
EXTENDING THE PRACTICAL APPLICABILITY OF THE KALMAN FILTER

A Dissertation

by

JOSE HUMBERTO RAMOS ZUNIGA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, John Hurtado
Committee Members, John Valasek

Manoranjan Majji
Pilwon Hur

Head of Department, Rodney Bowersox

August 2020

Major Subject: Aerospace Engineering

Copyright 2020 Jose Humberto Ramos Zuniga

ABSTRACT

A Schmidt filter is a modification of the Kalman filter that allows to append system parameters

as states and considers their uncertainty effect in the filtering process without attempting to estimate

such parameters. The states that are only considered but not estimated, are generally known as

consider or considered states. The main contributions of this research are the formulations of a

Schmidt-Kalman filter that incorporates the numerical robustness of the well-known square root

and factorized filtering forms plus the capacity of actively attempting to update the considered

states.

The filters formulations proposed in this research are a fundamental extension of the Kalman

filter. Therefore, the formulations of this work also apply within the Extended Kalman filter frame-

work. More importantly, they are shown to handle nonlinearities, larger initial uncertainties, and

poorly conditioned systems better than a typical Extended or Schmidt Kalman filter. Because the

new filters directly based on the Schmidt filter, they offer a novel and straight-forward filtering

framework, allowing the use of a more simple filter where a more advanced or elaborated tech-

nique could have been needed.

The proposed contributions of this research are organized as follows. First, the Partial-update

Kalman filter, a generalized Schmidt filter that allows updating the user-selected consider states

partially, is introduced. The indirect or multiplicative error version of this new filter is also de-

rived. An error stability analysis (for linear systems) of the partial-update filter and a discussion

on its numerical stability and the potential numerical robustness improvements is presented. Sec-

ond, a square root formulation to improve the numerical stability of the partial-update Schmidt

filter is developed. The derivation of sequential and vector measurement processing schemes for

the square root formulation are both presented along with a brief computational complexity and

Montecarlo analysis. Third, to gain computational efficiency but still retaining a numerically ro-

bust formulation, as an alternative, a U-D factorized version of the partial-update filter is also

developed. Fourth, to improve estimation consistency and accuracy of the partial-update filter,

ii

baseline methods are proposed to attempt the estimation of the considered states. Finally, formula-

tions proposed in this research are validated through hardware implementations to solve aerospace

engineering-related problems.

iii

DEDICATION

To Maria, Eileen and Rihan, my lovely family. To my friends that always have supported and

believed in me.

iv

ACKNOWLEDGMENTS

The completion of a doctoral degree is not a task I could have completed by myself. I have been

fortunate to have such wonderful persons with me during this journey always to listen, support, and

encourage me. I would first like to thank my lovely wife, Maria, for being by my side along the

way, helping me in all ways she can, and always believe in me, but above all for being so brave

and accept to leave all we had in our country to support me. I would also like to thank my father,

Humberto, and my grandmother, Chabelita, my sisters, Mayra and Yajaira, and my brother, Kevin,

for always being so supportive even when they are far away. Also, I want to express my gratitude

to my wife’s family, the Don Garcias, where I have been received as another son and supported in

many ways.

I have no words to express my gratitude to my advisor, Dr. Hurtado. I could not be more

fortunate to meet and work with him. Thank you for letting me learn from you in both professional

and a personal way. I truly appreciate that you always found a way to support me and in one way

or another, keeping me on track. Thank you for all your patience, and the support when things

were fine and also when they were not that favorable. There is no way to tell how grateful I am

for the time you have invested in me. Thank you for believing in me. You will always have all my

respect and admiration.

I would like to thank my committee members, Dr. Valasek, Dr. Majji, and Dr. Hur, for their

time and invaluable advice for the completion of this work. It is always a pleasure to visit their

office to share ideas.

Dr. Kevin Brink, from the Air Force Research Laboratory, was also crucial in the development

of this dissertation. I want to thank him for all his advice, support, and the time he invested in

me so I could complete this research. Thank you for your patience, guidance, and the opportunity

of interning with you. The work at your lab, the Autonomous Vehicles Lab at the Research Edu-

cation and Engineering Facility (REEF) at the University of Florida, was a course-changer in my

academic development. From the REEF, I also want to thank Prashant Ganesh, a fantastic person,

v

engineer, and friend with who I had the pleasure to work during two summer internships.

During my stay at Texas A&M, I met wonderful people that have positively impacted my

life and helped me to make the past few years more bearable. I want to thank Vinicius Guimaraes,

Niladri Das, Daniel Whitten, Clark Moody, Neil McHenry, Irving Solis, Oscar Barajas, Tim Wood-

bury, and Davis Adams for their support, encouragement, and friendship. Thanks for all the count-

less good moments, dinners, and trips that remembered me that there is always time to relax.

Finally, I again thank Dr. Hurtado. This work had not been possible without your full commit-

ment.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor John Hurtado,

Professors John Valasek, and Manoranjan Majji, of the Aerospace Engineering Department, and

Professor Pilwon Hur of the Mechanical Engineering Department. Dr. Brink of the Air Force

Research Laboratory also served as a mentor for this work.

The data collection for Section 6.2 and 6.3 was performed in part by Prashant Ganesh of the

REEF at the University of Florida. Davis Adams of the LASR Laboratory at Texas A&M helped

in part to organize simulation and running code for 5.3 and 5.4. All other work conducted for the

dissertation was completed by the student independently.

Funding Sources

Graduate study was supported in part by Texas A&M University, Air Force Research Labora-

tory, and a doctorate fellowship (with ID 411660) from the Mexican National Council for Science

and Technology.

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xii

LIST OF TABLES. xix

1. INTRODUCTION. 1

1.1 Motivation . 1
1.1.1 The Schmidt-Kalman and the partial-update Schmidt filter . 1
1.1.2 partial-update Schmidt filter challenges . 2

1.2 Literature Review . 3
1.3 Numerical issues and factorized formulations . 3

1.3.1 Square-root filtering . 5
1.3.2 The U-D filter formulations . 5

1.4 The Schmidt consider filter . 8
1.5 The dissertation objectives and outline. 9

1.5.1 Outline . 10

2. A GENERALIZATION OF THE SCHMIDT KALMAN FILTER . 12

2.1 Discrete Extended Kalman filter framework and notation . 12
2.2 The partial-update filter concept. 14

2.2.1 The Schmidt-Kalman filter . 14
2.2.2 The partial-update Schmidt-Kalman filter . 16

2.3 The partial-update for the indirect Kalman filter . 18
2.3.1 Indirect filtering . 19

2.3.1.0.1 Indirect filter formulation. 19
2.3.2 The conventional MEKF update . 20
2.3.3 The partial-update within the Multiplicative EKF . 22

2.3.3.1 The PU-MEKF . 22
2.3.4 Filter key equations and algorithm . 26

viii

2.4 Stability analysis of the partial-update filter . 27
2.5 Partial-update numerical stability issues . 31

3. SQUARE ROOT PARTIAL-UPDATE SCHMIDT KALMAN FILTER . 34

3.1 Introduction & Motivation . 34
3.1.1 Square Root filtering . 35

3.2 The square root partial-update Schmidt-Kalman filter . 37
3.2.1 Measurement update . 38
3.2.2 Time update . 42

3.3 Numerical examples . 43
3.3.1 Body re-entering Earth atmosphere. 44
3.3.2 Camera to Inertial Measurement Unit (IMU) calibration. 50

3.4 Monte Carlo runs . 55
3.4.1 Condition number . 59

3.5 Processing a vector-valued measurement . 62
3.5.1 Square root partial-update for vector-valued measurements 62

3.5.1.1 Conventional time update with vector-valued measurement pro-
cessing . 65

3.5.2 Measurement and process noise covariance decorrelation . 66
3.5.3 Computational complexity . 68

3.6 Summary . 72

4. U-D PARTIAL-UPDATE KALMAN FILTER . 73

4.1 Introduction. 73
4.1.1 The UD filter background . 73

4.2 The conventional UD Kalman filter . 75
4.2.1 UD temporal update overview . 75

4.3 The UD partial-update derivation . 78
4.4 Measurement decorrelation using UD factors . 80
4.5 Numerical example . 82

4.5.1 Body re-entering Earth atmosphere single run . 82
4.6 Monte Carlo runs . 83
4.7 Numerical complexity . 87

4.7.1 IMU-camera example . 89
4.7.2 Summary . 90

5. DYNAMIC PARTIAL-UPDATE KALMAN FILTER . 92

5.1 Motivation . 92
5.2 Dynamic partial-update weights . 92
5.3 Nonlinearity-aware based method . 93

5.3.1 Nonlinearity-aware partial-update . 93
5.3.2 Numerical example . 98
5.3.3 Pre-tuned partial-update weights as a baseline for DNL method 102

ix

5.4 Covariance-aware based method . 111
5.4.1 The re-entry falling body. 114
5.4.2 Pre-tuned partial-update weights as a baseline for the DC method 120
5.4.3 Comments on DNL and DC partial-update methods . 124

6. HARDWARE APPLICATIONS . 127

6.1 Online IMU-camera intersensor parameters calibration . 128
6.1.1 Introduction . 128
6.1.2 Related Work . 129
6.1.3 Filter-based IMU-camera calibration algorithm . 130

6.1.3.1 Notation . 131
6.1.3.2 The propagation step . 131

6.1.3.2.1 State vector. 131
6.1.3.2.2 True process model. 132
6.1.3.2.3 Expectation of process model. 133
6.1.3.2.4 Forming the error model. 134
6.1.3.2.5 Covariance propagation. 135

6.1.3.3 PU-MEKF Measurement Update. 137
6.1.3.3.1 Measurement model. 139

6.1.3.4 The partial-update within the Multiplicative EKF 141
6.1.4 Simulations . 143
6.1.5 Hardware experiments . 148

6.1.5.1 Setup . 148
6.1.5.2 Filter Initialization. 150
6.1.5.3 Results . 151

6.1.6 Summary . 152
6.2 A simplified Unmanned Aerial Vehicle state estimation framework 153

6.2.1 Introduction and Motivation . 153
6.2.2 High-Level System Overview. 157

6.2.2.1 Autopilot . 158
6.2.2.2 On-board computer . 158

6.2.3 Estimator Design . 159
6.2.3.1 Propagation of the Z estimator. 160
6.2.3.2 Measurement update for the Z estimator . 161
6.2.3.3 Propagation of the XY estimator . 161
6.2.3.4 Measurement update for the XY estimator. 162
6.2.3.5 Partial-update filter modification . 163
6.2.3.6 The XY and Z filters operation frequency . 164

6.2.4 Controller Design. 164
6.2.5 Hardware implementation. 166

6.2.5.1 Flight performance . 166
6.2.6 Summary . 172

6.3 Angular rate estimation of a non-cooperative space body using RGB-D measurements172
6.3.1 Introduction and motivation. 172

x

6.3.2 Tracking and estimation system overview . 174
6.3.3 Additional notation, modeling and feature treatment . 175

6.3.3.1 Additional notation . 175
6.3.3.2 Reference frames . 175
6.3.3.3 Reprojection model . 176
6.3.3.4 Feature extraction . 177
6.3.3.5 Feature selection criteria . 179
6.3.3.6 Feature position vectors in the arbitrary body frame 179

6.3.4 Extended Kalman Filter . 181
6.3.4.1 Process and measurement model . 181
6.3.4.2 UD partial-update filter . 185

6.3.5 Filter initialization . 185
6.3.6 EKF re-initialization. 187
6.3.7 Hardware experiments . 188

6.3.7.1 Experimental setup . 188
6.3.7.2 Experiments . 190
6.3.7.3 Angular velocity estimates . 191

6.3.8 Summary . 193

7. CONCLUSIONS . 195

REFERENCES . 197

APPENDIX A. HARDWARE PARAMETERS . 208

xi

LIST OF FIGURES

FIGURE Page

3.1 Standard EKF and square root partial-update EKF with full updates. The inset on
the right shows a zoom-in for the last second of the simulation, displaying signifi-
cant filter inconsistency with estimates well outside of 3σ bounds. Reprinted with
permission from [1]. 47

3.2 Partial-update EKF and square root Partial-Update EKF withβ =
[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively to the position, velocity, and
ballistic coefficient states. The inset on the right shows a zoom-in for the last sec-
ond of the simulation, displaying filter results with estimates within the 3σ bounds.
Reprinted with permission from [1]. 48

3.3 Partial-update EKF and square root Partial-Update EKF with β =
[
1.0 1.0 0.1

]
resulting in 100%, 100%, and 10% updates respectively to the position, velocity,
and ballistic coefficient states. The inset on the right shows a zoom-in for the
last second of the simulation, displaying filter results with estimates within the 3σ
bounds. Reprinted with permission from [1].. 49

3.4 Camera-IMU calibration lever arm estimates when a full update is performed. 54

3.5 Camera-IMU calibration rotation error estimates when a full update is performed. . . . 55

3.6 IMU global position when a full update is performed. 56

3.7 Camera-IMU calibration lever arm estimates when a partial-update is performed. . . . 57

3.8 Camera-IMU calibration rotation estimates when a partial-update is performed. 58

3.9 IMU global position when a full update is performed. 59

3.10 Averaged and sampled standard deviation from 500 Monte Carlo runs for the lever
arm components. The mean error across the runs is also plotted. Units are in meters. 60

3.11 Averaged and sampled standard deviation from 500 Monte Carlo runs for rotation
error (IMU to camera rotation). The mean error across the runs is also plotted.
Units are in meters.. 61

3.12 Monte Carlo standard EKF and square root partial-update EKF with full updates. . . . 62

xii

3.13 Monte Carlo runs for the partial-Update EKF and square root partial-update EKF
with β =

[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively

to the position, velocity, and ballistic coefficient states.. 63

3.14 Monte Carlo runs for the partial-Update EKF and square root partial-update EKF
with β =

[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively

to the position, velocity, and ballistic coefficient states.. 64

3.15 Uncertainty condition number for the partial-update EKF and square root partial-
update EKF filter example for β =

[
0.9 0.9 0.75

]
. Reprinted with permission

from [1]. 65

3.16 Rough complexity comparison for sequential and batch measurement processing
for the Kalman filter. UDU decorrelation is considered in the cost to use sequential
filtering. 71

4.1 Standard EKF and UD partial-update EKF with full updates. The inset on the right
shows a zoom-in for the last second of the simulation, displaying significant filter
inconsistency with estimates well outside of 3σ bounds. 84

4.2 Standard EKF and UD partial-update EKF with partial updates. The inset on the
right shows a zoom-in for the last second of the simulation, displaying significant
filter inconsistency with estimates well outside of 3σ bounds. 85

4.3 partial-update EKF and UD partial-update EKF with β =
[
0.9 0.9 0.75

]
re-

sulting in 90%, 90%, and 75% updates respectively to the position, velocity, and
ballistic coefficient states. The inset on the right shows a zoom-in for the last sec-
ond of the simulation, displaying filter results with estimates within the 3σ bounds. . 86

4.4 Monte Carlo standard EKF and UD partial-update EKF with full updates. 87

4.5 Monte Carlo runs for the partial-Update EKF and UD partial-update EKF with
β =

[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively to the

position, velocity, and ballistic coefficient states. 88

4.6 Monte Carlo runs for the partial-Update EKF and UD partial-update EKF with
β =

[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively to the

position, velocity, and ballistic coefficient states. 89

5.1 Dynamic nonlinearity-aware method (DNL) without previous tuning, static partial-
update with β =

[
0.9 0.9 0.75

]
and conventional EKF single run for body re-

entry problem. Initial error within 1σ. 99

5.2 Dynamic nonlinearity-aware method (DNL) without previous tuning, static partial-
update with β =

[
0.9 0.9 0.75

]
and conventional EKF single run for body re-

entry problem. Initial error within 1σ. 100

xiii

5.3 Dynamic nonlinearity-aware method (DNL) without previous tuning, static partial-
update with β =

[
0.9 0.9 0.75

]
and conventional EKF single run for body re-

entry problem. Initial error within 2σ. 101

5.4 Dynamic nonlinearity-aware method (DNL) without previous tuning, static partial-
update with β =

[
0.9 0.9 0.75

]
and conventional EKF single run for body re-

entry problem. Initial error within 2σ. 101

5.5 Monte Carlo runs state histories for the DNL partial-update. 102

5.6 Averaged and sampled standard deviation from 100 Monte Carlo runs for the DNL
partial-update. The mean error is also shown. Full update is used as nominal value. . 103

5.7 DNL method, static partial-update with β = [0.9, 0.9, 0.75], and conventional EKF
single run for body re-entry problem. Initial error within 1σ. 104

5.8 DNL method and static partial-update with β = [0.9, 0.9, 0.75] single run for body
re-entry problem. Initial error within 1σ. 105

5.9 Dynamic nonlinearity-aware method (DNL) β history for the body re-entry prob-
lem. Initial error within 1σ. 105

5.10 DNL method, static partial-update with β = [0.9, 0.9, 0.75] single run for body
re-entry problem. 3σ initial errors. 106

5.11 Dynamic nonlinearity-aware method (DNL) β history for the body re-entry prob-
lem. 3σ initial errors. 107

5.12 DNL method and static partial-update with β = [0.9, 0.9, 0.75] single run for body
re-entry problem. 4σ initial errors. 108

5.13 Dynamic nonlinearity-aware method (DNL) β history for the body re-entry prob-
lem. 4σ initial errors. 108

5.14 Zoomed-in view of dynamic nonlinearity-aware method (DNL), static partial-update
with β = [0.9, 0.9, 0.75] single run for body re-entry problem. 4σ initial errors.. 109

5.15 Zoomed-in view of dynamic nonlinearity-aware method (DNL) β history for the
body re-entry problem. 4σ initial errors. 109

5.16 Dynamic nonlinearity-aware method (DNL), static partial-update withβ = [1, 1, 0.75]
single run for body re-entry problem subject to higher initial uncertainties and ini-
tial errors. 110

5.17 Dynamic nonlinearity-aware method (DNL) β history for single run for the body
re-entry problem subject to higher initial uncertainties and initial errors. 111

xiv

5.18 Dynamic covariance-aware partial-update method (DC) state errors for a single run
of the body re-entry problem subject to 1 σ initial errors. Estimates from static and
DNL methods are shown for comparison. 115

5.19 Dynamic covariance-aware partial-update method (DC) absolute errors for a single
run of the body re-entry problem subject to 1 σ initial errors. Errors from static and
DNL methods are shown for comparison. 116

5.20 Dynamic covariance-aware partial-update method (DC) β history for single run of
the body re-entry problem subject to 1 σ initial errors. β produced via DNL method
is shown for comparison. 116

5.21 Dynamic covariance-aware partial-update method (DC) absolute errors for a single
run of the body re-entry problem subject to 1 σ initial errors. Errors from static and
DNL methods are shown for comparison. 117

5.22 Zoomed-in view for dynamic covariance-aware partial-update method (DC) state
errors. History of a single run of the body re-entry problem subject to 1 σ initial
errors. Estimates from static and DNL methods are shown for comparison. 118

5.23 Dynamic covariance-aware partial-update method (DC) state errors. History of a
single run of the body re-entry problem subject to 3 σ initial errors. Estimates from
static and DNL methods are shown for comparison. 119

5.24 Dynamic covariance-aware partial-update method (DC) absolute errors. History of
a single run of the body re-entry problem subject to 3 σ initial errors. Errors from
static and DNL methods are shown for comparison. 119

5.25 Averaged and sampled standard deviation from 100 Monte Carlo runs for dynamic
covariance-aware partial-update method (DC) state errors. Estimates from static
method are also shown. DNL method is not included as it does not support initial
errors higher than 1 σ. Full update is used as the baseline for updates. 120

5.26 Dynamic covariance-aware partial-update method (DC) β history of a single run
of the body re-entry problem subject to 3 σ initial errors. The β history produced
by the DNL partial-update method is also included for comparison. 121

5.27 Dynamic covariance-aware partial-update method (DC) state errors. History of a
single run of the body re-entry problem subject to moderate uncertainties (around[
2σp0 2σv0 3σβ0

]
) and 3 σ initial errors. Estimates from static and DNL methods

are shown for comparison. 122

5.28 Dynamic covariance-aware partial-update method (DC) absolute errors. History of
a single run of the body re-entry problem subject to moderate uncertainties (around[
2σp0 2σv0 3σβ0

]
) and 3 σ initial errors. Errors from static and DNL methods

are shown for comparison. 123

xv

5.29 Dynamic covariance-aware partial-update method (DC) β history of a single run
of the body re-entry problem subject to uncertainties (around

[
2σp0 2σv0 3σβ0

]
)

and 3 σ initial errors. The β history produced by the DNL partial-update method
is also included for comparison. 123

5.30 Dynamic covariance-aware partial-update method (DC) state errors. History of
a single run of the body re-entry problem subject to high uncertainties (around[
2σp0 2σv0 5σβ0

]
) and 3 σ initial errors. Estimates from static and DNL methods

are shown for comparison. 124

5.31 Dynamic covariance-aware partial-update method (DC) β history of a single run of
the body re-entry problem subject to high uncertainties (around

[
2σp0 2σv0 5σβ0

]
)

and 3 σ initial errors. The β history produced by the DNL partial-update method
is also included for comparison. 125

5.32 Zoomed-in view for dynamic covariance-aware partial-update method (DC) state
errors. History of a single run of the body re-entry problem subject to high uncer-
tainties (around

[
2σp0 2σv0 5σβ0

]
) and 3 σ initial errors. Estimates from static

and DNL methods are shown for comparison.. 125

6.1 Relationship between World (W+), IMU (I+), camera (C+) and position of the ith

feature found in the arUco target. The arUco reference frame is considered to be
the world frame W+. 139

6.2 Simulated trajectory for a typical IMU-camera calibration run (in blue) and image
features (in red). 144

6.3 IMU-camera attitude error for a typical simulation run. Initial condition is a ran-
dom draw. MEKF and PU-MEKF use the same initial condition. 145

6.4 IMU-camera lever arm errors for a typical simulation run. Initial condition is a
random draw. MEKF and PU-MEKF use the same initial condition. 147

6.5 IMU global position error for a typical simulation run. Initial condition is a random
draw. MEKF and PU-MEKF use the same initial condition. 147

6.6 Monte Carlo runs for MEKF . 149

6.7 Monte Carlo runs for PU-MEKF . 150

6.8 Measurement residuals in pixels (px). The residuals indicate filter consistency.
These residuals are employed to validate filter results since no true values for the
calibration parameters are available. 153

6.9 Lever arm hardware calibration result. The lever arm is considered to be the posi-
tion vector of the camera with respect to the IMU reference frame. 154

xvi

6.10 Position of the IMU with respect to the inertial frame hardware calibration result. . . . 155

6.11 Velocity of the IMU with respect to the inertial frame hardware calibration result. . . . 156

6.12 Block diagram of the REEF Estimator framework. Reprinted with permission from
[2]. 159

6.13 The body and body-level frames are co-located and share the same yaw angle.
The XY plane in the body-level frame is parallel to the inertial frame XY plane.
Reprinted with permission from [2]. 160

6.14 Flowchart for the XY and Z PID controllers. Reprinted with permission from [2]. . . . 165

6.15 Experimental quadrotor platform. Reprinted with permission from [2]. 167

6.16 XY velocity and altitude from the REEF Estimator. The estimates are compared
with the ground truth from a motion capture system. Reprinted with permission
from [2]. 169

6.17 Closed-loop performance of the multirotor. Reprinted with permission from [2].. 171

6.18 Coordinate reference frames utilized. Position of the features with respect to the
body, attitude and angular velocities are all coordinatized in the camera frame.
Reprinted with permission from [55]. 177

6.19 The pinhole camera model projects a 3D coordinate X (resolved in the camera
frame) into the image pixel coordinates (ũi, ṽi). The camera center coordinates
locate the point p on the image plane, which is the intersection of the image plane
and the principal axis. The principal axis is along the Z axis of the camera, towards
the scene being captured. Reprinted with permission from [55]. 178

6.20 Coordinate reference frames utilized. Position of the features with respect to the
body, attitude and angular velocities are all coordinatized in the camera frame.
Reprinted with permission from [55]. 181

6.21 Angular rates obtained through numerical differentiation of differential rotation
angles. The differential rotation angles are extracted from the estimated δR from
equation 6.90. In this figure a 60 seconds history of the coarse estimates for the
angular velocity components is shown. The empirical average is shown in red. The
truth value for this specific experiment was ωy = 2 deg/s and ωx = ωz = 0 deg/s.
Reprinted with permission from [55]. 187

6.22 The mock asteroid placed on the turn table. The VICON dots can be observed
placed at the top on a mounting plate. Reprinted with permission from [55]. 189

xvii

6.23 Xtion Live Pro camera and the mock asteroid while recording data. The arbitrary
reference frame a+ (on the body), the body plate b+, the camera optical o+ and
the camera plate c+ reference frames, have been drawn. Reprinted with permission
from [55]. 189

6.24 Image sequence showing the detected features and three of the position vectors that
are being tracked. Reprinted with permission from [55]. 192

6.25 Estimated angular velocities for the target body when initial conditions for the
angular rates are set to zero. The angular rates are resolved in the optical reference
frame o+ . The bottom plot shows the comparison between angular velocity vector
magnitudes. Reprinted with permission from [55]. 193

6.26 Estimated angular velocities for the target body when initial conditions for the
angular rates are set to zero. The angular rates are resolved in the optical reference
frame o+ . The bottom plot shows the comparison between angular velocity vector
magnitudes. Reprinted with permission from [55]. 194

xviii

LIST OF TABLES

TABLE Page

3.1 Square root partial-update Schmidt-Kalman filter. Reprinted with permission from
[1]. 44

3.2 IMU-camera calibration parameters. 52

3.3 Re-entering body parameters . 58

3.4 Square root partial-update Schmidt-Kalman filter. Vector measurement processing. . 67

3.5 Flops required for batch measurement processing. Flop count considers matrices
symmetry [3].. 69

3.6 Flops required for sequential measurement processing. Flop count considers ma-
trices symmetry [3]. 69

3.7 Flop advantage of sequential over batch processing. 70

3.8 Conventional and partial-update required flops comparison. 71

4.1 U-D partial-update Schmidt-Kalman filter . 81

4.2 Re-entering body parameters . 85

4.3 Square root and UD partial-update required flops for propagation and update steps
combined.. 88

4.4 Conventional UD and UD partial-update required flops for one scalar measurement
update. 89

6.1 IMU-camera calibration parameters. 144

xix

1. INTRODUCTION

1.1 Motivation

In many state estimation applications where the Kalman filter framework is utilized, estimators

are often implemented under the assumption that system model parameters are known without

error. Although, for some applications, such consideration may not significantly affect the filter,

neglecting parameter uncertainty in many other situations can lead to inaccurate state estimates,

overconfident filters, and even filter divergence. The consideration of the uncertainty for model

parameters, also called nuisance parameters or static biases, may be handled by several approaches.

One possibility is to account for their effect via the typical tuning of the measurement covariance

matrix R or the process noise covariance Q and amount to be added unknown. Although this

approach can be straightforward, it does not appropriately account for the colored property of

these parameters. A second alternative, and as that of interest for this work, is to attempt the

estimation of the nuisance parameters by appending them to the state vector. If this latter approach

is implemented, it can be that an Extended Kalman filter is now needed where a linear Kalman

filter sufficed before due to nuisance parameters could then appear, along with the core states, in a

nonlinear fashion.

The inclusion of the parameters in the state vector increases the filter’s complexity, and, as the

state incorporates more nuisance parameters, observability questions also start to arise. Further-

more, attempting the estimation of the nuisance parameters via the augmented state and directly

treating them as if they were other core states, may cause divergence problems since the nuisance

parameters are in many cases weakly or mildly observable.

1.1.1 The Schmidt-Kalman and the partial-update Schmidt filter

In the spirit of alleviating the difficulties mentioned above when augmenting the state vector

with nuisance parameters, and still retaining the Kalman filtering framework to solve the estimation

problem, the Schmidt-Kalman filter approach was proposed in [4]. A typical Schmidt-Kalman

1

filter or consider Kalman filter, is a standard solution for the application of the Kalman filter on

systems where it is required to account for uncertainty in the model and measurement parameters

for either static or dynamic systems [5]. In contrast with the typical Kalman filter, the Schmidt

modification does not attempt to estimate all of the elements of the augmented state vector, instead,

it only estimates the core or main states and just considers (uses) the nuisance parameters values

and their uncertainty for the filter computations. In this way, the uncertainty of the considered

states is still reflected in the resulting Kalman filter error distribution, generally producing more

consistent estimates.

Recent advances have generalized the consider filter a step further, allowing to update the

consider states [6] partially. This partial-update technique has been shown to be effective (and

statistically consistent) for the same class of systems where the Schmidt filter is useful. However,

this new approach also attempts to estimate the considered states so that the estimation consistency

can be improved. Mathematically the partial-update filter is grounded in linear system theory as

the Extended or Unscented filters. However, in comparison with the Schmidt filter, which either

considers (does not update) or updates a state (fully applies the update), the partial-update approach

allows the user to apply the chosen percentage of the nominal update.

1.1.2 partial-update Schmidt filter challenges

Although the partial-update Schmidt-Kalman filter addresses the issues of having a nuisance

parameter in an augmented state vector and additionally attempts to estimate the nuisance parame-

ters, this novel approach still presents several challenges. First, it inherits the numerical instability

problems a typical Kalman filter suffers from, and as such, its actual implementation in hardware

could represent difficulties. Second, the selection of the percentages for partially updating the nui-

sance states is not well defined, and it has been observed to be system dependent. Additionally, the

partial-update approach does not leverage occasions where the nuisance parameters observability,

and ignores if some other information is available to attempt improving the parameter estimates,

and the overall filter performance. Third, the implementation of the partial-update filter has been

limited to simulation, and its real-world applicability scope is mostly unknown yet.

2

1.2 Literature Review

The Kalman filter technique developed by Rudolf Kalman in the 1960s [7], one of the esti-

mation techniques most used today, was not immediately accepted among Rudolf Kalman’s peers

when it was first presented. Kalman encountered such a reluctance from his peers that he even

chose a mechanical engineering journal to publish his work, instead of an electrical engineering

journal [3]. Fortunately for him, his perseverance in presenting his formulations brought them

significant popularity and acceptance in alternative fields, and his filter rapidly gained the interests

of researchers, including NASA engineers. Shortly after a visit to NASA in the fall of 1960 [8],

where Kalman presented his formulations at the Ames Research Center, he met Stanley Schmidt,

a member of the Dynamics Analysis Branch. Schmidt’s team then was working on the midcourse

navigation and guidance for the Apollo circumlunar mission, and since they needed a solution to

solve the navigation problems given the computational restrictions of the state-of-the-art [8], Stan-

ley Schmidt quickly recognized the Kalman filter technique as the potential solution for the Apollo.

Motivated by Kalman’s ideas, S. Schmidt soon would realize that even though Rudolf Kalman’s

development was originally for linear process and measurement models, he could use the Kalman

filter on nonlinear systems if he performed a linearization about a nominal or reference trajectory.

Shortly, the NASA staff would also infer that such linearization could be improved if performed

about the current estimate (produced by the filter) rather than about a reference trajectory. Thanks

to conversations with his peers, especially with Richard Battin from the MIT Instrumentation Lab-

oratory, Schmidt played a crucial role in making the Kalman filter an essential component of the

Apollo on-board guidance. However, before NASA engineers were able to utilize the Kalman filter

for manned missions to the moon, several concerns needed to be addressed first.

1.3 Numerical issues and factorized formulations

With the increase in popularity of the Kalman filter mainly due to the Schmidt research team’s

success for the circumlunar midcourse navigation, problems with its implementation also started to

arise. NASA studies on the effect on midcourse guidance, when fusing radar and on-board sensing,

3

exhibited problems of divergence for the first time along with numerical stability. According to

McGee and Schmidt [9], the issues of numerical stability and divergence of the Kalman filter were

not noticed sooner due to presumably the low sensitivity of the testing problem to nonlinearities,

round-off errors, unmodelled dynamics, and prior statistics. Although the numerical issues that

arose first were attributed to the limited 16-bit fixed computational word length of the computers

at the time, it was later confirmed that the Kalman filter formulation (structure of operations) itself

also affected its numerical stability.

Researchers would soon realize that the numerical instability was mainly due to the Kalman

update step involving the subtraction of two positive definite matrices, which implemented on a

finite precision computer can considerably degrade the filter estimates and even fracture the the-

oretical positive definiteness and symmetry of the covariance matrix, leading to a total failure of

the estimator. With the impetus of addressing these issues, several techniques were proposed.

The fixes were mainly extra ad-hoc operations after propagation and update steps; the key point

was maintaining the symmetry and positive definiteness of the covariance matrix. Specifically,

according to [9], among the prosed methods to enforce covariance matrix symmetry, researches

tried to enforce symmetry by replacing the lower diagonal terms with the upper diagonal terms

(or vice-versa), a technique consisting of averaging corresponding off-diagonal terms, computing

correlation coefficients and then checking for correlation coefficients greater than one (corrective

method), and to add small positive numbers to the diagonal terms. This latter method being essen-

tially inflation of the covariance matrix. Almost two decades later, these ad-hoc techniques would,

in fact, be mathematically proved to be appropriate approaches [10].

Artificially inflating the covariance matrix, was one of the solutions proposed to also“control"

the Kalman filter divergence problem that engineers started to face at the time [11], [12]. Although

the Kalman filter divergence was mainly attributed to modeling errors, round-off errors also were

recognized to affect the filter stability [10].

4

1.3.1 Square-root filtering

The lack of more fundamental methods to improve the numerical robustness of the Kalman fil-

ter when limited hardware specifications were available, was the motivation for many researchers

to develop alternative recursive forms of the Kalman equations to improve the precision. The con-

tributions of J.E. Potter from the MIT laboratory were crucial in this regard. According to the

literature, Potter was the first researcher in publishing a technique able to increase the numerical

robustness of the Kalman filter [13]. A filter that, in fact, was flown on the Apollo manned lunar

exploration program [3]. Potter realized that using the Cholesky decomposition, one could factor-

ize the covariance matrix and propagate the Cholesky factor rather than the full covariance matrix.

By doing this, he rigorously guaranteed the non-negative definiteness of the covariance matrix af-

ter each Kalman filter recursion [14]. Although Potter’s formulation assimilated the measurement

in a sequential way (vector measurements were sequentially processed) and had the limitation of

handling filtering systems with no process noise only, it increased the accuracy of the filter.

After Potter’s work, many algorithmic advances and developments soon emerged in the 1970s.

Articles extending Potter’s formulation to include process noise were made available [15]. Some-

time later, even surveys were being published on the numerical Kalman filter issues and the set of

techniques available at the time on square root filtering to alleviate them, like the one by Kamin-

ski and Schmidt in [16]. In this paper, Kaminski and Schmidt also recall that round-off errors

caused numerical problems with the Kalman filter implementation, but issues may also arise if

some components of the state vector are far more observable than others.

1.3.2 The U-D filter formulations

Along with the momentum of square root filtering developments, an alternative presented as

square-root free formulations became available in the literature for the Kalman filter: the U-D

factorized filter. The U-D Kalman filter mechanization uses the U-D factorization to propagate the

error covariance matrix. In practice, this filter decomposes or factorizes the covariance matrix into

the product three matrices and propagates two of them. The factorization involves a unit upper-

5

triangular (U), a diagonal (D), and a unit lower-triangular (UT) matrix. Gerald Bierman introduced

the U-D formulation in [17], where he shows for a simplified case that his formulation guarantees

non-negative-definiteness of the covariance matrix and there was no need to perform square-root

operations. Later on, Bierman and Catherine L. Thornton would also publish an article that makes a

numerical comparison among the conventional Kalman filter, Potter’s square-root form, and the U-

D formulations. This paper drew two important conclusions: 1) the superior numerical robustness

of the factorized formulations (square root and U-D) against the conventional Kalman filter non-

factorized form, 2) the Potter formulation can be computationally expensive in comparison with the

standard formulation, while the U-D filter offers computational efficiency and increased numerical

robustness [18]. Although the U-D filter’s execution time may not be faster than the conventional

Kalman filter form, it will be competitive compared with it. Despite this, in general, the square root

formulation of the Kalman filter is recommended in the literature as a representation that facilitates

analytical developments [19].

Even though factorized formulations were, in part, initially developed to alleviate difficulties

when dealing with "problematic" or bad conditioned systems, it was later shown that numerical is-

sues could still occur in well-conditioned systems if the filter was implemented in single-precision

[18]. Considering this fact and that is not possible to predict if numerical problems will arise, Bier-

man recommended using a factorized filter in all applications, especially in embedded systems.

While some authors imply that factorized filtering was more intended to be used in the early days

when computers were more limited [20], and others mentioned that these forms might be obso-

lete [21], some researches also believe that a factorized filter is essential [22]. In contrast, others

believe they are an important tool to cross-validate filter results, leaving out numerical issues [23].

Since the strong wave of first developments related to factorized filtering, researches have

seemed to follow the advice of Bierman. However, and for a few exceptions, today, more than us-

ing a factorized filter as being cautious for potential single-precision implementations, researchers

see the factorized formulations as a guarantee on the non-negative definiteness of the covariance

matrix, and a means to reduce computation error effects, as mentioned in [24]. Thus, current liter-

6

ature focuses more on the use of the factorized formulations along with recent filtering techniques

with the objective of robustify such filters. In [25], for example, the author introduces a square root

unscented Kalman filter for visual monocular simultaneous localization and mapping (SLAM).

X.Li, in [26] as well applies the square root EKF formulation for underwater SLAM, and in [27],

Tai-shan presents an ensemble Kalman filter that incorporates the square root formulation. For very

large systems, a U-D filter approach was reported by JPL in [28] for systems with sparse matrices

and large-states. In the work of Shovan in [29] a square root cubature-quadrature Kalman filter is

developed and shown to gain numerical robustness. Besides improving numerical stability, in work

presented in [30] for applications in mobile devices, it is also shown that faster implementations

are obtained since the square root formulation allows using single-precision computations (even

if double-precision is available). Further developments in unscented smoothing and angles-only

orbital navigation that use square root form, are also available in [31] and Jason Schmidt’s mas-

ters’ thesis [32]. I. Arasaratnam even tests in [33] that the square root formulation appropriately

handles a singular covariance matrix and can keep the filter running even with perfect measure-

ments. More recent contributions on the topic include an iterative cubature [34], an unscented

Schmidt filter [35], and complementary studies on potential methods to compute the square root of

the covariance matrix in [36]. Studies on the robustness by testing factorized filters under different

word lengths have also been reported in [37]. Factorized filtering, unsurprisingly, has even found

applications out of the engineering field in the econometrics literature as a fix for discrepancies in

quantities in the state vector [38]. Moreover, other highly specific factorized filtering techniques

for stiff systems as the work presented in [39] are still being investigated. In the aerospace en-

gineering side, GPS vehicle navigation that uses square root formulation also are available in the

literature [40], [36], and even adaptive approaches can be found to use factorized filters in [41]

and [42]. A good background summary on the square root filtering can be found in [23] and more

comprehensive treatment in [43].

