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ABSTRACT

Ductile fracture involving nucleation, growth and coalescence of microscale voids limits the

manufacturability and mechanical performance of a variety of structural materials. This phe-

nomenon is affected by length-scales arising from the material microstructure, the geometry of

deformation and the loading condition. These length-scales in turn interact and evolve during

the deformation process, resulting in often unknown and counterintuitive subsequent fracture pro-

cesses. The aim of this dissertation is to understand how the nucleation and growth of macroscopic

cracks in ductile materials depend on these evolving length-scales. Such an understanding enables

microstructure informed prediction of ductile fracture and design of fracture resistant material mi-

crostructures. The microstructure of a variety of structural metals and alloys can be idealized as

ductile matrix with randomly distributed inclusions. The size, spacing and volume fraction of these

inclusions introduce microstructure-based length-scales. To investigate the micromechanism(s) of

inclusion driven ductile fracture and its implications on fracture toughness of the material, a se-

ries of microstructure-based finite element calculations are carried out. Several features of crack

growth behavior and dependence of fracture toughness on microstructural and material parameters

observed in experiments, naturally emerge in these calculations. The results of these calculations

also provide guidelines for microstructural engineering to increase fracture toughness. For exam-

ple, the results show that for a material with small inclusions, increasing the mean inclusion spacing

has a greater effect on fracture toughness than for a material with large inclusions. The pressing

need of our time to decrease anthropogenic emissions of greenhouse gasses requires the use of high

strength, fracture resistant structural materials such as advanced dual-phase steels to reduce vehicle

weight and emissions. However, as the strength of dual-phase steels increases, the steel becomes

more prone to ductile fracture under bending dominated manufacturing processes. Thus, the effect

of length-scales induced by bending, intended dual-phase (ferrite and martensite) microstructure,

and size and location of unintended inclusions on the bendability of dual-phase steels are quan-

tified through microstructure-based finite element calculations. Here as well, several features of
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ductile fracture of dual-phase steels under bending observed in experiments, naturally emerge in

these calculations. The results of these calculations show that efforts to improve the bendability

of advanced dual-phase steels must focus on improving the properties of the softer ferrite phase.

Furthermore, supervised machine learning is utilized to understand the effects of uncertainty as-

sociated with both, the intended and the unintended microstructural features, on the bendability of

the dual-phase steels. Another set of calculations aim at investigating the potential of low-density

micro-architectured metallic materials to outperform the high fracture toughness of natural mate-

rials with density less than water. The results show that it is possible to design micro-architectured

metallic materials that possess an exceptional combination of high strength and fracture toughness

at low densities that no other existing lightweight materials can offer.
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1. INTRODUCTION

Ductile fracture of metallic materials limits the performance, safety, reliability and manufac-

turability of various engineering products, components and structures. An engineering product, for

example, a car, exhibits different structure at different length-scales; and the advanced materials

used in structural elements of a car also exhibit structure on more than one length-scale, Fig. 1.1.

The interlacing of structures at various length-scales results in stress/strain gradients that greatly

affect the process of ductile fracture. Also, these structures at various length-scales tend to evolve

with progressive deformation. For example, the deformation fields induced by structural geometry

or boundary conditions can produce substantial microstructural modifications resulting in often

unknown and counterintuitive subsequent fracture processes, Fig. 1.2. Modeling fracture and de-

signing fracture resistant material microstructures thus requires bridging the field of mechanics

of materials and materials science to understand how the nucleation and growth of macroscopic

cracks depend on the interlacing of structures and their evolution at various length-scales. The

ability to model nucleation and growth of macroscopic cracks will also provide the basis for as-

sessing the reliability of components as well as the product quality in a variety of manufacturing

processes.

Structural materials are one of the most technologically important materials, enabling tech-

nological breakthroughs in a variety of fields, such as energy, transportation, and infrastructure.

There is also a growing demand to design and discover more fracture resistant, high strength,

structural materials. This is driven by the technological need of lightweight structures for weight-

critical products, such as aircrafts and long-haul trucks, and to decrease emissions from automo-

biles [15–18]. Structural materials with high density-normalized strength – e.g. Al-Li alloys, β-Ti

alloys, Mg alloys, and Advanced High Strength Steels – are some of the most attractive candi-

date materials for lightweight structures [19–26]. However, all of these materials suffer from poor

room temperature fracture resistance, which limits the performance, reliability and manufactura-

bility of their components [27–31]. The past few decades have seen rapid advances in material
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Figure 1.1: Schematic showing a car, body in white (at a length-scale of meters), generic complex
heterogeneous metallic material used in the structural components (at a length-scale of millimeters)
and the microstructure of the same generic material (at a length-scale of microns).

Figure 1.2: Schematic of plastic strain, ε̄pl, gradient arising from: geometry of deformation (3-
point bending), local boundary conditions (notched sheet), and evolving multiphase microstruc-
ture, e.g. void nucleation and deformation-induced phase transformation.

design methodologies to achieve a targeted performance metric [32–46]. But there are relatively

fewer efforts aimed at designing high strength, fracture resistant materials [47–52]. This is largely

due to the complex deformation mechanisms and microstructures of advanced structural materials.

Understanding fracture in these advanced materials remains an outstanding grand challenge.

Classical fracture mechanics has been an enormously successful engineering theory. However,
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several significant issues remain that fall outside its scope, examples of which include: crack nu-

cleation, and circumstances where the singular fields do not encompass the fracture process zone.

Furthermore, in ductile multiphase materials, for example, advanced high strength steels, a loss

of stress carrying capacity in the reinforcing phase due to void nucleation or deformation-induced

phase transformation, Fig. 1.2, greatly affect the strain hardening response of the material and leads

to a breakdown in scale separation [53], making it very challenging to mathematically represent

the multiphase material as an “effective homogenized media” [54,55]. These are just two example

of additional mechanics related challenges that are posed by advanced structural materials. Un-

derstanding crack nucleation and crack growth resistance, in these advanced structural materials

pose exciting Mechanics and Materials Science related issues. Following this, the main aim of this

dissertation is to transform the field of classical fracture mechanics from the notion of structure→

fracture to structure→ microstructure→ fracture, and provide a basis for designing more fracture

resistant material microstructures.

Ductile fracture of metals and alloys containing heterogeneities such as particulates and pre-

cipitates, generally initiates at the heterogeneities. Subsequently, the damage propagates into the

matrix by mechanisms such as void growth leading to void coalescence and nucleation of a macro-

scopic cracks. Experimental studies on ductile fracture have shown strong connections between the

microstructural features, such as shape, size or spatial distribution of second phase particles, and

damage nucleation and growth [56–60]. Computational studies have also been conducted to study

elastic-plastic deformation and ductile fracture of heterogeneous materials [48, 61–79]. The com-

putational studies can be divided into two categories: phenomenological and microstructure-based.

In phenomenological fracture models, macroscopic experimental data are obtained and a damage

evolution criteria is directly fit to the data. On the other hand, microstructure-based fracture model-

ing provides a direct microstructure-fracture connection. However, these studies have been largely

limited to 2D or 3D representative volume elements of the microstructures under idealized peri-

odic boundary conditions. There is a need to model ductile fracture in heterogeneous materials

under more realistic boundary and loading conditions in order to better understand the interaction
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of length-scales originating from the geometry/boundary conditions and material microstructure.

(a)

(b)

Figure 1.3: 3D calculations of ductile fracture under mode I plane strain, small scale yielding
conditions for a progressively cavitating solid with discretely modeled void nucleating second
phase particles or inclusions, reprinted from [1]. (a) Contours of void volume fraction f on three
parallel planes through the thickness for an inclusion volume fraction n=0.024 and an inclusion
volume fraction n=0.143. (b) Variation of the parameter C = JIC/(σ0l0) (fracture toughness
normalized with initial yield strength and mean inclusion spacing) with inclusion volume fraction
n.

The microstructure of a variety of structural metals and alloys can be idealized as ductile matrix
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with randomly distributed inclusions. The size, spacing and volume fraction of these inclusions

introduce microstructure-based length-scales. Several attempts have been made in the past to cor-

relate material microstructural parameters to materials fracture toughness for such structural mate-

rials. For example, in Fig. 1.3 [1], three dimensional calculations of ductile fracture under mode I

plane strain, small scale yielding conditions for solids containing a distribution of inclusions were

carried out. It was shown that the fracture toughness normalized by the mean inclusion spacing

depends on the inclusion volume fraction for small inclusion volume fractions whereas for larger

inclusion volume fractions it does not depend on the inclusion volume fraction. This raises several

fundamental questions associated with inclusion driven ductile fracture: How does the interlacing

of microstructural length-scales affect the micromechanisms of ductile crack advance and what

is the micromechanism of ductile crack advance? In the present work, three dimensional, finite

element, finite deformation, small scale yielding calculations of mode I crack growth are carried

out for ductile material matrix consisting of two populations of void nucleating particles using

an elasto-viscoplastic constitutive framework for progressively cavitating solid. The matrix mate-

rial is modeled as an isotropic hardening elasto-viscoplastic solid together with two population of

void nucleating particles. Larger particles or inclusions that result in void nucleation at an early

stage are modeled discretely while smaller particles that require large strains to nucleate voids

are homogeneously distributed. The size, spacing and volume fraction of inclusions introduce

microstructure-based characteristic length-scales into the formulation. The calculations are carried

out for three inclusion radii, and for a fixed inclusion radius, for six inclusion volume fractions.

The results presented in the study provide guidelines for microstructural engineering to increase

ductile fracture toughness, for example, the results show that for a material with small inclusions,

increasing the mean inclusion spacing has a greater effect on fracture toughness than for a material

with large inclusions.

The pressing need of our time to decrease anthropogenic emissions of greenhouse gasses re-

quires use of high strength, fracture resistant structural materials such as advanced dual-phase (DP)

steels to reduce vehicle weight and emissions. However, as the strength of dual-phase steels in-
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(a) (b)

Figure 1.4: (a) Uniaxial tensile stress-strain curves for a dual-phase steel, DF140T, with loading
axis aligned parallel, perpendicular and at 45◦ to the rolling direction, reprinted from [2]. (b)
Effect of anisotropy on bendability: sheet with bending axis parallel to the rolling direction exhibit
poor bendability, and sheet with bending axis perpendicular to the rolling direction exhibit good
bendability, reprinted from [3].

creases, the steel becomes more prone to ductile fracture under bending dominated manufacturing

processes. In addition, DP steel sheets exhibit contrasting deformation and fracture anisotropy

along the rolling direction (RD) and the transverse direction (TD) of the sheet under uniaxial ten-

sile loading versus bending. Under uniaxial tension, DP steel sheets exhibit very similar or greater

ductility with loading axis aligned parallel to the rolling direction than perpendicular to the rolling

direction [2, 80]. But under bending, sheet with bending axis parallel to the rolling direction ex-

hibit poor bendability [3] as shown in Fig. 1.4. Thus, here in the study, the effect of length-scales

induced by the geometry of deformation, in particular bending, and the material microstructure on

ductile fracture of DP advanced high strength steel (AHSS) sheets have been explored. To this end,

microstructure-based finite element calculations of crack nucleation and early stage crack growth

in DP steel sheets subjected to 90◦ V-bending have been carried out. In the calculations, the mi-

crostructural features, ferrite and martensite phases, of the DP steel are discretely modeled in a

thin slice of bend specimen normal to the bend axis using a constitutive relation for progressively
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cavitating elastic-viscoplastic solid. The calculations are carried out for several microstructures

taken from both the RD and TD cross-section of a DP steel. Parametric studies are also carried

out to explore the effect of material parameters that dictate the propensity of void nucleation, en-

ergy dissipated in the growth of nucleated voids prior to crack nucleation, and initial porosity on

ductile fracture of DP steel sheets under bending. In-line with the experimental observations for

a commercially produced DP steel, DP1000, the calculations predict that despite similar strength

and strain hardenability, volume fraction of the phases and fracture response under uniaxial tension

along RD and TD, the bendability of RD specimens are less than the bendability of TD specimens.

The results of these calculations also show that efforts to improve the bendability of advanced

dual-phase steels must focus on improving the properties of the ferrite phase.

Figure 1.5: 90◦ V-bend testing of a commercially produced advanced DP steel, DP1000. Cracks
and/or microcracks formed along the bend axis post bending indicating poor bendability perfor-
mance of this steel. Bending cracks are associated with the presence of subsurface inclusions,
reprinted from [4].

Another source that affects the bendability of commercially produced advanced DP steels is
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the presence of inclusions. The experimental observations suggest that the bendability of DP steel

sheets strongly depend on the size, location and type of non-metallic inclusions. For example, as

shown in Fig. 1.5, cracks and microcracks were observed along the bend axis post 90◦ V-bending

of a commercially produced DP steel, DP1000, with strength ≈ 1GPa, and the root cause of poor

bendability was identified as the presence of non-metallic inclusions. Furthermore, the experimen-

tal observations also suggest that unlike single-phase materials, inclusions in DP steels exhibit a

discrete size effect. Here, building on the previous work, the microstructure-based finite element

modeling are carried out to understand the interplay of the length scales induced by bending, in-

tended microstructural features (ferrite-martensite), and size, shape, location and properties of un-

intended microstructural features (inclusions) on crack nucleation and early stage crack growth in

advanced DP steel sheets. In line with the experimental observations, strong inclusion size effects

on the bendability of the DP steel sheets compared to single-phase material naturally emerges in

the calculations. Furthermore, supervised machine learning is utilized to quantify the effect of the

multivariable input space associated with the inclusion and DP microstructure on the bendability

of the steel. The results of supervised machine learning are then used to identify the contributions

of individual features and isolate critical features that control the bendability of advanced high

strength dual-phase steels.

To expand the current materials space, besides designing the microstructure of materials, the

topological design of the structure of materials is another consideration. There are only few nat-

ural materials such as wood and bamboo that provide high fracture toughness at a density below

that of water as is shown in Fig. 1.6. The potential of micro-architectured and lattice materi-

als to combine high stiffness and strength at low densities is well documented, see highlights in

Fig. 1.6(a). However, less is known about their capacity to have a high fracture toughness. One

experimental work [9], reported the potential of Ti snap-fit octet truss with high fracture toughness

and rather low density but still greater than most natural materials. Following this, the potential

of micro-architectured materials to outperform natural materials is investigated. In addition, the

question arises as to the extent to which the standard test procedure that was initially established
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(a) (b)

Figure 1.6: (a) Strength versus density Ashby chart. The measured properties of macro Ti octet
truss lattices [5], Cu micro octet truss lattices [6], Ni nano double gyroids [7], and micro ceramic
honeycombs [8] are highlighted. (b) Material property map of the fracture toughness, KIC , and
compressive yield strength, σy, space. Ti snap-fit octet truss data are highlighted with red circles,
reprinted from [9].

for specimens of bulk materials is applicable to micro-architectured and lattice materials. In the

present work, the micro-architectured materials are manufactured by drilling hexagonal array of

holes in plates of an aluminum alloy, and the fracture toughness is evaluated using three-point

bending tests of single-edge notch specimens. The results show that the fracture toughness of

micro-architectured materials increase with increasing relative density and remarkably, a lattice

can be 50% lighter than the parent material but maintain the same fracture toughness. The experi-

ments are complemented by finite element calculations of ductile fracture. In the calculations, the

fracture toughness of single-edge notch specimens subjected to three-point bending are evaluated

using both, a procedure similar to the experiments and direct computation of J-integral. The frac-

ture toughness calculated using both the methods are found to be consistent with the experimental

results. In addition, the calculations are also carried out for single-edge notch specimens subjected

to tensile loading that show the same scaling between fracture toughness and relative density of
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micro-architectured materials. The results show that it is possible to design micro-architectured

materials that possess an exceptional combination of high strength and fracture toughness at low

densities that no fully-dense material can offer.

In summary, in my PhD work, I have focused on correlating the length-scales induced by the

geometry of deformation, loading conditions and microstructure of the materials to ductile frac-

ture through large-scale microstructure-based finite element calculations. The overarching goal is

to transform the field of classical fracture mechanics from the notion of structure → fracture to

structure→ microstructure→ fracture and enable the design and discover of more fracture resis-

tant, high strength, structural materials. The ability to predict microstructure-based nucleation and

growth of macroscopic cracks also provides the basis for assessing the reliability of components

as well as product quality in a variety of manufacturing processes.
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2. MODELING DUCTILE FRACTURE

2.1 Introduction

At room temperature, ductile fracture of structural metals and alloys in general involves void

nucleation, growth and coalescence as shown in Fig. 2.1. In these materials void nucleation occurs

by debonding of particles from the matrix or interfaces, or cracking of brittle particles. These

nucleated voids or any pre-existing voids then grow by plastic deformation in the matrix. Finally,

the growing voids coalesce either by impingement or through void sheet.

(a) (b)

(c)

Figure 2.1: Ductile fracture process. (a) Void nucleation at inclusions, reprinted from [10]. (b)
Fracture surfaces showing ductile fracture post void coalescence either due to internal necking
between growing voids or localization between growing voids, reprinted from [11]. (c) Formation
of macroscopic crack in a specimen leading to final fracture, reprinted from [10].

Characterization of fracture following classical fracture mechanics involves fracture tests of

specimens with pre-existing cracks and estimation of crack growth resistance. The classical frac-

ture mechanics has been an enormously successful engineering theory. However, several signif-
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icant issues remain that fall outside its scope, examples of which include: crack nucleation, and

circumstances where the singular fields do not encompass the fracture process zone. Predicting

fracture response of a material through micromechanical simulations not only provides a direct

connection between material microstructure, properties and fracture response, but also enables pre-

diction of crack nucleation, fracture characterization under circumstances where classical fracture

mechanics losses validity as well as it can serve as a basis for designing fracture resistant mate-

rials. Thus, micromechanical numerical simulation of ductile fracture involving void nucleation,

growth and coalescence is of great interest for a variety of applications. The first micromechanical

model of ductile fracture due to void growth and coalescence was developed by McClintock [81]

and Rice and Tracey [82] that described the growth of isolated voids in a rigid perfectly plastic

matrix. Both studies outlined the combined role of stress triaxiality and plastic strain on ductile

void growth. Later, Gurson [83] carried out an upper bound analysis of a finite sphere contain-

ing a spherical void in a rigid perfectly plastic matrix. The Gurson model was further improved

by Tvergaard and Needleman [84] to better account for void interactions and coalescence. The

Gurson-Tvergaard-Needleman constitutive framework has several limitations such as the evolu-

tion of void shape is ignored, porosity induced softening is the only damage mechanism and it

does not inherently contain a material length-scale. Some work have been done to improve The

Gurson-Tvergaard-Needleman model for example, Gologanu and coworkers [85, 86] have devel-

oped models to account for initial void shapes and void shape evolution. Nonetheless, the Gurson-

Tvergaard-Needleman model is simple and robust and provides reasonable predictions of ductile

fracture at sufficiently high stress triaxialities. Also, the absence of a material length-scale in the

Gurson-Tvergaard-Needleman model can be accounted for, by discretely modeling the material

microstructure as is done in this dissertation.
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2.2 Numerical Method

The finite element calculations in this dissertation are based on the dynamic principle of virtual

work written in tensor notation as

∫
V

τ ijδEijdV =

∫
S

T iδuidS −
∫
V

ρ
∂2ui

∂t2
δuidV (2.1)

where, τ ij are the contravariant components of the Kirchhoff stress in the deformed convected

coordinate net (τ ij = Jσij ,with σij being the contravariant components of the Cauchy stress and

J being the ratio of the current to reference volume), Eij is the Lagrangian strain tensor, ρ is the

mass density, V and S are the volume and surface of the body in the referencecon figuration.

The constitutive framework used here is the modified Gurson elastic-viscoplastic constitutive

relation for a progressively cavitating solid [83, 84, 87] with the flow potential having the form

φ =
σ2
e

σ̄2
+ 2q1f

∗ cosh

(
3q2σh

2σ̄

)
− 1− (q1f

∗)2 (2.2)

where q1, q2 are parameters introduced in [88,89], f ∗ is the effective void volume fraction, σ̄ is

the matrix flow strength, and

σe
2 =

3

2
σ′ : σ′ , σh =

1

3
σ : I , σ′ = σ − σhI (2.3)

For f ∗ = 0, the flow potential in Eq. (2.2) reduces to the Mises flow potential. The function

f ∗, introduced in [84], is given by

f ∗ =

 f, f < fc

fc + (1/q1 − fc)(f − fc)/(ff − fc), f ≥ fc

(2.4)

where fc is the critical void volume fraction to void coalescence and ff is the void volume

fraction at failure. When the value of the void volume fraction, f , at an integration point reaches

0.9ff , the value of f is kept fixed so that the material deforms with a very low flow strength. The
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entire element is taken to vanish following the technique proposed in [90] when three of the eight

integration points in the element have reached this stage as in [1, 29, 47, 91].

The rate of deformation tensor is taken as the sum of an elastic part, de = L−1 : σ̂, and a

viscoplastic part, dp, so that

d = L−1 : σ̂ + dp (2.5)

Here, σ̂ is the Jaumann rate of Cauchy stress and L is the tensor of isotropic elastic moduli

characterized by Young’s modulus, E, and Poisson’s ration, ν. The plastic part of the strain rate,

dp, is given by [92]

dp =

[
(1− f)σ̄ ˙̄ε

σ : ∂φ
∂σ

]
∂φ

∂σ
(2.6)

The matrix plastic strain rate, ˙̄ε, is given by

˙̄ε = ε̇0

[
σ̄

g(ε̄)

]1/m
, g(ε̄) = σ0 [1 + ε̄/ε0]

N (2.7)

with ε̄ =
∫

˙̄εdt. In Eq. (2.7), ε̇0 is the reference strain rate, m is the strain rate sensitivity

exponent, σ0 is the reference flow strength, ε0 is a reference strain and N is the strain hardening

exponent.

The evolution of the void volume fraction is governed by

ḟ = (1− f)dp : I + ḟnucl (2.8)

where the first term on the right hand side of Eq. (2.8) accounts for void growth and the second

term accounts for void nucleation. The value of f in the undeformed material i.e. value of f at

time, t = 0, represents the initial void volume fraction, f0. The void nucleation rate, ḟnucl, is

related to the accumulated plastic strain, ε̄, and plastic strain rate, ˙̄ε, by [87]

ḟnucl =
f εN

sεN
√

2π
exp

[
−1

2

(
ε̄− εN
sεN

)2
]

˙̄ε (2.9)
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with f εN , εN , and sεN being the constitutive parameters. The Eq. (2.9) is based on the hypothesis

that there is a mean equivalent plastic strain, εN , for void nucleation and that this nucleation strain

is distributed in a normal fashion about the mean with standard deviation, sεN . The parameter

f εN determines the maximum void volume fraction nucleated at a material (Gaussian) integration

point. For stress controlled nucleation

ḟnucl =
fσN

sσN
√

2π
exp

[
−1

2

(
σ̄ + σh − σN

sσN

)2
]

[ ˙̄σ + σ̇h] (2.10)

with fσN , σN , and sσN being the constitutive parameters. If (σ̄ + σh) ≥ (σ̄ + σh)max, where the

maximum is taken over the previous mechanical history, and ∂(σ̄ + σh)/∂t > 0.

Eight point Gaussian integration is used in each twenty-node element for integrating the inter-

nal force contributions and twenty-seven point Gaussian integration is used for the element mass

matrix. Lumped masses are used so that the mass matrix is diagonal. The discretized equations

are integrated using the explicit Newmark β-method with β = 0 [93]. The constitutive updating is

based on the rate tangent modulus method proposed in [94], while material failure is implemented

via the element vanish technique proposed in [90].
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3. MICROMECHANISM AND IMPLICATIONS OF INCLUSION DRIVEN DUCTILE

FRACTURE∗

3.1 Background

The objective of this work is to correlate the macroscopic fracture toughness of heterogeneous

ductile materials with the fracture mechanisms operating at the microscale. The focus is confined

to ductile structural materials undergoing fracture due to nucleation, growth and coalescence of

microscale voids [95–99]. The microstructure of such materials can be idealized as a ductile ma-

terial matrix with randomly distributed inclusions or second phase particles, as is encountered in

a variety of ferrous and aluminum alloys. The second phase particles in such materials are ei-

ther added intentionally to the material’s microstructure, for precipitation-hardening or dispersion-

strengthening [100], or their formation is an unavoidable consequence of processing [101].

There is an important difference between the characterization of fracture in a deformation field

that is more or less uniform and the characterization of fracture in a deformation field that is

heterogeneous [1, 12, 102–107]. In the former, an unstructured continuum description of ductile

fracture, in principle, can be based on material parameters such as strength and strain hardening

exponent. On the other hand, in the latter, the macroscopic fracture toughness must involve char-

acteristic length-scales associated with the material microstructure. This expected dependence of

fracture toughness on material length-scales is consistent with the experimental results of duc-

tile fracture due to nucleation, growth and coalescence of microscale voids in ductile structural

materials [108–122].

Several attempts have been made in the past to correlate material microstructural parameters

such as volume fraction, size and spacing of the inclusions/voids with the macroscopic fracture

toughness of the material. The mode I plane strain fracture toughness, KIC , of several ductile

materials has been shown to follow KIC = EN(2πL)
1
2 [109] or KIC ≈

√
2σ0Eλ [123], where

∗Reprinted with permission from "On the micromechanism of inclusion driven ductile fracture and its implications
on fracture toughness" by Liu, Y., Zheng, X., Osovski, S. and Srivastava, A., 2019. Journal of the Mechanics and
Physics of Solids, 130, pp.21-34, Copyright 2019 by Elsevier.
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E is Young’s modulus, N is the work hardening coefficient, σ0 is the flow strength, L is the size

of the process zone and λ is the spacing of the nearest void/inclusion from the initial crack tip.

