
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(b) Comparison of the extended H2 filter and the
EKF for Case II.

Figure 4.6: Estimation result on case II: fast and high angular movements reprinted from [9]

the variability in the computational time, which is about 3× less. The reduced variability in the

computational time increases the reliability of the real-time tasks that will execute in the micropro-

cessor. Typically, more time is allotted to real-time tasks with large variability in computational

time. This further improves the computational efficiency of the proposed extendedH2 estimator.

Table 4.3: Computational time comparison on Euler angle estimation reprinted from [9]

Algorithm Mean Time (ms) Standard Deviation (ms)

ExtendedH2 0.853 0.244

EKF 1.7 0.736

4.7.3 Simulation results for Quaternion estimation

Case I and II: The comparison of the two estimators for Case I and II is shown in Fig. 4.7a

and 4.7b, respectively. Just like in the Euler angle case, we can conclude that the performance of
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the extendedH2 is slightly better than that of the EKF.
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Figure 4.7: Estimation result on case I and II with quaternion reprinted from [10]

Case III: The comparison of the two estimators for Case III is shown in Fig. 4.8b. We observe

that ExtendedH2 estimation is functional even when it encounters gimbal lock, a problem faced in

an Euler angle-based implementation. Moreover, the error of extendedH2 estimator is comparable

with that of EKF. The RMS error for both the filters are shown in Table 4.4. From the plots and the

data in the tables, we can conclude that the performance of extended H2 estimator is comparable

with that of EKF.

Table 4.4: RMS error for case III reprinted from [10]

Algorithm Pitch angle(◦) Standard Deviation(◦)

ExtendedH2 0.1204 0.013

EKF 0.1569 0.0143
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Figure 4.8: Estimation result on case III: Gimbal-lock test reprinted from [10]

Case IV: The comparison of the two estimators for Case IV is shown in Fig. 4.9b. We observe

that the error of extended H2 estimator is comparable with that of EKF. The RMS error for both

the filters are shown in Table 4.5. From the plots and the data in the tables, we can conclude that

the performance of extendedH2 estimator is better than that of EKF for case IV as well.

Table 4.5: RMS error for case IV reprinted from [10]

Algorithm Roll angle(◦) Pitch angle(◦) Yaw angle(◦)

ExtendedH2 0.0410 0.0567 0.1274

EKF 0.0956 0.1233 0.2761

4.8 Conclusions of chapter

This chapter presents a new nonlinear estimation framework, based onH2 optimal state estima-

tion, for attitude estimation in low power microprocessors. This algorithm is presented using the
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Figure 4.9: Estimation result on case IV: movement from 3D flight simulation reprinted from [10]

Table 4.6: Computational time comparison on Quaternion estimation reprinted from [10]

Algorithm Mean Time (ms) Standard Deviation (ms)

ExtendedH2 0.9263 0.5217

EKF 2.7 1.5

two popular choices for attitude representation, namely Euler angles and quaternions. This work

showed that the performance of the proposed estimator is comparable, if not better, than that of the

EKF algorithm which is typically used in the application space considered. The primary advantage

of the proposed framework is the 2× computational efficiency, and the 3× robustness with respect

to computational uncertainty. Both these factors make the proposed attitude estimation algorithm

very attractive for small UAVs with low power microprocessors.
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5. LINEAR ROBUST ESTIMATION*

In this chapter, we propose a robust Kalman filtering framework for systems with probabilistic

uncertainty in system parameters. We consider two cases, namely discrete time systems, and

continuous time systems with discrete measurements. The uncertainty, characterized by mean

and variance of the states, is propagated using conditional expectations and polynomial chaos 

expansion framework. The results obtained using the proposed filter are compared with existing

robust filters in the literature. The proposed filter demonstrates better performance in terms of root 

mean squared error and rate of convergence. This chapter is written base on paper [95, 11].

5.1 Introduction

Filtering or state estimation is used to estimate unknown states of a system in the presence of 

process and measurement noise, and partially observable system dynamics. Being a critical com-

ponent in control systems, filtering techniques are used widely in many fields such as  aerospace, 

robotics, electrical power, and communication to name a few [96, 97].

The most popular class of filters, namely, Kalman filters (KF), characterizes the uncertainty as-

sociated with the states using first two moments, and provides an unbiased estimate with minimum 

variance of the estimation error [98]. However, under the uncertain conditions of a real world en-

vironment, the accuracy of filters tends to degrade considerably as the Kalman filter assumes that 

the system is completely known [99].

Robust filtering algorithms such as H 2/H∞ filters and robust Kalman filters, have been devel-

oped to address uncertainty in system models. In the H2/H∞ framework, filters are designed to 

minimize the impact of exogenous signals, i.e. process and sensor noise, on the estimation error 

[100, 101, 47, 102, 103]. A robust Kalman filter is an extension of the well known Kalman fil-

*Reprinted with permission from “Kalman filtering with probabilistic uncertainty in system parameters” by Sunsoo

Kim, V. M. Deshpande, and R. Bhattacharya, arXiv preprint arXiv:2003.10926, 2020.

Reprinted with permission from “Robust kalman filtering with probabilistic uncertainty in system parameters” by 
Sunsoo. Kim, V. M. Deshpande, and R. Bhattacharya, IEEE Control Systems Letters, vol. 5, no. 1, pp. 295–300, 
2021.
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ter, which can handle uncertainties in the system [104]. In this framework, the filter is designed

to minimize an upper bound on the estimation error variance [105, 106, 107, 108, 109, 110], or

the worst-case error variance [111, 112, 113]. Our work falls in the category of robust Kalman

framework.

Existing robust Kalman filter algorithms can be categorized based on how system uncertainty

is represented, which is assumed to be parametric. The uncertainty is either represented as norm

bounded parameter uncertainty [104, 105, 106, 107, 108, 109, 110], or polytopic parametric uncer-

tainty [114, 103]. In this work, we model parametric uncertainty as random variables with known

probability density function. To the best of our knowledge, this is the first work on robust Kalman

filtering with probabilistic system uncertainty.

We present two robust Kalman filtering algorithms with probabilistic uncertainty in system

parameters. The first algorithm is for discrete-time (DT) system where the dynamics and mea-

surements are both in discrete time. The second algorithm is for continuous-time (CT) dynamical

systems with discrete-time measurements. In both these cases, mean and variance of uncertain

states are calculated using a formulation based on conditional expectation. For the CT system, we

apply polynomial chaos (PC) framework to propagate the uncertainty.

The rest of the chapter is organized as follows. We first present the problem formulation with

uncertainty in CT and DT domain in §5.2 followed by a discussion on polynomial chaos framework

in §5.3. §5.4 presents the proposed robust filter. Simulation results obtained using the proposed

filter are presented, and compared with the existing methods in §5.5. Concluding remarks and

future research directions are provided in §5.6.

5.2 Problem formulation

The objective of filtering is to estimate the state-trajectory x(t) or xk of a physical process in

CT or DT, given noisy measurements. The uncertainty in the system parameters, in the external

excitation (process noise), and in the measurement errors (sensor noise), are all treated as proba-

bilistic. The model for the evolution of the state is assumed to be the following linear-time-invariant
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stochastic system,

CT: ẋ(t) = A(∆)x(t) +B(∆)w(t), (5.1a)

DT: xk = A(∆)xk−1 +B(∆)wk−1, (5.1b)

where x ∈ Rn is the model’s state vector, w ∈ Rm is white noise with zero mean, A(∆) :

Rd 7→ Rn×n and B(∆) : Rd 7→ Rn×m are system matrices, and ∆ ∈ Rd represents uncertain

parameters in the system matrix with known probability density function. We also assume, the

initial condition for (5.1) is a random variable with a given distribution.

Measurement from sensors is modeled as

yk = Cxk + nk, (5.2)

which maps the state x to the output space y and is corrupted by noise n. In the output model,

C ∈ Rm×n is deterministic and n is white noise with zero mean. The variances of w and n are

assumed to beQ andR respectively.

The objective here is to determine the unbiased estimate of x(t) or xk with minimum error-

variance, using the model defined by (5.1) and (5.2). This is achieved by extending the formulation

for standard Kalman filtering, to LTI systems with probabilistic uncertainty in system parameters,

which is discussed in §5.4. However before that, we briefly discuss the polynomial chaos frame-

work that is used for propagation of uncertainty in CT systems.

