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ABSTRACT

Medical diagnosis is the most critical component in the treatment of a patient. But diagnosis

often is a complicated process since a myriad of diseases share the same symptoms. If a patient is

diagnosed with a disease in its end-stage, potential new treatments (clinical trials) are sometimes

the last option available. However, matching a patient to the correct clinical-trial requires advanced

medical knowledge on behalf of the patient.

In this study, we try to address the following problems and close the technical gaps, (i) Diagno-

sis: Advances in neural network approaches and the availability of massive labeled datasets have

sparked renewed interests in automated diagnosis. We explore novel techniques to identify pathol-

ogy in chest radiographs by using a labeled radiograph dataset, which is also substantially large for

the domain of medical diagnosis. (ii) Clinical-Trial Matching: Given the difficulty of perusing the

jargon in standard clinical trial texts, we try to complement the process by using machine learning

and information retrieval methods to fetch similar health records showing the entities responsible

for the match.

We implement an efficient visual tool (TextMed) to aid our algorithm and make it easier for

users to utilize the power of machine learning. Our tool helps in searching through a database of

criteria and records and fetches the information about the query.
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1. INTRODUCTION

1.1 Medical Diagnosis

Medical diagnosis is the process of determining which disease or condition explains a persons

symptoms and signs. The information required for diagnosis is typically collected from a his-

tory and physical examination of the person seeking medical care. Diagnosis is the most critical

component in the process of curing a patient. Diagnosis is often tricky because various diseases

and conditions show the same primary symptoms. For example, fever and headache are prevalent

symptoms accompanied by any disease; that is why it is difficult for healthcare professionals to

figure out the underlying cause. Statistically speaking, diagnosis can be seen as a classification

problem where each piece of information helps us to reach the actual cause and identify the correct

disease or condition.

There are various tools at disposal for healthcare professionals to carry out the diagnosis pro-

cedure. One of the most commonly used tools is radiology. Radiology is the medical discipline

that uses medical imaging to diagnose conditions. Various techniques are used to create visual

representations of the interior of a body for clinical analysis. Medical imaging is a noninvasive

procedure because no instrument is introduced into a patients body. In a restricted sense, medical

imaging can be seen as a mathematical problem in which we are trying to detect the cause by

the effect (the observed signal). A mathematical problem that can be identified as a classification

problem can be solved using modern Artificial Intelligence methods. A sample chest radiograph is

shown in figure 1.1

1.2 Clinical-Trial Matching

One of the most critical conditions today is cancer, which has mixed results for survival even

after it is diagnosed. It is essential to be able to enroll patients for new clinical trials, which can

cure patients if done timely and also provide insights on whether a clinical trial is useful or not.

Depending on the particular conditions of a patient, the clinical trial being matched varies. Patient
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enrollment for these trials remains a significant challenge. Matching and enrollment are drivers by

the healthcare providers or by their proxies (e.g., relatives or caretakers). At any point in time, there

are numerous trials, which are underway in the United States. A specific patient would qualify only

for a small set. The trial designers design the trials in a way that they are particular, and thus the

patients matched would get the most benefit from the trial. At the same time, numerous trials fail

because of a lack of sufficient candidates.

In many cases, information from the patient is incomplete in the electronic health records

(EHR). Patients can visit multiple healthcare systems, while the trial recruiter only has access

to one of them. There is also genetic information that patients may process but not available to

the recruiters. From a patient perspective, it is tough for them to understand all the technical

jargon in clinical trial criteria. From a recruiters perspective, lacking the population prevalence of

medical conditions makes it hard to set the scope of inclusion/exclusion criteria that would be most

appropriate for their studies.

Diagnosis can be seen mathematically as a classification problem where healthcare profession-

als are trying to classify the observations from a particular known disease. On the other hand,

clinical trial matching can be seen as a query matching problem where the patients history or

record can be seen as an input query to be matched against a particular trial. Automated diagnosis

and clinical trial matching can save millions of dollars of money by reducing human intervention,

speeding up the process, and saving time, which can result in faster diagnosis and matching and

thus saving numerous lives. Artificial Intelligence (AI) provides us a myriad of techniques to auto-

mate tasks like matching and classification. Our work explores the use of AI for diagnosing chest

radiographs and clinical trial matching.