Specifically speaking on the U-D filter, this formulation remains being the favorite filter for

NASA engineers, as mentioned in one of their reports where a relative navigation filter for an

7

International State Station hosted payload is developed [44]. Due to its high functionality, the U-

D filter has barely undergone modifications since its introduction in Thornton’s memorandum in

[45]. Nevertheless, some work regarding its implementation methods, for example, can be found

in [46]. Also, in a paper by C. Souza [47], the information formulation of the U-D has been

introduced. Overall, the U-D filter’s attributes provide such numerical robustness and performance

that is, in fact, the filter of NASA’s Orion vehicle for absolute navigation, as presented in [48].

In this development, as in other similar cases in the literature, the U-D formulation attempts to

robustify a base filter; specifically, a consider filter; a technique also attributed to Stanley Schmidt.

1.4 The Schmidt consider filter

Among other developments, Schmidt also invented what is known in the literature as Schmidt

or consider filter [49]. As described in McGee and Schmidt [9], in a tool created for NASA,

Schmidt included a functionality that allowed to consider for parameter model errors on filter per-

formance evaluation. The idea was to consider the effect of errors and their uncertainty, and reflect

such "knowledge" on the estimated states. The consider or Schmidt filter, somewhat strangely, has

adopted different focuses in the literature since its creation. For example, in [50], it is proposed as

a means to deal with biases in the dynamic models. However, as presented in [51] is a filter that

allows handling errors in measurement parameters, and in [49] is, in part, introduced as a tool to

obtain reduced order systems. For other researchers, the Schmidt filter is just a solution to account

for the uncertainty of nuisance parameters, that is, parameters required to perform the state estima-

tion but are not the main states of interest [6]. In any case, the principles of the filter are the same:

consider states without estimating them.

The Schmidt filter’s use from the parameter’s uncertainty consideration perspective has been

applied widely and is mainly found in aerospace applications. In [52] for example, the filter is used

in a Mars entry navigation filter, in [53] for GPS-based on-board real-time orbit determination,

in [54] is used for GNSS-based attitude determination, in [51] for target tracking to account for

sensor positioning error, and in computer vision for proximity operations as presented in [55].

Again, regardless of the motivation to use a consider filter, the principle is to "delete" states that

8

are not core states and perform the estimation with the remaining states. More general, and in any

event, the Schmidt filter intent is to expand the class of problems the typical Kalman filter can

handle well. Because of the Schmidt filter capacity to allow stable estimation of systems with low

observable states, it is today a companion workhorse for the EKF.

Recently, developments have generalized the consider filter a step further, allowing the consider

states to be updated. This technique, known in the literature as the partial-update Schmidt filter,

has been shown to be useful for a broader class of systems than the Schmidt filter can cover [6].

This new approach attempts to update consider states partially, and by doing so, the estimation

consistency and accuracy can be improved. However, there are still challenges on how and when to

allow a consider state to be updated. Also, the question of how much the user can partially update

a state is open. Moreover, since the partial-update technique is relatively recent, no hardware

validation has been made, and no research towards the increase of numerical robustness has been

done (as it also suffers from the numerical problems the conventional Kalman filter faces). The

significance of closing these gaps for the partial-update filter is that it would extend the practical

applicability of the EKF while retaining the EKF structure, which remains a widely used filter in

the world.

Although some other methods that attempt to improve the Schmidt filter behavior for non-

well-known prior covariance of the consider states have been published in [56], they do not remain

straightforward to implement (do not keep the Kalman filter structure) and do not include the

capacity to update considered states. In contrast, the partial-update filter retains the conventional

Kalman filter structure and is an easy modification.

1.5 The dissertation objectives and outline

The proposed dissertation seeks to extend the applicability of the Schmidt-Kalman filter frame-

work by increasing its numerical robustness and attempting considered state estimation. Towards

the goal of increasing robustness against numerical issues, the square root formulation and the U-D

factorized form of the partial-update Schmidt Kalman filter are developed. The numerical prob-

lems that these formulations attempt to alleviate are mainly due to round-off error, processing of

9

highly accurate measurements, severe discrepancy among states observability, and bad-conditioned

problems. Towards estimation of considered states, techniques that leverage occasions when the

system nonlinearities are not so severe are proposed.

Since this work builds up from the partial-update filter concept, the resulting filter formulations

inherit the increased tolerance to nonlinearities and uncertainty level; at the cost of a minimal

additional computational burden that still allows online execution. Moreover, as the proposed

formulations are a fundamental restructuring of the Kalman filter equations, they can be directly

leveraged in applications where the Kalman and Extended Kalman filter is already used. The filters

proposed in this dissertation are also demonstrated in hardware implementations for aerospace-

related applications.

1.5.1 Outline

This research is divided into the proposed main contributions: (1) The development of fac-

torized formulations that increase the numerical robustness of a more general Schmidt-Kalman

filter, (2) The establishment of baselines to attempt the estimation of considered states and (3) the

implementation of the proposed concepts in hardware for aerospace-related applications.

The dissertation chapters are organized as follows. Chapter 1 provides the literature review

on the Schmidt filter and starts introducing the partial-update filter concept. Chapter 2 intro-

duces some notation used throughout the dissertation. It includes a more detailed description

of the partial-update Schmidt filter and its stability analysis for linear systems. In this chapter, the

straightforward extension to a multiplicative extended Kalman filter is presented, along with a brief

discussion on the numerical issues that the partial-update filter can face (given that is grounded in

the Kalman filter). Chapter 3 develops a square root formulation of the partial-update Schmidt

filter to increase its numerical robustness. Simulated cases for the square root partial-update fil-

ter are included. Motivated by the high computational burden that the square root formulation

can implicate, Chapter 4 develops an alternative factorized formulation: a U-D factorized based

filter. This alternative form’s objective is to maintain the partial-update and factorized form ben-

efits while having a less computationally expensive filter. Numerical simulations of this filter are

10

presented. Chapter 5 introduces techniques that allow the user to utilize a partial-update filter,

without the need for tuning the partial-update weights, and its functionality is shown via numerical

simulations. To show the applicability of the partial-update concept in real systems, Chapter 6

includes the results of its hardware implementation. Finally, Chapter 7 presents the conclusions of

this research.

11

2. A GENERALIZATION OF THE SCHMIDT KALMAN FILTER

This chapter mainly introduces underlying mathematical concepts to be referred to in posterior

sections of the dissertation. First, a brief description of the Kalman filter framework is included to

establish the filtering context and include most of the nomenclature common among the develop-

ments presented. Second, the partial-update Schmidt-Kalman filter, the backbone of this work, is

introduced. Third, the partial-update formulation, in its indirect form, is derived. Fourth, a Lya-

punov stability analysis of the partial-update filter concept for linear systems, is performed, and

finally, a discussion on the potential numerical issues of the partial-update filter is included.

2.1 Discrete Extended Kalman filter framework and notation

This section mainly serves to provide nomenclature utilized in this work in the context of

Kalman filtering. The Kalman filter was developed to perform state estimation of linear systems

originally. In order to support nonlinear systems, one of the more utilized techniques today is the

extended Kalman filter (EKF), which operates on the linearized system equations about the current

state estimate. This linear approximation of the system is used with the original Kalman filter

equations to propagate and update the state and estimated uncertainty. The linearization process,

however, can be a source of significant errors in the resulting estimates of a filter. Section 2.2 gives

details on how linearization errors may be better handled with the partial-update approach.

For the interests of this research, the propagation and update equations correspond to the dis-

crete Extended Kalman filter, which allows one to implement the algorithm in digital computers

that may not have the power to integrate the continuous dynamics every time step. Next, the

discrete Extended Kalman filter framework is summarized without derivation [21].

Let a discrete nonlinear dynamic system with state vector xk ∈ Rn, and measurement vector

ỹk ∈ Rm, be represented by

xk = f k−1(xk−1,uk−1) + wk−1 , (2.1)

12

ỹk = hk(xk) + vk , (2.2)

wk ∼ N (0,Qk) , (2.3)

vk ∼ N (0,Rk) , (2.4)

where wk ∈ Rn and vk ∈ Rn are zero-mean Gaussian white-noise processes, with covariances

Qk = IE[wT
k wk] and Rk = IE[vT

k vk], respectively; with uk ∈ Rr being the input vector sequence

to the system. The function hk(xk) is the nonlinear measurement model and the sub-indices k

denote time instance.

Performing a first-order Taylor series expansion of Equation (2.1) about the current estimate,

xk−1 = x̂+
k−1, forming the error dynamics, and computing its expectation, the propagation equation

for the n×n error covariance matrix Pk results in Equation (2.5) with Fk given by Equation (2.11):

P−k = Fk−1P
+
k−1F

T
k−1 + Qk−1 . (2.5)

The propagation of the state vector x̂k, is done with the nonlinear dynamics expected value as

x̂−k = f k−1(x̂
+
k−1,uk−1) . (2.6)

Every time an observation is available, the measurement update step for the state and error

covariance is performed through the n × m Kalman gain, Kk, according to the following set of

equations. Note that a linearization of the measurement model has also been performed:

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 , (2.7)

P+
k = (I−KkHk)P

−
k , (2.8)

ŷk = hk(x̂
−
k) , (2.9)

x̂+
k = x̂−k + Kk(ỹk − ŷk) , (2.10)

13

where

Fk =
∂f k
∂x

∣∣∣
x̂−
k−1

, (2.11)

and

Hk =
∂hk
∂x

∣∣∣
x̂−
k

. (2.12)

Here, the hat notation, i.e. ˆ[·], denotes an expected or estimated value. The notations [·]+ and

[·]− refer to posterior and prior values, respectively.

The set of equations (2.1) to (2.12), constitute the Extended Kalman filter framework. The

following chapters adopt the nomenclature here presented, and additional information will be in-

troduced if needed.

2.2 The partial-update filter concept

2.2.1 The Schmidt-Kalman filter

When a Kalman filter state vector involves system parameters or weakly observable states, es-

timating them in a traditional way can be problematic. In that scenario, the direct use of an EKF

can be negatively impacted further, if the system involves measurement and process model nonlin-

earities, high uncertainties, or some combination, to the extent of leading to estimates degradation

or even filter divergence. In such cases, the alternative Schmidt-Kalman filter becomes partic-

ularly useful. The Schmidt approach consists of not estimating such the problematic states but

maintaining their values and respective covariances fixed; allowing it to behave more linearly and

builds more appropriate cross-correlation terms with the core states. In other words, the Schmidt

approach enables the filter designer to consider the uncertainties of certain states into the Kalman

filter solution without attempting to estimate them. By doing so, the class of problems where the

conventional Kalman filter framework is useful is broadened. The problematic parameters, or those

states that complicate the estimation process if treated as a “traditional” state, are often referred

as nuisance states or nuisance parameters. These nuisance parameters, although are often not the

main states of interest, their refinement is needed to improve the overall filtering solution.

Mathematically, the conventional formulation of the Schmidt filter starts by partitioning the

14

state vector, x̂−, measurement matrix,H, and Kalman gain K into states and parameters as

x̂− =

x̂−x

x̂−p

 , (2.13)

H =

[
Hx Hp

]
, (2.14)

and

K =

 Kx

Kp

 . (2.15)

Then, the partitioned state vector is substituted into the conventional Kalman filter update equations

and the corresponding operations are performed. Finally, and fundamental to the Schmidt filter, the

optimal Kalman gain is computed after forcing the parameters’ Kalman gain to be zero (Kp = 0).

The resulting update equations after using the optimal gain for the case when Kp = 0, as

reported in [5], are

P+ =

 (I −KxHx)P
−
xx −KxHpP

−
xx (I −KxHx)P

−
xp −KxHpP

−
pp

[(I −KxHx)P
−
xp −KxHpP

−
pp]

T P−pp

 , (2.16)

and x̂+
x

x̂+
p

 =

x̂−x

x̂−p

+

Kx

0

[ỹ −Hxx̂
−
x −Hpx̂

−
p

]
. (2.17)

From Equations (2.16)-(2.17) it can be clearly seen that on the Schmidt approach, 1) the cross-

correlation terms of the covariance matrix become updated and they account for parameter uncer-

tainty, and 2) both parameters not their respective uncertainties are updated.

From Equations (2.16)-(2.17) it can be clearly seen that on the Schmidt approach, 1) the cross-

correlation terms of the covariance matrix become updated and they account for parameter uncer-

tainty, and 2) parameters and their respective uncertainties are not updated. The Schmidt filter is

15

popular mainly because it is easy to implement, and it is often sufficient to alleviate issues when

dealing with nuisance parameters. Moreover, since the parameters are not estimated, it offers some

computational advantage compared to the conventional Kalman filter (KF).

The considering approach that allows the Schmidt filter to work on the described scenarios also

limits its capabilities. First, while the Schmidt filter can cope with nuisance parameters and system

nonlinearities via considering them, the Schmidt approach generally cannot react if the nuisance

parameters change or slowly vary. Second, if the considered parameters are tightly related to the

overall system performance, the Schmidt approach will intrinsically limit the filter performance as

no more information is assimilated to improve the parameter belief, and thus core states’ belief.

Third, the Schmidt filter by design (not attempting to update parameters) ignores situations where

nuisance parameters could have been updated, because their observability increased, or nonlinear-

ities are not so severe, and (negative) parameter impact may not be significant.

With these intrinsic, in part limiting, characteristics of the Schmidt approach in mind, a novel

concept was created: the partial-update Schmidt-Kalman filter. The idea of this novel filter is to

attempt to gain nuisance’s states information while trying to keep Schmidt approach benefits. The

next subsection gives a brief background on the partial-update filter.

2.2.2 The partial-update Schmidt-Kalman filter

The partial-update Schmidt-Kalman filter (PSKF or partial-update filter for short) is a recent

technique that is useful in accommodating measurement updates in nonlinear systems with mildly

observable states, as it is an extension of the Schmidt filter. Examples of successful implementa-

tions of the partial-update Kalman filter can be found in [55], [57], and [58]. This concept is, in

fact, the backbone of this dissertation.

The partial-update Schmidt-Kalman filter [6] is a straightforward modification of the Schmidt

Kalman filter that effectively increases the range of uncertainties and associated nonlinearities

that the filter can tolerate (compared to the EKF or Schmidt filter) while still producing accurate

state estimates with appropriate covariance bounds. The approach does so with almost no extra

computational cost and maintains the linear system theory’s desirable underpinnings, generating

16

unbiased and consistent results, just as the Kalman or Schmidt filter does. Moreover, the technique

is extensible to the UKF [59] and other minimum mean square error approaches.

Effectively, in contrast with the Schmidt filter, the partial-update uses a percentage of the nomi-

nal Kalman update to correct the nuisance states. In fact, the formulation of the partial-update filter

allows to apply partial updates to any state. A commensurate update percentage is also reflected

in the error covariance update, as seen in Equation (2.19). The partial-update is expressed in an

element-wise fashion for the states as

x̂++
i = γix̂

−
i + (1− γi)x̂+

i , (2.18)

and for the covariance as

P++
ij = γiγjP

−
ij + (1− γiγj)P+

ij . (2.19)

Where the update percentages or weights are represented by βi, and related to γi via

γi = 1− βi . (2.20)

The notation [·]++ denotes the partial-update value that will overwrite the full state estimates from

the conventional Kalman equations to be used at the next propagation step.

In words, the partial-update blends the updated (posterior) vector x̂+
k computed with Equation

(2.10) with the prior state vector obtained with Equation (2.6) via an update or percentage weight

β. The partial-update covariance equation (2.19) follows the same idea. The weight βi ∈ [0, 1]

in Equation (2.20), can be thought as the percentage of the updated state being used. Then if

βi equals zero, the Kalman update is totally dropped and the prior is completely kept (Schmidt

filter), whereas βi = 1 corresponds to a regular EKF (full) update; however, the weight can be

set anywhere in between. The notation β referring to a vector containing the elements βi for

i = 1, 2, ..., n, or alternatively, a diagonal matrix β = diag[β1, β2, . . . , βn], is used throughout the

dissertation as convenient. In any case, n, is the total number of states in the filter (as any state can

17

be partially updated).

While there are more efficient ways to implement the partial-update, specifically by modifying

the update step itself, this implementation is still reasonably efficient. Moreover, although Equa-

tions (2.18) and (2.54) can be expressed in terms of β only, the equations presented are convenient

for both proofs and a more natural discussion (i.e. describing weights in terms of the percentage of

the update to be applied). The selection of the percentages β is system dependent, but heuristically

fast, or core, or more observable states are updated with values of 1, whereas nuisance or weakly

observable states, are partially updated with values that can be anywhere inside the permissible

range. Methods for online partial-update weight selection are presented in Chapter 5.

The partial-update filter was originally developed to be used within a filter that uses an additive

correction, however, and especially in the aerospace community, the use of filters involving attitude

multiplicative corrections is common. In the interest of this work, the partial-update formulation is

next incorporated into the widely adopted multiplicative extended Kalman filter (MEKF), extend-

ing the partial-update application to multiplicative attitude filtering.

2.3 The partial-update for the indirect Kalman filter

The quaternion or Euler parameters, often the chosen attitude parametrization, conveniently

provides a singularity-free, although non-unique orientation representation [60]. Although, some

care has to be taken since it is an attitude over-parametrization, and a unit norm constraint needs

to be preserved to ensure a correct attitude representation, well-known analytical and numerical

techniques exist to deal appropriately with quaternion-based attitude developments [61].

Quaternions are very popular in navigation systems and are often utilized within a Kalman

filter [62],[63],[64],[65]. Specifically, they are used in an indirect Kalman filter formulation as to

preserve the unit-norm constraint and avoid a singular covariance matrix. This indirect Kalman

filter formulation is referred to as the Multiplicative Extended Kalman filter (MEKF). This filter

operates on the state error, instead of directly using the state dynamics and it updates attitude

though a multiplicative correction. Via the MEKF, it is possible to implement a state estimator that

benefits from the quaternion representation while satisfying the unit-norm constraint in a built-in

18

fashion.

The partial-update concept can also be applied within the MEKF to fuse both approaches’

benefits. Although it has a slightly different interpretation due to the MEKF’s indirect formulation,

the underlying meaning of partially using the nominal Kalman update still holds. The derivation

of the partial-update MEKF, or PU-MEKF for short, is developed next. This formulation is the one

implemented on the simulated and hardware implementation cases included in this dissertation.

2.3.1 Indirect filtering

Previous to describing the PU-MEKF update step, indirect filtering, and the conventional

MEKF update step are first briefly discussed.

2.3.1.0.1 Indirect filter formulation. Direct incorporation of the attitude quaternion into the fil-

ter state comes with two issues. First, the unit quaternion constraint implies state dependence,

and thus a singular covariance (theoretically correct; however, it can cause numerical instabilities).

Second, the Kalman update operation involves additions; however, the addition operation is not

defined for quaternions, and the unit-norm constraint may be violated. In order to overcome these

issues, the indirect Kalman filter formulation can be employed [66].

The use of an indirect formulation means that the filter does not directly use/produce the esti-

mate of the state vector; rather, it uses/produces the estimated error of the state vector. And then,

with an estimate of the error in hand, the estimate of the actual variable can be recovered. In other

words, the PU-MEKF (and MEKF) estimates the departure of the states from the true values. To

perform the filtering in this mode, the PU-MEKF uses the error dynamics model, instead of the

dynamics model.

In the MEKF framework, two definitions of error are used: additive and multiplicative error.

In general, additive errors are associated with states other than quaternions, whereas multiplicative

errors are associated with the quaternion states. The definition of the error for additive states is that

from Equation (2.21), and the definition for multiplicative error is that from Equation (2.22).

19

δx = x − x̂ . (2.21)

C(δq̄) = C(q̄IW)C(q̂IW)T . (2.22)

Intuitively, the additive error, δx, is simply computed as the difference between the true value,

x, and estimated value, x̂. However, as the addition operation is not defined for rotations, a rotation

error is defined in a multiplicative manner as in Equation (2.22). That is, the multiplicative error is

defined as the (small) rotation C(δq̄) that represents the rotational difference between the true and

estimated attitude. In other words, the (small) rotation error C(δq̄), is the required rotation that

when compounded with the current estimated attitude C(q̂IW), results in the true attitude C(q̄IW).

This is readily seen if Equation (2.22) is written as,

C(q̄IW) = C(δq̄)C(q̂IW) . (2.23)

Equation (2.21) may alternatively be rearranged in terms of the estimate and error variables as,

x = δx + x̂ . (2.24)

Equations (2.23) and (2.24) are in fact, the equations that are used to recover the posterior estimates

after processing a measurement within the PU-MEKF (or MEKF). Equations (2.23) and (2.24),

reveal how the indirect formulation is used: 1) the indirect filter produces the estimates for the

errors, C(δq̄) and δx, and 2) these estimated errors are now combined with the current estimates

C(q̂IW) and x̂, to produce the improved estimate (posterior).

2.3.2 The conventional MEKF update

Before incorporating the partial-update within the MEKF, the standard MEKF update itself is

briefly revisited. The development of the PU-MEKF is deferred for the next section.

20

After a measurement is received, the measurement update can be performed via standard

Kalman filter equations. At time t = k, the Kalman gain, and posterior covariance, P, are ob-

tained with [21]

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 , (2.25)

P+
k = (I−KkHk)P

−
k , (2.26)

and the error state update via

δx̂+
k = Kk(ỹk − ŷk) = Kkr . (2.27)

Although the error state estimate, δx̂+
k , is in fact the MEKF output, recall that the interest is to

recover the actual state estimate x̂. This is accomplished in two steps. First, the components of

the computed Kalman correction, δx̂+
k , are split into additive (δx+

additive) and multiplicative (δθ̂+)

corrections:

Kkr =

 δθ̂+

δx̂+
additive


k

. (2.28)

Second, the actual states are recovered by applying each type of error definition separately. In this

manner, the posterior of the actual additive states is obtained by

x̂+
k = x̂−k + δx̂+

additivek
, (2.29)

while the posterior of actual quaternion states through quaternion multiplication as

q̄+k = δq̄k ⊗ q̄k =

1
2
δθ+k

1

⊗ q̄k . (2.30)

After the quaternion multiplicative updates take place, a brute force re-normalization is performed.

21

2.3.3 The partial-update within the Multiplicative EKF

In this section, the partial-update step for the MEKF is derived. The derivation is focused on the

multiplicative correction only since the additive correction remains unaltered with respect to the

original partial-update form. The derivation shows that when the indirect filter formulation is used,

the multiplicative partial-update can be interpreted as a special case of the original partial-update

form. Furthermore, it is found that the partial-update for the MEKF requires a slightly different

implementation from that of the original partial-update.

2.3.3.1 The PU-MEKF

Direct use of the partial-update formulation in a filter involving state quaternions, would require

a partial-update of the form (ignoring time indices for clarity)

q̄++
i = γi q̄

−
i + (1− γi)q̄+i , (2.31)

however, this represents two main inconveniences. First, it is not a multiplicative update, making

it inconsistent with the multiplicative error definition. Second, if the partial-update is performed in

this manner, the quaternion unit norm can be violated. For a multiplicative formulation, however,

these issues can be addressed as follows.

Consider the alternative expression of the original partial-update equations in terms of the prior

expected state, x̂−i as,

x̂++
i = γix̂

−
i + (1− γi)x̂+

i (2.32)

= γx̂−i + (1− γi)(x̂−i + Kir) (2.33)

= γix̂
−
i + x̂−i + Kir − γix̂−i − γiKr (2.34)

= γix̂
−
i − γix̂−i + x̂−i + (1− γi)Kir) (2.35)

= x̂−i + (1− γi)Kir (2.36)

= x̂−i + β̄iKir , (2.37)

22

with Ki being the iith row of the Kalman gain K. Equation (2.37) suggests that even before

computing the posterior state, the partial update can be applied directly on the correction term,

Kir, through β̄i. This means that the partial-update can take place in the composition of the

multiplicative correction for a filter with multiplicative correction (the MEKF in this case). To

elaborate on this let the quaternion correction δq̄ from Equation (2.30) be decomposed into three

single small rotations (small angular corrections), through the φ, θ and ψ angles. Also, suppose that

such angle corrections are partially applied (in a multiplicative fashion) to an estimated quaternion

q̂IW , and they appear scaled by β factors as,

q̄ = δq̄ ⊗ q̂IW (2.38)

= [δq1 ⊗ δq2 ⊗ δq3]⊗ q̂IW (2.39)

=



sin β1φ
2

0

0

cos β1φ
2


⊗



0

sin β2θ
2

0

cos β2θ
2


⊗



0

0

sin β3ψ
2

cos β3ψ
2


⊗ q̂IW . (2.40)

Now, since the angle corrections are considered to be very small for the PU-MEKF formulation,

then δq̄ is small (which is originally the case for the MEKF), which means sin φ
2
≈ 0 and cos φ

2
≈ 1.

Under this considerations, the quaternion multiplication (as defined in [66]) of the three single

small rotations gives

q̄ =



β1φ
2

0

0

1


⊗



0

β2θ
2

0

1


⊗



0

0

β3ψ
2

1


⊗ q̂IW =



β1φ
2
− β2θψ

4

β2θ
2
− β1θφ

4

β3ψ
2
− β2φθ

4

β1β2β3φψθ
8

+ 1


⊗ q̂IW . (2.41)

23

By retaining first-order terms only, results in

q̄ ≈



β1φ
2

β2θ
2

β3ψ
2

1


⊗ q̂IW =

1
2
βδθ

1

⊗ q̂IW , (2.42)

where

β = diag[β1, β2, β3] , (2.43)

and

δθ =


φ

θ

ψ

 . (2.44)

This indicates that by scaling the correction term δθ the partial-update concept can be applied to

the quaternion state, and that this is valid up to a first-order approximation, which holds under the

MEKF assumptions.

Following the alternative partial-update formulation from Equation (2.37), the multiplicative

partial-update can be written as

δθ̂
++

i = δθ̂−i + β̄iKir = δθ̂−i + β̄iδθ̂
+
i , (2.45)

which in virtue of the expectation of the state error being zero (IE[δθ̂−] = 0), and the scalars β and

β̄ playing the same role, Equation (2.45) simplifies to

δθ̂
++

i = βiδθ̂
+
i , (2.46)

or in vector form to

δθ̂++ = βδθ̂+ , (2.47)

24

with

β = diag[β1, β2, β3] . (2.48)

From this development, it can be concluded that to perform a multiplicative partial-update while

maintaining the quaternion unit-norm (up to first order), the partial-update needs to happen when

constructing the quaternion error correction δq̄ and not afterwards. Following partial-update nota-

tion, a multiplicative partial-update, of a prior attitude, q̄−, is performed via

q̄++ =

1
2
βδθ̂+

1

⊗ q̄− . (2.49)

Since the traditional MEKF produces the error estimate, δθ̂+, this can easily be substituted into

Equation (2.49) to produce the partially updated quaternion, and by accordingly partial-updating

the covariance matrix, one will have a MEKF converted into a PU-MEKF. Similarly, if β is chosen

to be identity (full update), one recovers the standard MEKF update from the PU-MEKF formula-

tion.

Although recovering multiplicative and additive states from the error estimates require different

operations, the partial additive and multiplicative corrections can be computed in the same step.

The user just needs to properly identify the partial-update percentages β’s to be used on each state,

and form the β matrix to perform the partial-update, e.g.

β = diag

[
βδθ1 βδθ2 βδθ3 β pW

I1
. . . βδα3

]
, (2.50)

and perform the partial-update as

δx++ = βK(ỹ − ŷ) = βKr , (2.51)

25

or explicitly

δx++ = βKr =


βδθδθ̂

+

βadditiveδx̂
+
additive

βδαδα̂
+

 . (2.52)

Once the partial-update posterior state error, δx++
k , is computed, the actual state estimates can

be recovered by following additive and multiplicative error definitions.

Finally, since IE[δx] = 0, the covariance expression for the error state is

P = IE[(δx− IE[δx])(δx− IE[δx])T] = IE[δxδxT] , (2.53)

and thus the covariance matrix P can be partially updated using the original partial-update expres-

sion,

P++
ij = γiγjP

−
ij + (1− γiγj)P+

ij , (2.54)

or alternatively

P++ = Γ(P− − P+)Γ + P+ , (2.55)

where Γ is a diagonal matrix with elements γi for i = 1, 2 . . . n (recall that γi = 1− βi).

2.3.4 Filter key equations and algorithm

Although the PU-MEKF is a straightforward modification of the MEKF, for the sake of com-

pleteness, the following pseudo-code is included to summarize the PU-MEKF generic implementa-

tion. Since the computation of the measurement residual matrix is generally application dependent,

no specifics about computing this matrix are given in the pseudo-code. However, an application

that uses the PU-MEKF and shows its construction is given in Chapter 6.

26

Algorithm 1 Partial-update Multiplicative Extended Kalman filter (PU-MEKF)
Result: Partial-updated posterior estimates x̂++ and P++

Initialize x̂−, β, Q, R and P−

for The next time step do
Obtain propagated state x̂−k using system dynamics

Compute jacobian Fk =
∂f k
∂x

∣∣∣
x̂−
k−1

Propagate covariance matrix P−k using P−k = Fk−1P
+
k−1F

T
k−1 + Qk−1

if New measurement is available then
Form the residual measurement matrix Hk

Compute the Kalman gain Kk with Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1

Compute the residual rk using the incoming measurement, ỹk, and expected measure-

ment, ŷk, according to rk = ỹk − ŷk

Compute the correction δx++
k = βKkrk =

 βδθδθ̂
+
k

βadditiveδx̂
+
additive−k


Use βδθδθ̂+k to partial-update multiplicative states using q̄++

k =

1
2
βδθδθ̂

+
k

1

 ⊗ q̄−. This

recovers attitude estimate.

Use βadditive−kδx̂
+
additive−k to partial-update additive states using x̂+

k = x̂−k +

βadditive−kδx̂
+
additive−k. This recovers the actual estimates for additive states.

Via P++
ij = γiγjP

−
ij + (1− γiγj)P+

ij , apply partial-update to the covariance matrix P and

obtain the current estimate P++

end

end

2.4 Stability analysis of the partial-update filter

The partial-update filter is, in general, an intermediate filter lying in between the conventional

and the consider filter, and for specific β weight values, it can act as one or another as well. In

27

terms of filter stability, this is relevant, as the partial-update should share conventional and consider

filter properties: for linear systems, the estimation error is stable. In this section, the insight of the

partial-update being stable is confirmed via the direct Lyapunov method. The stability analysis

is based on the developments presented in [21] and [67]. Only the discrete stability analysis is

developed, and it is assumed that the true linear system dynamics are described by

xk+1 = Fkx + Bkuk + Gkwk , (2.56)

ỹk+1 = Hk+1xk+1 + vk+1 . (2.57)

Let the following estimation error weighted function be the candidate Lyapunov function

Vk = ek
TP−1k ek , (2.58)

with ek = x̂ − x. The necessary condition for the estimation error to be stable in the Lyapunov

sense, is that the change in the function Vk remains at least negative definite after every recursion,

in other words,

∆V(e) = ek+1
TP−1k+1ek+1 − ek

TP−1k ek < 0 . (2.59)

To begin, the error ek is defined in terms of the transition and measurement matrix. Towards this

goal, first recall that the partial update step can be written as

x̂+
k−1 = x̂−k−1 + (I − Γ)Kk(ỹk−1 −Hk−1x̂

−
k−1) , (2.60)

and calling K̃k = (I − Γ)Kk gives

x̂+
k−1 = x̂−k−1 + K̃k(ỹk−1 −Hk−1x̂

−
k−1) . (2.61)

28

Similarly, the system dynamics can be rearranged as

x̂+
k = Fk−1x̂

+
k−1 + Bk−1u = Fk−1x̂

+
k−1 + Fk−1K̃k−1(ỹk−1 −Hk−1x̂

−
k−1) + Bk−1u . (2.62)

Next, the system error can be formed as

ek = x̂k − xk = Fk−1ek−1 + Fk−1K̃k−1(ỹk−1 −Hk−1x̂
−
k−1)−Gk−1wk−1 , (2.63)

and using the measurement equation model in the previous equation, and rearranging terms results

in

ek = Fk−1ek−1 + Fk−1K̃k−1Hk−1xk−1 + Fk−1K̃k−1vk−1−Fk−1K̃k−1Hk−1x̂
−
k−1−Gk−1wk−1 ,

(2.64)

or

ek = Fk−1(I − K̃k−1Hk−1)ek−1 + Fk−1K̃k−1vk−1 −Gk−1wk−1 . (2.65)

Finally, the error at time k can be expressed as

ek = Fk−1(I − K̃k−1Hk−1)ek−1 . (2.66)

Now, this alternative definition of the estimation error,ek, is used in the Lyapunov candidate

function. This leads to

∆V(e) = ek+1P
−1
k+1ek+1 − ek

TP−1k ek (2.67)

= ek
T(I − K̃kHk)

TFT
k P−1k+1Fk(I −KkHk)ek − ek

TP−1k ek (2.68)

= ek
T[(I − K̃kHk)

TFT
k P−1k+1Fk(I − K̃kHk)− P−1k]ek

T , (2.69)

which translates the problem to show that the bracketed term is negative definite, or at least negative

29

semi-definite for stability,

[(I − K̃kHk)
TFT

k P−1k+1Fk(I − K̃kHk)− P−1k] < 0 . (2.70)

Next, the bracketed term is required to be expressed in terms of elements that involve time index k

only. To accomplish this a few steps are required.

First, Equation (2.70) is pre-multiplied by F−Tk (I − K̃kHk)
−T , and then post-multiplied by

(I − K̃kHk)
−1F−1k . This gives rise to,

P−1k+1 − F−Tk (I − K̃kHk)
−TP−1k (I − K̃kHk)

−1F−1k < 0 . (2.71)

Pre-multiplying the previous expression by P−k+1 leads to

I − P−k+1F
−T
k (I − K̃kHk)

−TP−1k (I − K̃kHk)
−1F−1k < 0 . (2.72)

Second, the posterior covariance matrix Pk+1 is written in Joseph form with the objective of using

it in the previous equation, and obtain an expression in terms of the same time index. The general

covariance update (often called Joseph form), which also applies when using the partial-update

concept, is

P+
k = (I − K̃kHk)P

−
k (I − K̃kHk)

T + K̃kRkK̃k
T . (2.73)

Third, substituting the Joseph covariance,P+
k , into the traditional covariance propagation equation,

a propagated covariance can be obtained as

P−k+1 = FkP
+
k FT

k + GkQkG
T
k (2.74)

= Fk(I − K̃kHk)P
−
k (I − K̃kHk)

TFT
k + FkK̃kRkK̃k

TFT
k + GkQkG

T
k .

Finally, substituting Equation (2.74) into Equation (2.72), the equation in terms of index k only, is

30

obtained,

− [FkK̃kRkK̃k
TFT

k + GkQkG
T
k][F−Tk (I − K̃kHk)

−TP−1k (I − K̃kHk)
−1F−1k] < 0 . (2.75)

Noticing that the bracketed term on the right is a positive definite matrix, the stability analysis

further reduces to check for positive definiteness of the left bracketed term

− [FkK̃kRkK̃k
TFT

k + GkQkG
T
k] < 0 , (2.76)

or equivalently

− [FkKk(I − Γ)Rk(I − Γ)TKk
TFT

k + GkQkG
T
k] < 0 , (2.77)

or

− [FkKkβRkβ
TKk

TFT
k + GkQkG

T
k] < 0 . (2.78)

Since the process noise covariance ,Q, is at least positive semi-definite and the measurement noise

covariance, R, is positive definite, the factor that defines the filter stability is the matrix β. In

summary,

• If β is singular with one, or up to (n − 1) diagonal elements being zero, then the partial-

update filter will be stable, but not asymptotically stable.

• If β has all diagonal entries different from zero, the system is asymptotically stable.

• If β is the zero matrix, no update is performed at all, and if this condition is kept filter

divergence may be observed.

2.5 Partial-update numerical stability issues

It is very well known and documented in the literature that early after the Kalman filter devel-

opment, and as its popularity increased, researchers started observing issues as filter performance

31

degradation, divergence, and even negative covariance values for apparently well-posed problems

[3], [9], [10], [16]. The desire to maintain the Kalman filter as a reliable online solution for the

estimation problem, drove researchers to invest time to investigate such issues, from which it was

found that round-off computation errors and ill-conditioned problems, along with finite computer

word-length, were the common triggers for such problems to appear. Several solutions for allevi-

ating these inconveniences, consisting of propagating covariance factors, were proposed, widely

developed, and adopted. Square root and UD factorized filters were and are, in fact, the most used

today. When these solutions are integrated into the backbone of conventional filters, it is possible

to have more numerically robust, and stable filters, while keeping the underlying filter properties

(at the cost of extra computations inherent to the factorized forms).

Although factorized filters can benefit conventional filter formulations, they may not be too

common to see in the literature, but they are in use. The infrequent publication of the alterna-

tive formulations may be due to the lack of significant or unperceived of numerical issues for the

designer to opt for a change in implementation (a common symptom among practitioners as men-

tioned in [22]). Furthermore, conventional formulations often result in well-behaved filters when

used in simulation, and no extra precision seems to be needed. Nonetheless, recent papers start to

increasingly incorporate these square root implementations to ensure the positive semi-definiteness

of the covariance matrix, but also to leverage modern computers capacities that allow to invest in

a more expensive filter form.

The partial-update filter has been observed to work well on simulation, and when appropriately

applied, it can outperform the EKF and Schmidt filter. However, the partial-update formulation

is an extension of the Kalman filter, and as such, it inherits the numerical problems bound to the

Kalman filter formulations.