5.3 Polynomial chaos theory

Polynomial chaos is a deterministic framework to determine the evolution of a stochastic pro-

cess ξ(t,∆), where ∆ ∈ D∆ ⊂ Rd represents the parameter space with probability density

function p(∆). Differential equations with probabilistic parameters e.g.

ξ̇(t,∆) = F (t, ξ(t),∆), (5.3)
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are examples of such stochastic processes that are amenable for analysis using polynomial chaos

theory. Assuming ξ(t,∆) to be a second-order process, it can be expanded, with L2 convergence

[115], as

ξ(t,∆) =
∞∑
i=0

ξi(t)φi(∆),

where ξi(t) are time varying coefficients, and φi(∆) are known basis polynomials. For exponential

convergence, φi(∆) are chosen to be orthogonal with respect to the probability density function

p(∆), i.e.

E [φi (∆)φj (∆)] :=

∫
D∆

φi (∆)φj (∆) p(∆) d∆ = h2
i δij, (5.4)

where δij is the Kronecker delta, hi :=
∫
D∆

φ2
i p(∆) d∆.

For computational purposes, we truncate the expansion to a finite number of terms, i.e. the

solution of (5.3) is approximated by the polynomial chaos expansion as

ξ(t,∆) ≈ ξ̂(t,∆) =
N∑
i=0

ξi(t)φi (∆) . (5.5)

For a more compact representation of the ensuing expressions, we define Φ(∆) to be

Φ(∆) :=

[
φ0 (∆) , · · · , φN (∆)

]T
, and (5.6)

Φn(∆) := Φ(∆)⊗ In, (5.7)

where In ∈ Rn×n is identity matrix. We also define matrix Ξ ∈ Rn×(N+1), with polynomial chaos

coefficients xi, as

Ξ =

[
ξ0, · · · , ξN

]
. (5.8)
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Therefore, ξ̂(t,∆) can be written as

ξ̂(t,∆) := Ξ(t)Φ(∆). (5.9)

Noting that ξ̂ ≡ vec
(
ξ̂
)

, we obtain an alternate form for (5.9),

ξ̂ ≡ vec
(
ξ̂
)

= vec (ΞΦ(∆)) = vec (InΞΦ(∆))

= (ΦT (∆)⊗ In)vec (ξ) = ΦT
n (∆)ξpc, (5.10)

where ξpc := vec (Ξ), and vec (·) is the vectorization operator.

The unknown coefficients ξpc are determined using one of many methods including Galerkin

projection[116, 117], stochastic collocation [118, 119], and least-square minimization [120, 121].

In this work, we pursue the Galerkin projection approach to determine the coefficients ξpc by first

defining error e(t,∆) := ξ(t,∆) − ΦT
n (∆)ξpc(t), and determining ξpc(t) from the following

algebraic equations ∫
D
e(t,∆)φi(∆)p(∆)d∆ = 0,

for i = 0, · · · , N . If ξ(t,∆) is solution of a differential equation (5.3), then the error is defined in

terms of the equation error, as shown in (5.25).

In general, polynomial chaos does not scale well with state-space and parameter dimension.

The number of basis functions for a given order r with d independent random variables is (d+r)!
d!r!

.

With large number of parameters (increasing d), the number of basis functions, for a given order of

approximation, will increase factorially and the computational cost will be prohibitive. This limits

how large both d and r can be. Recent development in sparse polynomial chaos may scale better

[122, 123]. However, usually we can get quite good performance with low order approximations

[124, 125, 126, 127]. Unfortunately, the order of approximation, for which acceptable accuracy is

achieved, has to be determined empirically.

For d > 1, the polyvariate basis functions are determined from tensor-products of univariate
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polynomials, with limit on the total order of the product using Pascal’s triangle, the univariate poly-

nomials can be determined from different distributions. For a given distribution, using polynomials

that are orthogonal with respect to the distribution, is usually chosen for exponential convergence

[128]. Poor scalability of polynomial chaos is due to the tensor product of the basis functions.

However, anisotropic tensor products [129, 130] or anisotropic Smolyak cubature methods result

in improved scaling [131].

In this chapter, we consider elements of ∆ to be independent. However, in several applications

this assumption may not valid. For such applications, suitable transformation such as Rosenblatt

[132], Nataf [133] and Box-Cox [134] transformation can be applied to arrive at a set of inde-

pendent parameters. An overview of such techniques is described in the work by Elred et. al.

[135].

5.4 Robust Kalman filter

In Kalman filtering, state estimation involves two steps: a) model-based uncertainty propaga-

tion to obtain the prior state uncertainty, and b) incorporation of measurements to update the prior

to posterior state uncertainty by minimizing the error variance. With probabilistic uncertainty in

the system parameters, along with process noise, the propagation step becomes complicated. In

this chapter, we solve this by computing the mean and variance of the propagated states using

conditional expectations.

The new robust Kalman filtering algorithms, for uncertain DT and CT systems, are presented

next.

5.4.1 Discrete robust Kalman filter

Let us consider the DT model given by (5.1b) and (5.2) as

xk = A(∆)xk−1 +B(∆)wk−1, (5.11a)

yk = Cxk + nk. (5.11b)
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5.4.1.1 Uncertainty propagation

The uncertainty in xk(∆,w), the solution of (5.11a), is due to uncertainty in the initial condi-

tion x0, the uncertainty in the system parameters ∆, and the process noisewk. We will assume x0

and ∆ are random variables with given probability density functions. For simplicity, we assume

x0, ∆, andwk are statistically independent. It is noteworthy, that due to the uncertainty in the sys-

tem matrices, the state probability density function will not be Gaussian, even if x0 is Gaussian.

However, we restrict ourselves to characterizing the first two moments of xk(∆,w) as defined

below, since in this chapter we are focusing on Kalman filtering. Let us define

µk := E [xk(∆,w)] , and (5.12a)

Σk := E
[
(xk(∆,w)− µk) (xk(∆,w)− µk)

T
]
. (5.12b)

Consequently, the propagation equation forµk is given byµk = E [A(∆)x(∆)k−1]+E [B(∆)wk−1].

We use the conditional expectation with respect to ∆ to calculate the quantities in the previous

equation. For a given ∆, the propagation equations are similar to those in standard Kalman filter-

ing. Assuming that the posteriorsµ+
k−1 and Σ+

k−1 have no uncertainty, we can write the propagation

equation for conditional mean and variance as

µ−k (∆) = A(∆)µ+
k−1, (5.13a)

Σ−k (∆) = A(∆)Σ+
k−1A

T (∆) +B(∆)QBT (∆), (5.13b)

where µ+
k (∆) and Σ+

k (∆) are stochastic since they depend on ∆. The total mean and variance of

xk(∆) can be computed from the conditional mean and variance as

µ−k := E
[
µ−k (∆)

]
, (5.14a)

Σ−k := E
[
Σ−k (∆)

]
+ Var

(
µ−k (∆)

)
. (5.14b)
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With slight abuse of notation, we represent the conditional mean and variance as functions of

∆, i.e. µ−k (∆) and Σ−k (∆). Whereas the total mean and variance are represented without the

functional dependence, i.e. µ−k and Σ−k .

Since the posterior µ+
k−1 is independent of ∆, the total prior mean is calculated as

µ−k := E
[
µ−k (∆)

]
= E

[
A(∆)µ+

k−1

]
= Āµ+

k−1, (5.15)

where Ā := E [A(∆)]. The variance of conditional mean, Var
(
µ−k (∆)

)
, can be determined as

Var
(
µ−k (∆)

)
= E

[(
µ−k (∆)− µ−k

) (
µ−k (∆)− µ−k

)T]
= E

[(
A(∆)− Ā

) (
µ+
k−1µ

+
k−1

T
) (
A(∆)− Ā

)T]
. (5.16)

Therefore, the total prior variance follows from (5.13b), (5.14b), and (5.16) as

Σ−k := E
[
Σ−k (∆)

]
+ Var

(
µ−k (∆)

)
= E

[
A(∆)Σ+

k−1A
T (∆)

]
+ E

[
B(∆)QBT (∆)

]
+ E

[(
A(∆)− Ā

) (
µ+
k−1µ

+
k−1

T
) (
A(∆)− Ā

)T]
. (5.17)

5.4.1.2 Update

Since we have assumed the matrix C in the measurement model (5.11b) to be independent of

∆, we can simply follow the standard Kalman update equations. For the brevity of discussion, we

omit the step by step derivation of the well known Kalman gain and update equations, which can

be found in many textbooks, e.g. [97]. Once we have the propagated priors from equations (5.15)

and (5.17), the posteriors are given by

µ+
k = µ−k +Kk

(
yk −Cµ−k

)
, (5.18a)

Σ+
k = (I −KkC) Σ−k +KkRK

T
k , (5.18b)
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where yk is is the sensor measurement, andKk := Σ−kC
T [CΣ−kC

T+R]−1 is the optimal Kalman

gain to achieve an unbiased estimate with the minimum state error variance.