Often the process zone size has been hypothesized to correlate with the microstructural length-

scale set by the pre-existing inclusions in the material [110, 111, 113]. These suggest that the

fracture toughness of the material predominantly depends on a single length-scale introduced by

the mean (or extreme) spacing of the inclusions/voids. On the other hand, the fracture toughness of

the material has been suggested to depend not only on the mean spacing but also on the size of the

inclusions/voids. For example, the material’s fracture toughness defined in terms of JIC has been

suggested to correlate with two microstructural length-scales as, JIC ∝ σ0

(
2/Ni

1/3
)

ln (rc/r0),

where Ni is the number of inclusions per unit volume (1/N1/3
i is the mean inclusion spacing,

l0), r0 is the initial size of the inclusions and rc is the radius of the cavities at failure nucleated

from these inclusions [124]. [117] carried out an experimental study to distinguish the influence

of overall volume fraction, spacing and size of pre-existing voids/holes on material’s ductility.

Their experimental observation suggests that the spacing and size of the pre-existing voids has a

larger effect on ductility compared to their volume fraction. The dominant effect of the spacing

and/or size of the pre-existing inclusions/voids over their volume fraction on macroscopic fracture

toughness has also been suggested by [120, 125, 126].

The extent to which fracture toughness of a ductile material depends on the overall microstruc-

tural parameter i.e. volume fraction, or spacing and size of pre-existing voids has been associated

with the micromechanisms of ductile crack advance. In general, two micromechanisms of duc-

tile crack advance in a ductile material with preexisting distribution of voids have been proposed:

crack advance by a void-by-void micromechanism and crack advance by multiple-void interac-

tion [127–133]. It has been suggested that for void-by-void micromechanism, JIC/(σ0l0) or δc/l0

(δc being the critical crack-tip opening displacement) depends on the initial void volume fraction

whereas for multiple-void interaction micromechanism, JIC/(σ0l0) or δc/l0 does not depend on

the initial void volume fraction. At the microscale, crack advance by the void-by-void micromech-

anism involves coalescence of the crack tip with the closest void [102,104], whereas crack advance
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by multiple-void interaction involves simultaneous interaction of multiple voids ahead of the crack

tip [127]. The transition from the crack advance by the void-by-void micromechanism to multiple-

void interaction has been shown to depend on the initial void volume fraction [127, 128], wherein

void-by-void micromechanism is operative at low initial void volume fraction and multiple-void

interaction micromechanism is operative at high initial void volume fraction. However, [130], sug-

gested that other factors such as initial distribution of the voids can also affect the transition from

void-by-void to multiple-void interaction micromechanism of ductile crack advance.

There is a distinct advantage of modeling discrete voids in a ductile matrix in the finite element

calculations, e.g. [127,130], as this approach directly models the void growth behavior in the vicin-

ity of a crack tip. However, it doesn’t not naturally account for ductile crack advance. In addition,

the class of ductile structural materials considered here, often contains a three-dimensional dis-

tribution of two populations of void nucleating particles: larger particles or inclusions (e.g. MnS

inclusions in steels) that nucleate voids at relatively small strains and smaller particles (e.g. car-

bides in steels) that nucleate voids at larger strains. The voids nucleate either by debonding or

cracking of the particles [134–136]. Furthermore, the three-dimensional distribution of inclusions

in a ductile matrix can promote crack meandering [1, 105, 107] and microcracking [1, 137] ahead

of the initial crack tip well before the overall crack growth. Nevertheless, in [1] it was shown that

for a fixed initial inclusion size, JIC/(σ0l0) depends on the inclusion volume fraction for small

inclusion volume fractions whereas for larger inclusion volume fractions JIC/(σ0l0) does not de-

pend on the inclusion volume fraction. This raises several fundamental questions associated with

inclusion driven ductile fracture: (i) Is the dependence of JIC/(σ0l0) on inclusion volume frac-

tions is due to the transition from void-by-void to multiple-void interaction micromechanism of

ductile crack advance as has been suggested for ductile materials with pre-existing voids? (ii) How

does the interlacing of two microstructural length-scales, inclusion spacing and size, affect the mi-

cromechanisms of ductile crack advance? (iii) How does the matrix material properties such as,

strain hardening exponent, susceptibility to secondary void nucleation and energy dissipated in the

growth of the nucleated voids prior to crack advance affect the micromechanisms of ductile crack
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advance?

To this end, finite element, finite deformation calculations are carried out using a constitu-

tive framework for progressively cavitating ductile solid. The matrix material is modeled as an

isotropic hardening elasto-viscoplastic solid together with two population of void nucleating par-

ticles. Larger particles or inclusions that result in void nucleation at an early stage are modeled

discretely while smaller particles that require large strains to nucleate voids are homogeneously

distributed. The size, spacing and volume fraction of inclusions introduce microstructure-based

characteristic length-scales into the formulation. The calculations are carried out for small scale

yielding conditions under remote Mode I loading. In the calculations, ductile crack growth are

computed to the sufficient extent to be able to characterize the fracture toughness of the material

in terms of JIC using a procedure mimicking the [14]. The extent to which the microstructural

parameters such as volume fraction, size and spacing of the inclusions, and the properties of the

matrix material affect the micromechanisms of ductile crack advance and hence the macroscopic

fracture toughness of the material is discussed. The results presented also provide guidelines for

microstructural engineering to increase fracture toughness.

3.2 Problem formulation

A mode I small scale yielding boundary value problem is analyzed for a slice of material with

an initial through thickness crack, as shown in Fig. 3.1. The slice of material analyzed has the

dimensions hx × hy × hz, where, hx = hy = 0.4m and hz/hx = 0.0125. The finite element mesh

consists of 428, 256 twenty node brick elements giving 1, 868, 230 nodes and 5, 604, 690 degrees

of freedom. Ten uniformly spaced elements are used through the thickness hz. A uniform 208×64

in-plane (x− y plane) mesh is used in a 0.02m × 0.006m region immediately in front of the initial

crack front with in-plane elements of dimension 9.62 × 10−5m by 9.38 × 10−5m. The element

dimension ex = 9.62 × 10−5m serves as a normalization length. The initial crack front with an

initial opening b0 = 1.95ex lies along (0, 0, z) and the crack faces remain traction free. In the x−y

plane, velocity boundary conditions corresponding to linear isotropic mode I crack tip field are

prescribed,
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u̇x (R, θ, z, t) =
2 (1 + ν) K̇I

E

√
R

2π
cos

θ

2

(
1− 2ν + sin2 θ

2

)
(3.1)

u̇y (R, θ, z, t) =
2 (1 + ν) K̇I

E

√
R

2π
sin
θ

2

(
2− 2ν − cos2

θ

2

)
(3.2)

Here, R2 = x2 +y2 and θ = tan−1 (y/x) for points on the boundary of the region analyzed, K̇I

is the prescribed rate of increase of the mode I stress intensity factor. Also, symmetry boundary

conditions are imposed on z = 0, hz planes. The value of K̇I/
(
ε̇0σ0
√
ex
)

= 1359.4 is prescribed

for it to be same as in [1, 47]. The finite element calculations are based on the dynamic principle

of virtual work using a finite deformation Lagrangian convected coordinate formulation. The cal-

culations are based on the dynamic principle of virtual work for numerical convenience, hence to

minimize the wave effects, initial velocity fields at t = 0 consistent with Eqs. (3.1) and (3.2) are

prescribed throughout the region analyzed.

Figure 3.1: Sketch of the initially cracked block of material analyzed together with the magnified
view of the three-dimensional random distributions of inclusions in front the initial crack. For
the two distributions shown: (top right) radius of the inclusions, r0 = 1.5ex and volume fraction,
n = 0.024; and (bottom right) radius of the inclusions, r0 = 3.0ex and volume fraction, n = 0.024.
The parameter ex is the normalization length parameter.
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3.2.1 Microstructure generation

In the calculations the material microstructure is characterized by two populations of void

nucleating particles: (i) uniformly distributed small particles that are modeled by plastic strain

controlled void nucleation; and (ii) large particles or inclusions that are modeled as stress controlled

nucleation sites. In each case, void nucleation is assumed to be described by a normal distribution

following [87].

For plastic strain nucleation, follows the Eq. (2.9) with f εN = 0.04, εN = 0.3 and sεN = 0.1.

Parametric studies are also carried out to explore the effect of the mean equivalent plastic strain to

void nucleation in the matrix material, εN , on the fracture toughness for fixed microstructures.

The stress controlled nucleation follows the Eq. (2.10). To generate the random distribution

of inclusions (modeled discretely as stress controlled nucleation sites, Eq. (2.10)) within the uni-

form mesh region of volume, Vu = 200ex × 60ex × 50ex, in front of the initial crack front, firstly,

randomly generate predetermined number of inclusion, Nincl, centers (x0, y0, z0) with the restric-

tion that the center to center distance of two neighboring inclusions is at least twice the radius,

r0. The value of fσN in Eq. (2.10) at a material (Gaussian) point (x, y, z) in the initial undeformed

configuration, is then assigned as,

fσN =


f̄N for

√
(x− x0)2 + (y − y0)2 + (z − z0)2 ≤ r0

0 for
√

(x− x0)2 + (y − y0)2 + (z − z0)2 > r0

(3.3)

The values f̄N = 0.04, sσN/σ0 = 0.2 and σN/σ0 = 1.5 are used in the calculations. The inclusion

volume fraction n, and the mean inclusion spacing l0 are estimated as, n = (Nincl × 4πr30/3)/Vu

and l0 = (Vu/Nincl)
1/3, respectively. The inclusions introduce microstructure-based characteristic

length-scales into the formulation, one associated with their spacing and the other with their size.

Two random distributions of inclusions with n = 0.024, and r0 = 1.5ex and 3.0ex in the volume

Vu, ahead of the initial crack front are shown in Fig. 3.1.
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3.2.2 Constitutive parameters

The constitutive framework described in Section 2.2 contains several constitutive (material)

parameters. The constitutive framework employed in this work includes many of the hardening

and softening mechanisms shown by ductile metallic materials. The values of the constitutive and

material parameters used here follows the work of [1]. Most material parameters, such as elastic

constants and reference yield stress, are representative of aluminum alloys. The initial density,

however, is taken to be greater than that for aluminum to increase the stable time increment in the

dynamic calculations.

3.3 Results and Discussion

The calculations are carried out for three radii, r0 = 1.5ex, 3.0ex and 4.5ex (where ex is the

normalization length parameter) of inclusions, and for a fixed r0 the calculations are carried out

for six inclusion volume fractions, n = 0.012, 0.024, 0.048, 0.071, 0.095 and 0.19. In addition, for

a fixed r0 and n, the calculations are carried out for five random distributions of inclusion centers

i.e. five realizations of the same overall microstructure. Parametric studies are also carried out

to explore the effect of the matrix material properties on the micromechanisms of ductile crack

advance and fracture toughness of the material.

3.3.1 Crack growth resistance

Crack growth resistance (J − R) curves, plots of J versus ∆a, are extracted from all the

calculations following the procedure adopted in [1, 29, 47, 91]. The value of J is calculated from

the applied value of KI using the relation [138],

J = K2
I

(1− ν2)
E

(3.4)

and the crack growth extension, ∆a, is obtained by averaging the maximum projected length of

the f = 0.1 contours through the thickness of the block of the material analyzed, Fig. 3.1.

The normalized J−R curves for two inclusion radii, r0 = 1.5ex and 4.5ex and for each r0, two
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(a) (b)

Figure 3.2: Applied normalized J , J/ (σ0l0), versus normalized crack extension, ∆a/l0, curves for
two inclusion radii, r0 = 1.5ex and 4.5ex with overall inclusion volume fractions, (a) n = 0.024
and (b) n = 0.095. For a fixed r0 and n, results are shown for three random distributions of the
inclusions.

inclusion volume fractions, n = 0.024 and 0.095 are shown in Fig. 3.2. For a fixed r0 and n, the

crack growth resistance curves are shown for three realizations of the same overall microstructure.

In Fig. 3.2, the value of J is normalized by σ0l0, while ∆a is normalized by l0. As seen in Fig. 3.2,

for a fixed inclusion volume fraction, the level of the normalized J − R curve is greater for the

smaller inclusion radius, and for a fixed inclusion radius, the level of the normalized J − R curve

is greater for the smaller inclusion volume fraction. The variation in the J − R curves between

different realizations of the microstructure with a fixed r0 and n, mainly stems from the initial stage

of crack growth. The initiation of crack growth depends on the interaction of the initial crack front

with the nearest inclusions. Thus, for smaller inclusion volume fraction, Fig. 3.2a, the variation

among the various realizations is greater than the larger inclusion volume fraction, Fig. 3.2b.

The fracture initiation toughness, JIC , is computed based on a procedure mimicking the [14],

where a power law of the form J = A(∆a)B is fit to the portion of the J − R curve in between

two exclusion lines, J = 2σ0(∆a − 1.5ex) and J = 2σ0(∆a − 5ex). The value of JIC is then
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Figure 3.3: Variation of normalized fracture toughness, JIC , JIC/ (σ0l0), with inclusion volume
fraction, n, for three inclusion radii, r0 = 1.5ex, 3.0ex and 4.5ex. The lines are the fitted curves and
the data labeled, Exp, are the experimental results summarized by [12]. In the experiments, the
crack-tip opening displacement at initiation of crack growth, δc, were measured that are converted
to JIC , following the relation, JIC = mσ0δc [13], where m = 1.

defined as the intersection of the curve J = A(∆a)B and the line J = 2σ0(∆a − 2ex). The

variation of normalized fracture toughness, JIC/(σ0l0), with inclusion volume fraction, n, for three

inclusion radii are shown in Fig. 3.3. The error bars in Fig. 3.3 show the standard errors (standard

deviation divided by the square root of the number of realizations) for realizations of inclusion

distributions having the same value of r0 and n. The dash-dot lines in Fig. 3.3 for r0 = 1.5ex

show a fit to JIC/(σ0l0) = C1n
C2 + C3r0 + C4, and for r0 = 3.0ex and 4.5ex show a fit to

JIC/(σ0l0) = C3r0 + C4, where C1 = 0.01, C2 = −0.8, C3 = −0.1ex and C4 = 0.85. The results

presented in Fig. 3.3 show that for a fixed set of material parameters, for the smallest inclusion

radius considered here, r0 = 1.5ex, the value of JIC/(σ0l0) decreases rapidly with increasing n for

n ≤ 0.071 and then tends to saturate. But for the two larger inclusion radii, r0 = 3.0ex and 4.5ex,

the value of JIC/(σ0l0) is rather independent of n, for the range of n considered.

In all the previous works, on the interaction of: (i) explicitly modeled two-dimensional dis-

tribution of (cylindrical plane-strain) voids or three-dimensional distribution of (spherical) voids
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with a blunting crack tip [12,102,104,128,139,140], or (ii) explicitly modeled two-dimensional or

three-dimensional distribution of (void nucleating) inclusions with a growing crack tip [1,105], the

focus was confined on correlating macroscopic fracture initiation toughness defined using δc/l0 or

JIC/(σ0l0) with the microstructural parameter defined either using the ratio of mean void/inclusion

spacing and size, l0/2r0 or void/inclusion volume fraction, n (where n ∝ (r0/l0)
3). These calcula-

tions predict that for a fixed set of material parameters, the value of δc/l0 or JIC/(σ0l0) is uniquely

related to l0/2r0 or n, and the value of δc/l0 or JIC/(σ0l0) initially increases rapidly with increas-

ing l0/2r0 (decreasing n) and then tends to saturate. These calculations did not predict the variation

in the values of JIC/(σ0l0) for a fixed n. In Fig. 3.3, show that for high inclusion volume fraction

JIC/(σ0l0) depends on the inclusion size whereas for low inclusion volume fraction JIC/(σ0l0)

depends on both the inclusion size and the inclusion volume fraction. The normalized experimen-

tal results plotted in Fig. 3.3 follows the same trend even though the experimental results are for

a wide variety of engineering metals and alloys. The experimental results shown in Fig. 3.3 were

summarized by [12], further details of the experimental results can be found in the references given

in [12]. These experimental results were also used for comparison purposes in [104,105,127,139].

3.3.2 Micromechanism of ductile crack advance

Whether or not JIC/(σ0l0) or δc/l0, depends on the overall microstructural parameter i.e. vol-

ume fraction of the initial voids or the inclusions, n, has been associated with the void-by-void

or multiple-void interaction micromechanism of ductile crack advance, respectively [1, 127, 128].

Following this, from the variation of JIC/(σ0l0) with n in Fig. 3.3, for r0 = 1.5ex and n ≤ 0.071

the ductile crack advance can be associated with void-by-void micromechanism whereas for all

other cases ductile crack advance can be associated with multiple-void interaction micromech-

anism. [127] carried out simple but detailed analyses of growth of a row of explicitly modeled

two-dimensional (cylindrical plane-strain) voids ahead of a blunting crack tip and showed that for

low initial void volume fraction, voids grow one-by-one (starting from the void closest to the crack

tip), whereas for high initial void volume fraction, many-voids ahead of the crack tip grow simul-

taneously. However, unlike the scenario modeled in [127], the material microstructure modeled
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(a) (b)

Figure 3.4: Evolution of average porosity, favg, in the bins located at distances xavg directly ahead
of the initial crack tip with applied normalized J , J/ (σ0l0), for random distributions of inclusions
of radius r0 = 1.5ex and overall inclusion volume fractions, (a) n = 0.024 and (b) n = 0.095.

here has randomly distributed inclusions in a ductile material matrix. This prohibits the capability

from applying the similar analysis as in [127] to identify or distinguish between the void-by-void

and multiple-void interaction micromechanisms of ductile crack advance. Thus, analyzing the

evolution of average porosity with the applied J in thin slices of the inclusion containing material

volume ahead of the initial crack tip.

To this end, the uniform mesh region that contains three dimensional random distribution of

inclusions (see Fig. 3.1) has been divided in to 20 cuboidal bins of height 60ex, thickness 50ex,

and width 10ex. The average porosity, favg, in a bin is then estimated as,

favg =
∑
i

Vifi
Vbin

(3.5)

where, i is the number of elements in the bin, Vi is the volume of element i, fi is the average value

of porosity in the element i and Vbin is the volume of the bin. The value of favg in a bin is estimated

until the bin is crack free. The evolution of favg in the bins located at an average distance, xavg,
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(a) (b)

Figure 3.5: Evolution of average porosity, favg, in the bins located at distances xavg directly ahead
of the initial crack tip with applied normalized J , J/ (σ0l0), for random distributions of inclusions
of radius r0 = 3.0ex and overall inclusion volume fractions, (a) n = 0.024 and (b) n = 0.095.

from the initial crack tip with applied normalized J , J/ (σ0l0), for two inclusion volume fractions,

n = 0.024 and 0.095, with r0 = 1.5ex are shown in Fig. 3.4 and with r0 = 3ex are shown in

Fig. 3.5.

Based on the observations of [127], it would be expected that for r0 = 1.5ex and n = 0.024,

Fig. 3.4, the value of favg in the bins should evolve one-by-one (starting from the bin closest to

the crack tip) and for all other cases shown in Figs. 3.4b, 3.5a and 3.5b, favg in many-bins ahead

of the crack tip should evolve simultaneously with increasing J/ (σ0l0). However, as shown in

Figs. 3.4 and 3.5, for all the cases the value of J/ (σ0l0) at which favg starts to evolve in a bin

increases with increasing distance of the bin from the initial crack tip, suggesting favg in the bins

evolve one-by-one. Also, for a given bin, the value of favg for all the cases initially increases

rapidly with increasing J/ (σ0l0) and then tends to increase rather slowly. There is, however, a

clear difference between, Figs. 3.4a and 3.5a, and Figs. 3.4b and 3.5b, that suggests that the level

of the favg versus J/ (σ0l0) curve only depends on the inclusion volume fraction, n. The absence of

a clear signature suggesting void-by-void or multiple-void interaction micromechanism of ductile
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crack advance in the present analyses presented in Figs. 3.4 and 3.5, is likely due to the fact that

the material microstructure in this work is characterized by randomly distributed inclusions in

three-dimensional space for which the crack path is not fixed a priori.

Figure 3.6: Isosurface plot of matrix flow strength, σ̄, plus hydrostatic stress, σh, ahead of the
initial crack tip together with active inclusions (inclusions that have already nucleated voids) at an
applied normalized J , J/ (σ0l0). The parameter (σ̄ + σh) dictates the stress controlled nucleation
of voids at the inclusion sites. For inclusions of radius r0 = 1.5ex and overall inclusion volume
fraction n = 0.024, J/ (σ0l0) ≈ 0.53; for r0 = 1.5ex and n = 0.095, J/ (σ0l0) ≈ 0.85; and for
r0 = 3.0ex and n = 0.024, J/ (σ0l0) ≈ 0.27.

The initial rapid increase in favg in a bin with increasing J/ (σ0l0) seen in Figs. 3.4 and 3.5

arises from the stress controlled void nucleation at inclusions. In Fig. 3.6, isosurfaces of the matrix

flow strength, σ̄, plus the hydrostatic stress, σh, are plotted together with the active inclusions

(inclusions that have already nucleated voids) for r0 = 1.5ex with n = 0.024 and 0.095, and for

r0 = 3.0ex with n = 0.024. The parameter σ̄ + σh is the driving force for void nucleation at the

inclusions following the nucleation criteria in Eq. 2.10. For all the cases, the σ̄ + σh isosurfaces

in Fig. 3.6 are plotted at values of applied J/(σ0l0) that are less than the values of respective

JIC/(σ0l0). As seen in Fig. 3.6, at a fixed value of applied J/(σ0l0), the region ahead of the crack

tip in which the inclusions are already active depends on the extent of σ̄+σh contours. Thus, for all
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the cases, favg in the bins due to void nucleation evolves one-by-one as seen in Figs. 3.4 and 3.5.

The calculations also show that once the inclusions have nucleated voids in a bin, only few voids

within a bin are found to grow significantly. Crack advance then occurs by linking up the crack

tip with the growing voids in the bin via strain induced void nucleation and growth in the matrix,

as also seen in experiments [141]. This results in very little void growth off the crack plane as

has been observed experimentally for a variety of ductile materials [142, 143]. This also explains

why, once all the inclusions in a bin have been activated there is a very little increase in favg in that

bin and the level of the J/ (σ0l0) versus favg curve predominantly depend on the value of n. No

inclusion size effect on void nucleation is modeled here but in line with experimental observations,

for example [122, 125], an increase in JIC with decreasing inclusion size for the same l0 naturally

emerges in the calculations.

Figure 3.7: Isosurface plots of equivalent plastic strain ahead of the initial crack tip for random
distributions of inclusions at an applied normalized J , J/ (σ0l0). For inclusions of radius r0 =
1.5ex and overall inclusion volume fraction n = 0.024, J/ (σ0l0) ≈ 0.09; for r0 = 1.5ex and
n = 0.095, J/ (σ0l0) ≈ 0.14; and for r0 = 3.0ex and n = 0.024, J/ (σ0l0) ≈ 0.1.

The variation of JIC/(σ0l0) with n in Fig. 3.3, clearly suggest that the micromechanism of

ductile crack advance for r0 = 1.5ex and n ≤ 0.071 differs from all other cases considered,

even though it is not possible to identify these micromechanisms using analyses analogous to

[127], Figs. 3.4 and 3.5. To further explore the micromechanisms of ductile crack advance, the

isosurfaces of equivalent plastic strain ahead of the initial crack tip for r0 = 1.5ex with n = 0.024

and 0.095, and for r0 = 3.0ex with n = 0.024 at two values of applied J/(σ0l0) have been
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Figure 3.8: Isosurface plots of equivalent plastic strain ahead of the initial crack tip for random
distributions of inclusions at an applied normalized J , J/ (σ0l0). For inclusions of radius r0 =
1.5ex and overall inclusion volume fraction n = 0.024, J/ (σ0l0) ≈ 1.04; for r0 = 1.5ex and
n = 0.095, J/ (σ0l0) ≈ 1.22; and for r0 = 3.0ex and n = 0.024, J/ (σ0l0) ≈ 1.07.

plotted in Figs. 3.7 and 3.8, respectively. In Fig. 3.7, the isosurfaces of equivalent plastic strain are

plotted at values of applied J/(σ0l0) that are much less than the corresponding values of JIC/(σ0l0)

whereas in Fig. 3.8 the isosurfaces of equivalent plastic strain are plotted at values of applied

J/(σ0l0) that are comparable to the corresponding values of JIC/(σ0l0). As shown in Fig. 3.7,

during the early stages of deformation the overall equivalent plastic strain distribution follows the

expected pattern for plane strain Mode I loading with local perturbations due to stress controlled

void nucleation at the inclusions. Following crack growth initiation for r0 = 1.5ex with 0.095

and for r0 = 3.0ex with n = 0.024, Fig. 3.8, plastic strain concentrates in a band. This shows

that compared to the stress based void nucleation at inclusions, Fig. 3.6, the growth of nucleated

voids and the plastic strain controlled secondary void nucleation in the material matrix are more

sensitive to inclusion distribution. This is in line with the past experimental observations that

have suggested that in ductile materials with increasing inclusions size or volume fraction final

fracture occurs by microscopic plastic strain localization and secondary void nucleation between

large voids [123, 135, 141, 144].

The overall mechanism of ductile crack advance for all the cases considered is same in a way

that following the stress based void nucleation at the inclusions, it involves growth of a limited

number of nucleated voids and coalescence of these voids via plastic strain controlled secondary

void nucleation in the material matrix. Nevertheless, the results show that there is an increase in
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the propensity of plastic strain localization with increasing inclusion volume fraction and/or size.

This subtle change in the micromechanism of ductile crack advance results in the difference on

the dependence of macroscopic fracture toughness on the material microstructure. So that for rel-

atively low inclusion volume fraction and small inclusion size the normalized fracture toughness

JIC/(σ0l0) depends on both the inclusion size and the overall microstructural parameter i.e. inclu-

sion volume fraction while for high inclusion volume fraction and large inclusion size JIC/(σ0l0)

depends only on the inclusion size. Furthermore, these results provide important guidelines for

microstructural engineering to increase ductile fracture toughness, for example, the results show

that for a material with small inclusions, increasing the mean inclusion spacing has a greater effect

on fracture toughness than for a material with large inclusions.