The research presented in the following chapters (third and fourth), is devoted to integrating

factorized formulations and partial-update filter to provide formulations that incorporate the ben-

efits from both concepts, but that either cannot deliver if implemented separately. The result is

a set of filters with augmented ability to support high uncertainties and nonlinearities, and more

32

robust against numerical issues. The proposed formulations, although they are not bullet-proof,

they certainly extend the class of problems the EKF can handle well.

33

3. SQUARE ROOT PARTIAL-UPDATE SCHMIDT KALMAN FILTER∗

3.1 Introduction & Motivation

Shortly after the original Kalman filter paper [7], however, two primary concerns emerged.

The first pertained to the numerical precision of the filter and the second pertained to the filter’s

robustness for nonlinear systems or measurements. Additionally, it was noted that the subtraction

that occurs in the covariance measurement update equation could produce numerical issues when

high precision measurements were assimilated on finite precision computers. Moreover, it has

been noticed that numerical issues may surface when significant mismatches in state observability

are present [16] or when there exists considerable discrepancies in the magnitudes among state

elements [68].

These challenges motivated researchers to develop alternative recursive forms of the Kalman

equations that would be useful in improving the precision when limited hardware specifications

were available. These led to the development of an approach that relied on propagating the square

root of the error covariance matrix rather than the error covariance matrix itself. The first occur-

rence of the square root form is attributed to Potter [13]. Potter noticed that using the square root

form of the error covariance, he could rigorously enforce non-negative definiteness of the covari-

ance matrix after each recursion [14]. Researchers later generalized Potter’s formulation to process

vector measurements and to include process noise. Alternative factorizations that allowed one to

perform the filter recursion without the explicit use of the square root of the error covariance ma-

trix [18] also became available. Regardless of the form, the main goal of the square root and other

factorized filters is to overcome the previously mentioned numerical problems related to direct

propagation of the error covariance matrix.

The square root Kalman filter is mainly a covariance reformulation of the standard Kalman

equations, and thus it is still a linear filter. Similar to what is done with a traditional Kalman

∗Adapted with permission from “Square root partial-update kalman filter”, by J. H. Ramos, K. M. Brink, and J. E.
Hurtado, presented at the 22nd International Conference on Information Fusion FUSION 2019, [1], Copyright 2019
by the International Society of Information Fusion.

34

filer, the square root Kalman filter can be applied in nonlinear systems through a linearized model.

That is, the square root formulation does not enhance a filter’s ability in addressing nonlinearity, it

simply improves numerical conditioning.

The partial-update has been demonstrated to be effective on a wide range of filtering applica-

tions and the square root implementation has long been shown to improve the filter’s numerical

qualities. This chapter presents a development that combines the square root and partial-update

formulations within the same filter. The rest of the chapter is organized as follows: Background

information is provided in Section 2 including a brief explanation on how the square root formula-

tion helps to improve the numerical robustness in filtering. It also presents the associated equations

for the particular square root filter version utilized in this chapter, and a description of the partial-

update Schmidt-Kalman filter. Section 3.2 provides the derivation of the square root partial-update

Kalman filter. Finally, a nonlinear filtering numerical example that uses the square root partial-

update filter is presented in Section 3.3. Monte Carlo runs and computational complexity of the

filter are also included. Section 3.6 providing a conclusion statement.

3.1.1 Square Root filtering

In the estimation field, square root filtering refers to utilize a square root factorized represen-

tation of the error covariance matrix for purposes of propagation and correction of the estimation

error. The goal of reformulating filters using such “square roots” or factorizations, is to increase

the precision of the filter itself. By operating on the square root of the error covariance, the filter

lowers the condition number of the uncertainty matrix (to be discussed shortly), which is then less

prone to numerical issues because fewer significant figures are required during the arithmetic oper-

ations. A low condition number is always desirable, mainly for the cases where the computer word

length is limited (as in embedded systems), or when the filtering problem is poorly conditioned.

Although these type of formulations are numerically more robust, it is at the cost of increasing

the computational effort. Nevertheless, the amount of extra computations can still be reasonable

which allows a factorized filter to be used in many applications [16].

The definition for the “square root” of a matrix, in contrast from scalar quantities, can vary

35

from one reference to another. For the purposes of this research, the definition for the square root

of a matrix is based on the idea of finding a matrix S that satisfies (3.1). S, is what will be referred

to as the square root of the error covariance matrix P.

P = SST . (3.1)

Specifically, S is a lower triangular matrix, and ST its transposed. Importantly, it can be

noticed that the product SST is naturally symmetric and positive semidefinite, regardless of the

value of the lower triangular matrix S. Thus, numerical difficulties that could cause the covariance

matrix P to become non-symmetric or singular, cannot affect the product SST, thus preserving

the theoretical properties of the covariance matrix P (within the machine precision). Also, as for

scalars, the square root S is not unique. That is, there may be several solutions for S. One very

well known method to compute the matrix S is the Cholesky decomposition [69]. The Cholesky

method directly outputs the matrix S that satisfies Equation (3.1). This method requires that the

matrix to be factorized is positive definite and symmetric, which holds for P.

The set of equations that correspond to the square root filter are included here. The assumptions

for this approach are taken from Equations (2.1)-(2.4). The state propagation in the EKF is done

with Equation (2.6), whereas the square root of the covariance is propagated by solving for T in

Equation (3.2) as an alternative to Equation (2.5). The details of how to find matrix T are given in

Section 3.2.2. The Kalman gain in of Equation (2.7) is replaced by the gain from Equation (3.3)

while the covariance update, from Equation (2.8), is now accomplished with Equation (3.4). The

state measurement update is computed with the standard form of Equation (2.10).

(S−k)T

0

 = T

(S+
k−1)

TFT
k−1

Q
T/2
k−1

 , (3.2)

Kk = ai(S
−
k)φi , (3.3)

(S+
k) = (S−k)(I − aibiφiφT

i) , (3.4)

36

where

ai =
1

φT
i φi + Ri

, (3.5)

φi = (S−k)THT
i , (3.6)

bi =
1

1±
√
aiRi

. (3.7)

Importantly, it should be noted that this version of square root filter processes the available

measurements in a sequential fashion [16]. Thus, for a particular time k when a measurement

vector is available, the update Equations (2.10), (3.3) and (3.4) are executed for i = 1, 2, . . . ,m

in order to process each measurement in the measurement vector ỹk ∈ Rm. In other words, when

a vector measurement is available, m updates are performed, one update per element in the mea-

surement vector. Very importantly, for nonlinear systems the Jacobians, F and H may need to be

recomputed after each measurement assimilation.

Due to the sequential nature of the updates, the measurement covariance matrix R is assumed

to be in diagonal form such that Ri denotes the ith diagonal element that corresponds to the mea-

surement element ỹi and Hi represents the ith row of H. Finally, positive sign can be chosen in

Equation (3.7) to avoid subtraction. Now with the proper context, in the next section the square

root partial-update Schmidt-Kalman filter is derived.

3.2 The square root partial-update Schmidt-Kalman filter

The objective here is to combine the benefits of square root filtering and the partial-update

approach into one filter that provides an increase in robustness to uncertainties and numerical issues

beyond what is provided by either individual formulation. As with many available techniques, this

formulation also has its limits, but its significant contribution in added robustness and its simple

implementation, makes it very attractive.

The derivation proposed follows Potter’s original form [13] as it assimilates the measurements

sequentially. The method proposed here, however, handles process noise. For clarity of exposition,

the derivation considers that the ith element of the measurement vector is being processed and the

37

indices are omitted for a and b, since it will be clear that Ri generates a corresponding ai and

bi. Similarly the index for φ is omitted. Recall that the resulting update equations will need to be

executed m times in order to process all measurements in the vector ỹk ∈ Rm.

3.2.1 Measurement update

It has been previously shown in [6], that the partial-update filter is statistically sound; that is,

IE[e] = 0, IE[e2] = 0 for linear systems. Thus, if a square root form for the covariance partial-

update written in Equation (3.1) can be found, this should maintain the statistical consistency once

the error covariance matrix is recovered. Specifically this case, the matrix S++ is sought such that

allows to write Equation (2.54) as P++ = S++S++T. To begin, the partial-update equations are

expressed in matrix form. For clarity sake, the time index k is temporarily dropped. First, the

partial-update covariance from Equation (2.54) can be reorganized such that

P++
ij = γiγj(P

−
ij − P+

ij) + P+
ij . (3.8)

Then, recognizing that the first term on the right-hand side of Equation (3.8) can be written

as Γ(P− − P+)Γ, where Γ is a diagonal matrix with elements γi for i = 1, 2 . . . n (recall that

γi = 1− βi), the covariance partial-update can be expressed as

P++ = Γ(P− − P+)Γ + P+ . (3.9)

Now, from the standard EKF equations (ignoring the time indices for ease of notation), P+ =

(I−KH)P− is incorporated into Equation (3.9).

P++ = P+ + Γ(KHP−)Γ , (3.10)

then replacing K = P−HT(HP−HT + R)−1 results in

P++ = P+ + Γ(P−HT(HP−HT + R)−1HP−)Γ . (3.11)

38

Then, it is required that P− = (S−)(S−)T and P+ = (S+)(S+)T, and considering that the

measurements are processed one at a time. Thus, if Hi is the i-th row of H, and Ri the i-th

diagonal element of R, a = (HiP
−HT

i + Ri)
−1 is an scalar. These actions lead to

P++ = (S+)(S+)T + Γ(S−)(S−)THT
i aHi(S

−)(S−)Γ . (3.12)

The sequential processing assumes that R is already a diagonal matrix. Further, with the

purpose of using Potter’s measurement update equations form directly, the scalar a is written as

follows:

a =
1

Hi(S−)(S−)THT
i + Ri

=
1

φTφ+ Ri

, (3.13)

where φ = (S−)THT
i . Also, from Potter’s formulation, the posterior square root error covariance

matrix can be obtained as in Equation (3.14). A summary of Potter’s equations can be found in

[16].

S+ = (S−)(I − abφφT) , (3.14)

where b is defined as

b =
1

1±
√
aRi

. (3.15)

Now, using the definition of the posterior S+ from Equation (3.14) in Equation (3.12), the partial-

update for the error covariance, which is now in terms of the prior S−, reads

P++ = [(S−)(I − abφφT)][(S−)(I − abφφT)]T+

Γ(S−)(S−)THT
i

√
a
√
aHi(S

−)(S−)TΓ .

(3.16)

Because Equation (3.16) is the sum of two matrices and each of these matrices are factorized

in a square root manner, Equation (3.17) can be set as a candidate square root of (P++).

(S++)T

0

 = T

(I − abφφT)T(S−)T

√
aHi(S

−)(S−)TΓ

 . (3.17)

39

Where matrix T =

[
T1 T2

]
is a (n+r)× (n+r) orthogonal matrix, with T1 being (n+r)×n

and T2 being (n+ r)× r matrices, meaning that

TTT =

TT
1

TT
2

[T1 T2

]

=

TT
1 T1 TT

1 T2

TT
2 T1 TT

2 T2

 =

I 0

0 I


. (3.18)

Thus, (S++)T

0

 =

[
T1 T2

](I − abφφT)T(S−)T

√
aHi(S

−)(S−)TΓ

 =

Wn×n

0

 . (3.19)

Then, if an orthogonal matrix T can be found such that Equation (3.19) produces an (n × n)

upper triangular W matrix stacked on top of a lower zero (r×n) matrix, then it can be recognized

that the upper triangular (n×n) matrix W, is actually equal to (S++)T, which is the desired result.

The idea behind the use of the orthogonal matrix T, is to use the factorization shown inside the

brackets in Equation (3.17). The transformation T, allows one to find a square root of dimension

(n × n). As it may be noted, S++ =

[
(S−)(I − abφφT) Γ(S−)(S−)THT

i

√
a

]
can also act as

a square root of P++, however this selection would increase the dimension of the problem to a

(n× (n+ r)) square root matrix, which is not desirable.

In the following development, the product from Equation (3.20) is performed explicitly to show

that the candidate form of Equation (3.17) is a valid square root for P++.

[
(S++) 0

](S++)T

0

 =

40

[T1(I − abφφT)T(S−)T + T2

√
aHi(S

−)(S−)TΓ]T[. . .] (3.20)

= (S−)(I − abφφT)TT
1 T1(I − abφφT)(S−)T+ (3.21)

(S−)(I − abφφT)TT
1 T2

√
aHi(S

−)(S−)TΓ+

Γ
√
a(S−)(S−)THT

i TT
2 T1(I − abφφT)(S−)T+

Γ
√
a(S−)(S−)THT

i TT
2 T2

√
aHi(S

−)(S−)TΓ

= (S−)(I − abφφT)TT
1 T1(I − abφφT)(S−)T+ (3.22)

Γ
√
a(S−)(S−)THT

i TT
2 T2

√
aHi(S

−)(S−)TΓ

= (S−)(I − abφφT)(I − abφφT)(S−)T+ (3.23)

Γ
√
a(S−)(S−)THT

i

√
aHi(S

−)(S−)TΓ .

In Equation (3.23) the expression for the partial-update covariance from Equation (3.16) is

recovered, which shows that the factorization proposed in Equation (3.17) is actually a square root

for P++. Then, the square root partial-update equations are

(S++)T

0

 =

[
T1 T2

](I − abφφT)T(S−)T

√
aHi(S

−)(S−)TΓ

 . (3.24)

Or equivalently, (S++)T

0

 = T

 (S+)T

√
aφT(S−)TΓ

 =

Wn×n

0

 . (3.25)

The problem of finding the orthogonal matrix T, but more importantly (for this application), find-

ing the matrix Wn×n, is well known and several well documented algorithms are available in the

literature [16], [69], [70]. This work makes use of the algorithm known as the Modified Gram-

Schmidt (MGS), which was outlined in [16] specifically for Kalman filtering.

41

For the implementation of the square root partial-update Kalman filter, the square root of the

covariance is being directly propagated, so S is available at every time step. For the purposes of

this development, S is propagated directly through the concept shown in the following sub-section

(3.2.2). Also recall that once the Modified Gram-Schmidt algorithm has been carried out, the ma-

trix (S++)T has been generated and the matrix Wn×n is simply retained, since it is the solution

(S++)T for the current measurement partial update step. Finally, notice that one could think about

or suggest the direct use of Equation (3.8) to perform the time update by transforming the square

root S into the covariance matrix P, and then going back to the square root via the Cholesky

decomposition. However, two main issues would be encountered: 1) it will be computationally ex-

pensive to go back and forth for relative large systems and, 2) Equation (3.8) involves a subtraction,

which would bring back the original concern over numerical issues due to finite precision.

3.2.2 Time update

The propagation of the square root error covariance matrix S, follows the same factorization

idea used to compute (S++)T in Equation (3.25). Recall that the standard propagation of the error

covariance matrix is computed as in Equation (2.5), which it is included here for convenience [68].

P−k = Fk−1P
+
k−1F

T
k−1 + Qk−1 . (3.26)

Again, since P+
k−1 is symmetric and positive definite, it can alternatively be written as

S−k S−k
T = Fk−1S

+
k−1S

+
k−1

TFT
k−1 + Q

1/2
k−1Q

T/2
k−1 . (3.27)

From which the following factorization can be proposed [71]

(S−k)T

0

 =

[
T1 T2

](S+
k−1)

TFT
k−1

Q
T/2
k−1

 =

W n×n

0

 , (3.28)

42

such that,

P−k =

[
(S−k) 0

](S−k)T

0

 . (3.29)

In a similar manner as before, T =

[
T1 T2

]
is a 2n × 2n orthogonal matrix to be found (in

this case via Modified Gram-Schmidt), andW is the solution for (S−k)T. Notice that T is different

from T in general. Thus, performing MGS for Equation (3.28) provides the direct propagation step

for the square root error covariance matrix. Equation (3.26) can be recovered from the product in

Equation (3.29), which verifies Equation (3.28) as a valid square root for P−k . In Table 3.1 the

square root partial-update Schmidt-Kalman filter equations are summarized.

Before moving to examples of the new filter, a few remarks about the development are needed.

First, note that the real symmetric matrix QT/2, is required in the propagation step. This is com-

puted by an eigendecomposition procedure which let express Q = V DV T , where the columns

of V are the eigenvectors of Q, and D is a diagonal matrix which entries are the corresponding

eigenvalues [72]. In this way, Q1/2 = V D1/2, where D1/2 is the square root of D. Second, since

the measurements are processed sequentially, the filter updates are performed for i = 1, 2, ..,m

in order to assimilate the observation vector ỹk completely. It is highly important that the mea-

surement matrix is computed with the most current estimate, and thus the corresponding Jacobians

are to be updated. That is, every time a sequential measurement is assimilated, the measurement

(and transition) matrix needs to be re-evaluated at the most recent state posterior available. Finally,

since a decomposition to obtain QT/2 is required, the user will have to assess the convenience of

this square root filter when dealing with time-varying process noise. A similar assessment may be

required in the case of a time-varying R matrix.

3.3 Numerical examples

In this section simulation results that show the effect of using the square root partial-update fil-

ter are presented, and compared with the (conventional) square root EKF. A simulation of standard

EKF and square root EKF is included as well. The simulations, also show the agreement between

43

Table 3.1: Square root partial-update Schmidt-Kalman filter. Reprinted with permission from [1].

Model

xk = f k−1(xk−1,uk−1) + wk−1

ỹk = hk(xk) + vk

wk ∼ N (0,Qk)

vk ∼ N (0,Rk)

Initialize

x̂+
0 = x0

S+
0 = chol(P+

0) [69]

Q
1/2
0 = eigendec(Q0) [72]

Γ = diag(1− β1, 1− β2, ..., 1− βn)

Propagation

x̂−k = f k−1(x̂
+
k−1,uk−1)

Perform MGS [16] for(S−k)T

0

 = T

(S+
k−1)

TFT
k−1

Q
T/2
k−1


Gain

Kk = ai(S
−
k)φi

ai =
1

φT
i φi + Ri

; φi = (S−)THT
i

Update

x̂+
k = x̂−k + Kk(ỹk − ŷk)

(S+
k) = (S−k)(I − aibiφiφT

i)

bi =
1

1±
√
aiRi

Partial-Update

x̂++
i = Γx̂− + (I − Γ)x̂+

Perform MGS [16] for(S++
k)T

0

 = T

 (S+
k)T

√
aiφ

T
i (S−k)TΓ



the square root partial-update and the standard partial-update estimates.

3.3.1 Body re-entering Earth atmosphere

In this numerical example, which is based on the example presented in [73], the altitude, x1

(in meters), vertical velocity, x2 (in meters per second), and the constant ballistic parameter, x3

(with units of 1/meter), of a body re-entering Earth atmosphere from high altitude and with high

velocity, are estimated. It is assumed that the body is constrained to fall vertically, and that a

range-measurement system delivers discrete measurements. The measurements are considered to

44

be affected by a zero-mean Gaussian white-noise process.

The discretized nonlinear dynamics of the system are

x1(k) = x1(k−1) + x2(k−1)∆t , (3.30)

x2(k) = x2(k−1) + (e
−x1(k−1)

kp x22(k−1)x3(k−1) − g)∆t , (3.31)

x3(k) = x3(k−1) , (3.32)

and the range measurement model is

y(x1) =
√
d2 + (x1 − h0)2) + vk , (3.33)

where kp = 6.1× 103 m is a constant that relates the air density with the altitude, and g =

9.81 m/s2 is the acceleration due to the gravity.

In the measurement equation, d = 3× 104 m is the horizontal distance from the measuring

device to the vertical line traced by the falling body, and h0 = 3× 104 m is the altitude of the

measuring device from ground level. The initial uncertainties, while large, are based on [73], but

rounded slightly to accommodate SI units. Their values are σx1 = 300, σx2 = 600, and σx3 = 0.33

and the initial guesses for each state were set with a ±1σ error, while R = 300. All quantities

with appropriate units. Although this is not a true random draw it is sufficient to exercise the filter

for an example.

Figure 3.1 shows the results for the standard EKF, along with the square root partial-update

filter. Both filters are using full measurement updates (β =

[
1.0 1.0 1.0

]
) and they begin with

estimates within the 3σ bounds. However, once the body is affected by increased drag forces the

filter makes erroneous updates and the estimates start deviating outside the appropriate bounds.

This inconsistency is the result of relatively large uncertainty on the initial guesses and the non-

linear relationship between position, velocity, and the ballistic parameter. Early updates produce

slightly inaccurate results, specifically in the ballistic parameter and these errors compound during

45

future propagation and update steps, leading to velocity and then position state and covariance in-

consistencies. While this example is from a single run, the results are representative of a typical

run for this scenario. It should also be noted that all three plot insets in Figure 3.1 show both the

3σ and -3σ bounds along with the state error for the last second of the simulation. This is apparent

in the position plot, but difficult to see in the other two states. The figure clearly demonstrates the

inconsistency between the errors present and associated covariance estimates.

If the initial errors from this example were reduced sufficiently for the ballistic parameter,

including tighter initial covariance values, the EKF does provide consistent estimates. This fact

suggests that poor linearizations are to blame for the filter’s poor performance seen in Figure 3.1. It

should also be recalled that the square root implementation provides certain numerical robustness,

but not necessarily uncertainty robustness, however the benefit of the square root implementation

will be addressed later in this section. When the same two filters are used, EKF and square root

EKF, but the partial-update is applied, both filters now show consistent estimates for the same

scenario. Results are displayed in Figure 3.2.

For this example the β vector associated with the partial-update was selected to be βT =[
0.9 0.9 0.75

]T
(or Γ = diag(0.1, 0.1, 0.25)), which means that the position and velocity es-

timates are updated using 90% of the original update, whereas the ballistic parameter is updated

using only a 75%. These update weight values were selected with the intention of limiting the

updates mainly for the ballistic parameter, since it is commonly less observable than the other

states.

Generally, the values for β are selected based on the idea that static or slowly varying states

(with minimal process noise) can receive limited updates, whereas more observable or higher pro-

cess noise states can receive larger update percentages. Additional “tuning” can be utilized to try to

achieve the desired filter performance if the necessary data is available. This being a simulation, the

data is clearly available for tuning, and the ballistic parameter updates are just sufficiently limited

to prevent filter inconsistencies. As shown, the still substantial update of 75% (along with minor

limitations of the other two states) was sufficient to avoid the issues seen in the full update case

46

Figure 3.1: Standard EKF and square root partial-update EKF with full updates. The inset on the
right shows a zoom-in for the last second of the simulation, displaying significant filter inconsis-
tency with estimates well outside of 3σ bounds. Reprinted with permission from [1].

from Figure 3.1. One can also note the additional few updates steps taken before x3 covariance

values appear to collapse when comparing Figure 3.2 and Figure 3.1.

The explicit choice of β values is not particularly finicky, in fact, similar results are obtained

with a weight of β =

[
1.0 1.0 0.1

]
which are shown in Figure 3.3. In observing Figure 3.2 and

Figure 3.3, the reader may note that the estimated covariance of the position and velocity states

are significantly larger through the middle of the run. This is due to the more conservative nature

47

Figure 3.2: Partial-update EKF and square root Partial-Update EKF with β =
[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively to the position, velocity, and ballistic coeffi-
cient states. The inset on the right shows a zoom-in for the last second of the simulation, displaying
filter results with estimates within the 3σ bounds. Reprinted with permission from [1].

of the update weighting. By the end of the simulation, however, the filter is still able to converge

even though the ballistic coefficient estimates only received 10% updates. This example certainly

takes more time to converge, yet, like the first partial update example and unlike the full update

example, it maintains appropriate estimates and covariance values throughout.

Also, it may be noted how the velocity uncertainty in both partial-update cases increase faster

48

Figure 3.3: Partial-update EKF and square root Partial-Update EKF with β =
[
1.0 1.0 0.1

]
resulting in 100%, 100%, and 10% updates respectively to the position, velocity, and ballistic
coefficient states. The inset on the right shows a zoom-in for the last second of the simulation,
displaying filter results with estimates within the 3σ bounds. Reprinted with permission from [1].

than those in Figure 3.1, this is especially notable just after the update at time t = 11s. This

is because the partial updates did not push the ballistic parameter covariance down as tight, thus

allowing uncertainty in velocity and position to grow, permitting the ballistic parameter estimate

to settle on the correct value over a few more updates (without over or undershooting due to the

linearization errors). Effectively the partial-update prevented the filter from “sabotaging" itself

49

early on due to some relatively bad linearizations and avoided the associated repercussions. Finally,

as before, the plots in Figure 3.2 and Figure 3.3 show the mathematical equivalence between square

root and standard versions of the filter for this example.

3.3.2 Camera to Inertial Measurement Unit (IMU) calibration

This example is a multiplicative extended Kalman filter implementation used to calibrate a

camera-Inertial Measurement Unit (IMU) system. This is, the filter is used to estimate the rigid

body transformation between a camera optical frame and an IMU frame considering that both

sensors are fixed to the same rigid platform. For the purposes of demonstrating the functionality

of the square root filter, this section is limited to a minimum description of the multiplicative

filter and it does not give further details on the process and measurement models. However, a

closer examination of the system is presented in Chapter 6, Section 6.1.3. This specific problem is

selected with the purpose of demonstrating the functionality of the square root partial-update filter

when the state involves a larger state vector that includes more nuisance parameters (in this case

the calibration parameters), and vector measurements are to be assimilated.

The filter operation consist of propagating the process model when an IMU measurement is

available, and updating when camera images provide landmark features positions of a pre-known

map. Although presented later in this dissertation, the process and measurement models are in-

cluded in this section to facilitate the present discussion. The continuous process model equations

are comprised of rotational and translational kinematics as follows:

˙̄qIIk (t) =
1

2

−bω(t) ×c ω(t)

−ω(t)T 0

 q̄IIk (t) , (3.34)

ṗW
I = vW

I , (3.35)

v̇W
I(t) = aW

I(t) = (CIIk CIk
W)Ts(t) + gW , (3.36)

ḃg(t) = nwg(t) , (3.37)

50

ḃa(t) = nwa(t) , (3.38)

IṗC = 0 , (3.39)

C
I q̇ = 0 . (3.40)

Such that the state vector is formed as,

x =

[
q̄IW
T pW T

I vW T
I bT

g bT
a pI T

C q̄CI
T

]T
. (3.41)

The notation for the filter state variables is as follows: q̄IW ∈ R4, pW
I ∈ R3 and vW

I ∈ R3 are the

attitude quaternion, position and velocity of the IMU with respect to the world frame,. The IMU

gyroscope and accelerometer biases are denoted as bg ∈ R3 and ba ∈ R3, respectively, and the

IMU-camera calibration is denoted as IpC . The sought calibration is considered to be the position

of the camera with respect to the IMU frame, IpC ∈ R3, and the attitude of the camera frame

with respect to the IMU frame, q̄CI
T ∈ R4. The measurement model for the IMU-camera system

maps the position vectors of detected features into their corresponding pixels via a pinhole camera

model. The position vector of the features is constructed according to

[
hx hy hz

]T
= pC Fi

= CCI
(

CIW (pW
Fi
− pW

I)− pI C

)
, (3.42)

where hx, hy and hz represent the components of the pC Fi
vector (the position vector of the ith

feature coordinatized in the camera frame), and CCI is the passive rotation matrix from the IMU to

the camera frame. The pinhole camera model is given as,

ỹFi
=

ũi
ṽi

 =

fx(hx/hz) + cx

fy(hy/hz) + cy


i

+ vFi
. (3.43)

The term vFi
in the pinhole camera model of Equation (3.43), represents a white noise zero-mean

Gaussian process with covariance matrix RFi
= E[vvT] that corrupts the pixel measurements.

51

The simulations shown in this section used the same parameters as those used in Table 6.1. The

same data is included in Table 3.2 here with the purpose of making this section more self-contained.

Table 3.2: IMU-camera calibration parameters

State/parameter Value
IMU-camera attitude uncertainty 2 deg
Lever arm uncertainty 5 cm
IMU attitude uncertainty 2 deg
IMU position uncertainty 5 cm
Camera frame rate 20 Hz
IMU rate 100 Hz
Camera pixel uncertainty 2 px

Figure 3.4 shows the results for the standard EKF, along with the square root partial-update

filter. The partial update filter uses the following update percentages or weights:

βI
Wq = diag

[
0.95 0.95 0.95

]
, (3.44)

βWpI
= diag

[
0.95 0.95 0.95

]
, (3.45)

βWvI
= diag

[
1 1 1

]
, (3.46)

βbg = diag

[
1 1 1

]
, (3.47)

βba = diag

[
1 1 1

]
, (3.48)

βIpC
= diag

[
0.25 0.25 0.25

]
, (3.49)

52

βC
I q = diag

[
0.25 0.25 0.25

]
. (3.50)

Such that,

β = diag(βI
Wq,βWpI

,βWvI
,βbg ,βba ,βIpC

,βC
I q) . (3.51)

Notice that the quaternion states have only three weights due to the indirect filter’s nature of the

multiplicative formulation. Due to the indirect form, the notation for the state elements should

also change, but it is maintained to facilitate discussion; formally, it should refer to error variables

as discussed in Chapter 2. The β weights sub-index indicate correspondence with each different

state. The block-diagonal matrix β contains all of the partial-update weights for the system. This

is the matrix that will act on the Kalman gain to perform a partial-update as per Equation 2.51. For

the first simulation, both filters (square root and conventional) are using full measurement updates,

and they begin with estimates within the 3 σ bounds, but eventually uncertainties and nonlinear

effects are not well handled by the filter producing inconsistent estimates. Figures 3.5 and 3.6 also

show inconsistencies when full update is used.

On the other hand, as seen in Figures 3.7, 3.8 and 3.9 the partial-update filter performs better

for both factorized and conventional formulation. Although the filter takes more time to converge,

the produced estimates are definitely more consistent than in the full update case.

Monte Carlo simulations were also run for the partial-update filter to show the consistent be-

havior given this scenario, and are shown in Figure 3.10 and Figure 3.11. When comparing the

sampled standard deviations against those produced by the partial-update filter for the lever arm

in Figure 3.10, it can be seen that the partial-update filter is slightly overconfident. However, as

the uncertainties and nonlinearities impact decays, the partial-update filter is able to improve its

consistency. Similarly, for the rotation calibration error, the filter starts slightly overconfident but

it gains consistency quickly. Overall, the Monte Carlo runs show consistency improvement over

the full update filter for all of the states. Conversely, a full update filter was seen inconsistent,

(Monte Carlo runs are not included) always resembling that behavior observed from a single run

53

Figure 3.4: Camera-IMU calibration lever arm estimates when a full update is performed.

experiment shown before.

In general, the partial-update filter was able to improve the behavior of the underlying EKF

(MEKF to be more specific) via a well-selected percentage update. Similarly to the previous

example, the selection of the weights was not finicky for this problem, and a variety of well be-

haved filter were also obtained with different β values. However, the selected weight values were

shown to offer better convergence rate and consistency over other weights. Again, the square root

formulation certainly provides extra numerical robustness to the filter, not uncertainty or errors

robustness.

54

Figure 3.5: Camera-IMU calibration rotation error estimates when a full update is performed.

3.4 Monte Carlo runs

Monte Carlo simulations were ran for both, square root EKF and square root partial-update

EKF. A total of 100 runs were executed and the histories of all of the states were recorded. More-

over, the sampled standard deviation and the standard deviation as computed by the filter, were

also calculated and are used to check for filter consistency. For both filters the initial conditions the

same as for the single run scenario. For convenience, the parameter values used for the simulations

are condensed in Table 3.3.

Figure 3.12 shows the 100 EKF runs histories. The EKF shows that in its majority is able to

55

Figure 3.6: IMU global position when a full update is performed.

prevent total failure of the filter, except for two cases (blue curves) that are divergent. However,

most of the runs show similar behavior as the one showed for the single run: estimates are not

within the proper sigma bounds after around t = 15 seconds and the errors do not converge to

zero. The square root partial-update technique on the other hand (as depicted in Figure 3.13),

shows a dramatic improvement over the EKF. First, the filter presents no runs with divergence.

Second, the error histories show a significant magnitude reduction, and third, a superior capacity

to handle the initial uncertainties by avoiding the overreaction in the update is achieved, showing

that the behavior seen in the single run is in fact, the overall filter behavior.

56

Figure 3.7: Camera-IMU calibration lever arm estimates when a partial-update is performed.

The averaged standard deviation from the Monte Carlo runs and the standard deviation esti-

mated by the filter are depicted in Figure 3.14 and are shown to practically coincide. Since the

mean estimation error is around zero, altogether this indicates that the filter is consistent. Since the

EKF filter presented divergent cases, only error histories are graphed for it.

Overall, it was observed that if low initial errors were ensured, the EKF can be functional and

quickly converge, but is not robust enough to handle errors at the level of the square root partial-

update filter. Conversely, the square root partial-update filter was observed to be consistent, and

able to handle higher nonlinearities and uncertainties better than the conventional square root EKF

57

Figure 3.8: Camera-IMU calibration rotation estimates when a partial-update is performed.

Table 3.3: Re-entering body parameters

State/parameter uncertainty Uncertainty 1σ value
Position 300 m
Velocity 600 m/s
Ballistic parameter 0.33 m−1

Measurement 300 m

or EKF.

58

Figure 3.9: IMU global position when a full update is performed.

3.4.1 Condition number

Lastly, the numerical stability afforded by the square root implementation [43] is briefly dis-

cussed. The chosen example never threatened the numerical integrity of the filter as it was primarily

intended to show the benefit of the partial update, and the benefits of the square root form are well

known. Nevertheless, a brief analysis of the condition number is shown here simply to assure the

reader that the numerical improvements afforded by the square root form were maintained in this

development.

One way to interpret the condition number of a matrix, is to consider it as a measure of how

59

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

x
Standard deviations comparison. Lever arm Ip

C
 error

Averaged std from P

Sampled std

mean

0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

y

0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

0

0.02

0.04

0.06

z

Figure 3.10: Averaged and sampled standard deviation from 500 Monte Carlo runs for the lever
arm components. The mean error across the runs is also plotted. Units are in meters.

close to be singular the matrix is, with the convention that the matrix is singular when the condition

number is infinite. One way to compute the condition number κ of a matrix P is through the matrix

singular values as:

κ(P) = σmax(P)/σmin(P) (3.52)

While the assessment of the condition number is based on heuristics, a condition number is re-

garded to be a very large (and generally bad) condition number when log10(κ) > (available ma-

60

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1
1

Standard deviations comparison. Offset error

Averaged std

Sampled std

mean

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

2

0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

0

0.05

0.1

3

Figure 3.11: Averaged and sampled standard deviation from 500 Monte Carlo runs for rotation
error (IMU to camera rotation). The mean error across the runs is also plotted. Units are in meters.

chine precision) [74] and in general it is desirable to keep P condition number low.

The condition numbers for both partial-update examples (standard and square root) are shown

in Figure 3.15. It is clear that even though both partial-update filters (standard and square root

version) produce accurate estimators, the square root partial-update does provide a significantly

improved (lower) condition number for the uncertainty matrix, as expected. This indicates that

the square root partial-update filter developed in this chapter, maintains the square root filter’s

numerical precision advantage over the traditional filter approach as desired.

61

Figure 3.12: Monte Carlo standard EKF and square root partial-update EKF with full updates.

3.5 Processing a vector-valued measurement

The square root filter can also process vector measurements. Formulations such as those pre-

sented in [68] and [75] are some alternatives. Similarly, the square-root partial-update can process

vector measurements, and its derivation is presented in this section. This formulation of the partial-

update filter may not be adequate for embedded system implementation due to its high computa-

tional complexity, but it can be a useful filter debugging or validation tool. In any case, it is the

user’s decision to select the filter form based on the design requirements, and if a sequential square

root filter is to be used, the engineer also needs to consider the possible extra cost of diagonalizing

the measurement noise covariance matrix.

3.5.1 Square root partial-update for vector-valued measurements

The filter version that can process a vector measurement is a slight modification of the se-

quential version presented in this chapter. However, the complexity of the algorithm increases

dramatically with respect to scalar-valued measurement processing. The extension of the square

62

Figure 3.13: Monte Carlo runs for the partial-Update EKF and square root partial-update EKF
with β =

[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively to the position,

velocity, and ballistic coefficient states.

root partial-update filter presented here is mostly based on the factorization presented in [68]. This

factorization allows one to perform the conventional update via Gram-modified-Schmidt orthogo-

nalization by constructing an augmented matrix. Regarding the partial-update operation, it is still

possible if an extra Cholesky decomposition is performed.

Paralleling the development presented in this chapter for the sequential filter, recall

P++ = Γ(P− − P+)Γ + P+ . (3.53)

Now, from the standard EKF equations (ignoring the time indices for ease of notation), P+ =

(I−KH)P− is used into Equation (3.53).

P++ = P+ + Γ(KHP−)Γ , (3.54)

63

Figure 3.14: Monte Carlo runs for the partial-Update EKF and square root partial-update EKF
with β =

[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively to the position,

velocity, and ballistic coefficient states.

then replacing K = P−HT(HP−HT + R)−1 gives

P++ = P+ + Γ(P−HT(HP−HT + R)−1HP−)Γ . (3.55)

Then, requiring that P− = (S−)(S−)T and P+ = (S+)(S+)T. Additionally it is establish that

R̃ = (HP−HT + R)−1. These actions lead to

P++ = (S+)(S+)T + Γ(S−)(S−)THT
i R̃Hi(S

−)(S−)Γ . (3.56)

To achieve the required factorization to partial-update, Cholesky decomposition is used on R̃ as to

obtain,

R̃ = R̃
1/2

R̃
T/2

. (3.57)

64

0 5 10 15 20 25 30

Time (seconds)

10
0

10
10

10
20

10
30

Uncertainty condition number

Covariance matrix

Square root of covariance matrix

Figure 3.15: Uncertainty condition number for the partial-update EKF and square root partial-
update EKF filter example for β =

[
0.9 0.9 0.75

]
. Reprinted with permission from [1].