1.3 Artificial Intelligence

Computer Science defines Artificial Intelligence research as the study of intelligent agents that

perceive the data from its environment and take actions that maximize its chances of achieving

its goals. A more elaborate definition would be a system that can correctly interpret external

data, learn from the data, and use those learnings to achieve specific goals [1]. In the current era,
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boundaries in Artificial Intelligence are mainly being pushed by the use of Deep Learning. Deep

Learning in its current form is a subset of machine learning algorithms that consist of multiple

layers of artificial neurons and can extract high-level features from a particular dataset [2]. Modern-

day deep neural networks are based on artificial neural networks where a single neuron can be

viewed as a non-linear unit that takes a weighted linear combination of inputs and outputs a value

after applying the non-linear activation function on the output.

Applications of Artificial Intelligence (AI) in healthcare have been explored, and more and

more companies are coming up in this area. The rise of AI in healthcare is happening at a gradual

and steady pace, although there are not many end-to-end systems, nonetheless that has not stopped

the AI community in assisting doctors and automating various tasks involved in the pipeline start-

ing from diagnosing to even providing treatments. Much of the current progress in AI applications

to healthcare can be attributed to the fact that bigger datasets are being made publicly available

by healthcare institutions and the computing power available at the hands of humanity increasing

folds each year.

Current research in the application of AI in healthcare can be broadly classified into the follow-

ing areas, namely Radiology, Imaging, Disease Diagnosis, Telehealth, Electronic Health Records,

drug interaction, and the creation of new drugs. Deep learning has been extensively successful in

the domain of images more than anything else. This success can be attributed to Convolutional

Neural Networks (CNN), which was the brainchild of Yann LeCun [3]. Because of the ImageNet

competition [4] there has been an explosion of various kinds of CNN architectures. These architec-

tures improved on the accuracy, efficiency, or size of the network over the previous architectures.

The progress of these architectures created a big zoo of CNN models, which could now be used for

a variety of applications. Since CNNs are successful, they have been accepted widely by the in-

dustry. Most forms of image and video processing include some form of CNNs underneath. CNNs

have made their way into healthcare mainly in the domain of imaging and radiology. Radiology

mainly consists of identifying some form of defect or disease in particular body parts from the

radiograph image. With enough supervised data, CNN can handle the task. With the advent of
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radiology datasets, much CNN research has spawned in this area.

Figure 1.1: A sample chest radiograph from CheXpert dataset

1.4 Our Work

In our work, we explore a new CNN architecture for identifying the presence of pathology with

the help of lung radiograph images. The dataset which has been published by Stanford University

is publicly available [5]. Some sample images from the dataset are shown in figure 1.2. For one

pathology, the task can be simplified even further because the discriminating criteria is the size

of the lung. For the clinical trial matching task, we first devise classic algorithmic techniques that

serve as our baseline. Then we explore embeddings for the medical text to find similarities between

trials and patient history.

We build a tool for patients to come and receive questionnaires to help them identify particular

trials. The tool helps experts and doctors to be able to save the inclusion and exclusion criteria

along with the details about the criteria. The experts can choose to see the criteria they have saved,

and the patients can attempt a questionnaire many times, depending upon their needs. We bring the

work done in the dissertation to life by building a visual tool named TextMed. TextMed helps in

4



Figure 1.2: Frontal and Lateral radiograph of the same patient showing Pleural Effusion

analyzing a medical text, preferably a criterion by identifying the variables using entity recognition

and further using that and machine learning model generated embeddings to find similar criteria

and electronic health records. A table displays the fetched records. We give the user the ability to

search and download the results as a comma-separated file.

5



2. RELATED WORK

2.1 Medical Diagnosis

The usage of Artificial Intelligence in healthcare has traditionally met the bottleneck of the

requirement of large amounts of data. Most modern-day machine learning algorithms, especially

deep learning algorithms, need a humongous amount of data to train a robust, generalizable model.

Collecting large amounts of data in the medical domain is not as easy as compared to collecting

images of naturally occurring everyday objects or animals. There are various regulations that the

data collectors have to abide because the data is highly sensitive data related to patients, making

the general data collection process painstakingly slow in some cases as well. For progress in

deep learning and automated algorithms, there is a general need for datasets that conform to the

following three criteria (1) the data should be extensive (2) the data has strong reference standards

(3) the data provides expert human metrics for comparison. Rajpurkar et al. [5] published a large

dataset of chest radiographs for automated radiograph interpretation. The dataset comprises of

224,316 radiographs of 65,420 patients. The authors have labeled each radiograph for the presence

of 14 observations. Each observation can either be positive, negative, or uncertain.

