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ABSTRACT

Holomorphic functions of several complex variables showcase many interesting extension phe-

nomena which have historically motivated much of the development of the discipline. The pur-

pose of this thesis is to explore the extension phenomena of integrable holomorphic functions, an

important subclass of the holomorphic functions. We give two classification theorems for two-

dimensional Reinhardt L1
h-domains of holomorphy, as well as two partial results towards clas-

sifying n-dimensional Reinhardt L1
h-domains of holomorphy. Both classification theorems for

the two-dimensional domains are geometric classifications in terms of elementary Reinhardt do-

mains. The first gives a classification in terms of monomial inequality representations of elemen-

tary Reinhardt domains, while the second gives a classification in terms of a parameterization of

such domains by points on the unit circle. While we did not achieve a complete classification of

n-dimensional domains, we demonstrate that all bounded Reinhardt domains of holomorphy are

themselves L1
h-domains of holomorphy. Furthermore, while fat L1

h-domains of holomorphy have

been characterized via functional analysis in the past, we provide a geometric characterization of

such domains in terms of elementary Reinhardt domains.

ii



DEDICATION

Ad Corda Sacratissima Verbi Incarnati et Sedis Sapientiae

iii



ACKNOWLEDGMENTS

In a letter to Robert Hooke, Sir Isaac Newton famously said, “If I have seen further it is by

standing on the shoulders of Giants.” If even this great giant of scientific and mathematical thought

saw the need to thank his forebears, then surely I must also give thanks to all of those who have

played a role in my academic successes not least of which is this project. I first would like to thank

my parents, Timothy Torres and Elizabeth Thoms, and stepparents, Bryan and Johnice Thoms and

Valerie Torres, who gave me my start in life and have always encouraged me in my aspirations

towards academic excellence. I also need to thank the other members of my family who have been

endlessly supportive of my studies: Ham and Midge Benson, who have been constant supportive

presences in my life; Hiram and Joyce Torres, who were always proud that I wanted to pursue

teaching and academics; Bob and Ann Thoms, without whom I might never have thought to apply

to Texas A&M and who were always able to empathize with me because of their own experiences

with academia and research; my brother, William Thoms, who was always up for a phone call

when I needed a pick-me-up; my sisters, Phoebe Torres and Kayli Rusk, for their constant encour-

agement; Christopher and Linda Benson, the latter of whom played a big role in encouraging my

enthusiasm for mathematics when she taught me about subtraction and negative numbers when I

was talking to her excitedly about the addition problems I was doing in 1st grade, and who didn’t

discourage me from reading the glossary in my math workbook when she picked me up from

school on my last day of 2nd grade; Greg and Jan Torres, for their support of my personal and

educational goals; my cousin, Jim Stark, who in a conversation with me about his own time in

graduate school one Christmas, excited me enough to pursue it myself; and all of my other aunts,

uncles, nephews, nieces, cousins, and assorted other family members.

Next, I must thank all of my colleagues from my times as a graduate student at Texas A&M,

who have pushed me towards this completion through their encouagement and their solidarity.

Special thanks in particular must be given to Ola Sobieska, who started at the same time as me,

iv



and is also finishing at the same time as me. We got each other through several of our classes,

and she constantly encouraged me through the difficulties of graduate school. I also need to thank

the other members of my research group, Zach Mitchell and Blake Boudreaux, with whom I was

able to discuss ideas and who previewed my preliminary exam presentation to give me advice. I

would also like to thank Nida Obatake, Alex Ruys de Perez, David Sykes, Brian Hunter, Mahis-

hanka Withanachchi, Konrad Wrobel, Ayo Adeniran, Burak Hatinoglu, Cesar Cobos May, and the

numerous other friends I’ve made in this department as we progressed through this program.

I must also thank my former colleagues at the schools at which I have taught who have all been

greatly encouraging of me throughout this process, especially my former department heads, Stuart

Cornwell and Barbara Rourke; my fellow math teachers, Ashley Dugas, Lisa Boyer, Roxy Tate,

Lynne Guarisco, and Karen Timmreck; my colleagues from other departments, especially Andy

LeGoullon, Garrett and Allie Rosen, Diana Maggini, James and Susan Dunlap, Kellie Kinsland,

Jon Berthelot, Lisa Baldridge, Ken Timmreck, Jamie and Kim Anson, Craig Baker, Chris Cole,

Grace Krause, Christine Mendizabal, Emily Froeba, and Meredith Percy; and my former admin-

istrators who gave me a leg-up in the world of education, Paul Baker, Anne Tate, Ellen Lee, and

Julie Lechich.

I must now give thanks to the many academic mentors I have had: my committee members, and

especially the chair of my committee, Dr. Harold P. Boas, from whom I consider it to have been

one of the greatest privileges of my life to have learned and whose weekly conversations about

math and teaching, I will greatly miss; my graduate professors; Dr. Dean Baskin whose graduate

student writing group helped me keep on track with all of my writing projects, my undergrad-

uate mathematics professors, Dr. Roger Waggoner, Dr. Victor Schneider, Dr. Patricia Beaulieu,

and Dr. Christina Eubanks-Turner, without whom I would assuredly not have succeeded in grad-

uate school; my other supportive undergraduate faculty members, especially Dr. Julia Frederick,

Dr. Susan Nicassio, Mrs. Nona Istre, Dr. Mark Radle, and Dr. John Meriwether; my elementary

v



and secondary math instructors, especially Mrs. Linda Bonnette, Mrs. Barbara Hoffmann, and

Mrs. Lindsay Waddell; my other elementary and secondary teachers, especially the late Mrs. Elise

Hook, Mr. Yasuo Namba, and Mr. Rudy Gebauer, as well as Mrs. Suzanne Bentley-Smith, Dr. Bar-

bara Walsh, Mrs. Sarah Kirkpatrick, Mrs. Pam Middlebrook, Ms. Billie Smith, Mr. Jeremy Grissell,

Mrs. Jan Lennie, Mr. Richard Haywood, Mr. Gregory Sampson, and Mrs. Stephanie de la Cerda.

I next would like to thank my friends who have supported me through their prayers and con-

versation for years, among whom special mention must be made of Tim and Sarah Trosclair, Nick

Trosclair, Peter Youngblood, Kyle Albarado, Ryan Carruth, Geoffrey and Emily Bain, Trey and

Sara Dietz, Travis and Madeline Rooney, Brody and Rebecca Britten, Nathan and Jennifer Streger,

and the Marchetti family (especially Tommy, Johnny, Teresa, and Peter). I also would like to thank

my friends Jonathan and Meredith Tyler, whom I have had the great privilege of knowing starting

with my time at A&M, as well as their daughter and my goddaughter, Marie Tyler, whose smile

and joy light up my entire world. I would also like to thank the members of the St. Mary’s Men’s

Chant Choir who have been sources of great happiness and consolation in my daily life here at

A&M, as well as the Cathedral Choir of Our Lady of Walsingham in Houston, with whom I have

had the great pleasure of singing this past year.

I would also like to thank my many pastors (former and current) and spiritual mentors who

have helped me navigate the trials of adulthood, including most recently the difficulties of grad-

uate school. Special thanks must be given to Bishop David Konderla, who got me connected to

the community at St. Mary’s in College Station when he was pastor, Fr. Jason Vidrine, Fr. Clin-

ton Sensat, Fr. Michael Russo, Fr. Augustine Ariwaodo, Fr. Brian McMaster, Fr. Greg Gerhart,

Fr. Charles Hough, Fr. Geoff Horton, Sr. Celestina Menin, and Dcn. Tim Maragos. Last but not

least, I would be remiss if I did not thank the Triune God: Father, Son, and Holy Ghost, for His

providential care for me all the days of my life and for all the gifts of nature and grace which He

has given me in creating, preserving, and sanctifying me; I thank Our Lady the Seat of Wisdom

vi



whose special love for me is the fount of my devotion to the Truth – both eternal and temporary,

both divine and mundane, both supernatural and natural. I give thanks for my baptismal patrons

St. Joseph and St. Lawrence, and my confirmation patron, St. Augustine, as well as the many other

holy men and women who have interceded to God on my behalf, most especially Ss. Joachim and

Anne, St. Paul, St. John the Apostle, Ss. Martha and Mary Magdalene, St. Hubert, St. Benedict,

St. Anselm, St. Bernard of Clairvaux, St. Dominic, St. Francis of Assisi, St. Albert the Great,

St. Thomas Aquinas, St. Bonaventure, St. Catherine of Siena, St. John of the Cross, St. Teresa of

Avila, St. Therese of Liseux, St. John Henry Newman, and St. Rose of Lima.

vii



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Boas and Pro-

fessors Straube and Rojas of the Department of Mathematics and Professor Kronenberg of the

Department of Geology and Geophysics.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by an assistantship from Texas A&M University.

viii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. L1
h-DOMAINS OF HOLOMORPHY IN C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Bounded Reinhardt Domains of Holomorphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Unbounded Reinhardt Domains of Holomorphy in C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Domains with Non-Complete Fat Hull Not Disjoint from V2 . . . . . . . . . . . . . . . . . . 9
2.2.2 Domains with Complete Fat Hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Domains with Fat Hull Disjoint from V0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 A General Characterization in Terms of Logarithmic Half-Planes . . . . . . . . . . . . . . . . . . . . . 24

3. FAT L1
h-DOMAINS OF HOLOMORPHY IN Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. AN ALTERED PERSPECTIVE ON L1
h-DOMAINS OF HOLOMORPHY IN C2 . . . . . . . . . . 38

5. CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



1. INTRODUCTION

Given a domain Ω ⊂ Cn and a function holomorphic on Ω, recall that there is a maximal Rie-

mann domain R over Cn to which it can be extended called its domain of existence. If Ω is the

domain of existence for a holomorphic function, then we say that it is a domain of holomorphy.

Furthermore, if S is a family of holomorphic functions on Ω and Ω is the domain of existence for

some f ∈ S , then we say that Ω is an S -domain of holomorphy. In this paper, we will be most

concerned with the case that S is the family of Lp holomorphic functions, i.e, when S = Lph(Ω).

(See §§8-9 of Chapter II in [1].)

In Chapter 2, we give a characterization of Reinhardt L1
h-domains of holomorphy in C2, which

we have done in Theorem 1. This research question arose when considering the removable sets

for bounded Lph-domains of holomorphy in the plane: while some sets are always removable for

bounded holomorphic functions or for L2 holomorphic functions in the plane (see Theorem 2 in

[7]), there are no such sets for Lp holomorphic functions for p < 2. In other words, every bounded

open subset of the plane is an Lph-domain of holomorphy for all p < 2. This resulted in the follow-

ing conjecture, which remains open:

Conjecture 1. Every bounded domain of holomorphy in Cn is an Lph-domain of holomorphy for

p < 2.

Since every Lph-domain of holomorphy is itself a domain of holomorphy, the “domain of holo-

morphy” hypothesis in the conjecture is necessary. We undertook to prove Conjecture 1 first for

bounded Reinhardt domains of holomorphy in Cn, which we accomplished in Proposition 4 via

the geometric characterization of Reinhardt domains of holomorphy (Theorem 1.11.13 in [6]).

After this, it was natural to ask whether unbounded Reinhardt domains of holomorphy exhibited

the same phenomenon or not. Clearly, it will be necessary to assume that there exist nontrivial
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Lph-functions on a given Reinhardt domain of holomorphy for there to be any hope of it being an

Lph-domain of holomorphy. Jarnicki and Pflug showed in [4] that for fat Reinhardt domains, this

is sufficient. Recall that a domain in Cn is fat provided it is the interior of its closure. This led to

another conjecture:

Conjecture 2. If Ω is a Reinhardt domain of holomorphy such that for some p < 2, Lph(Ω) 6= {0},

then Ω is an Lph-domain of holomorphy.

However, Conjecture 2 fails and the work in this paper furnishes a counterexample. In fact,

Proposition 14 will yield a family of unbounded domains with nontrivialLph-functions for all p ≥ 1.

However, even more than this, Propositions 15 and 16 will yield that whenever 1 ≤ p < q < 2,

then there exists a domain from the family in Proposition 14 which is an Lph-domain of holomor-

phy, but is not an Lqh-domain of holomorphy.

Since Conjecture 2 fails, we began to seek out exactly which Reinhardt domains in C2 are L1
h-

domains of holomorphy in the hopes of finding a characterization. This characterization is given in

Theorem 1. In developing this characterization, heavy use was made of the logarithmic convexity

of pseudoconvex Reinhardt domains. To this end, we introduce below the notion of logarithmic

half-planes – those fat domains in C2 whose images under the function log |z| are half-planes.

While Jarnicki and Pflug give a function-theoretic characterization of fat Lph-domains of holomor-

phy in [4], we have given a geometric characterization in terms of these logarithmic half-planes of

fat Lph-domains of holomorphy in C2 in Propositions 30 and 31.

We then sought to generalize this result to higher dimensions. Towards this end, in Chapter 3,

Corollary 1 gives a characterization of fat L1
h-domains of holomorphy in Cn in terms of the lin-

ear span of a set of real vectors representing elementary Reinhardt domains – higher-dimensional

analogs of logarithmic half-planes.
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While we had originally parameterized the elementary Reinhardt domains using vectors in Rn,

it became evident that this method did not give a unique parameterization of these domains; in

other words, multiple vectors could represent the same elementary Reinhardt domain. However,

each elementary Reinhardt domain can be represented by a unique unit vector in Rn. This sug-

gested that the results concerning such domains should be stated not in terms of members of Rn,

but members of the sphere Sn−1. This insight led to the work in Chapter 4, which gives a simplified

restatement of Theorem 1 in terms of this new parameterization. The success of this parameteriza-

tion combined with the linear algebra techniques in Chapter 2 suggest a possible route for further

research concerning non-fat Reinhardt L1
h-domains of holomorphy in n dimensions.
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2. L1
h-DOMAINS OF HOLOMORPHY IN C2

In order to give a geometric characterization of Reinhardt L1
h-domains of holomorphy, we first

recall two results: the first gives a function-theoretic characterization of fat, Reinhardt Lph-domains

of holomorphy found in [4], while the second gives a geometric characterization of non-fat Rein-

hardt domains of holomorphy in relation to their fat hulls.

Proposition 1. If Ω is a fat, Reinhardt domain of holomorphy, and if there is a p ∈ [1,∞) such

that Lph(Ω) 6= {0}, then for all q ∈ [1,∞], Ω is an Lqh-domain of holomorphy.

Proof. First, we recall the notation of Jarnicki and Pflug from [4]. Recall that

L♦,0
h (Ω) :=

⋂
q∈[1,∞]

Lq,0h (Ω) =
⋂

q∈[1,∞]

Lqh(Ω).

Now, on the assumption that there exists p ∈ [1,∞) such that Lph(Ω) 6= 0, it follows from Proposi-

tion 9 of [4] that Ω is an L♦,0
h -domain of holomorphy. Therefore, there exists f ∈ L♦,0

h (Ω) having Ω

as its domain of existence. Fix q ∈ [1,∞]. Now, by definition of L♦,0
h (Ω), f ∈ Lqh(Ω). Therefore,

Ω is the domain of existence of an Lqh function and so Ω is an Lqh-domain of holomorphy.

