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ABSTRACT

In this dissertation we consider methods from complex analysis to solve inverse spectral prob-

lems for Schrödinger operators on finite intervals and semi-infinite Jacobi operators.

After discussing necessary background from complex function theory and harmonic analysis,

we consider Schrödinger operators on a finite interval with an L1-potential. We prove that the

potential can be uniquely recovered from one spectrum and subsets of another spectrum and point

masses of the spectral measure (or norming constants) corresponding to the first spectrum. We also

solve this Borg-Marchenko-type problem under some conditions on two spectra, when missing part

of the second spectrum and known point masses of the spectral measure have different index sets.

In the discrete case, we consider semi-infinite Jacobi matrices with discrete spectrum. We

prove that a Jacobi operator can be uniquely recovered from one spectrum and subsets of another

spectrum and norming constants corresponding to the first spectrum. As a corollary, we obtain

semi-infinite Jacobi analog of Marchenko’s inverse spectral theorem for Schrödinger operators, i.e.

a Jacobi operator can be uniquely recovered from the Weyl m-function (or the spectral measure).

We also solve our Borg-Marchenko-type problem under some conditions on two spectra, when

missing part of the second spectrum and known norming constants have different index sets.
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NOMENCLATURE

bλ(z) Blaschke factor

BΛ(z) Blaschke product

C+ upper-half plane

c00(N) set of sequences with finitely many non-zero elements

D unit disk
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EΛ exponential system of the sequence Λ
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H(Ω) space of complex analytic functions
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Jmax maximal self-adjoint Jacobi operator

Jmin minimal self-adjoint Jacobi operator

Jh(g) self-adjoint Jacobi operator with boundary conditions h, g

l2(N) Hilbert space of square summable sequences

L1
Π space of Poisson summable functions

mα,β Weyl m-function for Schrödinger operators

mh(z, g) Weyl m-function for Jh(g)

µα,β spectral measure

Sf Schwarz integral of the function f

Sµ Schwarz integral of the measure µ

p.v. principal value

Pf Poisson integral of the function f

Π Poisson measure
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PWa Paley-Wiener space on [−a, a]

Qf conjugate Poisson integral of the function f

q(t) potential function of Schrödinger operators

R(Λ) radius of completeness of Λ

σα,β spectrum of Schrödinger operator

σ(Jh(g)) spectrum of Jh(g)

τα(an) norming constant of an for Schrödinger operators

W (f, g) Wronskian

f̂ Fourier transform of f

T ∗ adjoint of the operator T

z →∠ a non-tangential convergence
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1. INTRODUCTION

The Schrödinger (Sturm-Liouville) equation is given by

Lu = −u′′ + qu = zu

on the interval (0, π) with the boundary conditions

u(0) cosα− u′(0) sinα = 0

u(π) cos β + u′(π) sin β = 0,

and a real-valued potential q ∈ L1(0, π). The spectrum σα,β of the Schrödinger operator L cor-

responding to these boundary conditions defines a discrete subset of the real line, bounded from

below, diverging to +∞.

Direct spectral problems aim to get spectral information from the potential. In inverse spectral

problems, the goal is to recover the potential from spectral information, such as the spectrum, the

norming constants, the spectral measure or Weyl-Titchmarsh m-function.

The first inverse spectral result on Schrödinger operators is given by Ambarzumian [1]. He

considered continuous potential with Neumann boundary conditions at both endpoints (α = β =

π/2) and showed that q ≡ 0 if the spectrum consists of squares of integers.

Later Borg [13] proved that an L1-potential is uniquely recovered from two spectra corre-

sponding to various pairs of boundary conditions and sharing the same boundary conditions at π

(β1 = β2), one of which should be Dirichlet boundary condition at 0 (α1 = 0). Levinson [52]

extended Borg’s result by removing the restriction of Dirichlet boundary condition at 0.

Furthermore, Marchenko [56] observed that the spectral measure (or Weyl-Titchmarsh m-

function) uniquely recovers an L1-potential.

Another classical result is due to Hochstadt and Lieberman [45], which says that if the first half
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of an L1-potential is known, one spectrum recovers the whole.

Statements of these classical results are given in Section 3.2.1.

Gesztesy, Simon and del Rio [15] generalized Levinson’s theorem to three spectra, by showing

two thirds of the union of three spectra is sufficient spectral data to recover an L1-potential.

Later on, Gesztesy and Simon [31] observed that extra smoothness conditions on the potential

change required spectral data to recover the potential. They proved that the knowledge of the

eigenvalues can be replaced by information on the derivatives of the potential. In addition, they

[31] also generalized the Hochstadt-Lieberman theorem in the sense that more than the first half of

an L1-potential and a sufficiently large subset of a spectrum recover the potential.

Afterwards, Amour, Raoux and Faupin [3, 4] proved similar results using extra information on

the smoothness of the potential.

In a remarkable result, Horváth [46] characterized unique recovery of a potential in terms

of completeness of an exponential system depending on given eigenvalues and known part of

the potential. This observation opened a new path [5, 46, 48, 55] by connecting inverse spectral

problems and completeness of exponential systems.

Moreover, Horváth and Sáfár [48] proved similar results in terms of a cosine system. The

cosine system depends on subsets of eigenvalues and norming constants and their spectral data

consists of these two subsets.

Recently, Makarov and Poltoratski [55] gave a version of Horváth’s theorem [46] in terms

of exterior Beurling-Malliavin density by combining Horváth’s result and the Beurling-Malliavin

theorem. In the same paper, they obtained another characterization result, which is an uncertainty

version of Borg’s theorem. As their spectral data, they considered a set of intervals known to in-

clude two spectra and characterized the inverse spectral problem in terms of a convergence criterion

on this set of intervals.

All of these results mentioned above are discussed in Section 3.2.2.

Classical theorems of Borg, Levinson, Marchenko, Hochstadt and Lieberman led to various

other inverse spectral results on Schrödinger operators (see [2, 29, 36, 37, 38, 39, 47, 57, 60,
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64, 69, 70, 71, 72, 73, 74, 75, 77, 78] and references therein). These problems can be divided

into two groups. In Borg-Marchenko-type spectral problems, one tries to recover the potential

from spectral data. However, Hochstadt-Lieberman-type (or mixed) spectral problems recover the

potential using a mixture of partial information on the potential and spectral data.

In this thesis, our interest will be on regular Schrödinger operators with summable potentials

on a finite interval. However, many problems with locally summable potentials [23, 24, 25, 26, 32,

49, 50] or on various settings such as half-line [26, 29, 31, 33, 64, 69], real-line [26, 29, 32, 33, 69]

or graphs [9, 10, 11, 12, 79] are solved.

Borg’s, Levinson’s and Hochstadt and Lieberman’s theorems suggest that one spectrum gives

exactly one half of the full spectral information required to recover the potential. Recalling the fact

that the spectral measure is a discrete measure supported on a spectrum, the same can be said for

the set of point masses of the spectral measure. As follows from Marchenko’s theorem, the set of

point masses of the spectral measure (or the set of norming constants) gives exactly one half of the

full spectral information required to recover the potential.

These observations allow us to formulate the following question:

Inverse Problem. Do one spectrum and partial information on another spectrum and the set of

point masses of the spectral measure corresponding to the first spectrum recover the potential?

This Borg-Marchenko-type problem can be seen as a combination of Levinson’s and Marchenko’s

results. Borg’s and Marchenko’s theorems can be deduced by complex theoretic methods using

Krein spectral shift functions and Cauchy integrals respectively. However, neither of the methods

work for the problem stated above, which makes this problem interesting not only for spectral

theory, but also for complex function theory.

In Chapter 3, we answer this question positively. First, we give a proof with the most common

boundary conditions, Dirichlet (u = 0) and Neumann (u′ = 0). Theorem 22 solves this inverse

spectral problem when given part of the point masses of the spectral measure corresponding to the

Dirichlet-Dirichlet spectrum matches with the missing part of the Neumann-Dirichlet spectrum,

i.e. they share same index sets. In Theorem 23 and Theorem 24, we consider the non-matching
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index sets case with some restrictions on two spectra.

In order to deal with general boundary conditions we introduce a more general m-function in

Section 4.3. With this m-function, we extend Theorem 22 in Theorem 25 to general boundary

conditions. In Theorem 26 and Theorem 27 we consider the non-matching index sets case.

Jacobi operators are discrete analogs of Schrödinger operators. The Jacobi operator J in the

dense subset c00(N) of the Hilbert space l2(N) is the operator associated with the semi-infinite

Jacobi matrix 

a1 b1 0 0

b1 a2 b2
. . .

0 b2 a3
. . .

0
. . . . . . . . .


where an ∈ R and bn > 0 for any n ∈ N. The symmetric operator J is closable and has deficiency

indices (1,1) [limit point] or (0,0) [limit circle]. In the limit point case J̄ is self-adjoint. How-

ever, in the limit circle case non self-adjoint operator J̄ has a self-adjoint extension J(g) uniquely

determined by g ∈ R ∪ {∞} (see Section 4.1 and [66] Section 2.6). In both cases, a rank-one

perturbation of a self-adjoint Jacobi operator can be seen as a change of the boundary condition at

the origin for the corresponding Jacobi difference equation (see Section 4.1 and [62] Appendix).

In the discussion of inverse spectral problems for Jacobi operators, we replace the potential

function q with the sequences {an}N and {bn}N. The study of inverse problems for Jacobi operators

is motivated both by pure mathematics, e.g. moment problems [65] and physical applications, such

as vibrating systems [35, 59].

Early inverse spectral problems for finite Jacobi matrices appear as discrete analogs of inverse

spectral problems for Schrödinger operators. Finite Jacobi matrix analogs of Borg’s and Hochstadt

and Lieberman’s theorems were considered by Hochstadt [42, 43, 44], where the potential q is

replaced by the sequences {an}n∈N and {bn}n∈N. These classical theorems led to various other

inverse spectral results on finite Jacobi matrices (see [6, 16, 29, 31, 34, 61, 76] and references

therein), semi-infinite or infinite Jacobi matrices (see [17, 18, 19, 20, 26, 29, 31, 34, 62, 63, 68] and

4



references therein), generalized Jacobi matrices (see [21, 22] and references therein) and matrix-

valued Jacobi operators (see [14, 30] and references therein).

Silva and Weder ([62] Theorem 3.3) proved Borg’s two-spectra theorem for semi-infinite Jacobi

matrices with a discrete spectrum. Later on Eckhardt and Teschl ([27] Theorem 5.2) considered

infinite Jacobi matrix analog of Marchenko’s result with the same discreteness of the spectrum

assumption. Note that discreteness of the spectrum is an extra assumption in the limit point case.

Jacobi versions of Borg’s and Hochstadt and Lieberman’s theorems suggest that one spectrum

gives exactly one half of the full spectral information required to recover the sequences {an}n∈N

and {bn}n∈N. Let us recall the fact that in the case of discrete spectrum, the spectral measure is

a discrete measure supported on the spectrum with the point masses given by the corresponding

norming constants (see [26] page 10). As follows from Jacobi analogs of Marchenko’s theorem,

the set of point masses of the spectral measure (or the set of norming constants) gives exactly one

half of the full spectral information required to recover the sequences {an}n∈N and {bn}n∈N.

These observations allow us to reformulate our inverse spectral problem for Jacobi operators:

Inverse Problem. Do one spectrum and partial information on another spectrum and the set of

norming constants corresponding to the first spectrum recover the operator?

In Chapter 4, we answer this question positively. Theorem 30 solves this inverse spectral

problem when given part of the norming constants corresponding to the first discrete spectrum

matches with the missing part of the second discrete spectrum, i.e. they share the same index sets.

In Theorem 31 and Theorem 32 we show that information of one of the boundary conditions can be

replaced by any unknown eigenvalue from the second spectrum or any unknown norming constant

corresponding to the first spectrum. In Theorems 33, 34 and 35 we consider the same problems in

the non-matching index sets case with some restrictions on the two spectra.
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2. PRELIMINARIES

The main reference for this chapter is [58].

2.1 Complex function theory

2.1.1 Hardy spaces in the upper-half plane

Let H(Ω) denote the set of all analytic functions in the complex domain Ω. Hardy spaces are

subclasses of analytic functions satisfying certain growth conditions.

Definition 1. Let 1 ≤ p <∞. The Hardy space for p on the upper-half plane C+ is defined as

Hp(C+) :=
{
f ∈ H(C+)

∣∣ sup
y>0

∫
R
|f(x+ iy)|pdx <∞

}
For 1 ≤ p <∞, the Hardy space Hp(C+) becomes a Banach space with the norm

||f ||Hp(C+) := sup
y>0

(∫
R
|f(x+ iy)|pdx

)1/p

.

For p = ∞, H∞(C+) denotes the set of all analytic and bounded functions on the upper-

half plane, equipped with the sup-norm ||f ||H∞(C+) = supz∈C+
|f(z)|. Fatou proved existence of

non-tangential boundary limits of Hp functions.

Definition 2. Let γ : [0, 1) → C+ be a continuous path such that limt→1 γ(t) = a ∈ R. Let us

define Γα(a) := {z + a | argz ∈ (π/2 − α, π/2 + α)} for a ∈ R. The real number a is defined

as the non-tangential limit of the path γ if there exists α ∈ (0, π/2) such that γ ⊂ Γα(a) and

limt→1 γ(t) = a. If z approaches to a non-tangentially, it is denoted by z →∠ a.

The region Γα(a) is called Stolz region at a. Even if we discuss it on the upper-half plane, it is

usually defined on the unit disk as follows. Let θ ∈ [0, 2π) and M > 0. A Stolz region in the unit

disk is defined as {
z ∈ D

∣∣∣ |z − eiθ|
1− |z|

< M
}
.
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The non-tangential limit can be seen as existence of the limit through a Stolz region. Figure 2.1

shows some examples of Stolz regions.

(a) (b)

Figure 2.1: Examples of Stolz regions in the unit disk (a) and the upper-half plane (b).

Theorem 1. Let f(z) ∈ Hp(C+). For almost all t ∈ R,

f ∗(t) := lim
z→∠t

f(z) exists,

f ∗(t) ∈ Lp(−∞,∞)

and for all y > 0,

f(x+ iy) =
1

π

∫
R

y

(x− t)2 + y2
f ∗(t)dt.

Using Fatou’s theorem we uniquely identify each function f ∈ Hp(C+) with a function f ∗ ∈

Lp(R). Moreover we have ||f ||Hp(C+) = ||f ||Lp(R). This allows us to extend the domain of f to

C+ ∪ R almost everywhere by letting f(t) := f ∗(t) for almost all t ∈ R, so we can identify every

Hp(C+) with a closed subspace of Lp(R). Therefore, the Hardy space H2(C+) is a Hilbert space

with the inner product

〈f, g〉H2(C+) =

∫
R
f(t)g(t)dt

for f, g ∈ H2(C+).

7



2.1.2 Inner-outer factorization

Functions from Hardy spaces can be represented in terms of products of well-understood func-

tions, namely inner and outer functions. This representation is called inner-outer or canonical

factorization. Before discussing inner and outer functions, we need to state some definitions.

A function on R is Poisson-summable if it is summable with respect to the Poisson measure

Π, defined as dΠ := dx/(1 + x2). The space of Poisson-summable functions on R is denoted by

L1
Π.

Definition 3. The Schwarz integral of a Poisson-summable function f is defined as

Sf(z) :=
1

iπ

∫
R

(
1

t− z
− t

1 + t2

)
f(t)dt,

where z = x+ iy.

The Schwarz integral of a real valued Poisson-summable function is given in terms of its Pois-

son and conjugate Poisson integrals: Sf = Pf + iQf , where

Pf(z) :=
1

π

∫
y

(t− x)2 + y2
f(t)dt

Qf(z) :=
1

π

∫ (
x− t

(x− t)2 + y2
+

1

1 + t2

)
f(t)dt

A measure µ on R is Poisson-finite if
∫

1
1+t2

d|µ|(t) < ∞. The Schwarz integral of a Poisson-

finite measure µ, defined as

Sµ(z) :=
1

iπ

∫
R

(
1

t− z
− t

1 + t2

)
dµ(t),

is analytic in the upper half-plane C+.

We discussed that any function f ∈ H∞ has non-tangential boundary values a.e. on R. If

absolute values of these limits are 1, then f is an inner function.

8



Definition 4. A bounded analytic function in C+ is called inner in C+ if it has non-tangential

boundary values, equal to 1 in modulus, almost everywhere on R.

Main examples of inner functions are exponential functions eiaz for a > 0 and Blaschke prod-

ucts. The ratio

bλ(z) :=
z − λ
z − λ

is called a Blaschke factor, where λ ∈ C+. Let Λ = {λn} ⊂ C+ be a sequence satisfying the

Blaschke condition ∑
n

Imλn
1 + |λn|2

<∞.

The infinite product

BΛ(z) :=
∏

εnbλn(z)

is called a Blaschke product for C+, where the unimodular constants εn satisfy εnbλn(i) > 0.

Definition 5. An analytic function in C+ is called outer in C+ if it is of the form eSf for f ∈ L1
Π.

The Hilbert transform of f ∈ L1
Π, denoted by f̃ , is defined as the singular integral

f̃(x) :=
1

π
p.v.

∫ [
1

x− t
+

t

1 + t2

]
f(t)dt.

It is the angular limit of Qf = ImSf , hence the outer function eSf coincides with ef+if̃ on R.

Now we are ready to state canonical factorization of Hp functions.

Theorem 2. (Inner-outer factorization) Let f ∈ Hp(C+). Then for z ∈ C+,

f(z) = If (z) ·Of (z),

where the inner factor If (z) is given by If (z) = eiγB(z)e−iSµeiαz such that

• γ ∈ R,
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• B(z) =
∏

n[eiαn(z−λn)/(z−λn)] is a Blaschke product for C+, where λn are zeros of f(z)

in C+ and the real αn satisfy eiαn(i− λn)/(i− λn) ≥ 0,

• the singular measure µ on R is Poisson-finite,

• the mass at∞, α is non-negative

and the outer factor Of (z) is given by Of (z) = eS log |f |.