5.4.2 Continuous-Discrete robust Kalman filter

The continuous-discrete filter, also known as the hybrid Kalman filter, is more practical than

other filters as it is suitable for most physical dynamical systems that are governed by continuous

time ODEs, and sensor measurements are available only at discrete time instants. The system and

sensor equations follow from (5.1a) and (5.2) as

ẋ(t) = A(∆)x(t) +B(∆)w(t), (5.19a)

yk = Cxk + nk. (5.19b)

5.4.2.1 Uncertainty propagation

Determining the moments of x(t,∆,w) is nontrivial in this case, particularly due to ∆. This

can be shown by first defining mean and covariance as

µ(t) := E [x(t,∆,w)] , and (5.20a)

Σ(t) := E
[
(x(t,∆,w)− µ(t)) (x(t,∆,w)− µ(t))T

]
. (5.20b)

The propagation equation for µ(t) is given by

µ̇(t) = E [A(∆)x(∆, t)] + E [B(∆)w(t)] ,

which presents a challenge in solving the differential equation due to uncertain matrices A(∆)

and B(∆). Similar difficulty is faced in the propagation equation for Σ(t). We next present an

approach based on the polynomial chaos theory to determine the first two moments of x(t,∆,w).

As in the previous section, we adopt the formulation based on the conditional expectation with

respect to ∆. For a given ∆, we can write the propagation equation for conditional mean and
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variance as

µ̇(t,∆) = A(∆)µ(t,∆), (5.21a)

Σ̇(t,∆) = A(∆)Σ(t,∆) + Σ(t,∆)AT (∆)

+B(∆)QBT (∆), (5.21b)

Equations (5.21a) and (5.21b) are integrated using µ0 and Σ0 as the initial condition, which are

deterministic and define the uncertainty in the initial condition of the state. It is assumed to be

independent of ∆.

The total mean and variance of x(t,∆) can be computed as

µ(t) := E [µ(t,∆)] , (5.22a)

Σ(t) := E [Σ(t,∆)] + Var(µ(t,∆)). (5.22b)

Stochastic processes µ(t,∆) and Σ(t,∆) are expanded with polynomial chaos basis functions as

follows.

Polynomial chaos expansions: The expansion for µ(t,∆) follows from (5.10) as

µ̂(t,∆) =
N∑
i=0

µi(t)φi(∆) =

[
µ0(t) · · · µN(t)

]
Φ(∆)

= µ̃pcΦn(∆) = ΦT
n (∆)µpc, (5.23)

where,

µ̃pc :=

[
µ0(t) · · · µN(t)

]
∈ Rn(N+1),

µpc := vec (µ̃pc) ∈ Rn(N+1).

Since Σ(t,∆) ≥ 0, the stochastic process Σ(t,∆) is expanded using quadratic basis functions
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constructed from φi. We adopt the expansion presented in [124], i.e.

Σ̂(t,∆) = ΦT
n (∆)


Σ00 · · · Σ0N

...
...

ΣN0 · · · ΣNN

Φn(∆).

Since Σ̂(t,∆) is symmetric and Σ̂(t,∆) ≥ 0 , it follows that Σij = ΣT
ij = Σji ≥ 0. Therefore,

Σ̂(t,∆) can be expanded as

Σ̂(t,∆) =
∑
ij

Σij(t)φi(∆)φj(∆).

Moreover, we note that the quadratic basis functions, {φi(∆)φj(∆)}, are not linearly independent.

Therefore, the PC expansion for Σ̂(t,∆) can be effectively written as

Σ̂(t,∆) =
M∑
i=0

Σi(t)θi(∆) =
[
Σ0(t), · · · ,ΣM(t)

]
Θ(∆)

= (ΘT (∆)⊗ In)Σpc =: ΘT
n (∆)Σpc, (5.24)

where, M := 2(N − 1), 0 ≤ Σi(t) ∈ Rn×n and

Σpc :=

[
Σ0(t) · · · ΣM(t)

]T
∈ Rn(M+1)×n.

The basis functions θi(∆) are linearly independent polynomials chosen from quadratic terms re-

sulting from the expansion of
(
φ0(∆)+φ1(∆)+· · ·+φN(∆)

)2, i.e. θi(∆) are linearly independent
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basis functions selected from the following set



φ0(∆)φ0(∆)

2φ0(∆)φ1(∆)

...

2φN−1(∆)φN(∆)

φN(∆)φN(∆)


,

and,

Θ(∆) := [θ0(∆), θ1(∆), · · · , θM(∆)]T ∈ RM+1.

With this mean and variance approximation, the error equations in (5.21a) and (5.21b) are

eµ(t,∆) := ΦT
n (∆)µ̇pc −A(∆)ΦT

n (∆)µpc, and (5.25a)

eΣ(t,∆) := ΘT
n (∆)Σ̇pc −A(∆)ΘT

n (∆)Σpc

−ΘT
n (∆)ΣpcA

T (∆)−B(∆)QBT (∆). (5.25b)

The differential equations for µ̇i(t) and Σ̇i(t) are obtained by setting

E [eµ(t,∆)φi(∆)] = 0, for i = 0, · · · , N ;

E [eΣ(t,∆)θj(∆)] = 0, for j = 0, · · · ,M ;

(5.26)

resulting in

µ̇pc = Aµµpc , and Σ̇pc = FΣ +BΣ , (5.27)
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where,

Aµ := E
[
Φn(∆)ΦT

n (∆)
]−1 E

[
Φn(∆)A(∆)ΦT

n (∆)
]
,

FΣ := E
[
Θn(∆)ΘT

n (∆)
]−1×

E
[
Θn(∆)A(∆)ΘT

n (∆)Σpc + Θn(∆)ΘT
n (∆)ΣpcA

T (∆)
]
,

BΣ := E
[
Θn(∆)ΘT

n (∆)
]−1 E

[
Θn(∆)B(∆)QBT (∆)

]
.

Computation of the prior: Given the posteriors µ+(tk−1) and Σ+(tk−1), at time instant tk−1,

the evolution of the state uncertainty is determined by integrating (5.27) over [tk−1, tk] to arrive

at µ−(tk,∆) and Σ−(tk,∆), the conditional prior mean and the conditional prior variance of the

state. The total mean and covariance priors, i.e. µ−(tk) and Σ−(tk), are then determined from

(5.22).

Integration of (5.27) requires initial conditions µ+
pc(tk−1) and Σ+

pc(tk−1), which are determined

by projecting µ+(tk−1) and Σ+(tk−1) on the basis functions {φi(∆)}Ni=0, and {θi(∆)}Mi=0 respec-

tively. Noting that µ+(tk−1) and Σ+(tk−1) are ∆ independent, initial conditions µpc(tk−1) and

Σpc(tk−1) are given by

µ+
pc(tk−1) :=

µ+(tk−1)

0nN

 ,Σ+
pc(tk−1) :=

Σ+(tk−1)

0nM×n

 .
With these initial conditions, linear ODEs (5.27) can be integrated to calculate µ−pc(tk) and Σ−pc(tk)

at time tk.

Therefore, conditional mean and covariance priors at tk follow from (5.23) and (5.24) as

µ−(tk,∆) = ΦT
n (∆)µ−pc(tk),

Σ−(tk,∆) = ΘT
n (∆)Σ−pc(tk).
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The total mean and covariance priors µ−(tk) and Σ−(tk) are calculated using (5.22) as follows.

