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ABSTRACT

In this dissertation we consider methods from complex analysis to solve inverse spectral prob-
lems for Schrodinger operators on finite intervals and semi-infinite Jacobi operators.

After discussing necessary background from complex function theory and harmonic analysis,
we consider Schrodinger operators on a finite interval with an L'-potential. We prove that the
potential can be uniquely recovered from one spectrum and subsets of another spectrum and point
masses of the spectral measure (or norming constants) corresponding to the first spectrum. We also
solve this Borg-Marchenko-type problem under some conditions on two spectra, when missing part
of the second spectrum and known point masses of the spectral measure have different index sets.

In the discrete case, we consider semi-infinite Jacobi matrices with discrete spectrum. We
prove that a Jacobi operator can be uniquely recovered from one spectrum and subsets of another
spectrum and norming constants corresponding to the first spectrum. As a corollary, we obtain
semi-infinite Jacobi analog of Marchenko’s inverse spectral theorem for Schrédinger operators, i.e.
a Jacobi operator can be uniquely recovered from the Weyl m-function (or the spectral measure).
We also solve our Borg-Marchenko-type problem under some conditions on two spectra, when

missing part of the second spectrum and known norming constants have different index sets.
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1. INTRODUCTION

The Schrodinger (Sturm-Liouville) equation is given by

Lu=—u"+qu=zu

on the interval (0, 7) with the boundary conditions

u(0) cosa — u'(0) sina = 0

u(m) cos B+ u'(m) sin 8 = 0,

and a real-valued potential ¢ € L'(0, 7). The spectrum o, s of the Schrodinger operator L cor-
responding to these boundary conditions defines a discrete subset of the real line, bounded from
below, diverging to +oo.

Direct spectral problems aim to get spectral information from the potential. In inverse spectral
problems, the goal is to recover the potential from spectral information, such as the spectrum, the
norming constants, the spectral measure or Weyl-Titchmarsh m-function.

The first inverse spectral result on Schrodinger operators is given by Ambarzumian [1]. He
considered continuous potential with Neumann boundary conditions at both endpoints (o« = 3 =
7/2) and showed that ¢ = 0 if the spectrum consists of squares of integers.

Later Borg [13] proved that an L!-potential is uniquely recovered from two spectra corre-
sponding to various pairs of boundary conditions and sharing the same boundary conditions at 7
(81 = B), one of which should be Dirichlet boundary condition at 0 (a; = 0). Levinson [52]
extended Borg’s result by removing the restriction of Dirichlet boundary condition at 0.

Furthermore, Marchenko [56] observed that the spectral measure (or Weyl-Titchmarsh m-
function) uniquely recovers an L!-potential.

Another classical result is due to Hochstadt and Lieberman [45], which says that if the first half



of an L'-potential is known, one spectrum recovers the whole.

Statements of these classical results are given in Section 3.2.1.

Gesztesy, Simon and del Rio [15] generalized Levinson’s theorem to three spectra, by showing
two thirds of the union of three spectra is sufficient spectral data to recover an L!-potential.

Later on, Gesztesy and Simon [31] observed that extra smoothness conditions on the potential
change required spectral data to recover the potential. They proved that the knowledge of the
eigenvalues can be replaced by information on the derivatives of the potential. In addition, they
[31] also generalized the Hochstadt-Lieberman theorem in the sense that more than the first half of
an L'-potential and a sufficiently large subset of a spectrum recover the potential.

Afterwards, Amour, Raoux and Faupin [3, 4] proved similar results using extra information on
the smoothness of the potential.

In a remarkable result, Horvéth [46] characterized unique recovery of a potential in terms
of completeness of an exponential system depending on given eigenvalues and known part of
the potential. This observation opened a new path [5, 46, 48, 55] by connecting inverse spectral
problems and completeness of exponential systems.

Moreover, Horvéith and Safar [48] proved similar results in terms of a cosine system. The
cosine system depends on subsets of eigenvalues and norming constants and their spectral data
consists of these two subsets.

Recently, Makarov and Poltoratski [55] gave a version of Horvith’s theorem [46] in terms
of exterior Beurling-Malliavin density by combining Horvath’s result and the Beurling-Malliavin
theorem. In the same paper, they obtained another characterization result, which is an uncertainty
version of Borg’s theorem. As their spectral data, they considered a set of intervals known to in-
clude two spectra and characterized the inverse spectral problem in terms of a convergence criterion
on this set of intervals.

All of these results mentioned above are discussed in Section 3.2.2.

Classical theorems of Borg, Levinson, Marchenko, Hochstadt and Lieberman led to various

other inverse spectral results on Schrodinger operators (see [2, 29, 36, 37, 38, 39, 47, 57, 60,



64, 69, 70, 71, 72, 73, 74, 75, 77, 78] and references therein). These problems can be divided
into two groups. In Borg-Marchenko-type spectral problems, one tries to recover the potential
from spectral data. However, Hochstadt-Lieberman-type (or mixed) spectral problems recover the
potential using a mixture of partial information on the potential and spectral data.

In this thesis, our interest will be on regular Schrodinger operators with summable potentials
on a finite interval. However, many problems with locally summable potentials [23, 24, 25, 26, 32,
49, 50] or on various settings such as half-line [26, 29, 31, 33, 64, 69], real-line [26, 29, 32, 33, 69]
or graphs [9, 10, 11, 12, 79] are solved.

Borg’s, Levinson’s and Hochstadt and Lieberman’s theorems suggest that one spectrum gives
exactly one half of the full spectral information required to recover the potential. Recalling the fact
that the spectral measure is a discrete measure supported on a spectrum, the same can be said for
the set of point masses of the spectral measure. As follows from Marchenko’s theorem, the set of
point masses of the spectral measure (or the set of norming constants) gives exactly one half of the
full spectral information required to recover the potential.

These observations allow us to formulate the following question:

Inverse Problem. Do one spectrum and partial information on another spectrum and the set of

point masses of the spectral measure corresponding to the first spectrum recover the potential?

This Borg-Marchenko-type problem can be seen as a combination of Levinson’s and Marchenko’s
results. Borg’s and Marchenko’s theorems can be deduced by complex theoretic methods using
Krein spectral shift functions and Cauchy integrals respectively. However, neither of the methods
work for the problem stated above, which makes this problem interesting not only for spectral
theory, but also for complex function theory.

In Chapter 3, we answer this question positively. First, we give a proof with the most common
boundary conditions, Dirichlet (v = 0) and Neumann (v’ = 0). Theorem 22 solves this inverse
spectral problem when given part of the point masses of the spectral measure corresponding to the
Dirichlet-Dirichlet spectrum matches with the missing part of the Neumann-Dirichlet spectrum,

i.e. they share same index sets. In Theorem 23 and Theorem 24, we consider the non-matching
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index sets case with some restrictions on two spectra.

In order to deal with general boundary conditions we introduce a more general m-function in
Section 4.3. With this m-function, we extend Theorem 22 in Theorem 25 to general boundary
conditions. In Theorem 26 and Theorem 27 we consider the non-matching index sets case.

Jacobi operators are discrete analogs of Schrédinger operators. The Jacobi operator J in the
dense subset coo(N) of the Hilbert space [*(N) is the operator associated with the semi-infinite

Jacobi matrix

ap by 0 0
by ay be

0 by as

0

where a,, € R and b,, > 0 for any n € N. The symmetric operator .J is closable and has deficiency
indices (1,1) [limit point] or (0,0) [limit circle]. In the limit point case J is self-adjoint. How-
ever, in the limit circle case non self-adjoint operator .J has a self-adjoint extension J(g) uniquely
determined by g € R U {oc} (see Section 4.1 and [66] Section 2.6). In both cases, a rank-one
perturbation of a self-adjoint Jacobi operator can be seen as a change of the boundary condition at
the origin for the corresponding Jacobi difference equation (see Section 4.1 and [62] Appendix).

In the discussion of inverse spectral problems for Jacobi operators, we replace the potential
function ¢ with the sequences {a,, }r and {b,, }n. The study of inverse problems for Jacobi operators
is motivated both by pure mathematics, e.g. moment problems [65] and physical applications, such
as vibrating systems [35, 59].

Early inverse spectral problems for finite Jacobi matrices appear as discrete analogs of inverse
spectral problems for Schrodinger operators. Finite Jacobi matrix analogs of Borg’s and Hochstadt
and Lieberman’s theorems were considered by Hochstadt [42, 43, 44], where the potential ¢ is
replaced by the sequences {a, }nen and {b, },en. These classical theorems led to various other
inverse spectral results on finite Jacobi matrices (see [6, 16, 29, 31, 34, 61, 76] and references

therein), semi-infinite or infinite Jacobi matrices (see [17, 18, 19, 20, 26, 29, 31, 34, 62, 63, 68] and



references therein), generalized Jacobi matrices (see [21, 22] and references therein) and matrix-
valued Jacobi operators (see [14, 30] and references therein).

Silva and Weder ([62] Theorem 3.3) proved Borg’s two-spectra theorem for semi-infinite Jacobi
matrices with a discrete spectrum. Later on Eckhardt and Teschl ([27] Theorem 5.2) considered
infinite Jacobi matrix analog of Marchenko’s result with the same discreteness of the spectrum
assumption. Note that discreteness of the spectrum is an extra assumption in the limit point case.

Jacobi versions of Borg’s and Hochstadt and Lieberman’s theorems suggest that one spectrum
gives exactly one half of the full spectral information required to recover the sequences {a, }nen
and {b, }nen. Let us recall the fact that in the case of discrete spectrum, the spectral measure is
a discrete measure supported on the spectrum with the point masses given by the corresponding
norming constants (see [26] page 10). As follows from Jacobi analogs of Marchenko’s theorem,
the set of point masses of the spectral measure (or the set of norming constants) gives exactly one
half of the full spectral information required to recover the sequences {a,, } nen and {b, } nen.

These observations allow us to reformulate our inverse spectral problem for Jacobi operators:

Inverse Problem. Do one spectrum and partial information on another spectrum and the set of

norming constants corresponding to the first spectrum recover the operator?

In Chapter 4, we answer this question positively. Theorem 30 solves this inverse spectral
problem when given part of the norming constants corresponding to the first discrete spectrum
matches with the missing part of the second discrete spectrum, i.e. they share the same index sets.
In Theorem 31 and Theorem 32 we show that information of one of the boundary conditions can be
replaced by any unknown eigenvalue from the second spectrum or any unknown norming constant
corresponding to the first spectrum. In Theorems 33, 34 and 35 we consider the same problems in

the non-matching index sets case with some restrictions on the two spectra.



2. PRELIMINARIES

The main reference for this chapter is [58].
2.1 Complex function theory
2.1.1 Hardy spaces in the upper-half plane

Let H(€2) denote the set of all analytic functions in the complex domain 2. Hardy spaces are

subclasses of analytic functions satisfying certain growth conditions.

Definition 1. Let 1 < p < co. The Hardy space for p on the upper-half plane C, is defined as

(€)= {f € HC.) | sup [ |f(o+in)de < oo)

For 1 < p < oo, the Hardy space H?(C, ) becomes a Banach space with the norm

. 1/p
Ay = sup ( [ 1@+ i)lrd)
y>0 R

For p = oo, H*(C,) denotes the set of all analytic and bounded functions on the upper-
half plane, equipped with the sup-norm || f ||z (c,) = sup,cc, |f(2)|. Fatou proved existence of

non-tangential boundary limits of //? functions.

Definition 2. Let v : [0,1) — C, be a continuous path such that lim; ,; y(t) = a € R. Let us
define I'y(a) := {z +a | argz € (7/2 — a,7/2 4+ a)} for a € R. The real number a is defined
as the non-tangential limit of the path ~ if there exists « € (0,7/2) such that v C T',(a) and

limy;_,; () = a. If z approaches to a non-tangentially, it is denoted by z —, a.

The region I, (a) is called Stolz region at a. Even if we discuss it on the upper-half plane, it is
usually defined on the unit disk as follows. Let § € [0,27) and M > 0. A Stolz region in the unit

disk is defined as
|z — et

< M}.
1 — 2|
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The non-tangential limit can be seen as existence of the limit through a Stolz region. Figure 2.1

shows some examples of Stolz regions.

\
|
\

\
l
L
T

i

i

(a) ()

Figure 2.1: Examples of Stolz regions in the unit disk (a) and the upper-half plane (b).

Theorem 1. Ler f(z) € HP(C,). For almostallt € R,

fr(t) = lim f(z) exists,

fr(t) € LP(=00, 00)

and for all y > 0,

fz+iy) = %/Rmf*(t)dt.

Using Fatou’s theorem we uniquely identify each function f € H?(C, ) with a function f* €
LP(R). Moreover we have || f||mg»(c.) = ||f||zr@®). This allows us to extend the domain of f to
C, UR almost everywhere by letting f(t) := f*(¢) for almost all ¢ € R, so we can identify every
HP(C, ) with a closed subspace of L?(R). Therefore, the Hardy space H*(C) is a Hilbert space

with the inner product

U ) aes) = / f(Hg(t)dt

for f,g € H*(C,).



2.1.2 Inner-outer factorization

Functions from Hardy spaces can be represented in terms of products of well-understood func-
tions, namely inner and outer functions. This representation is called inner-outer or canonical
factorization. Before discussing inner and outer functions, we need to state some definitions.

A function on R is Poisson-summable if it is summable with respect to the Poisson measure
I1, defined as dII := dz/(1 + 2?). The space of Poisson-summable functions on R is denoted by

L.

Definition 3. The Schwarz integral of a Poisson-summable function f is defined as

510 = [ (725 - 1) 0

where z = x + 1.

The Schwarz integral of a real valued Poisson-summable function is given in terms of its Pois-

son and conjugate Poisson integrals: Sf = Pf + Q) f, where

_ 1 y
pﬂ@_;/atgﬂgﬂ@ﬁ

=+ [ (it o) 0

A measure 1 on R is Poisson-finite if [ =z d|u|(t) < co. The Schwarz integral of a Poisson-

finite measure p, defined as

is analytic in the upper half-plane C, .
We discussed that any function f € H® has non-tangential boundary values a.e. on R. If

absolute values of these limits are 1, then f is an inner function.



Definition 4. A bounded analytic function in C, is called inner in C, if it has non-tangential

boundary values, equal to 1 in modulus, almost everywhere on R.