2.1.3 Meromorphic inner functions and meromorphic Herglotz functions

We discussed that an inner function on C+ is a bounded analytic function on C+ with unit

modulus a.e. on R.

Definition 6. If an inner function extends to C meromorphically, it is called meromorphic inner

function, which is usually denoted by Θ.

Meromorphic inner functions satisfy the representation Θ(z) = CeiazBΛ(z) for a unimodular

constant C, a nonzero real constant a and a Blaschke product BΛ with a discrete sequence Λ, i.e.

Λ satisfies the Blaschke condition and has no finite accumulation point.

A meromorphic function is said to be real if it maps real numbers to real numbers on its

domain.

Definition 7. A meromorphic Herglotz function m is a real meromorphic function with positive

imaginary part on C+. It has negative imaginary part on C− via the relation m(z) = m(z).

There is a one-to-one correspondence between meromorphic inner functions and meromorphic

Herglotz functions via equations

m = i
1 + Θ

1−Θ
, Θ =

m− i
m+ i

.

A meromorphic Herglotz function can be described as the Schwarz integral of a positive dis-

crete Poisson-finite measure:

m(z) = az + b+ iSµ,
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where a ≥ 0, b ∈ R. The term iS is also called the Herglotz integral and usually denoted by

H . This representation is valid even if the Herglotz function can not be extended meromorphically

to C, in which case µ may not be discrete. It is called the Herglotz representation theorem.

C̆ebotarev proved a similar result.

Theorem 3 (C̆ebotarev [51]). If the real meromorphic functionm maps C+ onto C+, then its poles

{ak}k∈Z are all real and simple, and it may be represented in the form

m(z) = az + b+
M∑
k=N

Ak

(
1

ak − z
− 1

ak

)
, (2.1)

where a ≥ 0, b ∈ R, −∞ ≤ N < M ≤ ∞, Ak ≥ 0, the sum
∑M

k=N Ak/a
2
k converges and the sum

in (2.1) converges normally on its domain if N = ∞ or M = ∞. Note that if aj = 0 for some

N ≤ j ≤M , then the term with the index j in (2.1) is replaced by Aj/z.

Let us recall that for any infinite product (or sum) defined on an open set Ω ⊂ C, normal

convergence means that the product (or the sum) converges uniformly on every compact subset of

Ω.

2.2 Beurling-Malliavin theory

Let Λ = {λn} be a sequence in the complex plane. One of the fundamental problems of

Harmonic Analysis in the 20th century was the following question: Which conditions on Λ char-

acterize completeness of the exponential system EΛ := {e2πiλnx}λn∈Λ in L2(0, a). In order to

discuss this problem we need to consider maximal real number a for which EΛ is complete in

L2(0, a), i.e. the set of finite linear combinations of exponentials from EΛ is dense in L2(0, a).

Definition 8. Let Λ = {λn} be a complex sequence. The radius of completeness of Λ is defined

as

R(Λ) := sup{a | EΛ is complete in L2(0, a)}.

Now the main goal becomes finding a formula for R(Λ) when Λ is an arbitrary complex se-

quence. The problem can be reduced to the real sequences by the following observation: if Λ is

11



a complex sequence, then EΛ is complete in L2(0, a) if and only if EΛ′ is complete in L2(0, a),

where Λ′ is the real sequence defined as λ′n = (Re 1
λn

)−1, i.e. R(Λ) = R(Λ′). Note that if Λ

includes purely imaginary numbers, without loss of generality we can replace Λ by Λ + c for some

c ∈ R.

The Fourier transform is a useful tool to work on completeness of exponential systems.

Definition 9. Let f ∈ L2(R). The Fourier transform of f is defined as

f̂(z) :=

∫
R
e−2πixzf(x)dx.

According to Paley-Wiener theorem, Fourier transform of a square integrable function f satis-

fying supp(f) ⊆ [−a, a], is an entire function of exponential type at most 2πa and square integrable

on the real line, i.e. |f̂(z)| ≤ Ce2πa|z| and f̂(x) ∈ L2(R). This allows us to define Paley-Wiener

spaces.

Definition 10. Let a ∈ R+. The Paley-Wiener space on [−a, a] is defined as

PWa :=
{
F (z)

∣∣ F is entire, |F (z)| ≤ Ce2πa|z| and F ∈ L2(R)
}
.

On the other hand every entire function of exponential type at most 2πa and square integrable

on R is the Fourier transform of a square integrable function on [−a, a]. Therefore PWa is the

image of the space L2(−a, a) under the Fourier transform.

Let us recall that a system of exponentialsEΛ is incomplete inL2(0, a) if and only if there exists

a non-zero f ∈ L2(0, a) such that
〈
f(x) , e2πiλnx

〉
L2(0,a)

= 0 for every λn ∈ Λ, or equivalently

f̂(λn) = 0 for every λn ∈ Λ. Therefore using the Paley-Wiener theorem and the definition of the

Fourier transform we can translate the completeness of exponential problem we stated to a complex

analysis problem: EΛ is complete in L2(0, 2a) if and only if for any non-zero function F ∈ PWa,

F (λn) 6= 0 for some λn ∈ Λ. This observation allows us wlog to let Λ be discrete, i.e. Λ has no

finite accumulation point, since radius of completeness of a sequence with a finite accumulation
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point is∞. This follows from the identity theorem for entire functions, which implies that zero set

of a non-zero entire function can not have a finite accumulation point.

At this point wlog we can restate our completeness problems as follows. How can we formulate

R(Λ) for the discrete sequence Λ ⊂ R? A complete answer to this question was given by Beurling

and Malliavin, but before stating that we need a few more definitions.

Definition 11. If {In}n∈N is a sequence of disjoint intervals on the real line, it is called short if

∑
n∈N

|In|2

1 + dist2(0, In)
<∞,

and long otherwise.

Definition 12. Let Λ be a sequence in R. Then the exterior (effective) Beurling-Malliavin den-

sity of Λ is defined as

D∗(Λ) := sup{d | ∃ long {In} such that #(Λ ∩ In) ≥ d|In|, ∀n ∈ N}.

For a non-real sequence Λ, its exterior Beurling-Malliavin density is defined as D∗(Λ) :=

D∗(Λ′), where Λ′ is a real sequence given by λ′n = (Re 1
λn

)−1, if Λ has no imaginary points, and as

D∗(Λ) := D∗((Λ + c)′) otherwise.

Now we are ready to state one of the most important results of the 20th century Harmonic

Analysis.

Theorem 4 (Beurling-Malliavin [7, 8]). Let Λ be a discrete sequence in C. Then R(Λ) = D∗(Λ).
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3. INVERSE SPECTRAL THEORY OF SCHRÖDINGER OPERATORS*

3.1 One-dimensional Schrödinger operator on a finite interval

As it was defined in the introduction, we consider the Schrödinger equation

− u′′(t) + q(t)u(t) = zu(t) (3.1)

on the interval (0, π) associated with the boundary conditions

u(0) cosα− u′(0) sinα = 0 (3.2)

u(π) cos β + u′(π) sin β = 0, (3.3)

where α, β ∈ [0, π) and the potential function q ∈ L1(0, π) is real-valued.

The spectrum σα,β of the Schrödinger operator

L : u 7→ −u′′ + qu

with q ∈ L1 and boundary conditions (3.2), (3.3) is a discrete real sequence, bounded from below.

Adding a positive constant to the potential q, shifts the spectrum by the same constant. This allows

us to assume wlog σα,β ⊂ R+. Note that we assume N = {1, 2, 3, . . . }. Asymptotic behavior of

the spectrum σα,β = {an}n∈N, depending on the signs of α and β, is as follows:

If α 6= 0, β 6= 0, then

an = (n− 1)2 +
2

π
[cot(β) + cot(α)] +

1

π

∫ π

0

q(x)dx+ αn (3.4)

where αn = o(1) as n→ +∞.

*Reprinted with permission from "Mixed Data in Inverse Spectral Problems for the Schroedinger Operators" by
B. Hatinoğlu, 2020 Journal of Spectral Theory, accepted for publication, Copyright 2020 by European Mathematical
Society [40].
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If α = 0, β = 0, then

an = n2 +
1

π

∫ π

0

q(x)dx+ αn (3.5)

where αn = o(1) as n→ +∞.

If α 6= 0, β = 0, then

an =

(
n− 1

2

)2

+
2

π
cot(α) +

1

π

∫ π

0

q(x)dx+ αn (3.6)

where αn = o(1) as n→ +∞.

If α = 0, β 6= 0, then

an =

(
n− 1

2

)2

+
2

π
cot(β) +

1

π

∫ π

0

q(x)dx+ αn (3.7)

where αn = o(1) as n→ +∞.

In the case q ∈ L2(0, π), the same asymptotics are valid with {αn}n∈N ∈ l2.

One can find these results in the classical texts on Schrödinger operators, for instance [53] or

[54].

Let us choose the boundary condition (3.2) and introduce two solutions sz(t) and cz(t) of (3.1)

satisfying the initial conditions

sz(0) = sin(α), s′z(0) = cos(α)

cz(0) = cos(α), c′z(0) = − sin(α).

Definition 13. The norming constant τα, for the eigenvalue an is defined as

τα(an) :=

∫ π

0

|san(t)|2dt.

Note that sz(t) and cz(t) are linearly independent solutions and their Wronskian satisfies
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W (cz, sz) = 1, where W (f, g) := fg′ − gf ′. This allows us to represent uz(t), a solution of

(3.1) with boundary conditions uz(π) = sin β, u′z(π) = − cos β, as

uz(t) = cz(t) +mα,β(z)sz(t),

where

mα,β(z) = −W (cz, uz)

W (sz, uz)
.

This is how we derive the m-function.

Definition 14. Weyl-Titchmarsh m-function with the boundary conditions (3.2), (3.3) is defined

as

mα,β(z) :=
cos(α)u′z(0) + sin(α)uz(0)

− sin(α)u′z(0) + cos(α)uz(0)
,

where α, β ∈ [0, π).

It is well-known that Weyl m-function mα,β is a meromorphic Herglotz function. Everitt [28]

proved that the Weyl m-function has the asymptotic

m0,β(z) = i
√
z + o(1)

for α = 0, and

mα,β(z) =
cosα

sinα
+

1

sin2 α

i√
z

+O

(
1

|z|

)
for α ∈ (0, π) as z goes to infinity in the upper half plane. Asymptotics of Weyl m-function

and Herglotz representation theorem imply that mα,β is represented as the Herglotz integral of a

discrete positive Poisson-finite measure supported on the spectrum σα,β:

mα,β(z) = a+

∫
R

[
1

t− z
− t

1 + t2

]
dµα,β(t), (3.8)

where a = Re(mα,β(i)), σα,β = {an}n∈N and µα,β =
∑

n∈N γnδan . The measure µα,β is the
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spectral measure of the Schrödinger operator L corresponding to the m-function mα,β . The point

masses of the spectral measure are represented in terms of norming constants as γn = (τα(an))−1.

Definition 15. The spectral measure of the Schrödinger operator L corresponding to the m-

function mα,β (or the boundary conditions (3.2), (3.3)) is defined as

µα,β :=
∑
n∈N

δan
τα(an)

,

where α, β ∈ [0, π) and σα,β = {an}n∈N.

Since µα,β is a Poisson-finite measure, the spectrum and the point masses of the spectral mea-

sure satisfy ∑
n∈N

γn
1 + a2

n

<∞.

These properties of the m-function, the spectral measure and a detailed discussion of one di-

mensional Schrödinger operators appear in Chapter 9 of [66].

In order to illustrate what we have discussed so far, let us consider the free operator (q ≡ 0)

with Dirichlet (u = 0) and Neumann (u′ = 0) boundary conditions. Figure 3.1 shows the graph of

Weyl m-function m0,0 on R, Neumann-Dirichlet spectrum σND and Dirichlet-Dirichlet spectrum

σDD for the free operator.

Example 1. The spectra, the m-function and the spectral measure for q ≡ 0 on (0, π) with

Dirichlet-Dirichlet, Neumann-Dirichlet and Neumann-Neumann boundary conditions are as fol-

lows.

σDD := σ0,0 = {n2}n∈N

σND := σπ/2,0 = {(n− 1

2
)2}n∈N

σNN := σπ/2,π/2 = {(n− 1)2}n∈N

m0,0 = −
√
z cot(

√
zπ)

mπ/2,0 =
tan(
√
zπ)√
z

mπ/2,π/2 =
cot(
√
zπ)√
z

µ0,0 =
2

π

∞∑
n=1

n2δn2

µπ/2,0 =
2

π

∞∑
n=1

δ(n−1/2)2

µπ/2,π/2 =
2

π

∞∑
n=1

δ(n−1)2
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Figure 3.1: The graph of Weyl m-function m0,0 on R, Neumann-Dirichlet spectrum σND (red) and
Dirichlet-Dirichlet spectrum σDD (blue) for the free operator (q ≡ 0).

3.2 Inverse spectral theory of regular Schrödinger operators

3.2.1 Classical results

The first inverse spectral result on Schrödinger operators was given by Ambarzumian.

Theorem 5 (Ambarzumian [1], [46]). Let q ∈ C[0, π] and σπ/2,π/2 = {n2}∞n=0. Then q = 0.

Later Borg found that in most cases two spectra is the required spectral information to recover

the operator uniquely.

Theorem 6 (Borg [13], [46]). Let q ∈ L1(0, π), σ1 = σ0,β , σ2 = σα2,β , sinα2 6= 0 and

σ̃2 =


σ2 if sin β = 0

σ2\{a1} if sin β 6= 0.

Then σ1 ∪ σ̃2 determines the potential and no proper subset has the same property.

A Schrödinger operator (or a potential) is said to be determined (or recovered) by its spectral

data, if any other operator with the same data must have the same potential a.e. on (0, π). Levinson

extended Borg’s result by removing the Dirichlet boundary condition restriction from the first

spectrum.
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Theorem 7 (Levinson [52], [46]). Let q ∈ L1(0, π) and sin(α1 − α2) 6= 0. Then σα1,β and σα2,β

determine the potential.

Marchenko showed that the spectral measure or the corresponding Weyl m-function provides

sufficient spectral data to recover the potential uniquely.

Theorem 8 (Marchenko [56], [66]-Section 9.4). Let q ∈ L1(0, π). Then µα,β or mα,β determines

the potential.

In the notations of Section 3.1, Marchenko’s theorem says that the spectrum σα,β = {an}n∈N

and the point masses {γn}n∈N of the corresponding spectral measure (or the norming constants

{τα(an)}n∈N) provide sufficient spectral data to recover the operator uniquely.

Hochstadt and Lieberman observed that one spectrum recovers the potential if the first half of

it is known.

Theorem 9 (Hochstadt, Lieberman [45]). Let q ∈ L1(0, π). Then q on (0, π/2) and σα,β determine

the potential.

These classical theorems led to numerous results with different approaches such as

• using various spectral data (Borg-Marchenko type results),

• using mixture of partial knowledge of the potential and spectral data (Hochstadt-Lieberman

type results),

• considering various smoothness classes for the potential (q ∈ L1, Lp, Ck, L1
loc),

• finding connections with exponential systems and

• changing the setting (half-line, real line, quantum graphs).

3.2.2 Some recent results in the finite interval case

For any discrete real sequence A = {xn}n∈N, xn →∞ the counting function is defined as

nA(t) :=
∑
xn≤t

1.
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Gesztesy, Simon and del Rio generalized Levinson’s theorem to three spectra.

Theorem 10 (del Rio, Gesztesy, Simon [15]). Let q ∈ L1(0, π). Then S ⊂ σα1,β ∪ σα2,β ∪ σα3,β

satisfying

nS(t) ≥ (2/3)n(σα1,β∪σα2,β∪σα3,β)(t)

for sufficiently large t > 0, determine the potential.

Gesztesy and Simon observed that the knowledge of the eigenvalues can be replaced by infor-

mation on the derivatives of the potential around the midpoint of the interval.

Theorem 11 (Gesztesy, Simon [32]). Let q ∈ L1(0, π), α, β 6= 0 and q ∈ C2k(π/2 − ε, π/2 + ε)

for some k ∈ N and ε > 0. Then q on (0, π/2) and σα,β except for k+ 1 eigenvalues determine the

potential.

In the same paper, they generalized Hochstadt-Lieberman theorem.

Theorem 12 (Gesztesy, Simon [32]). Let q ∈ L1(0, π) and π/2 < a < π. Then q on (0, a) and

S ⊂ σα,β satisfying

nS(t) ≥ 2(1− a/π)nσα,β(t) + a/π − 1/2

for sufficiently large t > 0, determine the potential.

Amour, Raoux and Faupin proved similar results using extra information on smoothness of the

potential.

Theorem 13 (Amour, Raoux [4]). Let α, β1, β2 6= 0, p ∈ [1,∞), q1, q2 ∈ L1(0, π), q1 − q2 ∈

Lp(a, π) and π/2 < a < π. If q1 = q2 a.e. on (0, a) and S ⊂ σα,β1(q1) ∩ σα,β2(q2) satisfies

2(1− a/π)nσ(t) + C ≥ nS(t) ≥ 2(1− a/π)nσ(t) + 1/(2p) + 2a/π − 2

for a real number C and sufficiently large t > 0, where σ denotes either of σα,βk(qk), then q1 = q2

a.e. on (0, π).

20



Theorem 14 (Amour, Faupin, Raoux [3]). Let α, β1, β2 6= 0, k ∈ {0, 1, 2}, p ∈ [1,∞), q1, q2 ∈

W k,1(0, π), q1 − q2 ∈ W k,p(a, π) and π/2 < a < π. If q1 = q2 on (0, a) and S ⊂ σα,β1(q1) ∩

σα,β2(q2) satisfying

nS(t) ≥ 2(1− a/π)nσ(t)− k/2 + 1/(2p) + a/π − 3/2

for sufficiently large t > 0, where σ denotes either of σα,βk(qk), then q1 = q2 a.e. on (0, π).