The radiographs have been collected from Stanford Hospital. These radiographs have been

taken between October 2002 and July 2017 in the patient centers. It was decided to consider 14

observations, which were the most prevalent in the radiographs and based on clinical relevance.

The relevance conformed to the Fleischner Societys recommended glossary [6]. The No Finding

observation was also included to take into consideration the case in which all pathologies are ab-

sent. To label the dataset, they used a custom rule-based labeler that operated on each radiology

report to extract the pathology. It worked in three stages: mention extraction, mention classifi-

cation, and mention aggregation. In the mention extraction phase, an extensive list of phrases

(curated by board-certified radiologists) was used to match and extract a mention. In the mention

classification stage, they used a pipeline to see if it is a negation or uncertain or positive depending
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on how the words are phrased around the mention. In the aggregation phase, a final label was de-

cided. Observations with at least one mention that is positively classified were assigned a positive,

uncertain if not positively classified or has one uncertain mention and negative if it has a negative

mention.

Rajpurkar et al. implemented baseline models that take the input image as a single-view chest

radiograph and output the probability of each of the 14 observations. If there is more than one-

view available, their model outputs the maximum probability of the observations across the views.

Apart from the positive (1) and negative (0) labels, it was essential to deal with the uncertain (u)

label. They explore various uncertainty approaches, which we will brief. (i) Ignoring: This is the

most basic approach in which the uncertain (u) label is ignored, and the associated data points are

not taken into account for training. Ignoring data points from a specific class can produce a biased

model since the data distribution is skewed and not uniform for most of the pathologies. (ii) Binary

Mapping: In binary mapping, the uncertain (u) label is either mapped to negative (0) or mapped to

positive (1). This approach can distort decision mapping because assuming the uncertain labels to

be either positive or negative holds back the classifier from learning semantic information about the

data. (iii) Self-Training: This is a semi-supervised learning approach in which the model is trained

according to the ignore approach initially and then use the model to make predictions and re-label

each data point with the probability prediction outputted by the model. 3-Class Classification:

As the name suggests, this treats uncertain (u) as its label, and the model is trained on that. The

probability of the prediction among the classes should sum up to 1. The 3 classes are {p0, p1, pu}

and p0 + p1 + pu = 1. The loss is set-up as the mean of the multi-class cross-entropy over the

observations. Multi-class cross-entropy is the most standard approach in most modern-day deep

learning algorithms that classify into particular classes. We will also use the 3 class classification

approach.

L(X, y) =
∑

o∈{u,1,0}

yo log p (Yo = o|X)
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2.2 Clinical-Trial Matching

We are trying to explore how clinical trials for various patients can be matched with the right

treatments. There has been active research in the domain of fetching clinical trials from queries.

Most of the classical approaches use either a strict Rule Matching-based approach or Ontology-

based approach or a combination of both [7]. In the strict Rule Matching-based approach, large

volumes of medical articles (and criteria) are fed into ElasticSearch. The patients profile is then

formulated as a query against this system, which then matches fields such as title, gender, age,

criteria. The concepts for diseases, genes, age, gender, and treatments are set as must match for the

queries. Other concepts are set as should match for queries. Since ElasticSearch is based on BM25

[8] algorithm, which is a classical query algorithm that returns a number for query matching, the

entire query matching module returns a ranked list of criteria which are matched. The approach is

the Ontology-based approach, which first filters out all the irrelevant articles/criteria. The system

then enhances the information provided with topics provided by synonyms in genes, diseases, or

other conditions. It further splits each disease and other concepts and links them to the nearest

concept in the MeSH [9] hierarchy. After that, the process is reduced to a standard information

retrieval (IR) problem where the matching score is computed using BM25, taking into account the

text, gene-level data, and MeSH. Then there is the hybrid architecture, which fuses both the above

approaches.