Main examples of inner functions are exponential functions e'** for a > 0 and Blaschke prod-

ucts. The ratio

is called a Blaschke factor, where A € C,. Let A = {)\,} C C, be a sequence satisfying the

Blaschke condition

L+ |\, )2 '

n

The infinite product

Ba(z) == H €nba, (2)
is called a Blaschke product for C, where the unimodular constants ¢, satisfy €,b,, (i) > 0.
Definition 5. An analytic function in C, is called outer in C, if it is of the form e°/ for f € L.

The Hilbert transform of f € L{;, denoted by ]7, is defined as the singular integral

It is the angular limit of Q f = ImS f, hence the outer function e°/ coincides with e/ +if on R.

Now we are ready to state canonical factorization of H? functions.

Theorem 2. (Inner-outer factorization) Let f € H?(C,). Then for z € C,,

f(z) = 1(2) - Of(2),

where the inner factor 1;(z) is given by I(z) = " B(2)e~""e'** such that

e vyeR



* B(z) =[1,[e""(z—\.)/(z— \,)] is a Blaschke product for C.., where \,, are zeros of f(z)

in C and the real v, satisfy ¢ (i — \,) /(i — M) >0,
* the singular measure |1 on R is Poisson-finite,

* the mass at 0o, a is non-negative
and the outer factor O¢(z) is given by O (z) = eSloglfl,

2.1.3 Meromorphic inner functions and meromorphic Herglotz functions

We discussed that an inner function on C, is a bounded analytic function on C, with unit

modulus a.e. on R.

Definition 6. If an inner function extends to C meromorphically, it is called meromorphic inner

function, which is usually denoted by ©.

Meromorphic inner functions satisfy the representation ©(z) = Ce’* B, (z) for a unimodular
constant C', a nonzero real constant ¢ and a Blaschke product B, with a discrete sequence A, i.e.
A satisfies the Blaschke condition and has no finite accumulation point.

A meromorphic function is said to be real if it maps real numbers to real numbers on its

domain.

Definition 7. A meromorphic Herglotz function m is a real meromorphic function with positive

imaginary part on C . It has negative imaginary part on C_ via the relation m(z) = m(z).

There is a one-to-one correspondence between meromorphic inner functions and meromorphic

Herglotz functions via equations

1+06 @_m—i
1—-0’ Com+i

A meromorphic Herglotz function can be described as the Schwarz integral of a positive dis-
crete Poisson-finite measure:

m(z) = az +b+iSu,

10



where a > 0, b € R. The term ¢S is also called the Herglotz integral and usually denoted by
H. This representation is valid even if the Herglotz function can not be extended meromorphically
to C, in which case ;4 may not be discrete. It is called the Herglotz representation theorem.

Cebotarev proved a similar result.

Theorem 3 (Cebotarev [511). If the real meromorphic function m maps C.,. onto C.,, then its poles

{ay }rez are all real and simple, and it may be represented in the form

- 1 1
m(z):az—i—b—i—ZAk( ——), 2.1)
ap — 2 Q.
k=N
wherea >0, b e R, —oco < N < M < oo, Ay, > 0, the sum nyzN Ay /a2 converges and the sum
in (2.1) converges normally on its domain if N = oo or M = oo. Note that if a; = 0 for some

N < j < M, then the term with the index j in (2.1) is replaced by A; ] z.

Let us recall that for any infinite product (or sum) defined on an open set {2 C C, normal
convergence means that the product (or the sum) converges uniformly on every compact subset of

Q.
2.2 Beurling-Malliavin theory

Let A = {)\,} be a sequence in the complex plane. One of the fundamental problems of
Harmonic Analysis in the 20th century was the following question: Which conditions on A char-
acterize completeness of the exponential system E, := {e*»2}, 1 in L%(0,a). In order to
discuss this problem we need to consider maximal real number a for which E, is complete in

L?(0,a), i.e. the set of finite linear combinations of exponentials from F, is dense in L?(0, a).

Definition 8. Let A = {)\, } be a complex sequence. The radius of completeness of A is defined
as

R(A) := sup{a | E, is complete in L*(0,a)}.

Now the main goal becomes finding a formula for R(A) when A is an arbitrary complex se-

quence. The problem can be reduced to the real sequences by the following observation: if A is

11



a complex sequence, then F is complete in L?(0,a) if and only if Ey is complete in L?(0, a),
where A’ is the real sequence defined as X, = (Rey-)~', ie. R(A) = R(A’). Note that if A
includes purely imaginary numbers, without loss of generality we can replace A by A + ¢ for some
ceR.

The Fourier transform is a useful tool to work on completeness of exponential systems.

Definition 9. Let f € L?(R). The Fourier transform of f is defined as

fo) = [ e plae

According to Paley-Wiener theorem, Fourier transform of a square integrable function f satis-
fying supp(f) C [—a, al, is an entire function of exponential type at most 27a and square integrable
on the real line, i.e. |f(z)| < Ce2™l and f(z) € L*(R). This allows us to define Paley-Wiener

spaces.

Definition 10. Let « € R,. The Paley-Wiener space on [—a, a| is defined as
PW, := {F(z) | Fisentire, | F(2)| < Ce? ™l and F € L*(R)}.

On the other hand every entire function of exponential type at most 2wa and square integrable
on R is the Fourier transform of a square integrable function on [—a, a]. Therefore PW, is the
image of the space L?(—a, a) under the Fourier transform.

Let us recall that a system of exponentials F is incomplete in L?(0, ) if and only if there exists

anon-zero [ € L*(0,a) such that (f(z) , e*™*7) , (0. = 0 forevery A, € A, or equivalently

)
f (A\,) = 0 for every \,, € A. Therefore using the Paley-Wiener theorem and the definition of the
Fourier transform we can translate the completeness of exponential problem we stated to a complex
analysis problem: F, is complete in L?(0, 2a) if and only if for any non-zero function F' € PW,,,

F(\,) # 0 for some A\, € A. This observation allows us wlog to let A be discrete, i.e. A has no

finite accumulation point, since radius of completeness of a sequence with a finite accumulation

12



point is co. This follows from the identity theorem for entire functions, which implies that zero set
of a non-zero entire function can not have a finite accumulation point.

At this point wlog we can restate our completeness problems as follows. How can we formulate
R(A) for the discrete sequence A C R? A complete answer to this question was given by Beurling

and Malliavin, but before stating that we need a few more definitions.

Definition 11. If {], },cn is a sequence of disjoint intervals on the real line, it is called short if

S <
1+ dist?(0, I,,) ’

neN

and long otherwise.

Definition 12. Let A be a sequence in R. Then the exterior (effective) Beurling-Malliavin den-

sity of A is defined as
D*(A) :=sup{d | I long {I,} such that #(A N I,) > d|I,|, Vn € N}.

For a non-real sequence A, its exterior Beurling-Malliavin density is defined as D*(A) :=

D*(A), where A is a real sequence given by \/, = (Reﬁ)_l, if A has no imaginary points, and as
D*(A) := D*((A + ¢)’) otherwise.
Now we are ready to state one of the most important results of the 20th century Harmonic

Analysis.

Theorem 4 (Beurling-Malliavin [7, 8]). Let A be a discrete sequence in C. Then R(A) = D*(A).

13



3. INVERSE SPECTRAL THEORY OF SCHRODINGER OPERATORS*

3.1 One-dimensional Schriodinger operator on a finite interval

As it was defined in the introduction, we consider the Schrodinger equation
—u"(t) + q(t)u(t) = zu(t) 3.1
on the interval (0, ) associated with the boundary conditions

u(0) cosa — u'(0) sina = 0 (3.2)

u(m) cos B+ u'(m) sin § = 0, (3.3)

where o, 3 € [0, 7) and the potential function ¢ € L'(0, ) is real-valued.

The spectrum o, 5 of the Schrodinger operator
L:u— —u" +qu

with ¢ € L' and boundary conditions (3.2), (3.3) is a discrete real sequence, bounded from below.
Adding a positive constant to the potential g, shifts the spectrum by the same constant. This allows
us to assume wlog 0, 3 C Ry. Note that we assume N = {1,2,3,...}. Asymptotic behavior of
the spectrum o, g = {an }nen, depending on the signs of o and f, is as follows:

If a # 0, B # 0, then

™

an = (n— 1)+ %[cot(ﬁ) + cot(a)] + H /07r q(z)dx + ay, (3.4

where «,, = o(1) as n — +o0.

“Reprinted with permission from "Mixed Data in Inverse Spectral Problems for the Schroedinger Operators" by
B. Hatinoglu, 2020 Journal of Spectral Theory, accepted for publication, Copyright 2020 by European Mathematical
Society [40].
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If o« =0, 8 =0, then

1 ™
an = n® + —/ q(z)dx + ay,
T Jo

where o, = o(1) as n — +o0.

If a# 0,8 =0, then

1\* 2 I
a, = <n—§> —|——cot(a)+—/ q(z)dx + oy,
0

™ ™

where «,, = o(1) as n — +o0.

Ifa=0,p3+#0, then

2 ™
a, = (n - 1) + 2 cot(B) + l/ q(z)dz +
0

2 ™ s

where a;,, = o(1) as n — +o0.

In the case ¢ € L?(0, ), the same asymptotics are valid with {a, }nen € 12

(3.5)

(3.6)

(3.7)

One can find these results in the classical texts on Schrodinger operators, for instance [53] or

[54].

Let us choose the boundary condition (3.2) and introduce two solutions s, () and c,(t) of (3.1)

satisfying the initial conditions

5.(0) = sin(a), s.(0) = cos(a)

c.(0) = cos(a), ¢.(0) = —sin(a).

Definition 13. The norming constant 7, for the eigenvalue a,, is defined as

rula) = / " s (1)l

Note that s.(t) and c,(¢) are linearly independent solutions and their Wronskian satisfies
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Wi(e,,s,) = 1, where W(f,g) := fg — gf'. This allows us to represent u(t), a solution of
P

(3.1) with boundary conditions w,(7) = sin /3, u/(7) = — cos 3, as

uy(t) = c.(t) + map(2)s.(t),

where

This is how we derive the m-function.

Definition 14. Weyl-Titchmarsh m-function with the boundary conditions (3.2), (3.3) is defined
as

cos(a)u’,(0) + sin(a)u.(0)
—sin(a)u’,(0) + cos(a)u.(0)’

Map(2) ==
where o, 5 € [0, 7).

It is well-known that Weyl m-function m,, g is a meromorphic Herglotz function. Everitt [28]

proved that the Weyl m-function has the asymptotic

mo,5(2) = iv/z + o(1)

for « = 0, and

COS & 1 1 1
0s(2) = e+ 0
Ma3(2) sina+sin2a el (|z|>
for « € (0,7) as z goes to infinity in the upper half plane. Asymptotics of Weyl m-function
and Herglotz representation theorem imply that m, g is represented as the Herglotz integral of a

discrete positive Poisson-finite measure supported on the spectrum o, g:

1 t
Map(2) = a+ /R L — 1% tQ] dta, (1), (3.8)

where a = Re(mqa3(7)), 0o = {anfnen and pio g = Y, cnyTnda,. The measure fi, 5 is the
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spectral measure of the Schrodinger operator L corresponding to the m-function m, 3. The point

masses of the spectral measure are represented in terms of norming constants as 7, = (7.(a,)) "

Definition 15. The spectral measure of the Schrodinger operator L corresponding to the m-

function m, g (or the boundary conditions (3.2), (3.3)) is defined as

where «, 5 € [0,7) and 04 5 = {an }nen-

Since [, p 15 a Poisson-finite measure, the spectrum and the point masses of the spectral mea-

sure satisfy

These properties of the m-function, the spectral measure and a detailed discussion of one di-
mensional Schrodinger operators appear in Chapter 9 of [66].

In order to illustrate what we have discussed so far, let us consider the free operator (¢ = 0)
with Dirichlet (v = 0) and Neumann (v’ = 0) boundary conditions. Figure 3.1 shows the graph of
Weyl m-function mg o on R, Neumann-Dirichlet spectrum oy p and Dirichlet-Dirichlet spectrum

opp for the free operator.

Example 1. The spectra, the m-function and the spectral measure for ¢ = 0 on (0, 7) with

Dirichlet-Dirichlet, Neumann-Dirichlet and Neumann-Neumann boundary conditions are as fol-

lows.
Moo = 2 in% 2
opp = 000 = {1 hnen Mmoo = —v/z cot(y/27) 00 - "
OND = Orjap = {(n — %)Q}neN My /2,0 = % Hr/2,0 = %;5@_1/2)2
. B cot(y/zm) oS
ONN = Onjomsz = {0 = 1)*}nen Mrjonsn = T g = %;5@1)2
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Figure 3.1: The graph of Weyl m-function mg ¢ on R, Neumann-Dirichlet spectrum oy p (red) and
Dirichlet-Dirichlet spectrum o (blue) for the free operator (¢ = 0).

3.2 Inverse spectral theory of regular Schrodinger operators
3.2.1 Classical results

The first inverse spectral result on Schrodinger operators was given by Ambarzumian.
Theorem 5 (Ambarzumian [1], [46]). Let ¢ € C(0, 7] and 02 5/ = {n*}>,. Then q = 0.

Later Borg found that in most cases two spectra is the required spectral information to recover

the operator uniquely.

Theorem 6 (Borg [13], [46]). Let ¢ € L' (0,7), 01 = 00,8, 02 = Ouy 5 SiD g # 0 and

op) ifsinf =0

09 =
oo\a} if sinf # 0.
Then o1 U 04 determines the potential and no proper subset has the same property.
A Schrodinger operator (or a potential) is said to be determined (or recovered) by its spectral
data, if any other operator with the same data must have the same potential a.e. on (0, 7). Levinson
extended Borg’s result by removing the Dirichlet boundary condition restriction from the first

spectrum.
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Theorem 7 (Levinson [52], [46]). Let ¢ € L'(0,7) and sin(cy — ag) # 0. Then 04, 5 and 04, g

determine the potential.

Marchenko showed that the spectral measure or the corresponding Weyl m-function provides

sufficient spectral data to recover the potential uniquely.

Theorem 8 (Marchenko [56], [66]-Section 9.4). Let ¢ € L'(0, 7). Then i, or my g determines

the potential.