Definition 1. For all j ∈ {1, . . . , n}, we define Vj ⊂ Cn by Vj := {zj = 0}. We define V0 ⊂ Cn

by V0 := {z1 · · · zn = 0}. In other words,

V0 :=
n⋃
j=1

Vj

Proposition 2. If Ω is a Reinhardt domain of holomorphy in Cn and Ω∗ is its fat hull (i.e, if

Ω∗ =
(
Ω
)◦

), then for some J ⊂ {0, 1, . . . , n}, we have that:

Ω∗ \ Ω =
⋃
j∈J

(Ω∗ ∩ Vj)

4



This Proposition follows directly from Theorem 1.11.13 in [6], which in effect states that the

only way to construct non-fat Reinhardt domains of holomorphy is to remove one or more of

the coordinate axes (V1, V2, . . .) from the domain. With these two results in mind, we will now

proceed to our characterization first of bounded, Reinhardt Lph-domains of holomorphy, and then

of unbounded Reinhardt L1
h-domains of holomorphy in C2.

2.1 Bounded Reinhardt Domains of Holomorphy

We first proceed to characterize bounded Reinhardt domains of holomorphy in Cn for arbitrary

n. This characterization proceeds in a series of steps, which are outlined as follows: (1) we note

that all bounded Reinhardt domains of holomorphy which are fat are Lph-domains of holomorphy

(Proposition 3), and then (2) we show that for p < 2, the hypothesis for the domain may be relaxed

(Proposition 4).

Proposition 3. Every bounded, fat Reinhardt domain of holomorphy is an Lph-domain of holomor-

phy, for all p ∈ [1,∞].

Note that this is a simple consequence of Proposition 1, since in particular L1
h(Ω) contains all

of the polynomials, if Ω is a bounded domain. Before proceeding to Proposition 4, which charac-

terizes bounded Lph-domains of holomorphy, we consider the following example.

Example: Consider Ω := D2 \ V1, and observe that Ω∗ is the bidisk. We note that by Proposi-

tion 3, the bidisk is an Lph-domain of holomorphy for all p. This means that for all p, there is some

fp holomorphic on the bidisk which is also Lp and which does not extend holomorphically to any

boundary point of the bidisk. Now, a simple calculation shows that z−1
1 is Lp on the bidisk for all

p < 2 and is not Lp for any p ≥ 2. Hence, gp := fp + z−1
1 is Lp on the bidisk for all p < 2 and

holomorphic on Ω. Furthermore, gp does not extend holomorphically to any boundary point of the

bidisk (or else gp − z−1
1 = fp would) nor to any point in D2 ∩ V1 or else (gp − fp = z−1

1 would).

The domain of definition for gp is Ω and so Ω is an Lph-domain of holomorphy, for every p < 2.
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This example is indicative of the proof that all bounded Reinhardt domains of holomorphy are

also Lph-domains of holomorphy for p < 2. Furthermore, it indicates why we must take as an

assumption that p < 2, since z−1
1 is not L2 on the bidisk. Indeed, more generally, for all integers

m,n, zm1 z
n
2 is L2 if and only if m,n ≥ 0. It follows from this fact and from Lemma 1 that the only

bounded Reinhardt L2
h-domains of holomorphy are those which are fat.

This example is also consistent with the characterization of bounded L2
h-domains of holomor-

phy given in Theorem 2 of [7], which states that pluripolar sets are removable sets for L2
h functions.

Since Vj is an analytic variety, for each j, it is also a pluripolar set. Hence, a bounded Reinhardt

domain of holomorphy is an L2
h-domain of holomorphy if and only if it is fat.

Proposition 4. Every bounded Reinhardt domain of holomorphy is an Lph-domain of holomorphy,

for all p ∈ [1, 2).

Proof. Let Ω be a bounded, Reinhardt domain of holomorphy and fix p ∈ [1, 2). First, we note

that the claim follows from Proposition 3 if Ω = Ω∗. We assume now that Ω ( Ω∗. Then we

let J be the indexing set guaranteed by Proposition 2. It now follows that for each j ∈ J , z−1
j is

holomorphic on Ω. Furthermore, since Ω is bounded, there exists a polydisk of radius R > 0 such

that Ω ⊂ P . Therefore, for all p ∈ [1, 2),

∫
Ω

∣∣z−1
j

∣∣p ≤ 2πnR2n−2 ·
R∫

0

r1−p
j drj =

2πnR2n−p

2− p
<∞.

Hence, for each j ∈ J , z−1
j ∈ Lph(Ω). Define g ∈ Lph(Ω) by g(z) :=

∑
j∈J z

−1
j . Also, from

Proposition 3, there exists an f ∈ Lph(Ω∗) such that Ω∗ is the domain of definition for f . We now

define h ∈ Lph(Ω) by h := f + g. Now, since f does not extend holomorphically to any boundary

point of Ω∗ and g does not extend holomorphically to any point in Ω∗ \ Ω, it follows that h does

not extend holomorphically to any boundary point of Ω. Hence, h is an Lph-function for which Ω

is the domain of definition, and it therefore follows that Ω is an Lph-domain of holomorphy.

6



2.2 Unbounded Reinhardt Domains of Holomorphy in C2

We now consider the more difficult case of unbounded Reinhardt domains of holomorphy. We

have no easy analog to Proposition 3. There is no guarantee on a given unbounded domain that

nontrivial Lp holomorphic functions exist. Therefore, we will now invoke more explicitly the ge-

ometry of domains of holomorphy which are Reinhardt in particular.

For any domain Ω ⊂ C2,

log |Ω| :=
{

(x, y) ∈ R2 : for some (z1, z2) ∈ Ω, (ex, ey) = (|z1| , |z2|)
}
.

Also, recall that every Reinhardt domain of holomorphy is logarithmically convex. In other words,

for every Reinhardt domain of holomorphy Ω, we have that log |Ω| is a convex subset of R2.

Therefore, every Reinhardt domain of holomorphy Ω has the property that either Ω∗ = C2 or that

log |Ω| is the intersection of a family of half-planes in R2. Since for all p ∈ (0,∞), Lph (C2) = {0},

we may consider only those Reinhardt domains of holomorphy Ω with Ω∗ 6= C2. In order to do

this more simply, we now define the notion of logarithmic half-planes and then in Proposition 5,

we give a description of these logarithmic half-planes.

Definition 2. A logarithmic half-plane in C2 is a fat Reinhardt domain Ω ⊂ C2 such that log |Ω|

is a half-plane in R2.

Proposition 5. Ω is a logarithmic half-plane in C2 if and only if for some α > 0, one of the

following statements is true:

1. For some x ∈ R, Ω = {|z2| < α |z1|x} =: Ux
α .

2. For some x ∈ R, Ω = {|z2| > α |z1|x} =: Ũx
α .

3. Ω = {|z1| < α} =: Uα.

4. Ω = {|z1| > α} =: Ũα.

7



Proof. First, suppose Ω is a logarithmic half-plane. Then log |Ω| must be defined by an open, lin-

ear inequality in two variables. That is, ∂ log |Ω| is a line in R2. Hence, ∂ log |Ω| is either equal

to {(x1, x2) : x2 = mx1 + b}, for some m, b ∈ R, or equal to {(x1, x2) : x1 = b} for some b ∈ R,

where xj = log |zj|, for j = 1, 2.

Now, in the first case, we have that ∂Ω =
{
|z2| = eb · |z1|m

}
, since Ω is fat. Therefore, taking

α = eb and x = m, we have that either Ω = Ux
α or Ω = Ũx

α . Similarly, in the second case, we

have that ∂Ω =
{
|z1| = eb

}
, so taking α = eb, we have that either Ω = Uα or Ω = Ũα. For the

converse, now note by a simple computation that each domain described in statements (1)-(4) of

this proposition is itself a logarithmic half-plane.

In order to understand the main result, it is useful to analyze separately the cases of Reinhardt

domains of holomorphy with (a) a fat hull which intersects precisely one of V1 and V2 (subsection

2.2.1), (b) a complete fat hull (subsection 2.2.2), and (c) a fat hull which is disjoint from V0 (sub-

section 2.2.3). Toward this end, we will now give characterizations of complete Reinhardt domains

of holomorphy (Proposition 6) and Reinhardt domains of holomorphy intersecting precisely one

of V1 and V2 in C2 (Proposition 7) in terms of logarithmic half-planes.

Proposition 6. A complete Reinhardt domain of holomorphy in C2 must be either C2 or an inter-

section of logarithmic half-planes of the form Uα and Ux
α , where x ≤ 0.

Proof. Let Ω ( C2 be a complete Reinhardt domain of holomorphy. Then since Ω must be log-

arithmically convex, log |Ω| must be an intersection of half-planes in R2. Hence, Ω must be an

intersection of logarithmic half-planes.

Furthermore, since Ω is complete, it must contain the origin. Therefore, it must be an intersec-

tion of logarithmic half-planes containing the origin. Note now that the origin is not contained in

any domain of the form Ũx
α or Ũα. Furthermore, if x > 0, then 0 = α · 0x, and so the origin is not

contained in Ux
α . Evidently, if α > 0 and x ≤ 0, then the origin is contained in Uα and Ux

α . Hence,
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Ω must be an intersection of logarithmic half-planes of the form Ux
α , where x ≤ 0, and Uα.

Proposition 7. If Ω is a Reinhardt domain of holomorphy such that its fat hull Ω∗ has nonempty

intersection with exactly one of V1 and V2, then Ω must be contained in a logarithmic half-plane of

one of the following forms: Ux
α , where x > 0; Ũα; Ũx

α , where x > 0; or Ũ0
α.

Proof. Let Ω be a Reinhardt domain of holomorphy such that Ω∗ has nonempty intersection with

exactly one of V1 or V2. Since Ω is a Reinhardt domain of holomorphy, Ω must be logarithmically

convex. But then Ω∗ must also be logarithmically convex and so Ω∗ is an intersection of logarithmic

half-planes. Since by hypothesis Ω∗ must omit the origin, at least one of these logarithmic half-

planes must also omit the origin. Now, observe that for every α > 0, Ũα omits the origin as does

Ũ0
α. Furthermore, for every α, x > 0, Ux

α omits the origin as does Ũx
α . Furthermore, these are the

only logarithmic half-planes which omit the origin and intersect exactly one of V1 or V2.

2.2.1 Domains with Non-Complete Fat Hull Not Disjoint from V2

The results in this section and those following come in three flavors. (1) First, we have results

which demonstrate the existence of nontrivial Lph-functions on certain fat Reinhardt domains of

holomorphy. From Proposition 1 above, it will then follow that these domains are Lph-domains

of holomorphy for all p ≥ 1. (2) We will then show when certain non-fat Reinhardt domains of

holomorphy are Lph-domains of holomorphy for specified p. The proofs of these propositions will

follow a method similar to the one used in Proposition 4 — we will find an Lph Laurent monomial

on the specified non-fat domain. (3) Finally, we have results in which we determine that certain

non-fat Reinhardt domains of holomorphy are not Lph-domains of holomorphy. Proofs of these

propositions will proceed by showing that the Lph monomials on the specified domains extend to

a larger domain. It will then follow from Lemma 1 below that the specified domain is not an Lph-

domain of holomorphy.

In this section, we will consider only those domains having a fat hull which intersects precisely

one of V1 and V2. Furthermore, since Lph(Ω) is invariant under a permutation of the coordinates
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of Ω, we will consider only those Reinhardt domains of holomorphy which are disjoint from V1

but not from V2. By the argument in Proposition 7, we only need consider domains which are

contained in logarithmic half-planes of the form Ũα (Propositions 8 and 9) or Ux
α where x > 0

(Propositions 10-12).

Proposition 8. Let Ω be a Reinhardt domain of holomorphy. Also, let α, β > 0 and x ∈ R. If

Ω ⊂ Ũα ∩ Ux
β , then Lph(Ω) 6= {0}, for all p > 0.

Proof. To see this, let n be an integer strictly less than −2(1+x)
p

. We now show that zn1 ∈ L
p
h(Ω).

First, note that zn1 is holomorphic on Ω, since Ω ∩ V1 = ∅. Now, observe:

∫
Ω

|zn1 |
p ≤ 4π2

∞∫
α

βrx1∫
0

r1+pn
1 r2dr2dr1 = 2π2β2

∞∫
α

r1+pn+2x
1 dr1.

Now, observe that 1 + pn+ 2x < 1− 2(1 + x) + 2x = −1, and so

∫
Ω

|zn1 |
p ≤ 2π2β2

∞∫
α

r1+pn+2x
1 dr1 <∞.

Therefore, zn1 ∈ L
p
h(Ω).

Proposition 9. If Ω is a Reinhardt domain of holomorphy such that Ω∗ satisfies the hypotheses of

Proposition 8, then Ω is an Lph-domain of holomorphy for all p ∈ [1, 2).

Proof. If Ω = Ω∗, then this follows from Propositions 1 and 8. Now, suppose that Ω 6= Ω∗. It now

follows from Proposition 2 that Ω = Ω∗ \V2. Fix p ∈ [1, 2) and let n be an integer strictly less than

−x(2−p)+2
p

. We now show that zn1 z
−1
2 ∈ L

p
h(Ω). First, since Ω ∩ V0 = ∅, zn1 z

−1
2 is holomorphic on

Ω. Next, observe that ∫
Ω

∣∣zn1 z−1
2

∣∣p ≤ 4π2

∞∫
α

βrx1∫
0

r1+pn
1 r1−p

2 dr2dr1.
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Since p < 2, we have that 1− p > −1 and so

∫
Ω

∣∣zn1 z−1
2

∣∣p ≤ 4π2β2−p

2− p

∞∫
α

r
1+pn+x(2−p)
1 dr1.

Finally, since pn < −x(2− p)− 2, we have that 1 + pn+ x(2− p) < −1, and so

∫
Ω

∣∣zn1 z−1
2

∣∣p <∞.
Now, let f ∈ Lph(Ω

∗) have Ω∗ as its domain of definition and define g ∈ Lph(Ω) by g(z) :=

f(z) + zn1 z
−1
2 . Note that since f does not extend holomorphically to any boundary point of Ω∗ and

zn1 z
−1
2 does not extend holomorphically to V2, it follows that Ω is the domain of definition for g,

and so Ω is an Lph-domain of holomorphy.

Remark: The conclusion of Proposition 9 would sometimes be false if we took p = 2. This

follows from Proposition 2 above and from Theorem 2 in [7].

Proposition 10. Let Ω be a Reinhardt domain of holomorphy, and let y < x and x > 0 and

α, β > 0. If Ω ⊂ Ux
α ∩ U

y
β , then L1

h(Ω) 6= {0}.