Using Equation (3.57), the expression covariance becomes

P++ = (S+)(S+)T + Γ(S−)(S−)THT
i R̃

1/2
R̃
T/2

Hi(S
−)(S−)Γ . (3.58)

Similarly to the scalar measurement case the candidate square-root (and in fact, a valid square root)

is written as, (S++
k)T

0

 = T

 (S+
k)T

R̃
T/2

HT(S−k)TΓ

 . (3.59)

3.5.1.1 Conventional time update with vector-valued measurement processing

As the partial-update concept does not affect the propagation step, the method utilized for

propagation is identical to the presented for the sequential filter. However, the measurement update

(conventional non-partial-update) is modified. In [68] the factorization that allows the conventional

update can be used. Paralleling the procedure for the square root filter for scalar measurements,

65

such factorization is set such that an orthogonal matrix needs to be found, but more importantly,

that the updated square root of the covariance is computed. Similarly, this process is accomplished

via the Modified-Gram-Schmidt. The required factorization for the conventional update is,

R̃
T/2

K(R + H(S−)(S−)THT)T/2

0 (S+)T

 = T̃

 R̃
T/2

0

(S−)THT (S−)T

 . (3.60)

Once the MGS is executed with the intent of finding the orthogonal matrix (n+ r)× (n+ r),

the bottom-right (n×n) block, (S+)T will be generated. With this information in hand, the partial-

update procedure (perform MGS on Equation (3.59)) to process a vector measurement can then be

executed.

Table 3.4 summarizes the square root partial-update for vector measurement processing.

As previously mentioned, at a first glance the algorithm seems simple to implement as once

the MGS and the Cholesky decomposition are available, there should not be any difficulties im-

plementing this version of the square root filter. Nonetheless, the cost incurred makes it non apt

for small computers. The extra computations come mainly from the matrix inversion required to

compute the gain (also required in the conventional Kalman filter formulation), a Cholesky decom-

position to obtain R̃
1/2

every time a measurement is available, an extra MGS (of a (n+m)×(n+m)

matrix) to perform the conventional update, and finally, a second MGS for a (n+m)× n.

3.5.2 Measurement and process noise covariance decorrelation

If the user desires to process vector measurements in a sequential fashion, measurement covari-

ance matrix must be diagonalized, if needed. Decorrelation can be achieved by different methods.

In this section the modified Cholesky decomposition is described, as the factors would be available

already (if the square root filter is implemented). Documentation and more details on this diago-

nalization algorithm is vast and can be found in many linear algebra or filtering books [21], [68],

[72]. The use of the decorrelation concept similarly applies to the measurement noise covariance

matrix.

66

Table 3.4: Square root partial-update Schmidt-Kalman filter. Vector measurement processing.

Model

xk = f k−1(xk−1,uk−1) + wk−1

ỹk = hk(xk) + vk

wk ∼ N (0,Qk)

vk ∼ N (0,Rk)

Initialize

x̂+
0 = x0

S+
0 = chol(P+

0) [69]

Q
1/2
0 = eigendec(Q0) [72]

Γ = diag(1− β1, 1− β2, ..., 1− βn)

Propagation

x̂−k = f k−1(x̂
+
k−1,uk−1)

Perform MGS [16] for(S−k)T

0

 = T

(S+
k−1)

TFT
k−1

Q
T/2
k−1



Gain
Kk = (S−k)(S−k)THT

k R̃

R̃k = (Hk(S
−
k)(S−k)HT

k + Rk)
−1

R̃
1/2

k = chol(R̃k)

Update

x̂+
k = x̂−k + Kk(ỹk − ŷk)R̃

T/2

k Kk(Rk + Hk(S
−
k)(S−k)THT

k)T/2

0 (S+
k)T

 = T̃

 R̃
T/2

k 0

(S−k)THT
k (S−k)T



Partial-Update

x̂++
i = Γx̂−k + (I − Γ)x̂+

k

Perform MGS [16] for(S++
k)T

0

 = T

 (S+
k)T

R̃
T/2

k HT
k (S−k)TΓ



Let the noise measurement covariance be decomposed by Cholesky method into its square root

R =
√

R
√

R
T
, (3.61)

and consider the measurement equation y = Hx + v, being transformed by
√

R
−1

as

z =
√

R
−1

y =
√

R
−1

Hx +
√

R
−1

v . (3.62)

67

The residual is then

e = z − ẑ =
√

R
−1

H(x − x̂) +
√

R
−1

v , (3.63)

with covariance

IE[eeT] = IE[(
√

R
−1

H(x − x̂) +
√

R
−1

v)(
√

R
−1

H(x − x̂) +
√

R
−1

v)T] (3.64)

IE[eeT] =
√

R
−1

HIE[(x − x̂)(x − x̂)]THT
√

R
−T

+
√

R
−1

IE[vv]T
√

R
−T

(3.65)

IE[eeT] =
√

R
−1

HPTHT
√

R
−T

+
√

R
−1

R
√

R
−T

. (3.66)

But since √
R
−1

R
√

R
−T

= I , (3.67)

and naming Hz =
√

R
−1

H, results in

IE[eeT] = HzPHT
z + I . (3.68)

That is, a measurement noise covariance is now available. Thus, in order to properly use the

transformed measurement, in the filter
√

R
−1

H is used instead of H, and instead of directly

computing the residual measurement as (y −Hx) (
√

R
−1

y −
√

R
−1

Hx) is implemented.

3.5.3 Computational complexity

As reported in [3] and [16], within the conventional Kalman filter implementation, sequential

measurement processing is, in general, more efficient than batch measurement assimilation. Table

3.7, following the computation complexity formulas, as reported in [3], shows a comparison on the

number of flops (multiplications and divisions only) needed for batch and sequential measurement

assimilation. In the same table, the computational advantage of sequential processing is shown.

The graph from Figure 3.16 shows the flops advantage of sequential measurement processing ver-

sus batch processing for various values of the number of states and available measurements. From

this figure, it can be seen that it is always advantageous to process measurements sequentially,

68

but more importantly, it shows that sequential processing becomes more advantageous quickly for

filters with a large number of states. The reason for the sequential filter being more efficient is that

many operations are saved mainly because the residual covariance inversion is avoided. Table 3.5

and 3.6 include a breakdown of the number of flops for both sequential and batch processing for

the conventional Kalman filter update step.

Table 3.5: Flops required for batch measurement processing. Flop count considers matrices sym-
metry [3].

Update stage Hm×n and P−n×n Flops (multiply or divide only)
HP− mn2

H(HP−)T + R n(1
2
m2 + 1

2
m)

(HP−HT + R)−1 m3 + 1
2
m2 + 1

2
m

P−HT(HP−HT + R)−1 nm2

P− − P−HT(HP−HT + R)−1HP− (1
2
(n2 − n) + n)m

Total m3 + 3
2
nm2 + 1

2
m2 + nm+ 1

2
m+ 3

2
mn2

Table 3.6: Flops required for sequential measurement processing. Flop count considers matrices
symmetry [3].

Update stage H1×n and P−n×n Flops (multiply or divide only)
HP− n2

H(HP−)T + R n
(HP−HT + R)−1 1
P−HT(HP−HT + R)−1 n
P− − P−HT(HP−HT + R)−1HP− 1

2
(n2 − n) + n

Sum ×m measurements (3
2
n2 + 5

2
n+ 1)m

+ UDU and decorrelation 2
3
m3 +m2 − 5

3
m+ 1

2
m2n− 1

2
mn

Total 2
3
m3 +m2 − 2

3
m+ 1

2
m2n+ 2mn+ 3

2
mn2

In the case of square root filtering, and specifically for the partial-update version, a counting of

flops can also be made. The flops required for the conventional square root Kalman filter formula-

69

Table 3.7: Flop advantage of sequential over batch processing.

Flops advantage Flops (multiply or divide only)

Batch m3 + 3
2
nm2 + 1

2
m2 + nm+ 1

2
m+ 3

2
mn2

Sequential 2
3
m3 +m2 − 2

3
m+ 1

2
m2n+ 2mn+ 3

2
mn2

Sequential advantage over batch 1
2
m3 − 1

2
m2 +m2n−mn+ 7

6
m

tion has been extensively well documented and has been analyzed in several scientific papers and

books [45],[17],[16]. Here, the computation complexity data reported for square root is used, and

the additional operations to perform the partial update operation are included to obtain an estimated

overall cost. Table 3.8 shows the approximated cost (multiplications, divides, and square roots) of

the square root partial-update filter presented in this chapter, along with the conventional square

root filter. Although the use of the partial-update concept requires the extra cost of roughly an

extra MGS, now the filter can handle higher uncertainties and nonlinearities at the same time that

is more robust numerically. Moreover, it provides the ability to consider on a state-by-state basis at

any time and not just a pre-selected set of states, as in the conventional consider filter formulation.

Furthermore, the execution of an additional MGS naturally will lead to the triangularization of the

square root covariance, which otherwise would be non-triangular with the conventional square root

filter. Such a triangularization, in fact, translates into considerable storage savings as the elements

above the diagonal are simply zero (for a lower triangular square root matrix), and there is no need

to reserve memory space for them.

In any case, the square root filter formulation can add a considerable amount of computations

in general. For that reason, alternative ways of factorizing the covariance matrix were developed

for Kalman filtering to increase factorized filter efficiency. The UD or modified Cholesky decom-

position is an alternative, and in fact, a very efficient one within the Kalman filter framework. It is a

more elaborated algorithm, but its efficiency makes the implementation worth it. The next chapter

proposes a UD partial-update filter to increase the efficiency of the partial-update filter presented

in this chapter.

70

Figure 3.16: Rough complexity comparison for sequential and batch measurement processing for
the Kalman filter. UDU decorrelation is considered in the cost to use sequential filtering.

Table 3.8: Conventional and partial-update required flops comparison.

Process Flops (multiply, divide and square root)

Conventional square root Kalman update 3n2 + 4n+
√

+ 1

Incorporation of partial-update extra cost n3 + 3n2 + 3n+ (n+ 1)
√ ≈ 1 MGS

71

3.6 Summary

This chapter presented a square root formulation for the partial-update Schmidt-Kalman filter.

This form of the Kalman filter inherits the benefits of the partial-update formulation and combines

them with the numerical robustness of the square root form. The result is a filter of higher numer-

ical precision and increased tolerance to nonlinearities and uncertainty level at the cost of almost

no additional computational burden. A formulation able to process vector-valued measurements

was also presented, and due to its computational burden, it is just seen as a debugging tool and a

way to facilitate the implementation of the sequential filter as no re-linearization is needed after

measurement assimilation. Lastly, a numerical example, along with Monte Carlo runs, was used

to demonstrate the effectiveness of the square root partial-update Schmidt-Kalman filter on a non-

linear system for both numerical stability and robustness to large uncertainties and nonlinearities.

72

4. U-D PARTIAL-UPDATE KALMAN FILTER

4.1 Introduction

Although the square root formulation was shown to increase the Kalman filter numerical pre-

cision and was successfully used in the Apollo missions, the square root Kalman filter presented

the issue of considerably increasing the computational cost of the conventional Kalman filter, es-

pecially for large systems. Among the alternative proposed techniques to decrease such compu-

tational load, the factorized UD Kalman filter update step, originally developed by Bierman and

Thornton [76], was a significant advance. This alternative formulation improved the numerical

precision of the filter but in a more efficient way than the square root filter. Further, the UD fil-

ter has been shown to be more stable than other factorized Kalman filter implementations, being

able to handle state vectors with thousands of variables. For these reasons, researchers and even

NASA, prefer the UD Kalman filter for hardware implementations [22]. In contrast with the orig-

inal square root filter, the UD filter uses a factorization that involves an upper triangular matrix U

with 1’s on its diagonal, and a diagonal matrix D, such that the covariance matrix is expressed

as P = UDUT. The efficiency of the UD Kalman filter mostly lies in a clever algorithm that

significantly exploits the structure of the U and D matrices [23].

In this chapter, to reduce the computational complexity of the square root partial-update, the

UD factorized version of the partial-update filter is developed.

4.1.1 The UD filter background

Compared with the conventional square root filter formulation, the conventional UD filter does

not require square root operations. For this reason, the UD filter is sometimes called square-root

free filter. Interestingly, the UD factors can be obtained as a corollary of the Cholesky square-

root factors. A closer examination of the Cholesky decomposition of a n × n matrix, reveals

that n square root operations are computed and that those same square-roots appear dividing each

column, motivating a pair of alternative Cholesky factors: the UD factors. To illustrate this and

73

further see how the UD factors can be obtained, consider a 3 × 3 covariance matrix, P, to be

analytically factorized via Cholesky decomposition as

P = SST , (4.1)

with S written as

S =



√
P11 − P2

13

P33
−

(P12−
P13P23

P33
)2

P22−
P2

23
P33

P12−
P13P23

P33√
P22−

P2
23

P33

P13√
P33

0
√

P22 − P2
23

P33

P23√
P33

0 0
√

P33

 , (4.2)

which can itself be factorized as

S =


1

P12− P13P23
P33

P22−
P2

23
P33

P13

P33

0 1 P23

P33

0 0 1





√
P11 − P2

13

P33
−

(P12−
P13P23

P33
)2

P22−
P2

23
P33

0 0

0
√

P22 − P2
23

P33
0

0 0
√

P33

 . (4.3)

By calling the matrix with 1’s in the diagonal U and the matrix containing the square roots as√
D, S is written as

S = U
√

D , (4.4)

and thus, the covariance matrix reads

P = SST = U
√

D
√

DUT = UDUT . (4.5)

As can be observed from this development, although the UD product is equivalent to the

Cholesky factor S, the UD factors do not involve square root operations. Moreover, via this

factorization, the check for singularity or positive definiteness is straightforward as it suffices to

74

revise the sign of the diagonal elements of D (when monitoring for numerical problems that can

be affecting the covariance matrix). Also, it is important to note that the determinant of U is

equal to one, and thus has an inverse, and inversion of an upper/lower triangular matrix with 1’s in

the diagonal, is an upper/lower triangular matrix. This fact will become relevant in the following

sections.

Specific algorithms to obtain the modified Cholesky factorization are available in the filtering

literature [75], [68], [3], or in linear algebra books or matrix operations books [72] [69]. However,

it is recommended to use Kalman filter oriented routines as they are specifically structured to

compute the required filter quantities in an efficient way, as those presented in [22]. Similarly, to

obtain the UD factors given the positive semi-definite and symmetric covariance matrix P.

In the following section, and before the development of the UD partial-update filter is pre-

sented, a superficial overview of the conventional UD filter is given with the purpose of establishing

the appropriate context.

4.2 The conventional UD Kalman filter

Since the partial-update approach modifies the measurement-update step, similar to the previ-

ously proposed methods, the conventional UD filter and the UD partial-update form proposed in

this chapter share the same temporal update. Although several approaches exist in the literature

to execute a time update when using the UD filter, only one form is presented in this work. More

specifically, the time-update used for this work is the same presented in [22] and [68]. The selec-

tion of the time propagation method, however, is just a user’s preference, and it does not affect the

proposed partial-update development.

4.2.1 UD temporal update overview

Consider the conventional discrete covariance propagation equation to obtain the prior covari-

ance (with no time indices for clarity),

P− = FP+FT + GQGT , (4.6)

75

with G being the (n × q) matrix mapping process noise to the state. A direct attempt to obtain a

factorization that involves three factors, to start forming P− = UDUT (sub-bar indicates a prior

quantity), leads to the candidate form of

P− =

[
F

+

U G

] +

D 0

0 Q


 +

U
T

FT

GT

 = WD̂WT , (4.7)

where the plus sign above variables is to indicate a posterior quantity. The matrix D̂ defined above,

is diagonal, but is an (n+ q)× (n+ q) matrix . Further, W =

[
F

+

U G

]
is a n× (n+ q) matrix

and is not upper triangular in general, however, some work can be done to triangularize it. With

this in mind, it is sought to satisfy

P− = UDUT = WD̂WT , (4.8)

in a way that the factors U and D can be computed with proper dimensions given W and D̂ .

In other words, although at this point a direct matrix-by-matrix relationship (i.e. U 6= W nor

D 6= D̂) cannot be established, it is desired. To accomplish this, first consider the weighted inner

product

vkD̂vT
j = 0 k 6= j , (4.9)

where the (n+q) vi row vectors can be found via the Weighted Modified Gram-Schmidt (WMGS)

orthogonalization procedure (that uses the (n+ q) row vectors, wi , of the matrix W):

vn = wn , (4.10)

vk = wk −
n∑

j=k+1

u(k, j)vj k = n− 1, . . . , 1 , (4.11)

u(k, j) =
wkD̂vT

j

vjD̂vj

j, k = 1, . . . , n . (4.12)

76

Alternatively,

wk = vk +
n∑

j=k+1

u(k, j)vj k = 1, . . . , n , (4.13)

or

wT
k = vT

k +
n∑

j=k+1

u(k, j)vT
j k = 1, . . . , n , (4.14)

which can be expressed in matrix form as


w1

...

wn

 =



1 u(1, 2) . . . u(1, n)

0 1
.

... u(n− 1, n)

0 1




v1

...

vn

 , (4.15)

or

W = UV . (4.16)

With this expression in hand, Equation (4.8) can now be written as

P− = UDUT = WD̂WT = (UV)D̂(UV)T = U[VD̂VT]UT . (4.17)

Since the product VD̂VT is constructed according to Equation (4.9), the bracketed term in the

previous equation is diagonal. Thus, the propagated factors are given by,

U = U , (4.18)

and

D = VD̂VT . (4.19)

In summary, once W and D̂ are formed, the execution of the WMGS will provide the prop-

agated factors, U and D. Regarding the state propagation, this is executed normally via system

dynamics.

77

4.3 The UD partial-update derivation

To begin with the derivation of the UD partial-update filter, recall the matrix form of partial-

update,

P++ = Γ(P− − P+)Γ + P+ , (4.20)

where again, Γ is the diagonal matrix with elements γi for i = 1, 2 . . . n (recall that γi = 1 − βi).

Now, from the standard EKF equations, P+ = (I−KH)P− is incorporated into (4.20).

P++ = P+ + Γ(KHP−)Γ , (4.21)

then replacing K = P−HT(HP−HT + R)−1 gives

P++ = P+ + Γ(P−HT(HP−HT + R)−1HP−)Γ . (4.22)

Next, the posterior covariance P+ is written in terms of the prior covariance by using

P+ = (I−KH)P− (4.23)

= P− − P−HT(HP−HT + R)−1HP− , (4.24)

and incorporating it into Equation (4.22) gives

P++ = P− − P−HT(HP−HT + R)−1HP− + ΓP−HT(HP−HT + R)−1HP−Γ . (4.25)

At this point, a few variables are renamed and expressions rearrangements are done. First, the UD

decomposition is indicated for the covariance matrix.

P++ = UDUT −UDUTHT
i (HiUDUTHT

i + Ri)
−1HiUDUT+ (4.26)

ΓUDUTHT
i (HiUDUTHT

i + Ri)
−1HiUDUTΓ .

78

Second, the variables w = UTHT
i and Ai = (HiUDUTHT

i + Ri)
−1 are introduced, and used in

the previous equation. This results in,

P++ = UDUT −UDwAiw
TDUT + ΓUDwAiw

TDUTΓ , (4.27)

and by factorizing U and UT , the following expression is obtained

P++ = U[D− (Dw)Ai(Dw)T]UT + ΓU[(Dw)Ai(Dw)T]UTΓ (4.28)

= U{[D− (Dw)Ai(Dw)T] + U−1ΓU[(Dw)Ai(Dw)T]UTΓU−T}UT . (4.29)

Now because the curly-bracketed term is positive semi-definite, its UD decomposition can be

computed resulting in a decomposition formed by UDUT . The obtained factors, UDUT, are then

used in Equation (4.28) and the result reads

P++ = U{UDUT}UT . (4.30)

The partial-updated (posterior) covariance matrix can also be expressed in terms of UD factors

as

P++ =
++

U
++

D
++

U
T

= U{UDUT}UT, (4.31)

and since the product of two upper triangular matrix with 1’s in the diagonal is also an upper

triangular matrix with 1’s in the diagonal, the partial-updated factors can be directly identified as

++

U = UU , (4.32)

and
++

D = D , (4.33)

which gives the expressions to execute the partial-update.

79

Before moving to the numerical examples that show the functionality of this formulation, a

few remarks are given. First, notice that if Γ is zero (full-update), this formulation becomes the

conventional UD filter. Second, although it seems that a considerable amount of operations are

needed to compute the second term in Equation (4.28) (the term involving Γ) by taking advantage

of the matrix structure (upper triangular and diagonals) the extra burden is barely a fraction of a

multiplication of two (n× n) matrices. Third, it is also important to mention that even though this

extra (curly bracketed) term needs to be formed and involved in the UD decomposition, the size of

the matrix that enters the UD decomposition is of the same size as for the conventional filter; and

thus no extra computation is incurred here with respect to the conventional UD filter. Finally, note

that in the derivation, there is no assumption on the form of Ai (thus the capital letter notation),

allowing that the same formulation can be used to process either vector or scalar measurements.

However, the UD factorized filter is generally used in scalar measurement mode as it is more

efficient than processing the measurements as a vector. In case of having measurement correlations

(R not a diagonal matrix), similarly to the square root filter, a decorrelation procedure can be

executed. The procedure that decorrelates R via the already computed UD factors is presented in

the following subsection.

Table 4.1 summarizes the UD partial-update Schmidt-Kalman filter equations.

4.4 Measurement decorrelation using UD factors

Let the UD decomposition of a non-diagonal measurement noise covariance, Rc, be

Rc = URDRUT
R , (4.34)

and consider the measurement equation y = Hx + v, being transformed by U−1R as

z = U−1R y = U−1R Hx + U−1R v . (4.35)

80

Table 4.1: U-D partial-update Schmidt-Kalman filter

Model

xk = f k−1(xk−1,uk−1) + wk−1

ỹk = hk(xk) + vk

wk ∼ N (0,Qk)

vk ∼ N (0,Rk)

Initialize

x̂+
0 = x0

[
+

U0,
+

D0] = udu(P+
0) [3]

Γ = diag(1− β1, 1− β2, ..., 1− βn)

Propagation

x̂−k = f k−1(x̂
+
k−1,uk−1)

Form

W =
[
F

+

U I

]
; D̂ =

 +

D 0

0 Q


[U,D] = WMGS(W, D̂) [68]

Gain
Kk = UDwAi

Ai = (wTDw + Rk)
−1; w = UTHT

Partial-Update

x̂+
k = x̂−k + (I − Γ)Kk(ỹk − ŷk)

L = (Dw)Ai(Dw)T

UDUT = udu(D− L + U−1ΓULUTΓU−T)
++

U = UU
++

D = D

The residual is then

e = z − ẑ = U−1R H(x − x̂) + U−1R v , (4.36)

with covariance

IE[eeT] = IE[(U−1R H(x − x̂) + U−1R v)(U−1R H(x − x̂) + U−1R v)T] , (4.37)

IE[eeT] = U−1R HIE[(x − x̂)(x − x̂)]THTU−TR + U−1R IE[vv]TU−TR , (4.38)

IE[eeT] = U−1R HPTHTU−TR + U−1R RcU
−T
R . (4.39)

81

But since

U−1R RcU
−T
R = DR , (4.40)

and naming Hz = U−1R H, results in

IE[eeT] = HzPHT
z + DR . (4.41)

That is, the transformed equation now uses a diagonal measurement noise covariance. In order to

properly use the transformed measurement, the filter simply uses U−1R H instead of H, and instead

of directly computing the residual measurement with (y − Hx), U−1R (y − Hx) is used. Rather

than using the correlated measurement noise Rc, the filter now uses DR and if desired, the filter

measurement can be processed sequentially.

4.5 Numerical example

The UD partial-update filter is exercised using the re-entering body scenario that was used for

the square-root version of the filter. The process and measurement model, as well as the initial con-

ditions, remain the same for these simulations. The partial-update weights, β, were also unaltered.

Since the UD partial-update and the square-root partial-update filter are mathematically equivalent,

the main objective of this numerical simulations is to show that the numerical properties that were

gained with the square root factorization, remained for the UD version; with the only difference

being the UD filter version more computationally efficient.

4.5.1 Body re-entering Earth atmosphere single run

Similar to the description of the results from the square root partial-update filter, three main

simulations are presented. First, in Figure 4.1, the conventional EKF, along with the UD partial-

update filter estimates, are depicted for a single run. For this simulation, the partial-update weights

are all set to 1 (conventional full update). The estimates for both filters, as expected, show diver-

gence as the EKF cannot handle the simulation’s large initial uncertainties. The UD formulation is

equivalent to the EKF, and the estimates are not different.

82

In Figure 4.2, the results of applying a partial-update with β = diag [0.9, 0.96, 0.75], are

shown. Again, these update weight values were selected to limit the updates mainly for the ballistic

parameter, since it is commonly less observable than the other states. In this scenario, the filters

are seen to be able to handle the given initial conditions. As in the square root filter, the UD

formulation now incorporates the partial-update benefits. In the intent to show that the square root

and the UD partial-update formulations are mathematically equivalent, they are graphed in Figure

4.3 and shown to produce the same state and covariance estimates. Although these results are from

a single run, they are representative of a typical run for this scenario. For this filter, the condition

number plot is omitted as it is equivalent and conveys the same information than for the graph

presented in the square root partial-update chapter: the UD factors have lower condition number

than the full covariance matrix.

4.6 Monte Carlo runs

Monte Carlo simulations were run for both, UD EKF and UD partial-update EKF. A total of

100 runs were executed, and the histories of all of the states were recorded. The sampled standard

deviation and the standard deviation, as computed by the filter were also calculated and used to

check for filter consistency. For both filters, the initial conditions are maintained the same from

the single run re-entering body scenario from the previous chapter. For convenience, the parameter

values used for the simulations are condensed in Table 4.2.

Figure 4.4 shows the 100 EKF runs histories. The EKF shows that, in its majority, it can prevent

the filter’s total failure, except for two cases (blue curves) that are completely divergent. However,

most of the runs show similar behavior as the one shown for the single run: the error estimates are

not within the proper sigma bounds after around t = 15 seconds, and the errors do not converge

to zero. The UD partial-update technique, on the other hand (as depicted in Figure 4.5), and as

expected from the results in the previous chapter, shows a dramatic improvement over the EKF.

First, for the same sampled initial conditions, the filter presents no runs with divergence. Second,

the error histories show a significant magnitude reduction, and third, a superior capacity to handle

the initial uncertainties by avoiding the overreaction in the update is achieved.

83

Figure 4.1: Standard EKF and UD partial-update EKF with full updates. The inset on the right
shows a zoom-in for the last second of the simulation, displaying significant filter inconsistency
with estimates well outside of 3σ bounds.

The averaged standard deviation from the Monte Carlo runs, and the standard deviation esti-

mated by the filter are depicted in Figure 4.6, and are shown to practically coincide, and since the

mean estimation error is around zero, this indicates that the filter is consistent. Since the EKF filter

presented divergent cases, only standard deviations and mean error were plotted for the partial-

update filter (EKF is inconsistent for this scenario).

Overall, it was observed that if low initial errors were ensured, the EKF can be functional and

quickly converge to zero error, but is not robust enough to handle errors at the level of the partial-

84

Figure 4.2: Standard EKF and UD partial-update EKF with partial updates. The inset on the right
shows a zoom-in for the last second of the simulation, displaying significant filter inconsistency
with estimates well outside of 3σ bounds.

Table 4.2: Re-entering body parameters

State/parameter uncertainty Uncertainty 1σ value
Position 300 m
Velocity 600 m/s
Ballistic parameter 0.33 m−1

Measurement 300 m

85

Figure 4.3: partial-update EKF and UD partial-update EKF with β =
[
0.9 0.9 0.75

]
resulting in

90%, 90%, and 75% updates respectively to the position, velocity, and ballistic coefficient states.
The inset on the right shows a zoom-in for the last second of the simulation, displaying filter results
with estimates within the 3σ bounds.

update UD filter. Conversely, the UD partial-update filter was observed to be consistent, and able

to handle higher nonlinearities and uncertainties better than the UD EKF or EKF. Again, the UD

partial-update filter results, as expected, match those from the square root partial-update filter,

since the change in factorization does not provide any additional robustness against uncertainties,

and it is just a mechanism to gain computational efficiency.

86

Figure 4.4: Monte Carlo standard EKF and UD partial-update EKF with full updates.

4.7 Numerical complexity

The UD formulation’s main objective is to provide an alternative filter in which the compu-

tational burden is lower than for the square root formulation, but retains the numerical properties

of a factorized filter. The conventional UD filter is more efficient than the conventional square

root formulation, and for the case of the partial-update formulations, this is also the case. Table

4.3 includes the approximated computational complexity of the square root and UD partial-update

formulations. The costs of executing a conventional UD filter and its partial-update version, are

shown in Table 4.4. The required extra effort to perform the partial update is also included in this

table.

Table 4.3 shows that the UD partial-update formulation is more efficient than the square root

formulation, requiring roughly 0.5n3 fewer operations. This computational savings, along with

the numerical stability, make the UD formulation generally preferred over factorized formulation

alternatives. Regarding the comparison between the conventional UD filter and its partial-update

87

Figure 4.5: Monte Carlo runs for the partial-Update EKF and UD partial-update EKF with β =[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively to the position, velocity,

and ballistic coefficient states.

Table 4.3: Square root and UD partial-update required flops for propagation and update steps
combined.

Filter Flops (multiply, divide and square root)

Square root partial-update 2.5n3 + (q + 7.5)n2 + (2
√

+ 6)n+ 2
√

+ 1

UD partial-update 2n3 + (q + 4)n2 + (q + 1)n+ 2

formulation, the flop count (multiplication and division) shows that the partial-update version of

the filter requires some extra effort which is roughly equivalent to the product of a full (n × n)

matrix times a (n× n) triangular matrix. Although it may not be significant for small to medium-

size systems, it may be considerable for large systems. However, that is the price of incorporating

the partial-update benefits and gaining robustness against system nonlinearity and uncertainty.

88

Figure 4.6: Monte Carlo runs for the partial-Update EKF and UD partial-update EKF with β =[
0.9 0.9 0.75

]
resulting in 90%, 90%, and 75% updates respectively to the position, velocity,

and ballistic coefficient states.

Table 4.4: Conventional UD and UD partial-update required flops for one scalar measurement
update.

Process Flops (multiply, divide and square root)

Conventional UD Kalman update 1.5n2 + 1.5n
UD partial-update Kalman update 0.5n3 + 3.5n2 + n+ 2
UD partial-update extra cost 0.5n3 + 2n2 − 0.5n+ 2

4.7.1 IMU-camera example

The IMU-camera calibration problem introduced in the previous chapter was also implemented

in UD form. The simulations, as for the re-entry body problem, since they were performed for

exactly the same scenario as before, show complete agreement with the square root partial-update

89

filter, as expected. The plots for these runs (UD partial-update filter and conventional EKF) are not

shown as they match the behavior previously presented.

4.7.2 Summary

The UD partial-update filter was shown to be more efficient than the square root formulation

while retaining the numerical robustness properties (since it does not directly operate on the covari-

ance matrix). Similar to the conventional UD filter, the partial-update version heavily relies on the

structure of the involved matrices to lower the number of operations to execute a measurement up-

date. However, alternative algorithms may provide even better efficiency for the UD partial-update

filter. In terms of consistency and general behavior, since the UD filter is not different from the

square root formulation, no changes were expected; the Monte Carlo and single runs corroborated

this.

It is important to note that although the UD and Potter formulations are not the only factorized

formulations for the Kalman filter, they are taken as the base of the developments presented in

this research because they have been successfully and widely applied. Furthermore, since these

formulations are among the most fundamental factorized filters, virtually any available extensions

that have been applied to square root or UD filters can be incorporated into this work. Although the

Carlson algorithm [77] may be very similar in performance to the UD filter and could have been

selected as a means to increase efficiency, the UD filter was preferred as it avoids the computation

of square roots and is widely used.

Finally, although the square root filter may not be as attractive as the UD formulation for im-

plementation, it is not all in vain since, in any case, the square root filter can provide a way to

corroborate UD filter estimates (alternative factorized filter). Even though the UD formulation

can seem complicated at first glance, it only requires the extra coding of the Weighted-Modified

Gram-Schmidt routine and the UD decomposition. Once these algorithms are available, the imple-

mentation is straightforward, as seen in Table 4.1. If the filtering engineer is dealing with correlated

measurements and the desire is to process measurements sequentially, the UD based decorrelation

algorithm can be executed (the corresponding cost needs to be considered in the total computa-

90

tional complexity of the filter). If the computation complexity is not a concern for any reason, the

UD partial-update formulation presented in this chapter can also directly use vector measurements.

91

5. DYNAMIC PARTIAL-UPDATE KALMAN FILTER

5.1 Motivation

The partial-update formulation has been shown to improve the robustness and overall perfor-

mance of the underlying filter. To achieve favorable results when using the partial-update method,

however, appropriate selection of the update percentages, β, is needed. Even though the partial-

update weights can be selected in a number of different manners, the β′s selection could be put

into two possibilities: Static partial-update weight and dynamic partial-update weight selection.

The numerical examples from the previous chapters, clearly, are cases with static β′s.

For a static weight selection, whereas it may not be difficult to adjust the β values to obtain a

converging filter in general, it certainly requires some experimentation with the system in question.

Overall, when selecting the β values, it is sought to balance the negative impact of certain states

by limiting update corrections while using most of the available information, and simultaneously,

allowing enough state update to compensate for process noise (if present). An informal technique

that has been useful for static weight selection has been based on state dynamics speed, assigning

small weights to slowly changing states and larger weights to faster states. In conjunction with this

idea, the weights may also be based on how “close” to an observation certain states are situated:

Directly measured states are almost or fully updated whereas states updated through a long chain

of cross-correlation terms are not updated or slightly updated. Nevertheless, even with these ad-

hoc rules, the question of how much to slightly or partially update mean, remains. And while

static β weights can suffice, filter estimates can certainly be further improved with online selected

β weights, as shown with the proposed techniques in this chapter.

5.2 Dynamic partial-update weights

The idea for dynamic weight selection is to provide the partial-update filter (but in general, a

Kalman filter) with information that can be used to decide, in a commensurate way, how much of

the nominal update should be used. Specifically, the proposed methods use a system’s nonlinearity

92

metric to inform the filter on what weights values can be appropriate at a specific update step,

such that it can take full advantage of the incoming measurement when possible but be “a careful

updater” when required. Following this paradigm, two methods are presented next. Overall, both

methods were shown to be of higher capacities than the static partial-update when handling high

nonlinearities and uncertainties.

5.3 Nonlinearity-aware based method

For vast low-uncertainty applications, the tolerance of the EKF against slight mismodelling

can be enough to prevent the estimator from failing. However, since the conventional EKF retains

only the first-order term of the Taylor series expansion of the models in its formulation, if higher-

order effects have a significant influence to produce an important mismatch between first order and

system models, filter divergence can be originated. After all, the greater the model’s mismatch, the

more sub-optimal the filter becomes (propagation and update correction would be carried out for

a more distinct system). Based on this fact, the idea of trusting (using) the computed update more

when the modeling mismatch is small, and trusting the update less for a significant mismatch, is

proposed as a selection method of the partial-update percentages. More specifically, the proposed

method uses the ratio of second-order to first-order terms of the Kalman update step equations

to inform about how reliable the EKF equations can be at a given time step so that the filter can

decide if it is "safe" to fully update, or partially update, or just consider states. Stated differently,

in the case of insignificant, high, and very high second-order effects, the filter performs a full,

partial, or a consider update, respectively. The next subsection provides the mathematical details

on this nonlinearity-based β selection method, refereed from now on, as Dynamic nonlinearity-

aware partial-update or DNL for short.

5.3.1 Nonlinearity-aware partial-update

To begin, following the same notation for the Kalman filter framework recall the equations

for the discrete second-order Kalman filter (EKF2) presented here without derivation [68]. The

dynamics and uncertainty propagation equations are

93

x̂−k = f(x̂−k−1,uk−1, k − 1) +
1

2

n∑
i=1

φi Tr

[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
, (5.1)

P−k = Fk−1P
+
k−1F

T
k−1 + Gk−1Qk−1G

T
k−1 . (5.2)

The measurement update equations are

x̂+
k = x̂−k + Kk

[
ỹk − h(x̂−k k)

]
− π , (5.3)

π =
1

2
Kk

m∑
i=1

φi Tr

[
Dk,iP

−
k

]
, (5.4)

Dk,i , =
∂2hi(xk, k)

∂x2

∣∣∣
x̂−
k

, (5.5)

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 , (5.6)

P+
k = (I−KkHk)P

−
k . (5.7)

Here, the process and measurement model Jacobian are defined as before, and φi is the single entry

vector (with 1 at the ith element) given by,

φT
i =

[
0 0 . . . 0 . . . 1 . . . 0

]T
. (5.8)

Next, consider the measurement update from Equation (5.3) and the vector π expressed together

as

x̂+
k = x̂−k + Kk

[
ỹk − h(x̂−k , k)

]
− 1

2
Kk

m∑
i=1

φi Tr

[
Dk,iP

−
k

]
. (5.9)

94

Further, let the prior state, x̂−k , as defined in Equation (5.1) be substituted into the previous equation

to form

x̂+
k = f(x̂−k−1,uk−1, k − 1) +

1

2

n∑
i=1

φi Tr

[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
+ Kk

[
ỹk − h(x̂−k , k)

]
(5.10)

− 1

2
Kk

m∑
i=1

φi Tr

[
Dk,iP

−
k

]
.

By reorganizing the terms the posterior estimate can be written as,

x̂+
k = f(x̂−k−1,uk−1, k − 1) + Kk

[
ỹk − h(x̂−k , k)

]
+Y , (5.11)

where

Y =
1

2

{
n∑
i=1

φi Tr

[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
−Kk

m∑
i=1

φi Tr

[
Dk,iP

−
k

]}
. (5.12)

Recalling the partial-update expression for the states,

x̂+
k = x̂−k + (I − Γ)Kk(ỹk − ŷk) , (5.13)

and expressing it in terms of the function dynamics, measurement function (for the same assumed

system in the EKF2) and expanding it, leads to

x̂+
k = x̂−k + (I − Γ)Kk(ỹk − ŷk) (5.14)

= x̂−k + Kk(ỹk − ŷk)− ΓKk(ỹk − ŷk) (5.15)

= f(x̂−k−1,uk−1, k − 1) + Kk(ỹk − ŷk)− ΓKk(ỹk − ŷk) (5.16)

= f(x̂−k−1,uk−1, k − 1) + Kk

[
ỹk − h(x̂−k , k)

]
− ΓKk

[
ỹk − h(x̂−k , k)

]
. (5.17)

95

Interestingly, a direct term-by-term comparison of the partial-update expression from Equation

(5.17) and Equation (5.11), reveals that the term with the partial-update weights,

− ΓZ := −ΓKk

[
ỹk − h(x̂−k , k)

]
, (5.18)

can be directly related to second-order terms of the EKF2. That is,

−ΓKk

[
ỹk − h(x̂−k , k)

]
∝ 1

2

{
n∑
i=1

φi Tr

[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
−Kk

m∑
i=1

φi Tr

[
Dk,iP

−
k

]}
, (5.19)

or

− ΓKk

[
ỹk − h(x̂−k , k)

]
∝ Y . (5.20)

Further, Equation (5.20) follows the previously discussed idea of selecting γi ∈ [0, 1] values ac-

cording to the second-order terms influence, since it suggests that:

• Γ should be set with high values if the second-order effects, Y , are large.