In the notations of Section 3.1, Marchenko’s theorem says that the spectrum o, 3 = {an nen
and the point masses {7, }nen of the corresponding spectral measure (or the norming constants
{7a(an) }nen) provide sufficient spectral data to recover the operator uniquely.

Hochstadt and Lieberman observed that one spectrum recovers the potential if the first half of

it is known.

Theorem 9 (Hochstadt, Lieberman [45]). Ler ¢ € L' (0, 7). Then q on (0,7/2) and 0, 5 determine

the potential.
These classical theorems led to numerous results with different approaches such as
* using various spectral data (Borg-Marchenko type results),
* using mixture of partial knowledge of the potential and spectral data (Hochstadt-Lieberman
type results),

» considering various smoothness classes for the potential (¢ € L', L?, C*, L),

finding connections with exponential systems and

changing the setting (half-line, real line, quantum graphs).
3.2.2  Some recent results in the finite interval case
For any discrete real sequence A = {z,, }nen, £, — oo the counting function is defined as

nA(t) = Z 1.

xn <t
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Gesztesy, Simon and del Rio generalized Levinson’s theorem to three spectra.

Theorem 10 (del Rio, Gesztesy, Simon [15]). Let ¢ € L' (0, 7). Then S C 04,5 U 0ay 5 U Tayp
satisfying

ns(t) Z (2/3)n(0a1,BUUaQ,BUUa3,B)(t)
for sufficiently large t > 0, determine the potential.

Gesztesy and Simon observed that the knowledge of the eigenvalues can be replaced by infor-

mation on the derivatives of the potential around the midpoint of the interval.

Theorem 11 (Gesztesy, Simon [32]). Let ¢ € L'(0,7), , 3 # 0 and g € C**(w/2 — €, 7/2 + ¢)
for some k € Nand e > 0. Then q on (0,7/2) and o,, g except for k + 1 eigenvalues determine the

potential.
In the same paper, they generalized Hochstadt-Lieberman theorem.

Theorem 12 (Gesztesy, Simon [32]). Let ¢ € L*(0,7) and 7/2 < a < 7. Then q on (0,a) and
S C 04.p satisfying

ns(t) > 2(1 —a/m)ng, ,(t) +a/m—1/2
for sufficiently large t > 0, determine the potential.

Amour, Raoux and Faupin proved similar results using extra information on smoothness of the

potential.
Theorem 13 (Amour, Raoux [4]). Let a, 31,52 # 0, p € [1,00), q1,q2 € L'(0,7), ¢1 — 2 €
LP(a,m)and m/2 < a < 7. If ¢1 = g2 a.e. on (0,a) and S C 044,(q1) N 0up,(qe) satisfies

2(1 —a/m)ny(t) + C > ng(t) > 2(1 —a/m)n,(t) +1/(2p) + 2a/m — 2
for a real number C' and sufficiently large t > 0, where o denotes either of 0, 5, (qk), then ¢1 = 2
a.e. on (0, ).
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Theorem 14 (Amour, Faupin, Raoux [3]). Let o, 51,82 # 0, k € {0,1,2}, p € [1,00), ¢1,¢2 €

WHEH0,7), ¢ — g2 € W*P(a,7r) and /2 < a < 7. If ¢ = qa on (0,a) and S C 04p,(q1) N
0o, (q2) satisfying

ns(t) > 2(1 —a/m)n,(t) —k/2+1/(2p) + a/7 — 3/2

for sufficiently large t > 0, where o denotes either of 6, ,(qx), then g1 = ¢2 a.e. on (0, ).

Theorem 15 (Amour, Faupin, Raoux [3]). Let o, 51,82 # 0, k € {0,1,2}, p € [1,00), ¢1,¢2 €

WkL0,7), ¢ — @@ € WEP(a,7) and m/2 < a < 7. If ¢ = qz on (0,a) and S C Tap (1) N
Oa,p,(q2) satisfying

2(1 —a/mny(t) + C > ng(t) > 2(1 —a/m)n,(t) — k/2+ 1/(2p) + 2a/m — 2

for sufficiently large t > 0, where o denotes either of 0,5, (qx), then ¢1 = ¢z a.e. on (0, ).

Horvéth proved a remarkable characterization theorem, which represents a connection between

inverse spectral theory and completeness of exponential systems.

Theorem 16 (Horvith [46]). Let 1 < p < o0, ¢ € LP(0,7), 0 < a < mand \, € 0,0. Then q on

(0, a) and the eigenvalues )\, determine q if and only if the system
€(A) — {eiQiua:’ ei2i An® . n 2 1}

is complete in LP(a — w,m — a) for some p # £/ A,

Horvéth and Safar proved similar results for the norming constants in terms of a cosine system.

For a sequence A = {1, \s,...} C R and a subset S C A they considered the following cosine

system:

C(A, S) = {cos(2v/Mnt) : n € N} U {t cos(2¢/Mnt) : Ay € S}
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Theorem 17 (Horvath, Safér [48]). Let 3 #0,1 <p < oo, q€ L'(0,7),q € LP(a,7),0<a<m
and

A={\,: N\, €04,3n€cN}

be a subset of eigenvalues such that \,, / —oc are different real numbers and S C A. Then q on

(0,a), A and {7,, (An)}r,cs determine q if the system C (A, S) is complete in LP(0, 7 — a).
For Dirichlet boundary condition Horvath and Séafar obtained an optimal condition.

Theorem 18 (Horvath, Safar [48]). Let us have the assumptions of Theorem 17, but 5 = 0. Let
1 # £V A 1 € R Then the system C(A, S) U {cos(2,/ut)} is complete in LP(0, 7 — a) if and

only if gon (0,a), A and {7., (\n) } A, cs determine q.

Makarov and Poltoratski gave a characterization theorem in terms of exterior Beurling-Malliavin
density as a corollary of Horvath’s result [46] (Theorem 16 above) and the Beurling-Malliavin the-
orem [7, 8].

If {1, }.en is a sequence of disjoint intervals on the real line, it is called short if

S <o
1+ dist2(0, 1,,)

neN

and long otherwise.
If A is a sequence of real points, its exterior (effective) Beurling-Malliavin density is defined
as

D*(A) = sup{d | 3long {I,,} such that #(A N I,,) > d|1,|, Vn € N}.

For a non-real sequence its density is defined as D*(A) = D*(A’), where A’ is a real sequence
N = (Res-) "L, if A has no imaginary points, and as D*(A) = D*((A + ¢)’) otherwise.

For any complex sequence A its radius of completeness is defined as

R(A) = sup{a | {€*™**},cn is complete in L*(0,a)}.
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Now we are ready to state one of the fundamental results of Harmonic Analysis.

Theorem 19 (Beurling-Malliavin theorem [7, 8]). Let A be a discrete sequence. Then

R(A) = D*(A).

Let us note that Makarov and Poltoratski considered the Schrodinger equation Lu = —u” +
qu = z*u and the m-function corresponding to this equation, which is obtained by applying the
square root transform to the m-function we have discussed so far. Let us denote their m-function
by m.

Theorem 20 (Makarov, Poltoratski [55]). Let A = {\,}.en be a sequence of discrete non-zero

complex numbers, ¢ € L?(0,7) and 0 < a < 1. The following statements are equivalent:
1. qon (0,d) for some d > a and {m(\,) }nen determine q.
2. 1D*(A)>1—a.

Makarov and Poltoratski’s observation shows that Horvéth’s theorem establishes equivalence
between mixed spectral problems for Schrodinger operators and the Beurling-Malliavin problem
on completeness of exponentials in L? spaces.

In the same paper they obtained an uncertainty version of Borg’s theorem.

Theorem 21 (Makarov, Poltoratski [55]). Let {I,},en be a sequence of intervals on R and q €

L?(0, 7). The following statements are equivalent:

1. The condition cpp U onp C Upenl, and q on (0,¢€) for some € > 0 determine the potential

q.

2. For any long sequence of intervals {J,, } nen,

Z]nmjn log _ |In|
|

as n — oQ.
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3.3 An inverse spectral problem with mixed data
3.3.1 Matching index sets

We prove our first result, Theorem 22, by representing the Weyl-Titchmarsh m-function as an
infinite product in terms of Dirichlet-Dirichlet (a« = 0, 8 = 0) and Neumann-Dirichlet (o« = 7/2,
B = 0) spectra. We follow the notations introduced in Example 1 for these two spectra, i.e.

opp := 0o and onp = 0,2 0. For simplicity, let us also denote o by m.

Lemma 1. (infinite product representation of m-function) The m-function of a regular Schro-
dinger operator (¢ € L'(0,)) for Dirichlet-Dirichlet boundary conditions (o = 0, 3 = 0) has

representations in terms of Dirichlet-Dirichlet and Neumann-Dirichlet spectra:

e )G e

and
-1
m(z) = -C[] (bﬁ - 1) (ai - 1) , (3.10)

where C' > 0, opp = {an tnen, onD = {bn }nen and the product converges normally on C\U,,ena,,.

Proof. Letm = u(0)/u.(0) be the Weyl m-function with boundary conditions u(7) = 0, u/(7) =
—1. Since m is a meromorphic Herglotz function, © := fnl—jrj is the corresponding meromorphic
inner function.

Let us define the set Ein R as £ := {z € R : ImO(z) > 0}. The set E is given in terms of

Opp = {an}neN and onp = {bn}neN, namely £ = (—007 bl) U UneN(am bn+1)-

The characteristic function of £ coincides with the real part of the function i log(i}f—@

on R. Since m is a meromorphic Herglotz function mapping R to R a.e., log(m) = log(iz=g) is

a well-defined holomorphic function on C, and its imaginary part takes values 0 and 7 a.e. on

(~1+6>

R. Therefore X log(m) = = log(it=g

and the Schwarz integral of x g, S, differ by a purely
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imaginary number on a.e. R, i.e.

-
%\"T-e

(x

1 1+0 : : :
( )ZSXE+zc:PXE+ZQXE+@c, c€R,

where P and () are Poisson and conjugate Poisson integrals of y g, respectively. Therefore

i1+@
1-0

= exp(inSy, — mc) = exp(in P, — 1Qy, — ), c€R.

On the real line, exp(S),) = exp(h + ih) for any Poisson-summable function /, where / is the

Hilbert transform of h. If we let h := y g, then
~ 1 V1403 | 1 1+062
h(z) == |1 1 n =) log [ —2L ) .
@) wlog<|x—b|>+Z"g(|x—b+l|>+2%0g(1+az

Therefore

~ |x—b1 |z — by 1+a? 12
—7h :
eXP( ™ ( /—1 —|—b% H ’JI _ an| H 1 +bn+1

neN

Noting that exp(iwh) is —1 on F and 1 on R\F, the Weyl m-function can be given in terms of o pp

and onp a.e. on R:

. 14+6(x)
m(x) = T o) o)

= exp(imSy, — mc)
= \jl_Tblb% H — ZJ: TH (11_:_—(:1) v exp(—me)
-1
ene )6
70) Tl Yo

o
—1
Since m(z) and C' <i — 1) [L.en (L — 1> (é — 1> are meromorphic functions that agree

bn+1

where C' = exp(—

a.e. on R, they are identical by the identity theorem for meromorphic functions. This gives the

25



first representation (3.9). The second representation (3.10) follows from normal convergence of

{z/b, — 1},en to —1in C. O

Using this representation of the m-function, we prove our first result. At this point let us note
that the eigenvalues in a spectrum are enumerated in increasing order, which is done following the

asymptotics (3.4), (3.5), (3.6) and (3.7).

Theorem 22. (Inverse problem I-a) Let ¢ € L'(0,7) and A C N. Then {ay }nen, {bn}tnema
and {7, }nea determine the potential q, where opp = {a,}tnen, Onp = {bn}nen are Dirichlet-

Dirichlet and Neumann-Dirichlet spectra and {7, }en are point masses of the spectral measure
Ho,0 = ZneN Ynla,-

Proof. By representation (3.8) of the m-function as a Herglotz integral of the spectral measure,
knowing ~,, means knowing Res(m, a,). Therefore, in terms of the m-function our claim says
that the set of poles, {a, }nen, the set of zeros except the index set A, {b, },ema, and the residues
with the same index set A, { Res(m, a,,)}neca determine the m-function uniquely. Before starting
to prove this claim let us briefly list the main steps of the proof. We will use similar ideas to prove
our results in non-matching index sets case and for general boundary conditions.

Step 1: Reduce the claim to the problem of unique recovery of the infinite product

o=l (@)

neA

from its sets of poles and residues.

Step 2: Observe that G(z) is a meromorphic Herglotz function and has a representation in terms
of its poles, residues and a linear polynomial dz + e.

Step 3: Show uniqueness of d.

Step 4: Show uniqueness of e.

Step 5: Use the representation from Step 2 to get uniqueness of the two spectra and prove the

claim by Borg’s theorem.
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Step 1

From Lemma 1, the Weyl m-function can be represented in terms of opp and oy p,

Note that for any k € A, we know

-1
Res(m, ay,) = C(by, — ak)Z—Z I1 (? - 1) (% - 1) . (3.11)

co=cl(G-) (-0 - o TE-) Gy

Fiz)= ][] (i - 1) (ain - 1) B (3.12)

is known.

Conditions (3.11) and (3.12) imply that for any k& € A, we know

Res(m, ay,)

Res(G,ay) = Fla)

i.e. we know all of the poles and residues of G(z), but none of its zeros. We claim that G(z) can

be uniquely recovered from this data set.

Step 2

Let us observe that arg(G(z)) = m — > .4 larg(z — b,) — arg(z — a,)]. Since zeros and

poles of G(z) are real and interlacing, 0 < arg(G(z)) < = for any z in the upper half plane,

i.e. G(z) is a meromorphic Herglotz function. Therefore by Cebotarev’s theorem, see Theorem 3,
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G(z) has the representation

G(z):dz+e~|—ZAn( ! —i>, (3.13)

ap — 2 a
neA n n

where d > 0,e € Rand Y _, A, /a? is absolutely convergent.

ncA
Note that A, = —Res(G(z), ag) for any k € A, which means there are only two unknowns on

the right hand side of (3.13), namely constants d and e.

Step 3
Now let us show uniqueness of G(z) by showing uniqueness of dz + e. Let G(z) be another

infinite product sharing same properties with G(z), namely:

« The infinite product G(z) is defined as

where C' > 0, the set of poles {a,},ca satisfies asymptotics (3.5) and the set of zeros

{Zn}ne A satisfies asymptotics (3.6).