Proof. Let r = m′

n′
be a rational number in (y, x) \ Z. Assume without loss of generality that n′ is

positive. Now, let m := −2 −m′ and n := −2 + n′. Since r /∈ Z, it follows that n′ ≥ 2, so that

n ≥ 0. I now claim that zm1 z
n
2 ∈ L

p
h(Ω). Since n ≥ 0 and Ω∩ V1 = ∅, zm1 z

n
2 is holomorphic on Ω.

Now, let R =
(
β
α

)1/(x−y)
and observe that

∫
Ω

|zm1 zn2 | ≤ 4π2

 R∫
0

αrx1∫
0

r1+m
1 r1+n

2 dr2dr1 +

∞∫
R

βry1∫
0

r1+m
1 r1+n

2 dr2dr1



=
4π2

2 + n

α2+n

R∫
0

r
1+m+x(2+n)
1 dr1 + β2+n

∞∫
R

r
1+m+y(2+n)
1 dr1

 .
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Now, note that the integral above is finite provided 1+m+x(2+n) > −1 and 1+m+y(2+n) <

−1. But this is true if and only if −x(2 + n) < 2 + m < −y(2 + n), which in turn is true if and

only if y < −2−m
2+n

< x. However, m′ = −2−m and n′ = 2 + n, and r = m′

n′
∈ (y, x). Therefore,∫

Ω
|zm1 zn2 | <∞, and so zm1 z

n
2 ∈ L1

h(Ω).

Proposition 11. If Ω is a Reinhardt domain of holomorphy such that Ω∗ satisfies the hypotheses of

Proposition 10, then Ω is an L1
h-domain of holomorphy provided that either Ω = Ω∗ or (y, x)∩Z 6=

∅.

Proof. If Ω = Ω∗, then this follows from Proposition 10 above and from Proposition 1. Now, sup-

pose that Ω 6= Ω∗. It follows that Ω = Ω∗ \ V2. Now let r ∈ (y, x) ∩ Z. Then taking m = −2− r

and n = −1, it follows from the same argument as in Proposition 10 above that zm1 z
n
2 ∈ L1

h(Ω).

Furthermore zm1 z
n
2 does not extend holomorphically to V2.

Therefore, since Ω∗ is an L1
h-domain of holomorphy, let f ∈ L1

h(Ω
∗) such that Ω∗ is the domain

of definition for f . Now define g ∈ L1
h(Ω) by g (z1, z2) := f(z1, z2) + zm1 z

n
2 . Now, since g does

not extend holomorphically to ∂Ω∗ nor to V2, it follows that Ω is the domain of definition for g, so

that Ω is an L1
h-domain of holomorphy.

Lemma 1. Let f(z) =
∑

ν∈Zn aνz
ν be a holomorphic function on a Reinhardt domain Ω ⊂ Cn. If

f ∈ Lph(Ω), then aνzν ∈ Lph(Ω), for all ν ∈ Zn.

Proof. The lemma follows from the proof of Proposition 9 on p. 261 of [4].

Proposition 12. Let y < x and x, α, β > 0 and Ω =
(
Ux
α ∩ U

y
β

)
\ V2. If (y, x) ∩ Z = ∅, then Ω is

not an L1
h-domain of holomorphy and its L1

h-envelope of holomorphy is Ω∗.

Proof. Suppose for a contradiction that Ω is an L1
h-domain of holomorphy. Since Ω is a Reinhardt

domain, every holomorphic function on Ω has a Laurent power series representation on Ω. Now,

observe from Lemma 1 that if f(z) :=
∑

ν∈Z2 aνz
ν ∈ L1

h(Ω) with Ω the domain of existence for

f , then we have that aνzν ∈ L1
h(Ω), for each ν ∈ Z2.
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Now, note that V2 has nonempty intersection with Ω and so if Ω were an L1
h domain of holo-

morphy, there would exist m,n ∈ Z with n < 0 such that a(m,n) 6= 0. Hence, zm1 z
n
2 ∈ L1

h(Ω).

Next, let R =
(
β
α

)1/(x−y)
and observe:

∫
Ω

|zm1 zn2 | = 4π2

 R∫
0

αrx1∫
0

r1+m
1 r1+n

2 dr2dr1 +

∞∫
R

βry1∫
0

r1+m
1 r1+n

2 dr2dr1

 <∞.

But this implies that 1 + n > −1, which means that n > −2. Since n < 0 and n ∈ Z, this implies

that n = −1. Hence,

∫
Ω

|zm1 zn2 | = 4π2

α R∫
0

r1+m+x
1 dr1 + β

∞∫
R

r1+m+y
1 dr1

 <∞.

This now implies that 1 +m+ y < −1 < 1 +m+x. This is equivalent to y < −2−m < x. Now,

since m ∈ Z, this implies that Z∩ (y, x) 6= ∅. But this contradicts our hypothesis. Hence, Ω is not

an L1
h-domain of holomorphy. Furthermore, we have that every L1

h function on Ω holomorphically

extends across V2 to a holomorphic function on Ω∗. Therefore, the inclusion map O(Ω∗) ↪→ O(Ω)

given by f 7→ f |Ω is surjective and so since Ω∗ is an L1
h-domain of holomorphy, we have that Ω∗

is the L1
h-envelope of holomorphy of Ω.

Example: Note that we can now provide a counterexample to Conjecture 2. Consider Ω :=

(U1
1 ∩ U2

1 ) \ V2. Observe that by Proposition 10, L1
h(Ω) ⊃ L1

h(Ω
∗) 6= {0}. However, there is no

integer in the interval (1, 2), and so by Proposition 12, Ω is not an L1
h-domain of holomorphy. In

fact, any domain satisfying the hypotheses of Proposition 12 provides another counterexample.

2.2.2 Domains with Complete Fat Hull

We now turn our attention to those Reinhardt domains of holomorphy having a complete fat

hull. By Proposition 6, we must consider domains which are intersections of logarithmic half-

planes of the form Uα and Ux
α , where x ≤ 0. In Propositions 13-18, we consider domains which

are contained in logarithmic half-planes of type Uα, whereas in Propositions 19-27 we consider
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domains which are purely intersections of logarithmic half-planes of the form Ux
α for x ≤ 0.

Proposition 13. Let Ω be a Reinhardt domain of holomorphy and let α, β > 0 and x < 0. If

Ω ⊂ Ux
α ∩ Uβ , then for some p ∈ [1,∞), Lph(Ω) 6= {0}.

Proof. Let p = 1− 2x. I claim that z1 ∈ Lph(Ω). To see this, observe that

∫
Ω

|z1|p ≤ (2π)2

β∫
0

αrx1∫
0

r1+p
1 r2dr2dr1 = 2π2α2

β∫
0

r1+p+2x
1 dr1 = 2π2α2

β∫
0

r2
1dr1 <∞.

If Ω∗ is a complete Reinhardt domain of holomorphy, then by Proposition 2, Ω is either Ω∗,

Ω∗ \V1, Ω∗ \V2, or Ω∗ \V0. Since under the hypotheses of Proposition 13, Ω∗ ∩V2 is bounded, but

Ω∗ ∩ V1 is unbounded, we will analyze these cases separately: (1) in Proposition 14, we analyze

the cases when Ω = Ω∗ and Ω = Ω∗ \ V2; (2) in Propositions 15-16, we analyze the case when

Ω = Ω∗ \ V1; (3) in Propositions 17-18, we analyze the case when Ω = Ω∗ \ V0.

Proposition 14. If Ω is a Reinhardt domain of holomorphy such that Ω∗ satisfies the hypotheses of

Proposition 13, and if Ω = Ω∗ or if Ω = Ω∗ \ V2, then Ω is an Lph-domain of holomorphy for all

p ∈ [1, 2).

Proof. Fix p ∈ [1, 2). Note that by Proposition 1 above, Ω∗ is an Lph-domain of holomorphy. Now

suppose Ω = Ω∗ \ V2. Let n be a positive integer strictly greater than −2+x(2−p)
p

. We now claim

that zn1 z
−1
2 ∈ Lph(Ω). Since n is positive and V2 ∩ Ω = ∅, zn1 z−1

2 is holomorphic on Ω. Observe

now that:

∫
Ω

∣∣zn1 z−1
2

∣∣p ≤ (2π)2

β∫
0

αrx1∫
0

r1+pn
1 r1−p

2 dr2dr1 =
4π2

2− p
α2−p

β∫
0

r
1+pn+x(2−p)
1 dr1.

Now, since pn > −2−x(2−p), we have that 1+pn+x(2−p) > −1. Therefore, zn1 z
−1
2 ∈ L

p
h(Ω).

Furthermore, zn1 z
−1
2 does not extend holomorphically to V2. Also, since Ω∗ is an Lph-domain of

holomorphy, there exists an f ∈ Lph(Ω∗) that does not extend holomorphically to any point in ∂Ω∗.

14



Define g ∈ Lph(Ω) by g (z1, z2) := f (z1, z2) + zn1 z
−1
2 . Now, g clearly has Ω as its domain of

definition, and so Ω is an Lph-domain of holomorphy.

Proposition 15. If Ω is a Reinhardt domain of holomorphy such that Ω∗ satisfies the hypotheses

of Proposition 13, and if Ω = Ω∗ \ V1, then Ω is an Lph-domain of holomorphy for all p such that

1 ≤ p < 2 + 2x. [Note that this inequality is null if x ≤ −1
2
.]

Proof. I claim that z−1
1 ∈ Lph(Ω). Clearly, since V1 ∩ Ω = ∅, z−1

1 is holomorphic on Ω. Now,

observe that ∫
Ω

∣∣z−1
1

∣∣p ≤ (2π)2

β∫
0

αrx1∫
0

r1−p
1 r2dr2dr1 = 2π2α2

β∫
0

r1−p+2x
1 dr1.

Now, note that this integral converges precisely when 1− p+ 2x > −1 or when p < 2 + 2x. Now,

the argument follows as in Proposition 14 above, taking g (z1, z2) := f (z1, z2) + z−1
1 .

Proposition 16. If Ω = (Ux
α ∩ Uβ) \ V1, for some α, β > 0 and for some x < 0, then for any

p ≥ 2 + 2x, Ω is not an Lph-domain of holomorphy, and its Lph-envelope of holomorphy is Ω∗. In

particular, if x ≤ −1
2
, then Ω is not an Lph-domain of holomorphy for any p ∈ [1,∞].

Proof. We proceed by contradiction. Let p ≥ 2 + 2x and suppose Ω is an Lph-domain of holomor-

phy. Since Ω is a Reinhardt domain, every holomorphic function on Ω has a Laurent power series

representation on Ω. Now, observe from Lemma 1 above that if f(z) :=
∑

ν∈Z2 aνz
ν ∈ Lph(Ω),

then we have that aνzν ∈ Lph(Ω), for each ν ∈ Z2.

Now, since V1 has nonempty intersection with ∂Ω and V2 has nonempty intersection with Ω,

if Ω is the domain of existence for f , there exist m,n ∈ Z such that m < 0 ≤ n and a(m,n) 6= 0.

Without loss of generality, suppose that a(m,n) = 1. Therefore, zm1 z
n
2 ∈ L

p
h(Ω). Hence,

∫
Ω

|zm1 zn2 |
p = 4π2

β∫
0

αrx1∫
0

r1+pm
1 r1+pn

2 dr2dr1

=
4π2

2 + pn
α2+pn

β∫
0

r
1+pm+x(2+pn)
1 dr1 <∞.
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Now observe that since p ≥ 2 + 2x and m is a negative integer, we have that

1 + pm+ x(2 + pn) ≤ 1− p+ x(2 + pn) ≤ 1− 2− 2x+ 2x+ pnx = −1 + pnx.

Finally, note that p > 0, n ≥ 0, and x < 0, so −1 + pnx ≤ −1. Hence,

β∫
0

r
1+pm+x(2+pn)
1 dr1 =∞.

This is a contradiction, and so Ω is not an Lph-domain of holomorphy.

Now, let f ∈ Lph(Ω). Note that since Ω is a Reinhardt domain of holomorphy, we will let∑
ν∈Z2 aνz

ν be the Laurent series expansion of f . As in Lemma 1, aνzν ∈ Lph(Ω), for all ν. Since

V2 ∩ Ω 6= ∅, we have that when ν2 < 0, aν = 0. The above argument shows furthermore that

if ν1 < 0 and ν2 ≥ 0, then aν = 0. Hence, aν can only be nonzero if ν1 and ν2 are both non-

negative. Therefore, f extends holomorphically to Ω∗ ∩ V1, and so f extends holomorphically to

Ω∗. Therefore, Ω∗ is contained in the Lph-envelope of holomorphy of Ω.

Now observe that Ω∗ is an Lph-domain of holomorphy by Propositions 1 and 13, and so there is

an f ∈ Lph(Ω∗) for which Ω∗ is the domain of existence. Therefore, Ω∗ is the domain of existence

for f |Ω, and so Ω∗ contains the Lph-envelope of holomorphy of Ω. Hence, Ω∗ is the Lph-envelope of

holomorphy of Ω.

Example: Propositions 13, 15, and 16 enable one to construct further counterexamples

to Conjecture 2. Moreso, if 1 ≤ p1 < p2 < 2, Propositions 15 and 16, then one can con-

struct Lp1h -domains of holomorphy which are not Lp2h -domains of holomorphy. To see this, fix

x ∈
(
p1−2

2
, p2−2

2

]
. We will let Ω := (Ux

1 ∩ U1) \ V1. Observe that since p2 < 2, x < 0, and

so Ω∗ satisfies the hypotheses of Proposition 13. Hence, since 1 ≤ p1 < 2 + 2x, we have from

Proposition 15 that Ω is an Lp1h -domain of holomorphy. However, since p2 ≥ 2+2x, we have from

Proposition 16 that Ω is not an Lp2h -domain of holomorphy.
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Proposition 17. If Ω is a Reinhardt domain of holomorphy such that Ω∗ satisfies the hypotheses of

Proposition 13 with −1 < x < 0, and if Ω = Ω∗ \ V0, then Ω is an Lph-domain of holomorphy, for

all p ∈ [1, 2).

Proof. We claim that z−1
1 z−1

2 ∈ L
p
h(Ω). Since V0 ∩Ω = ∅, this function is clearly holomorphic on

Ω. Now, note that when p < 2, 1− p > −1, and so we have

∫
Ω

∣∣z−1
1 z−1

2

∣∣p ≤ (2π)2

β∫
0

αrx1∫
0

r1−p
1 r1−p

2 dr2dr1 =
4π2

2− p
α2−p

β∫
0

r
1−p+x(2−p)
1 dr1.

Now, note that since x > −1, 1−p+x(2−p) > 1−p−(2−p) = −1, and so z−1
1 z−1

2 ∈ L
p
h(Ω). From

here, the proof is the same as in Proposition 14, defining g (z1, z2) := f (z1, z2) + z−1
1 z−1

2 .

Proposition 18. If Ω = (Ux
α ∩ Uβ) \ V0, for some α, β > 0 and some x ≤ −1, then Ω is not an

Lph-domain of holomorphy for any p ∈ [1,∞], and its Lph-envelope of holomorphy is Ω∗.