• If Y is small, Γ is to be set with small values.

Noticing that both left and right term of expression (5.19) are n×1 vectors, individual relationships

between second-order terms and the jth partial-update weights can be established as,

Γjj ∝

1
2

{∑n
i=1 φi Tr

[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
−Kk

∑m
i=1 φi Tr

[
Dk,iP

−
k

]}
j

−Kk

[
ỹk − h(x̂−k , k)

]
j

, (5.21)

or alternatively,

Γjj ∝
Yj

Zj

. (5.22)

To the end of keeping the γ values within the appropriate bounds, the ratio Yj

Zj
is saturated to a

maximum value of 1. In theory, Zj can be equal to zero when the measurement is equal to the

expected measurement value, or when the ith state is known with no uncertainty. But in any case,

96

Γ will take its maximum value of 1. Since only the magnitude of second-order terms is considered,

absolute values are taken and an scale factor fr is introduced. This gives rise to the equation

Γjj = fr
|Yj|
|Zj|

, (5.23)

which in terms of β reads

βjj = 1− |Yj|
|Zj|

. (5.24)

From the expressions found through the construction of this nonlinearity-aware method, it

is important to highlight the following. First, no assumption on the organization of the states

within the filter has been made during the derivation of Equation (5.23) such that there is no

partition to separate considered states from core states. Thus, Equation (5.23) indicates that the

partial-update technique could be interpreted as a technique that, to some degree, compensates

for second-order effects. Further, the partial-update technique, when using this nonlinearity-aware

method for weights selection, can be seen, at least in part, mimicking second-order effects via the

term ΓKk

[
ỹk − h(x̂−k , k)

]
to improve filter behavior. Second, since the motivation behind this

weight selection approach is to use the degree of local nonlinearity as an indication of the valid-

ity of the linearization, the signs of the quantities are ignored, and the metric is based solely on

nonlinear effects magnitudes. Finally, the scale factor f r,j is a design variable and is used to make

the nonlinearity metric adjustable to the problem in question. As per experiments done with this

β selection method, an adaptive scale factor fr,i (for the ith partially updated state) that involves

the measurement residual and the state uncertainty state covariance was found to be convenient.

Specifically, the ratio of the measurement residual covariance trace to the measurement noise co-

variance trace was used. Mathematically,

fr,i =
σk,i
σo,i

Tr(HkPkH
T
k + Rk)

Tr(Rk)
. (5.25)

The reason for including the ratio of the traces is to weight the second-order terms-effect commen-

97

surate to model mismatch. Moreover, the current standard deviation (which appears normalized by

the initial value) is included to increase the impact of residual errors when the system uncertainty

is high. Additionally, the ratio of the traces varies from infinity (depending on the uncertainty

value) to 1, which provides an adequate scale for the filter steady state. In the case of the residual

covariance being large, it will make the filter lower the magnitude of the corresponding update.

Although the computation of second-order terms is required to implement this method, they are

only used to approximate a nonlinearity measure to assist with weight selection. In a worst-case

scenario, an incorrect second-order term can lead to the temporary use of a conventional EKF or

a Schmidt filter, which is not critical if linearization errors are within the bounds of what the filter

could support for the next time updates. However, this is system dependent, and safety measures

may be needed to prevent filter failure. For systems with constant or slowly varying parameters,

for example, although conservative, the use of a Schmidt or partial-update could be safer than a

full update, but again, this is system dependent.

In the next sections numerical simulations that exercise the nonlinearity-aware partial-update

method (DNL) are presented.

5.3.2 Numerical example

Again, consider the now familiar falling body that is re-entering Earth. As before, the motion

is considered to be constrained to a vertical line, and the filter is used to estimate the body altitude,

velocity, and the body’s ballistic parameter. If the filter parameters are maintained exactly the same

as in previous sections, a typical run is as the one from Figure 5.1. The β partial-update weight

history is presented in Figure 5.2. From the states plot for the single run, it can be observed that the

dynamic partial-update performs at the level of the static partial-update; however, the DNL method

covariance is tighter. The reason for the lower covariance is that overall, the DNL method used

more of the nominal update than the static partial-update set with β =

[
0.9 0.9 0.75

]
. The DNL

method, however, does not require experimentation for tuning or selecting initial β. Effectively,

the DNL method attempts to make use of most of the information while using state and residual

covariances to scale the update percentage commensurate to second-order terms effects.

98

In Figure 5.2, it is important to note that the filter weight adaptation is capturing two key in-

stants and changing β as to maintain consistent estimates. Firstly, at time t = 1s, when the first

measurement is assimilated, the filter acts with a considered step since large state uncertainty is

present, and the measurement residual is large. Secondly, at time t = 11s after the filter regains in-

formation (after losing observability due to range sensor and body alignment), the filter reduces the

update since model mismatch, state uncertainty, and measurement residual increase. Nevertheless,

the β history allowed estimates to remain within the appropriate bounds and let the filter converge.

Although the static partial-update approach achieves comparable results to the dynamic method, a

considerable amount of tuning and experimentation was required, whereas the DNL method is run

without a trial and error process needed. Also, recall that the conventional EKF is divergent for the

run shown in Figure 5.1; the plots are not included.

Figure 5.1: Dynamic nonlinearity-aware method (DNL) without previous tuning, static partial-
update with β =

[
0.9 0.9 0.75

]
and conventional EKF single run for body re-entry problem.

Initial error within 1σ.

99

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

Figure 5.2: Dynamic nonlinearity-aware method (DNL) without previous tuning, static partial-
update with β =

[
0.9 0.9 0.75

]
and conventional EKF single run for body re-entry problem.

Initial error within 1σ.

The results for a second run that is initialized with larger state errors are depicted in Figure 5.3.

For this scenario, the filters are also observed to provide consistent estimates for both static and

dynamic partial-update filters. The corresponding β history is shown in Figure 5.4. This profile,

compared to the β history of Figure 5.2 is seen to undergo more aggressive changes due to the

higher initial errors. Nonetheless, the filter can handle such a scenario and maintain the estimates

within the 3σ bounds.

The DNL method for β selection, however, as any other filter has its limits, and it cannot

provide infinite immunity to initial errors if no additional information is provided to the filter (see

subsection 5.3.3). For the re-entry body problem, under the simulation parameters selected, the

DNL method has been found to support initial errors up to the equivalent of 2 σ. However, the

maximum error amount that can be supported is a function of system configuration, including

initial uncertainties, initial conditions, measurement frequency, and models nonlinearities. Figure

5.5 shows the results of 100 runs for this problem for errors lower than 2 σ for position and

velocity and for up to 3 σ for the ballistic parameter. Figure 5.6 displays the comparison between

the estimated and sampled standard deviation. The purpose of this runs is to show that the DNL

100

Figure 5.3: Dynamic nonlinearity-aware method (DNL) without previous tuning, static partial-
update with β =

[
0.9 0.9 0.75

]
and conventional EKF single run for body re-entry problem.

Initial error within 2σ.

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

Figure 5.4: Dynamic nonlinearity-aware method (DNL) without previous tuning, static partial-
update with β =

[
0.9 0.9 0.75

]
and conventional EKF single run for body re-entry problem.

Initial error within 2σ.

101

method performs well under the given initial uncertainties, not just for a single run. From Figure

5.5, it can be observed that the DNL method is slightly overconfident, which can be due to the filter

updates overreaction due to nonlinearities being involved causing the uncertainty to be slightly

tighter than it needs to be. Nonetheless, its superior consistency over the EKF is clear since no

divergent cases are seen.

Figure 5.5: Monte Carlo runs state histories for the DNL partial-update.

5.3.3 Pre-tuned partial-update weights as a baseline for DNL method

Although, advantageously, the DNL method can provide an operational filter for cases where

no prior information on functional β percentages are available (especially for large systems), the

DNL method is also able to accommodate known β values. To incorporate known β values, one

shifts the nominal update baseline of the DNL method to be the β values, rather than a full update

(or β = 1). This hybrid method, although effective, it requires tuning and it is over-conservative.

In general, dynamic methods alone are recommended and sufficient. The discussion on this hybrid

method is presented for the sake of completeness.

To exercise this concept, the same re-entry body problem is employed and the β value from

102

Figure 5.6: Averaged and sampled standard deviation from 100 Monte Carlo runs for the DNL
partial-update. The mean error is also shown. Full update is used as nominal value.

the original example (1 σ initial error and same filter parameters) is taken as the weight baseline

(β =

[
0.9 0.9 0.75

]
). Recall that the dynamic weight selection is only performed for the

ballistic parameter. Figure 5.8, illustrates the filter estimates that employs the DNL method with

tuned betas and the PU method. From such plots, it is apparent that the DNL has not done much

to improve the system behavior, yet it has practically accomplished the same results as the static

partial-update but with higher uncertainty. The increase of uncertainty is due to, on average, lower

updates as observed from the β percentage profile depicted in Figure 5.9. Nonetheless, this run

intends to demonstrate the functionality of the dynamic nonlinearity-aware filter using previously

selected (tuned) weights βs. As a reference only, the conventional Kalman filter was run and

plotted in Figure 5.7 along with the partial-update methods with the only objective of recalling that

it is an inconsistent filter already when the initial condition errors of 1 σ. It is important to note

from Figure 5.9, that the β profile has overall changed with respect to the single DNL approach,

but more importantly, a decrease in its fluctuation is observed. This is reasonable considering that

a partial-update is applied throughout the run. This filter, in contrast with the “pure” DNL filter,

leaves most of the work to the pre-tuned weight, mostly being nonreactive at the beginning of

the run and after the recovery of measurement information after time t = 11s. In other words,

103

whereas the DNL method with baseline one seems to start acting early on to handle the initial

drag perturbations to maintain consistent estimates, the policy of the DNL base-lined at β = 0.75

appears more reactive only to instants when the system nonlinearities can have a larger impact due

to higher uncertainty.

Figure 5.7: DNL method, static partial-update with β = [0.9, 0.9, 0.75], and conventional EKF
single run for body re-entry problem. Initial error within 1σ.

Now, with the intent of stressing the DNL method further when it incorporates pre-tuned β

values, two experiments are performed. First, the initial errors are increased to the equivalent of

3σ for every state. Second, the partial-update filters are required to use a higher percentage to

attempt leveraging more measurement information. Recall that a full update causes inconsistent

results even for 1 σ errors. Figure 5.10 depicts the results from the single run when a 3σ initial error

is used. In addition, Figure 5.11 shows the corresponding history for β. Under this conditions, as

per the estimation error plot from Figure 5.10, although slight discrepancy is observed between

the dynamic and static filter, the results are overall the same as for 1σ errors from Figure 5.8 with

104

Figure 5.8: DNL method and static partial-update with β = [0.9, 0.9, 0.75] single run for body
re-entry problem. Initial error within 1σ.

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

Figure 5.9: Dynamic nonlinearity-aware method (DNL) β history for the body re-entry problem.
Initial error within 1σ.

105

the small difference that the ballistic parameter now appears barely less unbiased in favor to the

DNL method. From the β history, it is seen that the dynamic filter required to use larger updates

to compensate for the larger errors. The β profile also shows that it is still effectively reacting to

high-order effects promptly.

Figure 5.10: DNL method, static partial-update with β = [0.9, 0.9, 0.75] single run for body re-
entry problem. 3σ initial errors.

An additional experiment that uses initial conditions far in the tail of the assumed Gaussian

distribution (4σ) is performed. The results illustrated in Figure 5.12 and 5.13, clearly show incon-

sistency of the static partial-update for the experiment. This run shows the capability of the partial-

update filter to deal with very high uncertainties if it is actively adapting the update percentages

while having a pre-tuned β’s as the baseline. For this scenario, the β history, although it displays

similar behavior to the two previous experiments, for this run the DNL method is observed to have

employed, overall, lower updates as it requires to perform a larger second-order effects compensa-

tion. It is important to mention that the DLN not only executed a minimum update precisely when

106

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

Figure 5.11: Dynamic nonlinearity-aware method (DNL) β history for the body re-entry problem.
3σ initial errors.

required at time t = 11s, but it also prevented filter overreactions due to linearization errors early

on during the interval t ∈ [5, 10]. By no overreacting, the filter was able to recover and maintain

consistent estimates as seen in Figure 5.15 (the zoomed-in version (in the interval t ∈ [5, 15] s) of

Figure 5.12). On the other hand, the second-order terms contributions are unknown to the static

partial-update filter, which overshoots, and it eventually fails due to accumulated error mainly in

the drag coefficient. By the time the range sensor becomes aligned (horizontally) with the posi-

tion of the falling body at time t = 10, the dynamic partial-update filter is far in a better position

than the static partial-update, and can handle the reacquisition at time t = 11s and on, while the

static partial-update errors are large enough such that the filter is unable to recover and eventually

diverges.

The value of the partial-update weights were set to β =

[
0.9 0.9 0.75

]
since by experi-

mentation, they produced appropriate estimates for a wide variety of initial conditions (within the

original 3 σ). Although the static partial-update may improve by refining the β values, the DNL

method was generally found to be superior in robustness and consistency, especially for scenarios

with large uncertainties and initial errors. Figure 5.16, as an example, shows a single run of the

107

Figure 5.12: DNL method and static partial-update with β = [0.9, 0.9, 0.75] single run for body
re-entry problem. 4σ initial errors.

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

Figure 5.13: Dynamic nonlinearity-aware method (DNL) β history for the body re-entry problem.
4σ initial errors.

108

Figure 5.14: Zoomed-in view of dynamic nonlinearity-aware method (DNL), static partial-update
with β = [0.9, 0.9, 0.75] single run for body re-entry problem. 4σ initial errors.

0 5 10 15 20 25 30

Time (s)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

DNL

Figure 5.15: Zoomed-in view of dynamic nonlinearity-aware method (DNL) β history for the body
re-entry problem. 4σ initial errors.

re-entry body problem where the initial errors are maintained at 3 σ levels but in contrast with pre-

vious runs, the initial uncertainty has been doubled for position and velocity, and the uncertainty

109

on the ballistic parameter was augmented five times. For this run, the static partial-update which

now employs β =

[
1 1 0.75

]
, is observed to be outside the 3σ bounds for all of the estimation

errors, whereas the dynamic β although not fully reaching zero error, the state errors are still within

proper bounds for the single run and errors are better than for the static partial-update case. The

main observation here is that although the static partial-update filter is enabled to perform larger

updates for this experiment to allow it to recover “faster” if no adaptation of β is performed, the

filter eventually updates considerably when the model mismatch is important, and this leads to es-

timates inconsistency. Figure 5.17 illustrates the value of the adaptive method, as for the detected

second-order terms the filter practically becomes a consider filter from time t = 8s to t = 17s to

maintain an operational filter.

Figure 5.16: Dynamic nonlinearity-aware method (DNL), static partial-update with β =
[1, 1, 0.75] single run for body re-entry problem subject to higher initial uncertainties and initial
errors.

To the end of increasing the capabilities of the nonlinearity-aware method further, a second way

110

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

Figure 5.17: Dynamic nonlinearity-aware method (DNL) β history for single run for the body
re-entry problem subject to higher initial uncertainties and initial errors.

for the β’s selection is formulated. This alternative method, called the covariance-aware method,

is based on monitoring second-order terms of the covariance update equation, but it follows the

same idea as the nonlinearity-aware method. The covariance-aware method is presented next.

5.4 Covariance-aware based method

This section presents an alternative way of selecting the partial-update weights in an online

fashion called Dynamic Covariance-aware partial-update, or DC for short. Paralleling the previous

method that monitors second-order effects on the Kalman update terms, the method proposed in

this section monitors second-order covariance terms. As before, the idea is to reduce the update

magnitude when the ratio of high-order effects to first-order terms is important, and use more

of the nominal update if second-order contributions are small. Although the construction of the

expressions for selecting the partial-update weights is based on second-order terms appearing in a

second-order hybrid Kalman filter, the dynamic covariance method works for the discrete filter as

well. To obtain the expressions for the β selection using the covariance-aware method, consider

the covariance measurement update expression for the second-order Kalman filter (EKF2),

111

P+
k = P−k − P−k HT

k (HkP
−
k HT

k + Rk + Λk)
−1HkP

−
k , (5.26)

where

Λk(i, j) =
1

2
Tr(Dk,iP

−
k Dk,jP

−
k) , (5.27)

and

Dk,i =
∂2hi(xk, k)

∂x2

∣∣∣
x̂−
k

. (5.28)

Additionally, consider the covariance partial-update expression

Pk
++ = P+

k + ΓP−k HT
k (HkP

−
k HT

k + Rk)
−1HkP

−
k Γ . (5.29)

This equation can be alternatively written in terms of the prior state covariance as,

Pk
++ = P−k −KkHkP

−
k + ΓP−k HT

k (HkP
−
k HT

k + Rk)
−1HkP

−
k Γ , (5.30)

and replacing the Kalman gain by Kk = P−k Hk(HkP
−
k HT

k + R)−1 leads to

Pk
++ = P−k − P−k Hk(HkP

−
k HT

k + R)−1HkP
−
k + ΓP−k HT

k (HkP
−
k HT

k + Rk)
−1HkP

−
k Γ .

(5.31)

Next, for the purposes of comparing the partial-update terms against second order uncertainty

terms, the Λ term of Equation (5.26) is first extracted from the parenthetical to produce the residual

covariance term (HkP
−
k HT

k + Rk)
−1 . This is accomplished by applying the matrix inversion

lemma. That is,

(HkP
−
k HT

k + Rk + Λk)
−1 = (5.32)

(HkP
−
k HT

k + Rk)
−1−

(HkP
−
k HT

k + Rk)
−1Λk[(HkP

−
k HT

k + Rk)
−1Λk + I]−1(HkP

−
k HT

k + Rk)
−1 .

112

Substituting this expression into the EKF2 update covariance of Equation (5.26), results in

Pk
++ = (5.33)

P−k − P−k Hk(HkP
−
k HT

k + R)−1HkP
−
k +

P−k HT
k (HkP

−
k HT

k + Rk)
−1Λk[(HkP

−
k HT

k + Rk)
−1Λk + I]−1(HkP

−
k HT

k + Rk)
−1HkP

− .

By doing a term-by-term comparison of the partial-update expression of Equation (5.31), and

the EKF2 update for the error state covariance of Equation (5.33), the following relationship be-

tween second-order covariance effects and partial-update terms can be established,

ΓP−k HT
k (HkP

−
k HT

k + Rk)
−1HkP

−
k Γ ∼ (5.34)

P−k HT
k (HkP

−
k HT

k + Rk)
−1Λk[(HkP

−
k HT

k + Rk)
−1Λk + I]−1(HkP

−
k HT

k + Rk)
−1HkP

− ,

where the symbol∼, is to indicate that terms are related. Equation (5.34) can be compactly written

as

ΓδP−k Γ ∼ KkΛk[(HkP
−
k HT

k + Rk)
−1Λk + I]−1Kk

T , (5.35)

where δP−k = P−k HT
k (HkP

−
k HT

k + Rk)
−1HkP

−
k . To further simplify relation (5.35), the matrix

on the right is condensed in just one matrix called N, such that the relationship now reads

ΓδP−k Γ ∼ Nk . (5.36)

Based on the previous discussion, the desire is to select Γjj proportional to second-order effects

and with this objective in mind, it is proposed to select the Γjj values by an straight element-

by-element comparison of the diagonal elements of matrix ΓδP−k Γ and N. This leads to the

proportionality relationship

δP−jjγ
2
j ∝ Njj , (5.37)

113

or since δP− and N are positive semi-definite,

γj ∝
√

Njj

δP−jj
. (5.38)

Finally, similar to the DNL method, a scale factor fc is introduced to account for measurement

residual covariance effects as,

Γjj = γj = fc

√
Njj

δP−jj
, (5.39)

or equivalently

βjj = βj = 1− fc

√
Njj

δP−jj
. (5.40)

The scale factor fc used for the covariance-aware method is the same as the one used for the

nonlinearity-aware method,

fc,i =
σk,i
σo,i

Tr(HkPkH
T
k + Rk)

Tr(Rk)
. (5.41)

Similar to the DNL method, the value for γi is saturated at a maximum magnitude of one.

In the next section, results from numerical simulations that exercise the dynamic covariance-

aware (DC) partial-update filter, are provided.

5.4.1 The re-entry falling body

For convenience, the covariance-aware method was also exercised with the falling body prob-

lem. As for the DNL method, two scenarios using the DC method were simulated. First, the filter is

used without incorporating any pre-tuned β, and second, the filter is tested with a nominal baseline

shifted to the already known and well-tuned β value. For the first case scenario, in general, it was

observed that for low initial errors in a typical single run, the covariance-aware, the nonlinearity-

aware, and static partial-update methods appear to have similar overall performance, as displayed

in Figure 5.18. However, a closer examination of the absolute estimation error, shown in Figure

5.19, reveals that the DC method performs the best among the three filters (in terms of absolute

114

error amount). In fact, the DC performs the best in general. An important observation for this run

is that albeit the similarity of the partial-update weights histories (shown in Figure 5.20) for the

dynamic methods, the state errors differences between the methods are significant. This difference

in performance highlights the importance of an appropriate dynamic β’s selection method, and it

demonstrates that a varying β can be advantageous, even for relatively small initial errors. From

Figure 5.21 is also clear that since the static partial-update filter is unaware of high-order effects,

it is less effective if they become significantly large. For this run, this is apparent mostly for the

position and velocity states at time t = 7s. Finally, it should be noted that due to the DC and DNL

method having a nominal update of a hundred percent, the DC method is less conservative than the

static partial-update method, but this also helped obtain a more accurate dynamic partial-update

filter.

Figure 5.18: Dynamic covariance-aware partial-update method (DC) state errors for a single run
of the body re-entry problem subject to 1 σ initial errors. Estimates from static and DNL methods
are shown for comparison.

115

0 5 10 15 20 25 30

10
0

P
o
s
it
io

n
 [
m

]

Absolute mean error [m]

0 5 10 15 20 25 30
10

-5

10
0

V
e
lo

c
it
y
 [
m

/s
]

0 5 10 15 20 25 30

Time (seconds)

10
-5

10
0

 [
1
/m

]

DNL

DC

PU

Figure 5.19: Dynamic covariance-aware partial-update method (DC) absolute errors for a single
run of the body re-entry problem subject to 1 σ initial errors. Errors from static and DNL methods
are shown for comparison.

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

DC

Figure 5.20: Dynamic covariance-aware partial-update method (DC) β history for single run of
the body re-entry problem subject to 1 σ initial errors. β produced via DNL method is shown for
comparison.

Figure 5.22, a zoomed-in version of Figure 5.18, shows that the main reason for the DC method

to have better performance is that although it slightly overshoots on the ballistic parameter early on

116

0 5 10 15 20 25 30
0

200

400

600

P
o
s
it
io

n
 [
m

]

Absolute mean error [m]

0 5 10 15 20 25 30
0

200

400

600

V
e
lo

c
it
y
 [
m

/s
]

0 5 10 15 20 25 30

Time (seconds)

0

0.1

0.2

0.3

0.4

 [
1
/m

]

DNL

DC

PU

Figure 5.21: Dynamic covariance-aware partial-update method (DC) absolute errors for a single
run of the body re-entry problem subject to 1 σ initial errors. Errors from static and DNL methods
are shown for comparison.

(at time t = 6s) when the drag effects (and thus nonlinearities) influence is larger, it recovers faster

than the DNL and static partial-update methods. As a result, even all three filters estimates appear

within the 3 σ bounds, DC partial-update filter is superior. The fast recovery of the DC method in

this run, suggests that this method uses better the information provided on second-order effects to

select the β values.

Although numerous experiments were conducted to evaluate the robustness of the DC method

against initial errors and uncertainties, the results always evidenced that 1) the DC method owns

better capabilities than the DNL method and 2) the DC method can perform practically as a care-

fully and well-tuned static partial-update. Figure 5.23 shows a representative run of the filters

when they all undergo initial errors that are 3 σ in magnitude. It is clear that the DC partial-update

and the static method performed well, and their estimates are within the 3 σ bounds, whereas the

DNL method does not. For this scenario, the DNL method was found to support maximum initial

errors of up to 1 σ. Although from Figure 5.24, it may seem that the static partial-update method

incurred in less error, the computation and comparison of the absolute error histories reveal that

the covariance-aware method incurred in the least estimation error among the filters.

117

Figure 5.22: Zoomed-in view for dynamic covariance-aware partial-update method (DC) state
errors. History of a single run of the body re-entry problem subject to 1 σ initial errors. Estimates
from static and DNL methods are shown for comparison.

Additionally, 100 Monte Carlo runs were executed to show that the robustness observed for

the DC method is not specific of the random draw used to initialize the filters for that run. From

the resulting Monte Carlo runs are displayed in Figure 5.25, there are two main observations.

First, the filter appears essentially as consistent as the finely tuned static partial-update. Second,

the DC method handles the initial uncertainties and higher nonlinearities better than the pre-tuned

static partial-update, and it effectively manages to produce less estimation errors overall. It is

also important to mention, that even though the consistency of the filter is not perfect, it should

be recalled that the filter is still a linear filter and that the conventional EKF was not operational

under the scenarios presented in this and the previous sections. Finally, it must be noted that

the static partial-update performs well overall without additional metrics, as in the case for the

dynamic partial-update filter. However, recall that the specific β tuning used in this section (β =[
1 1 0.75

]
) required extra effort that involved numerous Monte Carlo experiments in covering

and successfully running a variety of scenarios whereas the DC method required no tuning at all.

118

Figure 5.23: Dynamic covariance-aware partial-update method (DC) state errors. History of a
single run of the body re-entry problem subject to 3 σ initial errors. Estimates from static and
DNL methods are shown for comparison.

0 5 10 15 20 25 30

10
0

P
o
s
it
io

n
 [
m

]

Absolute mean error [m]

0 5 10 15 20 25 30

10
0

V
e
lo

c
it
y
 [
m

/s
]

0 5 10 15 20 25 30

Time (seconds)

10
0

 [
1
/m

]

DNL

DC

PU

Figure 5.24: Dynamic covariance-aware partial-update method (DC) absolute errors. History of a
single run of the body re-entry problem subject to 3 σ initial errors. Errors from static and DNL
methods are shown for comparison.

119

Figure 5.25: Averaged and sampled standard deviation from 100 Monte Carlo runs for dynamic
covariance-aware partial-update method (DC) state errors. Estimates from static method are also
shown. DNL method is not included as it does not support initial errors higher than 1 σ. Full
update is used as the baseline for updates.

An additional comment on the partial-update weight history from Figure 5.26, and in general

for the behavior of the β weight when the DNL method is utilized, is that the values, compared

to the DC method, tend to fluctuate more aggressively. It appears that this way of quantifying the

effect of second-order terms is more sensitive than using the second-order covariance terms. Ex-

perimentation on scaling the resulting β profile produced by the DNL method was also performed

to examine both metrics, DNL and DC, when having similar profiles. However, it was found that

is not a scale issue, but the experiments suggested that the DNL method does not perform as well

as the DC method in general, and the difference is due to the high-order terms quantification. Such

sensitivity of the DNL was observed consistently across all experiments involving the dynamic

methods. β histories from Figure 5.4 and Figure 5.4, for example, also show this behavior.

5.4.2 Pre-tuned partial-update weights as a baseline for the DC method

The DC method using known β values was observed to be almost identical in behavior and

consistency as the DNL (with known weights) method when exercised with relatively low initial

errors (1 σ or less). For moderate-high initial errors and uncertainties, however, the covariance-

aware method was found to perform the best compared with DNL and static methods. A typical run

120

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

DC

Figure 5.26: Dynamic covariance-aware partial-update method (DC) β history of a single run of
the body re-entry problem subject to 3 σ initial errors. The β history produced by the DNL partial-
update method is also included for comparison.

of the DC partial-update filter with high initial errors and uncertainties (errors near 3 σ, doubled

uncertainty on position and velocity, and tripled uncertainty on ballistic parameter, with respect

to base values from Table 4.2) are depicted in Figure 5.27. The corresponding absolute errors are

displayed in Figure 5.28. It is worth noting that consistently across experiments, the DNL method

generally exhibits larger reactions to second-order terms compared to the DC method, as Figure

5.29 shows.

Since the methods that use known weights were seen to support high initial errors and uncer-

tainties, several experiments were performed to explore their limits. Overall, it was found that the

DC method is more robust, and that to cause divergence, for the re-entry body scenario, extreme

cases were needed to make it diverge. Although such bad initial conditions may not be realistic,

the objective was to find sufficiently adverse conditions for the dynamic filters to diverge to gain

insight into the dynamic methods limits.

One of the experiments showing the covariance-aware method diverging, used initial conditions

where the uncertainties on position and velocity states were doubled, and the ballistic parameter

uncertainty is five times the original σ (with respect to reference parameters given in Table 4.2).

121

Figure 5.27: Dynamic covariance-aware partial-update method (DC) state errors. History
of a single run of the body re-entry problem subject to moderate uncertainties (around[
2σp0 2σv0 3σβ0

]
) and 3 σ initial errors. Estimates from static and DNL methods are shown

for comparison.

Figure 5.30, shows a filter single run of this scenario with high initial uncertainties. Here, the

reason for failure can be attributed to the DC method insufficient reaction to produce large enough

weight variations when required as observed from Figure 5.31, making the filter to eventually

fail. The zoomed-in version of the estimates errors, shown in Figure 5.32, in fact, confirms that

insufficiently lowering the β value when high nonlinearities appeared was the root of divergence.

Notice that Figure 5.30 are the results of the same scenario used in the previous section when

stressing the DNL method with high uncertainties (see Figure 5.16), but here, is it clearer how the

DNL method managed to handle the large nonlinearities. The DNL method reacted to the extent of

even temporarily act as a consider filter, mainly due to its larger sensitivity to second-order effects

(Figure 5.31), being able to retain a consistent filter, which is even better than the finely tuned static

partial-update approach for the presented scenario.

Although these are just the results from one run, the overall behavior showed that it takes a

122

0 5 10 15 20 25 30

10
0

P
o
s
it
io

n
 [
m

]

Absolute mean error [m]

0 5 10 15 20 25 30
10

-5

10
0

10
5

V
e
lo

c
it
y
 [
m

/s
]

0 5 10 15 20 25 30

Time (seconds)

10
0

 [
1
/m

]

DNL

DC

PU

Figure 5.28: Dynamic covariance-aware partial-update method (DC) absolute errors. His-
tory of a single run of the body re-entry problem subject to moderate uncertainties (around[
2σp0 2σv0 3σβ0

]
) and 3 σ initial errors. Errors from static and DNL methods are shown for

comparison.

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

DC

Figure 5.29: Dynamic covariance-aware partial-update method (DC) β history of a single run of
the body re-entry problem subject to uncertainties (around

[
2σp0 2σv0 3σβ0

]
) and 3 σ initial

errors. The β history produced by the DNL partial-update method is also included for comparison.

relatively bad initialized filter to make the dynamic methods fail, especially for the DC method,

which was seen to be more robust than the DNL method overall. Scenarios were the DNL method

123

fails and the DC method works, were also seen and more common for high initial errors, the plots

are not included here but they look similar to the divergent DNL of Figure 5.23.

Figure 5.30: Dynamic covariance-aware partial-update method (DC) state errors. History of a
single run of the body re-entry problem subject to high uncertainties (around

[
2σp0 2σv0 5σβ0

]
)

and 3 σ initial errors. Estimates from static and DNL methods are shown for comparison.

5.4.3 Comments on DNL and DC partial-update methods

The dynamic beta selection methods showed similar behavior when the initial errors and uncer-

tainties were relatively small. In those cases, it was observed that a finely tuned static partial-update

in practical terms would offer similar benefits as a dynamic β selection method, but at the extra

effort of tuning weights. However, as seen from the simulated examples, if nonlinearities are sig-

nificant, the static partial-update will incur in higher estimation errors. Interestingly, although the

dynamic methods appear slightly over or under confident with respect to the static partial-update

method, the changes in the 3 σ bounds are relatively small. In other words, the use of a method

for dynamically choosing the β’s does not sacrifice accuracy importantly; and it makes the filter

124

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNL

DC

Figure 5.31: Dynamic covariance-aware partial-update method (DC) β history of a single run of
the body re-entry problem subject to high uncertainties (around

[
2σp0 2σv0 5σβ0

]
) and 3 σ initial

errors. The β history produced by the DNL partial-update method is also included for comparison.

Figure 5.32: Zoomed-in view for dynamic covariance-aware partial-update method (DC) state
errors. History of a single run of the body re-entry problem subject to high uncertainties (around[
2σp0 2σv0 5σβ0

]
) and 3 σ initial errors. Estimates from static and DNL methods are shown for

comparison.

operational that otherwise would be divergent. As seen from the Monte Carlo runs, the agreement

of sample and averaged standard deviation, although it is not perfect (due to mainly to high initial

125

errors), is fairly accurate, and certainly far better than the conventional EKF. Moreover, for sce-

narios with important nonlinearities and uncertainties, the dynamic methods exhibit lower mean

estimation error, especially the covariance-aware method. The virtues of the dynamic beta selec-

tion methods, however, come at the cost of the computation of second-order terms. On the other

hand, the dynamic methods are still attractive since they effectively allow the use of an EKF filter

structure where a more advanced filter may be needed.

Even though different metrics and methods can be proposed to perform online β selection, the

methods presented here are functional, do not over-specialize the filter,retain the EKF structure, and

use information that is already computed within the KF. Finally, based on the presented results, it

is always recommended to use the DC method because it provides higher robustness against high

initial errors and uncertainties. If computational cost is a priority, the DNL could be considered,

but the user needs to be aware of its lower robustness.

126

6. HARDWARE APPLICATIONS∗

This chapter describes three aerospace-related hardware applications of the partial-update filter.

The specific applications are selected to demonstrate the partial-update filter’s capabilities when the

system’s nonlinearities are significant, and the nuisance states need to be estimated. Furthermore,

the implementations show the partial-update filter’s capacity to work well where the nuisance states

are constant, varying, or are the states of interest. In all three applications, the use of a Schmidt or

a traditional EKF failed, or it did not produce acceptable estimates.

The first application is a filter-based IMU-camera (Inertial Measurement Unit) calibration sys-

tem. The purpose of this filter is to find the rigid transformation (or calibration) between the camera

and IMU to improve the global IMU navigation solution. The calibration parameters of this appli-

cation are the constant nuisance states. This hardware application uses a UD partial-update filter

and is shown to estimate well the calibration parameters with a sub-centimeter and sub-degree

accuracy. The second application is a simplified altitude and velocity estimator for Unmanned

Aerial Vehicles (UAV). The IMU biases are the nuisance parameters in this case. In contrast to the

first application, these nuisance parameters change over time. A UD partial-update filter is also

implemented for this application. The results showed a consistent filter for both core and varying

nuisance states, providing a highly functional flight platform. The third application is a vision-

based partial-update filter to estimate the angular rates of an uncooperative space body. In contrast

with the first and second applications, the nuisance states are the angular rates, the primary states

of interest. This last application uses a UD partial-update filter to estimate the angular rates.

∗Adapted with permission from “Reef estimator: A simplified open source estimator and controller for multiro-
tors”, by J. H. Ramos, P. Ganesh, W. Warke, K. Volle and K. Brink, presented at the IEEE National Aerospace and
Electronics Conference 2019 [2], Copyright 2019 by the Institute of Electrical and Electronics Engineers; “Vision-
based tracking of non-cooperative space bodies to support active attitude control detection”, by J. H. Ramos, T. D.
Woodbury, and J. E. Hurtado, presented at the AIAA SPACE and Astronautics Forum and Exposition 2018 [55],
Copyright 2018 by J. Humberto Ramos,Timothy Woodbury, and John E. Hurtado.

127

6.1 Online IMU-camera intersensor parameters calibration

6.1.1 Introduction

In recent years vision-aided inertial navigation based on cameras and IMU has captured the

attention of many researchers. A camera and IMU working together offer a relatively low-weight

and complementary team: while the IMU provides high-frequency system motion propagation, the

camera provides slower but fixed and more stable (it does not drift in contrast with IMU biases)

feedback measurement signal. When the IMU-camera set is used along with a sequential filtering

technique, or similar IMU-camera fusion information algorithm [78], one can obtain an accurate

inertial navigation system. Among the factors that contribute to an accurate vision-aided inertial

navigation solution, the IMU-camera calibration parameters play a key role.

The knowledge of the relative placement between an inertial measurement unit and a camera, or

IMU-camera calibration for short, is crucial [79]. Large inaccuracies in this calibration parameters

can cause the system estimates to be biased, degraded, and even to diverge [80]. There exist several

methods in the literature for IMU-camera calibration, and are mainly divided into two groups:

batch and sequential calibrators. Filter based approaches are commonly more popular than batch

approaches because they also provide confidence bounds for the calibration parameters and run

online. Filter based approaches essentially estimate ego-states (position, velocity, and attitude) of

the IMU, along with the relative pose between the camera and the IMU frame. Systems such as

those reported in [81], [64] and [82], for instance, show the need for accounting and estimating the

relative pose between the sensors to improve navigation results, which is the reason to perform the

calibration in the first place.

The IMU-camera calibration of this hardware implementation is a filter-based approach. Gen-

erally, due to the high nonlinearities and uncertainties induced by the unknown IMU-camera trans-

formation, and the nuisance parameters included in the state vector, a traditional EKF or Schmidt

filter is often not sufficient to obtain acceptable estimates. For this problem, it is common that

users alternatively implement an iterative EKF or even a UKF. This hardware application uses the

128

PU-MEKF filter (developed in Chapter 2) to accommodate better the calibration parameters, along

with system biases (particularly IMU’s biases). The PU-MEKF is implemented using the UD fac-

torization presented in Chapter 4. As commonly done in visual-aided inertial navigation systems,

the filter uses the IMU measurements to propagate the rotational kinematics model (of the rigid

body carrying the IMU-camera system) while the camera provides image features locations mea-

surements. For this application, the features or landmarks locations, are the extracted corners of a

set of arUco markers and are considered to be known in the inertial frame, as emulating navigation

using an a priori known map.