* G(z) and G (z) share same set of poles with equivalent residues at the corresponding poles,

i.e. dp = ai and Res(G, a;) = Res(G, ;) for any k € A.

« By the equivalence of poles and residues of G(z) and G(z) and Cebotarev’s theorem, G(z)

has the representation

é(z):gz+€+2An( L —i>, (3.14)

Ay — 2 a
neA n n

where 52 0,e€R.

Note that we defined @,, and Zn only forn € A. Let a,, := a,, and Bn := b, for every n € N\A. Let

us also note that {@, }ney and {b, ey are interlacing sequences so that they represent two spectra
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of a potential function ¢(z).

Let k € A and by, # by. Since G(b,) = 0 and G(b;) = 0, using representations (3.13) and
(3.14) we get

—dby—e=)Y_ A, ( ; 1), (3.15)
— Uk

neA Qn

—db,—e=)_ A, ( 1)and (3.16)
neA o bk tn

G(by) = G(by) — Gb) = (d — d)by + ¢ — ¢ (3.17)

Replacing e — ¢ by G (Zk) — (d— g)gk and taking difference of (3.15) and (3.16) we get

L - b —b
dbk—dbk—dbk+dbk+G(bk):ZAn<( * -k )

neA an — bg)(an — by)

Dividing both sides by by, (b, — by) we get

—d G(by) A,
LTI U A _ Z (3.18)
by, bk<bk - bk) 7; (bk(an - bk)(an - bk))

Note that since {a,, },ca satisfies asymptotics (3.5) and {b;, },ca, {En}ne 4 satisfy asymptotics

(3.6), the inequalities

b (@ — b1) (@ — b)| ™" < [bn(an — ba)(an — by)| ™ < 2/a? (3.19)

are valid for any k € A, for sufficiently large n € A. In addition, ), _, A, /a2 is absolutely
convergent. Therefore right hand side of (3.18) converges to 0 as k goes to co. Also note that by
(3.17), left hand side of (3.18) is

—d G(by) —d  G(by) — G(by) d 1

b (b —bx) by br.(bx — by) b b — by by
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Now let us show b, — by converges to 0 as k goes to co. Recall that poles of G and G satisfy
asymptotics

1 [ 1 (™ ~
n?+ — / q(z)dz + and n?+ = / q(z)dz + ay,
T™Jo T™Jo

respectively, where o, = o(1) and &, = o(1) as n — co. Equivalance of poles of G and G imply

equivalence of fo x)dx and fo x)dx. Therefore b,, and b,, satisfy asymptotics

2

1\ 1 (7 1\N? 1 ([~ ~
(”_5)*714q®mx+& and (n——)+7iéq@Mw+m,

where 8, = o(1) and 3, = o(1) as n — co. Hence by — by = o(1) as k goes to co. Therefore by

(3.20), left hand side of (3.18) goes to oo if d — d # 0, so we get a contradiction unless d = d

This implies that G(z) — G(z) is a real constant, which is G(0)

- G(0)=C-C.

Step 4

Now let us show C' —C' = 0. Positivity of (Ek —by)/ (gk —ay,) for all n # k, which follows from

interlacing property of {a, },en and {b, },en and interlacing property of {a, },en and {E Fnens

implies sgn(C' — C) = sgn(ﬁNk — B) forall k € N, i.e. {b,}neca and {Z }nea are interlacing
sequences.

Let us assume C' > C' and wlog the two spectra lie on the positive real line. This implies

Zn > b, for all n € A. Observe that [] _, En /by, is finite, since

ZAb - _ZAﬁn 5n<max 6nzb

neA

Therefore the infinite product H(z) := G(z)/G(z) is represented as

G(z) C z—by, B

~n z—b,

ned n zZ — neAn Z—b

Let us denote the constant factor of H(z) by N := (C/C) [L,ca® b,/b,. Then by interlacing
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property of {b,}nea and {b,}nca, the infinite product —H is a meromorphic Herglotz function

and hence by Theorem 3 it is represented as

— =Dz+E+) B,

neA

(3.21)

(i)
— +— ),
z—0b, b,

where B, = —Res(H,b,) and D, E € R.

Now let us show that { By / Ek} keA IS summable.

& _ oy b, — by, H bk — b,
b b ca otk by — by
S =L, be—bn
bk nEA,1<n<k—1 by, — by,
_N bk: by, H . b — b, >
bk peai<n<i-1 by — by
B BB ~>
bk’ ncA,1<n<k—1 (k - 1/2)2 - (n - 1/2)2 + Bk - ﬁn
ESYECSU s B P B = B _ ~>
bk peai<n<i-1 (n+1-1/2)?2 = (n—1/2)*+ B, — B
b — by 1
<N M 1
B bk H ( " 2”)

for sufficiently large k, where M is a real constant independent of k. Since Ek — by = o(1), Ek =
O(k?) and TT*Z1 (1 +1/2n) = O(VE) as k goes to 0o, we get the asymptotics By/by = o(1/k3/?)
as k goes to oo and hence ), _, B,/ b, is absolutely convergent. Then by letting 2 tend to —oo in

(3.21) we get

~N = lim_ (Dt+E+Z—+;t )

neA "

andhence D =0and —N = E + Y. _, B, /by, i.e. —H(z) has the representation

neA

-N-

neA 2

(3.22)
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Noting that H (b)) = 0 and Res(G, a;) = Res(G, ay), i.e. H(ay) = 1forall k € A, we get

_Z bk—ak)

(a, — by) (b — by)

Each term of the infinite sum on the right end is positive, so by letting & go to co we get the

following contradiction.

_ N B, fm — W)

1= 1lim S B (b — ) : i _
k=00 (ak - bn)(bk - bn)

hvoo o= (g — b)) (b — D)

neA

Similar arguments give another contradiction when C<C,s0C=C.

Step 5
Step 4 implies uniqueness of dz + e, i.e. uniqueness of GG(z) and hence uniqueness of {b, } ,c 4.
After unique recovery of the two spectra opp = {a, tnen and onp = {b, }nen, the potential is

uniquely determined by Borg’s theorem. 0

Remark 1. If we let A = N, Theorem 22 gives Marchenko’s theorem with Dirichlet-Dirichlet,
Neumann-Dirichlet boundary conditions as a corollary. By letting A = (), we get the statement of

Borg’s theorem with Dirichlet-Dirichlet, Neumann-Dirichlet boundary conditions.

Remark 2. Spectral data of Theorem 22 can be seen as {ay, }nen, {bn}nema and {1o(an) bnea,

where {7,(ay) }nea is the set of norming constants for opp = {an }nen.

3.3.2 Non-matching index sets

If the known point masses of the spectral measure and unknown eigenvalues of the Neumann-
Dirichlet spectrum have different index sets, one needs some control over eigenvalues of the
Dirichlet-Dirichlet spectrum corresponding to known point masses and unknown part of the Neu-
mann-Dirichlet spectrum. In this case we get a Cebotarev type representation result. Before

the statement, let us clarify the notations we use. For any subsequence {ay, }nen € opp and
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{bi, }nen C onp, by A, . and Ag, we denote the residues at ay,, of partial and infinite products,

respectively, consisting of these subsequences:

ay ay; ax, — by
Akn,m = R(ES(Gm, (Ikn> = = ((an — bln) | | —,
by, =L by ag, — ag,
1<j<m,j#n 9 g
akj A, — blj

a
Ay, = Res(G,a,) = Fin (ax, —by,) H

b b, ag, — ar,’
I jeN gz 3 Thn T

where

6 =T (E-1) (1) eo=TI(5-1) (=) -

Note that these subsequences are ordered according to their indices, i.e. aj, < ag,,, and

b, < by,,, for any n € N. This follows from the asymptotics of the spectra.

Lemma 2. (Cebotarev type representation I) Let {ay, },en C opp and {b;, }nen C onp satisfy

following properties:
o i — 2
W{l_fgozl (!Akn,m Akn\/@kn) < 00,
° {Akn/a%n}nel\] c ll.

Then

G(z)=c’ +dzte+ Y A, (Z ! +L), (3.23)

neN — Ok Dhen
where c,d, e are real numbers, Ay, is the residue of G(z) at the point z = ay, and the sum

converges normally on C\U,,¢cy ay,,.

Proof. Let p(z) be the difference of G(z) and the infinite sum on the right hand side of (3.23).
Then, p(z) is an entire function, since the infinite product and the infinite sum share the same set

of poles with equivalent degrees and residues. We represent G,,,(z) as partial sums:

m —1 m

z z 1 1

~Z 1 ~Z 1 = E Ak m _— 1,
e (bzn ) (@kn ) Ly T <Z “an, | akn) i
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where Ay, ., = Res(G, ay,,).
Let (), be the circle with radius b;, centered at the origin. This sequence of circles satisfy

following properties:

* (), omits all the poles ay, .
* Each C,, lies inside C), 4.

* The radius of C),, b;,, diverges to infinity as n goes to infinity.

Then,
1
p(Z) -1 G( ) ZnEN Akn (z ag - m)
max 5 = max 2
2eC, blt 2€Cy blt
1 m ) 1 1
— 2 max i A > .

1 m
= lim -5 max Z(Aknm - Akn);

m—o00 i zeCy ayg,. (Z — CLkn)

S hm by Z |Akn, Akn| b

m—00 b2t CLk |blt — ak |
. 1
= lim Z ‘Akn,m — Akn‘
m—bo0 £~ ag, by, [br, — ar,|

" 1
m—00 Z Ak, |aknbzl b,

A A
< lim C"Z—‘ n 0 bl

m—r0o0
A,

IN

— ap,|

Note that the second inequality is a consequence of

-1 -1
sup (blt‘blt - a’kn’) < <bll ‘bll o akn|) )

teN

which follows from asymptotics of {a, }nen and {b, }nen. Therefore |p(z) — 1| < C”|z|? on the

circle C; for any ¢t € N, where C’ and C” are real numbers. By the maximum modulus theorem
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and the entireness of p(z), we conclude that p(z) is a polynomial of at most second degree. Since
G(0),G’(0) and G"(0) are real numbers, ¢, d, e € R.
O

Using this Cebotarev type representation we prove our result in non-matching index sets case
with Dirichlet-Dirichlet, Neumann-Dirichlet boundary conditions. However, we need extra infor-

mation of an eigenvalue from {b;, },en.

Theorem 23. (Inverse problem II-a) Let ¢ € L'(0,7), and {ax, }nen C 0pp, {b1, }nen C OnND

satisfy following properties:
° 1 — 2
n}}_lfgoz; (|Akn,m Akn|/&kn> < 00,
d {Akn/azn}neN c ll.

Then {an }nen, {bn}nen\{b1, tnemgsy and { i, }nen determine the potential q for any s € N, where
opp = {an}tnen, oOnD = {bn}nen are Dirichlet-Dirichlet and Neumann-Dirichlet spectra and

{¥n}nen are point masses of the spectral measure 109 = Y, - VYnOa,-

Proof. By representation of the m-function as the Herglotz integral of the spectral measure, from
“Yn, We know Res(m,a,). Therefore, in terms of the m-function our claim says that the set of

poles, {a, }nen, the set of zeros except the index set {l,, }nemgsy, {01, } U {bn fnemye, and the

}nEN’
residues with the index set {k;, }nen, { Res(m, ay, ) }nen determine the m-function uniquely.

From Lemma 1, the Weyl m-function can be represented in terms of opp and o p,

Note that for any n € N, we know

—1
Res(m, ay, ) = C(bg, — akn)zk” H (ak” — 1) (akf - 1) : (3.24)

kn jeN, j2kn
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Let m(z) = F(2)G(z), where F' and G are two infinite products defined as

~1
z z
e )0 G
nEN\{ln}neN nEN\{kn}nGN
Also note that F'(ay, ) is known for any n € N. This condition and (3.24) imply that for any n € N,
we know

Res(m, ay,,
Res(G,ay,) = —F((ak )k )

By Lemma 2, GG(z) has the following representation

1 1
G(z)=c"+dz+e+ Y Ay (Z + —) (3.25)

—a a
neN kn ken

where Ay, = Res(G, ay, ). In order to show uniqueness of G(z), let us consider G/(z) similar to

the proof of Theorem 22, i.e. G (z) has the following properties.

« The infinite product G(z) is defined as

where C' > 0, the set of poles {ax, }nen satisfies asymptotics (3.5) and the set of zeros
{gln }nen satisfies asymptotics (3.6). For the given eigenvalues from onp = {by, }ren, let En

be defined as b,,, i.e. Ej := b, for j € N\{,, },en. Similarly let a; := a; for j € N\{k, },.en.

* GG(z) and G (z) share same set of poles with equivalent residues at the corresponding poles,

i.e. ay, = ay, and Res(G, ay,) = Res(G, ay,) for any n € N.
* G(z) and G(z) share one zero, namely b, = by,.

« By the equivalence of poles and residues of G(z) and G(z) and Lemma 2, G(z) has the
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representation

é(z):EzQ+c7z+’é+ZAkn( ! —i>, (3.26)

a —Z a
neN kn kn

where ¢, 07, ecR.

Let m € N\{s} and b;,, # b, Since G (b,,) = 0 and G(b,, ) = 0, using representations (3.25)
and (3.26) we get

1 1
—cb}, —db,, —e=Y_ Ay, (— — —) , (3.27)

ar. — b a
neN kn lm k

o 1 1
—eb}, —db,, —e=)_ Ay, <— — —) and (3.28)

neN ag, — blm g,

G(b,) = Gby,,) — G(by,,) = (c— b+ (d—d)by,, +e—é (3.29)

Taking difference of (3.27) and (3.28) and replacing e — € by G(by,,) — (c — &)b? — (d — d)b;,, we

get

- - - by, — b
by —cbi +dby, —db,, +G(b,,) =Y A, Zm_ m
Z (Gkn - blm)(akn - bzm)

Dividing both sides by b, (b, — b;,.) we get

—C(blm + i)lm) n —_d " G(glm) _ Akn
bi,. b, b, (b, —bi,) S \bu.(ak, — by, )(ar, —bi,)

(3.30)

Note that since {a, },cn satisfies asymptotics (3.5) and {b, } en, {gn}neN satisfy asymptotics

(3.6), the inequalities

b, (e, — b, ) (@, — 00,) |70 < [on, (an, — i) (an, — bi,)| 7t < 2/a2,

are valid for any m € N\{s} and for sufficiently large n € N. Recall thatgkj 1= by, it kj & {ln}nen.