3.3.3 Influence of matrix material properties

(a) (b)

Figure 3.9: The effect of strain hardening exponent, N , on the variation of normalized fracture
toughness, JIC , JIC/ (σ0l0), with inclusion volume fraction, n, for inclusion radii, (a) r0 = 1.5ex
and (b) r0 = 4.5ex.

In this section, the influence of key matrix material parameters on the micromechanisms of
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ductile crack advance and macroscopic fracture toughness of the material have been presented.

The matrix material parameters that are considered, are the matrix strain hardening exponent, N in

Eq. (2.7), the mean equivalent plastic strain to void nucleation in the matrix, εN in Eq. (2.9), and

the critical void volume fraction to void coalescence, fc in Eq. (2.4).

The effect of the matrix strain hardening exponent, N , on the variation of normalized fracture

toughness, JIC/ (σ0l0), with inclusion volume fraction, n, for inclusion radii, r0 = 1.5ex and 4.5ex,

are shown in Fig. 3.9. As shown in the figure, decreasing the value of N results in a decrease in

the value of JIC/ (σ0l0) for all values of r0 and n considered, with the effect of N being more

pronounced for r0 = 1.5ex than for r0 = 4.5ex. For the smallest inclusion radius, r0 = 1.5ex, the

value of JIC/ (σ0l0) initially decreases with increasing n and then tends to saturate, whereas for

r0 = 4.5ex the value of JIC/ (σ0l0) is independent of the value of n for both the values of N = 0.1

and 0.2. The dashed-dot lines in Fig. 3.9a show a fit to JIC/(σ0l0) = C1n
C2 + C3 and in Fig. 3.9b

show a fit to JIC/(σ0l0) = C4. In Fig. 3.9a, for r0 = 1.5ex, C1 = 0.01 for both N = 0.1 and

0.2, for N = 0.1, C2 = −0.8 and C3 = 0.7, and for N = 0.2, C2 = −0.9 and C3 = 1.47. In

Fig. 3.9b, for r0 = 4.5ex, C4 ≈ 0.4 and 0.9 for N = 0.1 and 0.2, respectively. The values of the

fitting parameter C2 for N = 0.1 and 0.2 for r0 = 1.5ex shows that the dependence of JIC/ (σ0l0)

on n decreases with decreasing strain hardening exponent. The decrease in the dependence of

JIC/ (σ0l0) on n with decreasing N observed in the calculations is consistent with experimental

observations [145]. [145] analyzed the influence of initial porosity on the ductility of commercial

pure (CP) titanium (Ti) and Ti-6Al-4V alloy. They showed that the dependence of ductility on the

initial volume fraction of porosity is greater for CP Ti for which N ≈ 0.19 than the Ti-6Al-4V

alloy for which N ≈ 0.08.

Next, focusing on the effect of mean equivalent plastic strain to void nucleation, εN , on the

variation of JIC/ (σ0l0) with n and r0, Fig. 3.10. The parameter εN dictates the secondary void

nucleation in the material matrix. As shown in the figure, decreasing the value of εN results in a

decrease in the value of JIC/ (σ0l0) for all values of r0 and n considered. A decrease in fracture

toughness of the material with increasing susceptibility to secondary void nucleation is consistent
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(a) (b)

Figure 3.10: The effect of mean equivalent plastic strain to void nucleation in the matrix material,
εN , on the variation of normalized fracture toughness, JIC , JIC/ (σ0l0), with inclusion volume
fraction, n, for inclusion radii, (a) r0 = 1.5ex and (b) r0 = 4.5ex.

with previous works [128, 146, 147]. Similar to the effect of N , here as well, Fig. 3.10, the effect

of εN is more pronounced for r0 = 1.5ex than for r0 = 4.5ex, and for r0 = 1.5ex the value of

JIC/ (σ0l0) initially decreases with increasing n and then tends to saturate whereas for r0 = 4.5ex

the value of JIC/ (σ0l0) is independent of the value of n for all the values of εN considered. The

dashed-dot lines in Fig. 3.10a show a fit to JIC/(σ0l0) = C1n
C2 + C3 and in Fig. 3.10b show a

fit to JIC/(σ0l0) = C4. In Fig. 3.10a, for r0 = 1.5ex, C1 = 0.01 for both εN = 0.1 and 0.3, for

εN = 0.1, C2 = −0.66 and C3 = 0.43, and for εN = 0.3, C2 = −0.8 and C3 = 0.7. In Fig. 3.10b,

for r0 = 4.5ex, C4 ≈ 0.3 and 0.4 for εN = 0.1 and 0.3, respectively. The values of the fitting

parameter C2 for εN = 0.1 and 0.3 for r0 = 1.5ex shows that the dependence of JIC/ (σ0l0) on n

decreases with decrease in the value of εN or increasing susceptibility to secondary void nucleation.

Figure 3.11 shows the effect of the critical void volume fraction to void coalescence, fc, on

the variation of JIC/ (σ0l0) with n and r0. The parameter fc dictates the energy dissipated in

the growth of the nucleated voids prior to crack advance. As shown in the figure, decreasing fc

results in a decrease in the value of JIC/ (σ0l0) for all values of r0 and n considered. The effect
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(a) (b)

Figure 3.11: The effect of critical volume fraction to void coalescence, fc, on the variation of
normalized fracture toughness, JIC , JIC/ (σ0l0), with inclusion volume fraction, n, for inclusion
radii, (a) r0 = 1.5ex and (b) r0 = 4.5ex.

of fc on fracture toughness that emerges in the calculations is consistent with the experimentally

observed correlation between the radius of the cavities at failure and the fracture toughness of the

material [124]. Also, similar to the results shown in Figs. 3.9 and 3.10, here as well, Fig. 3.11, the

effect of fc is more pronounced for r0 = 1.5ex than for r0 = 4.5ex, and for r0 = 1.5ex the value of

JIC/ (σ0l0) initially decreases with increasing n and then tends to saturate whereas for r0 = 4.5ex

the value of JIC/ (σ0l0) is independent of the value of n for all the values of fc considered. The

dashed-dot lines in Fig. 3.11a show a fit to JIC/(σ0l0) = C1n
C2 + C3 and in Fig. 3.11b show a

fit to JIC/(σ0l0) = C4. In Fig. 3.11a, for r0 = 1.5ex, C1 = 0.01 for both fc = 0.08 and 0.22,

for fc = 0.08, C2 = −0.75 and C3 = 0.61, and for fc = 0.22, C2 = −0.88 and C3 = 0.74.

In Fig. 3.11b, for r0 = 4.5ex, C4 ≈ 0.37 and 0.42 for fc = 0.08 and 0.22, respectively. The

values of the fitting parameter C2 for fc = 0.08 and 0.22 for r0 = 1.5ex shows that the dependence

of JIC/ (σ0l0) on n decreases with decreasing value of the critical void volume fraction to void

coalescence, fc.

To summarize, the ductile fracture toughness of the material decreases with, decreasing strain
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hardening exponent of the matrix material (decreasing N ), increasing susceptibility to secondary

void nucleation in the matrix material (decreasing εN ) and decreasing energy dissipation in the

growth of the nucleated voids prior to crack advance (decreasing fc). Furthermore, for the range

of the values of N , εN and fc considered, (i) the effect of these material parameters on fracture

toughness is more pronounced for small inclusions than for large inclusions, and (ii) for small in-

clusions, the dependence of JIC/ (σ0l0) on inclusion volume fraction, n, decreases with decrease

in the value of these material parameters, whereas for large inclusions the value of JIC/ (σ0l0) is

always independent of the value of n. These observations are consistent with the discussion of mi-

cromechanisms of ductile crack advance presented in Section 3.3.2. As discussed in Section 3.3.2,

the propensity of plastic strain localization increases with increasing inclusion size. Thus, for ma-

terial microstructures with large inclusions, the damage induced softening due to inclusions is suf-

ficient to cause plastic strain localization and decreasing the strain hardening exponent, increasing

the susceptibility to secondary void nucleation or decreasing the energy dissipated in void growth

just accelerates the localization process to various extents. Also, the dependence of JIC/ (σ0l0) on

inclusion volume fraction decreases with increasing propensity of plastic strain localization. For

material microstructures with small inclusions, the damage induced softening due to inclusions is

not sufficient to cause plastic strain localization but a decrease in the strain hardening exponent,

increase in the susceptibility to secondary void nucleation or decrease in the energy dissipated in

void growth increases the propensity of plastic strain localization.

3.4 Conclusions

Finite element finite deformation calculations to correlate the macroscopic fracture toughness

with the fracture mechanisms operating at the microscale for ductile material matrix with three-

dimensional distribution of inclusions have been carried out in the study. While the study has not

aimed at modeling any particular real material, several features of crack growth behavior and de-

pendence of fracture toughness on microstructural parameters such as, volume fraction, size and

spacing of inclusions, and matrix material properties such as, strain hardening exponent, suscep-

tibility to secondary void nucleation and energy dissipated in the growth of the nucleated voids,
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observed in experiments, naturally emerge in the calculations. The extent to which the microstruc-

tural parameters and matrix material properties affect the micromechanisms of ductile crack ad-

vance and the macroscopic fracture toughness of the material were illustrated.

The key conclusions are as follows:

1. For material microstructures consisting of a ductile matrix with three-dimensional (random)

distribution of void nucleating inclusions, it is not possible to identify or distinguish be-

tween the void-by-void and the multiple-void interaction micromechanisms of ductile crack

advance.

2. Results show that there is an increase in the propensity of plastic strain localization with

increasing inclusion volume fraction and/or inclusion size.

3. Due to the increase in the propensity of plastic strain localization for high inclusion volume

fraction and large inclusion size, JIC/(σ0l0) only depends on the inclusion size while for rel-

atively low inclusion volume fraction and small inclusion size, JIC/(σ0l0) depends on both

the inclusion size and the overall microstructural parameter i.e. inclusion volume fraction.

4. The dependence of JIC/ (σ0l0) on the inclusion volume fraction for small inclusions de-

creases with decreasing strain hardening exponent of the matrix material, increasing sus-

ceptibility of secondary void nucleation and decreasing energy dissipation in the growth of

nucleated voids prior to ductile crack advance.

5. The results presented provide guidelines for microstructural engineering to increase ductile

fracture toughness, for example, the results show that for a material with small inclusions,

increasing the mean inclusion spacing has a greater effect on fracture toughness than for a

material with large inclusions.
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4. DUCTILE FRACTURE OF DUAL-PHASE STEELS UNDER BENDING∗

4.1 Background

The performance, safety, reliability and manufacturability of a variety of engineering compo-

nents and structures are limited by ductile fracture. At room temperature, ductile fracture of engi-

neering metals and alloys involves nucleation, growth and coalescence of microscale voids [99].

This phenomenon is affected by the interlacing of length-scales induced by the geometry of de-

formation, local boundary conditions and/or heterogeneous microstructure of the material. These

length-scales in turn interact and evolve. For instance, the deformation fields induced by geometry

or boundary conditions can produce substantial microstructural modifications resulting in often un-

known and counterintuitive subsequent fracture process. The objective of this work is to model the

effect of length-scales induced by the geometry of deformation, in particular bending, and the ma-

terial microstructure on ductile fracture of dual-phase (DP) advanced high strength steel (AHSS)

sheets.

DP steel sheets with yield and tensile strengths in excess of 300MPa and 600MPa, respectively,

are one of the most widely sought after AHSS for automotive applications [23] where safety, ve-

hicle weight reduction and emission reduction are of paramount importance [15, 27]. DP steels

were introduced in the mid-1970s [148] and since then have experienced the fastest growth in the

automotive industry [27]. These are produced on continuous annealing lines that allow intercrit-

ical heating into the ferrite-austenite phase field followed by rapid cooling to cause diffusionless

austenite to martensite transformation [148]. The final microstructure of DP steels primarily con-

sists of hard martensite islands dispersed in a soft ferrite phase matrix. The presence of two elastic-

plastic phases with contrasting strength and strain hardenability gives rise to complex deformation

behavior, especially for DP steels with high martensite content and tensile strength of order 1GPa.

While the influence of microstructure on the deformation and fracture behavior of DP steel
∗Reprinted with permission from "Ductile fracture of dual-phase steel sheets under bending" by Liu, Y., Fan, D.,

Bhat, S.P. and Srivastava, A., 2020. International Journal of Plasticity, 125, pp.80-96, Copyright 2020 by Elsevier.
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sheets under tensile loading conditions have been a topic of numerous experimental or computa-

tional studies, for example, [2,48,63,64,66–68,71,75–78,80,148–161], the role of DP microstruc-

ture on complex loading conditions have received far less attention [162–166]. The studies on

the microstructural influence on deformation and fracture behavior of DP steels under simplified

loading conditions, however, have provided several insights. The tensile stress-strain curve for DP

steels with high martensite content has been found to exhibit three characteristic stages [165]. At

low stresses, the response is elastic and with increasing stress levels the DP microstructure first

reaches yield in the ferrite phase. Following initial yield, a period of steep strain-hardening is ob-

served. In this regime, the martensite remains elastic while ferrite contributes 100% of the plastic

strain. This stage continues until martensite reaches yield. At this point, there is a significant re-

duction in the strain-hardening rate, and both ferrite and martensite continue to deform plastically.

The studies pertaining to damage nucleation and evolution in the DP microstructure suggest that

the volume fraction, morphology and distribution of martensite, and the contrast between the prop-

erties of ferrite and martensite phases have a significant influence on damage accumulation. The

state-of-the-art also suggests that the damage (or void) nucleation in DP steels occurs by mech-

anisms such as, decohesion at the ferrite/martensite interface, separation of adjacent martensite

particles, and/or separation of fractured martensite particles.

The primary benefit of using DP AHSS in automotive body and structural parts is to en-

hance vehicles’ crash resistance while reducing its overall weight. Steels are not inherently light

weight material but vehicle weight reduction can be achieved by using AHSS with high density-

normalized strength. DP steels with tensile strength of order 1GPa and above are one of the targeted

structural material for such applications. However, as the strength of DP steel increases, the steel

becomes less formable and more prone to ductile fracture under bending dominated manufacturing

processes at room temperature [167]. In addition, DP steel sheets exhibit contrasting deformation

and fracture anisotropy along the rolling direction (RD) and the transverse direction (TD) of the

sheet under uniaxial tensile loading versus bending. Under uniaxial tension, DP steel sheets ex-

hibit very similar stress-strain response along RD and TD up to the ultimate tensile strength with
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ductility along RD being either equal to or greater than along TD [2, 80]. But under bending, the

bendability of the sheet specimens with bend axis parallel to RD is less than the bendability of the

sheet specimens with bend axis parallel to TD [3]. This clearly shows that there is a difference be-

tween the characterization of fracture in an imposed deformation field that is more or less uniform

and the characterization of fracture in a heterogeneous field such as those observed in bending. In

the former, a continuum description of fracture, can in principle be based on unstructured material

parameters such as strength, strain hardening exponent, and volume fraction of the phases. On the

other hand, in the latter, the fracture characterization must involve the interaction of length-scales

induced by bending and the DP microstructure.

Several attempts have been directed towards modeling ductile fracture of DP steels. These

approaches can be divided in to two categories: phenomenological fracture modeling [61–65]

and microstructure-based fracture modeling [48, 66–79]. In phenomenological fracture models,

a damage evolution equation is directly fit to macroscopic experimental data without a direct

microstructure-fracture correlation. On the other hand, microstructure-based fracture modeling

have been largely focused on 2D or 3D representative volume elements of the DP microstructures

under idealized periodic boundary conditions. No effort has been made to model ductile fracture in

DP steels under more realistic loading conditions in order to understand the interaction of length-

scales originating from the geometry/boundary conditions, and material microstructure. Modeling

fracture of DP steels under realistic boundary conditions is especially challenging because a loss

of stress carrying capacity in the reinforcing phase due to void nucleation greatly affects the over-

all strain hardening response of the material. This leads to a breakdown in scale separation [53],

making it very challenging to mathematically represent the material by an “effective homogenized

media.”

Here, microstructure-based finite element modeling to understand the influence of material mi-

crostructure on ductile crack nucleation and early stage ductile crack growth in DP steel sheets

subjected to 90◦ V-bend loading conditions were carried out. In the calculations, the microstruc-

tural features, ferrite and martensite phases, of the DP steel in a small area (but large enough to
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capture the nucleation and coalescence of micro-cracks) near the free surface of a thin slice of the

bend specimen normal to the bend axis were discretely model . Both the ferrite and the martensite

phases are modeled using a constitutive relation for progressively cavitating elastic-viscoplastic

solid. For the microstructure-based modeling, several 2D SEM (Scanning Electron Microscope)

images taken from the RD and TD cross-sections of an industrially produced galvannealed DP1000

steel sheet are first digitized. The digitized microstructure is then superimposed on the finite ele-

ment grid and respective material properties are assigned based on integration points rather than

finite elements as in [1,29]. This allows to smoothly resolve the interphase boundaries without any

numerical complexities. Additionally, discretely modeling the microstructural features induces mi-

crostructural length-scale(s) [1, 29, 47, 91]. The effect of length-scales induced by the geometry of

deformation i.e. bending, and the material microstructure on ductile fracture of DP steel sheets are

discussed. Parametric studies are also carried out to explore the effect of material parameters that

dictate the propensity of void nucleation, energy dissipated in the growth of the nucleated voids

prior to crack nucleation, and initial void volume fraction on ductile fracture of DP steel sheets

under bending.

4.2 Problem formulation

Microstructure-based finite element modeling of deformation and fracture of DP steel sheets

subjected to 90◦ V-bend loading conditions are carried out for a thin slice of material with dimen-

sions, L = 16mm (along x-axis), d = 1.6mm (along y-axis) and W = 0.01mm (along z-axis),

as shown schematically in Fig. 6.8. The tip radius of the 90◦ V-bend punch is taken to be 0.1mm.

The finite element mesh consists of 22, 920 twenty node brick elements giving 161, 973 nodes. For

the finite element mesh a single element through the width, W (along z-axis), of the specimen

is used. A very fine uniform in-plane (x − y plane) mesh is used in a 1.6mm × 0.8mm region

(marked as abcd in Fig. 6.8) near the free surface of the bend specimen with in-plane element di-

mension 10µm × 10µm. The element dimension in the fine mesh region, e = 10µm, serves as a

normalization length-scale.

The finite element calculations are carried out using in-house data parallel finite element code
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Figure 4.1: (top) A schematic of the bend specimen together with imposed constraint and loading
conditions. (bottom) A zoomed view of the finite element mesh near the free surface of the bend
specimen.

as in [1, 29, 47, 91, 168]. The finite element code is based on the dynamic principle of virtual

work using a finite deformation Lagrangian convected coordinate formulation. The displacement

and velocity boundary conditions imposed on the region analyzed follows the configuration shown

schematically in Fig. 6.8. The y-displacement of the specimen is constraint at locations, y = 0,

x = −7.5mm and y = 0, x = 7.5mm in the reference configuration. Overall plane strain

conditions are imposed on z = 0 and z = W surfaces of the bend specimen. The tip of the 90◦

V-bend punch is initially in contact with the bend specimen at y = 1.6mm and x = 0. Although,

calculations are based on the dynamic principle of virtual work for numerical convenience, the

focus is on quasi-static response, hence to minimize the wave effects a time varying velocity,

Vy(t), in the negative y direction is applied to the tip of the punch that follows the relation:

Vy (t) =


V 0
y t/tr if t ≤ tr

V 0
y if t > tr

(4.1)

where, t is the analysis time, tr is the rise time and V 0
y is the final velocity of the punch for
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Table 4.1: Average size of ferrite and martensite phases along x (specimen length) and y (specimen
depth) axes in RD and TD cross-sections of the DP steel under consideration. The values in the
units of µm are for the ‘real’ microstructure while the values in the units of e (normalization
length-scale) are for the microstructure ‘modeled’.

Orientation Phase Along x-axis Along y-axis Aspect ratio

RD
Ferrite 2.09µm (4.18e) 1.75µm (3.5e) ≈ 1.19

Martensite 1.76µm (3.52e) 1.52µm (3.04e) ≈ 1.15

TD
Ferrite 1.98µm (3.96e) 1.63µm (3.26e) ≈ 1.21

Martensite 1.72µm (3.44e) 1.49µm (2.98e) ≈ 1.15

t > tr. In the calculations, tr = 1.0 × 10−4s and V 0
y = 3.0 × 103mm/s (along the negative y

direction) is used. As the deformation proceeds i.e. the tip of the punch moves in the negative y

direction, additional nodes on the top surface of the specimen comes in contact with the 90◦ V-bend

punch. These additional nodes are assigned the value of Vy which is equal to the velocity of the tip

of the punch at the time of contact. Also, to all the nodes that are in contact with the punch, zero

velocity along x direction, Vx = 0, is imposed. This corresponds to perfect sticking of the material

to the punch.

As in [1, 29, 47, 91], eight point Gaussian integration is used in each twenty-node element for

integrating the internal force contributions and twenty-seven point Gaussian integration is used

for the element mass matrix. Lumped masses are used so that the mass matrix is diagonal. The

discretized equations are integrated using the explicit Newmark β-method with β = 0 [93]. The

constitutive updating is based on the rate tangent modulus method proposed in [94], while material

failure is implemented via the element vanishing technique proposed in [90].

4.2.1 Microstructure modeling

Microstructure-based finite element modeling of DP steel sheets under realistic boundary con-

ditions requires modeling the entire specimen and the microstructure within. In theory, it is pos-

sible to carry out microstructure-based finite element modeling of an entire specimen with all of

its microstructural details. However, the mesh density required to discretely model micron-size
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(a) (b)

(c) (d)

(e)

Figure 4.2: (a) A representative (secondary electron) SEM image and (b) its binary version of the
microstructure taken from the rolling direction (RD) cross-section of the DP steel under consider-
ation. (c) A representative SEM image and (d) its binary version of the microstructure taken from
the transverse direction (TD) cross-section of the DP steel under consideration. (e) A zoomed view
of the finite element mesh near the free surface of the bend specimen showing the discretely mod-
eled, ferrite (F) and martensite (M), phases of the DP steel microstructure in the region marked as
abcd.
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microstructural features in a bending specimen of dimensions in centimeters would make the finite

element calculations prohibitively time consuming. Hence, the material microstructure in a small

area but large enough to capture nucleation and coalescence of micro-cracks near the free surface

of the specimen, as shown in Fig. 4.2, has been discretely modeled. To this end, secondary electron

SEM images of chemically etched metallographic specimens of a DP1000 steel sheet are digitized

via Marker-Controlled Watershed Segmentation method [169] as shown in Figs. 4.2(a)-(b) and (c)-

(d). The Marker-Controlled Watershed Segmentation method is used in lieu of Image thresholding

because of the limited contrast between the constituent phases of the DP steel in an SEM image.

The basic procedure of Marker-Controlled Watershed Segmentation method involves, computing

a segmentation function, computing foreground and background markers, modifying the segmen-

tation function so that it only has minima at the foreground and background marker locations, and

finally computing the watershed transform of the modified segmentation function. All these steps

can be carried out using the built-in Image Processing ToolboxTM in MATLAB [169]. Next, the

SEM image is magnified by 20X to ‘artificially’ increase the feature sizes to allow to choose a

reasonable mesh size to resolve the details of the microstructure. The 20X magnification increases

an actual length of 1µm to 20µm (or in terms of the normalization length-scale, e, it is simply

2e) while keeping the overall volume fraction of the phases fixed. The digitized and magnified

microstructures are then superimposed on the mesh in the region marked as abcd in Figs. 6.8 and

4.2(e), and material properties corresponding to respective microstructural features are assigned

based on material (Gaussian) integration points rather than finite elements. Discretizing material

microstructure based on integration points allows to smoothly resolve the interphase boundaries

as shown in Fig. 4.2(e). The region outside abcd in the bend specimen are assigned material

properties corresponding to the overall (homogenized) mechanical response of the DP steel under

consideration.

In this work, the microstructure of the DP steel in both RD and TD cross-sections, Figs. 4.2(a)-

(b) and (c)-(d) respectively, are considered. The average size of ferrite and martensite phases along

x (specimen length) and y (specimen depth) axes in the RD and TD cross-sections are given in Ta-
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ble 4.1. In the DP steel under consideration, on average, the aspect ratio of the martensite phase in

both RD and TD cross-sections are roughly the same. The average aspect ratio of the ferrite phase,

however, is slightly greater in the TD cross-section as compared to the RD cross-section. Hereafter,

RD (TD) refers to bend specimens with bending axis parallel to the RD (TD) of the DP steel sheet

or the microstructure modeled in the region abcd, Figs. 4.2(e), is the microstructure corresponding

to the RD (TD) cross-section. For both RD and TD bend specimens five microstructures taken

from five locations on the respective cross-sections of the DP sheet steel under consideration have

been analyzed.

4.2.2 Constitutive parameter identification

Figure 4.3: Comparison of uniaxial tensile nominal stress (σnom) - strain (εnom) response of the
DP steel sheet obtained from uniaxial tensile tests with tensile axis parallel to rolling direction,
Exp(RD), and transverse direction, Exp(TD), and finite element calculation using the calibrated
constitutive relation, Eq. (2.7), for fully dense (f = 0 throughout the deformation) homogenized
DP steel sheet, Cal(DualPhase). The extracted uniaxial tensile, σnom - εnom, curves of fully
dense ferrite, Cal(Ferr), and martensite, Cal(Mart), phases present in the DP steel under con-
sideration are also shown in the figure.