There has been active research over the years in projecting words and sentences into a vector

in a d-dimensional space using which measuring similarity of new constructs (words/phrases) be-

comes relatively simple. One of the cornerstones works in the domain of NLP is word2vec [10],

which projects a word to a dense vector in a d-dimensional space. Word2vec sparked the start of

an era in NLP where the approach revolved around converting words, then phrases and sentences

to vectors directly, instead of working on the tokens. New approaches in projecting a sentence to

a vector involved taking the mean of the word embedding of the tokens. While this idea is simple

and might work for small sentences, it will fail if there are opposite words in the sentences which

cancel each other out. Moreover, taking the mean doesn’t take into account the order of the tokens
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in the sentence.

Another major challenge in the domain of NLP is variable-length inputs. To overcome this,

researchers started using Recurrent Neural Networks (RNN). Vanilla RNN had the problem of

having a short memory. Later GRU [11] and LSTM [12] (which was invented in the late 90s) were

used to tackle short term memory issues. Equipped with this, researchers came up with models

that converted the semantic meaning of the entire sentence to a vector. Prominent examples are

sent2vec [13], InferSent [14], Universal Sentence Encoder [15]. We use a variant of Sent2Vec

called BioSent2Vec [16] (specifically for medical domain) in our research. Recurrence models

were slow because there was an inherent component of time, and derivatives were moved back-

ward in time direction and prediction direction. Specialized machine learning hardware could not

optimize the matrix calculations on RNNs as much as they could do with feed-forward neural

networks.

Recent advances in Transformers [17], which allowed for NLP models to use feed-forward

neural networks, significantly increased speed. Bidirectional Encoder Representations from Trans-

formers (BERT) [18] which was developed by stacking these transformers and trained on two new

tasks MLM (Masked Language Model): removing 15% of the words and train the model to predict

the missing words based on bidirectional context and NLI (Natural Language Inference): make the

model predict whether sentence B comes after Sentence A or not, provided state-of-the-art results

on the GLUE [19] benchmark. BERT weights are easily transferable, and it can be easily extended

to solve new tasks down the pipeline. We use BERT extensively in our research. We try to com-

bine both the classical and machine learning approaches to find similarities between clinical trial

criteria, find variables, and extract conditions in the inclusion and exclusion criteria.
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3. METHODOLOGY

3.1 Medical Diagnosis

3.1.1 Augmentation

3.1.1.1 Method

The radiograph dataset published by Stanford is highly unbalanced. Unbalanced in this context

means that the distribution of the data among the labels, namely negative (0), positive (1), and

uncertain (u) is not uniform. Balanced data generally results in better model training. Table 3.1

shows the distribution of the dataset among the various labels.

Pathology Positive (%) Uncertain (%) Negative (%)
No Finding 16627 (8.86) 0 (0.0) 171014 (91.14)
Enlarged Cardiom. 9020 (4.81) 10148 (5.41) 168473 (89.78)
Cardiomegaly 23002 (12.26) 6597 (3.52) 158042 (84.23)
Lung Lesion 6856 (3.65) 1071 (0.57) 179714 (95.78)
Lung Opacity 92669 (49.39) 4341 (2.31) 90631 (48.3)
Edema 48905 (26.06) 11571 (6.17) 127165 (67.77)
Consolidation 12730 (6.78) 23976 (12.78) 150935 (80.44)
Pneumonia 4576 (2.44) 15658 (8.34) 167407 (89.22)
Atelectasis 29333 (15.63) 29377 (15.66) 128931 (68.71)
Pneumothorax 17313 (9.23) 2663 (1.42) 167665 (89.35)
Pleural Effusion 75696 (40.34) 9419 (5.02) 102526 (54.64)
Pleural Other 2441 (1.3) 1771 (0.94) 183429 (97.76)
Fracture 7270 (3.87) 484 (0.26) 179887 (95.87)
Support Devices 105831 (56.4) 898 (0.48) 80912 (43.12)