In addition, ) A,/ azn is absolutely convergent. Therefore right hand side of (3.30) converges
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to 0 as m goes to co. Also note that by (3.29), left hand side of (3.30) is

—c(by, +bi,,) —d L Gl) b, + b, ) —d . G(b,) — G(by,,)
b, by, (b, — by, b, by, (b, — b,
—c(b,, +b,)—d 1 —
_ b, +b,)—d (c— &y, +d—d+ = ‘
b, b, — by, I

Let us observe that

lim _C<blm j_ blm> —d = —2c.

m—00 bl
m

Now let us show l;lm — b, converges to 0 as m goes to co. Recall that poles of G and G satisfy

asymptotics

1 [ 1 [ ~
k2 + ;/ q(z)dx + oy, and k2 + }/ q(z)dx + ay,
0 0

respectively, where a,, = o(1) and &,, = o(1) as n — oo. Equivalance of poles of G and G imply

equivalence of fo x)dx and fo x)dx. Therefore b;,, and bzm satisfy asymptotics
NN 1 (" NN 1" ~
lm— =) +—= [ qlx)dz+ B, and lm— =) += [ qlx)dz+ By,
2 ™ Jo 2 ™ Jo
where 3, = o(1) and f3,, = o(1) as m — co. Hence by, — b, = o(1) as m goes to co. Therefore

left hand side of (3.30) goesto coif c —¢ # O ord — d # 0, so we get a contradiction unless ¢ = ¢
and d = d. This implies that G(z) — G(z) is a real constant. However, G(z) and G(z) share the
zero by_. This implies uniqueness of G(z) and hence uniqueness of {b;, } ,en. After unique recovery

of the two spectra opp and oy p, the potential is uniquely determined by Borg’s theorem. 0

We also get the uniqueness result without knowing any point from {b;, },cn, but this requires
absolute convergence of [ [ ax, /bi,. By absolute convergence of [ [, . @, /b, we mean abso-
lute convergence of )« (ay, /b;, —1). Note that Limit Comparison Test implies that [ [ . ax, /b,

is absolutely convergent if and only if [, .y i, /ax, is absolutely convergent. Absolute conver-

gence of HneN ax, /bi, also implies the two conditions in Lemma 2, so in this case Lemma 2 can
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be written in the following form.

Lemma 3. (Cebotarev type representation IT) Let {ag, }nen C opp and {by, }nen C onp such

that [ ], c(ax, /b,) is absolutely convergent. Then

1 1
G(z):czz+dz+6+ZAkn( —i——),

Z—Qa a
neN ken ki

where c,d, e are real numbers, Ay, is the residue of G(z) at the point z = ay, and the sum

converges normally on C\U,,cy ay,,.

Proof. We will show that absolute convergence of ], _y(ax, /b, ) implies the two conditions in
Lemma 2, but first we begin by showing that absolute convergence of [[, _x(ax,/bi,) implies

{1/(ar, — bi,)}nen € 1. Since [, cn(ax, /by, ) is absolutely convergent,

k= (In _1/2)2+04kn Bi,,
| (1, — 1/2)2 + (1/7) [T q(a)dz + B,

akn — bln

D

neN

< 00,

ln

ie. {(k2 —12+1,)/2},en € ' Note that lim,, ., ag, /b, = 1 implies lim,, . k,/l, = 1.

Therefore

—l2 I,
oo>z +
neN
Zk ol [ Koy = b+ L) (ko + 1)
= ln
neN
—1, +l kp + 1, = |1/4
ol 1) § (14
n=N-+1 n
S 1
=Z G I
neN

where N € Nand ¢; > 0, i.e. {1/l,},en € [* and by Limit Comparison Test {1/k, },en € I*.
Therefore {1/(ax, — by, ) tnen € I, since 1/|ay, — by, | < 1/]ax, — by, | = O(1/k,) as n goes to

Q.
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The partial product Gy defined in the beginning of Section 3.3.2 can be represented as

N N

Ak, N Qg
Gy(z) = — 4 -
N( ) ; Z — akn 7!_[1 bln
and hence
al Ap, N al Qg Clk:

Since {1/ay, }nen € I, existence of this limit implies limpy o, 22721 | A, v/ az, | exists.

Now we are ready to prove the first assumption in Lemma 2, i.e.

N
lim (\Ak Akny/ain)@o.

N—o0
n=1

For n < N, let us define

oo
akm akn — blm
O |

b, ar —a
m=N41 tm “kn Ko,

A, v — A A 1
| kit bl _ ‘ ( kN) (akn b, - P, ]) (—) ' (3.32)
akn ag, Ak, ar, — bln

Using (3.31), absoulte convergence of [ [, . (ax, /b;, ) and hence absolute convergence of

Then

> nenl(@r, — bi,)/ar,] we get that the limits

N4, N b,

. . ayg
lim g —N and  lim g _
N—oo 7 N—oo 7 ag
n—

1— Py, N]) converge.
Aky, n

Recall that we have also showed {1/(ax, — by,)}nen € I'. Therefore by (3.32) we get the first

assumption in Lemma 2,

lim Z |Aan Akn’
N—oo ak
n

After recalling that we showed existence of limy oo S0, |As, v/ a; |, we get the second as-
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sumption in Lemma 2, i.e. {Ay,/a; }nen € 1! as follows:

N N N
- | Ay, | - | Ay, — Ak, N . | A, N
lim E — < lim E —r 7+ lim E —— < 0.
! — a2 - N1—>oo — a%n N—oo — a,%n

N—oo kn

Now using Lemma 2 we get the desired result. [

Theorem 24. (Inverse problem II-b) Let ¢ € L'(0,7) and {ay,}nen C opp, {b1, }nen C
onp such that 1], (ax, /bi,) is absolutely convergent. Then {ay}nen, {bntnen\bi, }nen and
{Vk,, }nen determine the potential q, where opp = {a,}tnen, oOnD = {bn}tnen are Dirichlet-

Dirichlet and Neumann-Dirichlet spectra and {, },en are point masses of the spectral measure

Ho,0 = ZnEN ")/néan_

Proof. One can use Lemma 3 and follow the proof of Theorem 23 until the last step, i.e. showing
uniqueness of the two spectra after obtaining that G(z) — G(z) is a real constant, so let us show
G(z) — G(z) = 0. The main differences in this case are that G and G do not share any zero and the
infinite products ], y(ax,/bi,) and T, -(ax,/ b, ) are absolutely convergent. Let us recall that

the infinite products GG and G have the following representations:

neN 2T Ak O
~ ~ 1 1
G(z):czz+dz—C+ZAkn( +—>.
neN Z T ey Ak

Therefore by taking difference of G(z) and G(z) we get G(2) + C = G(z) + C, i.e.
z z - ~ z z -
-C ——1 — —1 +C=-C ——1 — =1 +C. 3.33
H (bln ) (a‘k'n ) g <bln ) (akn ) ( )

Note that since the infinite products [ [, . (ax, /b1, ), [ 1,en(ak,./ b, ) are absolutely convergent and
the two spectra {a, } nen, {bn }nen lie on the positive real line, the infinite products on the two sides

of (3.33) are uniformly convergent on the second quadrant. Hence by letting 2 go to infinity on the
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second quadrant we get

_CHb =

neN In nGN

(3.34)

Recall that [T, by, /by, is finite, since

Z|bln—bzn Z’Bln ﬁln <max|ﬁl —BZ|Z—<OO-

neN neN neN In

Therefore the infinite product H(z) := G(z)/G(z) is represented as

G(Z) C z — bln Bln . C Bln z — bln
C H bln Zz — Bln B 6

2 —
neN in pen # bi,

We know that G and G share same poles with equivalent residues at the corresponding poles.

Therefore for any m € N

1= H(ay,) = H by, H Lo : Zi (3.35)

nEN In

Now let us find the limit of the infinite product on the right end of (3.35) as m goes to co. This
infinite product is uniformly convergent if and only if the infinite sum
~b b, — b
3 (—akm - 1) =) (3.36)
- bl ne 77L bln
is uniformly convergent. Note that asymptotics of the two spectra imply l;lj — b, = o(l) as j

goes to infinity. Then the asymptotics of {ax, }nen, {bi, }nen and {Eln}neN together with absolute

convergence of the infinite products [ [, .y (ax, /bi,)s [ 1en(ak,/ b, ) imply that

bzn
ag,, — bl

bzn
ag,, — bl

’n

D

neN

<)

< 00, (3.37)

since {1/(ax, — by, )Inen € [' as we discussed in the proof of Lemma 3. Therefore by letting
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m go to oo in (3.35) we get C/C = [Tien Blj/bl].. If we define v := [],cy @k, /b, and 7 =
[L.en akn/gln, we get 5/0 = ~/7. This identity and (3.34) imply %—:1 = % and hence v = 7.
Therefore C = C. This implies uniqueness of G/(z) and hence uniqueness of {bi, }nen. After
unique recovery of the two spectra opp and oy p, the potential is uniquely determined by Borg’s

theorem. L

3.3.3  General boundary conditions

As discussed in Section 3.1, the Weyl m-function for the Schrédinger equation

Lu=—u"+qu = zu (3.38)

with boundary conditions
u(0) cosa — u/'(0) sinaw = 0 (3.39)
u(m) cos B+ u'(m)sin B = 0, (3.40)

cos(a)u’,(0) + sin(a)u,(0)
— sin(a)ul,(0) + cos(a)u,(0)
fying (3.40) and «, 8 € [0, 7). In order to prove our result with boundary conditions (3.39) and

is defined as m, g(2) = , where u(t) is a solution of (3.38) satis-

(3.40) we need to consider more general m-functions. Recall that we have defined the m-function

in Section 3.1 by introducing two solutions s, (¢) and ¢, (t) of (3.38) satisfying the initial conditions

5.(0) = sin(«), s,(0) = cos(a)

c.(0) = cos(a), ¢.(0) = —sin(«)

and u,(t), a solution of (3.38) with boundary conditions u,(7) = sin g, u_(7) = —cos 3. The
same steps to define the m-function as in Section 3.1 can be followed if ¢, () is a linearly indepen-

dent solution with W (c,, s,) = 1. Therefore we introduce two solutions s, (t) and c,(t) of (3.38)
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satisfying the initial conditions

5.(0) = sin(az), .(0) = cos(ay)

sin(ay ) cos(a)

¢.(0) =

 sin(ag — ap)

c.(0) =

 sin(og — )’

for ay, an € [0, 7), sin(a; — a2) # 0 and same ., (¢). Then we can define the m-function m, o, 4.

Definition 16. The m-function m,, ., s is defined as

1 —sin(aq)u’,(0) + cos(aq)u,(0)

mm,azﬂ(z) = sin(ag — ) | — sin(ag)u’(0) + cos(az)u,(0) 7

where ay, ag, f € [0,7), sin(as — a1) # 0 and u,(t) is a solution of (3.38) with boundary condi-

tions u, () = sin 3, u(7) = — cos 5.

Remark 3. The m-function m,, g we discussed in Section 3.1 is obtained by letting o, = o« — /2

and cy = @, i.e. Moz 0,6(2) = Ma,p(2).

The m-function m,, «, 3(2) is a meromorphic Herglotz function having real zeros on o, 3 and
real poles on o, g, which are interlacing. It is a meromorphic Herglotz function, since mg g(z) =
u’,(0)/u.(0) is a meromorphic Herglotz function and sgn[Im(ma,.a, (%)) = sgn[Im(mg s(z))].

Therefore Herglotz representation theorem implies

1 t
mal,az,ﬁ(z) =az+b +/ |:lf — - m] dMa1,a2,5(t)>

where a,b0 € R and jiq, 4,5 15 a positive discrete Poisson-summable measure supported on the
spectrum o, g. Let us call /i, 4, s the spectral measure corresponding to (o, as, 5). Now we

prove our results with general boundary conditions.

Theorem 25. (Inverse problem I-b) Let ¢ € L'(0,7), A C N, sin(ay — ay) # 0 and oy, e, 3 €

[0, 7). Then {an }nen, {bn}nema and {7V, }nea determine the potential q, where 04, 5 = {ap }nen,
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Oar.p = {bn }fnen are two spectra and {~, } nen are point masses of the spectral measure [io, o, 5 =

ZnGN 7"6“71'

Proof. Wlog let a,, and b,, be positive for all n € N. We follow the arguments we used in the
proofs of Lemma 1 and Theorem 22, but there are two differences: asymptotics of the two spectra,
depending on a1, oy, 3 and hence the order relation betweeen a,, and b,,. Thus, we consider the

following cases.

(i)al#O,ag#O,a1>a2:

When 3 # 0, the two spectra 04, 5 = {an}tneny and 04, 5 = {by, }nen satisfy the asymptotics
(3.4) and hence a,, > b, for all n € N. Therefore using the proof of Lemma 1, m,, ., (%) can be
represented as (3.10). Using this representation and Cebotarev’s theorem as we discussed in the

proof of Theorem 22, the meromorphic Herglotz function G(z) defined as

G(z):=—C] (% - 1) (ain - 1) B (3.41)

has the following representation:

G(z):dz+e—|—2An <z—1a —|—ai>.

neA

Only unknown constants on the right hand side are d and e. In order to show uniqueness of the

linear term dz + e, let us introduce G (z) as we did in the proof of Theorem 22:
* The infinite product G is defined as
~ ~ z z -
el ()
neA n
where C' > 0, the set of poles {@, }nca and the set of zeros {b, }nca satisfy asymptotics

(3.4). Let Gy := ay, and by := by for k € N\A.
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e G and G share same set of poles with equivalent residues at the corresponding poles, i.e.

ar = ay, and Res(G, ay) = Res(G, ay,) for any k € A.

* By the equivalence of poles and residues of G and G and Cebotarev’s theorem, (7 (z) has the

representation

~ ~ 1 1
G(z):dz+’é+ZAn< +—),
ned Z — Qp Qp,

where 52 0,e€R.