The constitutive framework described in Section 2.2 contains several constitutive (material)
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parameters. The values of these parameters must be determined for the overall DP microstruc-

ture as well as for the individual constituent phases, ferrite and martensite, in order to carry out

microstructure-based finite element modeling. To determine the values of the constitutive param-

eters that best represent the overall stress-strain response of the fully dense (f = 0 throughout

the deformation) DP steel sheet, firstly, the values of Young’s modulus, E, Poisson’s ratio, ν, and

strain rate sensitivity exponent, m have been fixed. The value of m is fixed following the work

of [165]. The values of the remaining constitutive parameters, initial flow strength, σ0, strain hard-

ening exponent, N , reference strain, ε0, and reference strain rate, ε̇0, are then directly obtained

using the portion of the experimental stress-strain curve before the onset of necking. The values

of all the constitutive parameters that best represent the overall stress-strain response of the fully

dense DP steel under consideration are tabulated in Table 5.1. A comparison of uniaxial tensile

nominal stress - strain response of the industrially produced galvannealed DP1000 sheet steel un-

der consideration and finite element calculation using the constitutive parameter given in Table 5.1

for fully dense DP steel sheet before the onset of necking is shown in Fig. 4.3.

Next, focusing on determining the values of the constitutive parameters for the fully dense

(f = 0 throughout the deformation) constituent phases, ferrite and martensite. To this end, a

3D representative volume element (RVE) of the DP microstructure using the procedure described

in [48, 170] has been constructed. The DP steel sheet considered in this work contains ≈ 54%

ferrite and ≈ 46% martensite phase by volume. The values of the constitutive parameters, E, ν,

and m are fixed a priori for both phases. The value of σ0 for the ferrite phase is also fixed a priori

based on prior experience [165, 171]. In addition, the range (upper and lower bound) of the values

of N for the martensite phase is chosen to represent negligible strain hardening in the martensite

phase based on prior experience. Following this, an iterative optimization procedure was used to

determine the values of the constitutive parameters,N , ε0, and ε̇0 for the ferrite phase and σ0,N , ε0,

and ε̇0 for the martensite phase, that minimizes the mean squared error between the uniaxial stress-

strain response of the RVE and prediction using the constitutive parameter given in Table 5.1 for

fully dense DP steel. The iterative optimization scheme was implemented as a MATLAB function.
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The MATLAB function carries out the finite element calculations of uniaxial tensile test of the

RVE; calculates the average mean squared error of the difference between predicted and target

stress-strain data; and minimizes the error by adjusting the values of the constitutive parameters

following the Nelder-Mead simplex algorithm. The values of all the constitutive parameters for

both constituent phases are tabulated in Table 5.1, and the uniaxial nominal stress-strain response

of the two fully dense constituent phases obtained using these parameters are shown in Fig. 4.3.

Table 4.2: The values of the constitutive parameters for the overall (homogenized) DP steel, and
for the individual constituent phases, ferrite and martensite, present in the DP microstructure under
consideration.

Parameters Dual Phase Ferrite Martensite

Young’s modulus, E(Gpa) 200 200 200

Poisson’s ratio, ν 0.3 0.3 0.3

Initial flow strength, σ0(MPa) 610 430 1450

Strain hardening exponent, N 0.14 0.35 0.06

Reference strain, ε0 0.00175 0.06 0.006

Strain rate sensitivity exponent, m 0.01 0.01 0.01

Reference strain rate, ε̇0(s−1) 0.1 0.01 0.01

Apart from the constitutive parameters needed to model the mechanical response of the fully

dense material that are given in Table 5.1, the constitutive framework detailed in Section 2.2 also

contains parameters associated with the modified Gurson model. These parameters are, initial

porosity, f0, critical void volume fraction to void coalescence, fc, and the three parameters, f εN , sεN

and εN associated with the void nucleation criteria in Eq. (2.9). Note, damage is only considered

to take place in the region marked abcd in Fig. 6.8 or Fig. 4.2(e) where the constituent phases,

ferrite and martensite, of the DP steel are discretely modeled. So that the constitutive parameters

corresponding to the modified Gurson model are only needed for the ferrite and martensite phase
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and not for the overall (homogenized) DP steel. Following the work of [48], f0 = 0 in the ferrite

phase and f0 = 0.002 in the martensite phase have been taken. The values of the other four

parameters, fc = 0.1, f εN = 0.04, sεN = 0.01, and εN = 0.2, are initially taken to be same for both

phases. Parametric studies are carried out to explore the effect of variation in the values of f0, fc

and εN for both phases on the bendability of DP steel sheets.

4.3 Results

The initial undeformed and deformed configuration of a bend specimen subjected to a macro-

scopic flexural strain, εF ≈ 0.05 , using a 90◦ V-bend punch are shown in Fig. 4.4(a). The dis-

tribution of the equivalent plastic strain (ε̄) in the region a′b′c′d′ on the tension (convex) side of

the deformed bend specimen at εF ≈ 0.05 for the scenario where the entire bend specimen is

modeled as homogenized DP steel is shown in Fig. 4.4(b). Similarly, the distribution of ε̄ in the re-

gion a′b′c′d′ for the scenario where the DP steel microstructure is discretely modeled in the region

abcd and the rest of the specimen is modeled as homogenized DP steel is shown in Fig. 4.4(c).

Finally, the macroscopic flexural stress (σF ) - strain (εF ) response of the bend specimen modeled

as homogenized material and discrete DP steel microstructure in the region abcd are compared in

Fig. 4.4(d). The values of σF and εF are estimated as,

σF =
3FyL

2Wd2
, εF =

6δyd

L2
(4.2)

where, Fy is the reaction force on the punch and δy is the deflection of the tip of the punch along

the loading direction.

The results in Fig. 4.4 correspond to the calculations with f = 0 everywhere in the specimen

and throughout the deformation history i.e. the initiation and evolution of ductile damage are

suppressed. As shown in Fig. 4.4(d), in the absence of any damage, the macroscopic σF - εF

response of the homogeneous bend specimen is very similar to the response of the heterogeneous

microstructure. This shows that the overall deformation response of DP steel sheets under bending

is not very sensitive to the details of local microstructural length-scales. The comparison of σF

48



(a)

(b) (c)

(d)

Figure 4.4: (a) The undeformed and deformed configuration of a bend specimen subjected to a
macroscopic flexural strain, εF ≈ 0.05 , using a 90◦ V-bend punch. The distribution of equivalent
plastic strain, ε̄, in the near surface region (a′b′c′d′) on the tension side of the deformed bend
specimen (εF ≈ 0.05) with (b) homogenized material and (c) discrete DP steel microstructure
in the region marked as abcd in (a). (d) Comparison of the macroscopic flexural stress (σF ) -
strain (εF ) response of the bend specimen modeled as homogenized material and discrete DP steel
microstructure in the region marked as abcd in (a).
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- εF curves in Fig. 4.4(d) also shows that the extracted local mechanical properties of ferrite and

martensite phases are correct. The discreteness of the local microstructure of the DP steel, however,

does affect the local distribution of the field variables. For example, the local distribution of ε̄, is

very different in Fig. 4.4(c) compared to Fig. 4.4(b). In the homogeneous bend specimen, bending

induces a single length-scale that leads to a smooth gradient in the distribution of ε̄, Fig. 4.4(b)

whereas, in the bend specimen with DP microstructure the interlacing of the length-scales induced

by bending and DP microstructure results in extremely complex and heterogeneous distribution of

ε̄, Fig. 4.4(c).

4.3.1 Micromechanism of ductile fracture

The distribution of ε̄ in the near surface region on the tension side of the deformed bend spec-

imen with discrete DP steel microstructure undergoing damage initiation and growth at four εF

values are shown in Figs. 4.5(a)-(d). The corresponding macroscopic σF - εF curve is shown in

Fig. 4.5(e). The εF values corresponding to Figs. 4.5(a)-(d) are marked with letters a− d on σF -

εF curve in Fig. 4.5(e). The ‘white’ regions in Figs. 4.5(a)-(d) mark the locations of micro-crack

nucleation and growth. Similarly, the distribution of stress triaxiality, σh/σ̄, at four εF values

corresponding to a− d on σF - εF curve in Fig. 4.5(e) are shown in Figs. 4.6(a)-(d).

As shown in Figs. 4.5(a) and 4.6(a), in bend specimens with discretely modeled DP steel mi-

crostructure, the interlacing of length-scales induced by bending and material microstructure re-

sults in extremely heterogeneous distribution of strains and stresses even before the onset of any

ductile damage. The length-scale induced by bending results in a gradient in the distribution of ε̄

with the value of ε̄ being greater at the surface, while due to the discreteness of the DP microstruc-

ture the value of ε̄ is greater in the soft phase i.e. ferrite. Additionally, due to the local constrained

imposed by the distribution of the hard phase i.e. martensite, the value of σh is greater in the ferrite

phase while the value of σ̄ is greater in the martensite phase. This results in greater σh/σ̄ values in

the ferrite phase.

With continued bending deformation, Fig. 4.5(b), the value of ε̄ localizes in bands inclined at

≈ 45◦ with the loading axis, and the free surface on the tension side undergoes surface rough-
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(a) (b)

(c) (d)

(e)

Figure 4.5: (a)-(d) The distribution of equivalent plastic strain, ε̄, in the near surface region on
the tension side of the deformed bend specimen with discrete DP steel microstructure at four
macroscopic flexural strain, εF , levels marked with letters, a − d, on the macroscopic flexural
stress (σF ) - strain (εF ) curve in (e).

ening. The ‘hot spots’ of σh/σ̄ are however seems to be randomly distributed, Fig. 4.6(b). The

interaction of ε̄ localization bands and surface roughening results in nucleation of surface (marked
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(a) (b)

(c) (d)

(e)

Figure 4.6: The distribution of stress triaxiality (ratio of hydrostatic stress and matrix flow
strength), σh/σ̄, in the near surface region on the tension side of the deformed bend specimen
with discrete DP steel microstructure at four macroscopic flexural strain, εF , levels marked with
letters, a− d, on the macroscopic flexural stress (σF ) - strain (εF ) curve in Fig. 4.5(e).

with dashed-line circle) and sub-surface (marked with dashed-line ellipse) micro-cracks that are

away from the center of the specimen, Fig. 4.5(b). Note that in a homogeneous isotropic ma-

terial under bending the cracks nucleate at the center of the specimen. The relatively large sur-

face micro-crack that nucleates away from the center of the specimen does not seem to grow but

with continued bending deformation the small sub-surface micro-crack marked with the ellipse in

Fig. 4.5(b) grows towards the free surface along one of the ε̄ localization band, Fig. 4.5(c). The

presence of this large sub-surface micro-crack also results in redistribution of the ‘hot spots’ of

σh/σ̄, Fig. 4.6(c). The continued bending deformation, hereafter, results in growth of this micro-

crack towards the interior of the specimen, Fig. 4.5(d), as well as drop in the macroscopic σF value,
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Fig. 4.5(e). As shown in Figs. 4.5(d) and 4.6(d), the crack initially grows away from the loading

axis but with continued bending deformation the crack deflects back towards the loading axis.

4.3.2 Effect of RD and TD microstructures

(a) (b)

Figure 4.7: (a) Macroscopic flexural stress (σF ) - strain (εF ) response of bend specimens with
discrete DP steel microstructures corresponding to RD (rolling direction) and TD (transverse di-
rection) cross-sections. (b) Evolution of normalized crack length, ∆a/d, with εF . The values of
∆a/d at εF corresponding to drop in the value of σF in (a) is marked with cross in (b). For both
RD and TD bend specimens, results for three microstructures taken from three locations on the
respective cross-sections of the DP steel sheet are presented in (a) and (b).

Here, the effect of RD and TD microstructures on the bend fracture of DP steel sheets have been

analyzed. The calculated macroscopic σF - εF curves for bending along RD and TD directions

are shown in Fig. 4.7(a). The calculations show that the deformation response of RD and TD

specimens under bending prior to fracture i.e. drop in the value of σF are the same. The value

of εF corresponding to drop in the value of σF is however greater for TD specimens than for

RD specimens. The three σF - εF curves for bending along RD and TD directions shown in
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Fig. 4.7(a) are for three local microstructures taken from different locations on the respective cross-

sections of the DP steel sheet. In all the calculations, RD or TD, the values of the constitutive

parameters, overall volume fraction of the constituent phases, the specimen geometry and the

loading conditions are the same so that the difference in the response of RD and TD specimens

under bending is solely due to the variations in the topological features of the microstructure in RD

and TD cross-sections. The evolution of the normalized crack length, ∆a/d, with εF , is shown in

Fig. 4.7(b). As shown in Fig. 4.7(b), the value of εF at first crack nucleation is on average greater

for TD specimens than RD specimens. Furthermore, the evolution of ∆a with εF is faster for

RD specimens compared to TD specimens, resulting in poor damage tolerance and bend fracture

resistance for RD specimens compared to TD specimens.

Next, the distributions of ε̄ along a line in the subsurface of the tension side of bend specimens

deformed to a macroscopic εF ≈ 0.03 have been analyzed. The distribution is taken along a line

parallel to the length of the specimen and at a depth of y0/d ≈ 0.0325 from the tension side of the

specimen in the undeformed configuration. The distribution of ε̄ along this line in a RD specimen

is shown in Fig. 4.8(a) and in a TD specimen is shown in Fig. 4.8(b). Several general observations

can be made from Figs. 4.8(a) and (b): (i) the value of ε̄ in the ferrite phase is in general greater

than the value of ε̄ in the martensite phase, (ii) the peaks in the value of ε̄ in the ferrite phases lies

close to the ferrite-martensite interface, (iii) not all peaks in the value of ε̄ in the ferrite (or in the

martensite) region have the same amplitude, (iv) the peaks in the value of ε̄ in the ferrite (or in the

martensite) region with high amplitudes do not lie at the center of the bend specimen (contrary to

what is expected for a homogeneous material undergoing bending), and (v) the number of peaks in

the value of ε̄ in the RD specimen is greater than the number of peaks in the TD specimen.

Similarly, the distribution of porosity, f , along the same line in the subsurface of the tension

side of RD and TD bend specimens are shown in Figs. 4.8(c) and 4.8(d), respectively. In the

calculations, void nucleation in both phases is assumed to follow a plastic strain controlled nucle-

ation criteria, Eq. (2.9). So that the observed peaks in the value of f in the ferrite phase near the

ferrite-martensite interface shown in Figs. 4.8(c) and (d) are consistent with the distribution of ε̄
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(a) (b)

(c) (d)

Figure 4.8: The distribution of equivalent plastic strain, ε̄, at a macroscopic flexural strain,
εF ≈ 0.03, along a line in the subsurface of the tension side of bend specimens with discrete
DP steel microstructures corresponding to (a) RD and (b) TD cross-sections. Similar distribution
of porosity, f , at εF ≈ 0.03 in (c) RD and (d) TD bend specimens. The line profile is taken along a
line parallel to the length of the specimen (along x-axis) and at a depth of y0/d ≈ 0.0325 from the
tension side of the specimen in the undeformed configuration. The location, x/e = 0, corresponds
to the center of the bend specimen. The respective constituent phase along the line (i.e. at an x/e
value) are marked with horizontally arranged symbols: delta for ferrite phase and gradient for
martensite phase.
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shown in Figs. 4.8(a) and (b). The growth of the nucleated voids, however, strongly depend on

the local stress state thus not all the locations (corresponding to ferrite phase) where a peak in the

value of ε̄ is observed in Figs. 4.8(a) and (b) contains a peak in the value of f in Figs. 4.8(c) and

(d). Nevertheless, similar to the distribution of ε̄ the number of peaks in the value of f in the RD

specimen is greater than the number of peaks in the TD specimen. Recall, in the calculations it is

assumed that the initial porosity in the ferrite phase is zero while the martensite phase contains a

small amount of initial porosity, f0 = 0.002. Despite the presence of initial porosity, the value of

f in the martensite phase is significantly less than that in the ferrite phase at least up to εF ≈ 0.03

i.e. prior to significant micro-cracking in the specimen.

(a) (b)

Figure 4.9: Partitioning of (a) equivalent plastic strain, ε̄, and (b) porosity, f , among the two con-
stituent phases, ferrite and martensite, with macroscopic flexural strain, εF , in the bend specimens
with discrete DP steel microstructures corresponding to RD and TD cross-sections.

To further understand the effect of RD and TD microstructures on the bend fracture of DP steel

sheets, the contribution to the plastic strain and damage from each of the phases present in the DP

steel at various macroscopic εF levels have been determined. To this end, the ε̄Phase and fPhase in
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each phase as has been defined as,

ε̄Phase =
1

VPhase

∑
EL∈Phase

ε̄(k)V (k), fPhase =
1

VPhase

∑
EL∈Phase

f (k)V (k) (4.3)

where the sum is taken over all the elements (ELs) within one of the two phases, V (k) is the volume

of the kth element, ε̄(k) and f (k) are the equivalent plastic strain and porosity computed at the

centroid of the kth element, and VPhase is the total volume of the phase present in the microstructure

in the region marked as abcd in Fig. 4.2(e). Then defining the fractional contribution to the total

ε̄ and f from each phase as the ratio of ε̄Phase and fPhase to the total ε̄ and f in both phases,

respectively.

The fractional contributions of ε̄ and f by the two phases as a function of macroscopic εF in

RD and TD specimens are shown in Fig. 4.9. As shown in Fig. 4.9(a), the ferrite phase yields at an

early stage of deformation and hence initially contributes almost all the plastic strain. Following the

yielding of martensite phase the contribution to plastic strain of ferrite phase decreases gradually

and that of martensite phase increases gradually. On the other hand, due to the presence of initial

porosity in the martensite phase almost all the contribution to porosity initially comes from the

martensite phase, Fig. 4.9(b). Following void nucleation in the ferrite phase the contribution to

porosity of ferrite phase increases rapidly and that of martensite phase decreases rapidly. Post

failure i.e. drop in σF values (see Fig. 4.7(a)), the fractional contributions of ε̄ and f by the two

phases saturates. The general trend of the fractional contributions of ε̄ and f by the two phases

as a function of εF is same for both RD and TD specimens. However, at a fixed εF prior to

failure, the difference in the fractional contributions of ε̄ by the two phases in the RD specimen

is greater than that in the TD specimen, suggesting that the deformation in the TD specimen is

slightly more uniform than the RD specimen. The difference in the fractional contributions of f by

the two phases at a fixed εF in the RD and the TD specimens is simply due to the fact that damage

initiation in RD specimens occurs at a lower value of εF than in TD specimens.
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(a) (b)

(c)

Figure 4.10: The effect of variation in (a) initial porosity, f0, (b) mean equivalent plastic strain
to void nucleation, εN , and (c) critical void volume fraction to void coalescence, fc, in the two
constituent phases, ferrite (superscript Ferr) and martensite (superscript Mart), of a DP steel
microstructure corresponding to RD cross-section on macroscopic flexural strain at failure, εf .

4.3.3 Effect of damage parameters

In this section, influence of ductile damage parameters on the bend fracture of DP steel sheets

have been presented. The damage parameters that are considered, are the initial porosity, f0, the

58



mean equivalent plastic strain to void nucleation, εN , and the critical void volume fraction to void

coalescence, fc. The parameter, fc, dictates the energy dissipated in the growth of nucleated voids

prior to micro-crack nucleation. The parametric studies are carried out by varying the values of f0,

εN and fc, one at a time, for each constituent phase. The results of this parametric study are shown

in Fig. 4.10. As shown in the figure, a variation in the value of f0, εN and fc for the martensite

phase has no effect on the macroscopic flexural strain to failure, εf , of DP steel sheets. On the

contrary, a variation in the value of f0, εN and fc for the ferrite phase has a strong influence on

the value of εf of DP steel sheets. Such that an increase in f0 results in a decrease in εf while an

increase in εN and fc results in an increase in the value of εf .

4.4 Discussion

Figure 4.11: Comparison of the calculated uniaxial tensile nominal stress (σnom) - strain (εnom)
response of DP steel microstructures corresponding to RD (rolling direction) and TD (transverse
direction) cross-sections.

The experimental results, Fig. 4.3, and microstructure-based finite element calculations, Fig. 4.11,

both show that the uniaxial tensile deformation and fracture response of the DP sheet steel under
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consideration is not very sensitive to the details of the topological features of the microstructure

along RD and TD. The microstructure-based finite element calculations of DP steel sheets are car-

ried out for a thin slice of material with dimensions, ly = 1.6mm, lz = 0.01mm and lx given

as,

lx = l0x − 2Acos(2π
y

2ly
),

(
− ly

2
≤ y ≤ ly

2

)
(4.4)

where A is the amplitude of a small geometrical imperfection to the width, l0x, of the sheet

specimen. The small geometrical imperfection is introduced to break the symmetry of the problem

and facilitate onset of necking. The value of l0x is taken to be 0.8mm and that of A is taken

to be 1% of l0x. Overall plane strain conditions are imposed on z = 0 and z = lz surfaces of

the sheet specimen and the uniaxial tensile loading along the y-axis is simulated using a velocity

profile similar to Eq. (6.6). In the calculations, both RD and TD microstructures of the DP steel

sheet are modeled using the procedure described in Section 5.2.1 and the values of the constitutive

parameters given in Section 4.2.2. The microstructure-based finite element calculations of DP steel

sheets under uniaxial tension are carried out for several RD and TD microstructures. The results

show that for the set of constitutive parameters given in Section 4.2.2, under uniaxial tension, the

average nominal strain to fracture is 0.053 with a standard deviation of 0.0065 for RD specimens

and for TD specimens it is 0.05 with a standard deviation of 0.0031.

The unstructured continuum material property descriptors such as, strength and strain harden-

ability, the overall microstructural parameter i.e. volume fraction of the phases, and the fracture

response under uniaxial tensile loading are same for both RD and TD specimens of the DP steel

under consideration. So that any analysis based on classical engineering fracture mechanics will

predict the same fracture response for both RD and TD specimens under bending. Nonetheless,

consistent with the experimental observations, the results show that the bendability of TD spec-

imens is greater than the bendability of RD specimens. In the calculations, the difference in the

bendability of RD and TD specimens are due to the difference in the topological features of the

material microstructure in RD and TD specimens of the DP steel sheet.
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(a) (b)

Figure 4.12: The descending cumulative distribution function (CDF) of (a) the size of ferrite phase
in the modeled DP steel microstructure along x (specimen length) and y (specimen depth) axes in
rolling (RD) and transverse direction (TD) cross-sections, and (b) the size of martensite phase in
the modeled DP steel microstructure along x and y axes in RD and TD cross-sections. The vertical
axes in the plots are on logarithmic scale, and e is the normalization length-scale.

The descending cumulative distribution function of the sizes of ferrite and martensite phases

in RD and TD specimens of the DP steel sheet modeled are shown in Fig. 4.12. The plots in

Fig. 4.12 can be interpreted as displaying the probability that the size will exceed a given value on

the horizontal axis. From Fig. 4.12, it can be seen that the probability that the size of the ferrite

phase along the specimen length and that of the martensite phase along the specimen depth will

exceed a given threshold is roughly the same for both RD and TD specimens. The probability

that the size of the ferrite phase along specimen depth will exceed a given threshold is, however,

greater for RD specimens compared to TD specimens. Similarly, the probability that the size of

the martensite phase along the specimen length will exceed a given threshold is slightly greater for

TD specimens compared to RD specimens. Note, that since the volume fraction of both phases

are same in RD and TD specimens, Fig. 4.12 suggest that the probability of finding deeper ferrite-

martensite interfaces are greater for RD specimens compared to TD specimens.
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(a) (b)

(c) (d)

Figure 4.13: (a)-(c) The distribution of ferrite (black) and martensite (white) phases in three DP
steel microstructures corresponding to RD cross-section. In (a)-(c), the bottom edge of the figure is
on the tension side of the bend specimen, and the dashed-line box highlights the local microstruc-
ture in the center of the bend specimen while the solid-line box highlights the microstructure at the
location of first micro-crack nucleation. (d) The variation of the normalized macroscopic flexural
strain at failure, εf/ε

avg
f , with the normalized projected (along the length of the bend specimen

or x-axis) distance between the center of the bend specimen and the location of first micro-crack
nucleation, dx/(d/2).

The subtle difference in the size of ferrite and martensite phases between RD and TD specimens

of the DP steel sheet is apparently sufficient to cause a difference in the fracture response under
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bending. This is because bending results in an overall gradient in the distribution of ε̄ with the

value of ε̄ being greater at the surface and within this gradient the value of ε̄ is greater in the ferrite

phase close to the ferrite-martensite interface. With continued bending deformation the value of

ε̄ localizes in bands inclined at an angle (≈ 45◦) with the loading axis. The peaks in the value

of ε̄ in the ferrite phase close to the ferrite-martensite interface results in void nucleation at these

locations. The small difference in the topological features of the microstructure between RD and

TD specimens results in: (i) fewer number of peaks in the value of ε̄ and f near the tension side

of TD specimens compared to RD specimens, and (ii) slightly smaller difference in the fractional

contribution of ε̄ by the two phases in TD specimens compared to RD specimens.

The results of parametric studies show that in DP steel sheets under bending both the plastic

deformation, and the damage nucleation and growth are concentrated in the ferrite phase. This is

why, a variation in the values of the material parameters that dictate the propensity of void nu-

cleation, energy dissipated in the growth of nucleated voids prior to crack nucleation, and initial

porosity on ductile fracture of DP steel sheets under bending for martensite phase does not signifi-

cantly affect the bendability of DP steel sheets. Thus, any effort to improve the bendability of DP

steel sheets must focus on improving the mechanical properties of the ferrite phase.

The results presented in Fig. 4.7, show that even though the overall volume fraction, mechanical

properties and damage parameters of the constituent phases and the orientation (RD or TD) of

the bend specimens of the DP steel sheet are the same, there is a difference in the value of the

macroscopic flexural strain to failure, εf , for different bend specimens. The difference in the value

of εf for different RD (or TD) specimens stems from the specimen to specimen variation in the

microstructure. The microstructure of three RD bend specimens are shown in Figs. 4.13(a)-(c)

together with the zoomed view of the local microstructure in the center of the bend specimen and

the crack nucleation site. The volume fraction of the ferrite phase in the local microstructure at

the center of the bend specimens shown in Figs. 4.13(a)-(c) are ≈ 0.66, ≈ 0.44 and ≈ 0.29,

respectively, while the volume fraction of the ferrite phase in the local microstructure at the first

crack nucleation sites are ≈ 0.52, ≈ 0.58 and ≈ 0.49, respectively. This suggests that a right
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combination of the amount of ferrite phase and constraint imposed by the martensite phase is

needed to nucleate a crack. Anyhow, analyses show that the values of εf can be correlated with

the projected distance between the center of the bend specimens and the crack nucleation site. As

shown in Fig 4.13(d), the value of εf increases with increasing distance between the center of the

bend specimen and the crack nucleation site.