µ−(tk) = E
[
ΦT
n (∆)

]
µ−pc(tk),

Σ−(tk) = E
[
ΘT
n (∆)

]
Σ−pc(tk)

+ µ̃−
pc(tk)

(
Var (Φ(∆))

)(
µ̃−

pc(tk)
)T
,

where, Var (Φ(∆)) := E
[(

Φ(∆)−Φ
)(

Φ(∆)−Φ
)T], and Φ := E [Φ(∆)].

5.4.2.2 Update

Since the measurements are obtained at discrete time instants, we can use the Kalman update

equations from §5.4.1.2. The updated posteriors are given by

µ+(tk) = µ−(tk) +Kk

(
y(tk)−Cµ−(tk)

)
,

Σ+(tk) =
(
I −K(tk)C

)
Σ−(tk) +K(tk)RK

T (tk),

where, y(tk) is the sensor measurement, and

K(tk) := Σ−(tk)C
T [CΣ−(tk)C

T +R]−1.

5.5 Result

Performance of the proposed robust Kalman filter is tested with two cases of simulation: 1)

Case I: Initial mean, µ0 = [0 0]T , for checking steady state error, 2) Case II: Initial mean, µ0 6=

[0 0]T , for checking convergence rate with initial uncertainty.We compare the performance of the

filter in terms of the estimation accuracy characterized by the mean and standard deviation (SD) of

root mean squared (RMS) error, and the rate of convergence.
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5.5.1 Example I: Discrete robust Kalman filter

The proposed discrete robust Kalman filter discussed in §5.4.1 is applied to the example (5.29)

that was previously considered as a test problem in [104, 105].

xk =

0 −0.5

1 1 + δ

xk−1 +

−6

1

wk−1, (5.29a)

yk =

[
−100 10

]
xk + nk. (5.29b)

where δ is a uniformly distributed random parameter in [−0.3 0.3], and the variance of process

and measurement noise is assumed to be unity, i.e. Q = 1, R = 1.

We choose uniformly spaced 10 points in [−0.3 0.3] as samples for δ. Then, mean and standard

deviation of RMS error obtained for different realizations of the plant corresponding to different

values of δ, are considered as metrics for the estimation accuracy. We compare the performance

of the proposed filter with standard Kalman filter with nominal plant realization corresponding

to δ = 0. As claimed by the authors of [105], and verified by us, the filter presented in [105]

performs better than the one discussed in [104]. Therefore, herein, we compare the performance

of the proposed filter only with [105].

The simulation results for the proposed discrete robust Kalman filter, the nominal Kalman filter,

and the filter from [105], are shown in Fig. 5.1 and TABLE 5.1. In both simulation cases I and

II, the proposed robust Kalman filter has the least RMS error than the other filters, as shown in

TABLE 5.1.

Moreover, for case II as shown in Fig. 5.1, the proposed filter converges faster than the nominal

KF, and its convergence rate is comparable to the filter from [105]. We also note that the computa-

tional time required for the proposed filter is comparable to that of nominal KF and the filter from

[105].
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Figure 5.1: Mean and standard deviation of the RMS error with initial condition x0 = [20 20]T ,
for case II. Reprinted from [11]

Table 5.1: Comparison of RMS error in discrete time filters reprinted from [11]

Filter Algorithm
Case I Case II

Mean / SD Mean / SD

Ref.[105]
x1 2.7325 / 1.7518 3.4675 / 2.0216

x2 4.3049 / 2.9640 6.0837 / 3.5487

Nominal
KF

x1 0.4438 / 0.4136 2.4085 / 1.0595

x2 4.4418 / 4.1355 24.0821 / 10.5982

Proposed
Robust KF

x1 0.3182 / 0.2914 0.5666 / 0.4314

x2 3.1846 / 2.9114 5.6669 / 4.3099

87



5.5.2 Example II: Continuous-discrete robust Kalman filter

The proposed hybrid robust Kalman filter in §5.4.2 is applied to the example (5.30) and its

performance is compared with the nominal Kalman filter.

ẋ(t) =

0 −1 + δ

1 −0.5

x(t) +

−2

1

w(t), (5.30a)

yk =

[
−100 −100

]
x(tk) + n(tk). (5.30b)

where δ is uniformly distributed in the interval [−0.95 0.95], and the variances of process and

measurement noise are Q = 1 and R = 1. We use the similar performance metrics discussed in

the previous subsection.

Figure 5.2: Mean of the RMS error comparison with initial condition x0 = [3 3]T , for case II
reprinted from [11]

The proposed robust Kalman filter is 2 times more accurate than the nominal KF in steady state
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as shown in TABLE 5.2. Moreover, it shows faster convergence than the nominal KF as shown in

Fig.5.2. Again, we note that the computational time required for the proposed filter is comparable

to the nominal KF.

Table 5.2: Comparison of RMS error in hybrid filters reprinted from [11]

Filter Algorithm
Case I Case II

Mean / SD Mean / SD

Nominal
KF

x1 0.0223 / 0.0204 0.2052 / 0.1694

x2 0.0195 / 0.0211 0.2038 / 0.1695

Proposed
Robust KF

x1 0.0155 / 0.0092 0.1833 / 0.0783

x2 0.0137 / 0.0077 0.1822 / 0.0782

5.5.3 Example III: State estimation on longitudinal system of aircraft

Let us consider the longitudinal model of an aircraft [136]. The velocity V (ft/s), angle of

attack α(rad), pitch angle θ(rad), and pitch rate q(rad/s) constitute the states of the aircraft. The

inputs to the plant are engine thrust force F (lb) and elevator angle δe(deg). Therefore, the state

vector x, and control input vector u, are defined as

x :=



V

α

θ

q


, u :=

F
δe

 .

The governing ordinary differential equations of dynamics are non-linearly dependent on the states.

To make this plant amenable to the proposed robust Kalman filtering framework, we linearize the

non-linear plant about various trim or equilibrium points, discretize the differential equations, and

model the variation in linearized discrete plants as stochastic parameter dependent functions. We

discuss each one of these steps one by one below.
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5.5.3.1 Linearization

We linearize the non-linear aircraft model at various trim velocities. We consider steady-level

flight conditions, i.e. ẋ = 0, and θ − α = 0 at a trim point. The states x∗ and control inputs u∗ at

a trim point are calculated by minimization of the quadratic cost function ẋTWẋ for a given trim

velocity V∗, with diagonal weighting matrix

W := diag(1/100, 1, 1, 1),

and bounds on the control inputs

 103

−25

 ≤ u ≤
19× 103

25

 .
Therefore, for a specified trim velocity V∗, the linearized plant at trim states x∗ and control inputs

u∗ can be written as

˙̃x = Ã∗x̃+ B̃∗ũ, (5.31)

where x̃ := x−x∗, and ũ := u−u∗. The matrices Ã∗ and B̃∗ are Jacobian of dynamics equations

with respect to x and u respectively, evaluated at x∗ and u∗. All linearized plants are obtained at

a fixed altitude of 10, 000ft.

5.5.3.2 Discretization

The continuous time equation (5.31) is discretized assuming zero order hold for the control

inputs. Therefore, the discretized system is given by

x̃k = A∗x̃k−1 + B̂∗ũk−1, (5.32)
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where,

A∗ := exp(Ã∗Γ),

B̂∗ :=

(∫ Γ

0

exp(Ã∗τ)dτ

)
B̃∗,

and Γ is the sampling time interval. Since, at a trim point, we hold the control input constant, ũk−1

vanishes, and so does the second term on right hand side of (5.32).

However, we assume that the process noise enters the system through fluctuations in the el-

evator angle setting. Therefore, the linearized discrete plant with process noise can be written

as

x̃k = A∗x̃k−1 +B∗wk−1, (5.33)

where w is a scalar random variable corresponding to fluctuations in the elevator setting, and

B∗ := B̂∗

0

1

 .