Therefore the difference of G and G is a linear polynomial, i.e.
G(z)—G(z)=(d—d)z+e—¢€ (3.42)

Note that since {a, }nen, {bn}nen and {Bn}neN are subsets of (0, 00) and satisfy asymptotics

(3.4), for any = € (—o0,0) we get

L))

n— bn 1
ZAab SMZﬁa
ne

for some M < oo, since asymptotics (3.4) imply |a,, — b,| < M for some M; < oo independent

of n and a,, = n? + o(n?), b, = n* 4+ o(n?) as n goes to infinity. Therefore

< 00,

lim |(d—d)z+e—2 = lim |G(2) - G(a)| =

T—r—00 T—r—00

A, ~ ap,
OHb——OEZ—n

neA "

so we get a contradiction unless d = d. This implies that G(z) — G/(z) is a real constant, which is
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G(0) — G (0) = C — C. In order to show C' = C, we follow exactly the same arguments used in
the proof of Theorem 22.

This gives uniqueness of G(z) and hence uniqueness of {b,, },c4. After unique recovery of the
two spectra 0,, g and o,, g, Levinson’s theorem uniquely determines the potential.

When § = 0, one can apply same arguments. The only difference appears in asymptotics of

T8 = {@n }nen and 04, 5 = {by, fnen, Which does not affect the result.

(i) a; #0, a0 =0,8=0:

The two spectra 0, 3 = {an }neny and 04, g = {by, }nen satisfy the asymptotics (3.5) and (3.6)

respectively. One then obtains the result by following the proofs of Lemma 1 and Theorem 22.

(i) oy £0, a5 =0, 8#£0:

The two spectra 0, 3 = {@n }nen and o4, g5 = {by }nen satisfy the asymptotics (3.7) and (3.4)

respectively, which is similar to the previous case.

(iV)ag 0,0 0,1 < agora; =0, #0,8#0ora; =0, #0,5=0:

In all of these three cases, a,, < b, for all n € N. Therefore using the proof of Lemma 1,

May ay,5(%) can be represented as

Marans(2) = C ] (i - 1) (ain - 1)_1 .

In order to represent GG(z) as (3.41), an extra factor is required, so we shift indices of b,, up by one
inside A and let b; be a positive real number less than a;, assuming wlog 1 € A. Then %G (2)
can be represented as (3.41). Using this representation and Cebotarev’s theorem, the meromorphic

Herglotz function %G (z) has the following representation:

Z—bl . 1 1
< h )G(z)-az—l—b—i—ZAn (an—z_an>'

neA
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Therefore if we introduce G/(z) similar to the previous cases, then %G (z) and %CN} (z) share the
same set of poles {a, }nca with the same residues {—A,, },c4 and have the sets of zeros {b, },ca
and {b;} U {by bne A1} respectively, so the difference of %G’ (z) and %é (z) is a linear polyno-
mial with real coefficients and hence G(z)—G(z) is a real constant, which is G(0)—G(0) = C—C.
In order to show C' = C, we follow exactly the same arguments used in the proof of Theorem 22.
This implies uniqueness of GG(z) and hence uniqueness of {b, },c4. After unique recovery of

the two spectra o,, 3 and 0,, 3, Levinson’s theorem uniquely determines the potential. [

Remark 4. Theorem 25 gives Marchenko’s theorem with the m-function my, o, g as a corollary if

we let A = N. By letting A = (), we get the statement of Levinson’s theorem.

For the non-matching index sets case, let us recall the definitions of Ay, ,, and Ay, :

o ke T G Ok, — by
Aknym = (akn - bkn) H ’

b b ar. — ap.
tn j=Lj#n b ke T Ok

a > Q. Qf bl
. kn | I i ke T YL
Ak = (akn — bkn) —_— .

" b b ar. — ai.
I j=Lign 13 Tkn T Ok

We can prove Theorem 23 and Theorem 24 with general boundary conditions following the
same proofs. However, if boundary conditions a;; and a are nonzero, then we need that eventually

the two index sets {k,, },en and {/, },en have no common element.

Theorem 26. (Inverse problem II-c) Let ¢ € L'(0, ), sin(ag — 1) # 0, oy, an, 8 € [0,7) and

{akn }nEN C Oay,p {bln }nGN C Oay,8 satisfy following properties:
m
¢ tim Y (i - Anl/ed,) < .
n=1

(i) If o = 0 or ag = 0, then {an}nen, {bn}nenMbi, fnemisy and {Vi, fnen determine the
potential q for any s € N, where 04, 53 = {an }nen, Oy 5 = {bn}nen are two spectra and {7, } nen

are point masses of the spectral measure |1y, o, 3 = ZneN YnOa,, -
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(ii) If a1 # 0, ap # 0 and there exists N € N such that k,, # 1, for all n > N, then
{an}nens {bn}nenMbi, fnemgsy and {7y, tnen determine the potential q for any s € N, where

Tas.8 = {ntnen, Oay,8 = {bn}nen are two spectra and {v, }nen are point masses of the spectral

Measure [lo, a8 = Y nen YnOan-

Proof. In the proof of Theorem 23 we used the inequalities (3.19), namely

(b, (k= i) (g, — 01, )70 < [br (@, — i) (an, — by,)|™F < 2/a3, .

If oy = 0 or ay = 0, these inequalities are still valid for any m € N\{s} and for sufficiently
large n € N. Recall that gkj 1= by, if kj & {ln}nen.
If a1 # 0, ay # 0 and there exists N € N such that k,, # [,, for all n > N, we modify these

inequalities as follows:

(b1, (ar, — i) (an, — i, )| ™0 < [brra(ar, — D) (@, — Orsy)| 74 < 2/a

which are valid for any m € N\{s} and for sufficiently large n € N.

After getting these inequalities we apply proofs of Lemma 2 and Theorem 23 with the m-
function Mg, 4, 5 and the spectral measure /i, o, 3 and obtain uniqueness of {b;, },en. Even
though asymptotics of the spectra may be different than Dirichlet-Dirichlet, Neumann-Dirichlet
case, the same arguments can be used. After unique recovery of the two spectra o,, g and o, s,
Levinson’s theorem uniquely determines the potential.

]

Theorem 27. (Inverse problem II-d) Let ¢ € L*(0,7), sin(ag — a1) # 0, a1, a9, 8 € [0, 7) and

[L.cx @k, /bi, be absolutely convergent, where {a, }nen C Tay,p {01, fnen C Oay 8-

(i) If a1 = 0 or ay = 0, then {ay }nen, {bntnenMb, tnen and {7k, }nen determine the potential

q, where 04, 5 = {an }nen, Oay 3 = {bn}nen are two spectra and {v, }nen are point masses of the
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spectral measure flo, 0, 3 = Y e YnOan-

(ii) If oy # 0, as # 0 and there exists N € N such that k,, # [, for all n > N, then
{an}tnen, {bn}nenMbu, tnen and {vi, }nen determine the potential q, where 0., 5 = {an}nen,
T8 = {bn}nen are two spectra and {7, }nen are point masses of the spectral measure [iq, o, 5 =

ZnEN ﬁyn(san'

Proof. If a; = 0 or as = 0, we follow the proofs of Lemma 3 and Theorem 24 with the m-function
May ay,5 and the spectral measure i, o, 5 and obtain uniqueness of {b;, },en. After unique recov-
ery of the two spectra 0,, g and o, 3, Levinson’s theorem uniquely determines the potential.

If a1 # 0, as # 0 and there exists N € N such that k,, # [, for all n > N, then the only
difference appears in showing {1/(ay, — by, }nen € I', so let us show that absolute convergence of
I1,en(ar, /be,) implies {1/(ay, — by, )}nen € I*. Since [],cy(ax, /bi,) is absolutely convergent,

(kn = 1)% = (In —1>2+’71+Oékn—5ln
(lp —1)2+ v + (2/m) fo x)dx + 3,

akn — bl

by

< o0,

D

neN

23

n

ie. {(k2 — 12 — 2k, + 21,)/I2}en € M. Here v; = 2[cot(ag) — cot(ay)]/m, v = 2[cot(B) +
cot(ay )] /m and wlog we assume /3 # 0. Note that lim,, ., a, /b, = 1 implies lim,, o, k,, /1, = 1.

Therefore

—12—2k — 1,
o= [H 2 =1
neN
Zk: +1,—2 |k, — 1,
N l
neN
s L
In
n=N+1
1
> o
neN

where N € Nand ¢; > 0, s0 {1/, }nen € ' and hence by Limit Comparison Test {1/k, }.en € I*.
Therefore {1/(ax, — by,) }nen € I}, since forn > N, 1/|ag, — b, | < 1/]ag, — by, 1] = O(1/k,,)

as n goes to co. Now we apply proofs of Lemma 3 and Theorem 24 with the m-function mg, o, g
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and the spectral measure /i, o, s and obtain uniqueness of {b;, },en. After unique recovery of the

two spectra 0, 3 and o, g, Levinson’s theorem uniquely determines the potential.
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4. INVERSE SPECTRAL THEORY OF JACOBI OPERATORS*

4.1 Semi-infinite Jacobi matrices

In this section we closely follow [67].

We consider the difference expression 7 : [(N) — [(N)

(Tf)n = bn—lfn—l + anfn + bnfn—l—l; nc N\{]-} (41)

(T :=arfi +bifs 4.2)

where a,, € R, b, > 0 for all n» € N and [(N) is the set of complex valued sequences indexed by

natural numbers. The difference expression 7 is represented as the tridiagonal matrix

aq b1 0 0 0
bl (05} b2 0
0 bg as b3 (43)
0 0 b3 ay
0
with respect to the canonical basis of /*(N).
Let c,,s, € [(N) be two fundamental solutions of the Jacobi difference equation
TU = 2U u € l(N), z € C, 4.4)

satisfying the initial conditions

“Submitted for publication [41].
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Since c and s are linearly independent, we write any solution u of (4.4) as a linear combination of

these two solutions

s(n), 4.5)

where IV is the Wronskian given by

Wa(f,9) = a(n)(f(n)g(n +1) = g(n)f(n +1)).

Note that the Wronskian of two solutions of (4.4) with the same z is constant, so the coefficients
of c and s in (4.5) are constant.

If {a, }nen and {b,, },cn are bounded, then the Jacobi operator J : [?(N) — [*(N) is defined
as Jf = 7f. However without the boundedness condition on {a, },en or {b, }nen, the operator
J is no longer defined on all of /*(N). Here one needs to introduce the minimal and maximal

operators associated with 7 as

min © D(Jmin) — 2(N), Imaz © D(Jmaz) — 2(N)

fe=rf f=7f

where D(Jin) = coo(N) and D(Jpnae) = {f € I*(N) | 7f € I>(N)}. Green’s formula implies that
J*

min

= Jmae and

*
Jmax

max

f=7f

) = I*(N)
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where D(J%,.) = {f € Jmaz | limpoo Wi (F.9) =0, g € Jias} ([67], Section 2.6).

In order to discuss self-adjoint extensions of the minimal operator we use limit point and limit
circle classifications of 7. The difference expression 7 is called limit point (I.p.) if s,, ¢ (*(N) for
some zo € C\R and limit circle (/.c.) otherwise.

The maximal operator ./, is self-adjoint if and only if 7 is [.p. ([67], Lemma 2.16). Therefore
in the limit point case J,,,4, 1S a self adjoint extension of the minimal Jacobi operator J,,;,,.

If 7 is limit circle, we define the set of boundary conditions at co as
BC(1) = {v € D(Jmaz) | lim W, (v,v) =0, lim W, (v, f) # 0 for some f € D(Jnaz)}-
n—oo n—oo
Then for any v € BC(7), the operator

Jy: D(v) — *(N)

f=7f

is a self-adjoint extension of J,,;,, where D(v) = {f € D(Jpnae) | lim Wy, (v, f) = 0} ([67],
n—oo

Theorem 2.18). We parametrize self-adjoint extensions of .J,,,;,, in the limit circle case by defining
va(n) = cos(a)cg(n) + sin(a)so(n), a € [0,m)

and observing that different values of « give different extensions. Then all self-adjoint extensions
of Jin correspond to some v, with unique o € [0,7) ([67], Lemma 2.20). Therefore in the
limit circle case, following [62] we define J(g) := J, for ¢ € R U {oco}, where ¢ = cot(«)
and o« € [0, 7). In the limit point case, i.e. if J,.;, is self-adjoint, we let J(g) := Jyun, for all
g € RU{oc}.

If 7is l.c., i.e. Jin # J)fum. then the spectrum of J(g), denoted by o(.J(g)), is discrete ([67],

in>

Lemma 2.19). We assume J(g) has a discrete spectrum, which is a restriction in the limit point

case. Note that since the essential spectrum of a bounded Jacobi operator is always nonempty,
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discreteness of o(J(g)) implies unboundedness of .J(g) ([67], Section 3.2).
We define the self-adjoint operator .J,(g) by Ji(g) := J(g) — h{-,e1)e; for h € R, where
{€n }nen is the canonical basis in [?(N). It is the rank-one perturbation of J(g) by h. If we consider

the operator J (3, g) defined by the difference expression

(%f)n = bn—lfn—l + anfn + bnfn—i—la neN

with the boundary condition

flCOSB—’—f()Sin/B:O, 66(0771-)’

then J,(g) = J(B,g) for h = cot 5. Hence h can be seen as a boundary condition. Note that

discreteness of o(J(g)) implies discreteness of o(J,(g)) for any h € R. Moreover, a(J5,(g)) N
O'(JhQ(g)) = @ if hl 7é hg.

Definition 17. The Weyl m-function of .J,(g) is defined as my, (2, g) := (ey, (Jo(g) — 2)'e1).

Weyl m-function is a meromorphic Herglotz function ([67], Section 2.1). By Neumann expan-

sion for the resolvent
_ 1 _
(Jn(g) —2)"' = — R Z_N(Jh(g))N<Jh(g) -2

where z € C\o(J,,(g)) we get the following asymptotics of my,(z, g):

1 al—h (al—h)2+b%+

mn(z,) = = - o

O(z ™), (4.6)

23

as z — oo forImz > ¢, € > 0 ([67], Section 6.1).
Since the m-function my,(z, g) is Herglotz, if A is an isolated eigenvalue of J;(g), then my(z, g)

has a simple pole at z = X ([67], Section 2.2).
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Definition 18. The norming constant corresponding to the eigenvalue \; of J,(g) is defined as

m(h) = (Z !uxk(n)\2> :

neN

where u, € [?(N) solves (4.4).