The microstructure-based finite element calculations here have been carried out using a fixed

finite element mesh so the question arises as to the extent of mesh dependence. In a grid based cal-

culation such as finite element method, in the absence of a physical length-scale, the finite element

mesh size is the dominant length-scale. However, in the microstructure-based finite element calcu-

lations, the discretely modeled material microstructure introduces microstructural length-scale(s).

This is apparent from the predicted difference in the ductile fracture response of RD and TD speci-

mens of DP steel sheets under bending. In addition, the rate dependence in the constitutive relation,

Eq. (2.7), also regularizes the mesh dependence issues associated with localization of deforma-

tion [172]. Although, it is not possible to guarantee that the finite element mesh size does not

play any role, a simple mesh convergence study show that for the mesh size considered here, the

role of mesh size is not dominant. Here, the finite element mesh size convergence by carrying out

bending calculations of a RD specimen with element sizes, e = 8.3µm, 10.0µm, and 12.5µm in

the fine mesh region (marked as abcd in Fig. 6.8) and comparing the predicted values of εf have

been assessed. The results of this exercise show that decreasing the mesh size from 12.5µm to

10.0µm results in a ≈ 8.6% decrease in the value of εf , whereas further decreasing the mesh size

from 10.0µm to 8.3µm results in an insignificant change in the value of εf .

4.5 Conclusions

Microstructure-based finite element modeling to understand the influence of the interlacing

of length-scales induced by 90◦ V-bend loading conditions and microstructure on ductile crack

nucleation and early stage ductile crack growth in a DP steel with tensile strength of order 1GPa

have been carried out. In the calculations, the microstructural features, ferrite and martensite

phases, of the DP steel are discretely modeled in a thin slice of bend specimen normal to the
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bend axis using a constitutive relation for progressively cavitating elastic-viscoplastic solid. The

calculations are carried out for several microstructures taken from both RD and TD cross-sections

of the DP steel sheet. Parametric studies are also carried out to explore the effect of material

parameters that govern the ductile damage and crack nucleation.

The key conclusions are as follows:

1. In-line with the experimental observations, the calculations predict that despite similar strength

and strain hardenability, volume fraction of the phases, and fracture response under uniaxial

tension along RD and TD, the bendability of RD specimens are less than the bendability

of TD specimens. The difference between the bendability of RD and TD specimens in the

calculations naturally emerge due to the differences in the topological features of the mi-

crostructure along RD and TD.

2. The interlacing of length-scales induced by bending and DP microstructure results in an

overall gradient in the distribution of ε̄ with the value of ε̄ being greater at the surface and

within this gradient the value of ε̄ being greater in the ferrite phase close to the ferrite-

martensite interface.

3. The greater values of ε̄ in the ferrite phase close to the ferrite-martensite interface results in

void nucleation at these locations. The growth of these nucleated voids, however, depends

on the constrained imposed by the local distribution of the martensite phase.

4. A variation in the values of the material parameters that govern the ductile damage and crack

nucleation in the ferrite phase significantly affect the bendability of DP steel sheets. Thus,

efforts to improve the bendability of DP steel sheets must focus on improving the mechanical

properties of the ferrite phase.

5. The variation in the bendability of DP steel sheet specimens with fixed overall microstructure

and sheet orientation can be correlated with the distance between the center of the bend
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specimen and the crack nucleation site, such that an increase in the distance results in an

increase in the bendability.
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5. EFFECT OF INCLUSIONS ON THE BENDABILITY OF DUAL-PHASE STEELS

5.1 Background

A 10% reduction in the weight of an automobile results in 6-8% increase in the fuel efficiency

[15]. One of the primary approaches to reducing weight is through increased use of materials with

relatively high specific strength such as advanced high strength steels [23]. The potential of weight

reduction through increased use of advanced high strength steels in automobiles has been estimated

to be as high as 25% [25]. Advanced high strength steels derive their exceptional mechanical

properties from a well-engineered complex, heterogeneous microstructure. With an exception of

few, most advanced high strength steels comprise two or more phases (a combination of martensite,

ferrite, retained austenite or bainite) which help achieve desired properties [23]. Of the various

advanced high strength steels, dual-phase steels [148], are one of the most widely sought after

materials for automotive applications [27]. The microstructure of advanced high strength dual-

phase steels primarily consists of hard martensite phase islands dispersed in comparatively softer

ferrite phase matrix, together with a small amount of process induced non-metallic inclusions

[173], Figs. 5.1(a) and (b).

The influence of the ‘intended’ ferritic-martensitic microstructure on the deformation and frac-

ture response of dual-phase steels has been a topic of numerous experimental and computational

studies, for example [2,48,63,63,64,66,71,75,78,80,150,152,156,157,160,161,163–166,174,175].

These studies have shown that the deformation and fracture characteristics of dual-phase steels,

especially those with high martensite content and high tensile strength, are quite complex. The

macroscopic flow behavior of these dual-phase steels exhibits low initial yield strength due to early

yielding in ferrite, followed by steep strain-hardening while martensite is still elastic and finally

significant reduction in strain-hardening post yielding in martensite. In high strength dual-phase

steels decohesion at ferrite/martensite interface and separation of adjacent martensite particles re-

sult in damage nucleation; and damage evolution depends on the volume fraction, morphology and
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(a) (b)

(c) (d)

Figure 5.1: SEM images of an advanced high strength dual-phase, DP1000, steel specimens show-
ing (a)-(b) the ‘intended’ ferritic (F)-martensitic (M) microstructure and ‘unintended’ sub-surface
inclusions in the undeformed material and (c) cross-section of a deep surface crack formed dur-
ing 90◦ V-bending. (d) Experimental results showing the effect of the location (distance from the
tension side free surface) and size of sub-surface inclusions on the bendability of DP1000 steel
sheets.

distribution of martensite, and the difference between the mechanical properties of the two phases.

Note that in contrast to damage evolution (void growth) in a homogeneous material, the growth

leading to coalescence of voids along an interface of two elastic-plastic material is much more

severe, Section 4. This is because the coalescence of adjacent voids along the ferrite/martensite

interface preferential occurs in the softer ferrite phase and close to the interface [48]. This also

leads to a breakdown in scale separation [53], making it challenging to mathematically represent
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dual-phase steels as ‘effective homogenized media’ post damage nucleation.

The dual-phase steels with high tensile strength (≈ 1.0GPa) are the targeted material for

automotive applications to reduce overall weight while enhancing the crash worthiness. However,

these high strength steels are prone to fracture under bending dominated manufacturing processes

[4, 167]. At industrial scale, the bendability of a sheet metal is in general characterized by 90◦

V-bend test. In this test, a specimen of the sheet metal is deformed at a constant speed using a

90◦ V-bend punch, and post deformation the tension side of the specimen is visually inspected

for the presence of cracks. A specimen fails the bend test, if a crack is observed post bending.

A series of bend tests of a galvannealed DP1000 steel sheet of thickness 1.6mm conducted at

ArcelorMittal Global R&D revealed significant sample to sample variability in the bendability of

the steel. The root cause of sample to sample variability in the bendability of the steel, through

detailed fractographic investigations, was associated with the presence of ‘unintended’ subsurface

non-metallic inclusions, Figs. 5.1(a)-(c). It was also found that the inclusions in the high strength

dual-phase steel exhibit strong size effect as shown in Fig. 5.1(d).

It is extremely difficult and expensive, if not impossible, to produce inclusion free steels.

Nonetheless, the well-engineered microstructure of advanced high strength dual-phase steels does

not contain large amount of inclusions. Also, the small amount of inclusions in dual-phase steels

are in general assumed to have insignificant effect on the mechanical response of the material under

simple uniaxial tensile loading condition [176, 177]. However, the mechanical response of a dual-

phase material in an imposed deformation field that is homogeneous, such as those under uniaxial

tension, is different from the response in an imposed deformation field that is heterogeneous, such

as those under bending, Section 4. This is because, in the latter, damage nucleation and evolution

involves the interaction of the length-scales induced by both bending and the material microstruc-

ture. So that, even a subtle difference in the material microstructure is exacerbated under bending.

For example, in Section 4 it was shown that a dual-phase steel that under uniaxial tension exhibits

similar mechanical response along the rolling and transverse directions, can exhibit very different

mechanical response along the two directions under bending.

69



The objective of this work is to understand the effect of the length-scales induced by the

mode of deformation i.e. bending, ‘intended’ dual-phase microstructure, and size, shape, loca-

tion and properties of ‘unintended’ microstructural features i.e. inclusions, on crack nucleation

and early stage crack growth in advanced high strength dual-phase steels. To this end, a series

of microstructure-based finite element calculations of ductile crack nucleation and early stage

crack growth in a dual-phase steel under 90◦ V-bend loading condition were carried out . The

microstructure-based finite element calculations in this work builds on the recent work, Section 4

on ductile fracture of dual-phase steels under bending. In the calculations here, both the ‘intended’

microstructure of an industrially produced dual-phase steel, DP1000 (Fig. 5.1), as in Section 4 and

the ‘unintended’ inclusions are discretely modeled in a thin slice of a bend specimen. To gain

additional insight, the effect of an inclusion on the bendability of a single-phase material with ma-

terial properties corresponding to the overall mechanical response of the dual-phase steel under

consideration were analyzed.

The results show that the presence of a subsurface inclusion in the bend specimens leads to

subsurface micro-void/crack nucleation under bending that can accelerate the localization of plastic

strain in the material. In line with the experimental observations, strong inclusion size effects

on the bendability of the dual-phase steels naturally emerge in the calculations. Furthermore,

supervised machine learning to quantify the effect of the multivariable input space associated with

the ‘intended’ and ‘unintended’ microstructural features on the bendability of the advanced high

strength dual-phase steel were carried out. The supervised machine learning approach used here

utilizes an ensemble learning method for classification and regression. The results of supervised

machine learning are then used to identify the contribution of individual features and isolate critical

features that control the bendability of the advanced high strength dual-phase steel. Specifically,

the machine learning based analysis shows that unlike a single-phase material, the bendability of

a dual-phase steel is not only affected by the features associated with the sub-surface inclusion but

it is also affected by the underlying dual-phase microstructure.
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5.2 Problem formulation

Figure 5.2: (top) A schematic of the bend specimen together with imposed constraint and loading
conditions. (bottom left) A zoomed view of the finite element mesh near the free surface of the
bend specimen of a dual-phase steel showing the discretely modeled ferrite (F) and martensite (M)
phases, and an inclusion (I). (bottom right) A zoomed view of the finite element mesh near the free
surface of the bend specimen of a single-phase material with an inclusion (I).

As in Section 4, microstructure-based finite element modeling of deformation and fracture of

a dual-phase steel sheet subjected to 90◦ V-bend loading condition are carried out for a thin slice

of material with dimension along z-axis i.e. W = 0.01mm, and other dimensions and details

shown in Fig. 5.2. The finite element calculations are carried out using the in-house data parallel

finite element code [1, 47], which is based on the dynamic principle of virtual work using a finite

deformation Lagrangian convected coordinate formulation. More complete description of the finite

element method is given in the references cited. For the finite element mesh a single element

through the width, W , of the specimen is used and overall plane strain conditions are imposed

on z = 0 and z = W surfaces. A very fine uniform in-plane (x − y plane) mesh is used in a
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1.6mm×0.8mm region (marked asABCD in Fig. 5.2) near the free surface of the bend specimen

with in-plane element dimension 10µm× 10µm. The element dimension in the fine mesh region,

e = 10µm, serves as a normalization length-scale. The finite element mesh of the entire specimen

consists of 22, 920 twenty node brick elements. A mesh convergence study in Section 4 showed

that for the mesh size considered in the fine mesh region, the role of mesh size is not dominant on

the predictions of these microstructure-based finite element calculations.

The imposed displacement and velocity boundary conditions follows the configuration shown

schematically in Fig. 5.2. Although the calculations are based on the dynamic principle of virtual

work for numerical convenience, the focus is on the quasi-static response, hence to minimize the

wave effects a time varying velocity, Vy(t), in the negative y direction is applied to the tip of the

punch that follows the relation:

Vy (t) =


V 0
y t/tr if t ≤ tr

V 0
y if t > tr

(5.1)

where, t is the analysis time, tr is the rise time and V 0
y is the final velocity of the punch for t > tr.

In the calculations, tr = 1.0× 10−4s and V 0
y = 3.0× 103mm/s (along the negative y direction) is

used.

5.2.1 Microstructure modeling

As in Section 4, the material microstructure in a small area but large enough to capture the

nucleation and coalescence of micro-cracks near the free surface of the specimen as shown in

Fig. 5.2 were discretely modeled. To this end, 2D SEM images of the microstructure of an indus-

trially produced galvannealed DP1000 steel sheet are digitized via Marker-Controlled Watershed

Segmentation method [169]. The average size of ferrite and martensite phases in the as-produced

steel are 2.09µm and 1.76µm. Next, the SEM image is magnified by 20X to ‘artificially’ increase

the feature sizes to allow choosing a reasonable mesh size to resolve the details of the dual-phase

microstructure. The 20X magnification increases an actual length of 1µm to 20µm or in terms of

the element dimension, e, it is simply 2e, while keeping the overall volume fraction of the phases
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fixed. The average size of the ferrite and martensite phases modeled in terms of the element di-

mension are (2 × rF =) 4.18e and (2 × rM =) 3.52e, respectively. Finally, an inclusion of radius,

rI , is introduced in the digitized and magnified microstructure in the center along the length of

the bend coupon (marked as ‘I’ in Fig. 5.2) at a distance dy from the free surface on the tension

side. The dual-phase microstructure together with the inclusion are then superimposed on the finite

element mesh in the region marked as ABCD in Fig. 5.2, and material properties corresponding

to respective microstructural features are assigned based on material (Gaussian) integration points

rather than the finite elements. This allows to smoothly resolve the interphase boundaries. The

region outside ABCD in the bend specimen are assigned the material properties corresponding

to the overall mechanical response of the dual-phase steel under consideration. To gain additional

insight, the effect of an inclusion on the bendability of a single-phase material, Fig. 5.2, with consti-

tutive parameters corresponding to the overall ‘homogenized’ dual-phase steel under consideration

were analyzed.

5.2.2 Constitutive parameter identification

Table 5.1: The values of the constitutive parameters for the overall (homogenized) dual-phase (DP)
steel, the individual constituent phases (ferrite and martensite) and the non-metallic inclusion.

Parameters DP Ferrite Martensite Inclusion

Young’s modulus, E(GPa) 200 200 200 300

Poisson’s ratio, ν 0.3 0.3 0.3 0.2

Initial flow strength, σ0(MPa) 610 430 1450 1.1σN

Strain hardening exponent, N 0.14 0.35 0.06 0.001

Reference strain, ε0 0.00175 0.06 0.006 σ0/E

Strain rate sensitivity exponent, m 0.01 0.01 0.01 0.01

Reference strain rate, ε̇0(s−1) 0.1 0.01 0.01 0.1

The constitutive framework described in Section 2.2 contains several constitutive (material) pa-

rameters that need to be determined. The values of the constitutive parameters associated with the
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elastic-viscoplastic response of the fully dense (f = 0 throughout the deformation) ‘homogenized’

dual-phase microstructure and that of the individual constituent phases, ferrite and martensite, of

the DP1000 steel under consideration were determined in Section 4 and are given in Table 5.1.

The values of the constitutive parameters associated with the elastic-viscoplastic response of the

inclusion in Table 5.1 are chosen to represent generic non-metallic inclusions such as, spinels, cal-

cium aluminates, silicates, titanium nitride and alumina, that undergo linear elastic deformation up

until the onset of damage nucleation, note for inclusions σ0 = 1.1σN . As modeled, any inelastic

deformation that occurs in the inclusions, occurs post damage nucleation and are modeled to allow

graceful fracture of the inclusion for numerical convenience.

Apart from the constitutive parameters needed to model the mechanical response of the fully

dense material that are given in Table 5.1, the constitutive framework detailed in Section 2.2 also

contains parameters associated with the modified Gurson model. These parameters for the ferrite

and martensite phases, and for the ‘homogenized’ dual-phase steel are, initial void volume fraction,

f0, critical void volume fraction to void coalescence, fc, void volume fraction at failure, ff , and the

three parameters, f εN , sεN , εN associated with the void nucleation criteria in Eq. (2.9). Following the

work of Section 4, f0 = 0 was taken for the ferrite phase, f0 = 0.002 for the martensite phase, and

f0 = 0.001 for the ‘homogenized’ dual-phase, while fc = 0.1, ff = 0.2, f εN = 0.04, sεN = 0.01,

and εN = 0.2 are taken to be the same for all three. For the non-metallic inclusion, f0 = 0,

fc = 0.1, ff = 0.12, fσN = 0.1 and sσN = 0.1σ0 are used in the calculations. Parametric studies are

carried out to explore the effect of σN i.e. the strength of the inclusion on the bendability of the

steel sheets.

5.3 Numerical results

The objective is to understand the effect of the length-scales induced by the mode of deforma-

tion i.e. 90◦ V-bending, ‘intended’ dual-phase microstructure, and size, shape, location and prop-

erties of ‘unintended’ microstructural features i.e. inclusions, on crack nucleation and early stage

crack growth in advanced high strength dual-phase steels. To this end, a series of microstructure-

based finite element calculations of ductile crack nucleation and early stage crack growth in a
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dual-phase steel under 90◦ V-bend loading condition using the procedure detailed in Section 5.2

were carried out. For the purpose of comparison and to gain additional insight, the effect of an

inclusion on the bendability of a single-phase material with constitutive parameters correspond-

ing to the overall ‘homogenized’ dual-phase steel under consideration were analyzed. Firstly, the

results of the finite element calculations of ductile fracture in a single-phase material with an inclu-

sion under 90◦ V-bend loading condition were presented in Section 5.3.1. The results of the finite

element calculations of ductile fracture in a dual-phase steel with discretely modeled dual-phase

microstructure and inclusion under 90◦ V-bend loading condition are presented in Section 5.3.2.

5.3.1 Effect of an inclusion on the bendability of a single-phase material

The near surface distribution of equivalent plastic strain, ε̄, on the tension side (in the region la-

beled as ABCD in Fig. 5.2) of a 90◦ V-bend specimen of a single-phase material with an inclusion

at four macroscopic flexural strain (εF ) levels together with the macroscopic flexural stress (σF ) -

strain response are shown in Fig. 5.3. For the specimen in Fig. 5.3, inclusion size, rI ≈ 3e (e is a

normalization length-scale introduced in Section 5.2), strength, σN ≈ 0.5 × σ0 (σN is defined in

Eq. 2.10 and σ0 is the initial flow strength of the ‘homogenized’ dual-phase or simply single-phase

material given in Table 5.1) and is located at a distance, dy = 0.125 × d (dy is the distance from

the free surface and d is the thickness of the specimen, Fig. 5.2). The values of the macroscopic

σF and εF are estimated as,

σF =
3FyL

2Wd2
, εF =

6δyd

L2
(5.2)

where, Fy is the reaction force on the punch and δy is the deflection of the tip of the punch

along the loading direction.

As shown in Figs. 5.3(a)-(c), in a single-phase material, sub-surface void nucleation (‘white’

region in the figures) due to the presence of a sub-surface inclusion results in the localization of

ε̄ in bands emanating from the sub-surface void that are oriented at ≈ 45◦ with respect to the

loading axis. As also shown in Figs. 5.3(a)-(c), the intensity of the localization of ε̄ increases with
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(a) (b)

(c) (d)

(e)

Figure 5.3: (a)-(d) The distribution of equivalent plastic strain, ε̄, in the near surface region on
the tension side of a deformed 90◦ V-bend specimen of a single-phase material with an inclusion
of size, rI ≈ 3e, strength, σN = 300MPa (σN/σ0 ≈ 0.5) and location, dy/d = 0.125, at four
macroscopic flexural strain, εF , levels marked as, a-d, on the macroscopic flexural stress (σF ) -
strain (εF ) curve in (e).
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progressive bending. Next, with continued bending, the ligament between the surface and the sub-

surface micro-crack parallel to the loading direction undergoes slight localized thinning that results

in an increase in the value of the stress triaxiality in the thinned ligament. Subsequently, nucleation

and propagation of a crack connecting the surface and the sub-surface void, Fig. 5.3(d), results in

the final fracture i.e. loss of the load bearing capacity of the specimen which is marked by a drop

in the value of σF , Fig. 5.3(e). The ductile fracture mechanism of the single-phase material with

an inclusion under bending shown in Fig. 5.3 is qualitatively the same for the range of inclusion

size, 1e ≤ rI ≤ 5e, and location, 0.0625 ≤ dy/d ≤ 0.3125, considered in this work.

(a) (b)

Figure 5.4: Effect of the size, rI , and location, dy/d, of an inclusion of strength (a) σN = 300MPa
(σN/σ0 ≈ 0.5) and (b) σN = 800MPa (σN/σ0 ≈ 1.3) on the flexural strain to failure, εf , (i.e.
bendability) of the single-phase material.

The effects of the inclusion size, rI , location, dy/d, and strength, σN , on the bendability of

a single-phase material with a sub-surface inclusion are shown in Fig. 5.4. The bendability of

a specimen is characterized by the value of the macroscopic flexural strain to failure, εf , which

is the value of εF that corresponds to the drop in the value of σF . As shown in Fig. 5.4(a), for

77



an inclusion of strength, σN = 300MPa, which is less than the initial flow strength, σ0, of the

material, the value of εf increases roughly linearly with increasing distance, dy/d, of the inclusion

from the surface, for all three values of rI considered in this work. While for a fixed value of dy/d,

the value of εf decreases with increasing value of rI . The effect of the inclusion size and location

on the bendability of a single-phase material shown in Fig. 5.4(a) is unaffected by an increase in

the value of the inclusion strength from σN = 300MPa ≈ 0.5×σ0 to σN = 800MPa ≈ 1.3×σ0,

as shown in Fig. 5.4(b). Although, not presented here, the effect of an inclusion of strength,

σN ≈ 2.6 × σ0 have been analyzed. The results show that a significant increase in the strength of

the inclusion above the initial flow strength of the material improves the bendability of the material

for a fixed inclusion size and location.

5.3.2 Effect of an inclusion on the bendability of a dual-phase material

The near surface distribution of ε̄ on the tension side of a 90◦ V-bend specimen of a dual-phase

steel with an inclusion of size, rI ≈ 1.7 × rM , strength, σN ≈ 0.7 × σF0 (σF0 is the initial flow

strength of the ferrite phase) and location, dy = 0.125× d, from the free surface at four values of

εF together with the σF - εF response are shown in Fig. 5.5.

As shown in Figs. 5.5(a)-(c), the presence of an inclusion results in a sub-surface void nu-

cleation (‘white’ region in the figures) and with progressive deformation ε̄ localizes in a band

emanating from the free surface that is oriented at an angle close to (but not at) 45◦ with respect

to the loading axis. Also, with continued bending, the intensity of the localization of ε̄ in the

band increases, the sub-surface void starts to grow and a micro-crack nucleate at the free sur-

face, Fig. 5.5(b). Subsequently, the sub-surface micro-crack connects with the surface micro-crack

along the localization band of ε̄, Figs. 5.5(c) and (d), resulting in final fracture at a distance dx

from the center of the specimen. The final fracture of the specimen leads to a drop in the value of

σF , Fig. 5.5(e).

Next, a specimen with everything being the same as the specimen in Fig. 5.5 but with an inclu-

sion of size, rI ≈ 0.6× rM was considered. The near surface distribution of ε̄ on the tension side

of this specimen at four values of εF together with the σF - εF response are shown in Fig. 5.6. As
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(a) (b)

(c) (d)

(e)

Figure 5.5: (a)-(d) The distribution of equivalent plastic strain, ε̄, in the near surface region on the
tension side of a deformed 90◦ V-bend specimen with ‘discrete’ dual-phase microstructure and an
inclusion of size, rI ≈ 3e (rI/rM ≈ 1.7), strength, σN = 300MPa (σN/σF0 ≈ 0.7) and location,
dy/d = 0.125, at four macroscopic flexural strain, εF , levels marked as, a-d, on the macroscopic
flexural stress (σF ) - strain (εF ) curve in (e).
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(a) (b)

(c) (d)

(e)

Figure 5.6: (a)-(d) The distribution of equivalent plastic strain, ε̄, in the near surface region on the
tension side of a deformed 90◦ V-bend specimen with ‘discrete’ dual-phase microstructure and an
inclusion of size, rI ≈ 1e (rI/rM ≈ 0.6), strength, σN = 300MPa (σN/σF0 ≈ 0.7) and location,
dy/d = 0.125, at four macroscopic flexural strain, εF , levels marked as, a-d, on the macroscopic
flexural stress (σF ) - strain (εF ) curve in (e).
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shown in Fig. 5.6(a), here as well, the sub-surface inclusion results in sub-surface void nucleation.

However, the nucleated void doesn’t significantly affect the localization of ε̄ and the localization

of ε̄ predominantly depends on the interlacing of the length-scales induced by bending and the

discreteness of the underlying dual-phase microstructure. With progressive deformation, the in-

tensity of the localization of ε̄ in the band increases and a surface micro-crack nucleates, while the

inclusion induced sub-surface void doesn’t grow significantly, Fig. 5.6(b)-(c). Subsequently, the

surface micro-crack grows inwards while completely ignoring the inclusion induced sub-surface

void, Fig. 5.6(d). The growth of the surface micro-crack results in final fracture i.e. drop in the

value of σF , Fig. 5.6(e).