5.5.3.3 Uncertainty modeling

For a specified trim velocity V∗, we get a pair of system matrices (A∗,B∗) in (5.33). These

matrices vary with different values of velocities. We model this variation by first defining a scaled

parameter ∆ as

∆ =
2V − Vmax − Vmin

Vmax − Vmin

,

where Vmax and Vmin are the maximum and minimum values of the aircraft velocities, and ∆ varies

uniformly in the interval [−1, 1].
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Next, we represent the uncertain matricesA(∆) andB(∆) as

A(∆) :=
N∑
i=0

Aiφi(∆), B(∆) :=
N∑
i=0

Biφi(∆), (5.34)

where φi(∆) are ith order Legendre polynomials [137], and the coefficient matrices Ai and Bi

are determined by least-square minimization or point collocation [138, 139]. Note that, here we

use Legendre polynomials as basis functions since they guarantee exponential convergence for

uniformly distributed random variables [137]. In general, any user defined [140] or data-driven

[141] basis functions can be used for this purpose.

The polynomial fit to the data obtained at each trim point using Legendre polynomials of order

up to N = 5 is shown in Fig. 5.3. The basis polynomials and coefficient matrices are listed in the

Appendix E.

In the following section, we apply the robust Kalman filtering framework outlined in section

5.4.1 to the system with uncertain matrices given by (5.34), and show a comparison of results.

5.5.3.4 Simulation results

Let us assume that C = I . Then, the state-space model (5.1) simplifies as

x̃k = A(∆)x̃k−1 +B(∆)wk−1, (5.35a)

ỹk = x̃k + nk, (5.35b)

where system matrices A(∆) and B(∆) are given by (5.34). We assume the process noise vari-

ance Q = 5 and sensor noise variance R = diag(10, 10−5, 10−5, 10−3), and the sampling interval

Γ = 0.1s.

The results obtained using section 5.4.1 are compared with the standard Kalman filter applied

to the nominal plant defined as

xk = Āxk−1 + B̄wk−1, (5.36)
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(a) Variation in elements of matrixA(∆).

(b) Variation in elements of matrixB(∆).

Figure 5.3: Variation in matrix elements with velocity. Red circles show data obtained each trim
point, and blue line shows the approximated function using Legendre polynomials.

where Ā := E [A(∆)], and B̄ := E [B(∆)]. Hereafter, we refer the standard Kalman filter (KF)

applied to the nominal plant (5.36) as the nominal KF.

We also compare the results with the existing robust Kalman filtering framework presented

in [104] which represents the uncertainty as norm bounded parameters, and refer it as the robust

KF[104].

For the purpose of simulation, we create a uniformly spaced grid of 20 points in the interval

[−1, 1] which serves as a set of samples of ∆. Estimation using different filtering techniques is

performed for Monte Carlo runs with different realizations of the system (5.35) corresponding to

different samples of ∆. Therefore, for each Monte Carlo run, we obtain a time sequence of the

error in estimated states calculated with respect to the corresponding reference trajectory. The
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(a) Case I (b) Case II

Figure 5.4: Mean and standard deviation (σ) of absolute estimation error over different Monte
Carlo runs. Solid lines show the mean, and shaded regions show ±1σ bound about the mean.

mean and standard deviation (σ) of absolute value of the estimation error calculated over different

Monte Carlo runs are considered as metrics for the estimation accuracy, and are showed in Fig.

5.4a and 5.4b.

The results are shown for two cases as follows. Case I: initial filter state is same as the true

initial state, shown in 5.4a. Case II: initial filter state is [0, 0, 0, 0]T , shown in 5.4b. The second

case helps us in comparing convergence rate of different filters. In both 5.4a and 5.4b, solid lines

show the mean values, and shaded region shows the ±1σ bound about the mean. The average of

mean error and standard deviation (SD) of error over all time steps, for different filters, is shown
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Table 5.3: Comparison of RMS error in discrete time filters

Filter Algorithm
Case I Case II

Mean / SD Mean / SD

Robust
KF[104]

x1 1.4089 / 1.2974 2.9997 / 1.1736

x2 0.0075 / 0.0064 0.0075 / 0.0063

x3 0.0089 / 0.0076 0.0089 / 0.0074

x4 0.0277 / 0.0212 0.0278 / 0.0210

Nominal
KF

x1 2.7998 / 2.7859 4.0470 / 2.0308

x2 0.0079 / 0.0073 0.0074 / 0.0064

x3 0.0070 / 0.0064 0.0066 / 0.0056

x4 0.0294 / 0.0241 0.0292 / 0.0232

Proposed
DT RKF

x1 0.6912 / 0.5677 2.2597 / 0.6199

x2 0.0020 / 0.0015 0.0020 / 0.0015

x3 0.0019/ 0.0014 0.0019 / 0.0014

x4 0.0267 / 0.0212 0.0267 / 0.0209

in Table 5.3.

From 5.4a, 5.4b, and Table 5.3, we observe that the section 5.4.1 has overall smaller estima-

tion error than both nominal KF and robust KF [104]. However, we observe that from 5.4b, the

convergence rates of all three filters considered herein are similar.

We also note that, the computation time required by the section 5.4.1 is comparable to that of

the nominal KF and the robust KF [104]. It appears that the expectation terms in the propagation

step of section 5.4.1 are to be evaluated at each time instant, which may be computationally ex-

pensive. However, as discussed in the Appendix D, it can be circumvented using vectorization of

the covariance equation which is more efficient.
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5.6 Conclusions of chapter

In this chapter, we proposed robust Kalman filter with probabilistic uncertainty in system pa-

rameters. Mean and variance of the uncertain system are propagated using conditional probability

and the polynomial chaos (PC) expansion framework. The proposed approach demonstrates bet-

ter performance in terms of estimation accuracy and convergence rate as compared with existing

methods, which makes it very attractive for state estimation of uncertain systems.
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6. CONCLUSION

In this research, we investigate the following three focal areas of UAV system design - model-

ing, control, and estimation.

Obtaining each and every parameter associated with the system to design a model is cumber-

some and time-consuming. Thus, we presented an approach to design and model the hybrid drone

rapidly and efficiently with combining mathematical model, experimental data, and the benefits of

softwares like CAD, SIMSCAPE, and SIMULINK.

This research mainly considers the wind rejecting controller, since gust disturbances are a

major concern for small UAVs. The first approach utilizes H2 optimal theory, which considers

disturbance factors on the designing controller. This method achieves better performance while

rejecting wind gusts compared to that of the conventional PID and the LQR controller. The second

approach optimizes PID gains with H2 optimal theory since PID control is the most commonly

used algorithm in onboard processors today. We showed that the proposed H2 optimal PID con-

troller sufficiently rejects the wind disturbance. This ability of the tuning method to reject these

disturbances makes it very attractive for designing PID controllers.

Finally, we considered nonlinear estimation and robust linear estimation. We named them as

Extended H2 filter and Robust Kalman filter, respectively. Extended H2 filter is implemented for

attitude estimation with Euler angles and quaternions. This work showed that the performance of

the proposed estimator is comparable to that of the EKF algorithm with computational efficiency.

These facts make the extended H2 filter an attractive alternative for small UAVs with low power

microprocessors. The robust Kalman filter is derived from probabilistic uncertainty in system

parameters. The mean and variance of the uncertain system are propagated using conditional

probability under the polynomial chaos (PC) expansion framework. This approach demonstrates

better performance in terms of estimation accuracy and convergence rate as compared with existing

methods.

97



REFERENCES

[1] DRONEII, “The drone market report 2019,” 2019 [Accessed: 10-Nov-2019]. https:

//www.droneii.com/project/drone-market-report.

[2] AIRBUS, “Vahana,” 2020 [Accessed: 25-Apr-2020]. https://www.airbus.com/

innovation/urban-air-mobility/vehicle-demonstrators/vahana.

html.

[3] Amazon, “Amazon hybrid drone,” 2020 [Accessed: 25-Apr-2020]. https://www.

amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011.

[4] LILIUM, “Lilium jet,” 2020 [Accessed: 25-Apr-2020]. https://lilium.com.

[5] A. F. Sciences, “Pav – passenger air vehicle,” 2020 [Accessed: 25-Apr-2020]. https:

//www.aurora.aero/pav-evtol-passenger-air-vehicle.

[6] B. H. Wang, D. B. Wang, Z. A. Ali, B. Ting Ting, and H. Wang, “An overview of various

kinds of wind effects on unmanned aerial vehicle,” Measurement and Control, vol. 52, no. 7-

8, pp. 731–739, 2019.