The residue of my,(z, g) at the pole A is given by —x(h) ([67], p.214).
One finds a detailed discussion of the spectral theory of Jacobi operators in [67], which we

have followed so far.
4.2 Inverse spectral problems with mixed data
4.2.1 Matching index sets

We follow the enumeration introduced in [62] to enumerate the sequences of eigenvalues. Let
{An}nenr and {v, }rens be a pair of discrete, interlacing, infinite real sequences and M C Z. Then

A < Vp < A\paq forall m € M, where

If inf,,cpr Ay = —o0 and sup,,cp; Ap = 00, then M :=Z and v_; < 0 < Ay

If 0 < sup,epr An < 00, then M = {n};m*  np., > land vy <0 < ;.

If sup,,cps A < 0, then M = {n}"__ .

If inf,cps v, > 0, then M := {n}>2 .

If —oo < infren v <O0,then M = {n}32, Ny < —landvo; <0 < Ay

Silva and Weder gave a characterization of two spectra of J(g) corresponding to different

boundary conditions, if J(g) has a discrete spectrum.

Theorem 28. (/62] Theorem 3.4) (Characterization of two spectra) Given h; € R and two
infinite discrete sequences of real numbers {\, }nenr and {vy, }nens, there is a unique real number
hy > hy, a unique operator J(g), and if Jyin # J}., also a unique g € R U {400}, such

in
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that {vy }nenr = 0(Jn, (9)) and { N\, nenr = 0(Jn,(9)) if and only if the following conditions are

satisfied.

1. {\n}nenr and {vy, }nenr interlace and, if {\, }nen is bounded from below,

ggﬁ{yn}neM > gélﬁ{/\n}nGM7

while if {\,}nens is bounded from above,

Elne%\z[{{yn}neM > gle%‘}{{/\n}neM

2. The following series converges

A= Z Y < 00, 4.7

neM

Vp — )\ .
where 7, :== v, — \,. By condition (4.7) the product H 3 )\k is convergent, so we
neM n#k n 2k
can define
ol Ve I1 Vn = M Vk e M (4.8)
koo A A — A ' '
neM,n#k
2m
3. The sequence {7, }nen is such that, form = 0,1,2, ..., the series Z " converges.
neM n
18]

4. If a sequence of complex numbers {3, }nens is such that the series Z
neM

converges and
n

Ay
form =0,1,2,..., Zﬁ—"zo, then 3,, = 0 for alln € M.

T
neM n

Silva and Weder also proved that the spectral data consisting of two discrete spectra and one of

the boundary conditions uniquely determine the operator J(g) and the other boundary condition.

Theorem 29. ([62] Theorem 3.3) (Two-spectra theorem) Let J(g) be a Jacobi operator with
discrete spectrum, hi,hy € R, hy # ho, 0(Jp,(9)) = {Antnem and 0(Jn,(9)) = {vVn}tnem- Then
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{Annenrts {Vn}nen and hy(respectively hy) uniquely determine the operator J(g), ho(respectively

hy) and if Jrin # J,,

min’

the boundary condition g at infinity.

Using Theorem 28 and Theorem 29 we prove our main result. The spectral data consists of one
spectrum, a subset of another spectrum, the norming constants of the first spectrum for the missing

part of the second spectrum and the two boundary conditions.

Theorem 30. (Inverse problem IIlI-a) Let J(g) be a Jacobi operator with discrete spectrum,

(I (9) = {Atnerss 0(Jny(9)) = {Vntnenr and A C M. Then {\, }nens, {Vnfnerna,
{Vn(h1) }nea, h1 and hs uniquely determine the operator J(g), and if Jyin, # J)%, the boundary

condition g at infinity, where {~,,(h1) }nerr are norming constants corresponding to Jy,(g).

Proof. The Weyl m-function my,, can be represented in terms of my,. Indeed, by the second

resolvent identity and the definition of the Weyl m-function

M, (2,9) — My (2,9) = ((Tn, — Thy)er, ex)

= ((Tho) (71 = h2) (-, e1))(Thy Jer, )
(
(

(hi — ho){Th €1, €1)Thye1,€1)

where T}, = (J;,(g) — 2I)~*. Therefore

_ M, (27 g)
mp,(z,9) = 1= U= h)mn(ong)" 4.9)

m0(27 g)
1 - hmo(Z, g)
eigenvalues of J,(g), given by the zeros of 1 — hmy(z, g) for any h € R. Hence

Since J(g) has discrete spectrum and my(z,g) = , the poles of my(z,g) are the

mp, (2, 9) 1= hamo(z, g)

= 4.10
th(ng) 1 _hlmO(zag) ( )

F(z,9) =

is a meromorphic function such that the zeros of F' are the eigenvalues of .J;,,(¢g) and the poles of
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F are the eigenvalues of .Jj,, (¢). Moreover if h; — hy > 0, then F' is a Herglotz function, since mq

is a Herglotz function and
-1

F<Z7g> =1+ h1 —1 ’
h1—ho + [h1—h2]mo(z,9)

Let us assume hy; > hy. We consider the case hy < hs at the end of the proof, which will require
minor changes. Since F'is a meromorphic Herglotz function, by the infinite product representation
of meromorphic Herglotz functions ([51], Theorem VII.1.1) and using the enumeration introduced

above, F' can be represented as

-1
Z — Y z z
F(z,g):C’Z_)\Z 1T <1—V—n) (1_A_n> , O >0 (4.11)

Recalling (4.7) and interlacing property of the two spectra {\, },,ens and {v, },er, One gets

A:Z|Vn—)\n|<oo,

neM
and hence
Vp
0< — < 0.
II
neM,n#0
Therefore

I F(z,9) I z—1 H L2 |2 -
z%o;,rI?nZZG C - z%og,rl?nzze z — )\0 Vp )\n

neM,n#0
Z — Y A Yn = A
= lim )\0 H — H (1—’_; n)
z—00,Imz>e 2 — Ag neMn£0 Vn neM,n#0 noe
- 11 3
v,

neM,n#0

for e > 0. By (4.6), asymptotics of the m-function mg(z, g) implies  lim  my(z,g9) = 0 and

z—00,Imz>e€
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by the definition of F'(z,g), we get  lim  F(z,g) = 1. Therefore C' =[], c5/,,.0 Vn/An and

z—00,Imz>e€

F(z.9) = ] =2 4.12)

zZ—A
neM n

The residue of F at )\, is given in terms of the norming constant (k). Indeed,

—(hy — h)
’Yk:(hl) 7

Res(F, \;) = Res (mh1 : >\k> = Res(1 — (ha — hy)mp,, \p) =

th

since v, ' (h1) = —Res(my,, \y) for any k € M. Recall that A = h; — hy. Therefore

~1 F
i) Res (Z,An> ) (4.13)

i.e. the residues of F'(z, g)/A are known at )\, for each n € A.

At this step we can restate our claim in terms of F’ as the set of poles, {\,, } e, the set of zeros
except the index set A, {v,, }nenna, and the residues with the same index set A, {Res(F/A, \,) bnea
determine F'(z, g) uniquely.

Since {v, — A\ }tnemr € 11, F(2, g) has the representation F' = G'H, where

2 — Up Z —Vp
G(z,g)::Hz_)\ and  H(z,9) = H —

neA neM\A

Note that for any k£ € A, we know

M — M — vy
Res (F/A, M) = 2= ] A:_K. (4.14)

neM,n#k

In addition, for any k£ € A, we also know

H9) = ] (4.15)

neM\A
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Conditions (4.14) and (4.15) imply that for any k € A, we know

Res(F/A, \g)

Res (G/A z = \g) = HOow)

Note that the zeros and the poles of GG are real and interlacing, and hence

0 < arg(G(z,9)) = Z (arg(z —vy) —arg(z—\,)) < =

neA

for any z in the upper half plane, i.e. G(z,g) is a meromorphic Herglotz function. Therefore by

Cebotarev’s theorem, G'/A has the following representation

G(z,9) 1 1
i —az—l—b+ZAn()\n_Z—)\—n), (4.16)

neA

where a > 0 and b € R. Note that A, = —Res(G/A, ax) for any k& € A, which means there are
only two unknowns on the right hand side, namely constants a and b.

On the upper half-plane GG/ A converges to 1/A as z goes to infinity, since

Z|Vn—/\n|§2|i/n—/\n| < o0.

neA neM

Lett € R. Then

+1

A,
b+z(t2+>\2 _A_n>

soa=0andb=1/A+>" _, A,/\,, since lim,_, ., G(it,g) = 1/A. Therefore

at+zt2+)\2

Y

Glz.9) Z+ZA . h2 Z/\ — 2 “.17)

1=

so the right hand side of (4.17) is known. This implies uniqueness of G(z, g) and hence uniqueness

of {v, }nea. After unique recovery of the two spectra o(Jp,, (¢)) and o(J5,(g)), the operator J is
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uniquely determined by Theorem 29.
If hy > hyq, then 1/F(z, g) is Herglotz instead of F'(z, g), so we get the infinite product repre-

sentation

1 zZ— Ay
= . (4.18)
F(z,9) nle_L zZ— Uy

Note that —F'(z, g) is also a meromorphic Herglotz function. Therefore using similar arguments

as hy > hy case, the function G(z, g) definded as

is represented as

1 A,
G(Z,g) - hl_hQ +n€ZAAn—Z7

where A, = —Res(G, A\x) forany k& € A. This implies uniqueness of GG(z, g) and hence uniqueness
of {vy, }nea. After unique recovery of the two spectra o(.Jp,, (¢)) and o(Jx,(g)), the operator .J is

uniquely determined by Theorem 29. [

Corollary 1. (Recovery from m-function) Let h € R and J(g) be a Jacobi operator with discrete
spectrum. Then the m-function my(z, g) (or the corresponding spectral measure) and h uniquely

determine the operator J(g), and if Juin # Ji» the boundary condition g at infinity.

Proof. 1f we let hy := h and hy any real number less than h, then using (4.9) and (4.10) we get

Mp, (Za g)

F(z,9) = (2 0)

=1— (hg — hl)mhl(zag)7

i.e. we know the meromorphic Herglotz function F', since it depends on our spectral data and hs.
Let us observe that our spectral data and h, give the spectral data of Theorem 30 with A = M.

Then by Theorem 30 we get the result. ]

Remark 5. If we let A = () in Theorem 30, we get the statement of the two-spectra theorem,

Theorem 29.
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In our spectral data we can replace h; or hy with any eigenvalue of .J;,(g) from the index set

A.

Theorem 31. (Inverse problem III-b) Let J(g) be a Jacobi operator with discrete spectrum,

o(Jn (9) = { i }nemr, 0(Jny(9)) = {vntnenr and A C M. Then {\, }nenr, {Vn}tneana,

{¥n(h1) }nea, hi (respectively hy) and vy, for some m € A uniquely determine the operator J(g),

hy (respectively hy) and if Jyin # J., the boundary condition g at infinity, where {7, (h1) }nem

n’

are norming constants corresponding to Jp,,(g).

Proof. Following the proof of Theorem 30 we get the infinite sum representation

G(z,9) 1 A, 1 A,
_ 1 _ 4.1
A A+Z>\n—z hl—h2+r;>\n—z’ (4.19)

neA

for the infinite product

Z— Uy
G(z,9) ::Hz—)\ :

neA
Now let us prove uniqueness of G(z, ). Note that we know {\,, }nca, {—An}nea and v,,. Let the

infinite product

~ Z— Uy
G(z,9) = HZ_A

neA
share the same set of poles {\, },,c4 and the same residues {—A,, },c 4 at the corresponding poles
with G(z, g). In addition assume G(z, g) and G(z, g) have the common zero vy, i.e. Uy = Up,.
Let us also assume zeros and poles of G (z, g) satisfy asymptotic properties of Theorem 28. Then

we know that G/(z, ¢) has the infinite sum representation

G(z,9) = % +) An (4.20)

Using representations (4.19) and (4.20), the difference of G(z, g) and G(z, g) is a real constant,

which is zero since G (v, ) = G(Vy, g). This implies uniqueness of G(z, g) and hence unique-

ness of {1, }nca. After unique recovery of the two spectra o(.Jy,, (g)) and o(J,,(g)), the operator
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J 1s uniquely determined by Theorem 29. [l

In the spectral data of Theorem 30 we can also replace hy or he with any norming constant of

Jr, (g) outside the index set A.

Theorem 32. (Inverse problem III-c) Let J(g) be a Jacobi operator with discrete spectrum,

U(‘]/H (g)) = {)‘n}neM, U(th(g)) = {VTL}HEM and A - M. Then {)‘n}nEM’ {Vn}nEM\A’
{Vn(h1) }nea, b1 (respectively hs) and ~,,(hy) for some m € M\A uniquely determine the oper-

ator J(g), hy (respectively hy) and if Jpin # J7.,, the boundary condition g at infinity, where

in’

{Vn(h1) }nenr are norming constants corresponding to Jy, (g).

Proof. Let us define the index set A’ :== AU {m}. Then following the proof of Theorem 30 and

redefining G and H as
z—,
G = -
(2,9) ng/ —
and
z—,
H = =
(z9)= ][] p—
neM\A’
we get
1 A 1 A
G = L = 4.21
(,9) A—i_neZA//\n—Z hl—h2+neZA/)\n—z “4.21)

Now let us prove uniqueness of G(z, g). Note that we know {\,, }ncar, {— Ay fnea and vy, Let

the infinite product

~ Z— Uy
G(z9) =1 P

neA’
share the same set of poles {\,, } ,c 4 and the same residues {—A,, },c 4+ at the corresponding poles
with G(z, g). In addition G(z, g) and G(z, g) have the same zero v, i.e. 7, = v,,. Let us also
assume zeros and poles of G (z, g) satisfy asymptotic properties of Theorem 28. Then we know

that G(z, g) has the infinite sum representation

G(z,9) = % + ) A (4.22)

n
Ay — 2
nea’ ="
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Using representations (4.21) and (4.22), the difference of G(z, g) and G(z, g) is a real constant,
which is zero since G(Vpm, ) = G(vm, g). This implies uniqueness of G(z, g) and hence unique-
ness of {v,, }nca. After unique recovery of the two spectra o(.Jy,, (g)) and o(J5,(g)), the operator

J 1s uniquely determined by Theorem 29. [l

4.2.2 Non-matching index sets

If the known norming constants of .J,, (¢) and unknown eigenvalues of .J,,(g) have different
index sets, one needs some control over eigenvalues of .J;, (¢) corresponding to the known norming
constants and unknown part of the spectrum o(.Jy,(g)). In this case we get a Cebotarev type
representation result. Before the statement, let us clarify the notation we use. For any subsequence
{ e, tnen C o(Jn, (g)) and {v, }nen C 0(Jn,(9)), by Ay, m and Ay, we denote the residues at

Ak, of partial and infinite products, respectively, consisting of these subsequences:

Ny,

Vi

) — UV,
Akn,m = Res(gma )\k‘n) = <)\k" - Vl") H _l]ﬁ,

V.
" 1<j<mjs#n 9 Tn i

A\ e, Ak, — VL
A, :=Res(G, \,) = an (M, — 11,) H %H’

I jeN,j#n
where
i z z -1 P . -1
- = — =1 — =1 , = — =1 — -1 )
Grm2) nl (Vln ) (Akﬂ ) 9(z) g (I/ln ) <)\kn )

Note that these subsequences are ordered according to their indices, i.e. Ag, < g, ., and

n—+1
v, < v, for any n € N. This follows from the fact that the two spectra are both real and
discrete. Also note that if the spectrum o(.J,(g)) is unbounded from both sides, i.e. inf M = —co

and sup M = oo in the enumeration, then {k,}, and {[,}, should be indexed by Z instead of N.