Theorem 15 (Amour, Faupin, Raoux [3]). Let α, β1, β2 6= 0, k ∈ {0, 1, 2}, p ∈ [1,∞), q1, q2 ∈

W k,1(0, π), q1 − q2 ∈ W k,p(a, π) and π/2 < a < π. If q1 = q2 on (0, a) and S ⊂ σα,β1(q1) ∩

σα,β2(q2) satisfying

2(1− a/π)nσ(t) + C ≥ nS(t) ≥ 2(1− a/π)nσ(t)− k/2 + 1/(2p) + 2a/π − 2

for sufficiently large t > 0, where σ denotes either of σα,βk(qk), then q1 = q2 a.e. on (0, π).

Horváth proved a remarkable characterization theorem, which represents a connection between

inverse spectral theory and completeness of exponential systems.

Theorem 16 (Horváth [46]). Let 1 ≤ p ≤ ∞, q ∈ Lp(0, π), 0 ≤ a < π and λn ∈ σα,0. Then q on

(0, a) and the eigenvalues λn determine q if and only if the system

e(Λ) = {e±2iµx, e±2i
√
λnx : n ≥ 1}

is complete in Lp(a− π, π − a) for some µ 6= ±
√
λn.

Horváth and Sáfár proved similar results for the norming constants in terms of a cosine system.

For a sequence Λ = {λ1, λ2, . . . } ⊂ R and a subset S ⊂ Λ they considered the following cosine

system:

C(Λ, S) = {cos(2
√
λnt) : n ∈ N} ∪ {t cos(2

√
λnt) : λn ∈ S}.
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Theorem 17 (Horváth, Sáfár [48]). Let β 6= 0, 1 ≤ p ≤ ∞, q ∈ L1(0, π), q ∈ Lp(a, π), 0 ≤ a < π

and

Λ = {λn : λn ∈ σαn,β, n ∈ N}

be a subset of eigenvalues such that λn 6→ −∞ are different real numbers and S ⊂ Λ. Then q on

(0, a), Λ and {ταn(λn)}λn∈S determine q if the system C(Λ, S) is complete in Lp(0, π − a).

For Dirichlet boundary condition Horváth and Sáfár obtained an optimal condition.

Theorem 18 (Horváth, Sáfár [48]). Let us have the assumptions of Theorem 17, but β = 0. Let

µ 6= ±
√
λn, µ ∈ R. Then the system C(Λ, S) ∪ {cos(2

√
µt)} is complete in Lp(0, π − a) if and

only if q on (0, a), Λ and {ταn(λn)}λn∈S determine q.

Makarov and Poltoratski gave a characterization theorem in terms of exterior Beurling-Malliavin

density as a corollary of Horváth’s result [46] (Theorem 16 above) and the Beurling-Malliavin the-

orem [7, 8].

If {In}n∈N is a sequence of disjoint intervals on the real line, it is called short if

∑
n∈N

|In|2

1 + dist2(0, In)
<∞

and long otherwise.

If Λ is a sequence of real points, its exterior (effective) Beurling-Malliavin density is defined

as

D∗(Λ) = sup{d | ∃ long {In} such that #(Λ ∩ In) ≥ d|In|, ∀n ∈ N}.

For a non-real sequence its density is defined as D∗(Λ) = D∗(Λ′), where Λ′ is a real sequence

λ′n = (Re 1
λn

)−1, if Λ has no imaginary points, and as D∗(Λ) = D∗((Λ + c)′) otherwise.

For any complex sequence Λ its radius of completeness is defined as

R(Λ) = sup{a | {e2πiλz}λ∈Λ is complete in L2(0, a)}.
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Now we are ready to state one of the fundamental results of Harmonic Analysis.

Theorem 19 (Beurling-Malliavin theorem [7, 8]). Let Λ be a discrete sequence. Then

R(Λ) = D∗(Λ).

Let us note that Makarov and Poltoratski considered the Schrödinger equation Lu = −u′′ +

qu = z2u and the m-function corresponding to this equation, which is obtained by applying the

square root transform to the m-function we have discussed so far. Let us denote their m-function

by m̃.

Theorem 20 (Makarov, Poltoratski [55]). Let Λ = {λn}n∈N be a sequence of discrete non-zero

complex numbers, q ∈ L2(0, π) and 0 ≤ a ≤ 1. The following statements are equivalent:

1. q on (0, d) for some d > a and {m̃(λn)}n∈N determine q.

2. πD∗(Λ) ≥ 1− a.

Makarov and Poltoratski’s observation shows that Horváth’s theorem establishes equivalence

between mixed spectral problems for Schrödinger operators and the Beurling-Malliavin problem

on completeness of exponentials in L2 spaces.

In the same paper they obtained an uncertainty version of Borg’s theorem.

Theorem 21 (Makarov, Poltoratski [55]). Let {In}n∈N be a sequence of intervals on R and q ∈

L2(0, π). The following statements are equivalent:

1. The condition σDD ∪ σND ⊂ ∪n∈NIn and q on (0, ε) for some ε > 0 determine the potential

q.

2. For any long sequence of intervals {Jn}n∈N,

∑
In∩Jn log− |In|
|Jn|

9 0

as n→∞.
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3.3 An inverse spectral problem with mixed data

3.3.1 Matching index sets

We prove our first result, Theorem 22, by representing the Weyl-Titchmarsh m-function as an

infinite product in terms of Dirichlet-Dirichlet (α = 0, β = 0) and Neumann-Dirichlet (α = π/2,

β = 0) spectra. We follow the notations introduced in Example 1 for these two spectra, i.e.

σDD := σ0,0 and σND := σπ/2,0. For simplicity, let us also denote m0,0 by m.

Lemma 1. (infinite product representation of m-function) The m-function of a regular Schrö-

dinger operator (q ∈ L1(0, π)) for Dirichlet-Dirichlet boundary conditions (α = 0, β = 0) has

representations in terms of Dirichlet-Dirichlet and Neumann-Dirichlet spectra:

m(z) = C

(
z

b1

− 1

)∏
n∈N

(
z

bn+1

− 1

)(
z

an
− 1

)−1

, (3.9)

and

m(z) = −C
∏
n∈N

(
z

bn
− 1

)(
z

an
− 1

)−1

, (3.10)

whereC > 0, σDD = {an}n∈N, σND = {bn}n∈N and the product converges normally on C\∪n∈Nan.

Proof. Letm = u′z(0)/uz(0) be the Weylm-function with boundary conditions u(π) = 0, u′(π) =

−1. Since m is a meromorphic Herglotz function, Θ := m−i
m+i

is the corresponding meromorphic

inner function.

Let us define the set E in R as E := {z ∈ R : ImΘ(z) > 0}. The set E is given in terms of

σDD = {an}n∈N and σND = {bn}n∈N, namely E = (−∞, b1) ∪ ∪n∈N(an, bn+1).

The characteristic function of E coincides with the real part of the function 1
iπ

log(i1+Θ
1−Θ

) a.e.

on R. Since m is a meromorphic Herglotz function mapping R to R a.e., log(m) = log(i1+Θ
1−Θ

) is

a well-defined holomorphic function on C+ and its imaginary part takes values 0 and π a.e. on

R. Therefore 1
iπ

log(m) = 1
iπ

log(i1+Θ
1−Θ

) and the Schwarz integral of χE , SχE differ by a purely
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imaginary number on a.e. R, i.e.

1

iπ
log

(
i
1 + Θ

1−Θ

)
= SχE + ic = PχE + iQχE + ic, c ∈ R,

where P and Q are Poisson and conjugate Poisson integrals of χE , respectively. Therefore

i
1 + Θ

1−Θ
= exp(iπSχE − πc) = exp(iπPχE − πQχE − πc), c ∈ R.

On the real line, exp(Sh) = exp(h+ ih̃) for any Poisson-summable function h, where h̃ is the

Hilbert transform of h. If we let h := χE , then

h̃(x) =
1

π

[
log

(√
1 + b2

1

|x− b1|

)
+
∑
n∈N

log

(
|x− an|
|x− bn+1|

)
+

1

2

∑
n∈N

log

(
1 + b2

n+1

1 + a2
n

)]
.

Therefore

exp(−πh̃(x)) =
|x− b1|√

1 + b2
1

∏
n∈N

|x− bn+1|
|x− an|

∏
n∈N

(
1 + a2

n

1 + b2
n+1

)1/2

.

Noting that exp(iπh) is−1 on E and 1 on R\E, the Weyl m-function can be given in terms of σDD

and σND a.e. on R:

m(x) = i
1 + Θ(x)

1−Θ(x)

= exp(iπSχE − πc)

=
x− b1√
1 + b2

1

∏
n∈N

x− bn+1

x− an

∏
n∈N

(
1 + a2

n

1 + b2
n+1

)1/2

exp(−πc)

= C

(
x

b1

− 1

)∏
n∈N

(
x

bn+1

− 1

)(
x

an
− 1

)−1

where C = exp(−πc)
∏

n∈N

√
1+a2n
an

bn√
1+b2n

.

Since m(z) and C
(
z
b1
− 1
)∏

n∈N

(
z

bn+1
− 1
)(

z
an
− 1
)−1

are meromorphic functions that agree

a.e. on R, they are identical by the identity theorem for meromorphic functions. This gives the
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first representation (3.9). The second representation (3.10) follows from normal convergence of

{z/bn − 1}n∈N to −1 in C.

Using this representation of the m-function, we prove our first result. At this point let us note

that the eigenvalues in a spectrum are enumerated in increasing order, which is done following the

asymptotics (3.4), (3.5), (3.6) and (3.7).

Theorem 22. (Inverse problem I-a) Let q ∈ L1(0, π) and A ⊆ N. Then {an}n∈N, {bn}n∈N\A

and {γn}n∈A determine the potential q, where σDD = {an}n∈N, σND = {bn}n∈N are Dirichlet-

Dirichlet and Neumann-Dirichlet spectra and {γn}n∈N are point masses of the spectral measure

µ0,0 =
∑

n∈N γnδan .

Proof. By representation (3.8) of the m-function as a Herglotz integral of the spectral measure,

knowing γn means knowing Res(m, an). Therefore, in terms of the m-function our claim says

that the set of poles, {an}n∈N, the set of zeros except the index set A, {bn}n∈N\A, and the residues

with the same index set A, {Res(m, an)}n∈A determine the m-function uniquely. Before starting

to prove this claim let us briefly list the main steps of the proof. We will use similar ideas to prove

our results in non-matching index sets case and for general boundary conditions.

Step 1: Reduce the claim to the problem of unique recovery of the infinite product

G(z) := −C
∏
n∈A

(
z

bn
− 1

)(
z

an
− 1

)−1

from its sets of poles and residues.

Step 2: Observe thatG(z) is a meromorphic Herglotz function and has a representation in terms

of its poles, residues and a linear polynomial dz + e.

Step 3: Show uniqueness of d.

Step 4: Show uniqueness of e.

Step 5: Use the representation from Step 2 to get uniqueness of the two spectra and prove the

claim by Borg’s theorem.
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Step 1

From Lemma 1, the Weyl m-function can be represented in terms of σDD and σND,

m(z) = −C
∏
n∈N

(
z

bn
− 1

)(
z

an
− 1

)−1

.

Note that for any k ∈ A, we know

Res(m, ak) = C(bk − ak)
ak
bk

∏
n∈N,n6=k

(
ak
bn
− 1

)(
ak
an
− 1

)−1

. (3.11)

Let m(z) = F (z)G(z), where F and G are two infinite products defined as

G(z) := −C
∏
n∈A

(
z

bn
− 1

)(
z

an
− 1

)−1

, F (z) :=
∏
n∈N\A

(
z

bn
− 1

)(
z

an
− 1

)−1

Also note that at any point of {an}n∈A, the infinite product

F (z) =
∏
n∈N\A

(
z

bn
− 1

)(
z

an
− 1

)−1

(3.12)

is known.

Conditions (3.11) and (3.12) imply that for any k ∈ A, we know

Res(G, ak) =
Res(m, ak)

F (ak)
,

i.e. we know all of the poles and residues of G(z), but none of its zeros. We claim that G(z) can

be uniquely recovered from this data set.

Step 2

Let us observe that arg(G(z)) = π −
∑

n∈A [arg(z − bn)− arg(z − an)]. Since zeros and

poles of G(z) are real and interlacing, 0 < arg(G(z)) < π for any z in the upper half plane,

i.e. G(z) is a meromorphic Herglotz function. Therefore by C̆ebotarev’s theorem, see Theorem 3,
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G(z) has the representation

G(z) = dz + e+
∑
n∈A

An

(
1

an − z
− 1

an

)
, (3.13)

where d ≥ 0, e ∈ R and
∑

n∈AAn/a
2
n is absolutely convergent.

Note that Ak = −Res(G(z), ak) for any k ∈ A, which means there are only two unknowns on

the right hand side of (3.13), namely constants d and e.

Step 3

Now let us show uniqueness of G(z) by showing uniqueness of dz + e. Let G̃(z) be another

infinite product sharing same properties with G(z), namely:

• The infinite product G̃(z) is defined as

G̃(z) := −C̃
∏
n∈A

(
z

b̃n
− 1

)(
z

ãn
− 1

)−1

,

where C̃ > 0, the set of poles {ãn}n∈A satisfies asymptotics (3.5) and the set of zeros

{b̃n}n∈A satisfies asymptotics (3.6).

• G(z) and G̃(z) share same set of poles with equivalent residues at the corresponding poles,

i.e. ãk = ak and Res(G̃, ak) = Res(G, ak) for any k ∈ A.

• By the equivalence of poles and residues of G(z) and G̃(z) and C̆ebotarev’s theorem, G̃(z)

has the representation

G̃(z) = d̃z + ẽ+
∑
n∈A

An

(
1

an − z
− 1

an

)
, (3.14)

where d̃ ≥ 0, ẽ ∈ R.

Note that we defined ãn and b̃n only for n ∈ A. Let ãn := an and b̃n := bn for every n ∈ N\A. Let

us also note that {ãn}n∈N and {b̃n}n∈N are interlacing sequences so that they represent two spectra
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of a potential function q̃(x).

Let k ∈ A and bk 6= b̃k. Since G(bk) = 0 and G̃(̃bk) = 0, using representations (3.13) and

(3.14) we get

− dbk − e =
∑
n∈A

An

(
1

an − bk
− 1

an

)
, (3.15)

− d̃b̃k − ẽ =
∑
n∈A

An

(
1

an − b̃k
− 1

an

)
and (3.16)

G(b̃k) = G(b̃k)− G̃(b̃k) = (d− d̃)b̃k + e− ẽ (3.17)

Replacing e− ẽ by G(̃bk)− (d− d̃)̃bk and taking difference of (3.15) and (3.16) we get

dbk − d̃b̃k − db̃k + d̃b̃k +G(b̃k) =
∑
n∈A

An

(
b̃k − bk

(an − b̃k)(an − bk)

)

Dividing both sides by b̃k (̃bk − bk) we get

−d
b̃k

+
G(b̃k)

b̃k (̃bk − bk)
=
∑
n∈A

(
An

b̃k(an − b̃k)(an − bk)

)
(3.18)

Note that since {an}n∈A satisfies asymptotics (3.5) and {bn}n∈A, {b̃n}n∈A satisfy asymptotics

(3.6), the inequalities

|̃bk(an − bk)(an − b̃k)|−1 ≤ |̃bn(an − bn)(an − b̃n)|−1 ≤ 2/a2
n (3.19)

are valid for any k ∈ A, for sufficiently large n ∈ A. In addition,
∑

n∈AAn/a
2
n is absolutely

convergent. Therefore right hand side of (3.18) converges to 0 as k goes to∞. Also note that by

(3.17), left hand side of (3.18) is

−d
b̃k

+
G(b̃k)

b̃k (̃bk − bk)
=
−d
b̃k

+
G(b̃k)− G̃(b̃k)

b̃k (̃bk − bk)
= − d

b̃k
+

1

b̃k − bk

[
d− d̃+

e− ẽ
b̃k

]
. (3.20)
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Now let us show b̃k − bk converges to 0 as k goes to ∞. Recall that poles of G and G̃ satisfy

asymptotics

n2 +
1

π

∫ π

0

q(x)dx+ αn and n2 +
1

π

∫ π

0

q̃(x)dx+ α̃n

respectively, where αn = o(1) and α̃n = o(1) as n→∞. Equivalance of poles of G and G̃ imply

equivalence of
∫ π

0
q(x)dx and

∫ π
0
q̃(x)dx. Therefore bn and b̃n satisfy asymptotics

(
n− 1

2

)2

+
1

π

∫ π

0

q(x)dx+ βn and
(
n− 1

2

)2

+
1

π

∫ π

0

q(x)dx+ β̃n,

where βn = o(1) and β̃n = o(1) as n → ∞. Hence b̃k − bk = o(1) as k goes to∞. Therefore by

(3.20), left hand side of (3.18) goes to ∞ if d − d̃ 6= 0, so we get a contradiction unless d = d̃.

This implies that G(z)− G̃(z) is a real constant, which is G(0)− G̃(0) = C̃ − C.

Step 4

Now let us show C̃−C = 0. Positivity of (̃bk−bn)/(̃bk−an) for all n 6= k, which follows from

interlacing property of {an}n∈N and {bn}n∈N and interlacing property of {an}n∈N and {b̃n}n∈N,

implies sgn(C̃ − C) = sgn(β̃k − βk) for all k ∈ N, i.e. {bn}n∈A and {b̃n}n∈A are interlacing

sequences.

Let us assume C̃ > C and wlog the two spectra lie on the positive real line. This implies

b̃n > bn for all n ∈ A. Observe that
∏

n∈A b̃n/bn is finite, since

∑
n∈A

b̃n − bn
bn

=
∑
n∈A

β̃n − βn
bn

≤ max
n∈A

(β̃n − βn)
∑
n∈A

1

bn
<∞.