[7] S. Kim, N. Das, and R. Bhattacharya, “Modeling and optimal control of hybrid uavs with

wind disturbance,” arXiv preprint arXiv:2006.11192, 2020.

[8] S. Kim, V. Deshpande, and R. Bhattacharya, “H2 optimized pid control of quad-copter

platform with wind disturbance,” arXiv preprint arXiv:2003.13801, 2020.

[9] S. Kim, V. Tadiparthi, and R. Bhattacharya, “Nonlinear attitude estimation for small uavs

with low power microprocessors,” in 2020 American Control Conference (ACC), pp. 2593–

2598, 2020.

[10] S. Kim, V. Tadiparthi, and R. Bhattacharya, “Extended h2 filtering for attitude estimation in

low power microprocessors,” arXiv preprint arXiv:2006.14385, 2020.

98

https://www.droneii.com/project/ drone-market-report
https://www.droneii.com/project/ drone-market-report
https://www.airbus.com/innovation/urban-air-mobility /vehicle-demonstrators/vahana.html
https://www.airbus.com/innovation/urban-air-mobility /vehicle-demonstrators/vahana.html
https://www.airbus.com/innovation/urban-air-mobility /vehicle-demonstrators/vahana.html
https://www.amazon.com/Amazon-Prime-Air/b?ie= UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie= UTF8&node=8037720011
https://lilium.com
https://www.aurora.aero/pav-evtol-passenger-air-vehicle
https://www.aurora.aero/pav-evtol-passenger-air-vehicle


[11] S. Kim, V. M. Deshpande, and R. Bhattacharya, “Robust kalman filtering with probabilistic

uncertainty in system parameters,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 295–300,

2021.

[12] “Unmanned Systems Integrated Roadmap 2017-2042.” Office of the Under Secretary of

Defense for Acquisition and Sustainment, 2018.

[13] S. R. R. Singireddy and T. U. Daim, “Technology roadmap: Drone delivery–amazon prime

air,” in Infrastructure and Technology Management, pp. 387–412, Springer, 2018.

[14] “Unmanned aircraft systems roadmap 2010–2035.” US Army UAS Center of Excellence,

Fort Rucker, Alabama, USA, 2010.

[15] M. Mazur, A. Wisniewski, and J. McMillan, “Clarity from above: Pwc global report on the

commercial applications of drone technology,” Warsaw: Drone Powered Solutions, Price-

Water house Coopers, 2016.

[16] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Oth-

man, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (uavs): A survey on civil

applications and key research challenges,” IEEE Access, vol. 7, pp. 48572–48634, 2019.

[17] C. F. Liew, D. DeLatte, N. Takeishi, and T. Yairi, “Recent developments in aerial robotics:

A survey and prototypes overview,” arXiv preprint arXiv:1711.10085, 2017.

[18] W. Geiger, J. Bartholomeyczik, U. Breng, W. Gutmann, M. Hafen, E. Handrich, M. Huber,

A. Jackle, U. Kempfer, H. Kopmann, et al., “Mems imu for ahrs applications,” in 2008

IEEE/ION Position, Location and Navigation Symposium, pp. 225–231, IEEE, 2008.

[19] K. W. Eure, C. C. Quach, S. L. Vazquez, E. F. Hogge, and B. L. Hill, “An application of uav

attitude estimation using a low-cost inertial navigation system,” NASA, 2013.

[20] D. Gebre-Egziabher, R. C. Hayward, and J. D. Powell, “Design of multi-sensor attitude

determination systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40,

no. 2, pp. 627–649, 2004.

99



[21] B. Kada, K. Munawar, M. Shaikh, M. Hussaini, and U. Al-Saggaf, “Uav attitude estimation

using nonlinear filtering and low-cost mems sensors,” IFAC-PapersOnLine, vol. 49, no. 21,

pp. 521–528, 2016.

[22] D. Weibel, D. Lawrence, and S. Palo, “Small unmanned aerial system attitude estimation for

flight in wind,” Journal of Guidance, Control, and Dynamics, vol. 38, no. 7, pp. 1300–1305,

2015.

[23] H. Bolandi, M. Rezaei, R. Mohsenipour, H. Nemati, and S. M. Smailzadeh, “Attitude control

of a quadrotor with optimized PID controller,” Intelligent Control and Automation, vol. 04,

no. 03, pp. 335–342, 2013.

[24] A. Dorobantu, A. Murch, B. Mettler, and G. Balas, “System identification for small, low-

cost, fixed-wing unmanned aircraft,” Journal of Aircraft, vol. 50, no. 4, pp. 1117–1130,

2013.

[25] A. S. Saeed, A. B. Younes, C. Cai, and G. Cai, “A survey of hybrid unmanned aerial vehi-

cles,” Progress in Aerospace Sciences, vol. 98, pp. 91–105, 2018.

[26] B. Yuksek, A. Vuruskan, U. Ozdemir, M. Yukselen, and G. Inalhan, “Transition flight mod-

eling of a fixed-wing vtol uav,” Journal of Intelligent & Robotic Systems, vol. 84, no. 1-4,

pp. 83–105, 2016.

[27] C. Hancer, K. T. Oner, E. Sirimoglu, E. Cetinsoy, and M. Unel, “Robust hovering control

of a quad tilt-wing UAV,” in IECON 2010 - 36th Annual Conference on IEEE Industrial

Electronics Society, IEEE, nov 2010.

[28] MATLAB, “Simscape,” 2020 [Accessed: 25-Marv-2020]. https://www.mathworks.

com/help/pdf_doc/physmod/simscape/simscape_gs.pdf.

[29] Y. Li and S. Song, “A survey of control algorithms for quadrotor unmanned helicopter,”

in 2012 IEEE Fifth International Conference on Advanced Computational Intelligence

(ICACI), pp. 365–369, IEEE, 2012.

100

https://www.mathworks.com/help/pdf_doc/physmod/simscape/simscape_gs.pdf
https://www.mathworks.com/help/pdf_doc/physmod/simscape/simscape_gs.pdf


[30] A. L. Salih, M. Moghavvemi, H. A. Mohamed, and K. S. Gaeid, “Modelling and pid con-

troller design for a quadrotor unmanned air vehicle,” in 2010 IEEE International Conference

on Automation, Quality and Testing, Robotics (AQTR), vol. 1, pp. 1–5, IEEE, 2010.

[31] N. Xuan-Mung and S.-K. Hong, “Improved altitude control algorithm for quadcopter un-

manned aerial vehicles,” Applied Sciences, vol. 9, no. 10, p. 2122, 2019.

[32] G. Bo, L. Xin, Z. Hui, and W. Ling, “Quadrotor helicopter attitude control using cascade

pid,” in 2016 Chinese Control and Decision Conference (CCDC), pp. 5158–5163, IEEE,

2016.

[33] P. Wang, Z. Man, Z. Cao, J. Zheng, and Y. Zhao, “Dynamics modelling and linear con-

trol of quadcopter,” in 2016 International Conference on Advanced Mechatronic Systems

(ICAMechS), pp. 498–503, IEEE, 2016.

[34] M. Schreier, “Modeling and adaptive control of a quadrotor,” in 2012 IEEE International

Conference on Mechatronics and Automation, pp. 383–390, IEEE, 2012.

[35] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive control of quadrotor uavs: A

design trade study with flight evaluations,” IEEE Transactions on Control Systems technol-

ogy, vol. 21, no. 4, pp. 1400–1406, 2012.

[36] S. Islam, P. X. Liu, and A. El Saddik, “Robust control of four-rotor unmanned aerial vehicle

with disturbance uncertainty,” IEEE Transactions on Industrial Electronics, vol. 62, no. 3,

pp. 1563–1571, 2014.

[37] H. Liu, X. Wang, and Y. Zhong, “Quaternion-based robust attitude control for uncertain

robotic quadrotors,” IEEE Transactions on Industrial Informatics, vol. 11, no. 2, pp. 406–

415, 2015.

[38] M. Drela and H. Youngren, “Athena vortex lattice,” Software Package, Ver, vol. 3, 2004.

[39] T. Melin, “A vortex lattice matlab implementation for linear aerodynamic wing applica-

tions,” 2000.

101



[40] A. Deperrois, “Xflr5 analysis of foils and wings operating at low reynolds numbers,” Guide-

lines for XFLR5, 2009.