Proof. We proceed by contradiction. Fix p ≥ 1 and suppose Ω is an Lph-domain of holomorphy.

Then as in the proofs of Propositions 12 and 16 above, there exist m,n ∈ Z such that m < 0 and

zm1 z
n
2 ∈ L

p
h(Ω). However, by the proof of Proposition 16, since x ≤ −1

2
, there is no Lph monomial

zm1 z
n
2 on Ω with m < 0 and n ≥ 0. Therefore, n < 0. Now, observe that:

∫
Ω

|zm1 zn2 |
p = 4π2

β∫
0

αrx1∫
0

r1+pm
1 r1+pn

2 dr2dr1 <∞.

This implies that 1+pn > −1 and so−1 ≥ n > −2
p

. Therefore, 1 ≤ p < 2, and so−2 ≤ −2
p
< −1.

But, since n ∈ Z, this implies that n = −1. Hence, we have:

∫
Ω

|zm1 zn2 |
p = 4π2

β∫
0

αrx1∫
0

r1+pm
1 r1−p

2 dr2dr1 =
4π2

2− p
α2−p

β∫
0

r
1+pm+x(2−p)
1 dr1 <∞.

Therefore, we have that 2+pm+x(2−p) > 0. Hence, x(2−p) > −2−pm. Thus, since 2−p > 0,

x > −2−pm
2−p . Thus, since x ≤ −1, we have that −2 + p > −2 − pm, which yields that 1 > −m,
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and so m > −1. But since m ∈ Z, this means that m ≥ 0 which is a contradiction. Hence, Ω is

not an Lph-domain of holomorphy.

Remark: It is noteworthy that the hypothesis that x > −1 in Proposition 17 is equivalent to

the domain Ux
α ∩ Uβ having finite volume, since the volume of this domain is given by:

∫
Uxα∩Uβ

dV = 4π2

β∫
0

αrx1∫
0

r1r2dr2dr1 = 2π2α2

β∫
0

r1+2x
1 dr1 =

π2

1 + x
α2β2+2x.

Hence, Propositions 17 and 18 yield that for x < 0, Ux
α ∩ Uβ \ V0 is an Lph-domain of holomorphy

if and only if it has finite volume.

Now, in Propositions 19-27, we analyze those domains which are intersections of logarithmic

half-planes of the form Ux
α , where x ≤ 0. In Propositions 19 and 20, we look specifically at such

domains which have finite volume. Then in Propositions 21-27, we analyze such domains more

generally.

Proposition 19. Let Ω be a Reinhardt domain of holomorphy and let α, β > 0, −1 < x < 0, and

y < −1. If Ω ⊂ Ux
α ∩ U

y
β , then Lph(Ω) 6= {0} for all p, and moreso, Ω has finite volume.

Proof. Clearly, if Ω has finite volume then 1 ∈ Lph(Ω), for all p. To see that Ω has finite volume,

we first let R =
(
β
α

)1/(x−y)
. Now, observe that:

∫
Ω

dV ≤ 4π2

 R∫
0

αrx1∫
0

r1r2dr2dr1 +

∞∫
R

βry1∫
0

r1r2dr2dr1


= 2π2

α2

R∫
0

r1+2x
1 dr1 + β2

∞∫
R

r1+2y
1 dr1

 .

Now, since x > −1, 1 + 2x > −1. Also, since y < −1, 1 + 2y < −1. Therefore, both integrals

above are finite, and so Ω has finite volume.
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Proposition 20. Let Ω be a Reinhardt domain of holomorphy such that Ω∗ satisfies the hypotheses

of Proposition 19. If Ω = Ω∗ or Ω = Ω∗ \ V0, then Ω is an Lph-domain of holomorphy, for all

p ∈ [1, 2).

Proof. If Ω = Ω∗, then the result follows from Proposition 1. Now, suppose that Ω = Ω∗ \ V0.

Then, as in the proof of Proposition 17, we claim that z−1
1 z−1

2 ∈ Lph(Ω), for all p ∈ [1, 2). As

before, since V0 ∩ Ω = ∅, z−1
1 z−1

2 is holomorphic on Ω. Furthermore, if R =
(
β
α

)1/(x−y)
, then the

following is clear:

Ux
α ∩ U

y
β = (Ux

α ∩ UR) ∪
(
ŨR ∩ Uy

β

)
Now, it was shown in the proof of Proposition 17 that z−1

1 z−1
2 is Lp on Ux

α ∩ U1. Furthermore,

since y < −1, −y(2 − p) − 2 > 2 − p − 2 = −p, and so −y(2−p)+2
p

< −1. Therefore, taking

n = −1, the argument in Proposition 9 above demonstrates that z−1
1 z−1

2 is Lp on ŨR ∩ Uy
β . Hence,

z−1
1 z−1

2 ∈ L
p
h(U

x
α ∩ U

y
β \ V0) ⊂ Lph(Ω), for all p ∈ [1, 2).

Now, we turn our attention to the general case of domains having fat hulls which are inter-

sections of logarithmic half-planes of the form Ux
α , for x ≤ 0. In Proposition 21, we show that

non-trivial L1
h functions exist on such domains. Then in Propositions 22 and 23, we discuss when

removing V1 from the fat hull yields an L1
h-domain of holomorphy. In Propositions 24 and 25, we

do the same for V2, and in Propositions 26 and 27, we do the same for V0.

Proposition 21. Let Ω be a Reinhardt domain of holomorphy and let α, β > 0 and y < x ≤ 0. If

Ω ⊂ Ux
α ∩ U

y
β , then L1

h(Ω) 6= {0}.

Proof. Let r = m′

n′
be a rational number in (−x,−y), wherem′, n′ are taken to be positive integers.

Now, let m := 2m′− 2 and n := 2n′− 2. Observe that m,n ≥ 0. Therefore, zm1 z
n
2 is holomorphic
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on Ω. We now claim that zm1 z
n
2 ∈ L1

h(Ω). To see this, let R =
(
β
α

)1/(x−y)
and observe that

∫
Ω

|zm1 zn2 | = 4π2

 R∫
0

αrx1∫
0

r1+m
1 r1+n

2 dr2dr1 +

∞∫
R

βry1∫
0

r1+m
1 r1+n

2 dr2dr1


=

4π2

2 + n

α2+n

R∫
0

r
1+m+x(2+n)
1 dr1 + β2+n

∞∫
R

r
1+m+y(2+n)
1 dr1

 .

The above integral is finite provided that 2 +m+ x(2 +n) > 0 > 2 +m+ y(2 +n), which is true

if and only if x > −2+m
2+n

> y. However, since −r = −2+m
2+n

and since r ∈ (−x,−y), the desired

result holds. Hence, zm1 z
n
2 ∈ L1

h(Ω).

Proposition 22. Let Ω be a Reinhardt domain of holomorphy such that Ω∗ satisfies the hypotheses

of Proposition 21. Then if Ω = Ω∗\V1 and
(
− 1
y
,− 1

x

)
∩{2, 3, 4, . . .} 6= ∅, then Ω is an L1

h-domain

of holomorphy. (Note, that for the sake of this result, we will use the convention that −1
0

=∞.)

Proof. Let n′ ∈
(
− 1
y
,− 1

x

)
∩ {2, 3, 4, . . .}. Let n = n′ − 2. I now claim that z−1

1 zn2 ∈ Lph(Ω).

First, since n ≥ 0 and since V1 is disjoint from Ω, this monomial is clearly holomorphic on Ω.

Furthermore, by the computation in the proof of Proposition 21 above, the monomial is integrable

provided that 1
n′

= 2−1
2+n
∈ (−x,−y). But since n′ ∈

(
− 1
y
,− 1

x

)
, this follows easily.

Now, by Proposition 21 above and by Proposition 9 in [4], Ω∗ is an L1
h-domain of holomorphy.

Hence, let f ∈ L1
h(Ω

∗) be a function such that Ω∗ is its domain of definition, and define g (z1, z2) :=

f (z1, z2)+z−1
1 zn2 . Then g ∈ L1

h(Ω) and does not extend to any boundary point of Ω∗ or to any point

of V1, since f does not extend to any boundary point of Ω∗ and z−1
1 zn2 does not extend to any point

in V1. Hence, Ω is the domain of definition for g, and thus Ω is an L1
h-domain of holomorphy.

Proposition 23. If Ω =
(
Ux
α ∩ U

y
β

)
\ V1 for some α, β > 0 and some y < x < 0 such that(

− 1
y
,− 1

x

)
∩ {2, 3, 4, . . .} = ∅, then Ω is not an L1

h-domain of holomorphy and its L1
h-envelope of

holomorphy is Ω∗.

Proof. We proceed by contradiction. Suppose Ω is an L1
h-domain of holomorphy. Then, as in the
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proof of Proposition 16 above, there are m,n ∈ Z such that m < 0 ≤ n and zm1 z
n
2 ∈ L1

h(Ω).

Now, by the calculation in the proof of Proposition 21 above, we can see that this is true only if

2+m
2+n
∈ (−x,−y). Now, note that since m < 0, 2 + m < 2. However, −x > 0 and 2 + n > 0, so

2 +m > 0. Hence, m = −1. Therefore, −x < 1
2+n

< −y, and so − 1
y
< 2 + n < − 1

x
. Now, since

n ≥ 0, 2 + n ≥ 2. Hence,
(
− 1
y
,− 1

x

)
∩ {2, 3, 4, . . .} 6= ∅, and this is a contradiction. Hence, Ω

is not an L1
h-domain of holomorphy. Furthermore, we have that every L1

h-function on Ω extends

across V1 to an L1
h function on Ω∗. Therefore, the embedding L1

h(Ω
∗) ↪→ L1

h(Ω) is surjective, and

so since Ω∗ is an L1
h-domain of holomorphy, it is the L1

h-envelope of holomorphy for Ω.

Proposition 24. Let Ω be a Reinhardt domain of holomorphy such that Ω∗ satisfies the hypotheses

of Proposition 21. Then if Ω = Ω∗ \V2 and (−x,−y)∩{2, 3, 4, . . .} 6= ∅, then Ω is an L1
h-domain

of holomorphy.

Proof. Define F : C2 → C2 by F (z1, z2) := (z2, z1). Then note that F induces an isometric

isomorphism Lph
(
Ux
α ∩ U

y
β \ V2

) ∼= Lph

(
U

1/x
α∗ ∩ U

1/y
β∗ \ V1

)
, where α∗ = α−1/x and β∗ = β−1/y.

Therefore, by Proposition 22, Ω is an L1
h-domain of holomorphy.

Proposition 25. If Ω =
(
Ux
α ∩ U

y
β

)
\ V2 for some α, β > 0 and some y < x < 0 such that

(−x,−y) ∩ {2, 3, 4, . . .} = ∅, then Ω is not an L1
h-domain of holomorphy and its L1

h-envelope of

holomorphy is Ω∗.

Proof. As in the proof of Proposition 24, F induces an isometric isomorphismLph
(
Ux
α ∩ U

y
β \ V2

) ∼=
Lph

(
U

1/x
α∗ ∩ U

1/y
β∗ \ V1

)
, where α∗ = α−1/x and β∗ = β−1/y. Hence, by Proposition 23, Ω is not an

L1
h-domain of holomorphy.

Proposition 26. Let Ω be a Reinhardt domain of holomorphy such that Ω∗ satisfies the hypotheses

of Proposition 21 and such that Z∩ (−x,−y) 6= ∅ and Z∩
(
− 1
y
,− 1

x

)
6= ∅. Then if Ω = Ω∗ \V0,

then Ω is an L1
h-domain of holomorphy.

Proof. The case in which the intervals (−x,−y) and
(
− 1
y
,− 1

x

)
each contain a positive integer

greater than 1 follows from Propositions 21, 22, and 24 above, by considering f1 + f2 where
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Ω∗ \ Vj is the domain of existence of fj . If either of these intervals contains 1, then both contain 1.

In this case, z−1
1 z−1

2 ∈ L1
h(Ω) and so is an integrable monomial on Ω which does not extend to V0.

Therefore, in this case also, Ω is an L1
h-domain of holomorphy.

Proposition 27. Let Ω =
(
Ux
α ∩ U

y
β

)
\ V0 for some α, β > 0 and some y < x < 0. Then if

Ω does not satisfy the conditions of Proposition 26, then Ω is not an L1
h-domain of holomorphy.

Furthermore, if Ω∗ \ V1 satisfies the conditions of Proposition 22, then it is the L1
h-envelope of

holomorphy for Ω, whereas if Ω∗ \ V2 satisfies the conditions of Proposition 24, then it is the

L1
h-envelope of holomorphy for Ω. Otherwise, Ω∗ is the L1

h-envelope of holomorphy for Ω.

Proof. This follows from Propositions 22-25 above.

2.2.3 Domains with Fat Hull Disjoint from V0

We now only have Reinhardt domains of holomorphy with fat hull disjoint from V0 to consider.

However, since these domains are always fat by Proposition 2, we need only determine when such

domains have nontrivial L1
h functions. In Proposition 28, we give a condition for such a domain

to fail to be an Lph-domain of holomorphy. Finally, in Proposition 29, we show that the condition

given in Proposition 28 is the only way an intersection of two logarithmic half-planes which is

disjoint from V0 can fail to be an Lph-domain of holomorphy.

Proposition 28. If Ω = Ũx
α ∩ Ux

β with 0 < α < β and x ∈ R, then L1
h(Ω) = {0}.

Proof. Since Ω is fat, by Proposition 9 in [4], it suffices to show that there are no integrable

monomials of the form zm1 z
n
2 , where m,n ∈ Z. First, note that when n 6= −2,

∫
Ω

|zm1 zn2 | = 4π2

∞∫
0

βrx1∫
αrx1

r1+m
1 r1+n

2 dr2dr1 =
4π2

2 + n

(
β2+n − α2+n

) ∞∫
0

r
1+m+x(2+n)
1 dr1.

But no power function is integrable on the interval (0,∞). Hence, zm1 z
n
2 is not integrable if n 6=
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−2. Now, observe that

∫
Ω

∣∣zm1 z−2
2

∣∣ = 4π2

∞∫
0

βrx1∫
αrx1

r1+m
1 r−1

2 dr2dr1 = 4π2 log

(
β

α

) ∞∫
0

r1+m
1 dr1.

However, once again, no power function is integrable on (0,∞). Therefore, zm1 z
n
2 is not integrable

on Ω.

Proposition 29. Suppose Ω 6= ∅ is not a logarithmic half-plane, but that Ω = H1 ∩ H2, where

Hj is a logarithmic half-plane for j = 1, 2. Then if Ω does not satisfy the condition of Proposition

28 and Ω ∩ V0 = ∅, then L1
h(Ω) 6= {0}. Furthermore, any Reinhardt domain of holomorphy

contained in Ω is an Lph-domain of holomorphy, for all p.

Proof. First note that since Ω ∩ V0 = ∅, every monomial of the form zm1 z
n
2 is holomorphic on Ω.