6.1.2 Related Work

One of the most popular batch techniques for IMU-camera calibration was introduced by Fur-

gale et al. in [83]. The work proposes a batch least-squares solution that performs both a temporal

and spatial calibration of an IMU and RGB sensor using fiducial markers. The authors provide

an open-source implementation of their code along with relevant documentation. Although this

technique provides a systematic solution for finding the rigid body transform, it is not suitable

for online implementation. If an IMU-camera reconfiguration occurs, as for systems able to tilt

and pan the camera, the calibration procedure needs to be repeated offline. Unfortunately, for this

type of batch calibrator, the user does not know if the collected data is enough (qualitative and

quantitatively) until the algorithm processes the data. Another least-square solution presented in

[84], proposes the use of B-splines, and similarly to [83], it can also be used to identify temporal

IMU-camera alignment. This method is not an online approach neither, but it reports accurate

results.

In regards to filter-based calibration algorithms, there is a variety of flavors and forms. For

example, [85] proposes the use of an unscented Kalman filter (UKF)to perform the calibration,

and it even includes gravity vector into the state vector to improve results. In [79], the use of a

UKF is also introduced and taken further as it generalizes the IMU-camera calibration problem to a

multicamera-IMU system. Although these approaches are shown to be functional, they require the

user to be familiar with the unscented approach and its implementation. Also, in the Kalman filters

129

line, [86] proposes an extended Kalman filter. This work includes a nonlinear observability analysis

(similar to that presented in [85]), showing that the IMU-camera calibration parameters can be

estimated from the camera and IMU measurements alone. More specifically, this method uses

an iterative multiplicative Extended Kalman filter (IMEFK) to handle the high nonlinearities that

appear in the measurement model. The IMEKF is grounded in an extended Kalman filter (EKF),

which makes it practical from the implementation perspective, but it may become computationally

expensive as each set of camera measurements are re-processed multiple times at each update step.

Other filtering-based approaches include the technique proposed by Li and Mourikis [87]. This

technique incorporates the IMU-camera pose into a multi-state constraint Kalman filter, which

is shown to achieve acceptable calibration parameters. However, the use of such an algorithm

requires more coding effort (with respect to a conventional single-step propagation/update filter)

due to the need of book-keeping past system poses. Yang and Shen in [88] propose a method

to initialize velocity, scale, and IMU-camera calibration in real-time without requiring artificial

markers. To achieve this, the authors propose a probabilistic optimization-based procedure. The

method is shown to be functional, but it may require more experienced users for its implementation.

Highly precise techniques, like that presented in [89], are also available in the literature, but they

come at the cost of requiring significantly accurate modeling. Non-filter-based that use closed-

form solutions to perform the calibration as the one presented in [90] are also available. However,

they may not provide uncertainty quantification on the calibration parameters and are prone to be

sensitive to the calibration target pose.

6.1.3 Filter-based IMU-camera calibration algorithm

In this section, the description of the calibration algorithm is given. As the process is PU-

MEKF-based, its description has been divided into propagation and measurement update step.

Recall that as conventionally done, the propagation is performed using IMU measurements while

the update uses camera measurements. Particularly, Section 6.1.3.2 details the propagation step

and Section 6.1.3.3 describes the measurement update step. Before going into the specifics of the

proposed calibration filter, the following section establishes additional notation used throughout

130

this hardware implementation description.

6.1.3.1 Notation

The notation pA B is used to denote the vector p of property B coordinatized in reference

frame A. For example, pW
I represents the position vector of the IMU (I) with respect to the world

frame (W). The collection of elements in a column vector is written as pA , with no reference

frame associated to it. Rotations are parametrized by quaternions. Quaternions are denoted by

q̄ . A rotation matrix such as C(BAq̄), for example, is the passive rotation C constructed from the

quaternion parametrization B
Aq̄. Here C(BAq̄) is a rotation that takes a vector initially represented

in reference frame A, and expresses it in the coordinate frame B. Passive rotations are also written

simply as CBA , which is considered equivalent to C(BAq̄). The operator bv ×c constructs a skew-

symmetric matrix using the elements of vector v =

[
v1 v2 v3

]T
according to

bv ×c =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 . (6.1)

Variables written with a delta prefix, such as δx, represent an error quantity. Finally, recall that

the error definition is considered as the difference between the true, x, and expected value, x̂, as

δx = x− x̂. Any variations in notation will be clear from the context or will be clarified as needed.

6.1.3.2 The propagation step

This section describes the particulars of the propagation step performed in the IMU-camera

calibration implementation.

6.1.3.2.1 State vector. The IMU-camera calibration parameters and the IMU biases are the nui-

sance states in this filter. Whereas the core or ego-states are the position, velocity, and attitude

of the IMU in the inertial frame. The notation for the PU-MEKF states elements as shown in

Equation (6.2) is: attitude (q̄IW ∈ R4) and position (pW
I ∈ R3) of the IMU with respect to the

world frame, the velocity of the IMU with respect to the world frame (vW
I ∈ R3), IMU gyroscope

131

(bg ∈ R3) and accelerometer (ba ∈ R3) biases, and the IMU-camera calibration (IpC , q̄CI). The

sought calibration is considered to be the position of the camera with respect to the IMU frame,

IpC ∈ R3, and the attitude of the camera frame with respect to the IMU frame, q̄CI ∈ R4. The state

vector denoted by x ∈ R23, encapsulates the ego-states and calibration parameters as indicated in

Equation (6.2).

x =

[
q̄IW
T pW T

I vW T
I bT

g bT
a pI T

C q̄CI
T

]
. (6.2)

6.1.3.2.2 True process model. In this subsection, the process model is discussed. The measure-

ment model is description is deferred for Section 6.1.3.3.1.

The PU-MEKF model uses the IMU’s gyroscope and accelerometer measurements to prop-

agate rotational and translational rigid body kinematics. Since the raw IMU measurements in-

evitably deviate from the true values, a measurement model to consider the corrupted measure-

ments is used [21] before utilizing the IMU measurements. In this work, the 3×1 gyroscope

measurement vector (the angular velocity) ω̃, and the 3×1 accelerometer measurements (specific

force) s̃ are related to their respective true values, ω and s, via the following models:

ω = ω̃ − bg − ng , (6.3)

ḃg = nwg , (6.4)

s = s̃− ba − na , (6.5)

ḃa = nwa . (6.6)

Here, ng is the gyroscope measurement noise, and nwg is the gyroscope bias drift respectively,

whereas na and nwa are the accelerometer measurement noise and accelerometer bias drift; with

bg and ba being the gyro and accelerometer bias. Both noise and drift (for angular and translational

quantities) 3×1 vectors, are modeled as zero-mean white Gaussian noise processes.

132

This being said, the true process model for the IMU-camera calibration (rotational and transla-

tional kinematics) is now summarized in the following equations [66], [81], [86]:

˙̄qIIk (t) =
1

2

−bω(t) ×c ω(t)

−ω(t)T 0

 q̄IIk (t) , (6.7)

ṗW
I = vW

I , (6.8)

v̇W
I(t) = aW

I(t) = (CIIk CIk
W)T , s(t) + gW , (6.9)

ḃg(t) = nwg(t) , (6.10)

ḃa(t) = nwa(t) , (6.11)

IṗC = 0 , (6.12)

C
I q̇ = 0 . (6.13)

The notation Ik is intended to represent the frame from which the attitude evolution starts

at time tk (when a new IMU measurement arrives), and I , the frame where the evolution ends

(after the integration of the equations, for either continuous or closed-discrete form solution). The

vector gW is the 3×1 gravity vector in the world frame, and it is assumed to be known without

uncertainty. Equation (6.9) describes the evolution of the IMU velocity. Notice that this equation

accounts only for IMU motion-induced measurements, as the gravity vector is being subtracted.

Finally, equations (6.12) and (6.13) indicate that the calibration parameters are constant.

6.1.3.2.3 Expectation of process model. To form the error dynamics for the PU-MEKF (recall

it is an indirect filter), that the expected model is required as well. The expected model is obtained

by computing the expected value of equations (6.7)-(6.13) and the IMU measurement models. That

is,
˙̂
bg(t) = 0→ b̂g(t) = b̂gk , (6.14)

133

ω̂(t) = ω̃(t)− b̂g(t) = ω̃(t)− b̂gk , (6.15)

ˆ̄̇qIIk (t) =
1

2

−bω̂(t) ×c ω̂(t)

−ω̂T(t) 0

 q̄IIk (t) , (6.16)

˙̂
ba(t) = 0→ b̂a(t) = b̂ak , (6.17)

ŝ(t) = s̃(t)− b̂a(t) = s̃(t)− b̂ak , (6.18)

˙̂v(t) = ĈIk
W

T ĈIIk
Tŝ(t) + gW . (6.19)

Here, the biases b̂gk and b̂ak indicate that the biases are to remain constant during the propagation

step (at time t = k), however, they are allowed to change within the filter (through process noise)

as they are modeled as random walks.

6.1.3.2.4 Forming the error model. Now the error model for the PU-MEKF can be constructed.

To form the error model one needs to accordingly substitute the true and expected models (from

the two previous subsections) into the additive and multiplicative error definitions from Equations

(6.20) and (6.21), and simplify.

δx = x − x̂ . (6.20)

C(δq̄) = C(q̄IW)C(q̂IW)T . (6.21)

The expressions reduction results in the following error model equations:

134

δθ̇ = bω̃ − b̂gcδθ − δb̂g − ng] , (6.22)

δW ṗI = δWvI , (6.23)

δW v̇I = −IW ĈT (δba + na + bs̃− b̂zcδθI) , (6.24)

δḃg = ngw , (6.25)

δḃa = naw , (6.26)

δIṗC = 0 , (6.27)

δα̇ = 0 . (6.28)

Here, δ denotes small departure from true values. Specifically, δα̇ is the small angle error represen-

tation for the attitude offset between the estimated rotation ˆ̄qCI and the true rotation q̄CI . Similarly,

δθ̇ represents the IMU attitude error. The error state vector, δx ∈ R21 becomes,

δx =

[
δθT δ pW T

I δ vW T
I δbT

g δbT
a δ pI T

C δαT

]
. (6.29)

The reduction in the dimension of the state vector results from the small attitude error represen-

tation (small-angle error, which leads to a minimum attitude parametrization). This, allows 1)

to approximate quaternion errors with a three elements parametrization instead of four (for both

δθ and δα), and 2) remove the explicit quaternion unit-norm constraint, which otherwise would

induce a singular covariance matrix.

6.1.3.2.5 Covariance propagation. Now, with the error dynamics in hand the Jacobians (with

respect to the error variables) for uncertainty propagation are obtained. The PU-MEKF covariance

propagation equation is identical to the one used for the standard Kalman filter,

Ṗ = FP + PFT + GQGT , (6.30)

135

with the Jacobians defined by

F =
∂ ˙δx

∂δx

∣∣∣
IEδx , x̂

, (6.31)

and

G =
∂ ˙δx

∂w

∣∣∣
IEδx , x̂

. (6.32)

Calculating the corresponding Jacobians as per Equations (6.31) and (6.32), the continuous-time

state transition matrix F, and the input noise matrix G are obtained as

F =



−bω̂ ×c 03×3 03×3 −I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3 03×3 03×3

− ĈIW
Tb(s̃− b̂a) ×c 03×3 03×3 03×3 − ĈIW

T 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3



, (6.33)

and

G =



−I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 − ĈIW
T 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3



, (6.34)

where

w =

[
nT
g nT

a nT
wg nTwa

]T
. (6.35)

136

6.1.3.3 PU-MEKF Measurement Update.

The PU-MEKF uses the linear update from the standard Kalman filter and as such, it assumes

a linear measurement model that is corrupted by zero-mean white Gaussian noise vk of the form

yk = Hk(x̂k)xk + vk . (6.36)

However, since this is an indirect filter, the linear measurement model operates in a measurement

residual space.

rk = Hk(x̂k)δxk + vk . (6.37)

This is, the measurement matrix now is a map from state errors to measurement residuals. To

obtain the measurement matrix H required in the measurement update, the measurement residual

r is formed and then linearized.

The measurement residual is defined as the difference between the true and the expected mea-

surement model, this is

rk = rk(δxk,vk, x̂k) = ỹ(δxk, x̂k) + vk − IE[ỹ(δxk, x̂k)] . (6.38)

Consequently, its first-order Taylor series expansion about the nominal state [IE[δxk], IE[vk], x̂k],

can be carried out as

rk ≈ rk(IE[δxk], IE[vk], x̂k) +
∂rk
∂δxk

(δxk − IE[δxk]) +
∂rk
∂vk

(vk − IE[vk]) . (6.39)

Note that x̂ is not considered a variable when computing the Taylor expansion. Or simply ex-

pressed as

rk ≈ Hδxk + vk . (6.40)

Equation (6.40) is obtained in virtue of
∂rk
∂δxk

= Hk ,
∂rk
∂vk

= I, IE[δxk] = 0, IE[vk] = 0 and the

137

expectation of the residual being equal to zero,

IE[rk] = rk(IE[δxk], IE[vk], x̂k) = 0 . (6.41)

Again, note that measurement matrix H maps from state errors to residuals; thus, the differenti-

ation of the residual r is with respect to state errors δx. In the following section, the specifics to

derive the measurement matrix H for the IMU-camera calibration algorithm are given.

138

6.1.3.3.1 Measurement model. As mentioned at the beginning of Section 6.1.3, the IMU-camera

calibration uses features positions detected in the camera field of view to perform the filter update

step. The measurement model thus relates the state to features positions. More specifically, per the

linear measurement model from Equation (6.37), the measurement model maps from error state to

pixels residuals.

For the IMU-camera system, the measurement model is established by relating the position of

a feature (feature position vector) in the camera frame to its position in the image space (pixels) via

a camera model. This implementation uses the conventional pinhole camera model from Equation

(6.43) to associate the pixel position (denoted ũi and ṽi) of the ith feature to its position vector in

the camera frame, pC Fi
. From Figure 6.1 it is straightforward to show that the position vector of

an Fi feature coordinatized in the camera reference frame is,

Figure 6.1: Relationship between World (W+), IMU (I+), camera (C+) and position of the ith

feature found in the arUco target. The arUco reference frame is considered to be the world frame
W+.

139

[
hx hy hz

]T
= pC Fi

= CCI
(

CIW (pW
Fi
− pW

I)− pI C

)
, (6.42)

where hx, hy and hz represent the components of the pC Fi
vector. Once the position vector for a

feature is constructed, this can be translated into a projected pixel via the pinhole camera model:

ỹFi
=

ũi
ṽi

 =

fx(hx/hz) + cx

fy(hy/hz) + cy


i

+ vFi
. (6.43)

The term vFi
in the pinhole camera model of Equation (6.43), represents a white noise zero-mean

Gaussian process with covariance matrix RFi
= E[vvT] that corrupts the pixel measurements.

The expectation of the pinhole camera model is

ŷFi
= IE[ỹ(δx, x̂)] =

ûi
v̂i

 =

fx(ĥx/ĥz) + cx

fy(ĥy/ĥz) + cy


i

. (6.44)

To obtain the measurement matrix H, as described at the beginning of Section 6.1.3.3, the

measurement residual is formed and then the first-order Taylor series approximation is performed.

Since the residual will be a function of δ pC Fi
, and in turn, δ pC Fi

is a function of δx, the linearized

model is obtained via chain rule as

HFi
=

∂rFi

∂δ pC Fi

[
∂δ pC Fi

∂δx

]
. (6.45)

Calculation of the partial derivatives for the Fi feature gives

∂rFi

∂δ pC Fi

=
1

ĥz

fx 0 −fxĥx/ĥz

0 fy −fyĥy/ĥz


i

, (6.46)

140

and

∂δ pC Fi

∂δx
= [ĈCI b

(
ĈIW (p̂W

Fi
− p̂W

I)
)
×c,− ĈCI ĈIW ,03×3,03×3,03×3, (6.47)

− ĈCI , b ĈCI (ĈIW (p̂W
Fi
− p̂W

I)− p̂I C) ×c] . (6.48)

As more than one feature may be available at the update step, the measurement matrices for

m individual features can be vertically stacked to process all features in a batch manner. How-

ever, the measurements also can be processed sequentially (Jacobians need to be re-evaluated after

each measurement assimilation). For batch measurement processing, the measurement matrix is

constructed as

HF =



HF1

...

HFi

...

HFm


, (6.49)

and the residual vector as

rF =



ỹF1 − ŷF1

yF2 − ŷF2

...

ỹFm − ŷFm


. (6.50)

For the same purposes, the measurement noise covariance can be arranged in a block diagonal

matrix as

RF = diag[RF1 , . . . ,RFm] . (6.51)

6.1.3.4 The partial-update within the Multiplicative EKF

Once a set of features is received and the measurement matrix, H, is constructed, the partial-

update can be executed following the equations from Algorithm 1 presented in Section 2.3.4. To

be more specific to the IMU-camera calibration case, the partial-update is done in the following

141

way. First, the β matrix is formed

β = diag

[
βδθ1 βδθ2 βδθ3 β pW

I1
. . . βδα3

]
. (6.52)

Then partial-update correction is computed as

δx++ = βK(ỹ − ŷ) = βKr , (6.53)

and additive and multiplicative elements are identified as

δx++ = βKr =


βδθδθ̂

+

βadditiveδx̂
+
additive

βδαδα̂
+

 . (6.54)

After the partial-update posterior state error, δx++, is calculated, the actual state estimates are

recovered by following additive and multiplicative error definitions:

p̂W
I
+ = p̂W

I
− + βpI

δ p̂W
I
+ , (6.55)

v̂W
I
+ = v̂W

I
− + βvI

δ v̂W
I
+ , (6.56)

b̂+
g = b̂−g + βbgδb̂

+
g , (6.57)

b̂+
a = b̂−a + βbaδb̂

+
a , (6.58)

p̂I C
+ = p̂I C

− + βpcδ p̂I C
+ , (6.59)

(6.60)

The IMU attitude and the IMU-camera attitude offset states become updated according to

q̄IW
+ =

1
2
βδθ+

1

⊗ q̄IW
− , (6.61)

142

and

q̄CI
+ =

1
2
βδα+

1

⊗ q̄CI
− . (6.62)

Finally, the covariance matrix is partially updated via the UD covariance update equations that

appear in Table 4.1.

6.1.4 Simulations

In this section, numerical simulations show that the PU-MEKF can perform the IMU-camera

calibration achieving sub-centimeter and sub-degree accuracy. The PU-MEKF higher robustness

and better consistency are highlighted and compared to those of the conventional MEKF.

The simulation is set such that the IMU-camera system undergoes motion to stimulate all six

degrees of freedom. However, the simulated system motion is constrained to ensure that the pinhole

camera model predominately has the simulated markers on sight (based on its field of view-FOV).

A set of four simulated arUco markers is used to provide a set of 16 available features. The

pinhole camera is simulated with a FOV of 58 degrees horizontal and 45 degrees vertically, and a

resolution of 640x480 pixels. The camera measurement error standard deviation is considered to

be two pixels. The IMU rate is set at 100 Hz, and it is assumed that the image frame rate is 20 Hz.

The process noise (IMU noises and bias drift) is taken directly from the VectorNav IMU VN-100

datasheet (this IMU is used in the hardware implementation). The motion history for a single run

typically looks like the trajectory shown in Figure 6.2. In this figure, the starting IMU position is

indicated with the blue dot.

Again, the simulations intend to highlight the PU-MEKF gain in robustness over the (con-

ventional) MEKF capabilities. In this vein, the filters are stressed by using relatively high initial

uncertainty on the global IMU attitude, δθ, and IMU-camera attitude error parameters, δα.

First, the results comparing the MEKF and PU-MEKF outcome for a typical single run under

the same motion and conditions, are shown. The initial conditions for the single runs are indicated

in Table 6.1, along with relevant IMU-camera calibration parameters. The uncertainties indicated

in Table 6.1 represent a 1-σ value. The IMU-camera attitude uncertainty was selected as two times

143

Figure 6.2: Simulated trajectory for a typical IMU-camera calibration run (in blue) and image
features (in red).

the maximum uncertainty the regular MEKF can handle this scenario without diverging. Although

the capabilities of the MEKF for this application are also dependent on simulated motion and

simulation parameters, the objective is to show the PU-MEKF robustness gain under the same

scenario. It is important to mention that although the initial condition is a random draw from the

initial error distribution, both filters use that same random draw as the initial condition.

Table 6.1: IMU-camera calibration parameters

State/parameter Value
IMU-camera attitude uncertainty 2 deg
Lever arm uncertainty 5 cm
IMU attitude uncertainty 2 deg
IMU position uncertainty 5 cm
Camera frame rate 20 Hz
IMU rate 100 Hz
Camera pixel uncertainty 2 px

144

0 20 40 60 80 100
-0.05

0

0.05
1

Rotation error offset

0 20 40 60 80 100
-0.05

0

0.05

2

0 20 40 60 80 100

Time (s)

-0.05

0

0.05

3

Estimate

3

(a) MEKF. Units are in radians.

0 20 40 60 80 100
-0.05

0

0.05

1

Rotation error offset

0 20 40 60 80 100
-0.05

0

0.05

2

0 20 40 60 80 100

Time (s)

-0.05

0

0.05

3

Estimate

3

(b) PU-MEKF. Units are in radians.

Figure 6.3: IMU-camera attitude error for a typical simulation run. Initial condition is a random
draw. MEKF and PU-MEKF use the same initial condition.

The partial-update weights for this system were set to the following values:

βδθ = diag

[
0.95 0.95 0.95

]
, (6.63)

βδWpI
= diag

[
0.95 0.95 0.95

]
, (6.64)

βδWvI
= diag

[
1 1 1

]
, (6.65)

βδbg = diag

[
1 1 1

]
, (6.66)

βδba = diag

[
1 1 1

]
, (6.67)

βδIpC
= diag

[
0.25 0.25 0.25

]
, (6.68)

145

βδα = diag

[
0.25 0.25 0.25

]
. (6.69)

Such that,

β = diag(βδθ,βδWpI
,βδWvI

,βδbg ,βδba ,βδIpC
,βδα) . (6.70)

In Figure 6.3, the MEKF estimates for the relative rotation between the camera and IMU are

seen to be inconsistent as its estimates are outside the 3σ bounds. This inconsistency stems from

the incapacity of the MEKF to handle the relatively high initial uncertainties of this scenario. On

the other hand, the PU-MEKF can handle the situation better, and not only do the estimates appear

consistent, but the estimation errors are convergent to zero. Effectively, the PU-MEKF reduces

initial overreactions of the filter and allows for more proper cross-correlations to be built while

information is being gained, and overall helping to prevent divergence. In contrast, the MEKF

early on in the simulation attempts large corrections when the uncertainty is high, and the cross-

correlations are still being constructed. Although the PU-MEKF converges slowly, it can recover

from the initial errors and better handle the nonlinearities than the MEKF. Moreover, once the filter

recovers from the initial errors, it produces consistent estimates (estimated error covariance in the

filter are well representing the actual errors, and the average error tends to zero as sample size

increases), as seen from the 500 Monte Carlo runs in Figure 6.7. Similarly, displayed in Figure

6.4 and 6.5 results for the single run for the lever arm error and the global position estimates,

respectively, are seen improved when the PU-MEKF is utilized.

To further investigate the filters, a 500 runs Monte Carlo simulation utilizing the initial uncer-

tainties from Table 6.1 for the random draws, is performed. Figures 6.6 and 6.7 specifically show

the position of the IMU with respect to the world frame (p̂I W) (for all 500 runs), which ultimately

is what is sought to be improved by finding the IMU-camera calibration. These Monte Carlo re-

sults show that the MEKF, from Figure 6.6, it is unable to handle many of the initial conditions,

causing navigation errors up to the order of meters or leading to divergence in many others. In

contrast, the PU-MEKF shows a more robust behavior and more consistent estimates. In Figures

146

0 20 40 60 80 100

-0.1

0

0.1

x
(m

)

Lever arm error Ip
c

0 20 40 60 80 100

-0.1

0

0.1

y
(m

)

0 20 40 60 80 100

Time (s)

-0.1

0

0.1

z
(m

)

Estimate

3

(a) MEKF

0 20 40 60 80 100

-0.1

0

0.1

x
(m

)

Lever arm error Ip
c

0 20 40 60 80 100

-0.1

0

0.1

y
(m

)

0 20 40 60 80 100

Time (s)

-0.1

0

0.1

z
(m

)

Estimate

3

(b) PU-MEKF

Figure 6.4: IMU-camera lever arm errors for a typical simulation run. Initial condition is a random
draw. MEKF and PU-MEKF use the same initial condition.

0 20 40 60 80 100
-0.1

0

0.1

x
 (

m
)

IMU position error W p
I

0 20 40 60 80 100
-0.1

0

0.1

y
 (

m
)

0 20 40 60 80 100

Time (s)

-0.1

0

0.1

z
 (

m
)

Estimate

3

(a) MEKF

0 20 40 60 80 100
-0.1

0

0.1

x
 (

m
)

IMU position error W p
I

0 20 40 60 80 100
-0.1

0

0.1

y
 (

m
)

0 20 40 60 80 100

Time (s)

-0.1

0

0.1

z
 (

m
)

Estimate

3

(b) PU-MEKF

Figure 6.5: IMU global position error for a typical simulation run. Initial condition is a random
draw. MEKF and PU-MEKF use the same initial condition.

147

6.6b and 6.7b the averaged standard deviation (computed using the filter covariance estimate) is

compared with the sampled standard deviation (computed using the actual estimation errors) from

all of the runs. It can be seen that the PU-MEKF estimated covariance, from Figure 6.7b, is such

that is very close to standard deviation of the true errors. In fact the PU-MEKF is slightly over-

confident, but it is far better than the conventional MEKF results displayed in Figure 6.6b. The

PU-MEKF error mean is also plotted in this figure. It also can be seen that early in the simulation,

as the filter attempts to estimate the state, the error mean is not precisely around zero (due to the

large initial uncertainties, errors, and nonlinearities), however, as the filtering develops the mean

of the error tends to zero. The fact that the PU-MEKF standard deviation essentially matches the

actual standard deviation of the errors, and that the mean of the estimation errors tends to be zero

over time, makes the PU-MEKF a consistent filter for this scenario.

The use of a PU-MEKF for the IMU-camera calibration problem does not remove the need

for initializing the filter with proper values, nor suggests that better initialization methods should

not be used. Instead, it gives far more room to have bad initial uncertainties while still providing

converging results, relaxing the initialization methods and filter requirements. This capabilities of

the PU-MEKF, and the fact that it is a sequential filter that runs online, makes it suitable for on-

board-online calibration. Finally, these simulations demonstrated that the PU-MEKF could allow

the same MEKF structure to broadens its applicability, and specifically for this case, enable its use

for IMU-camera calibration. The next section presents the results of its hardware implementation.

6.1.5 Hardware experiments

6.1.5.1 Setup

The hardware implementation uses the PU-MEKF in UD factorized form. The experiments

setup includes an Orbec Astra Pro RGB-D camera, and a VectorNav IMU VN-100 mounted on a

rigid support. The arUco target used for calibration includes four markers, providing 16 known fea-

tures. An Optitrack motion capture system is used to acquire ground reference data for the arUco

markers and IMU, but it is not by any means used to validate the approach presented (Optitrack

148

(a) 500 Monte Carlo runs for IMU global position
error (m).

0 20 40 60 80 100
0

1

2

x

Standard deviations comparison. W p
I
 error

Averaged std from P

Sampled std

mean

0 20 40 60 80 100

0

1

2

y

0 20 40 60 80 100

Time (seconds)

0

1

2

z
(b) Estimated and actual standard deviation (m2) for
500 Monte Carlo runs, and filter mean errors (m).

Figure 6.6: Monte Carlo runs for MEKF

beacons are not aligned with the unknown IMU reference orientation). Instead, the re-projected

pixel position error consistency, along with calibration parameter results, are used to validate the

PU-MEKF approach. The IMU-camera calibration filter uses the partial-update weights of Equa-

tions (6.63)-(6.70).

The RGB-D camera images are captured at 20Hz, while the IMU sampling rate is 200 Hz. The

calibration filter is run while the IMU-camera system was subject to general motion (as to excite

all degrees of freedom) while arUco features are visible 99% of the time. The profile of the posi-

tion in the hardware experiments tries to mimic those of the simulations (Figure 6.2). Regarding

magnitudes of motion velocities, at times, they are as large as the exposure time allows to obtain

non-blurred images (maximum 1 m/s). The position amplitudes are as large as possible to allow

the motion of the setup (by hand) with ease (approximately motions of up to 60 cm/s of amplitude).

Rotational motion covers the range of up to about ± 45 deg for azimuth and elevation, and up to

approximately ± 90 deg for rotations about the camera axis. Finally, the arUco calibration target

is placed vertically and approximately aligned with the gravity vector with the use of the motion

149

(a) 500 Monte Carlo runs for IMU global position
error (m).

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

x

Standard deviations comparison. W p
I
 error

Averaged std from P

Sampled std

mean

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

y

0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

0

0.02

0.04

0.06

z

(b) Estimated and actual standard deviation (m2)
for 500 Monte Carlo runs, and filter mean errors
(m).

Figure 6.7: Monte Carlo runs for PU-MEKF

capture system (calibrated to make one of its axis reference frame align with the gravity vector).

6.1.5.2 Filter Initialization

To initialize the filter, specifically for IMU global position (pI W) and orientation q̄IW , the fol-

lowing steps are taken. First, the perspective-n-point (PnP) algorithm is executed by using the

known features positions and the detected arUco features positions. The PnP solution provides

the position of the camera with respect to the world coordinatized in the camera frame, namely

[pW
C]C , and the camera attitude with respect to the world frame, CCW . Then, as per Figure 6.1 the

initial estimate for the IMU position vector is constructed as pW
I = − CIW

T(pI C + CCI
T[pW

C]C).

Similarly, the initial global attitude of the IMU is obtained via CIW = CCI
T CCW .

Rather than computing the PnP solution once, the initialization procedure averages 20 PnP

solutions (Euler angles were used for attitude averaging) while the IMU-camera system remains

still. The PnP computation is performed using the solvePnP function from OpenCV 3.3.1.

Concerning the initial values for the IMU-camera lever arm, they are measured with a ruler for

150

this setup (for the three axis). More complicated setups than the one utilized here may need to

rely on 3D-CAD models, or even use additional motion-capture beacons to approximate the IMU-

camera lever arm. The IMU-camera relative attitude initialization was simplified by placing the

camera and IMU, such that one plane of the IMU reference frame was approximately coincident

with a plane of the camera reference frame. In this way, three simple rotations through three angles

were eye-balled and rounded to a closed number. Specifically, the IMU to camera attitude initial

estimate was constructed by composing three single rotations through Euler angles [z : 90 deg, y :

0 deg, x : 90 deg] (in that order with respect to the local axis). Note that for filter initialization,the

quaternion parametrization is extracted from this constructed rotation matrix.

Finally, the initial velocity was set to zero with very low uncertainty, while the biases for

gyroscope and accelerometer were initialized with zero values, and their initial covariances are set

based on the values included in the VectorNav-100 IMU’s datasheet.

6.1.5.3 Results

In this section, the IMU-camera calibration results are presented. As the truth values are not

available, the re-projection errors for the features are used as an indicator for calibration accuracy.

For all the experiments performed, all IMU degrees of freedom are excited while the arUco features

are on sight. The motion trajectories attempt to resemble those from the numerical simulations.

The plots for the experiments using a full EKF are not included, but they were either divergent,

similar to what is shown in Figure 6.4 or inconsistent as in the results shown in the simulations of

chapter 3.

Calibration results for a typical hardware experiment are shown in Figures 6.9-6.11. Figure

6.9 shows the IMU-camera lever-arm having a sub-centimeter accuracy and consistent estimate at

the end of the experiment. Although the lever arm calibration is barely sub-centimeter accurate, it

is seen that the filter is able to refine the initial estimate and despite the high initial uncertainties

(recall that a MEKF is divergent under this scenario). The global IMU position results, which is

what ultimately is sought to be improved by refining the IMU-camera parameters, are shown in

Figure 6.10. From this figure, it is observed that at the beginning of the experiment, the global

151

IMU position does not really "track" the Optitrack reference data; instead, it seems to diverge from

it. This result is expected because the calibration parameters are initially unrefined, in addition,

the entire state vector is experiencing transients. By the middle of the run (approximately time

t = 60s), the filter position estimates and ground reference appear to be more coincident in be-

havior with the ground reference, indicating that calibration parameters and biases are establishing

in more appropriate values. As the experiment progresses towards its end, from Figure 6.9 can be

observed that the lever arm evolution reaches a steady-state, while in Figure 6.10 the IMU global

position is seen to practically match the motion pattern of the ground reference. Again, although

motion pattern matching is expected, this is not considered an indication of appropriate calibration

(since motion capture markers and actual IMU frames alignment is unknown). Rather, the mea-

surement residuals are used for consistency check and filter validation. The filter, in fact, shows

consistency as from Figure 6.8, where residuals shows to have zero mean, and remain within the

3-σ bounds. Although true values for the calibration parameters are unavailable, the calibration

parameters given by the filter were found realistic, and since the residuals were generally small

and consistent, the PU-MEKF estimates were considered to be valid. The IMU velocity estimates

are also showed agreement with ground truth data as seen in Figure 6.11.

6.1.6 Summary

This hardware application uses a PU-MEKF filter in UD factorization form. Through this ap-

plication the PU-MEKF was shown to appropiately accommodate constant nuisance parameters in

a Schmidt-like form while providing significant robustness against high uncertainty and nonlinear-

ities. All, while retaining a familiar EKF framework.

Numerical results showed that the PU-MEKF could achieve precise IMU-camera calibration

while tracking core states. Further, Monte Carlo runs demonstrated that the proposed PU-MEKF is

a consistent filter, and although the true parameters are unknown, filter consistency is corroborated

by the measurement residuals being relatively small and consistent. Other than requiring exciting

all IMU degrees of freedom, the calibration filter needs an arUco target for the feature extrac-

tion. Nevertheless, a pattern (either checkerboard or arUco or one of its variants) is often available

152

0 50 100 150 200 250

Time (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

p
x

Reprojection error residual

Figure 6.8: Measurement residuals in pixels (px). The residuals indicate filter consistency. These
residuals are employed to validate filter results since no true values for the calibration parameters
are available.

as they are also used for intrinsic camera calibration. The filter simple initialization method and

relatively low computational requirements, make the UD PU-MEKF suitable for on-board imple-

mentation, as demonstrated in this application.

6.2 A simplified Unmanned Aerial Vehicle state estimation framework

6.2.1 Introduction and Motivation

For many research projects that use aerial robots, significant effort is dedicated to building

and sometimes adapting commercially available components to suit the use case. Furthermore,

developing reliable flight software infrastructure diverts considerable amount of time from the main

research topic. Attempting to overcome these bottlenecks, a few research groups have opted to use

commercial-off-the-shelf (COTS) flight decks such as the PixHawk [91] which is well suited for

hobbyist-grade flight and way-point navigation in outdoor environments, but can be challenging to

153

Camera-IMU lever arm

0 50 100 150 200 250

0.1

0.15

0.2
x (m)

Estimate

3

0 50 100 150 200 250

0.15

0.2

0.25
y (m)

Estimate

3

0 50 100 150 200 250

Time (s)

-0.1

-0.05

0
z (m)

Estimate

3

Camera-IMU lever armCamera-IMU lever armCamera-IMU lever armCamera-IMU lever armCamera-IMU lever armCamera-IMU lever arm

Figure 6.9: Lever arm hardware calibration result. The lever arm is considered to be the position
vector of the camera with respect to the IMU reference frame.

augment and customize due to their complex code base. Alternatively, commercial platforms such

as the Parrot Bebop [92] and AR Drone [93] are also actively used, but proprietary hardware and

software restrict their available functions and behavior. Some research groups have also created

their own, very specific navigation solutions [94], [95], [96], but most of them tend to be highly

specialized, and modifying them to meet the user needs can be time consuming and there is no

guarantee of obtaining favorable results.

In order to mitigate such complications, the Autonomous Vehicle Laboratory (AVL) in the

University of Florida’s Research and Engineering Education Facility (REEF), and the Land Air

and Space Robotics Laboratory (LASR) at Texas A&M University, where researchers have also

experienced technical difficulties, in a collaborative effort, have proposed a new starting point to

establish flight capabilities: the REEF Estimator. The REEF Estimator is an open-source and

154

Figure 6.10: Position of the IMU with respect to the inertial frame hardware calibration result.

easy-to-use flight system that allows users to have a vehicle flying in a reliable manner without

the need for GPS or motion capture (for the ease of understanding REEF Estimator refers to

the whole system, but this includes the vehicle states estimator and its controller). The REEF

Estimator is not intended to demonstrate state-of-the-art flight capabilities, but rather to be a

tractable, functional and easy-to-use implementation that offers new laboratories and students

a solid launching point for multirotor-based project development. Interested users can find the

repository with the code base, flight simulator, hardware list and assembly instructions at https:

//github.com/uf-reef-avl/reef_estimator_bundle.

The attractive features of the REEF estimator are the modularity and simplicity of the estima-

tion approach. The multirotor estimator is broken into more accessible pieces: an attitude filter,

a local-level-frame six-state velocity filter, and a three-state altitude filter, along with their associ-

ated controllers. Besides, any part can be used independently or replaced if needed. The REEF

155

https://github.com/uf-reef-avl/reef_estimator_bundle
https://github.com/uf-reef-avl/reef_estimator_bundle

Figure 6.11: Velocity of the IMU with respect to the inertial frame hardware calibration result.

Estimator has been leveraged in several research problems providing a reliable and stable flight for

data collection and visual odometry experiments, like the one reported in [97]. Also, the AVL has

also used the three-state altitude estimator to introduce students to the EKF, C++ programming,

the ROS environment, and even advanced control theory topics, to mention some.