The effects of the inclusion size, rI , location, dy/d, and strength, σN , on the bendability of the

dual-phase steel with a sub-surface inclusion are shown in Fig. 5.7. As in Fig. 5.4, the bendability

of a dual-phase specimen is characterized by the value of εF at failure, εf . The values of εf in

Fig. 5.7 are normalized by the values of the macroscopic flexural strain to failure of the underlying

inclusion free dual-phase steel microstructure, ε0f . For a fixed value of rI , dy/d and σN of the

inclusion, calculations are carried out for five underlying dual-phase steel microstructures taken

from different locations of the dual-phase steel under consideration. The error bars in Fig. 5.7 are

the standard error for five realizations of the underlying dual-phase steel microstructure.

As shown in Fig. 5.7(a), for an inclusion of strength, σN = 300MPa, which is less than

the initial flow strength of both the ferrite and martensite phases, and a fixed size, the value of

εf first increases with increasing value of dy/d and then tends to saturate. The saturation in the

value of εf corresponds to εf → ε0f , implying that the detrimental effect of the inclusion on the

bendability of the dual-phase steel vanishes. The value of dy/d for which εf ≈ ε0f strongly depends

on the inclusion size relative to the size of the martensite phase. For example, for inclusions of

size, rI ≈ 1.7 × rM and 2.8 × rM , the values of dy/d for which εf ≈ ε0f are ≈ 0.3 and 0.44,

respectively. While for an inclusion of size, rI ≈ 0.6 × rM , the value of dy/d for which εf ≈ ε0f

is ≈ 0.125. The effect of the inclusion size and location on the bendability of a dual-phase steel

shown in Fig. 5.7(a) is not significantly affected by an increase in the value of the inclusion strength

81



(a) (b)

(c)

Figure 5.7: Effect of the size, rI , and location, dy/d, of an inclusion of strength (a) σN = 300MPa
(σN/σF0 ≈ 0.7 and σN/σM0 ≈ 0.2), (b) σN = 800MPa (σN/σF0 ≈ 1.9 and σN/σM0 ≈ 0.6) and
(c) σN = 1600MPa (σN/σF0 ≈ 3.7 and σN/σM0 ≈ 1.1) on the flexural strain to failure, εf , (i.e.
bendability) of the dual-phase steel.

from σN = 300MPa to σN = 800MPa, as shown in Fig. 5.7(b). The value of inclusion strength,

σN = 800MPa, is greater than the initial flow strength of the ferrite phase but is less than the initial

flow strength of the martensite phase. However, a further increase in the value of the inclusion
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strength such that the inclusion is stronger than the martensite phase significantly improves the

bendability of the dual-phase steel sheet for a fixed inclusion size and location, Fig. 5.7(c). A

notable observation from Fig. 5.7(c) is that the detrimental effect of an inclusion which is smaller

but stronger than the martensite phase on the bendability of a dual-phase steel is negligible. Finally,

the error bars on the values of εf/ε0f for a fixed inclusion size, location and strength in Fig. 5.7

highlight that the detrimental effect of an inclusion on the bendability of a dual-phase material is

also sensitive to the variations in the underlying dual-phase microstructure.

(a) (b)

Figure 5.8: (a) Effect of the aspect ratio (AR) of an elliptical inclusion on the flexural strain to
failure, εf , (i.e. bendability) of the dual-phase steel. The cross-section area of the inclusion,
A ≈ 25πe2 (giving

√
A/2rM ≈ 2.5), and the location of the inclusion center, dy/d = 0.125, is

fixed for all the calculations in (a). (b) Schematic of elliptical inclusions with aspect ratio (AR)
greater than (top) and less than (bottom) one.

Limited analyses of the effect of the shape of an inclusion on the bendability of the dual-phase

steel have been analyzed. To this end, an elliptical inclusion has been modeled of size, rxI along

the length and ryI along the thickness (loading direction) of the specimen. The cross-sectional area,

A = πrxI r
y
I , of all the elliptical inclusions are taken to be 25πe2 (giving,

√
A/2rM ≈ 2.5) while
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their aspect ratio, rxI /r
y
I are varied. The effect of the aspect ratio of an inclusion center located at

dy/d = 0.125 on the normalized macroscopic flexural strain to failure, εf/ε0f , for three inclusion

strength levels together with schematics of elliptical inclusions modeled are shown in Fig. 5.8. As

shown in the figure, for all three inclusion strengths, the value of macroscopic flexural strain to

failure, εf , increases with increasing aspect ratio of the elliptical inclusion for aspect ratios less

than 4. While the detrimental effect of the aspect ratio of the elliptical inclusion on the bendability

of the dual-phase steel vanishes for aspect ratios greater than 4. Similar to the results presented in

Fig. 5.7, here as well, increasing the inclusion strength such that the inclusion is stronger than the

martensite phase (σN/σF0 ≈ 3.7 i.e. σN/σM0 ≈ 1.1) improves the bendability of the dual-phase

steel especially when the aspect ratio of the elliptical inclusion is less than 4.

5.4 Supervised machine learning approach and predictions

In the preceding section, the key results of the microstructure-based finite element calculations

of the effect of an inclusion on ductile crack nucleation and early stage crack growth in single-phase

and dual-phase materials under 90◦ V-bend loading condition were presented. The results show that

the bendability of a material, in particular that of a dual-phase material, is greatly affected by the

size, shape, location and strength of the ‘unintended’ inclusion as well as the underlying ‘intended’

dual-phase microstructure of the material. Thus, to quantify the effect of the multivariable input

space associated with the ‘intended’ and ‘unintended’ microstructural features on the bendability

of the advanced high strength dual-phase steel, supervised machine learning analysis have been

carried out. The supervised machine learning approach and predictions of the effect of an inclusion

on the bendability of the simple single-phase material is presented in Section 5.4.1. The approach

and results of supervised machine learning on the effect of an inclusion on the bendability of more

complex dual-phase material is presented in Section 5.4.2.

5.4.1 Effect of an inclusion on the bendability of a single-phase material

In the microstructure-based finite element calculations of the effect of an inclusion on the bend-

ability of a simple single-phase material in Section 5.3.1, the effect of three features associated with
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Figure 5.9: (a) Correlation matrix of variables in analyzing the effect of an inclusion on the bend-
ability of the single-phase material. (b) Comparison of the macroscopic flexural strain to failure,
εf , predicted using linear regression (LR) analysis and finite element (FE) calculations.

an inclusion have been considered. These three features are, inclusion size, rI , location, dy/d, and

strength, σN . Thus, for supervised machine learning these three features are the input space while

the macroscopic flexural strain to failure, εf , is the target or the output space. The goal of this exer-

cise is to quantify the effect of the individual input variables on the response i.e. the value of εf and

identify any redundancy in the input space. To this end, the simplest supervised machine learning

approach, linear regression analysis has been chosen. The accuracy of the regression analysis is

evaluated by the widely used performance measure [178], coefficient of determination,R2. TheR2

is the proportion of the variance in the dependent variable that is predictable from the independent

variable and is a statistical measure of how well the regression predictions approximate the real

data. The value, R2 = 1, indicates that the regression predictions perfectly fit the data.

The results of the linear regression analysis are shown in Fig. 5.9. The correlation matrix of the

three input variables, rI , dy/d and σN in Fig. 5.9(a) clearly shows that these three input variables

are not highly correlated. A comparison of the predictions of the linear regression analysis and the
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results of the microstructure-based finite element calculations are shown in Fig. 5.9(b). As shown

in the figure, the two predictions are in very good agreement and the value of R2 ≈ 0.93. The final

calibrated linear regression model follows:

εf = 6× 10−2 − 1.25× 10−2rI + 2.11× 10−1
dy

d
+ 8.7× 10−6σN (5.3)

The calibrated linear regression model in Eq. (5.3) shows that the inclusion size and location are the

two important features that greatly affect the bendability of a simple single-phase material with a

sub-surface inclusion. While the inclusion strength as a whole has a small effect on the bendability

of a single-phase material.

5.4.2 Effect of an inclusion on the bendability of a dual-phase material

Next, the focus is on quantifying the effects of the multivariable input space associated with

both the ‘unintended’ and ‘intended’ microstructural features on the bendability of the advanced

high strength dual-phase steel using supervised machine learning. The results of the microstructure-

based finite element calculations in Section 5.3.2 suggest that there are several features associated

with an inclusion that affect the bendability of the material. While the results of the microstructure-

based finite element calculations of the bendability of the dual-phase steel without any inclusion

in Section 4 suggest that there are several additional features associated with the underlying dual-

phase microstructure that affect the bendability of the material. In particular, in Section 4, it was

found that the intrinsic bendability of a dual-phase steel (i.e. without inclusion) depends on the

volume fraction of the martensite in a small region in the center of the specimen on the tension

side, the volume fraction of the martensite in a small region at the fracture initiation site, and the

distance between the center of the bend specimen (on the tension side) and the fracture initiation

site. Apart from these, the effect of an inclusion, especially that of smaller size, on the bendability

of the dual-phase steel may also depend on its neighboring phase i.e. does the inclusion entirely lie

in the ferrite phase, martensite phase or it extends over both the phases. All the possible features

associated with both the ‘unintended’ and ‘intended’ microstructural features that may affect the
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Table 5.2: All the possible features identified from microstructure-based finite element calculations
that may affect the bendability of the dual-phase steel with (in this work) and without (in Section 4)
an inclusion.

Category Features Details

Inclusion

rxI Size of inclusion along x-axis (length)
ryI Size of inclusion along y-axis (thickness)
σN Inclusion strength
dy/d Location of inclusion
AI Area of inclusion (AI = πrxI · r

y
I )

Dual-phase
microstructure

(V M
f )N

Volume fraction of the martensite phase in a small box of
area ≈ 8r2M at the fracture initiation site

(V M
f )CS

Volume fraction of the martensite phase in a small box of
area ≈ 8r2M in the center of the specimen

(V M
f )CL

Volume fraction of the martensite phase in a slightly
larger box of area ≈ 32r2M in the center of the specimen

Neighbor
Neighboring phase of the inclusion (ferrite, martensite or
both)

dx
Projected distance between the center of the specimen and
the location of crack initiation site

bendability of a dual-phase steel are given in Table 5.2.

The simple supervised machine learning approach, linear regression analysis, as in Section 5.4.1

to quantify the effect of all the input variables in Table 5.2 on the response i.e. normalized macro-

scopic flexural strain to failure, εf/ε0f , and identify any redundancy in the input space were con-

sidered at first. To this end, the results of 80% of ≈ 400 microstructural-based finite element

calculations carried out in this work were randomly selected to train the linear regression model.

The trained linear regression model was then tested on remaining 20% of the data set. The accu-

racy of the regression analysis was evaluated by two performance measures [178], coefficient of

determination, R2, as in Section 5.4.1 and mean squared error, MSE. MSE is the average of the

squares of the errors and MSE = 0 indicates that the estimator predicts observations with perfect

accuracy. However, not only the input space, Table 5.2, for dual-phase steel is significantly greater
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Figure 5.10: (a) Feature importance obtained from the random forest regression analysis of the ef-
fect of an inclusion on the bendability of the dual-phase steel. (b) A comparison of the bendability,
normalized macroscopic flexural strain to failure, εf/ε0f , obtained from random forest regression
analysis using feature set 2 in Table 5.3 and microstructure-based finite element calculations of 90◦

V-bending of the dual-phase steel.

than the single-phase material, the effect of inclusion on the bendability of dual-phase steel is also

extremely non-linear. Thus, due to these complexities, the trained linear regression model failed to

reasonably predict the bendability of the test cases. The values of R2 and MSE for the test cases

were found to be 0.75 and 0.011, respectively.

Next, a more sophisticated supervised machine learning approach, random forest regression

analysis, was chosen. The random forest supervised machine learning approach has been exten-

sively applied for predictive analytics and is a type of additive model that makes predictions by

combining decisions from a sequence of base models, see for example, [179–182]. In addition,

the feature importance can be obtained by permuting the values of the input variables and mea-

suring their impact on prediction accuracy. For regression, the variance of random forest model

is the measure of impurity. Thus, when training a tree, it is possible to compute how much each

feature decreases the impurity. The more a feature decreases the impurity, the more important is
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Table 5.3: Feature reduction using random forest regression analysis of the effect of an inclusion
on the bendability of the dual-phase steel. The description of all the features are given in Table 5.2.
The value of R2 is the coefficient of determination of the fit, MSE(CV) is the mean squared error
of the cross-validation predictions, and MSE(Test) is the mean squared error of the test data.

Set Features R2 MSE
(CV)

MSE
(Test)

1 All features 0.915 0.004 0.004

2 rxI , ryI , σN , dy/d, AI , dx, (V M
f )CS 0.919 0.004 0.004

3 rxI , ryI , σN , dy/d, AI , dx 0.909 0.004 0.004

4 rxI , ryI , σN , dy/d, AI , (V M
f )CS 0.915 0.004 0.005

5 rxI , ryI , σN , dy/d, AI 0.813 0.009 0.008

the feature. In random forests, the impact on impurity of each feature can be averaged across trees

to determine the final importance of the variable. To avoid over-fitting and minimize the selec-

tion bias, 10-fold cross-validation scheme was chosen for regression analysis. While grid-search

was used to find the optimal hyper-parameters of the random forest model that results in the most

accurate predictions.

At first, building a random forest model with all 10 features listed in Table 5.2 and their im-

portance is shown in Fig. 5.10(a). As shown in the figure, not all features have the same impact

on the bendability of the dual-phase steel. The two most important features that greatly affect the

bendability of the dual-phase steel are the inclusion size along the thickness of the sheet, ryI , and

the location of the inclusion, dy/d. These two features are also the most important features that

affect the bendability of the single-phase material. However, there are features associated with the

‘intended’ dual-microstructure such as projected distance between the center of the specimen and

the location of the crack initiation site, dx, and the volume fraction of the martensite in a small box

in the center of the specimen,
(
V M
f

)
CS

, that have small but significant impact on the bendability

of the dual-phase steel. Thus, feature reduction were carried out by building random forest models

using a sub-set of the features in Table 5.2 and rigorously testing their performance. The perfor-
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Figure 5.11: Partial dependence plots showing the effects of (a) normalized location, dy/d, and
size, ryI/rM , (b) normalized location, dy/d, and strength, σN/σF0 , and (c) normalized strength,
σN/σ

F
0 , and size, ryI/rM , of the inclusion on the bendability i.e. the normalized macroscopic

flexural strain to failure, εf/ε0f , of the dual-phase steel.

mance of the random forest model based on all the features as well as four example sub-sets of

features are given in Table 5.3. As shown in Table 5.3, the performance of a random forest model

built using the seven most important features, feature set 2, is the best. Among the seven features,

five of them are associated with the inclusion and two are associated with the underlying dual-
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phase microstructure. Note, that the performance of a random forest model built using only the

features associated with the inclusion, feature set 5, is the worst. A comparison of the bendability,

normalized macroscopic flexural strain to failure, εf/ε0f , obtained from the random forest model

built using the feature set 2 in Table 5.3 and microstructure-based finite element calculations of 90◦

V-bending of the dual-phase steel is shown in Fig. 5.10(b). A good correlation between the pre-

dictions of the random forest machine learning model and the microstructure-based finite element

calculations in Fig. 5.10(b) is noted.

With the trained random forest machine learning model (with feature set 2 in Table 5.3 as input

space and corresponding values of εf/ε0f as output space) at hand, the partial dependence of few

key features on the bendability (εf/ε0f ) of the dual-phase steel have been analyzed. The partial

dependence plots allow to visualize the marginal effect of select features at a time on the predicted

outcome [183]. The partial dependence function is given as:

f̂xS(xS) = ExC

[
f̂(xS, xC)

]
=

∫
f̂(xS, xC)dP(xC) (5.4)

with, xS being the features for which the partial dependence function is sought and xC are the other

features of the input space used in the machine learning model, f̂ . The partial dependence works

by marginalizing the output of the machine learning model over the distribution of the features in

the set xC , so that the function highlights the correlation between the features of interest i.e. the

feature set xS and the predictions. The partial function, f̂xS , is estimated by calculating averages

in the training data (also referred to as Monte Carlo Method):

f̂xS(xS) =
1

n

n∑
i=1

f̂(xS, x
(i)
C ) (5.5)

where, x(i)C are the values of the features from the dataset and n is the number of instances in the

dataset.

The partial dependence plots visualizing the effects of a combination of two features associ-

ated with the inclusion on the bendability (values of εf/ε0f ) of the dual-phase steel are shown in
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Fig. 5.11. These plots clearly highlight the extremely non-linear and oftentimes discrete effect of

individual features associated with the inclusion on the bendability of the dual-phase steel. The

partial dependence plot in Fig. 5.11(a) shows that the detrimental effect of a smaller inclusion

decreases rapidly as the distance of the inclusion from the free surface increases. However, the

detrimental effect of a relatively larger inclusion is rather insensitive to its location. The partial

dependence plot in Fig. 5.11(b) shows that the detrimental effect of an inclusion that is close to the

free surface decreases with increasing inclusion strength for inclusion strength sufficiently greater

than the strength of the ferrite phase. While the effect of an inclusion that is located far away from

the free surface is rather insensitive to the inclusion strength. Similarly, the partial dependence

plot in Fig. 5.11(c) shows that the detrimental effect of a large inclusion decreases with increasing

inclusion strength but that of a small inclusion is relatively insensitive to the inclusion strength.

5.5 Discussion

An imposed three-point bending like deformation, such as 90◦ V-bending on the specimen

of a single-phase isotropic elastic-plastic material induces a single length-scale. This results in

a smooth gradient in the distribution of the plastic strain, ε̄, with the value of ε̄ being greater at

the free surface close to the center of the specimen along the length direction, Section 4. Even

in this simple problem, introducing a single sub-surface inclusion in the material induces another

(microstructure-based) length-scale. The interaction of the length-scales induced by the mode

of deformation and the microstructure greatly affects the deformation pattern as well as damage

nucleation and evolution in the material. The results show that the sub-surface void nucleation due

to the presence of the inclusion in a single-phase material under 90◦ V-bending results in plastic

strain localization in bands. These bands emanate from the sub-surface void and are oriented

at ≈ 45◦ with respect to the loading axis. Next, with continued bending the ligament between

the surface and the sub-surface void parallel to the loading axis undergoes ductile fracture post-

localized thinning.

Unlike a single-phase material, in a specimen of a dual-phase steel, 90◦ V-bending induces one

length-scale, while the discreteness of the underlying dual-phase microstructure induces another

92



length-scale(s). The interlacing of these length-scales results in an overall gradient in the distribu-

tion of ε̄ with the value of ε̄ being greater at the surface and within this overall gradient the value

of ε̄ is greater in the soft ferrite phase, Section 4. Also, due to the local constrained imposed by

the distribution of the hard martensite phase, the value of the stress triaxiality is greater in the soft

ferrite phase close to ferrite-martensite interface [48]. Next, the presence of a sub-surface inclusion

in the dual-phase microstructure may induce yet another length-scale(s) and the interlacing of all

these length-scales greatly affects the distribution of ε̄ as well as the crack nucleation and growth

in the specimen. Specifically, in a bend specimen of a dual-phase steel with a sub-surface inclusion

of size sufficiently greater than the martensite phase and/or located rather close to the free-surface,

the distribution of ε̄ localizes in an inclined band emanating from the free-surface towards the sub-

surface void nucleated at the inclusion. Finally, with continued bending ductile fracture occurs

along the localization band. However, in a bend specimen of a dual-phase steel with a sub-surface

inclusion of size comparable to (or less than) the martensite phase and/or located sufficiently away

from the free-surface, the localization band of ε̄ emanating from the free-surface ignores the sub-

surface void nucleated at the inclusion. Under these circumstances the detrimental effect of the

presence of an inclusion is negligible and the bendability of the specimen is largely dictated by the

underlying dual-phase microstructure of the material.

The results of the parametric studies show that for a fixed inclusion size and location, and other

material properties, the effect of the strength of the inclusion on the bendability of both single-

phase and dual-phase materials is somewhat discrete. For instance, the strength of the inclusion

does not significantly affect the bendability of a single-phase material as long as the strength is

less than or comparable to the flow strength of the material. Similarly, the strength of the inclusion

does not significantly affect the bendability of a dual-phase material as long as the strength is

less than or comparable to the flow strength of the martensite phase. Although not present here,

parametric studies to explore the effects of elastic properties of the inclusion on the bendability of

the dual-phase steel were carried out. To this end, calculations were carried out for three values

of the Young’s modulus, E = 150GPa, 300GPa and 450GPa, and two values of the Poisson’s

93



ratio, ν = 0.2 and 0.3 of the inclusion. The results show that for the range of the values of E

and ν considered, the elastic properties of an inclusion of strength less than or comparable to the

flow strength of the martensite phase does not significantly affect the bendability of the dual-phase

steel.

Furthermore, the supervised machine learning based analysis helped unravel the effect of the

multivariable input space affecting the bendability of the single-phase and dual-phase materials.

In particular, the machine learning based analysis shows that the inclusion size and location, and

(to an extent) strength of the inclusion are the key features that affect the bendability of a simple

single-phase material with a sub-surface inclusion. On the contrary, the effect of an inclusion on

the bendability of the dual-phase steel is more complex. The machine learning based analysis

clearly highlight the extremely non-linear and oftentimes discrete effect of the individual features

associated with the inclusion on the bendability of the dual-phase steel. The machine learning

based analysis also shows that the bendability of a dual-phase steel is not only affected by the size,

shape, location and (to an extent) strength of the sub-surface inclusion but it is also affected by the

underlying dual-phase microstructure.

The bendability of a sheet metal via industrial scale 90◦ V-bend test is characterized by visu-

ally inspecting the tension side of the deformed specimen for the presence of cracks, Fig. 5.12(a).

A specimen passes the bend test, if no crack is observed while a specimen fails the bend test,

if a crack is observed post 90◦ V-bending. As shown in Fig. 5.1(d), the 90◦ V-bendability of a

galvannealed dual-phase, DP1000, steel sheet was correlated with the size and location of the in-

clusions in the specimens through detailed post-mortem analysis. Although the focus is to develop

a fundamental understanding of the effects of the length-scales induced by bending, dual-phase mi-

crostructure and inclusion on the ductile fracture of the dual-phase steel, the question arises to the

extent to which the results provide physically realistic predictions. There are two basic limitations

of the microstructure-based finite element calculations that prohibit from directly comparing the

predictions with the experimental results shown in Fig. 5.1(d). First, the dual-phase microstruc-

ture and the inclusion modeled in the plane strain slice of the material, Fig. 5.2, is essentially
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Figure 5.12: (a) Schematic of a bend specimen, and examples of ‘pass’ and ‘fail’ characterization
during 90◦ V-bend tests. (b)-(d) The effect of the normalized location, dy/d, and normalized size,
r∗I/rM , of the sub-surface inclusion on the bendability of an advanced high strength, DP1000,
dual-phase steel as characterized by 90◦ V-bend tests (Exp), and as predicted by microstructure-
based finite element calculations (FEA) and supervised machine learning model (contour plot of
the probability of survival, Ps). In the finite element calculations and machine learning model, a
dual-phase steel specimen with an inclusion passes the bend test if the value of the normalized
macroscopic flexural strain to failure, (b) εf/ε0f ≥ 0.6, (c) εf/ε0f ≥ 0.7 or (d) εf/ε0f ≥ 0.8.

two-dimensional. Second, the constitutive parameters associated with the damage model for the

constituent phases are not calibrated for the dual-phase steel under consideration but are assigned

values that artificially accelerate the damage process in the material to achieve numerical results
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within a reasonable time. To overcome the first limitation, scaling the size of the inclusion mod-

eled as r∗I = 5 × ryI following the works of [104, 140] to approximate the size of an inclusion in

the three-dimensional bend specimen. Next, to overcome the second limitation, defining a simple

criteria i.e. a specimen passes the bend test if the value of the normalized macroscopic flexural

strain to failure, εf/ε0f , is greater than or equal to a critical value, c.

Figures 5.12(b)-(d) show the effect of the location, dy/d, and size, r∗I/rM , of a sub-surface

inclusion on the bendability of the dual-phase steel as characterized by 90◦ V-bend tests (Exp) and

as predicted by the microstructure-based finite element calculations (FEA) considering the values

of c = 0.6, 0.7 and 0.8, respectively. In Figs. 5.12(b)-(d), finite element results corresponding to

a range of values of the inclusion strength and aspect ratio, as well as multiple realizations of the

underlying dual-phase microstructures are superimposed on top of each other in the dy/d versus

r∗I/rM space. The contour plots in Figs. 5.12(b)-(d) are the probability of survival, Ps, as a function

of dy/d and r∗I/rM obtained from the trained supervised machine learning model. The value of Ps

is estimated as,

Ps =
1

N

N∑
i=1

Pi, Pi =

 1, εf/ε
0
f > c

0, εf/ε
0
f < c

(5.6)

where, N is the total number of samples with fixed set of values of dy/d and r∗I/rM . For a fixed

set of values of dy/d and r∗I/rM , N = 5000 random samples are analyzed with the values of the

remaining parameters of the feature set 2 in Table 5.3 lying within a lower and an upper bound

(0.7 ≤ σN/σ
F
0 ≤ 6.7, 0.06 ≤ rxI /rM ≤ 11.4, 0.05 ≤

√
A/2rM ≤ 10.1, 0 ≤ dx/d ≤ 0.28,

0.4 ≤ (V M
f )CS ≤ 0.6). The results presented in Figs. 5.12(b)-(d), clearly highlight the strong

and somewhat discrete inclusion size effect on the bendability of the dual-phase advanced high

strength steel. Also, very good correlation between the predictions and the limited experimental

results with c = 0.7 in Fig. 5.12(c) is noted.
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5.6 Conclusions

Microstructure-based finite element calculations were carried out to understand the effect of

the length-scales induced by the mode of deformation i.e. 90◦ V-bending, ‘intended’ dual-phase

ferritic-martensitic microstructure, and ‘unintended’ microstructural features i.e. inclusions on

ductile crack nucleation and early stage crack growth in an advanced high strength dual-phase

steel. In the calculations, the inclusion modeled was always located in the center along the length

of the bend specimens and parametric studies were carried out to explore the effects of inclusion

size, shape, location (along the thickness of the specimen) and strength on the bendability of the

dual-phase steel. In line with the experimental observations, strong inclusion size effects on the

bendability of the dual-phase steel naturally emerge in the calculations. The effect of the multivari-

able input space associated with both the ‘intended’ and ‘unintended’ microstructural features on

the bendability of the dual-phase steel were also quantified using supervised machine learning. The

supervised machine learning approach used here utilized an ensemble learning method for classifi-

cation and regression. For the purpose of comparison and to gain additional insight, the effect of an

inclusion on the bendability of a single-phase material with constitutive parameters corresponding

to the overall ‘homogenized’ dual-phase steel under consideration were also analyzed.