Therefore the infinite product H(z) := G(z)/G̃(z) is represented as

H(z) :=
G(z)

G̃(z)
=
C

C̃

∏
n∈A

z − bn
bn

b̃n

z − b̃n
=
C

C̃

∏
n∈A

b̃n
bn

∏
n∈A

z − bn
z − b̃n

.

Let us denote the constant factor of H(z) by N := (C/C̃)
∏

n∈A b̃n/bn. Then by interlacing
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property of {bn}n∈A and {b̃n}n∈A, the infinite product −H is a meromorphic Herglotz function

and hence by Theorem 3 it is represented as

−H(z) = −N
∏
n∈A

z − bn
z − b̃n

= Dz + E +
∑
n∈A

Bn

(
1

z − b̃n
+

1

b̃n

)
, (3.21)

where Bk = −Res(H, b̃k) and D,E ∈ R.

Now let us show that {Bk/b̃k}k∈A is summable.

∣∣∣∣Bk

b̃k

∣∣∣∣ = N
b̃k − bk
bk

∏
n∈A,n 6=k

b̃k − bn
b̃k − b̃n

≤ N
b̃k − bk
b̃k

∏
n∈A,1≤n≤k−1

b̃k − bn
b̃k − b̃n

= N
b̃k − bk
b̃k

∏
n∈A,1≤n≤k−1

(
1 +

b̃n − bn
b̃k − b̃n

)

= N
b̃k − bk
b̃k

∏
n∈A,1≤n≤k−1

(
1 +

β̃n − βn
(k − 1/2)2 − (n− 1/2)2 + β̃k − β̃n

)

≤ N
b̃k − bk
b̃k

∏
n∈A,1≤n≤k−1

(
1 +

β̃n − βn
(n+ 1− 1/2)2 − (n− 1/2)2 + β̃k − β̃n

)

≤ N
b̃k − bk
b̃k

M
k−1∏
n=1

(
1 +

1

2n

)
,

for sufficiently large k, where M is a real constant independent of k. Since b̃k − bk = o(1), b̃k =

O(k2) and
∏k−1

n=1(1 + 1/2n) = O(
√
k) as k goes to∞, we get the asymptotics Bk/b̃k = o(1/k3/2)

as k goes to∞ and hence
∑

n∈ABn/b̃n is absolutely convergent. Then by letting z tend to −∞ in

(3.21) we get

−N = lim
t→−∞

(
Dt+ E +

∑
n∈A

Bn

b̃n
+
∑
n∈A

Bn

t− b̃n

)

and hence D = 0 and −N = E +
∑

n∈ABn/b̃n, i.e. −H(z) has the representation

−H(z) = N −
∑
n∈A

Bn

z − b̃n
. (3.22)
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Noting that H(bk) = 0 and Res(G, ak) = Res(G̃, ak), i.e. H(ak) = 1 for all k ∈ A, we get

1 = H(ak)−H(bk) = −N +
∑
n∈A

Bn

ak − b̃n
+N −

∑
n∈A

Bn

bk − b̃n
=
∑
n∈A

Bn
(bk − ak)

(ak − b̃n)(bk − b̃n)

Each term of the infinite sum on the right end is positive, so by letting k go to ∞ we get the

following contradiction.

1 = lim
k→∞

∑
n∈A

Bn
(bk − ak)

(ak − b̃n)(bk − b̃n)
=
∑
n∈A

Bn lim
k→∞

(bk − ak)
(ak − b̃n)(bk − b̃n)

= 0

Similar arguments give another contradiction when C̃ < C, so C = C̃.

Step 5

Step 4 implies uniqueness of dz+e, i.e. uniqueness of G(z) and hence uniqueness of {bn}n∈A.

After unique recovery of the two spectra σDD = {an}n∈N and σND = {bn}n∈N, the potential is

uniquely determined by Borg’s theorem.

Remark 1. If we let A = N, Theorem 22 gives Marchenko’s theorem with Dirichlet-Dirichlet,

Neumann-Dirichlet boundary conditions as a corollary. By letting A = ∅, we get the statement of

Borg’s theorem with Dirichlet-Dirichlet, Neumann-Dirichlet boundary conditions.

Remark 2. Spectral data of Theorem 22 can be seen as {an}n∈N, {bn}n∈N\A and {τα(an)}n∈A,

where {τα(an)}n∈A is the set of norming constants for σDD = {an}n∈N.

3.3.2 Non-matching index sets

If the known point masses of the spectral measure and unknown eigenvalues of the Neumann-

Dirichlet spectrum have different index sets, one needs some control over eigenvalues of the

Dirichlet-Dirichlet spectrum corresponding to known point masses and unknown part of the Neu-

mann-Dirichlet spectrum. In this case we get a C̆ebotarev type representation result. Before

the statement, let us clarify the notations we use. For any subsequence {akn}n∈N ⊂ σDD and
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{bln}n∈N ⊂ σND, by Akn,m and Akn we denote the residues at akn of partial and infinite products,

respectively, consisting of these subsequences:

Akn,m := Res(Gm, akn) =
akn
bln

(akn − bln)
∏

1≤j≤m,j 6=n

akj
blj

akn − blj
akn − akj

,

Akn := Res(G, akn) =
akn
bln

(akn − bln)
∏

j∈N,j 6=n

akj
blj

akn − blj
akn − akj

,

where

Gm(z) :=
m∏
n=1

(
z

bln
− 1

)(
z

akn
− 1

)−1

, G(z) :=
∏
n∈N

(
z

bln
− 1

)(
z

akn
− 1

)−1

.

Note that these subsequences are ordered according to their indices, i.e. akn < akn+1 and

bln < bln+1 for any n ∈ N. This follows from the asymptotics of the spectra.

Lemma 2. (C̆ebotarev type representation I) Let {akn}n∈N ⊂ σDD and {bln}n∈N ⊂ σND satisfy

following properties:

• lim
m→∞

m∑
n=1

(
|Akn,m − Akn|/a2

kn

)
<∞,

• {Akn/a2
kn
}n∈N ∈ l1.

Then

G(z) = cz2 + dz + e+
∑
n∈N

Akn

(
1

z − akn
+

1

akn

)
, (3.23)

where c, d, e are real numbers, Akn is the residue of G(z) at the point z = akn and the sum

converges normally on C\ ∪n∈N akn .

Proof. Let p(z) be the difference of G(z) and the infinite sum on the right hand side of (3.23).

Then, p(z) is an entire function, since the infinite product and the infinite sum share the same set

of poles with equivalent degrees and residues. We represent Gm(z) as partial sums:

m∏
n=1

(
z

bln
− 1

)(
z

akn
− 1

)−1

=
m∑
n=1

Akn,m

(
1

z − akn
+

1

akn

)
+ 1,
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where Akn,m = Res(Gm, akn).

Let Cn be the circle with radius bln centered at the origin. This sequence of circles satisfy

following properties:

• Cn omits all the poles akn .

• Each Cn lies inside Cn+1.

• The radius of Cn, bln diverges to infinity as n goes to infinity.

Then,

max
z∈Ct

∣∣∣∣p(z)− 1

b2
lt

∣∣∣∣ = max
z∈Ct

∣∣∣∣∣∣
G(z)− 1−

∑
n∈NAkn

(
1

z−akn
+ 1

akn

)
b2
lt

∣∣∣∣∣∣
=

1

b2
lt

max
z∈Ct

lim
m→∞

∣∣∣∣∣
m∑
n=1

Akn,m

(
1

z − akn
+

1

akn

)
−

m∑
n=1

Akn

(
1

z − akn
+

1

akn

)∣∣∣∣∣
= lim

m→∞

1

b2
lt

max
z∈Ct

∣∣∣∣∣
m∑
n=1

(Akn,m − Akn)
z

akn(z − akn)

∣∣∣∣∣
≤ lim

m→∞

1

b2
lt

m∑
n=1

|Akn,m − Akn|
blt

akn|blt − akn|

= lim
m→∞

m∑
n=1

|Akn,m − Akn|
1

aknblt|blt − akn|

≤ lim
m→∞

m∑
n=1

|Akn,m − Akn|
1

aknbl1|bl1 − akn|

≤ lim
m→∞

C ′
m∑
n=1

|Akn,m − Akn|
a2
kn

<∞.

Note that the second inequality is a consequence of

sup
t∈N

(
blt |blt − akn|

)−1

≤
(
bl1|bl1 − akn|

)−1

,

which follows from asymptotics of {an}n∈N and {bn}n∈N. Therefore |p(z) − 1| ≤ C ′′|z|2 on the

circle Ct for any t ∈ N, where C ′ and C ′′ are real numbers. By the maximum modulus theorem
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and the entireness of p(z), we conclude that p(z) is a polynomial of at most second degree. Since

G(0), G′(0) and G′′(0) are real numbers, c, d, e ∈ R.

Using this C̆ebotarev type representation we prove our result in non-matching index sets case

with Dirichlet-Dirichlet, Neumann-Dirichlet boundary conditions. However, we need extra infor-

mation of an eigenvalue from {bln}n∈N.

Theorem 23. (Inverse problem II-a) Let q ∈ L1(0, π), and {akn}n∈N ⊂ σDD, {bln}n∈N ⊂ σND

satisfy following properties:

• lim
m→∞

m∑
n=1

(
|Akn,m − Akn|/a2

kn

)
<∞,

• {Akn/a2
kn
}n∈N ∈ l1.

Then {an}n∈N, {bn}n∈N\{bln}n∈N\{s} and {γkn}n∈N determine the potential q for any s ∈ N, where

σDD = {an}n∈N, σND = {bn}n∈N are Dirichlet-Dirichlet and Neumann-Dirichlet spectra and

{γn}n∈N are point masses of the spectral measure µ0,0 =
∑

n∈N γnδan .

Proof. By representation of the m-function as the Herglotz integral of the spectral measure, from

γn, we know Res(m, an). Therefore, in terms of the m-function our claim says that the set of

poles, {an}n∈N, the set of zeros except the index set {ln}n∈N\{s}, {bls} ∪ {bn}n∈N\{ln}n∈N , and the

residues with the index set {kn}n∈N, {Res(m, akn)}n∈N determine the m-function uniquely.

From Lemma 1, the Weyl m-function can be represented in terms of σDD and σND,

m(z) = −C
∏
n∈N

(
z

bn
− 1

)(
z

an
− 1

)−1

.

Note that for any n ∈ N, we know

Res(m, akn) = C(bkn − akn)
akn
bkn

∏
j∈N,j 6=kn

(
akn
bj
− 1

)(
akn
aj
− 1

)−1

. (3.24)
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Let m(z) = F (z)G(z), where F and G are two infinite products defined as

G(z) := −C
∏
n∈N

(
z

bln
− 1

)(
z

akn
− 1

)−1

,

F (z) :=
∏

n∈N\{ln}n∈N

(
z

bn
− 1

) ∏
n∈N\{kn}n∈N

(
z

an
− 1

)−1

Also note that F (akn) is known for any n ∈ N. This condition and (3.24) imply that for any n ∈ N,

we know

Res(G, akn) =
Res(m, akn)

F (akn)
.

By Lemma 2, G(z) has the following representation

G(z) = cz2 + dz + e+
∑
n∈N

Akn

(
1

z − akn
+

1

akn

)
, (3.25)

where Akn = Res(G, akn). In order to show uniqueness of G(z), let us consider G̃(z) similar to

the proof of Theorem 22, i.e. G̃(z) has the following properties.

• The infinite product G̃(z) is defined as

G̃(z) := −C̃
∏
n∈N

(
z

b̃ln
− 1

)(
z

ãkn
− 1

)−1

,

where C̃ > 0, the set of poles {ãkn}n∈N satisfies asymptotics (3.5) and the set of zeros

{b̃ln}n∈N satisfies asymptotics (3.6). For the given eigenvalues from σND = {bn}n∈N, let b̃n

be defined as bn, i.e. b̃j := bj for j ∈ N\{ln}n∈N. Similarly let ãj := aj for j ∈ N\{kn}n∈N.

• G(z) and G̃(z) share same set of poles with equivalent residues at the corresponding poles,

i.e. ãkn = akn and Res(G̃, akn) = Res(G, akn) for any n ∈ N.

• G(z) and G̃(z) share one zero, namely bls = b̃ls .

• By the equivalence of poles and residues of G(z) and G̃(z) and Lemma 2, G̃(z) has the
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representation

G̃(z) = c̃z2 + d̃z + ẽ+
∑
n∈N

Akn

(
1

akn − z
− 1

akn

)
, (3.26)

where c̃, d̃, ẽ ∈ R.

Let m ∈ N\{s} and blm 6= b̃lm . Since G(blm) = 0 and G̃(̃blm) = 0, using representations (3.25)

and (3.26) we get

−cb2
lm − dblm − e =

∑
n∈N

Akn

(
1

akn − blm
− 1

akn

)
, (3.27)

−c̃b̃2
lm − d̃b̃lm − ẽ =

∑
n∈N

Akn

(
1

akn − b̃lm
− 1

akn

)
and (3.28)

G(b̃lm) = G(b̃lm)− G̃(b̃lm) = (c− c̃)b̃2
lm + (d− d̃)b̃lm + e− ẽ (3.29)

Taking difference of (3.27) and (3.28) and replacing e− ẽ by G(b̃lm)− (c− c̃)b̃2
lm
− (d− d̃)̃blm we

get

cb2
lm − cb̃

2
lm + dblm − db̃lm +G(b̃lm) =

∑
n∈N

Akn

(
b̃lm − blm

(akn − b̃lm)(akn − blm)

)

Dividing both sides by b̃lm (̃blm − blm) we get

−c(blm + b̃lm)

b̃lm
+
−d
b̃lm

+
G(b̃lm)

b̃lm (̃blm − blm)
=
∑
n∈N

(
Akn

b̃lm(akn − b̃lm)(akn − blm)

)
(3.30)

Note that since {an}n∈N satisfies asymptotics (3.5) and {bn}n∈N, {b̃n}n∈N satisfy asymptotics

(3.6), the inequalities

|̃blm(akn − blm)(akn − b̃lm)|−1 ≤ |̃bkn(akn − bkn)(akn − b̃kn)|−1 ≤ 2/a2
kn

are valid for anym ∈ N\{s} and for sufficiently large n ∈ N. Recall that b̃kj := bkj if kj /∈ {ln}n∈N.

In addition,
∑

n∈NAkn/a
2
kn

is absolutely convergent. Therefore right hand side of (3.30) converges
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to 0 as m goes to∞. Also note that by (3.29), left hand side of (3.30) is

−c(blm + b̃lm)− d
b̃lm

+
G(b̃lm)

b̃lm (̃blm − blm)
=
−c(blm + b̃lm)− d

b̃lm
+
G(b̃lm)− G̃(b̃lm)

b̃lm (̃blm − blm)

=
−c(blm + b̃lm)− d

b̃lm
+

1

b̃lm − blm

[
(c− c̃)b̃lm + d− d̃+

e− ẽ
b̃lm

]
.

Let us observe that

lim
m→∞

−c(blm + b̃lm)− d
b̃lm

= −2c.

Now let us show b̃lm − blm converges to 0 as m goes to∞. Recall that poles of G and G̃ satisfy

asymptotics

k2
n +

1

π

∫ π

0

q(x)dx+ αkn and k2
n +

1

π

∫ π

0

q̃(x)dx+ α̃kn

respectively, where αn = o(1) and α̃n = o(1) as n→∞. Equivalance of poles of G and G̃ imply

equivalence of
∫ π

0
q(x)dx and

∫ π
0
q̃(x)dx. Therefore blm and b̃lm satisfy asymptotics

(
lm −

1

2

)2

+
1

π

∫ π

0

q(x)dx+ βlm and
(
lm −

1

2

)2

+
1

π

∫ π

0

q(x)dx+ β̃lm ,

where βm = o(1) and β̃m = o(1) as m→∞. Hence b̃lm − blm = o(1) as m goes to∞. Therefore

left hand side of (3.30) goes to∞ if c− c̃ 6= 0 or d− d̃ 6= 0, so we get a contradiction unless c = c̃

and d = d̃. This implies that G(z) − G̃(z) is a real constant. However, G(z) and G̃(z) share the

zero bls . This implies uniqueness ofG(z) and hence uniqueness of {bln}n∈N. After unique recovery

of the two spectra σDD and σND, the potential is uniquely determined by Borg’s theorem.

We also get the uniqueness result without knowing any point from {bln}n∈N, but this requires

absolute convergence of
∏

n∈N akn/bln . By absolute convergence of
∏

n∈N akn/bln we mean abso-

lute convergence of
∑

n∈N(akn/bln−1). Note that Limit Comparison Test implies that
∏

n∈N akn/bln

is absolutely convergent if and only if
∏

n∈N bln/akn is absolutely convergent. Absolute conver-

gence of
∏

n∈N akn/bln also implies the two conditions in Lemma 2, so in this case Lemma 2 can
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be written in the following form.

Lemma 3. (C̆ebotarev type representation II) Let {akn}n∈N ⊂ σDD and {bln}n∈N ⊂ σND such

that
∏

n∈N(akn/bln) is absolutely convergent. Then

G(z) = cz2 + dz + e+
∑
n∈N

Akn

(
1

z − akn
+

1

akn

)
,

where c, d, e are real numbers, Akn is the residue of G(z) at the point z = akn and the sum

converges normally on C\ ∪n∈N akn .

Proof. We will show that absolute convergence of
∏

n∈N(akn/bln) implies the two conditions in

Lemma 2, but first we begin by showing that absolute convergence of
∏

n∈N(akn/bln) implies

{1/(akn − bln)}n∈N ∈ l1. Since
∏

n∈N(akn/bln) is absolutely convergent,

∑
n∈N

∣∣∣∣akn − blnbln

∣∣∣∣ =
∑
n∈N

∣∣∣∣ k2
n − (ln − 1/2)2 + αkn − βln

(ln − 1/2)2 + (1/π)
∫ π

0
q(x)dx+ βln

∣∣∣∣ <∞,
i.e. {(k2

n − l2n + ln)/l2n}n∈N ∈ l1. Note that limn→∞ akn/bln = 1 implies limn→∞ kn/ln = 1.