The altitude estimator and controller can be used independently of the lateral velocity estimator

to remove throttle control from the hands of less experimented pilots. This setup alone has saved

numerous flight vehicles from crashing and makes flying much more straightforward. If desired,

the user can use the available REEF Estimator capabilities as-is to, for example, collect data in

a more controlled flight setting (this supports several image processing efforts that require flights

commensurate with stable autonomous vehicles), or exercising SLAM algorithms that generate

maps and desired trajectories below allowable control rates. Laboratories at partnering universities

are currently using this setup to support their research experiments. “Out of the box," the REEF

156

Estimator consists of a modular open-source code base written using the ROS framework [98],

COTS components, and extensive documentation that makes it accessible to users of all levels of

expertise.

It is important to mention that the REEF estimator’s simplicity and functionality rely entirely

on the application of the partial-update filter. The REEF estimator uses a UD partial-update fil-

ter to be specific. In contrast to the conventional EKF, the partial-update approach was able to

maintain a consistent filter. It mainly prevents the mildly observable states IMU biases, the nui-

sance parameters for this application, from being over updated (in this case mainly due to model

simplification) but still to estimate them. Consequently, allowing the filter core states to settle in

more appropriate state and uncertainty values that produced a well-behaved estimator. The use of

a conventional Schmidt or consider filter was not appropriate since it was unable to cope with the

slowly-changing biases, especially for long flights.

The description of this hardware application is organized as follows. Section 6.2.2 gives an

overview of the proposed solution. Sections 6.2.3 and 6.2.4 discuss the details on the estimator and

controller, respectively. The experiments used to validate the estimator and controller are discussed

in Section 6.2.5. Finally, Section 6.2.6 includes a summary of the hardware implementation.

6.2.2 High-Level System Overview

The REEF Estimator is based on an existing attitude estimator available through the ROSFlight

[99] autopilot flight deck and a UD partial-update extended Kalman filter with a simplified model

for local-level frame velocities and vehicle altitude estimation. Standard PID controllers are used

to stabilizing the platform. The simplified state dynamics and controllers are chosen to keep the

code readable and straightforward to implement, and while the proposed solution is not optimized

in any way, the final product is intuitive to fly and easy to modify if needed. Figure 6.12 shows a

block diagram of the framework presented in this section.

157

6.2.2.1 Autopilot

The REEF estimator uses ROSFlight for attitude estimation. ROSFlight, which inherits the

flexibility of ROS, is essentially a plug-and-play autopilot system. It runs on a Flip32 board that

also serves as a physical interface between actuators and the on-board computer. Effectively, ROS-

Flight directly uses the data from the Flip32’s on-board IMU to provide attitude estimates. The data

coming from other sensors (e.g., sonar) connected to the Flip32 board are also available through

the ROS interface (published by ROSFlight). In Figure 6.12, ROSFlight, and the Flip32 board are

drawn inside the same box to denote them as the autopilot system. The REEF Estimator that runs

on the on-board computer uses the sensor data and the ROSFlight attitude estimate to generate the

velocity and altitude estimates of the vehicle.

6.2.2.2 On-board computer

The estimators and controllers are designed and implemented to be executed on an on-board

computer like Odroid or Intel NUC. The REEF Estimator (consisting of the estimators and con-

trollers) is drawn in Figure 6.12 as independent white boxes. Although the altitude and velocity

estimator are contained in the same module, the user can use or replace them independently as

required. As mentioned before, this can be useful if the human pilot desires to take control on the

local-frame, leaving the altitude to be controlled by the computer. This mode is the most used at

the AVL and LASR laboratories. This hardware implementation uses a commercial RGB-D sen-

sor (to obtain velocity measurements indirectly) and a sonar (for altitude) to demonstrate the REFF

estimator’s functionality.

Inside the on-board computer box in Figure 6.12, the block called RGB-D Odometry receives

RGB-D measurements (color images and depth information) and uses them to obtain velocity mea-

surements. These measurements are then fed into the REEF Estimator. The details on how velocity

estimates are generated from RGB-D data are given in Section 6.2.3.4. Finally, a block called ve-

locity reference is also shown in Figure 6.12. This block denotes that the on-board computer can

also receive high-level velocity commands from an external source, which can be very useful if a

158

third-party algorithm is generating the guidance information.

Figure 6.12: Block diagram of the REEF Estimator framework. Reprinted with permission from
[2].

6.2.3 Estimator Design

The REEF Estimator framework uses a UD partial-update EKF for XY local-level velocity

estimator and a UD linear Kalman filter for the altitude Z. Local-level refers to the fact that the

XY velocity estimation is performed in a body-fixed frame in which the XY plane is parallel to

the XY plane of the inertial frame as pictured in Figure 6.13. The local-level frame is also referred

to as the body-level frame in this implementation. From here on, the x and y velocity estimator is

referred as the XY estimator, and the altitude estimator as the Z estimator.

159

blx

blz

bfx

bfz

nx

nz

n - Inertial Frame
bl - Body Level Frame

bf - Body Frame

Figure 6.13: The body and body-level frames are co-located and share the same yaw angle. The XY
plane in the body-level frame is parallel to the inertial frame XY plane. Reprinted with permission
from [2].

6.2.3.1 Propagation of the Z estimator

As illustrated in Figure 6.12, REEF Estimator relies on the attitude estimates coming from the

sensors, ROSFlight autopilot, and the IMU readings coming from the Flip32. This data is used for

the propagation step. The estimator performs Euler integration to propagate the state vector. The

Z estimator state vector is comprised as follows:

x̂z =

[
ẑ ˆ̇z b̂az

]T
. (6.71)

Where ẑ, ˆ̇z and b̂az is the altitude, vertical velocity and the accelerometer bias (in the direction of

gravity) estimates, respectively. The Z estimator outputs are expressed in the gravity aligned iner-

tial frame (positive direction being downwards). The altitude estimator process model is comprised

as

ˆ̇xz =


ˆ̇z

ãz + b̂az − g

0

 , (6.72)

160

where ,ãz, is the short notation for the third element in the vector [ãz]n, that represents the ac-

celerometer measurement in the z direction expressed in the inertial frame (n denoting the inertial

frame). Specifically, ãz is obtained by

[ãz]n = Cbn
T[ãz]b . (6.73)

Here, Cbn is the attitude matrix given by the ROSFlight autopilot. The Cbn is considered to be

known without uncertainty, but notice that attitude bias states will be used to address autopilot

attitude errors in the XY estimator (discussed in subsection 6.2.3.3). Finally, g is the magnitude of

the acceleration due to gravity. Covariance state propagation occurs according to the UD partial-

update filter equations from Table 4.1 from Chapter 4.

6.2.3.2 Measurement update for the Z estimator

The Z estimator implementation considers that direct altitude measurements are available, thus

the measurement matrix is H =

[
1 0 0

]
. The measurement noise covariance, R, is selected

according to the sensor used. The measurement update is performed according to the UD partial-

update filter equations from Table 4.1 from Chapter 4.

6.2.3.3 Propagation of the XY estimator

The XY velocity estimator consists of six states with the following state vector:

x̂xy =

[
v̂x v̂y b̂qx b̂qy b̂ax b̂ay

]T
. (6.74)

Where v̂x and v̂y are the velocities in the x and y directions in the body-level frame; b̂qx and b̂qy

are the roll and pitch attitude bias; and b̂ax and b̂ay are the accelerometer biases in the x and y

directions in the body-level frame. The reason for including the attitude bias states, b̂qx and b̂qy , is

to compensate for errors in the ROSFlight attitude estimate. The process model for the XY velocity

161

estimator is the following:

ˆ̇xxy =


Cblb 2×3(ã + b̂a + Cbn g)

03×1

03×1

 . (6.75)

Here, Cblb is the attitude matrix that takes a vector represented in the body-fixed frame to its rep-

resentation in the body-level frame. The term Cblb 2×3 is the 2 × 3 top-left block of Cblb matrix,

hence Cblb 2×3(ã + b̂a + Cbn g) is a 2 × 1 acceleration vector in the body-level frame (acceleration

in the x and y directions). The two zero vectors, 03×1, are the result of considering the biases as

random walks with zero-mean Gaussian distribution. Equations (6.72) and (6.75) are directly used

for state propagation, whereas the Jacobian matrix Fk =
∂f k
∂x

∣∣∣
x̂−
k−1

is computed at every time-step

for propagating the covariance matrix. Notice that the rotation matrices from Equation (6.75) are

given by ROSFlight, thus its notation omits the hat tilde.

The simplification of the kinematics (with respect to a dynamical model) is apparent from

(6.75). The fact that some modeling details like vehicle physics have not been considered in the

process model may produce less accurate estimates than a complete model system. However, as

pointed out before, the intention is not to create the perfect filter but rather a simple filter that is

easy to understand and modify. The shortcoming is acknowledged through the modularity of the

code. If a particular use-case (like rapid motion) cannot be executed due to some of the modeling

assumptions, the user can replace the model with a more suitable one, without disrupting the central

architecture of the REEF Estimator. In fact, the modularity has been tested by exchanging the UD

partial-update EKF based REEF Estimator with the square root form developed in Chapter 3. The

whole process involved a swap of files and changes to few lines of code.

6.2.3.4 Measurement update for the XY estimator

The XY filter relies on body-level velocity measurements. For the REEF Estimator code base

the algorithm described in [100] is used to obtain delta-pose estimates from RGB and depth im-

ages. The delta-pose is then numerically differentiated and transformed from the camera frame to

the body-level frame. This transformation is straightforward since attitude estimates are readily

162

available from ROSFlight. Since level-frame velocity measurements are generated, the H matrix

is considered as H = [I2×2,02×6]. A fixed measurement error covariance was chosen experimen-

tally.

6.2.3.5 Partial-update filter modification

Due to the use of Euler integration on attitude and accelerometer, apparent mismodelling of

the system, nonlinearities and nuisance parameters present in the system, running the REEF Esti-

mator with a conventional EKF was no functional. For some flight data the traditional EKF even

divergent. Overall, the filter produced completely unrealistic covariance values for the velocity,

and thus statistically inconsistent estimates. The first attempt at mitigating this behavior was to

increase the process noise covariance (especially for the biases), however this led to poor perfor-

mance when there were measurement outages, plus the estimates tended to be highly conservative.

As an alternative solution, the partial-update Kalman filter was applied. For numerical robustness,

the UD partial-update version was used.

Following the notation introduced in previous chapters, partial-update weights for the XY ve-

locity estimator were selected to be close to

βXY = diag

[
βx βy βr βp βbax βbay

]
(6.76)

= diag

[
1 1 0.01 0.01 0.01 0.01

]
.

Using this partial-update configuration the vehicle to fly in a stable, reliable, and repeatable manner.

In other words, a 100% update for body-level frame x and y velocities was applied, whereas a 1%

update on the bias attitude (roll βr and pitch βp) and accelerometer (bax and bay) updates was used.

Also with an appropriate flying behavior in mind, the altitude estimator Z was set to use percentage

values of βZ = diag

[
βz βż βbz

]
= diag

[
1 1 0.5

]
. That is, the updates percentages were

100 % on z position and z velocity, while a 50% update was applied to the bias state.

163

6.2.3.6 The XY and Z filters operation frequency

Since the accelerometer measurements and attitude estimates are used to propagate the system

Equation (6.72) and (6.75), the REEF Estimator runs at the rate at which the IMU delivers mea-

surements. The measurement update on the other hand, is executed at measurement arrival. With

the hardware setup presented here, the propagation step is executed at 500Hz while the updates are

performed at 40 Hz for sonar and 20 Hz for the RGB-D measurements.

6.2.4 Controller Design

The REEF Estimator uses a cascaded Proportional-Integral-Derivative (PID) control imple-

mented within the ROS environment. The PID controller is well established in the controls com-

munity and has been been widely used to control UAVs [101], [102]. Figure 6.14 shows how the

cascading in the PID controller occurs (e.g. computations from zrequest to żrequest to z̈request). The

PID controllers in the REEF Estimator receive altitude and body-level velocity requests along with

the state estimates from the on-board computer. Then the altitude controller maps the altitude error

(difference between the altitude request and current altitude) into a vertical velocity setpoint, which

in turn is mapped to a thrust setpoint using the z velocity estimate. The x and y velocity requests

are mapped to attitude setpoints (pitch and roll, respectively) based on the error with respect to the

velocity estimates. The yaw-rate requests are directly fed to the ROSFlight deck. The error cal-

culations are performed according to the equations that appear in Figure 6.14. The mapping from

error (difference between request and state estimate) into attitude and thrust setpoints is performed

via the standard PID control law from the following equation:

uk = Kpek +Ki

k∑
i=0

ei∆ti +Kd
ek − ek−1

∆t
, (6.77)

where e denotes the error value, and u is the control signal to be applied (attitude or thrust).

Kp, Ki, and Kd denote the proportional, integral, and derivative gains, respectively, and ∆t is the

time interval between estimates. In Figure 6.14, the controller structure and flow of data through

the system is shown. It is worth noting from the bottom box (where the attitude commands θ

164

Set Gains
Load tuned PID gain pa-

rameters for all controllers

Error Calculation
Calculate the errors:

żrequest = PID(zrequest − ẑ)

ẍrequest = PID(ẋrequest − ˆ̇x)

ÿrequest = PID(ẏrequest − ˆ̇y)

z̈request = PID(żrequest − ˆ̇z)

PID(e) = Kpe+Kdė+Ki

∑
e dt

Calculating Attitude
and Thrust Requests

thrust = −z̈request
φ = ÿrequest
θ = −ẍrequest

ROSFlight

Thrust & Atti-
tude request

Figure 6.14: Flowchart for the XY and Z PID controllers. Reprinted with permission from [2].

(pitch), φ (roll), and thrust request are calculated) that the thrust and pitch values are multiplied by

a minus sign. This is just because the design of this platform follows the North-East-Down (NED)

reference frame convention.

The controller framework within the REEF estimator was designed to be completely modular,

with any software component, input, or output being replaceable or re-configurable with relative

ease. For example, the velocity, altitude and yaw rate requests, can come from an RC or a gaming

controller, or a high-level path planning algorithm. Additionally, the controller supports multiple

modes of operation that intend to facilitate flight tasks. If users desire to use the system for data

collection, using the altitude-hold mode would be recommended as they only have to focus on

165

commanding motion on the XY plane. This alone is a big benefit when compared to flying with an

RC transmitter commanding thrust and attitude simultaneously.

The current setup of cascaded PID control, while not robust to disturbances or capable of

agile flight, is adequate for the intended purpose of expediting the process of establishing flying

capabilities. Nevertheless, if the need for a different controller arises, the current code architecture

enables its easy integration or substitution.

6.2.5 Hardware implementation

The REEF Estimator was exercised on a hardware setup that uses a commercial S500 quadro-

tor frame, along with its corresponding brushless DC motors and motor controllers (ESCs). The

RGB-D images used to estimate x and y velocity, come from an Orbec Astra Pro camera, while a

MaxBotix MB1242 sonar provides altitude measurements. Since the purposes of the vehicle may

vary from simple flight data collection, high load SLAM algorithms evaluation, to new control

laws or estimators development, an Intel NUC computer with an i5 processor was incorporated.

This on-board computer runs the Ubuntu 16.04 operating system and ROS Kinetic. Figure 6.15

shows a picture of the hardware setup utilized to generate the plots presented in this section. Mo-

tion capture markers were placed on the multirotor body in order to obtain ground truth data for

validation only. However, motion capture data can easily replace velocity or altitude measurements

or both if desired.

6.2.5.1 Flight performance

The results presented in this section are from a single flight in altitude-hold mode. The PID

controller uses the REEF Estimator states as feedback while data from an OptiTrack motion capture

system is recorded for ground truth reference. In this setup the PID controller receives velocity

requests from a Logitech F710 gamepad. The appendix A contains the values of all the parameters

used by REEF Estimator when generating the plots shown in this section.

Figure 6.16 shows a representative fragment of the XY velocity and Z altitude estimates from

a flight. The true velocity (position numerically differentiated) from the motion capture system

166

Figure 6.15: Experimental quadrotor platform. Reprinted with permission from [2].

and the RGB-D velocity measurements are also included in the plot. From Figure 6.16a, it can

be observed that although the estimates are somewhat conservative, they track the ground truth

very closely. The velocity filter in the y direction, as depicted in Figure 6.16b exhibits accurate

tracking as well, and the estimated covariance appears lower than the x direction suggesting higher

observability in the y (lateral) direction. The fact that the altitude is directly measured is reflected

in the altitude filter estimates quality, as they track the ground truth very precisely, as observed in

Figure 6.16c. Overall, the UD partial-update filter is able to handle this scenario with varying nui-

sance parameters well, providing appropriate estimates for the core that allow stable and repeatable

flight. Again, although a Schmidt filter was also implemented, it could handle the drifting biases

(nuisance parameters) in general, producing divergent estimates in most of the experiments using

the described hardware setup.

The tracking performance of the PID controller is shown in Figure 6.17. Although the com-

mand tracking is far from being perfect for the x and y velocity controllers (as seen in Figures

6.17a and 6.17b, respectively), the intention is to provide a solid launching point for stable and

repeatable flight. In Figure 6.17c, the altitude controller performance is shown to be able to track

the reference accurately. The first 20 seconds of Figure 6.17c show the quadrotor to be on the

ground waiting for the pilot to command the take-off. The multirotor starts tracking the reference

of -1 meter once in the air (recall that NED frame is used). Notice that when the vehicle is on the

167

60 65 70 75 80 85 90

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

V
e

lo
c
ti
y
 (

m
/s

)

X Velocity Estimator

REEF Estimate

2 Covariance

Truth

Measurement

(a)

ground, its minimum height is -0.25 meters (this is the mounting height for the altimeter).

The REEF Estimator is equipped with a χ2 rejection scheme based on the Mahalanobis distance

[103]. This scheme allows the filter to ignore erroneous and inconsistent altitude and velocity

measurements (that may be due to the occasional generation of outliers). A common outlier for a

low-grade ultrasonic sensor (as the one used here) is observed in Figure 6.16c at time t ≈ 81s. The

rejection scheme, however, appropriately ignores the altitude measurement, as can be seen from

the unaffected state estimate.

In the case of a velocity request of zero m/s, this controller has been seen to allow the vehicle

to drift only about 20 cm over 60 seconds for the x and y axis, although this may be trim quality

dependent. The vehicle’s global position is not estimated; however, the current controller is written

to receive position requests and use a motion capture system as feedback. This setting may be

useful for specific experiments indoors as development and testing of guidance laws or SLAM

algorithms.

168

150 155 160 165 170 175 180

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
e

lo
c
it
y
 (

m
/s

)

Y Velocity Estimator

REEF Estimate

2 Bounds

Truth

Measurement

(b)

60 70 80 90 100 110

Time (s)

-1.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9

A
lt
it
u
d
e
 (

m
)

Altitude Estimator

REEF Estimate

2 Bounds

Truth

Measurement

(c)

Figure 6.16: XY velocity and altitude from the REEF Estimator. The estimates are compared with
the ground truth from a motion capture system. Reprinted with permission from [2].

169

50 55 60 65 70 75

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
e

lo
c
it
y
 (

m
/s

)

X Velocity Controller

Truth

Commanded

Estimated

(a)

20 25 30 35 40 45

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
e

lo
c
it
y
 (

m
/s

)

Y Velocity Controller

Truth

Commanded

Estimated

(b)

170

0 10 20 30 40 50 60 70 80 90

Time (s)

-2.5

-2

-1.5

-1

-0.5

0

A
lt
it
u

d
e

 (
m

)

Z Altitude Controller

Truth

Commanded

Measurement

Estimated

(c)

Figure 6.17: Closed-loop performance of the multirotor. Reprinted with permission from [2].

171

6.2.6 Summary

The open-source REEF Estimator that leverages the partial-update capabilities to provide a

simplified estimator for flying vehicles. The results shown used the UD partial-update filter, but

the square root was also flown without complications. The main objective of this implementation

is to expedite the establishment of flight capabilities that can support specialized research. The

results for a typical flight showed the REEF Estimator’s functionality and ability to cope with non-

linearities and varying nuisance parameters; inherited benefits from the partial-update approach.

The REEF estimator package incorporates a PID controller that, in closed-loop, allows stable and

repeatable flight. Compared to the IMU-camera calibration hardware from the previous section,

a traditional Schmidt filter implementation is neither functional nor safe, especially for relatively

long flights with low-grade IMU’s, as is in this case. The reason is that varying biases (nuisance

parameters) are not estimated, and if their drift is important, the risk of vehicle crash due to filter

divergence increases.

The REEF Estimator is well suited for a large variety of end-users, starting for a beginner

lacking experience in hardware, estimation, and control theory, to experts who have worked with

similar platforms and want a system to support their work in a GPS or motion capture free en-

vironment. Since this solution does not depend on vehicle physics, it can be used on a different

multirotor frame than the one shown here. In fact, this has been validated on hexacopters and even

on ground robots (XY velocity estimator only). The full algorithms, flight simulator, and hard-

ware list along with links to the associated code and further documentation are provided online at

https://github.com/uf-reef-avl/reef_estimator_bundle.

6.3 Angular rate estimation of a non-cooperative space body using RGB-D measurements

6.3.1 Introduction and motivation

Recent work in [104] has studied the problem of determining if an observed orbital body is

exerting internal control of its attitude. This problem is of interest in space situational awareness

domain, in which a bad actor might deceptively use a “retired” satellite for covert surveillance.

172

https://github.com/uf-reef-avl/reef_estimator_bundle

The task of classifying satellites based on measurements of their angular rate also has implications

for orbital debris removal missions, in which mission planners may wish to prioritize debris targets

whose motion closely resembles rigid body motion. The work from [104] segmented the active

control detection problem into two tasks: 1) estimation of motion and 2) classification of motion

based on parameter estimation and statistical testing. The initial work suggested a simple χ2 test

for task #2. Nonlinear optimization was used to demonstrate task #1, but is not suitable for real-

time solutions.

This hardware application implements a vision-based technique to estimate the rigid-body an-

gular rate of a target body. This activity directly supports task #1 in the active control detection

problem. Here as in [104], any other torques that can potentially be present, such as those caused

by gravity gradients or air drag, are assumed negligible over the experiment’s time scale. The only

significant torques acting on the body should be assumed to come from internal control.

In this application, an RGB-D sensor is used as a stand-in for generic spacecraft measurements,

which could come from a high-resolution ground-based radar or a stereo-vision system on a chas-

ing spacecraft. The measurements acquired by the RGB-D sensor are used to build estimates of

the relative angular rate of the body being assessed. Since the primary objective of this implemen-

tation is to extract rotational kinematics information only, a dynamical model that includes mass

properties is not necessary.

In order to get information about the rotational motion, visual features on the body are detected

and then filtered by a selection criteria to eliminate low-quality features. The selected features are

then tracked between sequential images and used by a UD partial-update EKF to generate estimates

of the target’s relative angular velocity.

This hardware application involves nonlinear models and nuisance states as in the IMU-camera

calibration and the REEF estimator, but in contrast, and very interestingly, this is a case where the

nuisance states, namely the angular rates, are the states of interest; a case where the partial-update

concept is highly useful. Due to the nature of this scenario, a conventional EKF was seen to be

problematic and inconsistent. On the other hand, a Schmidt filter is not even an option because the

173

angular rates would not be estimated at all.

The IMU-camera calibration previously presented may seem similar to the angular rates es-

timation problem. However, in the IMU-camera calibration application, although the nuisance

parameters seem to be the sates of interest, they are not. In that example, the global navigation

states are the states of interest, while the calibration parameters are a necessity to improve such

navigation states. Put differently, the IMU-camera calibration parameters by themselves are not

useful.

6.3.2 Tracking and estimation system overview

Before going into the technical details, this section provides a brief description of the process

utilized to obtain the relative angular rate estimates based on RGB-D measurements. Details on

the actual implementation are given in the following subsection.

The vision system uses a simple frame-to-frame estimation approach, in which changes be-

tween sequential images are processed to estimate the relative angular rate of the object of interest.

The basic operation of the vision system can be summarized as follows:

1. Extraction of features: Salient features on the body are detected via a Shi-Tomasi corner

detector.

2. Selection of image features: Extracted features that fall outside a pre-selected 3D volume

are eliminated. The goal is to avoid using features that are prone to rapidly move out of the

image frame, and features that are far beyond the region of interest. Extracted features with

no depth information are also eliminated.

3. Tracking: The remaining complying features are tracked frame by frame with a Kanade-

Lucas-Tomasi (KLT) tracker.

4. Mapping of image pixels to relative 3D position: The pixel coordinates (u, v) given by the

tracker, are mapped to the corresponding 3D positions vectors. The 3D position vectors

are given on a algorithm-selected body-fixed frame, but coordinatized in the camera frame.

174

Figure 6.18 shows the coordinates frames used in this implementation.

5. Filtering: The 3D position vectors of the features are fed to the UD partial-update filter to

perform relative angular velocity estimation.

6. Filter re-initialization: Due to the body’s rotation features initially detected are lost. The

filter re-initializes features when available features are considered insufficient based on a

threshold experimentally set.

6.3.3 Additional notation, modeling and feature treatment

6.3.3.1 Additional notation

This hardware application follows the nomenclature used in previous chapters, along with the

following additions.

• Rotation matrix that actively transforms a vector are expressed with R.

• When the context requires it, the matrix representation of a vector includes a subscript that

indicates the reference frame in which the vector is resolved. In this application, the up-

percase X, Y, and Z (not bold) letters are used to represent a 3D coordinate of a feature

position. A vector representing the position of a feature, which is resolved in the c+ frame,

for instance, is written as follows:

vC F =


XF

YF

ZF


C

. (6.78)

• In this hardware application sub-indices i and j are reserved for enumeration and matrices

elements, whereas the sub-index k is used to denote time instance.

6.3.3.2 Reference frames

Two main reference frames are defined to perform the estimation of the body’s rotational state:

the camera optical frame o+ , which has its origin at the optical camera center, and an arbitrary

175

body-fixed reference frame a+ . The a+ frame, defined at the beginning of the experiment at time

t = 0s, has its origin coincident with the position of the feature that is detected first. At this time,

the a+ frame is set to be aligned with the optical frame. In practice, the "first" feature is the one

that occupies the first position of the variable array containing all the detected feature positions.

Figure 6.18 illustrates the relationships between the reference frames mentioned above.

In addition to the o+ and a+ frames, for purposes of algorithm validation, a few extra reference

frames are defined as, shown in Figure 6.18. Reference frame c+ is the frame attached to the plate

where the RGB-D sensor is mounted. Additionally, b+, is a frame attached to a plate placed

on the body. This plate carries motion capture markers for obtaining a reference truth angular

rate. Finally, the motion capture system frame, v+ , is also shown in Figure 6.18. The v+ frame

represents the VICON motion capture system inertial frame in which ground reference values are

obtained.

6.3.3.3 Reprojection model

The positions of the body features with respect to the RGB-D sensor are obtained via the well-

known pinhole camera model by leveraging the depth information. As previously described in

the IMU-camera calibration hardware implementation, the pinhole camera model projects a 3D

position (Xi, Yi, Zi) that is resolved in the camera optical frame (collocated at the camera center),

into the corresponding pixel position (ũi, ṽi) on the image. Since the RGB-D sensor generally

provides depth, Z for a detected feature at (ũi, ṽi), its 3D position can be directly computed via the

calibrated pinhole model

ỹFi
=


Xi

Yi

Zi


O

=


Zi(ũi − cx)/fx

Zi(ṽi − cy)/fy

Zi


O

. (6.79)

Recall that fx and fy are the focal length of the camera in the x and y axis, and that cx and

cy, are the coordinates of the camera center. Both focal lengths and camera center coordinates

are quantities expressed in pixels, and their values for this application are obtained via standard

176

Figure 6.18: Coordinate reference frames utilized. Position of the features with respect to the
body, attitude and angular velocities are all coordinatized in the camera frame. Reprinted with
permission from [55].

OpenCV functions for camera calibration. Figure 6.19 illustrates how a 3D coordinate for a feature,

X, is mapped into a pixel, x = [ũi, ṽi]
T , on the image plane.

6.3.3.4 Feature extraction

The presented implementation, leverages the detected change in position of the image points

from frame to frame to perform the estimation of the target (body) relative motion. In practice, this

is often achieved by matching features in two consecutive frames and computing the rigid trans-

formation (rotation and translation) that aligns the detected features. Whereas it is possible to use

essentially all pixels in the frames to perform this computation, it is commonly more tractable to

track visually distinctive features and use these only to compute the rigid transformation estimate.

The latter approach is used in this hardware implementation as it is more suitable for real-time

177

Figure 6.19: The pinhole camera model projects a 3D coordinate X (resolved in the camera frame)
into the image pixel coordinates (ũi, ṽi). The camera center coordinates locate the point p on the
image plane, which is the intersection of the image plane and the principal axis. The principal axis
is along the Z axis of the camera, towards the scene being captured. Reprinted with permission
from [55].

execution.

In this implementation the selection of features is done using a Shi-Tomasi [105] corner de-

tector, followed by a process that retains only good features with the objective of increase overall

feature traceability. These good features are selected following the criteria presented in the follow-

ing subsection.

Once the initially detected features have been refined, into a better sub-set, feature tracking

is performed with a KLT Tracker [106]. The objective of the tracking the features is maintain

the same good features from frame to frame to be able to estimate the underlying body’s motion.

The KLT tracker essentially estimates the displacement of features from frame to frame via an

optimization process that minimizes an image intensity metric for the feature’s neighborhood. This

hardware implementation uses the KLT tracker function from the OpenCV 2.4.9.1 package [107].

178

6.3.3.5 Feature selection criteria

Feature extraction is restricted to a pre-defined searching volume. A polygon defines this vol-

ume on the image coordinates (u, v) and a pre-defined depth. For all the experiments included

in this implementation, the maximum sensing depth is set to 3.5m, while the polygon on image

coordinates is set to be a rectangle of enough size to cover the body of interest while it rotates. Al-

though the selection of the region of interest can be automated using techniques as blob detection

and image motion analysis, this implementation requires manual selection.

Within the polygon that covers the body’s motion in analysis, a second region that encloses

only features that are not close to body edges is also utilized. The objective of this second region

is to help differentiate the long-term-to-short-term available features. The short-term features are

those that, due to the body’s rotation and proximity to the body’s edges, will move out of the

image relatively soon after their potential detection occurs. Long-term features are those that will

remain visible for a longer period of time because they are relatively far from the body edges. This

secondary region is selected manually as well.

Although color information could be used to extract good features from the complete detected

set, the combination of the pre-selected volume and the built-in outlier rejection from the Kalman

filter (described in Section 6.3.4), showed to be enough for the purposes of this application. Direct

use of color information is also less useful in space operations because available lighting tends to

be of poor quality.

Features complying with the selection criteria outlined in this section are considered good

quality features for body tracking and estimation purposes.

6.3.3.6 Feature position vectors in the arbitrary body frame

Once good features are being tracked, the algorithm proceeds to compute the corresponding

position vectors. The position vectors of the features, however, do not directly allow the estimation

of the body’s angular rate; instead, they are used to construct a set of vectors that resemble the

body’s rotational motion. These vectors defined in the body frame are referred to as the body

179

vectors.

When the algorithm to estimate the angular rate begins, it fixes an arbitrary reference frame

on the rotating body when the first measurement arrives. For this implementation, the feature that

serves as the arbitrary origin on the body is the highest-quality feature produced by the OpenCV

GoodFeaturesToTrack function, which implements the Shi-Tomasi corner detector. For this

detector, the feature quality is related to the magnitude of the eigenvalues that capture the image

motion [105]. At subsequent times (after the first measurement arrives), as the vision system

provides the position of more features, they are re-expressed in the rotating body reference frame.

This results in a set of body vectors that are tracked from frame to frame and fed as measurements

to a partial-update EKF, which uses a motion model to obtain feature position estimates and angular

rates of the body. This process is summarized in the next section.

The flow of the information, then, is as follows. The output of the feature detector and tracker

is a set of feature positions (ui, vi), i = 1, . . . N on the image, and the corresponding depths Zi.

With this information in hand, Equation 6.79 is used to obtain the corresponding 3D coordinates

(Xi, Yi, Zi) of each feature. Then, the highest quality feature, named (Xo, Yo, Zo), is set as the ori-

gin (O) of the reference frame that is attached to the body, and with subsequent features available,

the body vectors pO Fi
are computed by vector subtraction as

pO Fi
=


Xi

Yi

Zi


O

−


Xo

Yo

Zo


O

. (6.80)

The body vectors, pO Fi
, are the feature position vectors expressed from the body-fixed frame

origin. These body vectors are then used as measurements for rotational motion estimation.

It is important to mention that although the ith body vector, pO Fi
, for the ith feature, is ex-

pressed with respect to the arbitrary reference frame, a+ , the pO Fi
vector is still resolved in the

o+ frame. Thus, the estimated relative angular rates and attitude will be naturally measured with

respect to the o+ frame as well. Figure 6.20 shows the relationship between position of features Fi

180

Figure 6.20: Coordinate reference frames utilized. Position of the features with respect to the
body, attitude and angular velocities are all coordinatized in the camera frame. Reprinted with
permission from [55].

with respect to the optical frame o+ and the established body-fixed reference frame a+. The set

of body vectors for a generic case are represented in Figure 6.20 as F1,F2, . . . ,FN (omitting the

notation p̃ for clarity). An additional observation is that the origin of the a+ frame is defined on

the surface of the target body. Thus, it will exhibit translational motion with respect to the observer

frame, however, for the experiments that were performed, the estimation of the angular rate is not

ambiguous, since there is no relative translational velocity between the sensor and the body.

6.3.4 Extended Kalman Filter

An UD partial-update EKF that uses the body vectors that are obtained in Section 6.3.3.6 is

implemented to estimate the relative angular rate of the target. This section presents the details.

6.3.4.1 Process and measurement model

The EKF state vector includes the body vectors, pO Fi
, of each tracked feature (obtained with

equation 6.80), and the relative angular velocity of the target body , ωO b expressed in the RGB-D

sensor frame o+ :

181

x =

[
pO T
F ωO T

b

]T
. (6.81)

Here, pO T
F encapsulates the N features’ position vectors, as

pO T
Fi

=

[
Xi Yi Zi

]T
, (6.82)

such that

pO T
F =

[
pO T
Fi

pO T
Fi+1

... pO T
FN

]
. (6.83)

More specifically, pO T
Fi

is the (body) vector position of the ith feature, measured from the arbitrary

origin, a+ , on the body frame but coordinatized in the camera frame, o+ . ωO T
b , the angular

velocity of the body with respect to the camera frame, o+ , is composed as follows:

ωO T
b =

[
ωx ωy ωz

]
. (6.84)

The sub-index for each component corresponds to the axis of rotation.

The discrete system process model is expressed as follows [108]:

182

f (x(t),∆t)k =



X1

Y1

Z1

X2

Y2

Z2

...

XN

YN

ZN

ωx

ωy

ωz


k

=



X1 − ωz∆tY1 + ωy∆tZ1

ωz∆tX1 + Y1 − ωx∆tZ1

−ωy∆tX1 + ωx∆tY1 + Z1

X2 − ωz∆tY2 + ωy∆tZ2

ωz∆tX2 + Y2 − ωx∆tZ2

−ωy∆tX2 + ωx∆tY2 + Z2

...

XN − ωz∆tYN + ωy∆tZN

ωz∆tXN + YN − ωx∆tZN

−ωy∆tXN + ωx∆tYN + ZN

ωx

ωy

ωz


k−1

+ wk−1 , (6.85)

or

f (x(t),∆t)k =



(I3×3 + bω ×c∆t) pO F1

(I3×3 + bω ×c∆t) pO F2

...

(I3×3 + bω ×c∆t) pO FN

ωO b


k−1

+ wk−1 . (6.86)

Where ∆t is the propagation interval, bω ×c is the skew symmetric matrix formed with elements

ωx, ωy and ωz, and I3×3 is a 3 × 3 identity matrix. Xi, Yi and Zi are body vector components

resolved in the o+ frame.

For this application, it is assumed that the RGB-D sensor provides direct measurements of the

position of the features with respect to the current arbitrary origin Xo, Yo, Zo. That is, that the

camera reads the body vectors directly. Thus, the measurement model can be written simply as

183

ŷk = Hx̂k + vk . (6.87)

Where H is defined as

H =

[
I3N×3N 03N×6

]
, (6.88)

here, vk is a white noise process with covariance matrix RF = E[vvT] . For this work, it is

assumed that the uncertainty levels for the measurements are known or can be computed from

recorded data, and that they are the same for the three dimensions X, Y, Z. However, it must be

mentioned that as in [109], a more accurate noise model for a RGB-D type of sensor that considers

the correlation between the three coordinates and uncertainty dependency on the depth value could

be used.

To use the Extended Kalman Filter propagation equations for the error covariance, the state

transition matrix Fk−1 and the input noise matrix Gk−1 are needed. By linearization of Equation

(6.85), the state transition matrix is found to be in the following form:

Fk−1 =



(I3×3 + bω ×c∆t) 03×3 03×3 . . . −b pC Fi
×c∆t

03×3 (I3×3 + bω ×c∆t) 03×3 . . . −b pC Fi+1
×c∆t

...
...

...

03×3 03×3 03×3 (I3×3 + bω ×c∆t) −b pC FN
×c∆t

03×3 03×3 03×3 03×3 I3×3


.

(6.89)

Where F is of dimensions (3N+3)×(3N+3). Whereas G, it is just a matrix with ones along the

corresponding entries that map process noise into states. States with process noise are specified in

the hardware implementation section. Finally, the EKF covariance is propagated according to the

UD partial-update equations from Table 4.1.

184

6.3.4.2 UD partial-update filter

Due to the nature of this scenario, a conventional EKF was seen to be problematic, producing

biased estimates for all state estimates and with overconfident covariance. Moreover, relatively

large corrections were observed on the angular rates, even when they were known to be constant

during experiments. This was also the case, even for correct initial conditions with low covariance.

As mentioned before, this hardware application involves nonlinear models and nuisance states

as the previous applications, but in contrast, and very interestingly, this is a case where the nuisance

states, namely the angular rates, are the states of interest; a case where the partial-update concept

is highly useful. Specifically, this application demonstrates the successful use of the UD partial-

update filter.