Also, we may assume either (1) that H1 ∩ V0 = ∅, or (2) that H1 ∩ V1 = ∅ and H2 ∩ V2 = ∅.

(1) Suppose that the former is true. Then by a dilation, we may suppose that H1 = Ũx
1 , for

some x < 0. We suppose first that H2 = Uy
α and β = α1/(x−y). Note that x 6= y since Ω does not

satisfy the hypotheses of Proposition 28. Then if y > x, Ω ⊂ H1 ∩ Ũβ . Let m < x − 2 be an

integer. We now show that zm1 z
−3
2 ∈ L1

h(Ω):

∫
Ω

∣∣zm1 z−3
2

∣∣ ≤ 4π2

∞∫
β

∞∫
rx1

r1+m
1 r−2

2 dr2dr1 = 4π2

∞∫
β

r1+m−x
1 dr1.

Since 1 + m − x < 1 + x − 2 − x = −1, the above integral is finite. Hence, zm1 z
−3
2 ∈ L1

h(Ω). It

now follows from Proposition 1 that Ω is an Lph-domain of holomorphy, for all p ≥ 1.

Now, suppose y < x. Observe that Ω ⊂ H1 ∩ Uβ and let F : (z1, z2) 7→ (z2, z1) . Then F in-

duces an isometric isomorphism Lph(Ω) ∼= Lph(F (Ω)), for all p. Now observe that F (H1) = Ũ
1/x
1

and F (Uβ) = U0
β . Therefore, F (Ω) ⊂ F (H1 ∩ Uβ) ⊂ Ũ

1/x
1 ∩ U0

β . But 1
x
< 0. Hence, by the
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preceding paragraph, L1
h(F (Ω)) 6= {0}, and so Ω is an Lph-domain of holomorphy, for all p. Again,

transposing coordinates yields the desired result if H2 = Uα or if H2 = Ũα.

(2) Now, suppose that for j = 1, 2, Hj ∩ V0 6= ∅, but that Hj ∩ Vj = ∅. In this case, H1 = Ux
α

or H1 = Ũα, for some α > 0, x > 0. Also, H2 = Ũy
β , for some β > 0, y > 0. Suppose first that

H1 = Ux
α . Then, if y > x, then Ω is bounded and so this case follows trivially. However, if y < x,

then let (R1, R2) be the solution to the system:


r2 = αrx1

r2 = βry1

Then Ω ⊂ ŨR1 ∩ Ũ0
R2

. Now, suppose that H1 = Ũα. Then since

|z1| > α and |z2| > β |z1|y =⇒ |z2| > βαy,

that H1 ∩ H2 ⊂ H1 ∩ Ũ0
β∗ , where β∗ = βαy. Hence, it suffices to show that L1

h(Ω) 6= {0}, if

Ω = Ũα ∩ Ũ0
β . But in this case, z−3

1 z−3
2 ∈ L1

h(Ω). To see this, observe:

∫
Ω

∣∣z−3
1 z−3

2

∣∣ = 4π2

∞∫
α

∞∫
β

r−2
1 r−2

2 dr2dr1 =
4π2

αβ
<∞.

We have now shown that L1
h(Ω) 6= {0}. It now follows from Proposition 1 that every Reinhardt

domain of holomorphy contained in Ω is an Lph-domain of holomorphy, for all p ∈ [1,∞], since

every such domain of holomorphy must be fat.

2.3 A General Characterization in Terms of Logarithmic Half-Planes

Now, having analyzed separately the bounded and unbounded Reinhardt domains of holomor-

phy, we may state our first characterization in terms of logarithmic half-planes. As will be seen

in the proof, this theorem mostly summarizes the results above, which adequately characterize the
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case when a domain is an intersection of two logarithmic half-planes. The main fact remaining

to prove is that the conditions suffice for describing Reinhardt domains of holomorphy which are

intersections of more than two logarithmic half-planes.

Theorem 1. Suppose that Ω ( C2 is a Reinhardt domain of holomorphy. Then Ω is an L1
h-domain

of holomorphy if and only if one of the following conditions holds (note that the conditions are not

mutually exclusive):

1. Ω is bounded.

2. Ω is fat, is not a logarithmic half-plane, and is neither Ũx
α∩Ux

β nor Ũα∩Uβ , for any α, β > 0

and x ∈ R.

3. Ω∗ ⊂ Ũα ∩ Ux
β , for some α, β > 0 and x ∈ R.

4. Ω∗ ⊂ Ux
α ∩ U

y
β , where α, β > 0 and x > max{0, y} and (y, x) ∩ Z 6= ∅.

5. Ω∗ ⊂ Ux
α ∩ Uβ for some α, β > 0 and x < 0, and Ω = Ω∗ \ V2.

6. Ω∗ ⊂ Ux
α ∩ Uβ for some α, β > 0 and x ∈

(
−1

2
, 0
)

and Ω = Ω∗ \ V1.

7. Ω∗ ⊂ Ux
α ∩ Uβ for some α, β > 0 and x ∈ (−1, 0) and Ω = Ω∗ \ V0.

8. Ω∗ ⊂ Ux
α ∩ U

y
β for some α, β > 0 and

(
− 1
y
,− 1

x

)
∩ {2, 3, 4, . . . , } 6= ∅ and Ω = Ω∗ \ V1.

9. Ω∗ ⊂ Ux
α ∩ U

y
β for some α, β > 0 and (−x,−y) ∩ {2, 3, 4, . . . , } 6= ∅ and Ω = Ω∗ \ V2.

10. Ω∗ ⊂ Ux
α ∩U

y
β for some α, β > 0 and y < x < 0 and (y, x)∩Z 6= ∅ 6=

(
− 1
y
,− 1

x

)
∩Z and

Ω = Ω∗ \ V0.

11. F (Ω) satisfies any of the above conditions where F (z1, z2) := (z2, z1) .

This follows from Propositions 30 and 31 below.
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Proposition 30. Each of the conditions in the theorem above is sufficient for Ω to be an L1
h-domain

of holomorphy.

Proof. Condition (1) and conditions (3)-(10) are sufficient by Propositions 4, 9, 11, 14, 15, 17,

22, 24, and 26 respectively. Furthermore, it is clear that the property of being an L1
h-domain of

holomorphy is invariant under permutations of coordinates, and so Condition (11) is sufficient. It

remains to show that Condition (2) is a sufficient condition.

Since Ω is a Reinhardt domain of holomorphy, Ω is logarithmically convex. Therefore, since Ω

is fat and properly contained in C2, there exists a nonempty family (Hλ)λ∈Λ of distinct logarithmic

half-planes such that Ω =
⋂
λ∈ΛHλ. Also, since Ω is not a logarithmic half-plane, |Λ| 6= 1.

Therefore, we first suppose that Ω = H1 ∩ H2, with H1 6= H2. First note that if H1 = Uα

(resp. Ũα) and H2 = Uβ (resp. Ũβ), then Ω = Umin{α,β} (resp. Ũmax{α,β}) and so Ω would be a

logarithmic half-plane contrary to our hypothesis.

Now, if there exist α, β > 0 and x, y ∈ R such that H1 = Ux
α and H2 = Uy

β , then by Propo-

sitions 1, 10, and 21, if Ω is not an L1
h-domain of holomorphy, then x = y. But if x = y, then

Ω = Ux
min{α,β} which is contrary to our hypothesis.

Next, suppose that H1 = Ũx
α and H2 = Ũy

β . Suppose without loss of generality that y < x. If

y < 0, then H2 is a logarithmic half-plane which is disjoint from V0. Hence, Ω∩V0 = ∅ and so by

Proposition 29, Ω is an L1
h-domain of holomorphy. Now suppose that x > y > 0 and then observe

that F
(
Ũx
α

)
= U

1/x
α∗ , where α∗ = α−1/x. Also, F

(
Ũy
β

)
= U

1/y
β∗ , where β∗ = β−1/y. Hence,

F (Ω) = U
1/x
α∗ ∩ U

1/y
β∗ . But by the previous paragraph, this implies that F (Ω) is an L1

h-domain of

holomorphy, and so by Condition (11) above, Ω is an L1
h-domain of holomorphy.

Now, note that F
(
Ũ0
α

)
= Ũα, and so if x = 0 or y = 0, then F (Ω) satisfies Condition (3), and
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so Ω satisfies Condition (11), and so is an L1
h-domain of holomorphy.

Next, note that the case whereH1 = Ux
α andH2 = Uβ follows from Propositions 4 and 13. The

case where H1 = Ux
α and H2 = Ũβ follows from Proposition 8. When H1 = Ũx

α , we have similar

results via Condition (11) above, as in the preceding paragraphs.

Finally, suppose H1 = Ũx
α and H2 = Uy

β . If x < 0, then the conclusion follows from Propo-

sition 29. So we suppose x ≥ 0. If 0 ≤ y < x, then Ω is bounded and so the result follows from

Proposition 4 above. If y < 0 < x, then F (Ω) = U
1/x

α−1/x ∩ U
1/y

β−1/y . Therefore, by Propositions 1

and 10, F (Ω) is an L1
h-domain of holomorphy, and so Ω satisfies Condition (11) and is itself an

L1
h-domain of holomorphy. If y < x = 0, then the conclusion follows similarly from Propositions

1 and 8 via Condition (11). If y > x, then the result follows from Proposition 29 above. This

completes the case where Ω is an intersection of two logarithmic half-planes.

Now, suppose |Λ| > 2. Then Ω ⊂ Hλ1 ∩Hλ2 , for each λ1, λ2 ∈ Λ. Therefore, since Ω = Ω∗,

Ω certainly is an L1
h-domain of holomorphy, unless every pair of logarithmic half-planes is one of

the exceptions given in the statement of Condition (2). Thus, there exist disjoint Λ1,Λ2 ⊂ Λ such

that Λ = Λ1 ∪ Λ2 and such that either (a) there is an x ∈ R such that for each λ ∈ Λ1, Hλ = Ũx
αλ

and for each λ ∈ Λ2,Hλ = Ux
βλ

, or (b) for each λ ∈ Λ1,Hλ = Ũαλ and for each λ ∈ Λ2,Hλ = Uβλ .

Now, in case (a), observe that
⋂
λ∈Λ1

Hλ = Ũx
supαλ

and
⋂
λ∈Λ2

Hλ = Ux
inf βλ

. [Observe that if

supαλ = ∞, then Ω = ∅, while if inf βλ = 0, then Ω ⊂ V0, and so is not an open set.] Hence,

this case reduces to the case where |Λ| = 2. Finally, in case (b), observe that
⋂
λ∈Λ1

Hλ = Ũsupαλ

and
⋂
λ∈Λ2

Hλ = Uinf βλ . Once again this reduces to the case where |Λ| = 2, and this suffices to

prove that if Condition (2) holds, Ω is an L1
h-domain of holomorphy.
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Proposition 31. It is necessary that a Reinhardt L1
h-domain of holomorphy properly contained in

C2 satisfy at least one of Conditions (1)-(11) from Theorem 1.

Proof. We first note that since Ω is an L1
h-domain of holomorphy, Ω is not a logarithmic half-plane.

Therefore, since Ω is a Reinhardt domain of holomorphy, there exists a family {Hλ}λ∈Λ of at least

two logarithmic half-planes such that Ω∗ =
⋂
λ∈ΛHλ.

We suppose first that |Λ| = 2, so that Ω∗ = H1∩H2. We now suppose that there exist α, β > 0

and x, y ∈ R such that H1 = Ux
α and H2 = Uy

β . Since Ω is not a logarithmic half-plane, x 6= y,

so we suppose without loss of generality that y < x. Now, if Ω = Ω∗, then Ω satisfies Condition

(2). Suppose now that Ω 6= Ω∗. Then, if x > 0, Ω = Ω∗ \ V2, and so Proposition 12 above yields

that (y, x) ∩ Z 6= ∅. Hence, in this case, Ω satisfies Condition (4). Now suppose that x < 0.

Then if Ω = Ω∗ \ V1, then by Proposition 23 above,
(
− 1
y
,− 1

x

)
∩ {2, 3, 4, . . .} 6= ∅ and so Ω

satisfies Condition (8). Similarly, if Ω = Ω∗ \V2, then by Proposition 25, Ω satisfies Condition (9),

whereas if Ω = Ω∗ \ V0, then by Proposition 27, Ω satisfies Condition (10). Finally, if x = 0, then

F (Ux
α) = Uα, and so F (Ω) satisfies Condition (5) if Ω = Ω∗ \V2; Condition (6) if Ω = Ω∗ \V1, by

Proposition 16; and Condition (7) if Ω = Ω∗ \ V0, by Proposition 18. Hence, Ω satisfies Condition

(11).

Now, suppose that for some α, β > 0 and x, y ∈ R, H1 = Ux
α and H2 = Ũy

β . Since Ω is

an L1
h-domain of holomorphy, x 6= y by Proposition 28. Now, if y < x, then Ω = Ω∗ and so Ω

satisfies Condition (2). Now, suppose that y > x. In this case, if x ≥ 0, then Ω satisfies Condition

(1). If y ≤ 0 on the other hand, then Ω satisfies Condition (2). Now, suppose 0 ∈ (x, y). In this

case, F (H1) = U
1/x
α∗ and F (H2) = U

1/y
β∗ , where α∗ = α−1/x and β∗ = β−1/y. Hence, this case

now reduces to the preceding paragraph.

Now, suppose that H1 = Ux
α and H2 = Uβ . First, note that if x ≥ 0, then Ω satisfies Condition

(1). Now, suppose that x < 0. If Ω = Ω∗, then Ω satisfies Condition (2). Also, if Ω = Ω∗ \V2, then
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Ω satisfies Condition (5). On the other hand, if Ω = Ω∗ \ V1, then by Proposition 16, Ω satisfies

Condition (6), whereas if Ω = Ω∗ \ V0, then Ω satisfies Condition (7) by Proposition 18.

If H1 = Ux
α and H2 = Ũβ, then Ω satisfies Condition (3).

Now, suppose that H1 = Ũx
α and H2 = Ũy

β . Since Ω is not a logarithmic half-plane, x 6= y.

Suppose without loss of generality that y < x. Observe now that if y < 0, then Ω satisfies Condi-

tion (2). Suppose now that y = 0. Then F (H1) = U
1/x
α∗ , where α∗ = α−1/x, and F (H2) = Ũβ.

Thus, F (Ω) satisfies Condition (3) and so Ω satisfies Condition (11). Finally, suppose y > 0.

Then F (H1) = U
1/x
α∗ , where α∗ = α−1/x, and F (H2) = U

1/y
β∗ , where β∗ = β−1/y. Now, since

F has constant Jacobian, F (Ω) is an L1
h-domain of holomorphy. Hence, by Proposition 12, F (Ω)

satisfies Condition (4), and so Ω satisfies Condition (11).

Next, suppose H1 = Ũx
α and H2 = Uβ . Then, if x ≤ 0, Ω satisfies Condition (2). Suppose

now that x > 0. Then F (H1) = U
1/x
1/α and F (H2) = U0

β . Since x > 0, 1
x
> 0. Therefore, by

Proposition 12, F (Ω) satisfies Condition (4). Hence, Ω satisfies Condition (11).