Therefore

∞ >
∑
n∈N

∣∣∣∣k2
n − l2n + ln

l2n

∣∣∣∣
=
∑
n∈N

kn + ln
ln

∣∣∣∣kn − ln + ln/(kn + ln)

ln

∣∣∣∣
≥

N∑
n=1

∣∣∣∣kn − ln + ln/(kn + ln)

ln

∣∣∣∣+
∞∑

n=N+1

∣∣∣∣1/4ln
∣∣∣∣

≥ c1

∑
n∈N

1

ln

where N ∈ N and c1 > 0, i.e. {1/ln}n∈N ∈ l1 and by Limit Comparison Test {1/kn}n∈N ∈ l1.

Therefore {1/(akn − bln)}n∈N ∈ l1, since 1/|akn − bln| ≤ 1/|akn − bkn| = O(1/kn) as n goes to

∞.
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The partial product GN defined in the beginning of Section 3.3.2 can be represented as

GN(z) =
N∑
n=1

Akn,N
z − akn

+
N∏
n=1

akn
bln

,

and hence

lim
N→∞

N∑
n=1

Akn,N
akn

= lim
N→∞

[ N∏
n=1

akn
bln
−GN(0)

]
=
∏
n∈N

akn
bln
− 1 ∈ R. (3.31)

Since {1/akn}n∈N ∈ l1, existence of this limit implies limN→∞
∑N

n=1 |Akn,N/a2
kn
| exists.

Now we are ready to prove the first assumption in Lemma 2, i.e.

lim
N→∞

N∑
n=1

(
|Akn,N − Akn|/a2

kn

)
<∞.

For n < N , let us define

Pkn,N :=
∞∏

m=N+1

akm
blm

akn − blm
akn − akm

.

Then
|Akn,N − Akn|

a2
kn

=

∣∣∣∣∣
(
Akn,N
akn

)(
akn − bln
akn

[1− Pkn,N ]

)(
1

akn − bln

) ∣∣∣∣∣ (3.32)

Using (3.31), absoulte convergence of
∏

n∈N(akn/bln) and hence absolute convergence of∑
n∈N[(akn − bln)/akn ] we get that the limits

lim
N→∞

N∑
n=1

Akn,N
akn

and lim
N→∞

N∑
n=1

(
akn − bln
akn

[1− Pkn,N ]

)
converge.

Recall that we have also showed {1/(akn − bln)}n∈N ∈ l1. Therefore by (3.32) we get the first

assumption in Lemma 2,

lim
N→∞

N∑
n=1

|Akn,N − Akn|
a2
kn

<∞.

After recalling that we showed existence of limN→∞
∑N

n=1 |Akn,N/a2
kn
|, we get the second as-
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sumption in Lemma 2, i.e. {Akn/a2
kn
}n∈N ∈ l1 as follows:

lim
N→∞

N∑
n=1

|Akn|
a2
kn

≤ lim
N→∞

N∑
n=1

|Akn − Akn,N |
a2
kn

+ lim
N→∞

N∑
n=1

|Akn,N |
a2
kn

<∞.

Now using Lemma 2 we get the desired result.

Theorem 24. (Inverse problem II-b) Let q ∈ L1(0, π) and {akn}n∈N ⊂ σDD, {bln}n∈N ⊂

σND such that
∏

n∈N(akn/bln) is absolutely convergent. Then {an}n∈N, {bn}n∈N\{bln}n∈N and

{γkn}n∈N determine the potential q, where σDD = {an}n∈N, σND = {bn}n∈N are Dirichlet-

Dirichlet and Neumann-Dirichlet spectra and {γn}n∈N are point masses of the spectral measure

µ0,0 =
∑

n∈N γnδan .

Proof. One can use Lemma 3 and follow the proof of Theorem 23 until the last step, i.e. showing

uniqueness of the two spectra after obtaining that G(z) − G̃(z) is a real constant, so let us show

G(z)− G̃(z) = 0. The main differences in this case are that G and G̃ do not share any zero and the

infinite products
∏

n∈N(akn/bln) and
∏

n∈N(akn/b̃ln) are absolutely convergent. Let us recall that

the infinite products G and G̃ have the following representations:

G(z) = cz2 + dz − C +
∑
n∈N

Akn

(
1

z − akn
+

1

akn

)
,

G̃(z) = cz2 + dz − C̃ +
∑
n∈N

Akn

(
1

z − akn
+

1

akn

)
.

Therefore by taking difference of G(z) and G̃(z) we get G(z) + C = G̃(z) + C̃, i.e.

− C
∏
n∈N

(
z

bln
− 1

)(
z

akn
− 1

)−1

+ C = −C̃
∏
n∈N

(
z

b̃ln
− 1

)(
z

akn
− 1

)−1

+ C̃. (3.33)

Note that since the infinite products
∏

n∈N(akn/bln),
∏

n∈N(akn/b̃ln) are absolutely convergent and

the two spectra {an}n∈N, {bn}n∈N lie on the positive real line, the infinite products on the two sides

of (3.33) are uniformly convergent on the second quadrant. Hence by letting z go to infinity on the
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second quadrant we get

− C
∏
n∈N

akn
bln

+ C = −C̃
∏
n∈N

akn

b̃ln
+ C̃. (3.34)

Recall that
∏

n∈N b̃ln/bln is finite, since

∑
n∈N

|̃bln − bln|
bln

=
∑
n∈N

|β̃ln − βln|
bln

≤ max
n∈N
|β̃ln − βln|

∑
n∈N

1

bln
<∞.

Therefore the infinite product H(z) := G(z)/G̃(z) is represented as

H(z) :=
G(z)

G̃(z)
=
C

C̃

∏
n∈N

z − bln
bln

b̃ln

z − b̃ln
=
C

C̃

∏
n∈N

b̃ln
bln

∏
n∈N

z − bln
z − b̃ln

.

We know that G and G̃ share same poles with equivalent residues at the corresponding poles.

Therefore for any m ∈ N

1 = H(akm) =
C

C̃

∏
n∈N

b̃ln
bln

∏
n∈N

akm − bln
akm − b̃ln

. (3.35)

Now let us find the limit of the infinite product on the right end of (3.35) as m goes to∞. This

infinite product is uniformly convergent if and only if the infinite sum

∑
n∈N

(
akm − bln
akm − b̃ln

− 1

)
=
∑
n∈N

b̃ln − bln
akm − b̃ln

(3.36)

is uniformly convergent. Note that asymptotics of the two spectra imply b̃lj − blj = o(1) as j

goes to infinity. Then the asymptotics of {akn}n∈N, {bln}n∈N and {b̃ln}n∈N together with absolute

convergence of the infinite products
∏

n∈N(akn/bln),
∏

n∈N(akn/b̃ln) imply that

∑
n∈N

∣∣∣∣∣ b̃ln − blnakm − b̃ln

∣∣∣∣∣ ≤∑
n∈N

∣∣∣∣∣ b̃ln − blnakn − b̃ln

∣∣∣∣∣ <∞, (3.37)

since {1/(akn − b̃ln)}n∈N ∈ l1 as we discussed in the proof of Lemma 3. Therefore by letting
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m go to ∞ in (3.35) we get C̃/C =
∏

j∈N b̃lj/blj . If we define γ :=
∏

n∈N akn/bln and γ̃ :=∏
n∈N akn/b̃ln , we get C̃/C = γ/γ̃. This identity and (3.34) imply

γ − 1

γ̃ − 1
=
γ

γ̃
and hence γ = γ̃.

Therefore C = C̃. This implies uniqueness of G(z) and hence uniqueness of {bln}n∈N. After

unique recovery of the two spectra σDD and σND, the potential is uniquely determined by Borg’s

theorem.

3.3.3 General boundary conditions

As discussed in Section 3.1, the Weyl m-function for the Schrödinger equation

Lu = −u′′ + qu = zu (3.38)

with boundary conditions

u(0) cosα− u′(0) sinα = 0 (3.39)

u(π) cos β + u′(π) sin β = 0, (3.40)

is defined as mα,β(z) =
cos(α)u′z(0) + sin(α)uz(0)

− sin(α)u′z(0) + cos(α)uz(0)
, where uz(t) is a solution of (3.38) satis-

fying (3.40) and α, β ∈ [0, π). In order to prove our result with boundary conditions (3.39) and

(3.40) we need to consider more general m-functions. Recall that we have defined the m-function

in Section 3.1 by introducing two solutions sz(t) and cz(t) of (3.38) satisfying the initial conditions

sz(0) = sin(α), s′z(0) = cos(α)

cz(0) = cos(α), c′z(0) = − sin(α)

and uz(t), a solution of (3.38) with boundary conditions uz(π) = sin β, u′z(π) = − cos β. The

same steps to define the m-function as in Section 3.1 can be followed if cz(t) is a linearly indepen-

dent solution with W (cz, sz) = 1. Therefore we introduce two solutions sz(t) and cz(t) of (3.38)
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satisfying the initial conditions

sz(0) = sin(α2), s′z(0) = cos(α2)

cz(0) =
sin(α1)

sin(α1 − α2)
, c′z(0) =

cos(α1)

sin(α1 − α2)

for α1, α2 ∈ [0, π), sin(α1−α2) 6= 0 and same uz(t). Then we can define the m-function mα1,α2,β .

Definition 16. The m-function mα1,α2,β is defined as

mα1,α2,β(z) :=
1

sin(α2 − α1)

[
− sin(α1)u′z(0) + cos(α1)uz(0)

− sin(α2)u′z(0) + cos(α2)uz(0)

]
,

where α1, α2, β ∈ [0, π), sin(α2 − α1) 6= 0 and uz(t) is a solution of (3.38) with boundary condi-

tions uz(π) = sin β, u′z(π) = − cos β.

Remark 3. The m-function mα,β we discussed in Section 3.1 is obtained by letting α1 = α− π/2

and α2 = α, i.e. mα−π
2
,α,β(z) = mα,β(z).

The m-function mα1,α2,β(z) is a meromorphic Herglotz function having real zeros on σα1,β and

real poles on σα2,β , which are interlacing. It is a meromorphic Herglotz function, since m0,β(z) =

u′z(0)/uz(0) is a meromorphic Herglotz function and sgn[Im(mα1,α2,β(z))] = sgn[Im(m0,β(z))].

Therefore Herglotz representation theorem implies

mα1,α2,β(z) = az + b+

∫ [
1

t− z
− t

1 + t2

]
dµα1,α2,β(t),

where a, b ∈ R and µα1,α2,β is a positive discrete Poisson-summable measure supported on the

spectrum σα2,β . Let us call µα1,α2,β the spectral measure corresponding to (α1, α2, β). Now we

prove our results with general boundary conditions.

Theorem 25. (Inverse problem I-b) Let q ∈ L1(0, π), A ⊂ N, sin(α2 − α1) 6= 0 and α1, α2, β ∈

[0, π). Then {an}n∈N, {bn}n∈N\A and {γn}n∈A determine the potential q, where σα2,β = {an}n∈N,
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σα1,β = {bn}n∈N are two spectra and {γn}n∈N are point masses of the spectral measure µα1,α2,β =∑
n∈N γnδan .

Proof. Wlog let an and bn be positive for all n ∈ N. We follow the arguments we used in the

proofs of Lemma 1 and Theorem 22, but there are two differences: asymptotics of the two spectra,

depending on α1, α2, β and hence the order relation betweeen an and bn. Thus, we consider the

following cases.

(i) α1 6= 0, α2 6= 0, α1 > α2 :

When β 6= 0, the two spectra σα2,β = {an}n∈N and σα1,β = {bn}n∈N satisfy the asymptotics

(3.4) and hence an > bn for all n ∈ N. Therefore using the proof of Lemma 1, mα1,α2,β(z) can be

represented as (3.10). Using this representation and C̆ebotarev’s theorem as we discussed in the

proof of Theorem 22, the meromorphic Herglotz function G(z) defined as

G(z) := −C
∏
n∈A

(
z

bn
− 1

)(
z

an
− 1

)−1

(3.41)

has the following representation:

G(z) = dz + e+
∑
n∈A

An

(
1

z − an
+

1

an

)
.

Only unknown constants on the right hand side are d and e. In order to show uniqueness of the

linear term dz + e, let us introduce G̃(z) as we did in the proof of Theorem 22:

• The infinite product G̃ is defined as

G̃(z) := −C̃
∏
n∈A

(
z

b̃n
− 1

)(
z

ãn
− 1

)−1

,

where C̃ > 0, the set of poles {ãn}n∈A and the set of zeros {b̃n}n∈A satisfy asymptotics

(3.4). Let ãk := ak and b̃k := bk for k ∈ N\A.
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• G and G̃ share same set of poles with equivalent residues at the corresponding poles, i.e.

ãk = ak and Res(G̃, ak) = Res(G, ak) for any k ∈ A.

• By the equivalence of poles and residues of G and G̃ and C̆ebotarev’s theorem, G̃(z) has the

representation

G̃(z) = d̃z + ẽ+
∑
n∈A

An

(
1

z − an
+

1

an

)
,

where d̃ ≥ 0, ẽ ∈ R.

Therefore the difference of G and G̃ is a linear polynomial, i.e.

G(z)− G̃(z) = (d− d̃)z + e− ẽ (3.42)

Note that since {an}n∈N, {bn}n∈N and {b̃n}n∈N are subsets of (0,∞) and satisfy asymptotics

(3.4), for any x ∈ (−∞, 0) we get

|G(x)− G̃(x)| ≤

∣∣∣∣∣C∏
n∈A

(
x

bn
− 1

)(
x

an
− 1

)−1
∣∣∣∣∣+

∣∣∣∣∣C̃∏
n∈A

(
x

b̃n
− 1

)(
x

an
− 1

)−1
∣∣∣∣∣

≤ C
∏
n∈A

an
bn

+ C̃
∏
n∈A

an

b̃n
< ∞.

Convergence of the infinite product
∏

n∈A an/bn follows from the fact that

∑
n∈A

an − bn
bn

≤M
∑
n∈A

1

n2
,

for some M <∞, since asymptotics (3.4) imply |an − bn| ≤ M1 for some M1 <∞ independent

of n and an = n2 + o(n2), bn = n2 + o(n2) as n goes to infinity. Therefore

lim
x→−∞

∣∣∣(d− d̃)x+ e− ẽ
∣∣∣ = lim

x→−∞

∣∣∣G(x)− G̃(x)
∣∣∣ =

∣∣∣∣∣C∏
n∈A

an
bn
− C̃

∏
n∈A

an

b̃n

∣∣∣∣∣ <∞,
so we get a contradiction unless d = d̃. This implies that G(z)− G̃(z) is a real constant, which is
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G(0) − G̃(0) = C̃ − C. In order to show C̃ = C, we follow exactly the same arguments used in

the proof of Theorem 22.

This gives uniqueness of G(z) and hence uniqueness of {bn}n∈A. After unique recovery of the

two spectra σα2,β and σα1,β , Levinson’s theorem uniquely determines the potential.

When β = 0, one can apply same arguments. The only difference appears in asymptotics of

σα2,β = {an}n∈N and σα1,β = {bn}n∈N, which does not affect the result.

(ii) α1 6= 0, α2 = 0, β = 0 :

The two spectra σα2,β = {an}n∈N and σα1,β = {bn}n∈N satisfy the asymptotics (3.5) and (3.6)

respectively. One then obtains the result by following the proofs of Lemma 1 and Theorem 22.

(iii) α1 6= 0, α2 = 0, β 6= 0 :

The two spectra σα2,β = {an}n∈N and σα1,β = {bn}n∈N satisfy the asymptotics (3.7) and (3.4)

respectively, which is similar to the previous case.

(iv) α1 6= 0, α2 6= 0, α1 < α2 or α1 = 0, α2 6= 0, β 6= 0 or α1 = 0, α2 6= 0, β = 0 :

In all of these three cases, an < bn for all n ∈ N. Therefore using the proof of Lemma 1,

mα1,α2,β(z) can be represented as

mα1,α2,β(z) = C
∏
n∈N

(
z

bn
− 1

)(
z

an
− 1

)−1

.

In order to represent G(z) as (3.41), an extra factor is required, so we shift indices of bn up by one

inside A and let b1 be a positive real number less than a1, assuming wlog 1 ∈ A. Then z−b1
b1
G(z)

can be represented as (3.41). Using this representation and C̆ebotarev’s theorem, the meromorphic

Herglotz function z−b1
b1
G(z) has the following representation:

(
z − b1

b1

)
G(z) = az + b+

∑
n∈A

An

(
1

an − z
− 1

an

)
.
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Therefore if we introduce G̃(z) similar to the previous cases, then z−b1
b1
G(z) and z−b1

b1
G̃(z) share the

same set of poles {an}n∈A with the same residues {−An}n∈A and have the sets of zeros {bn}n∈A

and {b1}∪{b̃n}n∈A\{1} respectively, so the difference of z−b1
b1
G(z) and z−b1

b1
G̃(z) is a linear polyno-

mial with real coefficients and henceG(z)−G̃(z) is a real constant, which isG(0)−G̃(0) = C̃−C.

In order to show C̃ = C, we follow exactly the same arguments used in the proof of Theorem 22.

This implies uniqueness of G(z) and hence uniqueness of {bn}n∈A. After unique recovery of

the two spectra σα2,β and σα1,β , Levinson’s theorem uniquely determines the potential.

Remark 4. Theorem 25 gives Marchenko’s theorem with the m-function mα1,α2,β as a corollary if

we let A = N. By letting A = ∅, we get the statement of Levinson’s theorem.

For the non-matching index sets case, let us recall the definitions of Akn,m and Akn:

Akn,m :=
akn
bln

(akn − bkn)
m∏

j=1,j 6=n

akj
blj

akn − blj
akn − akj

,

Akn :=
akn
bln

(akn − bkn)
∞∏

j=1,j 6=n

akj
blj

akn − blj
akn − akj

.