6.3.5 Filter initialization

In order to initialize the filter, the information provided by the feature tracker is leveraged

to compute a rough estimate for the angular rates and their standard deviations. This subsection

outlines the procedure. First, by using feature positions from one frame to the next, a rigid trans-

formation that aligns two subsequent clouds of body vectors is obtained through Singular Value

Decomposition (SVD)-based least-squares [110]. Such transformation is computed to approximate

the rotational change of the body in motion. Then, angle extraction from the computed rigid trans-

formation is performed. This is, the change in the Euler angles that compose the rigid body trans-

formation (locally), are obtained. Finally, the ratio of the change on the Euler angles to the time-

step interval is used as a coarse approximation of the local angular velocity estimate. Based on the

notation used in this hardware implementation, pO T
F =

[
pO T
F1

pO T
F2

... pO T
FN

]
composes the

first point cloud (set of body vectors in the previous frame), and qO T
F =

[
qO T
F1

qO T
F2

... qO T
FN

]
the second one (body vectors in the current frame). The solution for the rotation is obtained by

minimizing the cost function of Equation (6.91) subject to the constraint that the transformation

R is not a reflection. The implemented SVD-based solution of this problem, incorporates such

constraint in the minimization process to search for rotations only [110]. Due to the relatively high

185

frequency of the RGB-D camera measurements and slow angular rate expected for the body, the

rotation delivered by the least-squares approach is assumed to be well modeled as a differential

rotation (from a frame to the next) δR via :

δR = I3×3 +


0 −ωz∆t ωy∆t

ωz∆t 0 −ωx∆t

−ωy∆t ωx∆t 0

 , (6.90)

and

(δR, t) = arg min
R∈SO(3),t∈R3

n∑
i=1

‖(Rp + t)− q‖2 . (6.91)

As mentioned before, δR is chosen to be parameterized with Euler angles. Specifically, as an

Euler 3-2-1 rotation through the angle set [(ψ, θ, φ)] (or yaw, pitch, and roll).

It is important to point out that since the pair of 3D point clouds, p and q, are resolved in

the camera reference frame, the small change in attitude, δR, is given with respect to the camera

frame as well. Again, once the small rotations are approximated, the time interval ∆t utilized to

estimate the angular rates.

For this application, the coarse estimation of the angular rates is performed continuously during

three seconds (as features become available), and then an empirical mean and standard deviation

are computed from the collected data. These empirical values mean directly initialize the EKF. In

Figure 6.21, a typical history of the coarse angular rates estimates produced by this procedure is

shown. Finally, the position of the body vectors is initialized using their computed values directly,

and their initial covariance is set experimentally commensurate to the measurement noise values.

186

Figure 6.21: Angular rates obtained through numerical differentiation of differential rotation an-
gles. The differential rotation angles are extracted from the estimated δR from equation 6.90.
In this figure a 60 seconds history of the coarse estimates for the angular velocity components is
shown. The empirical average is shown in red. The truth value for this specific experiment was
ωy = 2 deg/s and ωx = ωz = 0 deg/s. Reprinted with permission from [55].

Since the tracked features eventually move out of the field of view due to the body rotation, the

filter needs to be re-initialized when too few features remain in the frame. The filter is re-initialized

according to the procedure that is discussed next.

6.3.6 EKF re-initialization

Due to the body rotation or changes in illumination features’ visibility can be lost. Thus, if one

desires to maintain accurate estimates of the states, a re-initialization procedure is needed. In this

implementation, the re-initialization of the partial-update EKF occurs when the number of tracked

features falls below a threshold.

187

The re-initialization of the filter is performed according to the following procedure:

• The current values of the angular velocity are maintained along with their current covariances

(cross-correlations are discarded).

• The corner detector is executed, and new features are extracted by following the selection

procedure described in Sections 6.3.3.4 and 6.3.3.5. All features previously utilized are

discarded.

• Given the position of the new features in image coordinates, predictions of their correspond-

ing body vectors can be obtained via Equation 6.80 and a new a+ frame is set. Equal initial

covariances are assigned to all new feature positions.

• The filter state with the previously estimated angular rate and the new features is then prop-

agated and updated at the next measurement instance.

Since the EKF provides uncertainty information on the tracked features, it can help to the

elimination of deceiving-quality features. If a feature is detected and tracked, and it disappears

from view, its covariance will start to grow. This implementation, uses an empirical threshold on

the covariance of the features such that high covariance features are dropped. In this manner, only

relatively low-covariance features participate in the filtering. Additionally, drifting features were

filtered out by a χ2 rejection scheme.

6.3.7 Hardware experiments

6.3.7.1 Experimental setup

Details on the hardware experiments and validation of the vision system are now presented. A

calibrated XtionPRO Live RGB-D sensor collects images of a non-cooperative body. The sensor

is assumed to be on a satellite trying to detect active attitude control in a neighboring body, and

it starts by estimating the body’s angular rate (this application). An asteroid mockup, shown in

Figure 6.22, is used as the target body for experiments. In order to impart rotational motion to

the asteroid, a customized rate-configurable turn table is used. The turn table can be seen in

188

Figure 6.22: The mock asteroid placed on the turn table. The VICON dots can be observed placed
at the top on a mounting plate. Reprinted with permission from [55].

Figure 6.23: Xtion Live Pro camera and the mock asteroid while recording data. The arbitrary
reference frame a+ (on the body), the body plate b+, the camera optical o+ and the camera plate
c+ reference frames, have been drawn. Reprinted with permission from [55].

189

Figure 6.22 under the asteroid. The vision system estimates for the angular rates are validated

by comparing its outputs against a laboratory VICON motion capture system. VICON provides

attitude measurements for the asteroid naturally resolved in the VICON v+ frame. In order to

evaluate angular velocity estimates, numerically differentiated attitude truth from VICON is used

as the reference for truth angular rate. The VICON system tracks the body’s motion by means of

the plate attached to it carrying retro-reflective beacons. Figure 6.22 displays the plate with the

markers placed at the top of the mockup.

The VICON system also tracks the truth pose of the RGB-D sensor. Both asteroid and RBG-D

sensor are shown in Figure 6.23. The reference frame on the camera plate is identified as c+ . The

calibration (rigid transformation) camera optical frame to the camera plate frame CCO , as well as

the RGB and IR ("depth") camera registration, are found beforehand. All reference frames used in

the experiments are diagrammed in Figure 6.18.

6.3.7.2 Experiments

A series of experiments were performed using different rates for the turntable. For the results

shown in this section, the turn table rate was set to 2 deg/s, but all other experiments with different

rates (in the range from 1 to 10 deg/s) were found to behave similarly. The resolution of the RGB-

D sensor is 640 x 480 pixels, and the frame-rate is 30 Hz. The RGB-D sensor is fixed on a tripod

at 2 meters far from the center of the turn table. The video is processed as described in Section

6.3.2, and if needed, reinitialization of the system occurs automatically according to Section 6.3.6.

The maximum sensing depth was limited to 3.5 meters, and the area for searching features was

manually selected to cover the image area that the asteroid occupies when it rotates. The code

was implemented in C++ with OpenCV 2.4.9.1 libraries under the Robot Operating System (ROS

kinetic) framework [98].

The process and measurement noise values used to generate the results presented in the next

subsections are

QF = 03N×3N , (6.92)

190

Qω = 03×3 , (6.93)

and

RF = 0.005I3N×3N . (6.94)

The propagation step ∆t is simply taken as the inverse of the camera frame-rate, which in this

case is 1/30 seconds. The selected β values for the partial-update are

β = diag

[
1.0 1.0 1.0 . . . 0.05 0.05 0.05

]
, (6.95)

that is, full update for feature positions and 5% of the nominal update for the angular rates.

Figure 6.24 shows a sequence of images (chronologically from a to d) from a single experiment.

In each image, the good features to track are shown along with some body vectors in the current

arbitrary reference frame, a+ . The detected features are marked as green dots, and the red vectors

(arrows) are the estimated body vectors. The origin of the body vectors is at the arbitrary body-

fixed reference frame, which corresponds to the best available feature as described in Section

6.3.3.6. For clarity, vectors for the position of the estimated features are only shown for three of

the features. The numbers that appear next to each body vector represent the feature quality, being

the number one the highest-quality-feature after the origin.

In Figure 6.24 it is possible to observe the vision system re-initialization being executed. Par-

ticularly, re-sampling of features occurs from (c) to (d), and a change of origin can be seen in the

transition from (a) to (b). This confirms that the re-initialization detailed in Section 6.3.6 behaves

as expected in terms of sampling.

6.3.7.3 Angular velocity estimates

As mentioned in Section 6.3.7.1, to evaluate the angular velocity estimates, estimates are com-

pared against numerically differentiated VICON attitude.

Several experiments were conducted using the initial conditions generated by the initialization

191

(a) (b)

(c) (d)

Figure 6.24: Image sequence showing the detected features and three of the position vectors that
are being tracked. Reprinted with permission from [55].

192

Figure 6.25: Estimated angular velocities for the target body when initial conditions for the angular
rates are set to zero. The angular rates are resolved in the optical reference frame o+ . The bottom
plot shows the comparison between angular velocity vector magnitudes. Reprinted with permission
from [55].

procedure outlined before. Overall, the filter was found to be well-behaved, and in contrast with the

experiments that used the conventional EKF, the filter produced consistent and unbiased estimates.

Figure 6.25 shows the angular rates estimate time histories for a typical experiment. The estimates

for a typical experiment when the angular rates are initialized as zeros are also included, and are

depicted in Figure 6.26 to show the UD partial-update EKF functionality.

6.3.8 Summary

The hardware implementation of a vision system utilized for angular rate estimation of un-

cooperative bodies was described in this section. The UD partial-update approach was found to

produce statistically consistent results where an EKF could not. Angular rate estimation results

showed that although the UD partial-update EKF takes more time to converge, convergence is

193

Figure 6.26: Estimated angular velocities for the target body when initial conditions for the angular
rates are set to zero. The angular rates are resolved in the optical reference frame o+ . The bottom
plot shows the comparison between angular velocity vector magnitudes. Reprinted with permission
from [55].

achieved, and consistent estimates are produced. In contrast with the first (with constant nuisance

states) and second (varying nuisance states) partial-update filter application, this is a case where

the nuisance states, namely the angular rates, are the states of interest, yet, the consistency of the

results obtained via the UD partial-update filter demonstrated the power of the approach that still

retains the EKF structure.

The results from all three hardware applications confirm that a partial-update EKF is a more

flexible filter that accommodates real-world technical challenges in an effective and simple way.

Overall, extending the EKF and Schmidt filter application capabilities, regardless of the nuisance

states being constant, varying, and even if they are the states of interest.

194

7. CONCLUSIONS

In this dissertation, approaches to extend the practical applicability of the Extended Kalman

filter (EKF) are presented. The proposed methods are based on a recent development called the

partial-update filter, that already broadens the capabilities of the Schmidt-Kalman filter. The con-

tributions of this work increase the partial-update filter robustness against numerical issues and

high uncertainties, allowing the use of an extended Kalman filter framework where a more ad-

vanced filter may be needed, or where consistent estimates would not be obtained otherwise. Since

the proposed techniques address fundamental problems within the Kalman filter, they apply widely

just as the Schmidt modification, Joseph-update form, and factorized formulations for covariance

propagation. Although this study focuses on the EKF, the findings can have a bearing on other

filter forms where the measurement update appears linearly.

Based on the results of the partial-update factorized formulations presented in this dissertation,

the UD form is recommended because it is more efficient and attractive for actual implementation.

Although the factorized formulations require some extra work in terms of computer code, such

code is not application-dependent. Thus, once extra code routines are available, the factorized

filter implementations are not more complicated than a conventional filter formulation, and prac-

tically any user familiar with the Kalman filter can implement a partial-update factorized form.

The findings show that the square root and UD partial-update formulations, increase the required

computations of the conventional factorized forms due to the calculations related to partial-update

terms, and this needs to be considered on the hardware selection process. However, the extra com-

putational effort for relatively small systems is generally not significant to prevent the factorized

partial-update formulations from their implementation on a system already using a conventional

Kalman filter.

This dissertation establishes two quantitative frameworks for online partial-update weight se-

lection: The nonlinearity-aware and the covariance-aware method. Both methods use a similar

policy for update percentage selection, and although they have their virtues and limitations, the re-

195

sults of this research proved them to be functional and to extend the static partial-update approach’s

capabilities to handle high nonlinearities and uncertainties. However, the implementation of the

covariance-aware method for partial-update is recommended over the nonlinearity-aware method,

especially for hardware applications where the system has a large number of parameters. Overall,

this study strengthens the idea that it is beneficial to vary the amount of update applied to each

element in the state vector. Furthermore, the insights gained from this study may be of assistance

in developing more sophisticated methods for partial-update weight selection that can consider el-

ements like the quality of cross-covariance terms and measurement sparsity. Since these dynamic

methods are entirely based on quantities inherent to the Kalman filter, like the covariance matrix

and process and measurement Jacobians, the dynamic partial-update concept can be adapted into

any other Kalman filter variants.

The deployment of the partial-update filter in real systems proved the filter functionality and

higher consistency compared to the conventional Kalman filter. For most of the hardware appli-

cations where the partial-update filter has been used, a static weight was found via a trial and

error tedious process. If the user intends to use the partial-update approach in any of its variants,

it is recommended to implement a dynamic method to avoid weights tuning. Specifically, the

UD covariance-aware dynamic method is recommended. Future work considers to investigate the

methods for dynamic weight selection in hardware applications.

Although the partial-update filter has its limits, the findings of this research add to our under-

standing of the Schmidt filter and show the developments to augment the class of systems that the

EKF structure can handle without over-specializing the filter formulation.

196

REFERENCES

[1] J. H. Ramos, K. M. Brink, and J. E. Hurtado, “Square root partial-update kalman filter,”

in 22nd International Conference on Information Fusion FUSION 2019, Ottawa, Canada,

2019.

[2] J. H. Ramos, P. Ganesh, W. Warke, K. Volle, and K. Brink, “Reef estimator: A simplified

open source estimator and controller for multirotors,” in 2019 IEEE National Aerospace and

Electronics Conference (NAECON), pp. 606–613, IEEE, 2019.

[3] M. S. Grewal and A. P. Andrews, Kalman Filtering : Theory and Practice Using MATLAB

California State University at Fullerton, vol. 5. 2001.

[4] S. F. Schmidt, “Application of state-space methods to navigation problems,” in Advances in

control systems, vol. 3, pp. 293–340, Elsevier, 1966.

[5] D. P. Woodbury, M. Majji, and J. L. Junkins, “Considering measurement model parameter

errors in static and dynamic systems,” The Journal of the Astronautical Sciences, vol. 58,

no. 3, pp. 461–478, 2011.

[6] K. M. Brink, “Partial-update schmidt–kalman filter,” Journal of Guidance, Control, and

Dynamics, vol. 40, no. 9, pp. 2214–2228, 2017.

[7] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of basic

Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[8] B. P. Gibbs, Advanced Kalman Filtering, Least-Squares and Modeling. 2011.

[9] L. A. McGee and S. F. Schmidt, “Discovery of the Kalman Filter as a Practical Tool for

Aerospace and Industry,” NASA Technical Memorandum, no. November, p. 21, 1985.

[10] M. Verhaegen and P. Van Dooren, “Numerical aspects of different Kalman filter implemen-

tations,” IEEE Transactions on Automatic Control, vol. 31, no. 10, pp. 907–917, 1986.

197

[11] R. J. Fitzgerald, “Divergence of the Kalman Filter,” IEEE Transactions on Automatic Con-

trol, vol. 16, no. 6, pp. 736–747, 1971.

[12] A. L. C. Quigley, “An approach to the control of divergence in kalman filter algorithms,”

International Journal of Control, vol. 17, no. 4, pp. 741–746, 1973.

[13] R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, revised

edition. American Institute of Aeronautics and Astronautics, 1999.

[14] J. Bellantoni and K. Dodge, “A square root formulation of the kalman-schmidt filter.,” AIAA

journal, vol. 5, no. 7, pp. 1309–1314, 1967.

[15] P. Dyer and S. McReynolds, “Extension of square-root filtering to include process noise,”

Journal of Optimization Theory and Applications, vol. 3, no. 6, pp. 444–458, 1969.

[16] P. Kaminski, A. Bryson, and S. Schmidt, “Discrete square root filtering: A survey of current

techniques,” IEEE Transactions on automatic control, vol. 16, no. 6, pp. 727–736, 1971.

[17] G. J. Bierman, “Measurement Updating Using the U-D Factorization.,” Proceedings of the

IEEE Conference on Decision and Control, vol. 12, pp. 337–346, 1975.

[18] G. J. Bierman and C. L. Thornton, “Numerical comparison of kalman filter algorithms:

Orbit determination case study,” Automatica, vol. 13, no. 1, pp. 23–35, 1977.

[19] F. Base, “Federated Square Root Filter for,” Ieee Transactions On Aerospace And Electronic

Systems, vol. 26, no. 3, 1959.

[20] R. G. Brown and P. Y. Hwang, Introduction to random signals and applied Kalman filtering:

with MATLAB exercises. J Wiley & Sons, 2012.

[21] J. L. Crassidis and J. L. Junkins, Optimal estimation of dynamic systems. CRC press, 2011.

[22] J. R. Carpenter and C. N. D’Souza, “Navigation filter best practices,” 2018.

[23] B. P. Gibbs, Advanced kalman filtering, least-squares and modeling: a practical handbook.

John Wiley & Sons, 2011.

198

[24] J. Soremen, S. Schmidt, and T. Goka, “Application of Square-Root Filtering for Spacecraft

Attitude Control,” Journal of Guidance and Control, vol. 2, no. 5, pp. 426–433, 1979.

[25] S. Holmes, G. Klein, and D. W. Murray, “A Square Root Unscented Kalman Filter for visual

monoSLAM,” Proceedings - IEEE International Conference on Robotics and Automation,

pp. 3710–3716, 2008.

[26] X. Li, Y. Feng, R. Huang, X. Zhang, S. Liu, and J. Ai, “The application of square-root cuba-

ture Kalman filter in SLAM for underwater robot,” Proceedings - 2017 Chinese Automation

Congress, CAC 2017, vol. 2017-January, pp. 2183–2187, 2017.

[27] T.-s. Lou, N.-h. Chen, H. Xiong, Y.-x. Li, and L. Wang, “Ensemble consider kalman filter-

ing,” in 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), pp. 1–

5, IEEE, 2018.

[28] D. Boggs, M. Ghil, and C. Keppenne, “A stabilized sparse-matrix ud square-root implemen-

tation of a large-state extended kalman filter,” 1995.

[29] S. Bhaumik, “Square-root cubature-quadrature Kalman filter,” Asian Journal of Control,

vol. 16, no. 2, pp. 617–622, 2014.

[30] K. Wu, A. Ahmed, G. A. Georgiou, and S. I. Roumeliotis, “A square root inverse filter

for efficient vision-aided inertial navigation on mobile devices.,” in Robotics: Science and

Systems, vol. 2, 2015.

[31] M. G. Rutten, “Square-root unscented filtering and smoothing,” Proceedings of the 2013

IEEE 8th International Conference on Intelligent Sensors, Sensor Networks and Information

Processing: Sensing the Future, ISSNIP 2013, vol. 1, pp. 294–299, 2013.

[32] J. Knudsen Schmidt, “Analysis of Square-Root Kalman Filters for Angles-Only Orbital

Navigation and the Effects of Sensor Accuracy on State Observability,” p. 166, 2010.

[33] I. Arasaratnam and S. Haykin, “Square-root quadrature Kalman filtering,” IEEE Transac-

tions on Signal Processing, vol. 56, no. 6, pp. 2589–2593, 2008.

199

[34] J. Mu and Y. L. Cai, “Iterated cubature Kalman filter and its application,” 2011 IEEE Inter-

national Conference on Cyber Technology in Automation, Control, and Intelligent Systems,

CYBER 2011, pp. 33–37, 2011.

[35] J. L. Geeraert and J. W. McMahon, “Square-root unscented schmidt-kalman filter,” Journal

of Guidance, Control, and Dynamics, vol. 41, no. 1, pp. 278–285, 2018.

[36] M. Rhudy, Y. Gu, J. Gross, and M. R. Napolitano, “Evaluation of matrix square root opera-

tions for UKF within a UAV GPS/INS sensor fusion application,” International Journal of

Navigation and Observation, vol. 2011, 2011.

[37] M. Papez and P. Pivonka, Numerical aspects of inertial navigation, vol. 12. IFAC, 2013.

[38] Carraro and Sartore, “Square Root Iterative Filter: Theory and Applications to Econometric

Models,” Annales d’Économie et de Statistique, no. 6/7, p. 435, 2016.

[39] G. Y. Kulikov and M. V. Kulikova, “Square-root Kalman-like filters for estimation of stiff

continuous-time stochastic systems with ill-conditioned measurements,” IET Control The-

ory & Applications, vol. 11, no. 9, pp. 1420–1425, 2017.

[40] S. N. Kane, A. Mishra, and A. K. Dutta, “Integrated GPS/DR Vehicle Navigation System

Based on Sequential and Square Root Kalman Filters,” Journal of Physics: Conference

Series, vol. 755, no. 1, 2016.

[41] Y. Zhou, Y. F. Zhang, and J. Z. Zhang, “A new adaptive square-root unscented kalman filter

for nonlinear systems,” in Applied Mechanics and Materials, vol. 300, pp. 623–626, Trans

Tech Publ, 2013.

[42] Y. Zhou, C. Zhang, Y. Zhang, and J. Zhang, “A new adaptive square-root unscented kalman

filter for nonlinear systems with additive noise,” International Journal of Aerospace Engi-

neering, vol. 2015, 2015.

[43] P. S. Maybeck, Stochastic models, estimation, and control, vol. 3. Academic press, 1982.

200

[44] J. M. Galante, J. Van Eepoel, C. D’Souza, and B. Patrick, “Fast Kalman filtering for relative

spacecraft position and attitude estimation for the raven ISS hosted payload,” Advances in

the Astronautical Sciences, vol. 157, pp. 179–196, 2016.

[45] C. L. Thornton, “Triangular covariance factorizations for kalman filtering,” NASA TM 33-

798, 1976.

[46] R. Zanetti and C. D’Souza, “Recursive implementations of the schmidt-kalman ‘consider’

filter,” The Journal of the Astronautical Sciences, vol. 60, no. 3-4, pp. 672–685, 2013.

[47] C. DSouza and R. Zanetti, “Information Formulation of the UDU Kalman Filter,” IEEE

Transactions on Aerospace and Electronic Systems, pp. 1–8, 2018.

[48] G. N. Holt and C. D. Souza, “Orion absolute navigation system progress and challenges,”

Guidance, Navigation, and Control Conference, no. August, pp. 1–17, 2012.

[49] D. Woodbury and J. Junkins, “On the consider kalman filter,” in AIAA Guidance, Naviga-

tion, and Control Conference, p. 7752, 2010.

[50] R. Y. Novoselov, S. M. Herman, S. M. Gadaleta, and A. B. Poore, “Mitigating the effects

of residual biases with Schmidt-Kalman filtering,” 2005 7th International Conference on

Information Fusion, FUSION, vol. 1, pp. 358–365, 2005.

[51] C. Yang, E. Blasch, and P. Douville, “Design of Schmidt-Kalman filter for target tracking

with navigation errors,” IEEE Aerospace Conference Proceedings, no. April, 2010.

[52] T. Lou, H. Fu, Z. Wang, and Y. Zhang, “Schmidt-kalman filter for navigation biases mitiga-

tion during mars entry,” Journal of Aerospace Engineering, vol. 28, no. 4, pp. 1–7, 2015.

[53] Y. Yang, X. Yue, and A. G. Dempster, “GPS-based onboard real-time orbit determination for

leo satellites using consider Kalman filter,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 52, no. 2, pp. 769–777, 2016.

[54] Y. Li, H. Wei, M. Wu, H. Zhu, and J. Ye, “Gnss-based attitude determination via schmidt

kalman filter,” in China Satellite Navigation Conference, pp. 621–638, Springer, 2018.

201

[55] J. H. Ramos, T. D. Woodbury, and J. E. Hurtado, “Vision-based tracking of non-cooperative

space bodies to support active attitude control detection,” in 2018 AIAA SPACE and Astro-

nautics Forum and Exposition, p. 5353, 2018.

[56] T. S. Lou, Z. H. Wang, M. L. Xiao, and H. M. Fu, “Multiple adaptive fading Schmidt-

Kalman filter for unknown bias,” Mathematical Problems in Engineering, vol. 2014, 2014.

[57] A. Chakraborty, K. Brink, R. Sharma, and L. Sahawneh, “Relative pose estimation using

range-only measurements with large initial uncertainty,” in 2018 Annual American Control

Conference (ACC), pp. 5055–5061, IEEE, 2018.

[58] J. D. Jurado and J. F. Raquet, “Towards an online sensor model validation and estimation

framework,” in 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS),

pp. 1319–1325, IEEE, 2018.

[59] K. M. Brink, “Unscented partial-update schmidt–kalman filter,” Journal of Guidance, Con-

trol, and Dynamics, vol. 41, no. 4, pp. 929–935, 2017.

[60] J. E. Hurtado, Kinematic and Kinetic Principles. Lulu.com, 2012.

[61] N. Trawny, N. Trawny, S. Roumeliotis, and S. Roumeliotis, “Jacobian for conversion from

Euler Angles to Quaternions,” Robotics, no. 612, 2005.

[62] D. O. Wheeler, D. P. Koch, J. S. Jackson, T. W. McLain, and R. W. Beard, “Relative Nav-

igation: A Keyframe-Based Approach for Observable GPS-Degraded Navigation,” IEEE

Control Systems, vol. 38, pp. 30–48, August 2018.

[63] R. Zanetti and C. N. D’Souza, “Observability Analysis and Filter Design for the Orion

Earth-Moon Attitude Filter,” Journal of Guidance, Control, and Dynamics, vol. 39, no. 2,

pp. 201–213, 2016.

[64] N. Trawny, A. I. Mourikis, S. I. Roumeliotis, A. E. Johnson, and J. F. Montgomery, “Vision-

aided inertial navigation for pin-point landing using observations of mapped landmarks,”

Journal of Field Robotics, vol. 24, no. 5, pp. 357–378, 2007.

202

[65] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based visual-inertial odometry,”

The International Journal of Robotics Research, vol. 32, no. 6, pp. 690–711, 2013.

[66] N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3D attitude estimation,” Uni-

versity of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, vol. 2, p. 2005, 2005.

[67] D. P. Woodbury, Accounting for parameter uncertainty in reduced-order static and dynamic

systems. Texas A&M University, 2011.

[68] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John

Wiley & Sons, 2006.

[69] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU Press, 2012.

[70] T. K. Moon and W. C. Stirling, Mathematical methods and algorithms for signal processing,

vol. 1. Prentice hall Upper Saddle River, NJ, 2000.

[71] B. D. Anderson and J. B. Moore, Optimal filtering. Courier Corporation, 2012.

[72] S. Gilbert, Introduction to linear algebra, vol. 3. Wellesley-Cambridge Press Wellesley,

MA, 1993.

[73] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for the nonlinear transfor-

mation of means and covariances in filters and estimators,” IEEE Transactions on automatic

control, vol. 45, no. 3, pp. 477–482, 2000.

[74] K. R. Rao, D. N. Kim, and J. J. Hwang, Fast Fourier transform-algorithms and applications.

Springer Science & Business Media, 2011.

[75] G. J. Bierman, Factorization methods for discrete sequential estimation. Courier Corpora-

tion, 2006.

[76] C. Thornton, “Triangular covariance factorizations for kalman filtering, phd thesis, univer-

sity of california at los angeles,” 1976.

[77] N. A. Carlson, “Fast triangular formulation of the square root filter.,” AIAA journal, vol. 11,

no. 9, pp. 1259–1265, 1973.

203

[78] F. Gustafsson, Statistical sensor fusion. Studentlitteratur, 2010.

[79] K. Brink and A. Soloviev, “Filter-based calibration for an imu and multi-camera system,” in

Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, pp. 730–

739, IEEE, 2012.

[80] C. Yang, E. Blasch, and P. Douville, “Design of schmidt-kalman filter for target tracking

with navigation errors,” in 2010 IEEE Aerospace Conference, pp. 1–12, IEEE, 2010.

[81] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar, and L. Matthies,

“Vision-aided inertial navigation for spacecraft entry, descent, and landing,” IEEE Transac-

tions on Robotics, vol. 25, no. 2, pp. 264–280, 2009.

[82] D. P. Koch, T. W. McLain, and K. M. Brink, “Multi-sensor robust relative estimation frame-

work for {GPS}-denied multirotor aircraft,” in Unmanned Aircraft Systems (ICUAS), 2016

International Conference on, pp. 589–597, IEEE, 2016.

[83] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibration for multi-

sensor systems,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pp. 1280–1286, IEEE, 2013.

[84] E. Mair, M. Fleps, M. Suppa, and D. Burschka, “Spatio-temporal initialization for imu to

camera registration,” in 2011 IEEE International Conference on Robotics and Biomimetics,

pp. 557–564, IEEE, 2011.

[85] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localization, mapping and

sensor-to-sensor self-calibration,” The International Journal of Robotics Research, vol. 30,

no. 1, pp. 56–79, 2011.

[86] F. M. Mirzaei and S. I. Roumeliotis, “A kalman filter-based algorithm for imu-camera cali-

bration: Observability analysis and performance evaluation,” IEEE transactions on robotics,

vol. 24, no. 5, pp. 1143–1156, 2008.

[87] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-inertial odometry,”

The International Journal of Robotics Research, vol. 32, no. 6, pp. 690–711, 2013.

204

[88] Z. Yang and S. Shen, “Monocular visual–inertial state estimation with online initialization

and camera–imu extrinsic calibration,” IEEE Transactions on Automation Science and En-

gineering, vol. 14, no. 1, pp. 39–51, 2016.

[89] J. Rehder and R. Siegwart, “Camera/imu calibration revisited,” IEEE Sensors Journal,

vol. 17, no. 11, pp. 3257–3268, 2017.

[90] J. Lobo and J. Dias, “Relative pose calibration between visual and inertial sensors,” The

International Journal of Robotics Research, vol. 26, no. 6, pp. 561–575, 2007.

[91] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys, “Pixhawk:

A micro aerial vehicle design for autonomous flight using onboard computer vision,” Au-

tonomous Robots, vol. 33, no. 1-2, pp. 21–39, 2012.

[92] C. Caubel, F. Morra, and B. Vignau-lous, “Flying toy,” Nov. 29 2016. US Patent D772,991.

[93] T. Krajnik, V. Vonasek, D. Fiser, and J. Faigl, “Ar-drone as a platform for robotic research

and education,” in Research and Education in Robotics - EUROBOT 2011 (D. Obdrzalek

and A. Gottscheber, eds.), (Berlin, Heidelberg), pp. 172–186, Springer Berlin Heidelberg,

2011.

[94] D. O. Wheeler, D. P. Koch, J. S. Jackson, G. J. Ellingson, P. W. Nyholm, T. W. McLain,

and R. W. Beard, “Relative navigation of autonomous gps-degraded micro air vehicles,”

Autonomous Robots, pp. 1–20, 2020.

[95] P. Gąsior, S. Gardecki, J. Gośliński, and W. Giernacki, “Estimation of altitude and vertical

velocity for multirotor aerial vehicle using kalman filter,” in Recent Advances in Automation,

Robotics and Measuring Techniques, pp. 377–385, Springer, 2014.

[96] S. Wang and Y. Yang, “Quadrotor aircraft attitude estimation and control based on kalman

filter,” in Proceedings of the 31st Chinese Control Conference, pp. 5634–5639, IEEE, 2012.

[97] M. L. Anderson, K. M. Brink, and A. R. Willis, “Real-time visual odometry covariance esti-

mation for unmanned air vehicle navigation,” Journal of Guidance, Control, and Dynamics,

vol. 42, no. 6, pp. 1272–1288, 2019.

205

[98] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,

“Ros: an open-source robot operating system,” in ICRA workshop on open source software,

vol. 3, p. 5, Kobe, Japan, 2009.

[99] J. Jackson, G. Ellingson, and T. McLain, “Rosflight: A lightweight, inexpensive mav re-

search and development tool,” in Unmanned Aircraft Systems (ICUAS), 2016 International

Conference on, pp. 758–762, IEEE, 2016.

[100] J. Zhang, M. Kaess, and S. Singh, “Real-time depth enhanced monocular odometry,” in

2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4973–

4980, IEEE, 2014.

[101] G. Szafranski and R. Czyba, “Different approaches of pid control uav type quadrotor,” 2011.

[102] A. L. Salih, M. Moghavvemi, H. A. Mohamed, and K. S. Gaeid, “Flight pid controller

design for a uav quadrotor,” Scientific research and essays, vol. 5, no. 23, pp. 3660–3667,

2010.

[103] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The mahalanobis distance,”

Chemometrics and intelligent laboratory systems, vol. 50, no. 1, pp. 1–18, 2000.

[104] T. D. Woodbury, J. H. Ramos, and J. E. Hurtado, “Attitude-based classification of nonco-

operative bodies for motion characterization and active control detection,” in 2018 AIAA

SPACE and Astronautics Forum and Exposition, p. 5226, 2018.

[105] J. Shi et al., “Good features to track,” in Computer Vision and Pattern Recognition, 1994.

Proceedings CVPR’94., 1994 IEEE Computer Society Conference on, pp. 593–600, IEEE,

1994.

[106] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application

to stereo vision,” 1981.

[107] The OpenCV Reference Manual, 2.4.8.0 ed., February 2018.

206

[108] N. W. Oumer and G. Panin, “3d point tracking and pose estimation of a space object us-

ing stereo images,” in Pattern Recognition (ICPR), 2012 21st International Conference on,

pp. 796–800, IEEE, 2012.

[109] A. R. Willis, L. R. Sahawneh, and K. M. Brink, “Benchmarking real-time rgbd odometry for

light-duty uavs,” in Three-Dimensional Imaging, Visualization, and Display 2016, vol. 9867,

p. 98670O, International Society for Optics and Photonics, 2016.

[110] O. Sorkine-Hornung and M. Rabinovich, “Least-squares rigid motion using svd,” Comput-

ing, vol. 1, p. 1, 2017.

207

APPENDIX A

HARDWARE PARAMETERS

The REEF estimator parameters used to generate the results shown in Section 6.2.5 are included

here.

NOTE: The initial value of the Z position in the Z estimator is set at -0.25m since the sonar

altimeter is mounted at a height of 0.25m from the ground. The sonar used in this application is

only capable of measuring heights greater than 0.25m.

Pxyo = diag

[
0.01 0.01 0.03 0.02 0.14 0.14

]
Qxy = diag

[
0 0 0.03 0.03 0.1 0.1

]
xxyo =

[
0 0 0 0 0 0

]
βxy =

[
1 1 0.01 0.01 0.01 0.01

]
Pzo = diag

[
0.025 1.0 0.09

]
Qz = diag

[
0.03 0.001

]
xzo =

[
−0.25 0 0

]
βz =

[
1.0 1.0 0.5

]

208

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Motivation
	The Schmidt-Kalman and the partial-update Schmidt filter
	partial-update Schmidt filter challenges

	Literature Review
	Numerical issues and factorized formulations
	Square-root filtering
	The U-D filter formulations

	The Schmidt consider filter
	The dissertation objectives and outline
	Outline

	A GENERALIZATION OF THE SCHMIDT KALMAN FILTER
	Discrete Extended Kalman filter framework and notation
	The partial-update filter concept
	The Schmidt-Kalman filter
	The partial-update Schmidt-Kalman filter

	The partial-update for the indirect Kalman filter
	Indirect filtering
	Indirect filter formulation.

	The conventional MEKF update
	The partial-update within the Multiplicative EKF
	The PU-MEKF

	Filter key equations and algorithm

	Stability analysis of the partial-update filter
	Partial-update numerical stability issues

	SQUARE ROOT PARTIAL-UPDATE SCHMIDT KALMAN FILTER
	Introduction & Motivation
	Square Root filtering

	The square root partial-update Schmidt-Kalman filter
	Measurement update
	Time update

	Numerical examples
	Body re-entering Earth atmosphere
	Camera to Inertial Measurement Unit (IMU) calibration

	Monte Carlo runs
	Condition number

	Processing a vector-valued measurement
	Square root partial-update for vector-valued measurements
	Conventional time update with vector-valued measurement processing

	Measurement and process noise covariance decorrelation
	Computational complexity

	Summary

	U-D PARTIAL-UPDATE KALMAN FILTER
	Introduction
	The UD filter background

	The conventional UD Kalman filter
	UD temporal update overview

	The UD partial-update derivation
	Measurement decorrelation using UD factors
	Numerical example
	Body re-entering Earth atmosphere single run

	Monte Carlo runs
	Numerical complexity
	IMU-camera example
	Summary

	DYNAMIC PARTIAL-UPDATE KALMAN FILTER
	Motivation
	Dynamic partial-update weights
	Nonlinearity-aware based method
	Nonlinearity-aware partial-update
	Numerical example
	Pre-tuned partial-update weights as a baseline for DNL method

	Covariance-aware based method
	The re-entry falling body
	Pre-tuned partial-update weights as a baseline for the DC method
	Comments on DNL and DC partial-update methods

	HARDWARE APPLICATIONS
	Online IMU-camera intersensor parameters calibration
	Introduction
	Related Work
	Filter-based IMU-camera calibration algorithm
	Notation
	The propagation step
	State vector.
	True process model.
	Expectation of process model.
	Forming the error model.
	Covariance propagation.

	PU-MEKF Measurement Update.
	Measurement model.

	The partial-update within the Multiplicative EKF

	Simulations
	Hardware experiments
	Setup
	Filter Initialization
	Results

	Summary

	A simplified Unmanned Aerial Vehicle state estimation framework
	Introduction and Motivation
	High-Level System Overview
	Autopilot
	On-board computer

	Estimator Design
	Propagation of the Z estimator
	Measurement update for the Z estimator
	Propagation of the XY estimator
	Measurement update for the XY estimator
	Partial-update filter modification
	The XY and Z filters operation frequency

	Controller Design
	Hardware implementation
	Flight performance

	Summary

	Angular rate estimation of a non-cooperative space body using RGB-D measurements
	Introduction and motivation
	Tracking and estimation system overview
	Additional notation, modeling and feature treatment
	Additional notation
	Reference frames
	Reprojection model
	Feature extraction
	Feature selection criteria
	Feature position vectors in the arbitrary body frame

	Extended Kalman Filter
	Process and measurement model
	UD partial-update filter

	Filter initialization
	EKF re-initialization
	Hardware experiments
	Experimental setup
	Experiments
	Angular velocity estimates

	Summary

	CONCLUSIONS
	REFERENCES
	APPENDIX Hardware parameters