Now, if H1 = Ũx
α and H2 = Ũβ , then Ω satisfies Condition (2). Since Ω is an L1

h-domain of

holomorphy, if H1 = Uα, neither H2 = Uβ nor H2 = Ũβ , and for similar reason, if H1 = Ũα,

H2 6= Ũβ . Hence, since all possible pairs have been considered, this proves the case when |Λ| = 2.

Furthermore, an intersection of logarithmic half-planes of the form Uα (resp. Ũα) which is still

an open set is another logarithmic half-plane of the form Uα (resp. Ũα). Hence, we can suppose

there is at most one of each type in {Hλ}λ∈Λ . Furthermore, by the arguments given in the last

two paragraphs of the proof of Proposition 30, for each x, we may assume that there is at most

one αx > 0 such that Ux
αx = Hλ for some λ and at most one βx > 0 such that Ũx

βx
= Hλ for some λ.
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Now, suppose |Λ| > 2. Note that if there exist λ1, λ2 ∈ Λ such that (Hλ1 ∩Hλ2) \ Vj satisfies

one of Conditions (1)-(11), where Ω = Ω∗ \ Vj, then Ω satisfies the same condition. We will now

suppose that this hypothesis is not the case, seeking a contradiction.

If Ω were fat, then Ω would satisfy Condition (2), and so Ω is not fat. Then Ω∗ ∩ V0 6= ∅ and

Ω = Ω∗ \ Vj , for some j ∈ {0, 1, 2}. Suppose that for some λ, µ ∈ Λ, Hλ = Ux
α and Hµ = Uy

β

with 0 ≤ y < x. Now, if for some ν ∈ Λ, Hν = Uγ , then Ω satisfies Condition (1). However, if

for some ν, Hν = Ũ t
ν , then Ω is fat contrary to hypothesis. Also, if for some ν, Hν = Ũγ , then Ω

satisfies Condition (3). Finally, if Hν = U t
γ , for some t < 0, then Ω satisfies Condition (4) since

0 ∈ (t, x).

Now, if y < 0 < x, then Ω satisfies Condition (4), so suppose that y < x ≤ 0. Then if

Hν = Ũγ, then Ω satisfies Condition (3). If Hν = Uγ and x = 0, then Ω satisfies Condition (1).

Now, suppose Hν = Ũ t
γ . Since Ω is not fat, t ≥ 0, and so Ω satisfies Condition (1) when x = 0.

If x < 0, then F (Ω) satisfies Condition (4) when t > 0 and Condition (3) when t = 0, so that Ω

satisfies Condition (11). Now, suppose Hν = U t
γ for t > 0, then Ω satisfies Condition (4). The

case where Hν = Uγ is covered more generally in the following paragraph.

We now suppose that there exists µ ∈ Λ such that Hµ = Uα for some α and that for all

λ 6= µ, there exist xλ < 0, βλ > 0 such that Hλ = Uxλ
βλ
. First observe that

⋂
λ 6=µHλ must be

an open set. If j = 1, then since Ω doesn’t satisfy Condition (8), we must have the property

that for all λ1, λ2, there is no positive integer strictly greater than 1 which is between −x−1
λ1

and

−x−1
λ2
. Therefore, T := {−x−1

λ : λ 6= µ} is contained either in (0, 2] or in [n, n + 1]. However, Ω

also does not satisfy Condition (6) and so for each λ 6= µ,−x−1
λ ≤ 2. Hence, T ⊂ (0, 2], and so

{xλ : λ 6= µ} ⊂
(
−∞,−1

2

]
. Let β = infλ 6=µ βλ ·αxλ+1/2. If β = 0, then

⋂
λ∈ΛHλ =

⋂
λ 6=µHλ and

so the case reduces to that dealt with two paragraphs below (based on Lemma 2). Now, if β 6= 0,

let S := Uα ∩ U−1/2
β . By construction, S ⊂ Ω∗. Therefore, S \ V1 ⊂ Ω. Also, by Proposition

30



16, S \ V1 is not an L1
h-domain of holomorphy. Hence, every L1

h-monomial on S \ V1 is also an

L1
h-monomial on S. It now follows that Ω has no L1

h-monomials that do not extend to V1, but then

Ω is not an L1
h-domain of holomorphy contrary to hypothesis. A similar contradiction is obtained

by arguing from Conditions (5) and (9) if j = 2, and from Conditions (7) and (10) if j = 0.

Now, suppose that for each λ ∈ Λ, there is some αλ > 0 and some xλ ≥ 0 such thatHλ = Uxλ
αλ

.

By Lemma 3 below, we have that there exist positive β1, β2 and real numbers 0 ≤ y1 < y2 such

that y2− y1 ≤ 1 and S := Uy1
β1
∩Uy2

β2
⊂ Ω∗. Now observe that S satisfies Condition (2) and so S is

an L1
h-domain of holomorphy. It now follows that S \ Vj is an L1

h-domain of holomorphy. [To see

this, observe that since Ω = Ω∗ \ Vj, we have that S \ Vj ⊂ Ω. Therefore, let f be a holomorphic

function for which S is the domain of existence and g be a holomorphic function for which Ω is the

domain of existence. By Lemma 1, there must be a monomial zm in the Laurent series expansion

of g such that mj < 0 which is integrable on Ω. Since S ⊂ Ω∗, note that zm is also integrable on

S. It is now clear that S \ Vj is the domain of existence for f(z) + zm.] Hence, by Proposition 12,

S \Vj must satisfy Condition (4). But then (y1, y2) contains an integer, and so Ω satisfies Condition

(4) also, which is a contradiction.

Next, suppose for each λ ∈ Λ, there is an αλ and some xλ ≤ 0 such that Hλ = Uxλ
αλ

. By

Lemma 2 below, there exist real α > 0 and y1 < y2 ≤ 0, with (−y2,−y1) ∩ {2, 3, 4, . . .} = ∅

and S := Uy1
α ∩ Uy2

α . Since Ω is an L1
h-domain of holomorphy, and S \ V2 ⊂ Ω, there exists an L1

h

monomial on S \ V2 which does not extend holomorphically to S. However, by Proposition 25, S

is the L1
h-envelope of holomorphy of S \ V2. This is a contradiction. Similar contradictions can be

derived if Ω = Ω∗ \ V1 or Ω = Ω∗ \ V0 via Propositions 23 and 27 respectively.

Now suppose for some λ, µ ∈ Λ, Hλ = Ũx
α and Hµ = Ũy

β . Since Ω is not fat, we may suppose

that 0 ≤ y < x. If y = 0, then F (Ω) satisfies Condition (3), and so Ω satisfies Condition (11). Now,

if y > 0, then F (Hλ) = U
1/x
α∗ and F (Hµ) = U

1/y
β∗ , with 0 < 1

x
< 1

y
, α∗ = α−1/x, and β∗ = β−1/y.

31



Since this case was dealt with above, F (Ω) satisfies one of Conditions (1)-(11). Hence, Ω satisfies

one of Conditions (1)-(11) (since F = F−1). Finally, if Hλ = Uα and Hµ = Ũβ , then since Ω is

not fat, Ω satisfies Condition (1). This completes the proof.

Lemma 2. Let {Hλ}λ∈Λ be a family of logarithmic half-planes in C2 such that for each λ ∈ Λ,

there exists αλ > 0 and xλ < 0 such thatHλ = Uxλ
αλ

. Furthermore, suppose that for each λ, µ ∈ Λ,

Hλ ∩Hµ does not satisfy Conditions (9) of Theorem 1 above. If Ω is an L1
h-domain of holomorphy

with Ω∗ =
⋂
λ∈ΛHλ and Ω = Ω∗ \ V2, then there exists α > 0 and real numbers y1 < y2 ≤ 0 such

that (−y2,−y1) ∩ {2, 3, 4, . . . , } = ∅ and S := Uy1
α ∩ Uy2

α ⊂ Ω∗.

Proof. Note that {xλ} is contained in either [−2, 0] or [m,m + 1], for some negative integer m,

since for all λ, µ ∈ Λ, Hλ∩Hµ does not satisfy Condition (9). We now show that α := inf {αλ} >

0. To see this, suppose for contradiction that α = 0. Note that for all z ∈ Ω \ V0, λ ∈ Λ,

|z2| < αλ |z1|xλ . But since {xλ} is bounded and α = 0, it now follows that |z2| = 0, for all

z ∈ Ω\V0. Thus, Ω ⊂ V0, and thus Ω is not a subdomain of C2. But this is a contradiction. Hence,

α > 0.

Let y1 be the greatest integer less than or equal to every member of {xλ} and let y2 be the least

integer greater than or equal to every member of {xλ} . Note that by construction, y1 < y2 ≤ 0,

and (−y2,−y1) ∩ {2, 3, 4, . . .} = ∅. Define S := Uy1
α ∩ Uy2

α . We claim that S ⊂ Ω∗. To see this,

suppose z ∈ S. If |z1| ≤ 1, then |z2| < α.

|z1| ≤ 1 and xλ ≤ y2 =⇒ αλ |z1|xλ ≥ αλ |z1|y2 ≥ α |z1|y2 > |z2| .

Therefore, for each λ ∈ Λ, z ∈ Hλ, and so z ∈ Ω∗. Therefore, (S ∩ {|z1| ≤ 1}) ⊂ Ω∗. On the

other hand, if |z1| > 1, then |z2| < α |z1|−2 .

|z1| > 1 and xλ ≥ y1 =⇒ αλ |z1|xλ ≥ αλ |z1|y1 ≥ α |z1|y1 > |z2| .
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Therefore, for each λ ∈ Λ, z ∈ Hλ, and so z ∈ Ω∗. Therefore, (S ∩ {|z1| > 1}) ⊂ Ω∗. Hence,

S ⊂ Ω∗.

Lemma 3. Let {Hλ}λ∈Λ be a family of logarithmic half-planes in C2 such that for each λ ∈ Λ,

there exists αλ > 0 and xλ ≥ 0 such that Hλ = Uxλ
αλ

. Furthermore, suppose that for each

λ, µ ∈ Λ, Hλ ∩ Hµ does not satisfy Condition (4) in Theorem 1. If Ω is a non-fat L1
h-domain of

holomorphy with Ω∗ =
⋂
λ∈ΛHλ, then there exist β1, β2 > 0 and real numbers 0 ≤ y1 < y2 such

that y2 − y1 ≤ 1 and S := Uy1
β1
∩ Uy2

β2
⊂ Ω∗.

Proof. Since no pair of logarithmic half-planesHλ, Hµ satisfy Condition (4) in the Theorem above,

there exists a non-negative integer m such that {xλ} ⊂ [m,m + 1]. We let y1 := inf {xλ} and

y2 := sup {xλ}. As in the Proof of Lemma 2 above, α := inf {αλ} > 0. The proof now proceeds

similarly to the proof of Lemma 2, with S := Uy1
α ∩U

y2
α2 when 0 < α < 1, and with S := Uy1

1 ∩U
y2
1

when α ≥ 1.
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3. FAT L1
h-DOMAINS OF HOLOMORPHY IN Cn

Having acquired an understanding of the 2-dimensional case, it is now desirable to describe

the case of Reinhardt L1
h-domains of holomorphy in Cn. While we have not yet solved the n-

dimensional problem in general, we have found a characterization of all such domains which are

fat. This is given in Theorem 2 and Corollary 1 below. We first define the analog of logarithmic

half-planes in dimension n.

Definition 3. Let x ∈ Rn \ {0} for some n ∈ N and α > 0. Then we define the elementary

Reinhardt domain Ux
α as follows:

Ux
α :=

{
z ∈ Cn :

n∏
j=1

|zj|xj < α

}
.

Each of these elementary Reinhardt domains is determined in this definition by n + 1 real pa-

rameters. However, observe that Ux
α = Uy

β if and only if there exists some positive real number r

such that β = αr and y = rx. Therefore, if so desired, we can assume that x is not an arbitrary

n-dimensional real vector, but is a unit vector. In other words, we can take x ∈ Sn−1 ⊂ Rn. There-

fore the family of such elementary Reinhardt domains is actually an n-dimensional family with

parameter space Sn−1 × R>0. We will use this fact in the case of n = 2, to simplify considerably

Theorem 1 above in Theorem 3 below. For the remainder of this chapter excluding Corollary 1,

we will define Ω as follows:

Ω :=
n⋂
j=1

Uxj
αj
.

where x1, x2, . . . , xn ∈ Rn and α1, α2, . . . , αn > 0.

Theorem 2. Ω is an L1
h-domain of holomorphy if and only if x1, . . . , xn are linearly independent.

Proof. Together Propositions 32 and 33 below demonstrate that if x1, . . . , xn are linearly indepen-

dent, then L1
h(Ω) 6= {0}, and so by Proposition 1, Ω is an L1

h-domain of holomorphy. Conversely,
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Proposition 34 demonstrates that if Ω is an L1
h-domain of holomorphy, then x1, . . . , xn are linearly

independent.

Since the hypothesis of Theorem 2 is a statement about vectors in Rn, we first convert the

problem of finding integrable functions in subdomains of Cn to a problem of finding integrable

functions in subdomains of Rn in Proposition 32 below.

Proposition 32. Suppose Ω =
⋂n
j=1 U

xj
αj and m ∈ Zn. Then zm ∈ L1(Ω) if and only if

exp

(
n∑
j=1

m′jρj

)
∈ L1 (log |Ω|) ,

where m′j = 2 +mj.

Proof. This follows from

∫
Ω

|zm| = (2π)n
∫
|Ω|

n∏
j=1

r
1+mj
j dr = (2π)n

∫
log |Ω|

exp

(
n∑
j=1

(2 +mj)ρj

)
dρ,

where |Ω| is the image of Ω in absolute space; i.e, if

|Ω| := {(|z1| , . . . , |zn|) ∈ Rn : z ∈ Ω}

Proposition 33. If x1, . . . , xn ∈ Rn are linearly independent, then L1
h(Ω) 6= {0}.

Proof. First note that log |Ω| is the intersection of n open half-spaces H1, . . . , Hn ⊂ Rn with the

property that ∂Hj is the codimension-1 hyperplane given by the equation xj · ρ = logαj . Now,

observe that since x1, . . . , xn are linearly independent,
⋂n
j=1 ∂Hj is a singleton set {p} . Now, by

translation we may assume that pj = 0, for each j. Thus, since x1, . . . , xn are linearly independent

vectors, the region log |Ω| is linearly isomorphic to the space Ω′ := {σ ∈ Rn : σ1, . . . , σn < 0} .
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Define X ∈ GLn(R) by

X :=


x1

...

xn


Then a linear isomorphism log |Ω| ∼= Ω′ is given by ρ 7→ X−1ρ. For each j, define m′j := 2 + mj

and for each k, define yk :=
∑n

j=1m
′
jxjk. Now, we have the following:

∫
log |Ω|

exp

(
n∑
j=1

m′jρj

)
dρ = det

(
X−1

) ∫
Ω′

exp

(
n∑
k=1

ykσk

)
dσ.