We can prove Theorem 23 and Theorem 24 with general boundary conditions following the

same proofs. However, if boundary conditions α1 and α2 are nonzero, then we need that eventually

the two index sets {kn}n∈N and {ln}n∈N have no common element.

Theorem 26. (Inverse problem II-c) Let q ∈ L1(0, π), sin(α2 − α1) 6= 0, α1, α2, β ∈ [0, π) and

{akn}n∈N ⊂ σα2,β , {bln}n∈N ⊂ σα1,β satisfy following properties:

• lim
m→∞

m∑
n=1

(
|Akn,m − Akn|/a2

kn

)
<∞,

• {Akn/a2
kn
}n∈N ∈ l1.

(i) If α1 = 0 or α2 = 0, then {an}n∈N, {bn}n∈N\{bln}n∈N\{s} and {γkn}n∈N determine the

potential q for any s ∈ N, where σα2,β = {an}n∈N, σα1,β = {bn}n∈N are two spectra and {γn}n∈N

are point masses of the spectral measure µα1,α2,β =
∑

n∈N γnδan .
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(ii) If α1 6= 0, α2 6= 0 and there exists N ∈ N such that kn 6= ln for all n > N , then

{an}n∈N, {bn}n∈N\{bln}n∈N\{s} and {γkn}n∈N determine the potential q for any s ∈ N, where

σα2,β = {an}n∈N, σα1,β = {bn}n∈N are two spectra and {γn}n∈N are point masses of the spectral

measure µα1,α2,β =
∑

n∈N γnδan .

Proof. In the proof of Theorem 23 we used the inequalities (3.19), namely

|̃blm(akn − blm)(akn − b̃lm)|−1 ≤ |̃bkn(akn − bkn)(akn − b̃kn)|−1 ≤ 2/a2
kn .

If α1 = 0 or α2 = 0, these inequalities are still valid for any m ∈ N\{s} and for sufficiently

large n ∈ N. Recall that b̃kj := bkj if kj /∈ {ln}n∈N.

If α1 6= 0, α2 6= 0 and there exists N ∈ N such that kn 6= ln for all n > N , we modify these

inequalities as follows:

|̃blm(akn − blm)(akn − b̃lm)|−1 ≤ |̃bkn+1(akn − bkn+1)(akn − b̃kn+1)|−1 ≤ 2/a2
kn ,

which are valid for any m ∈ N\{s} and for sufficiently large n ∈ N.

After getting these inequalities we apply proofs of Lemma 2 and Theorem 23 with the m-

function mα1,α2,β and the spectral measure µα1,α2,β and obtain uniqueness of {bln}n∈N. Even

though asymptotics of the spectra may be different than Dirichlet-Dirichlet, Neumann-Dirichlet

case, the same arguments can be used. After unique recovery of the two spectra σα2,β and σα1,β ,

Levinson’s theorem uniquely determines the potential.

Theorem 27. (Inverse problem II-d) Let q ∈ L1(0, π), sin(α2 − α1) 6= 0, α1, α2, β ∈ [0, π) and∏
n∈N akn/bln be absolutely convergent, where {akn}n∈N ⊂ σα2,β , {bln}n∈N ⊂ σα1,β .

(i) If α1 = 0 or α2 = 0, then {an}n∈N, {bn}n∈N\{bln}n∈N and {γkn}n∈N determine the potential

q, where σα2,β = {an}n∈N, σα1,β = {bn}n∈N are two spectra and {γn}n∈N are point masses of the
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spectral measure µα1,α2,β =
∑

n∈N γnδan .

(ii) If α1 6= 0, α2 6= 0 and there exists N ∈ N such that kn 6= ln for all n > N , then

{an}n∈N, {bn}n∈N\{bln}n∈N and {γkn}n∈N determine the potential q, where σα2,β = {an}n∈N,

σα1,β = {bn}n∈N are two spectra and {γn}n∈N are point masses of the spectral measure µα1,α2,β =∑
n∈N γnδan .

Proof. If α1 = 0 or α2 = 0, we follow the proofs of Lemma 3 and Theorem 24 with them-function

mα1,α2,β and the spectral measure µα1,α2,β and obtain uniqueness of {bln}n∈N. After unique recov-

ery of the two spectra σα2,β and σα1,β , Levinson’s theorem uniquely determines the potential.

If α1 6= 0, α2 6= 0 and there exists N ∈ N such that kn 6= ln for all n > N , then the only

difference appears in showing {1/(akn − bln}n∈N ∈ l1, so let us show that absolute convergence of∏
n∈N(akn/bln) implies {1/(akn − bln)}n∈N ∈ l1. Since

∏
n∈N(akn/bln) is absolutely convergent,

∑
n∈N

∣∣∣∣akn − blnbln

∣∣∣∣ =
∑
n∈N

∣∣∣∣ (kn − 1)2 − (ln − 1)2 + γ1 + αkn − βln
(ln − 1)2 + γ2 + (2/π)

∫ π
0
q(x)dx+ βln

∣∣∣∣ <∞,
i.e. {(k2

n − l2n − 2kn + 2ln)/l2n}n∈N ∈ l1. Here γ1 = 2[cot(α2) − cot(α1)]/π, γ2 = 2[cot(β) +

cot(α1)]/π and wlog we assume β 6= 0. Note that limn→∞ akn/bln = 1 implies limn→∞ kn/ln = 1.

Therefore

∞ >
∑
n∈N

∣∣∣∣k2
n − l2n − 2(kn − ln)

l2n

∣∣∣∣
=
∑
n∈N

kn + ln − 2

ln

∣∣∣∣kn − lnln

∣∣∣∣
≥

N∑
n=1

∣∣∣∣kn − lnln

∣∣∣∣+
∞∑

n=N+1

1

ln

≥ c1

∑
n∈N

1

ln

whereN ∈ N and c1 > 0, so {1/ln}n∈N ∈ l1 and hence by Limit Comparison Test {1/kn}n∈N ∈ l1.

Therefore {1/(akn − bln)}n∈N ∈ l1, since for n > N , 1/|akn − bln| ≤ 1/|akn − bkn+1| = O(1/kn)

as n goes to∞. Now we apply proofs of Lemma 3 and Theorem 24 with the m-function mα1,α2,β
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and the spectral measure µα1,α2,β and obtain uniqueness of {bln}n∈N. After unique recovery of the

two spectra σα2,β and σα1,β , Levinson’s theorem uniquely determines the potential.

51



4. INVERSE SPECTRAL THEORY OF JACOBI OPERATORS*

4.1 Semi-infinite Jacobi matrices

In this section we closely follow [67].

We consider the difference expression τ : l(N)→ l(N)

(τf)n := bn−1fn−1 + anfn + bnfn+1, n ∈ N\{1} (4.1)

(τf)1 := a1f1 + b1f2 (4.2)

where an ∈ R, bn > 0 for all n ∈ N and l(N) is the set of complex valued sequences indexed by

natural numbers. The difference expression τ is represented as the tridiagonal matrix



a1 b1 0 0 0

b1 a2 b2 0
. . .

0 b2 a3 b3
. . .

0 0 b3 a4
. . .

0
. . . . . . . . . . . .


(4.3)

with respect to the canonical basis of l2(N).

Let cz,sz ∈ l(N) be two fundamental solutions of the Jacobi difference equation

τu = zu u ∈ l(N), z ∈ C, (4.4)

satisfying the initial conditions

*Submitted for publication [41].
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sz(1) = 0, sz(2) = 1,

cz(1) = 1, cz(2) = 0.

Since c and s are linearly independent, we write any solution u of (4.4) as a linear combination of

these two solutions

uz(n) =
Wn(uz, sz)

Wn(cz, sz)
c(n)− Wn(uz, cz)

Wn(cz, sz)
s(n), (4.5)

where W is the Wronskian given by

Wn(f, g) = a(n)(f(n)g(n+ 1)− g(n)f(n+ 1)).

Note that the Wronskian of two solutions of (4.4) with the same z is constant, so the coefficients

of c and s in (4.5) are constant.

If {an}n∈N and {bn}n∈N are bounded, then the Jacobi operator J : l2(N) → l2(N) is defined

as Jf = τf . However without the boundedness condition on {an}n∈N or {bn}n∈N, the operator

J is no longer defined on all of l2(N). Here one needs to introduce the minimal and maximal

operators associated with τ as

Jmin : D(Jmin)→ l2(N), Jmax : D(Jmax)→ l2(N)

f 7→ τf f 7→ τf,

where D(Jmin) = c00(N) and D(Jmax) = {f ∈ l2(N) | τf ∈ l2(N)}. Green’s formula implies that

J∗min = Jmax and

J∗max = Jmin : D(J∗max)→ l2(N)

f 7→ τf,
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where D(J∗max) = {f ∈ Jmax | limn→∞Wn(f, g) = 0 , g ∈ Jmax} ([67], Section 2.6).

In order to discuss self-adjoint extensions of the minimal operator we use limit point and limit

circle classifications of τ . The difference expression τ is called limit point (l.p.) if sz0 /∈ l2(N) for

some z0 ∈ C\R and limit circle (l.c.) otherwise.

The maximal operator Jmax is self-adjoint if and only if τ is l.p. ([67], Lemma 2.16). Therefore

in the limit point case Jmax is a self adjoint extension of the minimal Jacobi operator Jmin.

If τ is limit circle, we define the set of boundary conditions at∞ as

BC(τ) = {v ∈ D(Jmax) | lim
n→∞

Wn(v̄, v) = 0, lim
n→∞

Wn(v̄, f) 6= 0 for some f ∈ D(Jmax)}.

Then for any v ∈ BC(τ), the operator

Jv : D(v)→ l2(N)

f 7→ τf,

is a self-adjoint extension of Jmin, where D(v) = {f ∈ D(Jmax) | lim
n→∞

Wn(v, f) = 0} ([67],

Theorem 2.18). We parametrize self-adjoint extensions of Jmin in the limit circle case by defining

vα(n) = cos(α)c0(n) + sin(α)s0(n), α ∈ [0, π)

and observing that different values of α give different extensions. Then all self-adjoint extensions

of Jmin correspond to some vα with unique α ∈ [0, π) ([67], Lemma 2.20). Therefore in the

limit circle case, following [62] we define J(g) := Jv for g ∈ R ∪ {∞}, where g = cot(α)

and α ∈ [0, π). In the limit point case, i.e. if Jmin is self-adjoint, we let J(g) := Jmin for all

g ∈ R ∪ {∞}.

If τ is l.c., i.e. Jmin 6= J∗min, then the spectrum of J(g), denoted by σ(J(g)), is discrete ([67],

Lemma 2.19). We assume J(g) has a discrete spectrum, which is a restriction in the limit point

case. Note that since the essential spectrum of a bounded Jacobi operator is always nonempty,

54



discreteness of σ(J(g)) implies unboundedness of J(g) ([67], Section 3.2).

We define the self-adjoint operator Jh(g) by Jh(g) := J(g) − h
〈
·, e1

〉
e1 for h ∈ R, where

{en}n∈N is the canonical basis in l2(N). It is the rank-one perturbation of J(g) by h. If we consider

the operator J(β, g) defined by the difference expression

(τ̃ f)n := bn−1fn−1 + anfn + bnfn+1, n ∈ N

with the boundary condition

f1 cos β + f0 sin β = 0, β ∈ (0, π),

then Jh(g) = J(β, g) for h = cot β. Hence h can be seen as a boundary condition. Note that

discreteness of σ(J(g)) implies discreteness of σ(Jh(g)) for any h ∈ R. Moreover, σ(Jh1(g)) ∩

σ(Jh2(g)) = ∅ if h1 6= h2.

Definition 17. The Weyl m-function of Jh(g) is defined as mh(z, g) :=
〈
e1, (Jh(g)− z)−1e1

〉
.

Weyl m-function is a meromorphic Herglotz function ([67], Section 2.1). By Neumann expan-

sion for the resolvent

(Jh(g)− z)−1 = −
N−1∑
n=0

(Jh(g))n

zn+1
+

1

zN
(Jh(g))N(Jh(g)− z)−1,

where z ∈ C\σ(Jh(g)) we get the following asymptotics of mh(z, g):

mh(z, g) = −1

z
− a1 − h

z2
− (a1 − h)2 + b2

1

z3
+O(z−4), (4.6)

as z →∞ for Imz ≥ ε, ε > 0 ([67], Section 6.1).

Since them-functionmh(z, g) is Herglotz, if λ is an isolated eigenvalue of Jh(g), thenmh(z, g)

has a simple pole at z = λ ([67], Section 2.2).
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Definition 18. The norming constant corresponding to the eigenvalue λk of Jh(g) is defined as

γk(h) =

(∑
n∈N

|uλk(n)|2
)−1

,

where uz ∈ l2(N) solves (4.4).

The residue of mh(z, g) at the pole λk is given by −γk(h) ([67], p.214).

One finds a detailed discussion of the spectral theory of Jacobi operators in [67], which we

have followed so far.

4.2 Inverse spectral problems with mixed data

4.2.1 Matching index sets

We follow the enumeration introduced in [62] to enumerate the sequences of eigenvalues. Let

{λn}n∈M and {νn}n∈M be a pair of discrete, interlacing, infinite real sequences and M ⊂ Z. Then

λn < νn < λn+1 for all n ∈M , where

• If infn∈M λn = −∞ and supn∈M λn =∞, then M := Z and ν−1 < 0 < λ1.

• If 0 < supn∈M λn <∞, then M := {n}nmaxn=−∞, nmax ≥ 1 and ν−1 < 0 < λ1.

• If supn∈M λn ≤ 0, then M := {n}0
n=−∞.

• If infn∈M νn ≥ 0, then M := {n}∞n=0.

• If −∞ < infn∈M νn < 0, then M := {n}∞n=nmin
, nmin ≤ −1 and ν−1 < 0 < λ1.

Silva and Weder gave a characterization of two spectra of J(g) corresponding to different

boundary conditions, if J(g) has a discrete spectrum.

Theorem 28. ([62] Theorem 3.4) (Characterization of two spectra) Given h1 ∈ R and two

infinite discrete sequences of real numbers {λn}n∈M and {νn}n∈M , there is a unique real number

h2 > h1, a unique operator J(g), and if Jmin 6= J∗min also a unique g ∈ R ∪ {+∞}, such
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that {νn}n∈M = σ(Jh1(g)) and {λn}n∈M = σ(Jh2(g)) if and only if the following conditions are

satisfied.

1. {λn}n∈M and {νn}n∈M interlace and, if {λn}n∈M is bounded from below,

min
n∈M
{νn}n∈M > min

n∈M
{λn}n∈M ,

while if {λn}n∈M is bounded from above,

max
n∈M
{νn}n∈M > max

n∈M
{λn}n∈M .

2. The following series converges

∆ :=
∑
n∈M

γn < ∞, (4.7)

where γn := νn − λn. By condition (4.7) the product
∏

n∈M,n 6=k

νn − λk
λn − λk

is convergent, so we

can define

τ−1
k :=

νk − λk
∆

∏
n∈M,n6=k

νn − λk
λn − λk

, ∀k ∈M. (4.8)

3. The sequence {τn}n∈M is such that, for m = 0, 1, 2, . . . , the series
∑
n∈M

λ2m
n

τn
converges.

4. If a sequence of complex numbers {βn}n∈M is such that the series
∑
n∈M

|βn|2

τn
converges and

for m = 0, 1, 2, . . . ,
∑
n∈M

βnλ
m
n

τn
= 0, then βn = 0 for all n ∈M .

Silva and Weder also proved that the spectral data consisting of two discrete spectra and one of

the boundary conditions uniquely determine the operator J(g) and the other boundary condition.

Theorem 29. ([62] Theorem 3.3) (Two-spectra theorem) Let J(g) be a Jacobi operator with

discrete spectrum, h1, h2 ∈ R, h1 6= h2, σ(Jh1(g)) = {λn}n∈M and σ(Jh2(g)) = {νn}n∈M . Then
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{λn}n∈M , {νn}n∈M and h1(respectively h2) uniquely determine the operator J(g), h2(respectively

h1) and if Jmin 6= J∗min, the boundary condition g at infinity.

Using Theorem 28 and Theorem 29 we prove our main result. The spectral data consists of one

spectrum, a subset of another spectrum, the norming constants of the first spectrum for the missing

part of the second spectrum and the two boundary conditions.

Theorem 30. (Inverse problem III-a) Let J(g) be a Jacobi operator with discrete spectrum,

σ(Jh1(g)) = {λn}n∈M , σ(Jh2(g)) = {νn}n∈M and A ⊆M . Then {λn}n∈M , {νn}n∈M \A,

{γn(h1)}n∈A, h1 and h2 uniquely determine the operator J(g), and if Jmin 6= J∗min, the boundary

condition g at infinity, where {γn(h1)}n∈M are norming constants corresponding to Jh1(g).

Proof. The Weyl m-function mh1 can be represented in terms of mh2 . Indeed, by the second

resolvent identity and the definition of the Weyl m-function

mh1(z, g)−mh2(z, g) =
〈
(Th1 − Th2)e1, e1

〉
=
〈
(Th2)((h1 − h2)

〈
·, e1

〉
)(Th1)e1, e1

〉
=
〈
(h1 − h2)

〈
Th1e1, e1

〉
Th2e1, e1

〉
= (h1 − h2)mh1(z, g)mh2(z, g),

where Th = (Jh(g)− zI)−1. Therefore

mh2(z, g) =
mh1(z, g)

1− (h2 − h1)mh1(z, g)
. (4.9)

Since J(g) has discrete spectrum and mh(z, g) =
m0(z, g)

1− hm0(z, g)
, the poles of mh(z, g) are the

eigenvalues of Jh(g), given by the zeros of 1− hm0(z, g) for any h ∈ R. Hence

F (z, g) :=
mh1(z, g)

mh2(z, g)
=

1− h2m0(z, g)

1− h1m0(z, g)
(4.10)

is a meromorphic function such that the zeros of F are the eigenvalues of Jh2(g) and the poles of
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F are the eigenvalues of Jh1(g). Moreover if h1 − h2 > 0, then F is a Herglotz function, since m0

is a Herglotz function and

F (z, g) = 1 +
−1

h1
h1−h2 + −1

[h1−h2]m0(z,g)

.