The key conclusions are as follows:

1. A sub-surface void nucleation at an inclusion in a single-phase material under 90◦ V-bending

results in plastic strain localization in bands emanating from the sub-surface void that are

oriented at ≈ 45◦ with respect to the loading axis. Finally, with continued bending the

ligament between the surface and the sub-surface void parallel to the loading axis undergoes

ductile fracture post-localized thinning.

2. The micro-mechanism of ductile fracture in a dual-phase steel with a sub-surface inclusion

under 90◦ V-bending not only differs from that in a single-phase material but also strongly

depends on the inclusion size and location:

(a) In a dual-phase steel with a sub-surface inclusion of size sufficiently greater than the
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martensite phase and/or located rather close to the free-surface, plastic strain localizes

in an inclined band emanating from the free-surface towards the sub-surface void nu-

cleated at the inclusion. Finally, with continued bending ductile fracture occurs along

the localization band.

(b) In a dual-phase steel with a sub-surface inclusion of size comparable to (or less than)

the martensite phase and/or located sufficiently away from the free-surface, plastic

strain localizes in inclined bands emanating from the free-surface that ignore the sub-

surface void nucleated at the inclusion. Finally, with continued bending ductile fracture

occurs along the localization band while ignoring the sub-surface void nucleated at the

inclusion.

3. The supervised machine learning analysis revealed that unlike a single-phase material, the

bendability of a dual-phase steel with a sub-surface inclusion is not only affected by the

features associated with the inclusion but also by the features associated with the underlying

dual-phase microstructure.

4. The results show that there exists a critical size of the inclusion relative to the size of the

martensite phase below which the detrimental effect of the inclusion on the bendability of a

dual-phase steel vanishes.
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6. HIGH FRACTURE TOUGHNESS MICRO-ARCHITECTURED MATERIALS∗

6.1 Background

The demand for lower fuel consumption and CO2 emission while increasing the safety and

reliability in the transportation and aerospace industries have driven the development of new

lightweight materials with high strength and fracture toughness. Accordingly, the number of mate-

rials has increased dramatically: there are now over 120,000 different materials [184]. But is there

still room for further improvement? To answer this question, it is insightful to consider material

property charts [184], with axes in the form of material properties. For example, a chart of fracture

toughness versus density is shown in Fig. 6.1(a), and one of fracture toughness versus compressive

strength is shown in Fig. 6.1(b). Metals are clearly the toughest materials, but they are also the

heaviest, Fig. 6.1(a). The choice of lightweight materials is limited: only foams, natural materials

and a few elastomers and polymers have density less than water (1000kg/m3). The scarcity of

lightweight materials is emphasized in Fig. 6.1(b), where solids with density less than 1000kg/m3

are highlighted. Among these lightweight materials, wood and bamboo offer the best combination

of fracture toughness and strength. This raises an important question: how can the current material

space be extended? Here, the possibility of achieving lightweight, high fracture toughness and

high strength by the design of micro-architectured materials were explored.

The potential of micro-architectured and lattice materials to combine high stiffness and strength

at low densities is well documented, see for example, [5–7, 185–187]. However, less is known

about their capacity for high fracture toughness at low density. Experimental, analytical and nu-

merical studies [188–194] have shown that the mode I fracture toughness,KIC , of two-dimensional

micro-architectured materials made from an elastic-brittle material of fracture strength, σf , can be

expressed as:

∗Reprinted with permission from "High fracture toughness micro-architectured materials" by Liu, Y., St-Pierre,
L., Fleck, N.A., Deshpande, V.S. and Srivastava, A., 2020. Journal of the Mechanics and Physics of Solids, in press,
Copyright 2020 by Elsevier.
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Figure 6.1: Material property charts of (a) fracture toughness versus density and (b) fracture tough-
ness versus compressive strength. The properties of micro-architectured materials consisting of
hexagonal array of holes with hole spacing d + t, manufactured and tested in this work and the
estimated properties of a micro-architectured material with d+ t = 30mm are also shown for com-
parison. The abbreviations are CA: cellulose polymer; EVA: ethylene vinyl acetate; PE: polyethy-
lene; PP: polypropylene; CFRP: carbon fiber reinforced polymer; GFRP: glass fiber reinforced
polymer. In (b) materials with density less than 1000kg/m3 are shaded in yellow.

KIC = Hσf ρ̄
h
√
l (6.1)

where ρ̄ and l are the relative density and cell size of the micro-architectured material, re-

spectively, and H and h are constants dependent upon the topology of the micro-architectured

material. Numerical results of [195] and experimental results of [9] suggest that Eq. (6.1) can also

be applied to ductile micro-architectured materials made from an elastic-plastic material. How-

ever, these studies only considered micro-architectured materials of low relative density, ρ̄ / 0.2.

Here, fracture toughness tests on ductile micro-architectured materials with a wide range of relative

densities, 0.17 ≤ ρ̄ ≤ 0.95 were presented. Micro-architectured materials can achieve a higher

fracture toughness than that of the parent solid. Thus, micro-architectured materials can have a
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combination of properties that outperform other engineering and natural materials, Fig. 6.1.

W = 50

B = 25

S = 200
L = 228

19 19Clip-gauge

d+t = 4.4
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d
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d+t = 4.4
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V

Figure 6.2: Schematic showing a single-edge notch specimen of a micro-architectured material
consisting of a hexagonal array of holes drilled in a plate of an aluminum alloy and subjected to
the three-point bending fracture test. Two simpler geometries, a single hole (bottom left) and a row
of holes (bottom right) ahead of the initial crack were also tested to get more insight into the crack
growth mechanisms in the micro-architectured material. For simplicity, only the central portion
of the simpler geometries are shown but they had the same dimensions as the micro-architectured
material. All dimensions in the figure are in mm.

A schematic of the micro-architectured material considered in this work that comprise a hexag-

onal array of holes drilled in the plates of an aluminum alloy is shown in Fig. 6.2. The relative

density of the micro-architectured material is given by:

101



ρ̄ = 1−
√

3πd2

6(d+ t)2
(6.2)

where d is the hole diameter and d+ t is the hole spacing. First, varied the hole diameter while

keeping the hole spacing fixed at d+ t = 4.4mm. Five specimens with d = 4.2, 4.0, 3.2, 2.3 and

1.0mm corresponding to ρ̄ = 0.17, 0.25, 0.52, 0.75 and 0.95, respectively were tested. Second,

the effect of the hole spacing on the fracture toughness by testing micro-architectured materials

that are geometrically similar but half in size (d+ t = 2.2mm) or double in size (d+ t = 8.8mm)

were investigated.

For the micro-architectured material in Fig. 6.2, it can be hypothesized that the fracture tough-

ness is governed by the two competing mechanisms: crack blunting and hole-hole interaction.

Crack blunting: the holes will blunt the crack-tip and consequently, expecting the fracture tough-

ness to increase with increasing hole diameter [138, 196, 197]. Hole-hole interaction: consider

the case of multiple holes with a fixed spacing d + t. Increasing the hole diameter d reduces

the wall thickness t and as a result, expecting the fracture toughness to decrease with increasing

hole diameter. To investigate these two mechanisms independently, tests on two simpler geome-

tries were also conducted. First, the toughening effect of crack blunting was quantified by testing

specimens with a single hole at the crack-tip (Fig. 6.2 bottom left). Then, the second mechanism,

hole-hole interaction, was introduced by testing specimens with a single row of holes (Fig. 6.2

bottom right). Specimens with a single hole and those with a row of holes had the same over-

all dimensions as the specimens of the micro-architectured material to allow comparison between

the three types of specimens. All tests were done on single-edge notch specimens loaded under

three-point bending as shown in Fig. 6.2. The geometry and dimensions of the specimen, and the

test procedure utilized are in compliance with the ASTM standard test method for measurement of

fracture toughness [14].

Although the fracture tests of micro-architectured materials are carried out in compliance with

the ASTM standard [14]. Is a standard test procedure that was initially established for specimens

of bulk materials also applicable to micro-architectured materials? To gain additional insight, finite
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element calculations of ductile fracture in the specimens of the micro-architectured materials and

in specimens with a single and a row of holes using a constitutive framework for progressively

cavitating ductile solids were carried out. In the finite element calculations, the fracture toughness

of single-edge notch specimens subjected to three-point bending are evaluated using a procedure

that mimics the ASTM standard [14] and also via direct computation of the J-integral. The frac-

ture toughness computed from the finite element calculations using both the procedures are found

to be consistent with the experimental results. In addition, the finite element calculations of duc-

tile fracture in micro-architectured materials are also carried out for single-edge notch specimens

subjected to tensile loading; the same scaling between fracture toughness and relative density of

the micro-architectured materials is predicted for the tensile tests and three-point bending tests.

Consequently, the fracture toughness of the micro-architectured materials measured here can be

treated as a material property.

6.2 Experimental method

All specimens were made from aluminum alloy 6082-T6. The single-edge notch specimens

were of length, L = 228mm, width, W = 50mm and thickness, B = 25mm (see Fig. 6.2),

in compliance with [14]. The three types of specimens were manufactured following the same

procedure. First, rectangular blocks of dimensions L × W × B were machined from a plate.

Second, the holes were drilled using a Computer-Numerically-Controlled (CNC) machine. Third,

the initial crack was cut using Electrical Discharge Machining (EDM) with a wire diameter of

0.3mm.

The specimens were tested in three-point bending with a span S = 4W = 200mm, Fig. 6.2.

Steel rollers of diameter of 19mm were used to provide simple support and for load introduction

at mid-span. The tests were done with a screw-driven test machine at a constant cross-head dis-

placement rate of 0.1mm/min. The force, F , applied at mid-span was measured by the load-cell

of the test machine and the crack mouth opening displacement (CMOD) was measured by a clip-

gauge. The clip-gauge was held in place by anvils of height z = 2mm as shown schematically in

Fig. 6.2. Consequently, the extension measured by the clip-gauge, V , is related to CMOD using
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the relation [198]:

CMOD =
rp(W − a) + a

rp(W − a) + a+ z
V (6.3)

where the plastic rotational factor rp = 0.44, the width of the specimen W = 50mm and the

crack length is a.

The J −R curve was evaluated using the elastic compliance method [14]. This procedure was

applied directly for tests done on specimens with a single hole. However, for specimens with a row

of holes and hole diameter exceeding 1mm the relation between the elastic compliance and the

crack length was inaccurate and alternatively empirical relations were derived as follows. First,

the crack length, a, was measured with a vernier. Second, the crack mouth elastic compliance,

C, was measured using the same experimental setup as that used for the fracture toughness test,

Fig. 6.2. Next, ten measurements of the elastic compliance were taken and the mean was calcu-

lated. Finally, the ligament ahead of the crack tip was cut with a hacksaw to extend the crack

length by ∆a = d+ t = 4.4mm and the procedure was repeated for this new value of crack length

to obtain a relation between normalized crack length, a/W , and normalized elastic compliance,

C̄ =
(

2
√
BWEC/S + 1

)−1
, where E is the Young’s modulus. Note that the normalized elastic

compliance, C̄, is the same non-dimensional group as employed in [14]. For specimens of micro-

architectured material, there was a load-drop following the fracture of a cell wall and the current

crack length was directly inferred (and confirmed by visual inspection).

The stress intensity factor is related to the J-integral by [138]:

KJ =
√
E ′J (6.4)

where E ′ ≡ E/(1 − υ2) is the plane strain Young’s modulus. For single hole specimens and

those with a row of holes, the Young’s modulus, E = 70GPa, and the Poisson’s ratio, υ = 0.33, are

the material properties of aluminum alloy 6082-T6. In contrast, for micro-architectured materials,

E ′ was taken as the effective plane strain Young’s modulus of the micro-architectured material and
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was evaluated from the elastic unloading compliance of the single-edge notch bend specimens.

Furthermore, to visualize the path and shape of the crack, partially fractured specimens of micro-

architectured materials were also analyzed using scanning electron microscope (SEM) and X-ray

tomography.

For comparison purposes, the deformation and fracture response of the as-received plates of

the solid aluminum alloy 6082-T6 were also characterized using uniaxial tensile tests and standard

fracture tests as per [14]. The 0.2% offset tensile yield strength, σY , of the material was found

to be ≈ 280MPa. Following yield, the material exhibits a moderate degree of strain hardening

up to an ultimate tensile strength of ≈ 360MPa at a strain of about 11%. The J − R curve of

the aluminum alloy 6082-T6 was measured by testing fully-dense specimens with a fatigue pre-

crack and overall dimensions (L, W and B) as indicated in Fig. 6.2. The fracture toughness of the

as-received material was thereby measured to be, KS
JIC

= 27MPa
√
m.

6.3 Experimental results

The three-point bending response of specimens with a single hole is shown in Fig. 6.3(a), where

the force, F , applied at mid-span is plotted as a function of CMOD. The results are given for the

hole diameter, d = 2.3 and 4.0mm. Both specimens display an elastic-plastic response up to a peak

load Fpk at a crack mouth opening displacement CMODpk. The peak load is mildly sensitive to the

hole diameter, whereas CMODpk increases significantly with increasing hole diameter. At peak

load, a sharp crack initiates from the hole and causes an abrupt load-drop. Subsequently, quasi-

static crack growth leads to a softening response in the load versus CMOD curve. The crack growth

resistance curves for the two specimens are also shown in Fig. 6.3(a): the stress intensity factor,

KJ , normalized by the fracture toughness of the parent material, KS
JIC

, is plotted as a function of

crack extension, ∆a. Note that the required stress intensity for the onset of crack growth for both

cases exceeds that of the parent material (KJIC/K
S
JIC

> 1). In addition, the KS
JIC

increases with

increasing hole diameter, d. This toughening effect is due to crack tip blunting.

The effect of the interaction of multiple holes on fracture toughness in Fig. 6.3(b) were pre-

sented, where the three-point bending response of specimens with a row of holes is shown for
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Figure 6.3: Results of fracture toughness tests on (a) specimens with a single hole, (b) specimens
with a row of holes and (c) specimens of micro-architectured materials. For each type of specimen,
a sketch of the geometry (left), the three-point bending, force - crack mouth opening displacement
(CMOD) response (middle), and the crack growth resistance curves (right) are shown. The hole
diameter, d = 2.3mm, for micro-architectured material with relative density, ρ̄ = 0.75, and d =
4.0mm for ρ̄ = 0.25. The hole spacing, d+ t = 4.4mm, for the specimens with a row of holes and
the micro-architectured materials.
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Figure 6.4: Surface images of deformed specimens of micro-architectured materials: (a) with a
relative density, ρ̄ = 0.25, and deformed under three-point bending to a crack mouth opening
displacement (CMOD) of 2.9mm; and (b) with ρ̄ = 0.75 and deformed to CMOD= 2.3mm. In
both (a) and (b), the crack path is shown by a dashed red line. The hole diameter, d = 2.3mm,
for micro-architectured material with ρ̄ = 0.75 and d = 4.0mm for ρ̄ = 0.25. The hole spacing,
d+ t = 4.4mm, for both the specimens.

two selected values of hole diameter, d = 2.3 and 4.0mm. Both specimens have an elastic-plastic

response up to a peak load Fpk at which point crack growth initiates. Subsequently, there is a

softening response as the crack extends. The normalized crack growth resistance curves for both

specimens with a row of holes are also shown in Fig. 6.3(b). Here, the crack extension ∆a has been

normalized by the hole spacing, d + t = 4.4mm. A comparison of Figs. 6.3(b) and 6.3(a) shows

that the fracture toughness of specimens with a row of holes is less than that of the specimens with

a single hole. Also, in contrast to the single hole specimens, the toughness of specimens with a row

of holes decreases with increasing hole diameter, d. This is due to the fact that the wall thickness,

t, decreases with increasing d since the hole spacing is kept fixed at d + t = 4.4mm. Despite

this knockdown in fracture toughness, a promising result emerges from Fig. 6.3(b): the specimen

with d = 2.3mm requires a critical stress intensity for crack growth exceeding that of the parent

material (KJIC/K
S
JIC

> 1).

Next, whether micro-architectured materials can exhibit a fracture toughness that exceeds the
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parent material was investigated. The three-point bending responses of single-edge notch spec-

imens of micro-architectured materials with relative densities, ρ̄ = 0.25 and 0.75 are shown in

Fig. 6.3(c). Both specimens exhibit an elastic-plastic response up to a peak load Fpk at which point

the cell wall at the crack-tip fails and a sharp load-drop ensues. Additional plastic deformation

occurs under increasing load for ρ̄ = 0.25, and at roughly constant load for ρ̄ = 0.75, until the next

cell wall fractures. The normalized crack growth resistance curves for both micro-architectured

materials are included in Fig. 6.3(c). Both curves have a step-like shape because the crack extends

suddenly by ∆a = d + t = 4.4mm when a cell wall fails. The shape of the resistance curve is

sensitive to relative density: the resistance curve is almost flat for ρ̄ = 0.25, whereas it rises consid-

erably for ρ̄ = 0.75. The fracture toughness at the onset of crack growth increases with increasing

relative density (decreasing hole diameter) and for ρ̄ = 0.75, the fracture toughness at the onset of

crack growth for the micro-architectured material is above that of the parent material. Thus, the

crack blunting effects dominate for ρ̄ = 0.75 while hole-hole interaction effects dominate for the

ρ̄ = 0.25 micro-architectured material.

Surface images of deformed specimens of micro-architectured materials with relative densities

ρ̄ = 0.25 and 0.75 are shown in Fig. 6.4. The crack path in both specimens is marked by a dashed

red line. In both cases, crack growth initiates from the hole at the initial crack tip and the advancing

crack tip oscillates from left to right but always stays close to the center line of the specimen.

Importantly, the images show that the mode of fracture in both the low and high relative density

cases is similar with a crack propagating in the solid between the holes with negligible necking

of the ligaments, i.e. the fracture mode of the micro-architectured material is not coalescence of

the holes associated with necking of the ligaments but due to ductile fracture of the ligaments. To

visualize the shape of the crack in the through-thickness direction, X-ray tomography images of

deformed specimens were acquired. The X-ray tomography images for the specimen of a micro-

architectured material with ρ̄ = 0.75 are shown in Fig. 6.5, where each image represents a slice of

the specimen through the thickness. The images in Fig. 6.5 clearly show a thumbnail shaped crack;

at the free surfaces (x3/B = 0 and 1) only two cell walls appear broken, whereas the images taken
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Figure 6.5: X-ray tomography images showing the thumbnail shape of a crack propagating in
the single-edge notch bending specimen of a micro-architectured material with a relative density,
ρ̄ = 0.75 and a cell size, d+ t = 2.2mm. The crack appears shorter at the free surfaces (x3/B = 0
and 1) and longer in the middle of the specimen (x3/B = 0.5).

from within the specimen (x3/B = 0.25, 0.5 and 0.75) reveal that four cell walls are fractured.

This suggests that despite the presence of the holes, there is sufficient build-up of hydrostatic stress

within the ρ̄ = 0.75 micro-architectured material for a thumbnail crack front to develop much like

in bulk materials.

The measured fracture toughness of all three types of specimens tested are compared in Fig. 6.6,

where KJIC/K
S
JIC

is plotted as a function of the relative density for micro-architectured materials

and as a function of the hole diameter for single hole specimens and for those with a row of holes
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Figure 6.6: The normalized fracture toughness as a function of relative density, ρ̄, for micro-
architectured materials. Results for specimens with a single hole and for those with a row of holes
are also plotted as a function of the hole diameter, d. The hole spacing, d + t = 4.4mm, for both
the specimens with a row of holes and the micro-architectured materials.

(note the double x-axis). The three types of specimen have a comparable fracture toughness when

d = 1mm. Note that d = 1mm is small compared to the hole spacing, d + t = 4.4mm and

consequently hole-hole interaction effects are negligible. For d > 1mm, hole-hole interaction

effects are significant and specimens with a row of holes and micro-architectured materials have a

fracture toughness inferior to that of single hole specimens. Furthermore, the fracture toughness of

specimens with a row of holes is slightly greater than that of micro-architectured materials. This is

due to the orientation of the ligaments; specimens with a row of holes have their cell walls aligned

with the direction of maximum tensile stress whereas micro-architectured material have ligaments

oriented at 30◦ from the loading direction, see Fig. 6.2. The most striking result in Fig. 6.6 is that

a micro-architectured material with ρ̄ = 0.52 has the same fracture toughness as that of the parent

material, see dashed line in Fig. 6.6. In other words, the micro-architectured material is ≈ 50%

lighter than the parent material but possesses the same value of fracture toughness. This remarkable

result was obtained here for a micro-architectured material with a hole spacing d + t = 4.4mm

and next, examine the influence of the parameter, d + t, upon the fracture toughness of micro-

architectured materials.

110



KJIc

σY d+t

Relative density ρ

KJIc
σY d+t= 4 ρ 1.5( )

0.2

0.4

0.6
0.8

1

3

5

0.1 1

d+t = 2.2 mm
d+t = 4.4 mm
d+t = 8.8 mm

Figure 6.7: The normalized fracture toughness as a function of relative density, ρ̄, for micro-
architectured materialswith three selected values of hole spacing, d+ t, obtained using three-point
bending fracture test of single-edge notch specimens.

Dimensional analysis suggests that the fracture toughness of micro-architectured materials

scales with
√
l, see Eq. (6.1). To investigate this, additional micro-architectured materials were

manufactured with the dimensions shown in Fig. 6.2(a) increased by a factor of two. Hence, these

five micro-architectured materials had the same values of relative density as those presented in

Fig. 6.6, but with a hole spacing d + t = 8.8mm instead of 4.4mm. Likewise, smaller micro-

architectured materials were also prepared with the dimensions shown in Fig. 6.2(a) reduced by

a factor of two. Due to manufacturing limitations, only three small micro-architectured materials

with d+ t = 2.2mm were manufactured: ρ̄ = 0.25, 0.52 and 0.75. The normalized fracture tough-

ness of micro-architectured materials with d + t = 2.2, 4.4 and 8.8mm are plotted in Fig. 6.7 as

a function of relative density. Note that here KJIC is normalized by σY
√
d+ t, where σY is the

yield strength of the parent material. Using this normalization, the results for the three different

values of d+ t collapse onto a single line. This confirms that the fracture toughness scales with the

square-root of the cell size. Moreover, a linear fit to the data in Fig. 6.7 suggests that

KJIC = 4 (ρ̄)1.5 σY
√
d+ t (6.5)
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The value of the exponent, 1.5, is the same as that for aluminum metal foams [199, 200]; it is

less than the value of 2 obtained for hexagonal micro-architectured materials [191, 192] which are

bending-dominated micro-architectured materials but greater than the value of 1 obtained for the

stretch-dominated octet trusses [9]. However emphasizing that, a-priori, over the very large relative

density range investigated here there is no reason to expect the usual bending/stretching dominated

scaling that exists for low relative density micro-architectured and lattice materials. The physical

reason behind the existence of such a power-law scaling in Fig. 6.7 needs further investigation.

6.4 Numerical method

The experimental results suggest that the micro-architectured material investigated here has a

high fracture toughness (in some cases exceeding that of the solid material). However, from the ex-

periments which have complied with the usual [14] standard developed for solid metals, it remains

unclear whether a J−field is present within the specimens and thus whether the experiments re-

sult in a valid fracture toughness measurement. To interrogate this issue here report finite element

calculations of fracture of these micro-architectured materials. The numerical method chosen is

motivated by the observation reported above that fracture of the micro-architectured material oc-

curs via the propagation of a ductile crack between the holes of the micro-architectured material,

i.e. chosing a constitutive framework for progressively cavitating ductile solid that has been widely

employed to model ductile fracture in metals and alloys including Aluminum alloys.

The finite element calculations are carried out using in-house data parallel finite element code,

which is based on the dynamic principle of virtual work using a finite deformation Lagrangian

convected coordinate formulation [1]. In order to compare predictions with experiments, finite

element calculations are carried out for single-edge notch specimens with a single hole, a row

of holes and a hexagonal array of holes (micro-architectured material) subjected to three-point

bending, Fig. 6.8. The overall in-plane (along x and y axes) dimensions of the single-edge notch

specimen analyzed are the same as in experiments. However, the thickness, B, (dimension along

z axis) of the specimen in the calculations is taken to be 1mm and overall plane strain conditions

are imposed on z = 0 and z = B surfaces of the specimen. The y-displacement of the specimen is
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Figure 6.8: Sketch of the single-edge notch specimen of a micro-architectured material with a
hexagonal array of holes subjected to three-point bending (top). Zoomed view of the finite element
mesh in single-edge notch specimens with a single hole, a row of holes and a hexagonal array of
holes (bottom left-right).

constrained at locations, y = 0, x = 14mm and y = 0, x = 214mm in the reference configuration

to prevent rigid body motion. The finite element calculations are based on the dynamic principle

of virtual work for numerical convenience but the focus here is on the quasi-static response, hence

to minimize the wave effects a time varying velocity, Vy(t), in the negative y direction is applied

at location, y = 50mm, x = 114mm, that follows the relation:

Vy (t) =


V 0
y t/tr if t ≤ tr

V 0
y if t > tr

(6.6)

where, t is the analysis time, tr is the rise time and V 0
y is the final velocity of the punch for

t > tr. In the calculations, tr = 1.0 × 10−3s and V 0
y = 1.0 × 103mm/s (along negative y axis) is

used.