However, wlog we index them by N.

Lemma 4. (Cebotarev type representation ITI) Let { \;, }nen C 0(Jh,(9)), {11, tnen € 0(Jn,(9))

such that
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inf - A
I LCRE

m— 00

- lim Y <]Akmm . Akn|/A,2n) < ocoand
n=1
o (N Fnen € 1L

Then the infinite product

is represented as

Q(z):a22—|—bz—|—c—|—ZAkn( ! + ! ), (4.23)

zZ—A A
neN kn kin

where a,b, c are real numbers, Ay, is the residue of G(z) at the point z = )y, and the product

converges normally on C\U,,en A, .

Proof. Let p(z) be the difference of G(z) and the infinite sum in the right hand side of (4.23).
Then, p(z) is an entire function, since the infinite product and the infinite sum share the same set
of poles with equivalent degrees and residues. We represent partial products of G(z) as partial

sums:

m —1 m
z z 1 1
[[(=—-1)(—-1] =>4 — ) +1

n=1

where Ay, ., is the residue of the partial product at a,,.
If o(Jn(g)) is not bounded above, then let C,, be the circle with radius v, centered at the origin
for v, > 0. If 0(Jx(g)) is bounded above, then let C,, be the circle with radius |1, | centered at the

origin for v;, < 0. This sequence of circles satisfy following properties for sufficiently large n:

* (C, omits all the poles )\ .
* Each C,, lies inside C), .

* The radius of C,, |y, | diverges to infinity as n goes to infinity.
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At this point wlog let us assume 14, > 0 for any n € N. Then,

1 1
p(z) —1] G(2) =1 = X pen Arn (z—)\kn + m)
z t lt z t lt
S A (k) — S A (S )
= max lim 5
z€Ct m—o0 Vlt
I 1 i(A Ap) z
= 11In — max kn,m — kn
Ak (2 = k)

m—00 Vlt 2€Cy

m
m—o0 £ Vi Ak Ve — M

n |

A, — A
SC/ lim ZH”’)\% < 00,
n=1

m—0o0 kn
where C” € R is independent of n and m. The last line follows from

1
Vi Ak (V1 — Ak

max
teN

1 1
< max ,
- {|Vzl>\kn()\kn — V)| Yk M (Vi yy — Akn)|}

1 1 1
= max , <0 —.
{ ‘l/h Akn<)\kn - Vl1)| |(/\/€n+1 + ﬂykn+l))\kn()\kn+1 + Vensr — )\kn)‘ } )\zn

Therefore |p(z) — 1| < C|z|* on the circle C; for any ¢ € N, where C'is a positive real number. By
the maximum modulus theorem and the entireness of p(z), we conclude that p(z) is a polynomial

of at most second degree. Since G(0),G’(0) and G”(0) are real numbers, a, b, ¢ € R. O

Using the Cebotarev type representation (4.23) we prove our inverse spectral results in non-
matching index sets case with some additional convergence criterion on the two spectra. Theorems

33, 34 and 35 are non-matching index sets versions of Theorems 30, 31 and 32 respectively.

Theorem 33. (Inverse Problem IV-a) Let J(g) be a Jacobi operator with discrete spectrum,

7(Jn(9)) = {Antnem, 0(Jny(9)) = {¥ntnenr and { Ay, fnew C 0(Jny(9)) Vi nen C 0(Jny(9))

satisfying that
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* there exists N € N such that k, # 1, Vn > N,

¢ Jim nf;<|Akmm—Akn|/>\in> <

N e €11 and

0 < H)\Vl" < oQ.

neN kn

Then {\n}nenr, {VntnemMv, tnens {7V, (P1) }nen, hi and hy uniquely determine the operator
J(g), and if Join # Jin» the boundary condition g at infinity, where {7, (h1) }nenr are norming

constants corresponding to Jy, (g).

Proof. As we discussed in the proof of Theorem 30 wlog we assume h; > ho. Recall that in this

case

A::hl—h2:ZVn—/\n<oo.

neM
Let us define
1 An Z— Uy,
F(z.9) =X 1T o 11 P—— (4.24)
neM neM

Note that we assume 0 < [, o %, / Ak, < o0 and {\, '}, € I, which also implies {v;, ' },enr €

I'. Therefore F(z, g) has the representation 7 = GH, where

L 1 v, — % )\kn . 1 )‘kn =V,
g(z’g)_AH v, )\kn_z_A};[\IVl };[\]Z_)\kn

neN n

and

n - )\n
H(z,g) = H i H p——

Un
neM\l,} neM\kn}
Res (

so we know the residues of the infinite product [[],,c,, ¥n/An] G(z, g) at Ai for any k € {k; }nen-

By (4.24)

Un B B 1

neM ="
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This infinite product has the representation
Up, Vn )\k — zZ— Y
-n Zhn FTn oI A

Let us observe that C'is a real constant depending only on {\, }neank,}> {¥n fneanginy» b1 and hao,

so we also know C. From Lemma 4 we get the Cebotarev type representation

n 1 1
(HK) CHZ_ = az +bz+c+ZAk”(z—Akn+/\_kn>'

neM " neN

Using similar arguments as in the proof of Theorem 30 one finds that a = 0, b = 0 and ¢ =

C — >, en Ak, /A, and hence

(H :”> - C+ Z - il’“;k . (4.25)

neM

The right hand side of (4.25) is known. This implies uniqueness of G(z, g) and hence uniqueness
of {v, }nen. After unique recovery of the two spectra o(J5,(g)) and o(Jp,(g)), the operator .J is

uniquely determined by Theorem 29. U

Theorem 34. (Inverse Problem IV-b) Ler J(g) be a Jacobi operator with discrete spectrum,

0(Jni(9)) = { ntnenmr, 0(Jny(9)) = {Wntnenm and { i, fnen C 0 (I, (9)), {21, bnen C 0(Jny(9))

satisfying that

* there exists N € N such that k,, # 1,, Vn > N,

: _ 2
lim ;(!Akn,m Akn|/)‘kn> < oo,

IN1Yen €1 and

0 < H:l” < oo

neN kin

Then { A fnenmts {Vntnem{in}ners {7k (P1) }nens Ra(respectively hy) and vy, for some m € {1, }nen
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uniquely determine the operator J(g), ha(respectively hy) and if Jpin # J the boundary con-

mzn’

dition g at infinity, where {~,,(h1) }nen are norming constants corresponding to Jy, (g).

Proof. Following the proof of Theorem 33 we get representation

( I1 ;"> —C+ Z - il’“;k (4.26)

neM ~ "

for the infinite product

1 v, — % /\k’n

where A; is the residue of [[], .., ¥n/An] G(2, ) at A; and C € R.
Now let us prove uniqueness of [[],c1s ¥n/An] G(z, g). Note that we know { X, }nens

{—Ag, }nen and v,,. Let the infinite product

(H %) Gz, q) = (H Vn) AHVZ 2

—z
neM neM neN  n A

share the same set of poles { Ay, }nen and the same residues { — Ay, } nen at the corresponding poles
with [Hne A Vn/ )\n} G(z,g). In addition assume v; = v; for all j € M\{l, },en and the functions
G(z,g) and G(z, ) have the common zero vy, i.e. Uy = Vy,. Let us also assume the zeros and the
poles of G (z, g) satisfy asymptotic properties of Theorem 28. Then we know that G (z, g) has the

infinite sum representation

7.\ = - A
(T3 )= 02 427

neM ~ "

From (4.26) and (4.27), the difference of [[],..; ¥n/An] G(2,9) and [[1,.cas Zn/An] G(2, 9) is
a real constant, which is zero since G(vpm,g) = G(vm,g) = 0. This implies uniqueness of
[[1,.car ¥n/An] G(z, g) and hence uniqueness of {1y, },en. After unique recovery of the two spec-

tra o(Jp, (9)) and o(Jp,(g)), the operator J is uniquely determined by Theorem 29. O

Theorem 35. (Inverse Problem IV-c) Ler J(g) be a Jacobi operator with discrete spectrum,

70



0(Jni(9)) = {ntnermr, 0(Jny(9)) = {Wntnenmr and {\x, fnen C 0(Jny(9)), {21, tnen C 0(Jny(9))

satisfying that

there exists N € N such that k,, # 1, Vn > N,

m

lim Z(|Akmm—Akn|/>\in> < oo

m—0o0

n=1

N P em €11 and

0 < H)\Vl" < oQ.

neN kn

Then {\n}nens {Vntnem{intnews Ve (M) tnen, ha(respectively hy) and ~p,(hy) for some m €
M\{k, }nen uniquely determine the operator J(g), ho(respectively hy) and if Jim # J7.., the

boundary condition g at infinity, where {v,(h1)}nerr are norming constants corresponding to

‘]hl (g>

Proof. Following the proof of Theorem 33 and redefining G and H as

L 1 Vpyp — 2 )\m v, — % )\kn
9(z.9) '_A( Up )\m—z)H v, Ak, — 2

neN n

and

Um — 2 Am ! Up — 2 An
H(Z’g)::< )\m—z> H H Ap — 2

v,
neM\{l,} "

we get

Up . Am Akn
(};L T) G(z,9)=C+ +y (4.28)

n z— )\m
where A; is the residue of [[], .., ¥n/Mn] G(z, ) at A; and C € R.
Now let us prove uniqueness of [[],,c.s ¥n/An] G(2, g). Note that we know { Ay, }ren U {An},
{Ag, }nen U {A,,} and v,,,. Let the infinite product

Un \ =~ o v\l (U —2 An v, — 2 A,
(HA—H>Q(z,g). <H AH>A( Up )\m—z>H v, Ak, — 2

neM neM neN
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share the same set of poles {\g, }nen U {\,} and the same residues {Ay, }nenw U {A,,} at the
corresponding poles with G(z, g). In addition assume v; = v; for all j € M\{l,,},en. Let us also
assume zeros and poles of G (z, g) satisfy asymptotic properties of Theorem 28. Then we know

that G (z, g) has the infinite sum representation

,Ijn ~ ~ Am Ak

o =C Tk 4.29
(115 aen-cv e 2 w2
neM n

From (4.28) and (4.29), the difference of [[],,; ¥n/An] G(2,9) and [[1,.cas Zn/An] G(2, 9) is
a real constant, which is zero since G(vm,g) = G(vVm,g) = 0. This implies uniqueness of
[[1,.car vn/An] G(z, g) and hence uniqueness of {1y, },en. After unique recovery of the two spec-

tra o(Jp, (9)) and o(Jp,(g)), the operator .J is uniquely determined by Theorem 29. O
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5. SUMMARY

In this thesis we considered several versions of the following inverse spectral problem for

Schrédinger and Jacobi operators in the third and fourth chapters respectively.

Inverse Spectral Problem. Do one spectrum and partial information on another spectrum and the
set of norming constants (or the point masses of the spectral measure) corresponding to the first

spectrum uniquely recover the operator?

We answered this question positively in the following settings:

Schrédinger operator on (0, 7) with a real-valued L'- potential in the matching index sets

case, Theorems 22, 25.

Schrodinger operator on (0, ) with a real-valued L'- potential in the non-matching index

sets case, Theorems 23, 24, 26, 27.
» Semi-infinite Jacobi operator in the matching index sets case, Theorems 30, 31, 32.
» Semi-infinite Jacobi operator in the non-matching index sets case, Theorems 33, 34, 35.

In the matching index sets case our spectral data consists of {\, }nen, {Vn }nema and
{Tas (An) tnea for A C N, where 0, 5 = { A }nen, Oas.3 = {Vn }nen are two spectra and
{Tay (An) }nen is the set of norming constants corresponding to the first spectrum.

In the non-matching index sets case our spectral data consists of {\,}nen, {Vn}nema and
{Tays (An) tnep for A, B C N with some convergence restrictions, where 04, 5 = { Ay }nens oy s =
{Vn }nen are two spectra and {7,, (\,) }nen is the set of norming constants corresponding to the
first spectrum.

The main objects we used from the spectral theory are spectral measures, norming constants
(Definitions 13, 18) and Weyl m-functions (Definitions 14, 17) for Schrédinger and Jacobi opera-
tors respectively. In order to deal with general boundary conditions for Schrédinger operators, we

introduced more general m-functions (Definition 16).
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Our general approach was to transfer the above stated inverse spectral problem to a complex
analysis problem, namely the problem of unique recovery of a certain meromorphic function from a
data set consisting of the set of poles, a subset of the set of zeros and a subset of the set of residues.
In order to do this we used some well-known properties and infinite product representations of
Weyl m-functions (Lemma 1 and equations (4.10), (4.12)). In order to solve the uniqueness prob-
lem we obtained, we mainly used Cebotarev type representation results (Theorem 3 and Lemmas 2,
3, 4) and asymptotic properties of eigenvalues (equations (3.4), (3.5), (3.6), (3.7) and Theorem 28).
Finally we obtained our inverse spectral results using two-spectra theorems for the corresponding

settings (Theorems 6, 7, 29).
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