Now, observe that exp (
∑n

k=1 ykσk) ∈ L1(Ω′) if and only if yk > 0, for each k. Hence, from

Proposition 32 we have that zm ∈ L1(Ω) if and only if every entry in m′X is strictly positive. This

yields that the set of integrable Laurent monomials on Ω is lattice-isomorphic to Nn.

Now, suppose zm ∈ L1(Ω)\O(Ω). Then for some j ∈ {1, 2, . . . , n}, we have that Ω∩Vj 6= ∅,

andmj < 0.Note that Ω must then contain a productA :=
∏n

k=1Ak of 1-dimensional complex do-

mains such that Aj is a disk. Observe that zm ∈ L1(A), and so zmjj ∈ L1(Aj). But then mj ≥ −1.

Hence, mj = −1.

Let J := {j ∈ {1, . . . , n} : Ω ∩ Vj 6= ∅} . From the preceding paragraph, it remains to find an

m ∈ Zn such that zm ∈ L1(Ω) such that for each j ∈ J,mj 6= −1. This must be possible, or else

the set of integrable Laurent monomials on Ω would not be lattice-isomorphic to Nn, contrary to

what has already been shown. This completes the proof.

Remark: Note that the above proof actually demonstrates more than the statement of Proposi-

tion 33. It demonstrates that if zm ∈ L1(Ω), for some m ∈ Zn, then L1
h(Ω) is infinite-dimensional,

and has a Schauder basis which is lattice-isomorphic to Nn. Furthermore, the proof gives a useful

condition for checking whether a given monomial is integrable on a given domain of this type,

namely that zm is integrable on Ω if and only if every entry of (2 +m1, . . . , 2 +mn)X is strictly
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positive.

Proposition 34. If x1, . . . , xn are linearly dependent, then Ω is not an L1
h-domain of holomorphy.

Proof. By Lemma 1, it is sufficient to demonstrate that for all m ∈ Zn, zm /∈ L1(Ω). Therefore,

by Proposition 32 above, it suffices to show that for all m ∈ Zn, exp
(∑n

j=1m
′
jρj

)
/∈ L1(log |Ω|).

But observe that log |Ω| is linearly isomorphic to R × S, where S is an open subset of Rn−1.

However, observe that the desired conclusion follows from the fact that no exponential function is

integrable on R.

Corollary 1. If Ω ( Cn is a fat, Reinhardt domain of holomorphy, then Ω is an L1
h-domain of

holomorphy if and only if

Ω =
⋂
λ∈Λ

Uxλ
αλ

where {xλ}λ∈Λ spans Rn and each αλ is positive.

Proof. If Ω ( Cn is a fat, Reinhardt domain of holomorphy, then there exist {xλ}λ∈Λ ⊂ Rn and

for each λ ∈ Λ, there is an αλ > 0 such that

Ω =
⋂
λ∈Λ

Uxλ
αλ
.

Suppose that span {xλ}λ∈Λ = Rn. Then there exist λ1, . . . , λn ∈ Λ such that
{
xλj
}n
j=1

is linearly

independent. Therefore by Proposition 33, since Ω ⊂
⋂n
j=1 U

xλj
αλj

, there exists m ∈ Zn such that

zm ∈ L1
h(Ω). Hence, by Proposition 1, Ω is an L1

h-domain of holomorphy.

Now, suppose that span {xλ}λ∈Λ 6= Rn. Then log |Ω| is linearly isomorphic to R×S, where S

is an open subset of Rn−1. Therefore, by the reasoning in the proof of Proposition 34 above, Ω is

not an L1
h-domain of holomorphy.
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4. AN ALTERED PERSPECTIVE ON L1
h-DOMAINS OF HOLOMORPHY IN C2

The logarithmic half-planes are characterized by inequalities of the form |z1|a |z2|b < α, with

a, b ∈ R not both zero and α > 0. Since these inequalities can be scaled by positive exponents, we

can assume a2 + b2 = 1, or in other words, (a, b) ∈ S1 ⊂ R2. Therefore, there is a correspondence

between logarithmic half-planes in C2 and S1. By stereographic projection, we can parameterize

S1 by R∞ := R ∪ {∞}. This leads to the following definition.

Definition 4. For every α > 0 and for every x ∈ R∞, we define W x
α to be the logarithmic half-

plane given by:

W x
α =

{
|z1|a |z2|b < α

}
,

where if x =∞, then (a, b) = (0, 1), and otherwise (a, b) =
(

2x
x2+1

, x
2−1
x2+1

)
.

Note that the map x 7→ (a, b) described in the above definition is in fact a map R∞ → S1 ⊂ R2

which inverts stereographic projection of the unit circle onto the real line. Observe also that we

have the following equation:

W x
α :=



Ũx∗
α∗ x ∈ (−1, 1)

Uα x = 1

Ux∗
α∗ x ∈ R∞ \ [−1, 1]

Ũ1/α x = −1,

where α∗ = α(x2+1)/(x2−1), and x∗ = −2x
(x2−1)

. Note, therefore that this notation already has an

advantage over that used in Theorem 1 since it enables us to use one notation to capture all four

classifications of logarithmic half-planes from Proposition 5. The next proposition reveals another

advantage of this notation: there is an easy formula for the image of W x
α under the transposition of

coordinates F.

Proposition 35. Define F : (z1, z2) 7→ (z2, z1). Then for each α > 0, x ∈ R∞, F (W x
α ) =
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W
(x+1)/(x−1)
α .

Proof. Observe first that
2
(
x+1
x−1

)(
x+1
x−1

)2
+ 1

=
x2 − 1

x2 + 1

and that (
x+1
x−1

)2 − 1(
x+1
x−1

)2
+ 1

=
2x

x2 + 1
.

The conclusion now follows from the definition.

We now state a simpler characterization than the one given in Theorem 1 of Reinhardt L1
h-

domains of holomorphy in C2 in terms of the new parameterization of logarithmic half-planes.

We note furthermore that it would seem that this is a theorem in simplest terms. That is to say,

we could not reasonably expect it to be stated more simply, since there are four different domain

geometries to be considered based on whether the given domain is fat or not, and how it fails to

be fat. We prove the theorem in two parts: (1) In Proposition 37 below, we demonstrate that the

conditions given in Theorem 1 imply the conditions given in Theorem 3, while (2) in Proposition

38, we demonstrate the converse. As an intermediary proof, we demonstrate in Proposition 36

below that the condition of being fat in Theorem 3 is equivalent to the corresponding condition in

Theorem 1.

Theorem 3. If Ω ( C2 is a Reinhardt domain of holomorphy, then Ω is an L1
h-domain of holomor-

phy if and only if there exist x, y ∈ R∞ and α, β > 0 such that − 1
y
6= x 6= y and Ω ⊂ W x

α ∩W
y
β

and one of the following holds:

1. Ω is fat.

2. Ω = Ω∗ \ V1 and if 0 < x < y < ∞, then the interval
(
x2−1

2x
, y

2−1
2y

)
contains an integer

other than 1.

3. Ω = Ω∗ \ V2 and if −1 < 1
x
< 1

y
< 1, then the interval

(
2x
x2−1

, 2y
y2−1

)
contains an integer

other than 1.
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4. Ω = Ω∗ \ V0 and both

• if 0 < y < x <∞, then the interval
(
y2−1

2y
, x

2−1
2x

)
contains an integer.

• if −1 < 1
x
< 1

y
< 1, then the interval

(
2x
x2−1

, 2y
y2−1

)
contains an integer.

Proposition 36. Suppose that Ω ( C2 is a fat, Reinhardt domain of holomorphy. Then Ω satisfies

Condition (2) of Theorem 1 if and only if there exist x, y ∈ R∞ and α, β > 0 such that− 1
y
6= x 6= y,

and Ω ⊂ W x
α ∩W

y
β .

Proof. ( =⇒ :) Suppose first that Ω satisfies Condition (2) of Theorem 1. Since Ω is a Reinhardt

domain of holomorphy properly contained in C2, it must be an intersection of logarithmic half-

planes. Since, in addition, it is not a logarithmic half-plane, there exists {xλ}λ∈Λ ⊂ R∞ with

|Λ| > 1 and for each λ, there exists αλ > 0 such that

Ω =
⋂
λ∈Λ

W xλ
αλ
.

Since Condition (2) of Theorem 1 holds, Ω is an L1
h-domain of holomorphy. Now by Theorem 2

above, {G (xλ)}λ∈Λ is a spanning set for R2, where G : R∞ → R2 is defined by

G (xλ) :=

(
2xλ
x2
λ + 1

,
x2
λ − 1

x2
λ + 1

)

Therefore, choose x, y ∈ {xλ}λ∈Λ such that G(x) and G(y) are linearly independent. Note that

Ω ⊂ W x
α ∩ W

y
β for some α, β > 0. Furthermore, x 6= y, since G(x) 6= G(y). Observe that if

x = − 1
y
, then

G(x) =

(
2x

x2 + 1
,
x2 − 1

x2 + 1

)
=

(
−2y

1 + y2
,
1− y2

1 + y2

)
= −G(y).

But G(y),−G(y) are linearly dependent. Therefore, x 6= − 1
y
.

( ⇐= :) Now suppose that there exist x, y ∈ R∞ and α, β > 0 such that − 1
y
6= x 6= y, and

40



Ω ⊂ W x
α ∩W

y
β . Observe that log |Ω| is contained in a convex subset of R2 bounded by two inter-

secting lines. Therefore, Ω is not a logarithmic half-plane since log |Ω| is not a half-plane.

Finally, observe that if Ω were to be either Ũα∗ ∩Uβ∗ or Ũx∗
α∗ ∩Ux∗

β∗ for some x∗ ∈ R, and some

α∗, β∗ > 0, then log |Ω| would be a convex domain in R2 bounded by two parallel lines. Since this

is not the case, Ω satisfies Condition (2) of Theorem 1.

Proposition 37. If Ω ( C2 is a Reinhardt L1
h-domain of holomorphy, then there exist x, y ∈ R∞

and α, β > 0 such that − 1
y
6= x 6= y,Ω ⊂ W x

α ∩W
y
β , and one of Conditions (1)-(4) of Theorem 3

above holds.

Proof. Since Ω is a Reinhardt L1
h-domain of holomorphy, at least one of the conditions from The-

orem 1 holds. We define the function g : R→ R∞ as follows:

g(x) =


∞, x = 0,

− 1
x

(
1 +
√

1 + x2
)
, x 6= 0.

Note that for α > 0 and x ∈ R, if α∗ = α1/
√

1+x2 , then Ux
α = W

g(x)
α∗ . Also, observe that g(R) =

R∞ \ [−1, 1], and that g is injective.

1. Suppose Ω is bounded. Then for some α, β > 0,Ω ⊂ W∞
α ∩W 1

β . Therefore one of Condi-

tions (1)-(4) of Theorem 3 trivially holds.

2. By Proposition 36 above, if Ω is fat, then Ω satisfies Condition (1) and the hypotheses of

Theorem 3 above.

3. Suppose for some α, β > 0 and x ∈ R that Ω∗ ⊂ Ũα ∩ Ux
β . Observe that Ũα = W−1

α∗ ,

where α∗ = α−1. and Ux
β = W

g(x)
β∗ . Therefore, one of Conditions (1)-(4) of Theorem 3

holds provided g(x) 6= ±1. However, ±1 /∈ g(R). Therefore, one of Conditions (1)-(4) of

Theorem 3 holds.
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4. Suppose for some α, β > 0 and for some x, y ∈ R with x > max {0, y} and (y, x) ∩ Z 6= ∅

that Ω∗ ⊂ Ux
α ∩ U

y
β . Observe that Ux

α = W
g(x)
α∗ and Uy

β = W
g(y)
β∗ . Since g is injective and

x 6= y, g(x) 6= g(y). Furthermore, since g(R) ∩ [−1, 1] = ∅, g(x) 6= − 1
g(y)

. Therefore, if Ω

is fat, then Ω satisfies Condition (1) of Theorem 3 above.

Now observe that Ω∗∩V1 = ∅. Hence, it suffices to show that if Ω is not fat, then Condition

(3) of Theorem 3 holds. Suppose Ω = Ω∗ \ V2, and then observe that

2g(x)

g2(x)− 1
=

−2(1+
√

1+x2)
x(

1+
√

1+x2

x

)2

− 1
=
−2x

(
1 +
√

1 + x2
)

2 + 2
√

1 + x2
= −x.

It now follows since (y, x) ∩ Z 6= ∅, that (−x,−y) ∩ Z =
(

2x
x2−1

, 2y
y2−1

)
∩ Z 6= ∅. Suppose

1 ∈ (−x,−y) . But then y < 0 < x, so that the interval (−x,−y) contains 0.

5. Suppose that for some α, β > 0 and some x < 0,Ω∗ ⊂ Ux
α ∩ Uβ and Ω = Ω∗ \ V2. Note that

Ω ⊂ W
g(x)
α∗ ∩W 1

β . Since x < 0, g(x) > 1. Therefore, −1 6= g(x) 6= 1. Therefore, Ω trivially

satisfies Condition (3) of Theorem 3.

6. Suppose that for some α, β > 0 and some x ∈
(
−1

2
, 0
)
,Ω∗ ⊂ Ux

α∩Uβ and Ω = Ω∗\V1. Then

note that Ω ⊂ W
g(x)
α∗ ∩W 1

β . Since x < 0, g(x) > 1. Therefore, it suffices to demonstrate

that
(

0, g
2(x)−1
2g(x)

)
∩ (Z \ {1}) 6= ∅. But observe that g2(x)−1

2g(x)
= − 1

x
∈ (2,∞). Therefore,

2 ∈
(

0, g
2(x)−1
2g(x)

)
, and so Ω satisfies Condition (2) of Theorem 3.

7. Suppose that for some α, β > 0 and some x ∈ (−1, 0) that Ω∗ ⊂ Ux
α ∩ Uβ and that Ω =

Ω∗ \ V0. Now, note that Ω ⊂ W
g(x)
α∗ ∩W 1

β . Also, g(x) ∈ (1 +
√

2,∞). Therefore, 0 < 1 <

g(x) < ∞. Thus, it suffices to show that
(

0, g
2(x)−1
2g(x)

)
=
(
0,− 1

x

)
contains an integer. But

since x ∈ (−1, 0), − 1
x
∈ (1,∞), and so 1 ∈

(
0,− 1

x

)
. Therefore, Ω satisfies Condition (4)

of Theorem 3.

8. Suppose for some α, β > 0 and for some y, x ∈ R with
(
− 1
y
,− 1

x

)
∩ {2, 3, 4, . . .} 6= ∅ that
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Ω∗ ⊂ Ux
α ∩ U

y
β and Ω = Ω∗ \ V1. Next, observe that Ω ⊂ W

g(x)
α∗ ∩W

g(y)
β∗ . Next, observe

that y < x < 0, and so we have that 0 < g(y) < g(x) < ∞. It remains to show then

that
(
g2(y)−1

2g(y)
, g

2(x)−1
2g(x)

)
=
(
− 1
y
,− 1

x

)
contains an integer other than 1. But this is true by

assumption.