[41] M. S. Selig, “Uiuc airfoil data site,” 1996.

[42] R. M. Cummings, W. H. Mason, S. A. Morton, and D. R. McDaniel, Applied computational

aerodynamics: A modern engineering approach, vol. 53. Cambridge University Press, 2015.

[43] D. Anderson, I. Graham, and B. Williams, “Aerodynamics,” in Flight and Motion, pp. 14–

19, Routledge, 2015.

[44] J. M. Seddon and S. Newman, Basic helicopter aerodynamics, vol. 40. John Wiley & Sons,

2011.

[45] A. Propellers, “Apc performance data,” 2020 [Accessed: 25-Marv-2020]. https://www.

apcprop.com/technical-information/file-downloads/.

[46] S. Kim, V. Tadiparthi, and R. Bhattacharya, “Nonlinear attitude estimation for small uavs

with low power microprocessors,” arXiv preprint arXiv:2003.13802, 2020.

[47] G.-R. Duan and H.-H. Yu, LMIs in control systems: analysis, design and applications. CRC

Press, 2013.

[48] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined convex programming,”

2009 [Accessed: 25-Marv-2020]. http://cvxr.com/cvx/.

[49] D.-W. Gu, P. Petkov, and M. M. Konstantinov, Robust control design with MATLAB®.

Springer Science & Business Media, 2005.

[50] P. Apkarian, H. D. Tuan, and J. Bernussou, “Continuous-time analysis, eigenstructure as-

signment, and h/sub 2/synthesis with enhanced linear matrix inequalities (lmi) characteriza-

tions,” IEEE Transactions on Automatic Control, vol. 46, no. 12, pp. 1941–1946, 2001.

[51] S. Boyd, V. Balakrishnan, E. Feron, and L. ElGhaoui, “Control system analysis and synthe-

sis via linear matrix inequalities,” in 1993 American Control Conference, pp. 2147–2154,

IEEE, 1993.

102

https://www.apcprop.com/technical-information/file-downloads/
https://www.apcprop.com/technical-information/file-downloads/
http://cvxr.com/cvx/


[52] A. Zulu and S. John, “A review of control algorithms for autonomous quadrotors,” arXiv

preprint arXiv:1602.02622, 2016.

[53] J. G. Ziegler, N. B. Nichols, et al., “Optimum settings for automatic controllers,” Trans.

ASME, vol. 64, no. 11, 1942.

[54] Z. He and L. Zhao, “A simple attitude control of quadrotor helicopter based on ziegler-

nichols rules for tuning pd parameters,” The Scientific World Journal, vol. 2014, 2014.

[55] S. Mukhopadhyay, “Pid equivalent of optimal regulator,” Electronics Letters, vol. 14, no. 25,

pp. 821–822, 1978.

[56] L. M. Argentim, W. C. Rezende, P. E. Santos, and R. A. Aguiar, “Pid, lqr and lqr-pid on

a quadcopter platform,” in 2013 International Conference on Informatics, Electronics and

Vision (ICIEV), pp. 1–6, IEEE, 2013.

[57] F. Alkhoori, S. B. Safwan, Y. Zweiri, M. N. Sahinkaya, and L. Seneviratne, “Pid-lqr con-

trollers for quad-rotor hovering mode,” in 2017 4th International Conference on Systems

and Informatics (ICSAI), pp. 50–54, IEEE, 2017.

[58] C. A. Smith and A. B. Corripio, Principles and practice of automatic process control, vol. 2.

Wiley New York, 1997.

[59] R. Garcia, F. Rubio, and M. Ortega, “Robust pid control of the quadrotor helicopter,” IFAC

Proceedings Volumes, vol. 45, no. 3, pp. 229–234, 2012.

[60] T. Jiřinec, “Stabilization and control of unmanned quadcopter,” 2011. Thesis, Czech Tech-

nical University in Prague.

[61] L. Canetta, G. Mattei, and A. Guanziroli, “Exploring commercial uav market evolution

from customer requirements elicitation to collaborative supply network management,” in

2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC),

pp. 1016–1022, IEEE, 2017.

103



[62] G. Cai, J. Dias, and L. Seneviratne, “A survey of small-scale unmanned aerial vehicles: Re-

cent advances and future development trends,” Unmanned Systems, vol. 2, no. 02, pp. 175–

199, 2014.

[63] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proceedings of the

IEEE, vol. 86, no. 8, pp. 1640–1659, 1998.

[64] H. Chang, L. Xue, W. Qin, G. Yuan, and W. Yuan, “An integrated mems gyroscope array

with higher accuracy output,” Sensors, vol. 8, no. 4, pp. 2886–2899, 2008.

[65] B. Fan, Q. Li, and T. Liu, “How magnetic disturbance influences the attitude and heading

in magnetic and inertial sensor-based orientation estimation,” Sensors, vol. 18, no. 1, p. 76,

2018.

[66] H. J. Luinge and P. H. Veltink, “Measuring orientation of human body segments using minia-

ture gyroscopes and accelerometers,” Medical and Biological Engineering and computing,

vol. 43, no. 2, pp. 273–282, 2005.

[67] K. Tuck, “Tilt sensing using linear accelerometers,” Freescale semiconductor application

note AN3107, 2007.

[68] T. Ozyagcilar, “Implementing a tilt-compensated ecompass using accelerometer and mag-

netometer sensors,” Freescale semiconductor, AN, vol. 4248, 2012.

[69] M. Pedley, “Tilt sensing using a three-axis accelerometer,” Freescale semiconductor appli-

cation note, vol. 1, pp. 2012–2013, 2013.

[70] I. Frosio, F. Pedersini, and N. A. Borghese, “Autocalibration of mems accelerometers,” IEEE

Transactions on Instrumentation and Measurement, vol. 58, no. 6, pp. 2034–2041, 2008.

[71] D. Eberly, “Rotation representations and performance issues,” 2002.

[72] S. Han and J. Wang, “A novel method to integrate imu and magnetometers in attitude and

heading reference systems,” The Journal of Navigation, vol. 64, no. 4, pp. 727–738, 2011.

104



[73] M. G. Earl and R. D’Andrea, “Real-time attitude estimation techniques applied to a four

rotor helicopter,” in 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE

Cat. No. 04CH37601), vol. 4, pp. 3956–3961, IEEE, 2004.

[74] C. W. Kang and C. G. Park, “Euler angle based attitude estimation avoiding the singularity

problem,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 2096–2102, 2011.

[75] A. Janota, V. Šimák, D. Nemec, and J. Hrbček, “Improving the precision and speed of euler
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APPENDIX A

EULER ANGLE ATTITUDE KINEMATICS

The attitude matrix in terms of an Euler angle sequence is formed in a straightforward way

[142, 143] as:

[Cijk(ψ, θ, φ)] = [Ck(φ)][Cj(θ)][Ci(ψ)] (A.1)

Therefore, the attitude matrix in terms of an Euler angle sequence 3-2-1 is given by:

[C321(φ, θ, ψ)] = [C1(φ)][C2(θ)][C3(ψ)] (A.2)

The kinematic expression can be obtained by projecting the angular rates along the axes of the

reoriented frame as:

ω = [φ̇, 0, 0]T + [C1(φ)][0, θ̇, 0]T + [C1(φ)][C2(θ)][0, 0, ψ̇]T (A.3)

Implementing the matrix multiplication and collecting the angular rates in a column array gives

the results as:

B =


1 0 − sin(θ)

0 cosφ cos θ sinφ

0 − sinφ cosφ cos θ

 (A.4)
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This matrix B can be inverted to produce the attitude influence matrix T that satisfies [φ̇, θ̇, ψ̇]T =

Tω as:

T =


1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 (A.5)

This matrix T transforms the angular rate vector from body frame to the inertial frame. This will

be used in gyroscope sensor modeling.
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APPENDIX B

LINEAR APPROXIMATION

A linear approximation is implemented at a nominal operating point in nonlinear system. De-

riving:

f(x(t),u(t),w(t), t) ≈ f(x0,u0,w0, t) (B.1)

+
∂f(x,u, t)

∂x

∣∣∣∣∣
nominal

x(t) +
∂f(x,u, t)

∂u

∣∣∣∣∣
nominal

u(t) +
∂f(x,u, t)

∂w

∣∣∣∣∣
nominal

w(t) + H.O.T.