Let us assume h1 > h2. We consider the case h1 < h2 at the end of the proof, which will require

minor changes. Since F is a meromorphic Herglotz function, by the infinite product representation

of meromorphic Herglotz functions ([51], Theorem VII.1.1) and using the enumeration introduced

above, F can be represented as

F (z, g) = C
z − ν0

z − λ0

∏
n∈M,n 6=0

(
1− z

νn

)(
1− z

λn

)−1

, C > 0. (4.11)

Recalling (4.7) and interlacing property of the two spectra {λn}n∈M and {νn}n∈M , one gets

∆ =
∑
n∈M

|νn − λn| <∞,

and hence

0 <
∏

n∈M,n 6=0

νn
λn

<∞.

Therefore

lim
z→∞,Imz≥ε

F (z, g)

C
= lim

z→∞,Imz≥ε

z − ν0

z − λ0

∏
n∈M,n6=0

(
1− z

νn

)(
1− z

λn

)−1

= lim
z→∞,Imz≥ε

z − ν0

z − λ0

∏
n∈M,n6=0

λn
νn

∏
n∈M,n6=0

(
1 +

νn − λn
λn − z

)
=

∏
n∈M,n6=0

λn
νn
,

for ε > 0. By (4.6), asymptotics of the m-function m0(z, g) implies lim
z→∞,Imz≥ε

m0(z, g) = 0 and
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by the definition of F (z, g), we get lim
z→∞,Imz≥ε

F (z, g) = 1. Therefore C =
∏

n∈M,n6=0 νn/λn and

F (z, g) =
∏
n∈M

z − νn
z − λn

. (4.12)

The residue of F at λk is given in terms of the norming constant γk(h1). Indeed,

Res(F, λk) = Res
(
mh1

mh2

, λk

)
= Res(1− (h2 − h1)mh1 , λk) =

−(h1 − h2)

γk(h1)
,

since γ−1
k (h1) = −Res(mh1 , λk) for any k ∈M . Recall that ∆ = h1 − h2. Therefore

−1

γn(h1)
= Res

(
F

∆
, λn

)
, (4.13)

i.e. the residues of F (z, g)/∆ are known at λn for each n ∈ A.

At this step we can restate our claim in terms of F as the set of poles, {λn}n∈M , the set of zeros

except the index setA, {νn}n∈M \A, and the residues with the same index setA, {Res(F/∆, λn)}n∈A

determine F (z, g) uniquely.

Since {νn − λn}n∈M ∈ l1, F (z, g) has the representation F = GH , where

G(z, g) :=
∏
n∈A

z − νn
z − λn

and H(z, g) :=
∏

n∈M \A

z − νn
z − λn

.

Note that for any k ∈ A, we know

Res (F/∆, λk) =
λk − νk

∆

∏
n∈M,n6=k

λk − νn
λk − λn

. (4.14)

In addition, for any k ∈ A, we also know

H(λk, g) =
∏

n∈M \A

λk − νn
λk − λn

. (4.15)
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Conditions (4.14) and (4.15) imply that for any k ∈ A, we know

Res (G/∆, z = λk) =
Res(F/∆, λk)

H(λk)
.

Note that the zeros and the poles of G are real and interlacing, and hence

0 < arg(G(z, g)) =
∑
n∈A

(arg(z − νn)− arg(z − λn)) < π

for any z in the upper half plane, i.e. G(z, g) is a meromorphic Herglotz function. Therefore by

C̆ebotarev’s theorem, G/∆ has the following representation

G(z, g)

∆
= az + b+

∑
n∈A

An

(
1

λn − z
− 1

λn

)
, (4.16)

where a ≥ 0 and b ∈ R. Note that Ak = −Res(G/∆, ak) for any k ∈ A, which means there are

only two unknowns on the right hand side, namely constants a and b.

On the upper half-plane G/∆ converges to 1/∆ as z goes to infinity, since

∑
n∈A

|νn − λn| ≤
∑
n∈M

|νn − λn| < ∞.

Let t ∈ R. Then

G(it) =

[
b+

∑
n∈A

(
λnAn
t2 + λ2

n

− An
λn

)]
+ i

[
at+

∑
n∈A

tAn
t2 + λ2

n

]
,

so a = 0 and b = 1/∆ +
∑

n∈AAn/λn, since limt→+∞G(it, g) = 1/∆. Therefore

G(z, g) =
1

∆
+
∑
n∈A

An
λn − z

=
1

h1 − h2

+
∑
n∈A

An
λn − z

, (4.17)

so the right hand side of (4.17) is known. This implies uniqueness ofG(z, g) and hence uniqueness

of {νn}n∈A. After unique recovery of the two spectra σ(Jh1(g)) and σ(Jh2(g)), the operator J is
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uniquely determined by Theorem 29.

If h2 > h1, then 1/F (z, g) is Herglotz instead of F (z, g), so we get the infinite product repre-

sentation
1

F (z, g)
=
∏
n∈M

z − λn
z − νn

. (4.18)

Note that −F (z, g) is also a meromorphic Herglotz function. Therefore using similar arguments

as h1 > h2 case, the function G(z, g) definded as

G(z, g) :=
1

h1 − h2

∏
n∈A

z − νn
z − λn

is represented as

G(z, g) =
1

h1 − h2

+
∑
n∈A

An
λn − z

,

whereAk = −Res(G, λk) for any k ∈ A. This implies uniqueness ofG(z, g) and hence uniqueness

of {νn}n∈A. After unique recovery of the two spectra σ(Jh1(g)) and σ(Jh2(g)), the operator J is

uniquely determined by Theorem 29.

Corollary 1. (Recovery fromm-function) Let h ∈ R and J(g) be a Jacobi operator with discrete

spectrum. Then the m-function mh(z, g) (or the corresponding spectral measure) and h uniquely

determine the operator J(g), and if Jmin 6= J∗min, the boundary condition g at infinity.

Proof. If we let h1 := h and h2 any real number less than h, then using (4.9) and (4.10) we get

F (z, g) =
mh1(z, g)

mh2(z, g)
= 1− (h2 − h1)mh1(z, g),

i.e. we know the meromorphic Herglotz function F , since it depends on our spectral data and h2.

Let us observe that our spectral data and h2 give the spectral data of Theorem 30 with A = M .

Then by Theorem 30 we get the result.

Remark 5. If we let A = ∅ in Theorem 30, we get the statement of the two-spectra theorem,

Theorem 29.
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In our spectral data we can replace h1 or h2 with any eigenvalue of Jh2(g) from the index set

A.

Theorem 31. (Inverse problem III-b) Let J(g) be a Jacobi operator with discrete spectrum,

σ(Jh1(g)) = {λn}n∈M , σ(Jh2(g)) = {νn}n∈M and A ⊆M . Then {λn}n∈M , {νn}n∈M \A,

{γn(h1)}n∈A, h1 (respectively h2) and νm for some m ∈ A uniquely determine the operator J(g),

h2 (respectively h1) and if Jmin 6= J∗min, the boundary condition g at infinity, where {γn(h1)}n∈M

are norming constants corresponding to Jh1(g).

Proof. Following the proof of Theorem 30 we get the infinite sum representation

G(z, g)

∆
=

1

∆
+
∑
n∈A

An
λn − z

=
1

h1 − h2

+
∑
n∈A

An
λn − z

, (4.19)

for the infinite product

G(z, g) :=
∏
n∈A

z − νn
z − λn

.

Now let us prove uniqueness of G(z, g). Note that we know {λn}n∈A, {−An}n∈A and νm. Let the

infinite product

G̃(z, g) :=
∏
n∈A

z − ν̃n
z − λn

share the same set of poles {λn}n∈A and the same residues {−An}n∈A at the corresponding poles

with G(z, g). In addition assume G(z, g) and G̃(z, g) have the common zero νm, i.e. ν̃m = νm.

Let us also assume zeros and poles of G̃(z, g) satisfy asymptotic properties of Theorem 28. Then

we know that G̃(z, g) has the infinite sum representation

G̃(z, g) =
1

∆̃
+
∑
n∈A

An
λn − z

(4.20)

Using representations (4.19) and (4.20), the difference of G(z, g) and G̃(z, g) is a real constant,

which is zero since G(νm, g) = G̃(νm, g). This implies uniqueness of G(z, g) and hence unique-

ness of {νn}n∈A. After unique recovery of the two spectra σ(Jh1(g)) and σ(Jh2(g)), the operator
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J is uniquely determined by Theorem 29.

In the spectral data of Theorem 30 we can also replace h1 or h2 with any norming constant of

Jh1(g) outside the index set A.

Theorem 32. (Inverse problem III-c) Let J(g) be a Jacobi operator with discrete spectrum,

σ(Jh1(g)) = {λn}n∈M , σ(Jh2(g)) = {νn}n∈M and A ⊆M . Then {λn}n∈M , {νn}n∈M \A,

{γn(h1)}n∈A, h1 (respectively h2) and γm(h1) for some m ∈ M \A uniquely determine the oper-

ator J(g), h2 (respectively h1) and if Jmin 6= J∗min, the boundary condition g at infinity, where

{γn(h1)}n∈M are norming constants corresponding to Jh1(g).

Proof. Let us define the index set A′ := A ∪ {m}. Then following the proof of Theorem 30 and

redefining G and H as

G(z, g) :=
∏
n∈A′

z − νn
z − λn

and

H(z, g) :=
∏

n∈M \A′

z − νn
z − λn

we get

G(z, g) =
1

∆
+
∑
n∈A′

An
λn − z

=
1

h1 − h2

+
∑
n∈A′

An
λn − z

. (4.21)

Now let us prove uniqueness ofG(z, g). Note that we know {λn}n∈A′ , {−An}n∈A′ and νm. Let

the infinite product

G̃(z, g) :=
∏
n∈A′

z − ν̃n
z − λn

share the same set of poles {λn}n∈A′ and the same residues {−An}n∈A′ at the corresponding poles

with G(z, g). In addition G(z, g) and G̃(z, g) have the same zero νm, i.e. ν̃m = νm. Let us also

assume zeros and poles of G̃(z, g) satisfy asymptotic properties of Theorem 28. Then we know

that G̃(z, g) has the infinite sum representation

G̃(z, g) =
1

∆̃
+
∑
n∈A′

An
λn − z

(4.22)
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Using representations (4.21) and (4.22), the difference of G(z, g) and G̃(z, g) is a real constant,

which is zero since G(νm, g) = G̃(νm, g). This implies uniqueness of G(z, g) and hence unique-

ness of {νn}n∈A. After unique recovery of the two spectra σ(Jh1(g)) and σ(Jh2(g)), the operator

J is uniquely determined by Theorem 29.

4.2.2 Non-matching index sets

If the known norming constants of Jh1(g) and unknown eigenvalues of Jh2(g) have different

index sets, one needs some control over eigenvalues of Jh1(g) corresponding to the known norming

constants and unknown part of the spectrum σ(Jh2(g)). In this case we get a C̆ebotarev type

representation result. Before the statement, let us clarify the notation we use. For any subsequence

{λkn}n∈N ⊂ σ(Jh1(g)) and {νln}n∈N ⊂ σ(Jh2(g)), by Akn,m and Akn we denote the residues at

λkn of partial and infinite products, respectively, consisting of these subsequences:

Akn,m := Res(Gm, λkn) =
λkn
νln

(λkn − νln)
∏

1≤j≤m,j 6=n

λkj
νlj

λkn − νlj
λkn − λkj

,

Akn := Res(G, λkn) =
λkn
νln

(λkn − νln)
∏

j∈N,j 6=n

λkj
νlj

λkn − νlj
λkn − λkj

,

where

Gm(z) :=
m∏
n=1

(
z

νln
− 1

)(
z

λkn
− 1

)−1

, G(z) :=
∏
n∈N

(
z

νln
− 1

)(
z

λkn
− 1

)−1

.

Note that these subsequences are ordered according to their indices, i.e. λkn < λkn+1 and

νln < νln+1 for any n ∈ N. This follows from the fact that the two spectra are both real and

discrete. Also note that if the spectrum σ(Jh(g)) is unbounded from both sides, i.e. inf M = −∞

and supM = ∞ in the enumeration, then {kn}n and {ln}n should be indexed by Z instead of N.

However, wlog we index them by N.

Lemma 4. (C̆ebotarev type representation III) Let {λkn}n∈N ⊂ σ(Jh1(g)), {νln}n∈N ⊂ σ(Jh2(g))

such that
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• inf
n∈N
|νln − λkn | > 0,

• lim
m→∞

m∑
n=1

(
|Akn,m − Akn|/λ2

kn

)
< ∞ and

• {λ−1
kn
}n∈N ∈ l1.

Then the infinite product

G(z) :=
∏
n∈N

(
z

νln
− 1

)(
z

λkn
− 1

)−1

is represented as

G(z) = az2 + bz + c+
∑
n∈N

Akn

(
1

z − λkn
+

1

λkn

)
, (4.23)

where a, b, c are real numbers, Akn is the residue of G(z) at the point z = λkn and the product

converges normally on C\ ∪n∈N λkn .

Proof. Let p(z) be the difference of G(z) and the infinite sum in the right hand side of (4.23).

Then, p(z) is an entire function, since the infinite product and the infinite sum share the same set

of poles with equivalent degrees and residues. We represent partial products of G(z) as partial

sums:
m∏
n=1

(
z

νln
− 1

)(
z

λkn
− 1

)−1

=
m∑
n=1

Akn,m

(
1

z − λkn
+

1

λkn

)
+ 1,

where Akn,m is the residue of the partial product at akn .

If σ(Jh(g)) is not bounded above, then let Cn be the circle with radius νln centered at the origin

for νln > 0. If σ(Jh(g)) is bounded above, then let Cn be the circle with radius |νln| centered at the

origin for νln < 0. This sequence of circles satisfy following properties for sufficiently large n:

• Cn omits all the poles λkn .

• Each Cn lies inside Cn+1.

• The radius of Cn, |νln | diverges to infinity as n goes to infinity.
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At this point wlog let us assume νln > 0 for any n ∈ N. Then,

max
z∈Ct

∣∣∣∣p(z)− 1

ν2
lt

∣∣∣∣ = max
z∈Ct

∣∣∣∣∣∣
G(z)− 1−

∑
n∈NAkn

(
1

z−λkn
+ 1

λkn

)
ν2
lt

∣∣∣∣∣∣
= max

z∈Ct
lim
m→∞

∣∣∣∣∣∣
∑m

n=1Akn,m

(
1

z−λkn
+ 1

λkn

)
−
∑m

n=1Akn

(
1

z−λkn
+ 1

λkn

)
ν2
lt

∣∣∣∣∣∣
= lim

m→∞

1

ν2
lt

max
z∈Ct

∣∣∣∣∣
m∑
n=1

(Akn,m − Akn)
z

λkn(z − λkn)

∣∣∣∣∣
≤ lim

m→∞

1

ν2
lt

m∑
n=1

|Akn,m − Akn|
νlt

λkn|νlt − λkn|

≤ lim
m→∞

m∑
n=1

|Akn,m − Akn|
1

νltλkn|νlt − λkn|

≤ C ′ lim
m→∞

m∑
n=1

|Akn,m − Akn|
λ2
kn

< ∞,

where C ′ ∈ R is independent of n and m. The last line follows from

max
t∈N

∣∣∣∣ 1

νltλkn(νlt − λkn)

∣∣∣∣ ≤ max

{
1

|νl1λkn(λkn − νl1)|
,

1

|νkn+1λkn(νkn+1 − λkn)|

}
= max

{
1

|νl1λkn(λkn − νl1)|
,

1

|(λkn+1 + γkn+1)λkn(λkn+1 + γkn+1 − λkn)|

}
≤ C ′

1

λ2
kn

.

Therefore |p(z)− 1| ≤ C|z|2 on the circle Ct for any t ∈ N, where C is a positive real number. By

the maximum modulus theorem and the entireness of p(z), we conclude that p(z) is a polynomial

of at most second degree. Since G(0),G ′(0) and G ′′(0) are real numbers, a, b, c ∈ R.

Using the C̆ebotarev type representation (4.23) we prove our inverse spectral results in non-

matching index sets case with some additional convergence criterion on the two spectra. Theorems

33, 34 and 35 are non-matching index sets versions of Theorems 30, 31 and 32 respectively.

Theorem 33. (Inverse Problem IV-a) Let J(g) be a Jacobi operator with discrete spectrum,

σ(Jh1(g)) = {λn}n∈M , σ(Jh2(g)) = {νn}n∈M and {λkn}n∈N ⊂ σ(Jh1(g)), {νln}n∈N ⊂ σ(Jh2(g))

satisfying that
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• there exists N ∈ N such that kn 6= ln ∀ n > N ,

• lim
m→∞

m∑
n=1

(
|Akn,m − Akn|/λ2

kn

)
< ∞,

• {λ−1
n }n∈M ∈ l1 and

• 0 <
∏
n∈N

νln
λkn

< ∞.

Then {λn}n∈M , {νn}n∈M \{νln}n∈N, {γkn(h1)}n∈N, h1 and h2 uniquely determine the operator

J(g), and if Jmin 6= J∗min, the boundary condition g at infinity, where {γn(h1)}n∈M are norming

constants corresponding to Jh1(g).

Proof. As we discussed in the proof of Theorem 30 wlog we assume h1 > h2. Recall that in this

case

∆ := h1 − h2 =
∑
n∈M

νn − λn <∞.