9. Suppose for some α, β > 0 and for some y, x ∈ R with (−x,−y) ∩ {2, 3, 4, . . .} 6= ∅

that Ω∗ ⊂ Ux
α ∩ U

y
β and Ω = Ω∗ \ V2. First, note that if x ≥ 0, then g(x) < −1, and

so Ω trivially satisfies Condition (3) of Theorem 3. Now, suppose y < x < 0. Then we

have that 1 < g(y) < g(x) < ∞, and so 0 < 1
g(x)

< 1
g(y)

< 1. Also, by hypothesis,(
2g(x)
g2(x)−1

, 2g(y)
g2(y)−1

)
= (−x,−y) contains a positive integer greater than 1. Hence, Ω satisfies

Condition (3) of Theorem 3.

10. Suppose for some α, β > 0 and for some y < x < 0 with (y, x) ∩ Z 6= ∅ 6=
(
− 1
y
,− 1

x

)
,

we have that Ω∗ ⊂ Ux
α ∩ U

y
β , and Ω = Ω∗ \ V0. Note then that Ω ⊂ W

g(x)
α∗ ∩ W

g(y)
β∗ .

Furthermore, we have that
(
g2(y)−1

2g(y)
, g

2(x)−1
2g(x)

)
=
(
− 1
y
,− 1

x

)
must contain an integer and(

2g(x)
g2(x)−1

, 2g(y)
g2(y)−1

)
= (−x,−y) must contain an integer. Therefore, Ω satisfies Condition (4).

11. Observe that if F (Ω) satisfies one of Conditions (1)-(10) of Theorem 1, then F (Ω) satisfies

one of Conditions (1)-(4) of Theorem 3. Also, observe that

(
x+1
x−1

)2 − 1

2
(
x+1
x−1

) =
(x+ 1)2 − (x− 1)2

2(x+ 1)(x− 1)
=

4x

2(x2 − 1)
=

2x

x2 − 1
.

Finally, let ϕ : R∞ → S1 be defined by ϕ = (ϕ1, ϕ2) : x 7→ (a, b) as in Definition 4. Now,

observe that −1 < 1
x
< 1

y
< 1 ⇐⇒ ϕ(x), ϕ(y) are in the upper half-plane and ϕ2(x) <

ϕ2(y). But by Proposition 35 and Definition 4, we also have that ϕ
(
x+1
x−1

)
= (ϕ2(x), ϕ1(x)) .

Therefore, −1 < 1
x
< 1

y
< 1 ⇐⇒ ϕ

(
x+1
x−1

)
, ϕ
(
y+1
y−1

)
are in the right-hand half-plane and

ϕ2

(
x+1
x−1

)
< ϕ

(
y+1
y−1

)
⇐⇒ 0 < x+1

x−1
< y+1

y−1
<∞. Therefore, we have the following:

• F (Ω) satisfies Condition (1) of Theorem 3 ⇐⇒ Ω satisfies Condition (1) of Theorem

3.
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• F (Ω) satisfies Condition (2) of Theorem 3 ⇐⇒ Ω satisfies Condition (3) of Theorem

3.

• F (Ω) satisfies Condition (4) of Theorem 3 ⇐⇒ Ω satisfies Condition (4) of Theorem

3.

Hence, Ω satisfies one of Conditions (1)-(4) of Theorem 3.

Proposition 38. Suppose Ω ( C2 is a Reinhardt domain of holomorphy and that there exist

x, y ∈ R∞ and α, β > 0 such that − 1
y
6= x 6= y and Ω ⊂ W x

α ∩W
y
β and one of Conditions (1)-(4)

of Theorem 3 hold. Then Ω is an L1
h-domain of holomorphy.

Proof. It is suffices to show that each of Conditions (1)-(4) of Theorem (3) implies that one of

Conditions (1)-(11) of Theorem (1) holds.

1. If Ω is fat, then by Proposition 36 above, Ω satisfies Condition (2) of Theorem 1.

2. Suppose Ω satisfies Condition (2) of Theorem 3. Note first that if x ∈ (−∞, 0), then W x
α ∩

V1 = ∅, so that Ω∗ \ V1 = Ω∗. Therefore, Ω is fat and so satisfies Condition (2) of Theorem

1.

Now, suppose that x = ∞. Then by hypothesis 0 6= y 6= ∞. If y ∈ (−∞, 0), then as

in the preceding paragraph, Ω satisfies Condition (2) of Theorem 1. If y ∈ (0, 1], then

Ω is contained in the bidisk with biradius (α · β(y2+1)/(2y), α) and so is bounded. There-

fore, Ω satisfies Condition (1) of Theorem (1). Finally, suppose that y ∈ (1,∞). Note

then that by Proposition 35 above, F (Ω) ⊂ W 1
α ∩ W

(y+1)/(y−1)
β . Now, observe that since

y ∈ (1,∞), y+1
y−1
∈ (1,∞), and so for some y∗ < 0 and some α∗, β∗ > 0, F (Ω) ⊂ Uα∗ ∩Uy∗

β∗

and F (Ω) = F (Ω)∗ \ V2. Therefore, F (Ω) satisfies Condition (5) of Theorem 1 and so Ω

satisfies Condition (11) of Theorem 1.
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Next, suppose that x ∈ (1,∞). If y ∈ R∞ \ [0,∞), then by symmetry, Ω satisfies one of

Conditions (1)-(11) of Theorem 1. If y = 0, then note that F (Ω) ⊂ W
(x+1)/(x−1)
α ∩W−1

β =

Ux∗
α∗ ∩ Ũβ∗ , for some α∗, β∗ > 0 and some x∗ < 0. Therefore, F (Ω) satisfies Condition (3)

of Theorem 1 and so Ω satisfies Condition (11) of Theorem 1. Now, suppose y ∈ (0, 1).

Observe that x+1
x−1
∈ (1,∞) and y+1

y−1
∈ (−∞,−1). Therefore, F (Ω) ⊂ Ux∗

α∗ ∩ U
y∗

β∗ , for some

α∗, β∗ > 0 and for x∗ < 0 < y∗. It then follows that F (Ω) satisfies Condition (4) of Theo-

rem 1. Next, suppose y = 1. It then follows that for some α∗, β∗ > 0 and x∗ = − 2x
x2−1

, that

Ω ⊂ Ux∗
α∗ ∩ Uβ∗ . Also, 0 < y < x < ∞, so

(
0, x

2−1
2x

)
contains an integer other than 1. But

in this case, the interval must contain 2. Therefore,
(
x2−1

2x

)
∈ (2,∞), and so x∗ ∈

(
−1

2
, 0
)
.

Therefore, Ω satisfies Condition (6) of Theorem 1. By similar reasoning, if y ∈ (1,∞), then

Ω satisfies Condition (8) of Theorem 1.

Assume now that x = 1. The case where y ∈ R∞ \ [0, 1) has been handled by symmetry.

Therefore, we may suppose that y ∈ [0, 1). If y = 0, then for some α∗, β∗ > 0, F (Ω) ⊂

Ũα∗∩U0
β∗ . Therefore, F (Ω) satisfies Condition (3) of Theorem 1 and so Ω satisfies Condition

(11) of Theorem 1. On the other hand, if y ∈ (0, 1), then F (Ω) ⊂ U0
α∗ ∩ U

y∗

β∗ , where y∗ =

1−y2
2y

. Now, since Ω satisfies Condition (2) of Theorem 3, we have that (−y∗, 0) =
(
y2−1

2y
, 0
)

contains an integer other than 1. Therefore, y∗ > 1, and so 1 ∈ (0, y∗).Hence, F (Ω) satisfies

Condition (4) of Theorem 1 and so Ω satisfies Condition (11) of Theorem 1.

Now, assume that x ∈ (0, 1). We may again by symmetry suppose that y ∈ [0, 1). Again, if

y = 0, then as in the preceding paragraph F (Ω) satisfies Condition (3) of Theorem 1. On the

other hand, if y ∈ (0, 1), then suppose without loss of generality that x < y. Now, observe

that F (Ω) ⊂ Ux∗
α∗ ∩ U

y∗

β∗ , where x∗ = 1−x2
2x

and y∗ = 1−y2
2y

and by assumption (y∗, x∗)

contains an integer. Therefore, F (Ω) satisfies Condition (4) of Theorem (1). Hence, if Ω

satisfies Condition (2) of Theorem 3, then Ω satisfies one of Conditions (1)-(11) of Theorem

1. Note also that the case where x = 0 has been covered by symmetry.
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3. If Ω satisfies Condition 3 of Theorem 3, then F (Ω) satisfies Condition 2 of Theorem 3.

Hence, F (Ω) satisfies one of Conditions (1)-(11) of Theorem 1. It then follows that Ω

satisfies one of Conditions (1)-(11) of Theorem 1.

4. Suppose Ω satisfies Condition 4 of Theorem 3. If x ∈ (−1, 0), then W x
α ∩ V0 = ∅, so that

Ω∗ \ V0 = Ω∗. Therefore, Ω is fat and so satisfies Condition (2) of Theorem 1.

Assume now that x = −1. Then W x
α = Ũα∗ . Also, note that by symmetry, we may assume

that y /∈ (−1, 0). Furthermore, if y ∈ [0, 1), then W y
β = Ũy∗

β∗ for some non-negative y∗.

Therefore, Ω∗ ∩ V0 = ∅, and so Ω is fat and satisfies Condition (2) of Theorem 1. On the

other hand, if y ∈ R∞ \ [−1, 1], then for some a ∈ (−1, 1), b ∈ (0, 1],

W y
β =

{
|z1|a |z2|b < β

}
= Uy∗

β∗ ,

for some β∗, y∗. It therefore follows that Ω satisfies Condition (3) of Theorem 1 in this case.

Suppose now that x ∈ (−∞,−1). Then for some α∗, x∗ > 0, W x
α = Ux∗

α∗ . Note therefore

that Ω∗ is disjoint from V1 so that Ω satisfies Condition (2) of Theorem 3.

Suppose now that x =∞. ThenW x
α = U0

α.We may suppose by symmetry that y /∈ (−∞, 0).

Note also that if y ∈ (0, 1], then Ω is bounded and so satisfies Condition (1) of Theorem 1.

Now, suppose that y ∈ (1,∞). Note then that by Proposition 35, F (W y
β ) = W

(y+1)/(y−1)
β .

Therefore, F (Ω∗) = Uα ∩ U (1−y2)/2y
β∗ . Observe that 1−y2

2y
< 0. Also, since 1

x
= 0 and

1
y
∈ (0, 1), we have that

(
0, 2y

y2−1

)
∩ Z 6= ∅. Therefore,

2y

y2 − 1
> 1 =⇒ y2 − 1

2y
< 1 =⇒ 1− y2

2y
> −1.

Therefore, F (Ω) satisfies Condition (7) of Theorem 1, and so Ω satisfies Condition (11) of
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Theorem 1.

Suppose now that x ∈ (1,∞). We may suppose by symmetry that y /∈ (−∞, 0) ∪ {∞}.

Now assume that y ∈ [0, 1). Then note that Ω∗ ∩ V2 = ∅, so Ω satisfies Condition (2) of

Theorem 3 unless y > 0 and
(
y2−1

2y
, x

2−1
2x

)
∩ Z = {1}. But note that if y > 0, then y2−1

2y
< 0

and x2−1
2x

> 0. Therefore, Ω satisfies Condition (2) of Theorem 3.

Now, suppose y = 1. Note then that W x
α = Ux∗

α∗ for some α∗ > 0 and x∗ = −2x
x2−1

< 0, and

also that W y
β = Uβ. Now observe that since 0 < y < x <∞, we have that

(
0, x

2−1
2x

)
∩ Z 6=

∅. Therefore, we have that

x2 − 1

2x
> 1 =⇒ −2x

x2 − 1
> −1.

Therefore, Ω satisfies Condition (7) of Theorem 1. Furthermore, if y ∈ (1,∞), then similar

arguments show that Ω satisfies Condition (10) of Theorem 1.

Next, suppose that x ∈ (0, 1]. We may suppose by symmetry that y ∈ [0, 1). Now, assume

y ∈ (0, 1). Then Ω∗ ∩ V2 = ∅. Therefore, since x2−1
2x
∈ (−∞, 0] and y2−1

2y
∈ (−∞, 0),

there is a negative integer strictly between x2−1
2x

and y2−1
2y

, and so Ω satisfies Condition (2)

of Theorem 3. Next, suppose that y = 0. If x ∈ (0, 1), then F (Ω) = W
(x+1)/(x−1)
α ∩W−1

β ,

where x+1
x−1
∈ (−∞,−1), while if x = 1, then F (Ω) = W∞

α ∩W−1
β . However, W−1

β = Ũβ∗ ,

and so F (Ω) satisfies Condition (3) of Theorem 1. Finally, note that the case when x = 0, is

now handled by symmetry.
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5. CONCLUSION

In Chapter 2, we developed a geometric characterization of Reinhardt L1
h-domains of holo-

morphy in C2 in terms of logarithmic half-planes (Theorem 1). We also gave an example of an

unbounded Reinhardt domain of holomorphy which is not an L1
h-domain of holomorphy, demon-

strating the importance of the “bounded” hypothesis in Conjecture 1. We also gave an example of

a family of domains which provides a counterexample for Conjecture 2. In Chapter 3, we showed

that if Ω is a fat Reinhardt domain of holomorphy in Cn, then Ω is an L1
h-domain of holomorphy if

and only if log |Ω| is contained in a region bounded by n linearly independent codimension 1 hy-

perplanes (Corollary 1). In Chapter 4, we altered our perspective from a rectangular to a spherical

perspective, which enabled us to greatly simplify our characterization in Theorem 1 (Theorem 3).

The results given in Chapters 2-4 also prompt further questions. First and foremost, is there a

geometric characterization of Reinhardt L1
h-domains of holomorphy in n dimensions? It seems that

if this were possible, it could be found by generalizing the spherical perspective given in Chapter

4 and by using the linear-algebraic fact given in the remark following Proposition 33 in Chapter 3,

namely that zm is an integrable Laurent monomial on Ω if and only if every entry inm′X is strictly

positive.

Finally, Proposition 4 in Chapter 2 gives a special case of Conjecture 1 in Chapter 1. However,

the method used in proving Proposition 4 seemingly cannot be used to prove the general case. I

think that the geometric characterization ofL2
h-domains of holomorphy given in [7] gives a possible

way towards a solution. If one could demonstrate that given any pluripolar set K and any bounded

domain of holomorphy Ω, there exists an L1
h function on Ω \ K which is completely singular at

every point in K, then Conjecture 1 would follow. Alternatively, the same result should follow if

there is a locally L1
h function on Cn \ K which is completely singular at every point in K. Note

that this latter problem has the advantage of depending only on K and not on Ω.
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