Jacobian matrix of the system is defined as:

A :=
∂f(x,u, t)

∂x

∣∣∣∣∣
nominal

,Bu :=
∂f(x,u, t)

∂u

∣∣∣∣∣
nominal

,Bw :=
∂f(x,u, t)

∂w

∣∣∣∣∣
nominal

Then the linearization of equation (4.40) is:

ẋ(t) = f(x(t),u(t),w(t), t) (B.2)

≈ f(x0,u0, t) +Ax(t) +Buu(t) +Bww(t)

The measurement model (4.41) can be similarly approximated as:

h(x(t),w(t), t) ≈ h(x0,w0, t) +
∂h(x, t)

∂x

∣∣∣∣∣
nominal

x(t) +
∂h(x, t)

∂v

∣∣∣∣∣
nominal

w(t) + H.O.T.

Jacobian matrix of the measurement is defined as:

Cy :=
∂h(x, t)

∂x

∣∣∣∣∣
nominal

,Dw :=
∂h(x, t)

∂w

∣∣∣∣∣
nominal
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The linearized measurement equation (4.41) can then be written as:

y(t) = h(x(t),w(t), t) (B.3)

≈ h(x0,w0, t) +Cyx(t) +Dw(t)w(t)

The linear system, about the nominal operating point, is therefore:

ẋ = Ax+Buu+Bww (B.4a)

y = Cyx+Dww (B.4b)
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APPENDIX C

DERIVATION OF ERROR MEASUREMENT EQUATION WITH THE ACCELEROMETER

AND MAGNETOMETER

The measurement equations of quaternion is rewritten with (4.41) as

y = h(q̄) +w (C.1)

with y is the actual measurement, w is the noise of the sensor and

h(q̄) = CB
I (q̄) Iv (C.2)

= CB
B̂

(δθ) CB̂
I (ˆ̄q) Iv (C.3)

where Iv is [g h]T in the inertial frame.

The error measurement equations are defined as the subtraction between true measurement and

estimation estimation as:

ỹ = y − ŷ = (CB
I (q̄)−CB̂

I (ˆ̄q)) Iv (C.4)

substituting the definition q̄ as q̄ = δq̄ ⊗ ˆ̄q and the properties of the rotational matrix [82] lead to:

CB
I (q̄) = CB

B̂
(δq̄) ·CB̂

I (ˆ̄q) (C.5)

CB
B̂

(δq̄) = I − |δθ × |. (C.6)

Substituting the result equations above in the part of the error measurement equation (4.56) lead
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to:

CB
I (q̄)−CB̂

I (ˆ̄q) = CB
B̂

(δq̄) ·CB̂
I (ˆ̄q)−CB̂

I (ˆ̄q) (C.7)

= (CB
B̂

(δq̄)− I3×3) ·CB̂
I (q̂) (C.8)

= −|δθ × | ·CB̂
I (q̂) (C.9)

Then, the error measurement (4.56) is rewritten as:

ỹ = −|δθ × | ·CB̂
I (q̂)vn + nm (C.10)

= |CB̂
I (q̂)vn × |δθ (C.11)

=

[
|CB̂

I (q̂)vn × | 0

]
·

δθ
δb

+ nm (C.12)

Therefore, the final measurement equation of error system with accelerometer and magnetometer

model can be written as the following nonlinear equation:

ỹ = h(x̃,w, t) = CB̂
I (q̂)

g
h

+Dww(t) (C.13)

where,

CB
I (q̂) =

[
Cacc(ˆ̄q) Cmag(q̂)

]
,Dw =

I3×3 03×3

03×3 I3×3


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APPENDIX D

EFFICIENT IMPLEMENTATION OF ALGORITHM

Consider the propagation equation of the covariance matrix.

Σ−k = E
[
A(∆)Σ+

k−1A
T (∆)

]
+ E

[
B(∆)QBT (∆)

]
+ E

[(
A(∆)− Ā

) (
µ+
k−1µ

+
k−1

T
) (
A(∆)− Ā

)T]
.

Applying vectorization operator vec (·) on both sides of the equation, and using the following

identity

vec (XY Z) = (ZT ⊗X)vec (Y ) ,

where ⊗ denotes the Kronecker product, we get,

vec
(
Σ−k
)

= E [A(∆)⊗A(∆)] vec
(
Σ+
k−1

)
+ E [B(∆)⊗B(∆)] vec (Q)

+ E
[(
A(∆)− Ā

)
⊗
(
A(∆)− Ā

)]
vec
(
µ+
k−1µ

+
k−1

T
)
.

Here, we made use of the fact that vec (·) and E [·] are linear operators, thus, their order can be

interchanged.

Note that the expectation terms in the previous equation are decoupled from the time depen-

dent quantities Σ+
k−1 and µ+

k−1. The terms involving expectation operator E [A(∆)⊗A(∆)],

E [B(∆)⊗B(∆)] vec (Q), and E
[(
A(∆)− Ā

)
⊗
(
A(∆)− Ā

)]
are constant, and therefore,

can be computed once and stored at the time of initialization of the algorithm.

Σ−k can be recovered using reshaping operation e.g. reshape function in MATLAB [144], i.e.

Σ−k = reshape(vec
(
Σ−k
)
, nx, nx).

118



APPENDIX E

LEGENDRE POLYNOMIALS AND MATRIX COEFFICIENTS USED IN EQUATION (5.34)

Legendre polynomials are listed below as

φ0 = 1, φ1 = ∆, φ2 =
3∆2

2
− 1

2
, φ3 =

5∆3

2
− 3∆

2
,

φ4 =
35∆4

8
− 15∆2

4
+

3

8
, φ5 =

63∆5

8
− 35∆3

4
+

15∆

8
.

Matrix coefficients are listed below as

A0 =



0.99859 1.9915 −3.2147 −0.099983

−1.6944e− 05 0.89379 2.7715e− 05 0.082505

7.5606e− 08 −0.015024 1 0.09321

2.2233e− 06 −0.28728 −2.4322e− 06 0.86292


, B0 =



0.024841

−0.0012092

−0.0011287

−0.02197



A1 =



−0.00012005 3.4025 0.00018397 0.26345

1.3701e− 05 −0.042934 −2.2214e− 05 −0.003595

−6.2517e− 09 −0.010128 4.7948e− 09 −0.0025533

−2.0189e− 07 −0.18937 2.0112e− 07 −0.051739


, B1 =



0.022098

−0.0007925

−0.00081333

−0.015641



A2 =



−0.0002975 0.76095 0.00047992 0.0099795

−5.4693e− 06 −0.0010208 8.8496e− 06 −0.00010568

6.8907e− 09 −0.0016953 −5.587e− 09 −6.3734e− 05

2.0393e− 07 −0.030385 −2.2167e− 07 −0.0014213


, B2 =



0.0018711

−8.0961e− 05

−9.7138e− 05

−0.0017834


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A3 =



0.00011094 −0.32883 −0.00017664 −0.0081085

1.7194e− 06 0.00048332 −2.7823e− 06 3.9689e− 05

−6.3842e− 09 0.00050403 5.1768e− 09 4.3726e− 05

−1.889e− 07 0.010049 2.0538e− 07 0.0010103


, B3 =



−0.00015495

2.1443e− 06

1.5443e− 06

4.1653e− 05



A4 =



−2.4463e− 05 0.25734 3.7062e− 05 0.0097415

−4.7831e− 07 −0.00038088 7.7621e− 07 −1.0804e− 05

5.1463e− 09 −0.00038504 −4.1728e− 09 −3.3233e− 05

1.5228e− 07 −0.0074921 −1.6556e− 07 −0.00076407


, B4 =



−2.6141e− 05

−3.5554e− 07

−2.6309e− 07

−3.9151e− 06



A5 =



1.9842e− 07 −0.14268 1.0907e− 06 −0.0059824

1.1622e− 07 0.00021464 −1.8981e− 07 2.6854e− 06

−2.8654e− 09 0.00021385 2.3232e− 09 1.8278e− 05

−8.479e− 08 0.0041597 9.2178e− 08 0.00042068


, B5 =



1.2021e− 05

1.9925e− 07

1.4654e− 07

2.1809e− 06


.
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