Let us define

F(z, g) :=
1

∆

∏
n∈M

λn
νn

∏
n∈M

z − νn
z − λn

. (4.24)

Note that we assume 0 <
∏

n∈N νln/λkn <∞ and {λ−1
n }n∈M ∈ l1, which also implies {ν−1

n }n∈M ∈

l1. Therefore F(z, g) has the representation F = GH, where

G(z, g) :=
1

∆

∏
n∈N

νln − z
νln

λkn
λkn − z

=
1

∆

∏
n∈N

λkn
νln

∏
n∈N

z − νln
z − λkn

and

H(z, g) :=
∏

n∈M \{ln}

νn − z
νn

∏
n∈M \{kn}

λn
λn − z

.

By (4.24)

Res

([∏
n∈M

νn
λn

]
G(z, g), z = λk

)
=

1

H(λk)γk(h1)
,

so we know the residues of the infinite product
[∏

n∈M νn/λn
]
G(z, g) at λk for any k ∈ {kn}n∈N.
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This infinite product has the representation

(∏
n∈M

νn
λn

)
G(z, g) =

(
1

∆

∏
n∈M

νn
λn

∏
n∈N

λkn
νln

)∏
n∈N

z − νln
z − λkn

= C
∏
n∈N

z − νln
z − λkn

.

Let us observe that C is a real constant depending only on {λn}n∈M \{kn}, {νn}n∈M \{ln}, h1 and h2,

so we also know C. From Lemma 4 we get the C̆ebotarev type representation

(∏
n∈M

νn
λn

)
G(z, g) = C

∏
n∈N

z − νln
z − λkn

= az2 + bz + c+
∑
n∈N

Akn

(
1

z − λkn
+

1

λkn

)
.

Using similar arguments as in the proof of Theorem 30 one finds that a = 0, b = 0 and c =

C −
∑

n∈NAkn/λkn and hence

(∏
n∈M

νn
λn

)
G(z, g) = C +

∑
n∈N

Akn
z − λkn

. (4.25)

The right hand side of (4.25) is known. This implies uniqueness of G(z, g) and hence uniqueness

of {νln}n∈N. After unique recovery of the two spectra σ(Jh1(g)) and σ(Jh2(g)), the operator J is

uniquely determined by Theorem 29.

Theorem 34. (Inverse Problem IV-b) Let J(g) be a Jacobi operator with discrete spectrum,

σ(Jh1(g)) = {λn}n∈M , σ(Jh2(g)) = {νn}n∈M and {λkn}n∈N ⊂ σ(Jh1(g)), {νln}n∈N ⊂ σ(Jh2(g))

satisfying that

• there exists N ∈ N such that kn 6= ln ∀ n > N ,

• lim
m→∞

m∑
n=1

(
|Akn,m − Akn|/λ2

kn

)
< ∞,

• {λ−1
n }n∈M ∈ l1 and

• 0 <
∏
n∈N

νln
λkn

< ∞.

Then {λn}n∈M , {νn}n∈M \{ln}n∈N , {γkn(h1)}n∈N, h1(respectively h2) and νm for some m ∈ {ln}n∈N
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uniquely determine the operator J(g), h2(respectively h1) and if Jmin 6= J∗min, the boundary con-

dition g at infinity, where {γn(h1)}n∈M are norming constants corresponding to Jh1(g).

Proof. Following the proof of Theorem 33 we get representation

(∏
n∈M

νn
λn

)
G(z, g) = C +

∑
n∈N

Akn
z − λkn

, (4.26)

for the infinite product

G(z, g) :=
1

∆

∏
n∈N

νln − z
νln

λkn
λkn − z

,

where Aj is the residue of
[∏

n∈M νn/λn
]
G(z, g) at λj and C ∈ R.

Now let us prove uniqueness of
[∏

n∈M νn/λn
]
G(z, g). Note that we know {λkn}n∈N,

{−Akn}n∈N and νm. Let the infinite product

(∏
n∈M

ν̃n
λn

)
G̃(z, g) :=

(∏
n∈M

ν̃n
λn

)
1

∆

∏
n∈N

ν̃ln − z
ν̃ln

λkn
λkn − z

share the same set of poles {λkn}n∈N and the same residues {−Akn}n∈N at the corresponding poles

with
[∏

n∈M νn/λn
]
G(z, g). In addition assume ν̃j = νj for all j ∈ M \{ln}n∈N and the functions

G(z, g) and G̃(z, g) have the common zero νm, i.e. ν̃m = νm. Let us also assume the zeros and the

poles of G̃(z, g) satisfy asymptotic properties of Theorem 28. Then we know that G̃(z, g) has the

infinite sum representation

(∏
n∈M

ν̃n
λn

)
G̃(z, g) = C̃ +

∑
n∈N

Akn
z − λkn

(4.27)

From (4.26) and (4.27), the difference of
[∏

n∈M νn/λn
]
G(z, g) and

[∏
n∈M ν̃n/λn

]
G̃(z, g) is

a real constant, which is zero since G(νm, g) = G̃(νm, g) = 0. This implies uniqueness of[∏
n∈M νn/λn

]
G(z, g) and hence uniqueness of {νln}n∈N. After unique recovery of the two spec-

tra σ(Jh1(g)) and σ(Jh2(g)), the operator J is uniquely determined by Theorem 29.

Theorem 35. (Inverse Problem IV-c) Let J(g) be a Jacobi operator with discrete spectrum,
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σ(Jh1(g)) = {λn}n∈M , σ(Jh2(g)) = {νn}n∈M and {λkn}n∈N ⊂ σ(Jh1(g)), {νln}n∈N ⊂ σ(Jh2(g))

satisfying that

• there exists N ∈ N such that kn 6= ln ∀ n > N ,

• lim
m→∞

m∑
n=1

(
|Akn,m − Akn|/λ2

kn

)
< ∞,

• {λ−1
n }n∈M ∈ l1 and

• 0 <
∏
n∈N

νln
λkn

< ∞.

Then {λn}n∈M , {νn}n∈M \{ln}n∈N , {γkn(h1)}n∈N, h1(respectively h2) and γm(h1) for some m ∈

M \{kn}n∈N uniquely determine the operator J(g), h2(respectively h1) and if Jmin 6= J∗min, the

boundary condition g at infinity, where {γn(h1)}n∈M are norming constants corresponding to

Jh1(g).

Proof. Following the proof of Theorem 33 and redefining G andH as

G(z, g) :=
1

∆

(
νm − z
νm

λm
λm − z

)∏
n∈N

νln − z
νln

λkn
λkn − z

and

H(z, g) :=

(
νm − z
νm

λm
λm − z

)−1 ∏
n∈M \{ln}

νn − z
νn

∏
n∈M \{kn}

λn
λn − z

we get (∏
n∈M

νn
λn

)
G(z, g) = C +

Am
z − λm

+
∑
n∈N

Akn
z − λkn

, (4.28)

where Aj is the residue of
[∏

n∈M νn/λn
]
G(z, g) at λj and C ∈ R.

Now let us prove uniqueness of
[∏

n∈M νn/λn
]
G(z, g). Note that we know {λkn}n∈N ∪ {λm},

{Akn}n∈N ∪ {Am} and νm. Let the infinite product

(∏
n∈M

ν̃n
λn

)
G̃(z, g) :=

(∏
n∈M

ν̃n
λn

)
1

∆

(
νm − z
νm

λm
λm − z

)∏
n∈N

νln − z
νln

λkn
λkn − z
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share the same set of poles {λkn}n∈N ∪ {λm} and the same residues {Akn}n∈N ∪ {Am} at the

corresponding poles with G(z, g). In addition assume ν̃j = νj for all j ∈ M \{ln}n∈N. Let us also

assume zeros and poles of G̃(z, g) satisfy asymptotic properties of Theorem 28. Then we know

that G̃(z, g) has the infinite sum representation

(∏
n∈M

ν̃n
λn

)
G̃(z, g) = C̃ +

Am
z − λm

+
∑
n∈N

Akn
z − λkn

(4.29)

From (4.28) and (4.29), the difference of
[∏

n∈M νn/λn
]
G(z, g) and

[∏
n∈M ν̃n/λn

]
G̃(z, g) is

a real constant, which is zero since G(νm, g) = G̃(νm, g) = 0. This implies uniqueness of[∏
n∈M νn/λn

]
G(z, g) and hence uniqueness of {νln}n∈N. After unique recovery of the two spec-

tra σ(Jh1(g)) and σ(Jh2(g)), the operator J is uniquely determined by Theorem 29.
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5. SUMMARY

In this thesis we considered several versions of the following inverse spectral problem for

Schrödinger and Jacobi operators in the third and fourth chapters respectively.

Inverse Spectral Problem. Do one spectrum and partial information on another spectrum and the

set of norming constants (or the point masses of the spectral measure) corresponding to the first

spectrum uniquely recover the operator?

We answered this question positively in the following settings:

• Schrödinger operator on (0, π) with a real-valued L1- potential in the matching index sets

case, Theorems 22, 25.

• Schrödinger operator on (0, π) with a real-valued L1- potential in the non-matching index

sets case, Theorems 23, 24, 26, 27.

• Semi-infinite Jacobi operator in the matching index sets case, Theorems 30, 31, 32.

• Semi-infinite Jacobi operator in the non-matching index sets case, Theorems 33, 34, 35.

In the matching index sets case our spectral data consists of {λn}n∈N, {νn}n∈N\A and

{τα1(λn)}n∈A for A ⊆ N, where σα1,β = {λn}n∈N, σα2,β = {νn}n∈N are two spectra and

{τα1(λn)}n∈N is the set of norming constants corresponding to the first spectrum.

In the non-matching index sets case our spectral data consists of {λn}n∈N, {νn}n∈N\A and

{τα1(λn)}n∈B for A,B ⊆ N with some convergence restrictions, where σα1,β = {λn}n∈N, σα2,β =

{νn}n∈N are two spectra and {τα1(λn)}n∈N is the set of norming constants corresponding to the

first spectrum.

The main objects we used from the spectral theory are spectral measures, norming constants

(Definitions 13, 18) and Weyl m-functions (Definitions 14, 17) for Schrödinger and Jacobi opera-

tors respectively. In order to deal with general boundary conditions for Schrödinger operators, we

introduced more general m-functions (Definition 16).
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Our general approach was to transfer the above stated inverse spectral problem to a complex

analysis problem, namely the problem of unique recovery of a certain meromorphic function from a

data set consisting of the set of poles, a subset of the set of zeros and a subset of the set of residues.

In order to do this we used some well-known properties and infinite product representations of

Weyl m-functions (Lemma 1 and equations (4.10), (4.12)). In order to solve the uniqueness prob-

lem we obtained, we mainly used C̆ebotarev type representation results (Theorem 3 and Lemmas 2,

3, 4) and asymptotic properties of eigenvalues (equations (3.4), (3.5), (3.6), (3.7) and Theorem 28).

Finally we obtained our inverse spectral results using two-spectra theorems for the corresponding

settings (Theorems 6, 7, 29).
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[41] B. Hatinoğlu, Inverse problems for Jacobi operators with mixed spectral data (2019),

https://arxiv.org/pdf/1909.03356.pdf

[42] H. Hochstadt, On some inverse problems in matrix theory, Arch. Math. 18(1967), 201-207.

[43] H. Hochstadt, On the construction of a Jacobi matrix from spectral data, Linear Algebra

Appl. 8(1974), 435-446.

[44] H. Hochstadt, On the construction of a Jacobi matrix from mixed given data, Linear Algebra

Appl. 28(1979), 113-115.

[45] H. Hochstadt, B. Lieberman, An inverse Sturm-Liouville problem with mixed given data,

SIAM J. Appl. Math. 34(4) (1978), 676-680.

[46] M. Horváth, Inverse spectral problems and closed exponential systems, Ann. Math. 162

(2005), 885-918.

[47] M. Horváth, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer.

Math. Soc. 353 (2001), 4155-4171.

78



[48] M. Horváth, O. Sáfár, Inverse eigenvalue problems, J. Math. Phys. 57, 112102 (2016).

[49] R.O. Hryniv, Y.V. Mykytyuk, Half-inverse spectral problems for Sturm–Liouville operators

with singular potentials, Inverse Probl. 20(5) (2004), 1423-1444.

[50] A. Kostenko, A. Sakhnovich, G. Teschl, Weyl-Titchmarsh theory for Schrödinger operators

with strongly singular potentials, Int. Math. Res. Not. 8 (2012), 1699-1747.

[51] B.J. Levin, Distribution of Zeros of Entire Functions, Translations of Mathematical Mono-

graphs, Volume 5, AMS, Providence, Rhode Island, 1980.

[52] N. Levinson, The inverse Sturm-Liouville problem, Mat. Tidsskr. B (1949), 25-30.

[53] B.M. Levitan, M.G. Gasymov, Determination of a differential equation by two of its spectra,

Russ. Math. Surveys 19,1 (1964).

[54] B.M. Levitan, I.S. Sargsjan, Introduction to Spectral Theory, Translations of Mathematical

Monographs, Volume 39, AMS, Providence, Rhode Island.

[55] N. Makarov, A. Poltoratski, Two spectra theorem with uncertainty, Journal of Spectral Theory

9 (2019), 1249-1285.

[56] V.A. Marchenko, Some questions in the theory of one-dimensional linear differential opera-

tors of the second order I, Trudy Moskov Mat. Obsc. 1 (1952), 327-420 (in Russian).

[57] W.Y. Ping, C.T. Shieh, Inverse Problems for Sturm-Liouville Equations with Boundary Con-

ditions Linearly Dependent on the Spectral Parameter from Partial Information, Results.

Math. 65 (2014), 105-119.

[58] A. Poltoratski, Toeplitz Approach to Problems of the Uncertainty Principle, CBMS series,

Number 121, AMS, Providence, Rhode Island, 2015.

[59] Y.M. Ram, Inverse eigenvalue problem for a modified vibrating system, SIAM J. Appl. Math.

53(1993), 1762-1775.

[60] M. Sat, Inverse problems for Sturm-Liouville operators with boundary conditions depending

on a spectral parameter, Electron. J. Differential Equations (2017), 1-7.

79



[61] C.T. Shieh, Some inverse problems on Jacobi matrices, Inverse Probl. 20(2)(2004), 589-600.

[62] L.O. Silva, R. Weder, On the two spectra inverse problem for semi-infinite Jacobi matrices,

Math. Phys. Anal. Geom 9(2007), 263-290.

[63] L.O. Silva, R. Weder, The two-spectra inverse problem for semi-infinite Jacobi matrices in

the limit-circle case, Math. Phys. Anal. Geom 11(2008), 131-154.

[64] B. Simon, A new approach to inverse spectral theory, I. Fundamental formalism, Ann. Math.

150 (1999), 1029-1057.

[65] B. Simon, The classical moment problem as a self-adjoint finite difference operator, Adv.

Math. 137(1998), 82-203.

[66] G. Teschl, Mathematical Methods in Quantum Mechanics, With Applications to Schrödinger

Operators, Graduate Studies in Mathematics, Volume 99, AMS, Providence, Rhode Island,

2009.

[67] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical

Surveys and Monographs, Volume 72, AMS, Providence, Rhode Island, 1999.

[68] G. Teschl, Trace formulas and inverse spectral theory for Jacobi operators, Comm. Math.

Phys. 196(1)(1998), 175-202.

[69] G. Teschl, K. Unterkofler, Spectral theory as influenced by Fritz Gesztesy. Spectral analysis,

differential equations and mathematical physics: a Festschrift in honor of Fritz Gesztesy’s

60th birthday, 341-363, Proc. Sympos. Pure Math., 87, AMS, Providence, Rhode Island,

2013.

[70] Y.P. Wang, Uniqueness theorems for Sturm-Liouville operators with interior twin-dense

nodal set, Electron. J. Differential Equations (2017), 1-11.

[71] Y.P. Wang, H. Koyunbakan, On the Hochstadt-Lieberman theorem for discontinuous

boundary-valued problems, Acta Math. Sin. 30 (2014), 985-992.

80



[72] Y.P. Wang, C.T. Shieh, Y.T. Ma, Inverse spectral problems for Sturm-Liouville operators with

partial information, Appl. Math. Lett. 26 (2013), 1175-1181.

[73] Y.P. Wang, V.A. Yurko, On the inverse nodal problems for discontinuous Sturm-Liouville

operators, J. Differential Equations 260 (2016), 4086-4109.

[74] Z. Wei, G. Wei, Uniqueness results for inverse Sturm-Liouville problems with partial infor-

mation given on the potential and spectral data, Bound Value Probl (2009), 2016: 200

[75] Z. Wei, G. Wei, On the uniqueness of inverse spectral problems associated with incomplete

spectral data, J. Math. Anal. Appl. 462 (2018), 697-711.

[76] G. Wei, Z. Wei, Inverse spectral problem for Jacobi matrices with partial spectral data,

Inverse Probl. 27(7)(2011), 075007.

[77] G.S. Wei, H.K. Xu, On the missing eigenvalue problem for an inverse Sturm-Liouville prob-

lem, J. Math. Pures Appl. 91 (2009), 468-475.

[78] G.S. Wei, H.K. Xu, Inverse spectral problem with partial information given on the potential

and norming constants, Trans. Amer. Math. Soc. 364 (2012), 3265-3288.

[79] C.F. Yang, Inverse spectral problems for the Sturm-Liouville operator on a d-star graph, J.

Math. Anal. Appl. 365 (2010), 742-749.

81


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	PRELIMINARIES
	Complex function theory
	Hardy spaces in the upper-half plane
	Inner-outer factorization
	Meromorphic inner functions and meromorphic Herglotz functions

	Beurling-Malliavin theory

	INVERSE SPECTRAL THEORY OF SCHRÖDINGER OPERATORS
	One-dimensional Schrödinger operator on a finite interval
	Inverse spectral theory of regular Schrödinger operators
	Classical results
	Some recent results in the finite interval case

	An inverse spectral problem with mixed data
	Matching index sets
	Non-matching index sets
	General boundary conditions


	INVERSE SPECTRAL THEORY OF JACOBI OPERATORS
	Semi-infinite Jacobi matrices
	Inverse spectral problems with mixed data
	Matching index sets
	Non-matching index sets


	SUMMARY
	REFERENCES