The constitutive framework described in Section 2.2 for a progressively cavitating ductile solid,

contains several constitutive parameters that need to be determined. The constitutive parameters
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that characterize the elastic-viscoplastic response of a fully dense 6082-T6 aluminum alloy were

considered at first. To this end, first fix upon the values, E = 70GPa and ν = 0.3, and obtain

the remaining parameters in Eq. (2.7) using the portion of the experimentally obtained uniaxial

stress-strain curve before the onset of necking. The values of the constitutive parameters that

best describe the overall stress-strain response of the as-received fully dense material are: σ0 =

280MPa, ε0 = σ0/E = 0.00429, N = 0.64, m = 0.002 and ε̇0 = 0.1s−1. Next, the values of

q1 = 1.5 and q2 = 1.0 in Eq. (2.2) are taken from [201], and the values of fc = 0.05 and ff = 0.1

in Eq. (2.4) are taken following [202]. Finally, the values of the initial void volume fraction (value

of f at t = 0), f0 = 0.005, and the values of εN = 0.05, sεN = 0.01 and f εN = 0.02 in Eq. (2.9) are

obtained by minimizing the mean squared error between the predicted and experimentally obtained

force versus CMOD response of two single-edge notch bending specimens of micro-architectured

materialswith relative densities, ρ̄ = 0.25 and 0.75, using the Nelder-Mead simplex algorithm and

following a procedure similar to that of [203].

The finite element calculations use twenty-node brick elements and eight point Gaussian in-

tegration in each element for integrating the internal force contributions, and twenty-seven point

Gaussian integration for the element mass matrix. Lumped masses are used so that the mass matrix

is diagonal. The discretized equations are integrated using the explicit Newmark β-method with

β = 0 [93]. The constitutive updating is based on the rate tangent modulus method [94], while

material failure is implemented via the element vanishing technique [90]. Representative finite el-

ement meshes for single-edge notch specimens with a single hole, a row of holes and a hexagonal

array of holes are shown in Fig. 6.8. The finite element meshes are all generated using a single

element in the through-thickness direction (along z axis). A fine in-plane (along x and y axes)

mesh is used with a fixed element size of 0.5mm in a 60 × 50mm2 region near the center of the

specimen.

6.5 Numerical results

The reaction force at the mid-span versus CMOD curves, of single-edge notch specimens with

a single hole, a row of holes and a hexagonal array of holes (micro-architectured material) are
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Figure 6.9: Predicted force versus crack mouth opening displacement (CMOD) response of single-
edge notch specimens with (a) a single hole, (b) a row of holes and (c) a hexagonal array of holes
(micro-architectured material) subjected to three-point bending. The hole diameter, d = 2.3mm,
for micro-architectured material with relative density, ρ̄ = 0.75, and d = 4.0mm for ρ̄ = 0.25. The
hole spacing, d + t = 4.4mm, for the specimens with a row of holes and the micro-architectured
materials.

shown in Fig. 6.9. Similar to the experimental results presented in Fig. 6.3, the predicted three-

point bending response of all the specimens reported in Fig. 6.9 displays an elastic-plastic response

up to peak load, Fpk, followed by a softening response due to crack growth initiation. The pre-

dicted three-point bending response of the specimens with a row of holes and micro-architectured
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materials up to Fpk is in close quantitative agreement with the experimentally observed responses

for all hole diameters and spacings. However, for the specimens with a single hole the predicted

three-point bending response differs somewhat from that of observations for certain hole diameters.

For example, for a specimen with a single hole of diameter, d = 2.3mm the measured Fpk ≈ 29kN

and CMOD at Fpk is ≈ 1mm while in the finite element calculations Fpk ≈ 37kN and CMOD at

Fpk is ≈ 1.4mm. On the other hand, for a specimen with a single hole of diameter, d = 4.0mm,

both experimental and finite element results are in close agreement.

In the experiments, the J − R curves were evaluated using the elastic compliance method as

given in [14]. However, the J-integral can also be directly obtained from the finite element results.

Recall that, for a two dimensional, planar, nonlinear elastic material, under the assumption of small

displacement gradient and with body forces neglected, the J-integral is given by [138]

J = −
∫
C

(σij
∂ui
∂x1
−Wδ1j)nj ds (6.7)

in terms of the stress σij , displacement ui, the increment of arc length along the path ds, strain

energy W and the outward normal to the path nj . In order to determine the value of the J-integral

from the finite element results, it is convenient to re-write the contour integral as an equivalent area

integral. The energy release rate, J-integral, can then be calculated using the relation [204]

J =

∫
A

(σij
∂ui
∂x1
−Wδ1j)

∂Q1

∂xj
dA (6.8)

where Q1 is a smooth weighting function defined on the domain.

The dependence of the J-integral as obtained from the finite element results using Eq. (6.8)

upon the radius of contours surrounding the initial notch tip of the single-edge notch bend speci-

mens with a single hole, a row of holes and a hexagonal array of holes is shown in Fig. 6.10. As

shown in Figs. 6.10(a) and (b), for the specimens with a single hole and a row of holes the value of

J-integral is slightly path dependent. Also, the extent of path dependence of J-integral increases

with increasing CMOD. However, for contour radius ≥ 12mm the value of J-integral tends to sat-
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(a) (b)

(c)

Figure 6.10: Predicted dependence of the value of J-integral on the radii of circular contour sur-
rounding the initial notch tip of the single-edge notch specimens with (a) a single hole, (b) a row
of holes and (c) a hexagonal array of holes (micro-architectured material) with relative density,
ρ̄ = 0.75, subjected to three-point bending. The hole diameter, d = 2.3mm, for all the specimens
and hole spacing, d+t = 4.4mm, for the specimens with a row of holes and the micro-architectured
material.

urate. The path dependence of J-integral, such that the value of J-integral initially increases with

increasing contour radius, under finite deformation where proportional loading is not guaranteed

is not entirely unexpected [205]. However, for the micro-architectured material, Fig. 6.10(c), the

value of J-integral is almost path independent. Thus, a contour radius of 12mm is selected for
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evaluating J-integral for all the specimens. A more detailed discussion on the existence of a J

field and the resulting values of J-integral in micro-architectured materials is given in Section 6.6.

The value of JIC , a measure of crack growth initiation toughness, is defined as the value of the

contour integral J corresponding to which crack growth initiation is predicted in the finite element

calculations. The value of fracture toughness in terms of critical stress intensity factor, KJIC , is

then obtained using the relation given in Eq. (6.4). Apart from the direct computation of KJIC

via the J-integral, the value of KJIC is also obtained by direct application of the [14] standard to

the finite element results; however, instead of using the elastic compliance method to obtain crack

length, the crack length was known immediately from the finite element results.

A comparison of the normalized fracture toughness, KJIC/K
s
JIC

, (i) as measured from three-

point bending experiments, (ii) as predicted by post-processing of the finite element results using

the [14] standard and (iii) as predicted by direct computation of J-integral for all three types

of single-edge notch specimens are shown in Fig. 6.11. For all three specimens, the results are

normalized by, Ks
JIC

, the experimentally obtained fracture toughness of the as-received plate of

aluminum alloy 6082-T6. Very good agreement between the predicted fracture toughness from the

finite element calculations by both evaluation procedures and the experimental results is noted. The

biggest discrepancy between the finite element predictions and the experimental results is observed

for specimens with a single hole of small diameter. This is consistent with the differences between

the predictions in Fig. 6.9(a) and experimental measurements in Fig. 6.3(a).

6.6 Discussion

The mechanical properties of micro-architectured materials depend upon their topology. The

effect of topology of micro-architectured materials upon the stiffness and strength is well docu-

mented, but optimizing their fracture toughness is a challenging and intriguing task. Here, the

results of fracture toughness tests on micro-architectured materials that comprise a hexagonal ar-

ray of holes drilled in the plates of an aluminum alloy were presented. The fracture toughness

of the micro-architectured materials considered here is governed by two competing mechanisms:

crack blunting and hole-hole interaction. The holes act as crack arrestors and blunt the crack-tip
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Figure 6.11: Comparison of the normalized fracture toughness measured from the three-point
bending experiments (labeled ‘Experiment’) and computed from the post processing of the finite
element results using a procedure that mimics the [14] standard (labeled ‘ASTM’) and via direct
computation of J-integral (labeled ‘Contour Integral’) for (a) specimens with a single hole of
diameter, d, (b) specimens with a row of holes of diameter, d, and hole spacing, d + t = 4.4mm,
and (c) micro-architectured materials with relative density, ρ̄, and d+ t = 4.4mm.

so that increasing the hole diameter will result in an increase in the fracture toughness whereas for

fixed hole spacings, increasing the hole diameter will result in increased hole-hole interactions and

decrease the fracture toughness.

The competing effect of crack blunting and hole-hole interaction on the evolution of damage in
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Figure 6.12: Predicted distribution of porosity, f , near the initial notch of single-edge notch speci-
mens of micro-architectured materials with (a) relative density, ρ̄ = 0.25, post three-point bending
to crack mouth opening displacement (CMOD) values 0.34, 0.70 and 1.48mm, and (b) ρ̄ = 0.75
post three-point bending to CMOD values 0.29, 0.69 and 0.98mm. The hole diameter, d = 2.3mm,
for micro-architectured material with ρ̄ = 0.75 and d = 4.0mm for ρ̄ = 0.25. The hole spacing,
d+ t = 4.4mm, for both the micro-architectured materials.

micro-architectured materials is elucidated in Fig. 6.12. In the figure, the predicted distribution of

porosity, f , near the initial notch of single-edge notch specimens of micro-architectured materials

with ρ̄ = 0.25 (d = 4.0mm) and ρ̄ = 0.75 (d = 2.3mm) are shown post three-point bending to three

values of CMOD. The hole spacing in both micro-architectured materials is fixed at d+t = 4.4mm.

Prior to crack growth initiation, the increased porosity is spread over a larger area in the micro-
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architectured material with ρ̄ = 0.25 compared to the micro-architectured material with ρ̄ = 0.75

due to increased hole-hole interaction. Thus, the fracture toughness of the micro-architectured

material with ρ̄ = 0.25 is less than that of the fracture toughness of the as-received plate of the

parent material. On the other hand, due to an optimum balance of hole blunting and hole-hole

interaction, the fracture toughness of the micro-architectured material with ρ̄ = 0.75 exceeds that

of the fracture toughness of the parent material.

The measured properties of the micro-architectured materials comprising a hexagonal array of

holes are included in the material property charts, Fig. 6.1. The density of the micro-architectured

materials is ρ = ρ̄ρs, where the density of the parent material, ρs = 2700kg/m3. In Fig. 6.1(b),

the compressive strength of the micro-architectured material is the out-of-plane yield strength of

magnitude ρ̄σY , where the yield strength of the parent material is σY = 280MPa. It is clear from

Fig. 6.1(a) that the micro-architectured materials of cell size d + t = 8.8mm are positioned at the

outer boundary of the currently available material space. They outperform the toughest metals and

they compete well with the toughest natural materials. Recall that the measured fracture toughness

of these micro-architectured materials scales with the square-root of the cell size (d+ t), Eq. (6.5).

Consequently a hole spacing of d + t = 30mm, would lead to a micro-architectured material

that is tougher than any known metals or natural materials as shown in Fig. 6.1. In conclusion,

micro-architectured materials offer a combination of high strength and high fracture toughness

that outperforms other lightweight materials of density less than 1000kg/m3.

In the present study, all the fracture tests of single-edge notch specimens under three-point

bending were carried out in compliance with the [14] standard. The question arises: to what extent

can a standard test procedure that was established for solid materials, be applicable to micro-

architectured materials? Consider, for example, the recent study by [206] on an open cell aluminum

alloy foam. They found that a zone of randomly failed struts develops ahead of the primary crack

tip, and the size of this zone is similar to the plastic zone size. In such cases a crack tip J-field is

absent at the initiation of crack growth and the measured JIC value cannot be treated as a material

property even though the specimen size meets the usual criteria for J validity. The ability of the

121



5mm

̅𝜀𝜀

CMOD=1.93mm
d = 2.3mm

CMOD=1.32mm
d = 2.3mm

CMOD=0.87mm
d = 2.3mm

0.05
0.02
0.01
0.005
0.001

Remove black region

(a)

5mm

CMOD=1.93mm
d = 2.3mm

CMOD=1.32mm
d = 2.3mm

CMOD=0.87mm
d = 2.3mm

0.05
0.04
0.03
0.02
0.015

f

Remove black region

(b)

Figure 6.13: Predicted distribution of (a) equivalent plastic strain, ε̄, and (b) porosity, f , near the
initial notch in a single-edge notch specimen with a single hole of diameter, d = 2.3mm, post three-
point bending to crack mouth opening displacement (CMOD) values 0.87, 1.32 and 1.93mm. A
contour of radius, r = 12mm, is marked as solid black circle while a contour of radius, r = 6mm,
is marked as dashed black circle.

value of J-integral to characterize the fracture properties is contingent upon the existence of a J-

field near the crack tip which depends on whether the plastic zone fully encompasses the fracture

process zone or not.

The predicted distribution of equivalent plastic strain, ε̄, and of porosity, f , near the initial notch

in a single-edge notch specimen with a single hole of diameter, d = 2.3mm, and in a single-edge

notch specimen of a micro-architectured material with relative density, ρ̄ = 0.75 (d = 2.3mm),
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Figure 6.14: Predicted distribution of (a) equivalent plastic strain, ε̄, and (b) porosity, f , near the
initial notch in a single-edge notch specimen of micro-architectured material with relative density,
ρ̄ = 0.75, post three-point bending to crack mouth opening displacement (CMOD) values 0.69,
0.98 and 1.91mm. The hole diameter, d = 2.3mm, in the micro-architectured material. A contour
of radius, r = 12mm, is marked as solid black circle while a contour of radius, r = 6mm, is
marked as dashed black circle. The contour plot in (b) is for the same case shown in Fig. 6.12(b)
but plotted at greater values of CMOD.

are shown in Figs. 6.13 and 6.14, respectively, for three-point bending to three values of CMOD.

In Figs. 6.13 and 6.14, the first two values of CMOD are for J < JIC while the greatest value

of CMOD corresponds to J > JIC . For both the specimens with a single hole and the micro-

architectured material, the fracture process zone size (i.e. f ≈ fc, where fc = 0.05) is much

smaller than the plastic zone size. Furthermore, the plastic zone size in the micro-architectured
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material is relatively small compared to that in the specimen with a single hole for comparable

values of CMOD. The smaller plastic zone size in the micro-architectured material compared to

the specimen with a single hole also rationalizes the observation in Fig. 6.10 that the value of J-

integral in the micro-architectured material is less path dependent than the specimen with a single

hole. The fact that the fracture process zone size is much smaller than the plastic zone size and the

J-integral is almost path-independent in the single-edge notch specimens of micro-architectured

material suggests that the measured fracture toughness, JIC or KJIC , can be treated as a material

property. Furthermore, in the finite element calculations, the fracture toughness of single-edge

notch specimens subjected to three-point bending is in agreement for the two procedures, one that

mimics the [14] standard and via direct computation of J-integral.
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Figure 6.15: (a) Comparison of the normalized fracture toughness predicted from finite element
calculations of single-edge notch specimens of micro-architectured materials with relative den-
sity, ρ̄, subjected to three-point bending and tension. The values of fracture toughness from finite
element calculations are computed using a procedure that mimics the ASTM standard (labeled
‘ASTM’) and via direct computation of J-integral (labeled ‘Contour Integral’). (b) Predicted dis-
tribution of porosity, f , near the initial notch of single-edge notch specimens of micro-architectured
materials with relative density, ρ̄ = 0.25, post tensile loading to crack mouth opening displacement
(CMOD) value 1.30mm and ρ̄ = 0.75 post tensile loading to CMOD= 0.64mm. The hole spacing,
d+ t = 4.4mm, for all micro-architectured materials.
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Finally, to further establish that the fracture toughness of the micro-architectured materials

obtained using single-edge notch bending specimens does indeed represent a useful material prop-

erty which is independent of specimen geometry, finite element calculations of ductile fracture in

single-edge notch specimens of micro-architectured material under remote uniaxial tension were

carried out as well. To this end, the single-edge notch specimens of micro-architectured material

with the same geometry as in Fig. 6.8 are subjected to tensile loading along the x-axis. The fracture

toughness is evaluated using the [14] standard and also via direct computation of J-integral. In the

evaluation of fracture toughness of single-edge notch specimens subjected to tension following

ASTM standard, a modified geometric function for single-edge notch tension specimen [207] is

utilized. A comparison of the normalized fracture toughness, KJIC/K
S
JIC

, predicted from finite

element calculations of single-edge notch specimens subjected to tension and three-point bending

are shown in Fig. 6.15(a). As shown in the figure, the fracture toughness of single-edge notch

specimens of micro-architectured materials subjected to tension show the same scaling between

fracture toughness and relative density as in three-point bending. The fracture toughness values

obtained for single-edge notch tension specimens are slightly greater than that for single-edge

notch bending specimens. This is because the crack-tip constraint in single-edge notch tension

specimen is less than the single-edge notch bending specimen. However, emphasizing that the

effect of this constraint on fracture toughness is relatively small suggesting that KJIC is sufficient

to characterize fracture in these micro-architectured materials. Also, similar to single-edge notch

bending specimens, here as well, it is the competing effect of crack blunting and hole-hole inter-

action on the evolution of damage in micro-architectured materials, as elucidated in Fig. 6.15(b),

that leads to the same scaling between fracture toughness and relative density.

6.7 Conclusions

The fracture toughness of ductile micro-architectured materials to demonstrate their potential

as a lightweight and tough material have been investigated. The micro-architectured materials

consisted of a hexagonal array of holes in a ductile material. The key conclusions are as follows:
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1. The fracture toughness of the micro-architectured materials with hexagonal array of holes in

a ductile material increases with increasing relative density and with increasing cell size.

2. A micro-architectured material with cell size, d+t = 4.4mm, and approximately 50% lighter

than the parent material has the same fracture toughness as the parent material.

3. The finite element calculations of three-point bending of single-edge notch specimens of

micro-architectured materials show that in the micro-architectured materials the plastic zone

fully encompasses the fracture process zone and a path independent value of J- integral can

be obtained.

4. The fracture toughness of the micro-architectured materials obtained from the finite element

calculations of single-edge notch specimens subjected to three-point bending using a pro-

cedure similar to the experiments and via direct computation of J-integral are shown to be

consistent with the experimental results.

5. The fracture toughness of the micro-architectured materials obtained from the finite element

calculations of single-edge notch specimens subjected to tension show the same scaling be-

tween fracture toughness and relative density as in three-point bending. This result confirms

the validity of the measured fracture toughness as a useful material property.

6. A comparison with other engineering materials show that the micro-architectured materials

investigated expand the current material property space: it possesses an excellent combina-

tion of high strength and fracture toughness compared to other existing lightweight materials.
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7. SUMMARY AND FUTURE WORK

7.1 Summary and concluding remarks

Ductile fracture of advanced structural materials involving nucleation, growth and coalescence

of microscale voids is affected by the length-scales arising from the material microstructure, the

geometry of deformation and the loading condition. These length-scales in turn interact and evolve

during the deformation process, resulting in often unknown and counterintuitive subsequent frac-

ture processes. The aim of this dissertation was to understand how the nucleation and growth of

macroscopic cracks in ductile materials depend on these evolving length-scales, and transform the

field of classical fracture mechanics from the notion of structure → fracture to structure → mi-

crostructure → fracture. This enabled microstructure informed prediction of ductile fracture as

well as design of lightweight fracture resistant materials. The key contributions of this dissertation

are as follows:

• Microstructure-based finite element calculations of mode I crack growth in ductile material

matrix containing three-dimensional distribution of inclusions were carried out to identify

the micromechanisms of ductile crack advance, and isolate the key microstructural features

and material parameters that affect these micromechanisms and fracture toughness of the

material. Several features of crack growth behavior and dependence of fracture toughness

on microstructural and material parameters observed in experiments, naturally emerged in

these calculations. The extent to which the microstructural and material parameters affect the

micromechanisms of ductile crack advance and, hence, the macroscopic fracture toughness

of the material were discussed. In particular, the results show that there is an increase in

the propensity of plastic strain localization with increasing inclusion volume fraction and/or

inclusion size. The results also provide guidelines for microstructural engineering to increase

ductile fracture toughness, for example, for a material with small inclusions, increasing the

mean inclusion spacing has a greater effect on fracture toughness than for a material with
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large inclusions.

• Microstructure-based finite element calculations were carried out to model the effect of

length-scales induced by the geometry of deformation, in particular bending, and the ma-

terial microstructure on ductile fracture of dual-phase advanced high strength steel sheets.

The results show that the interlacing of length-scales induced by bending and dual-phase

microstructure results in extremely complex and heterogeneous deformation patterns. In

line with the experimental observations, the calculations predict that despite similar strength

and strain hardenability, volume fraction of the phases, and fracture response under uniax-

ial tension along rolling and transverse directions, the bendability of the sheet steel along

rolling direction is less than the bendability along the transverse direction. The results of

these calculations also show that efforts to improve the bendability of advanced dual-phase

steel sheets must focus on improving the mechanical properties of the relative softer ferrite

phase.

• The effect of size, shape, location and properties of the unintended inclusions on the bend-

ability of advanced dual-phase steel sheets were also quantified through microstructure-

based finite element calculations. The results show that the presence of a subsurface in-

clusion in the sheet specimens results in a subsurface crack nucleation under bending that

accelerates the localization of plastic strain in the material. In line with the experimental ob-

servations, strong inclusion size effects on the bendability of dual-phase steel sheets naturally

emerged in the calculations. Furthermore, supervised machine learning was used to mathe-

matically represent the relationship between the ‘intended’ and ‘unintended’ microstructural

features and the bendability of the dual-phase steel sheets. This mathematical representation

was then used to identify the contribution of each parameter and isolate critical features that

control the bendability of the advanced dual-phase steel sheets.

• Natural materials such as wood and bamboo possess high fracture toughness at a density

below that of water. Here, the potential of metallic micro-architectured materials to out-
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perform these natural materials was investigated. The micro-architectured materials were

manufactured by drilling a hexagonal array of holes in plates of an aluminum alloy, and the

fracture toughness was evaluated using three-point bending tests of single-edge notch speci-

mens. The results show that the fracture toughness of micro-architectured materials increases

with increasing relative density and remarkably, a micro-architectured material can be 50%

lighter than the parent material but maintain the same fracture toughness. The experiments

were complemented by finite element calculations of ductile fracture. In the calculations,

the fracture toughness of single-edge notch specimens subjected to three-point bending were

evaluated using both, a procedure similar to the experiments and direct computation of the

J-contour integral. The fracture toughness as calculated by both methods were consistent

with the experimental results. In addition, the calculations were also carried out for single-

edge notch specimens subjected to tensile loading, confirming the validity of the measured

fracture toughness as a useful material property.

7.2 Future directions

In light of the work carried out and the results presented in this dissertation, several fundamental

and technological questions can be investigated in future research works:

• Simple guidelines for microstructural engineering to increase ductile fracture toughness have

been identified in this dissertation. However, several recent studies have also explored the

possibility of engineering the crack path by designing material microstructures, including

the distribution of non-metallic inclusion, and thereby increasing the material’s fracture re-

sistance [47]. In this study [47], the fracture resistance of controlled sinusoidal distributions

of inclusions were found to be significantly greater than that of a random distribution with

the same specified mean inclusion spacing. Interestingly, the study also suggests that adding

more inclusions to engineer the crack path can, in certain circumstances, have a beneficial

effect on crack growth resistance, a rather counter-intuitive observation. Designing inclu-

sion distribution, potentially 3D distributions, to improve the fracture toughness remains a
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challenging task.

• The microstructure-based finite element calculations to quantify the effect of length-scales

induced by the geometry of deformation and the material microstructure on ductile frac-

ture of dual-phase advanced high strength steel sheets were carried out for 2D microstruc-

tures. Recently, there has been some progress on statistical reconstruction of realistic 3D

microstructures from 2D SEM images collected on oblique sections [208]. These recon-

structed 3D microstructures can in theory be implemented in the microstructure-based finite

element methodology utilized in this work. This will enable a more realistic microstructure-

based prediction of the manufacturability of advanced high strength steels.

• The microstructure-based finite element calculations to quantify the effect of length-scales

induced by bending and material microstructure on ductile fracture of dual-phase steel sheets

were carried out for a fixed sheet thickness and the microstructural length-scales. Some ex-

perimental observation suggest that refining and homogenizing the dual-phase microstruc-

ture can improve the ductility of the material [177, 209–213]. Thus, a natural next step is to

explore the influence of the interlacing of structural and microstructural length-scales on the

bendability of advanced dual-phase steel sheets.

• Experimental observations suggest that surface decarburization improves the bendability of

advanced high strength dual-phase steels. However, the presence of a softer decarburized

surface layer may have an adverse effect on the fatigue properties of the material. The

microstructure-based finite element methodology established in this work can be used to get

further insight in to the effect of surface decarburization on the bendability and the fatigue

properties of the material.

• Recently, many efforts have been directed towards utilizing artificial intelligence (AI) to

understand microstructure-fracture correlation in engineering materials [214–217]. For ex-

ample, in a recent work, the small fatigue crack driving force in polycrystalline materials

were identify by machine learning approach [216], while a methodology is presented to
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leverage microstructural and micromechanical data to predict fatigue crack path [217]. The

microstructure-based finite element methodology utilized to model fracture in multiphase

materials in this dissertation can be deployed in conjunction with AI to enable better and

more robust microstructure-based prediction of fracture.
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