Table 3.1: Distribution of classes in CheXpert dataset 1

1Reprinted with permission from "Chexpert: A large chest radiograph dataset with uncertainty labels
and expert comparison" by J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B.
Haghgoo,R. L. Ball, K. S. Shpanskaya, J. Seekins, D. A. Mong, S. S. Halabi, J. K. Sandberg, R. Jones,D. B.
Larson, C. P. Langlotz, B. N. Patel, M. P. Lungren, and A. Y. Ng, 2019 AAAI Press, pp. 590-597, Copyright
2019 by Association for the Advancement of Artificial Intelligence.
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We use the standard augmentation techniques used for improving the performance of Convolu-

tional Neural Networks by augmenting the data for the class, which has less data by providing tilts

at certain angles, flipping, and certain other transformations. Since radiographs are translation and

rotation invariant, this increases the performance of the model and compares it to standard methods

with no augmentation. We use the python library implementation called Augmentor [20], which

helps in making a pipeline that serves the rotational and translational or a combination of both of

the image to the model to help the model to generalize better and find a better discriminant bound-

ary. In our approach, we oversample the underrepresented data and thus create new data for train-

ing. Experiments were carried out using various CNN architectures like ResNet152, DenseNet121,

Densenet169, and Inception-v4. It was found that DenseNet121 and DenseNet169 performed bet-

ter than other architectures. Images were fed into the network after resizing as 320 × 320 pixels.

To oversample, we zoomed the images to a scale ranging from 1.05 to 1.2, with a probability of

0.3. We subsequently rotated the image 25o with a probability of 0.7 and then flipped alongside

the horizontal axis with a probability of 0.7. We used the Adam optimizer with the default β pa-

rameters, β1 = 0.9 , β1 = 0.009 and a learning rate of 1 × 10−4 . At each epoch, the dataset was

shuffled, and batches were sampled with a size of 16. The training was done for 10 epochs. Call-

backs for stopping early, when there is no improvement were given to the optimizer. The training

was done on Tesla V100 GPU, and each training took roughly 7 hours to complete. Apart from the

ROC-AUC scores, we also present the ROC-AUC curve. Receiver operating characteristic curve,

or ROC curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system

as its discrimination threshold is varied.

3.1.1.2 Results

The validation set contains a total of 200 studies from 200 patients. We randomly sampled these

images from the dataset. Three board-certified radiologists individually annotated each image in

the validation set, marking whether pathology is present or absent or unlikely. These annotations

were then binarized so that the uncertain and positive cases are treated as positive and the negative

cases as negative. The majority of these binarized annotations are then used as the final ground
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truth.

We take two of the most important pathology and plot the receiving operator characteristic area

under the curve for both of them under different methodologies. For the cases of atelectasis, the

area under the receiving operator characteristic curve increases significantly from 0.787 to 0.828.

The ROC-AUC curves are shown in figure 3.1.

(a) Atelectasis (b) Cardiomegaly

Figure 3.1: ROC Curves for Augmentation

Now, for the case of cardiomegaly, we have similar improvements in the receiving operator

characteristic area under the curve. The area under the curve for non-augmented data is 0.837,

whereas, for the augmented data, it is 0.844. We see that balancing the dataset increases the ROC-

AUC score as compared to the unbalanced dataset. The above curve depicts the exact ROC curve

for cardiomegaly.

Table 3.2 compiles the ROC-AUC scores for the experiments carried out.

Cardiomegaly Atelectasis
Non-Aug 0.837 0.787
Augmented 0.844 0.828

Table 3.2: ROC-AUC scores for Augmented vs Non-Augmented data
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3.1.2 Attention-Densenet

3.1.2.1 Self-Attention

Self-Attention was introduced by Vaswani et al. [17]. Let us take a simple example sentence,

"The animal did not cross the street because it was too tired.". What does the "it" associate to, in

this example, one might ask? We can easily associate "it" to the animal. However, its tricky for

the algorithm to do so. The goal of the self-attention mechanism is to predict these associations,

predict that the word "it" and the word "animal" have a strong correlation and refer to the same

thing here. This understanding is then used by the model to process the text and perform better.

3.1.2.2 Self Attention for Images

Now, one might naturally ask how does self-attention mechanism in the text help us with find-

ing pathology in chest radiographs. In the case of medical images like chest radiographs for some

diseases, there are various artifacts in the radiograph, which can contribute to the identification of

the disease. Having this hypothesis in mind, we propose introducing an attention block inside the

[21] densenet architecture, which helps in identifying correlations between different portions of

the image. The core idea of the attention module used in our architecture is inspired from here

[22]. The input to the densenet module is updated by applying the attention blocks (figure 3.2),

which take h×w× c as input and output h×w× co. The new number of output channels encode

the information, which is then further passed down to the denseblocks.

In order to understand the working of the attention block applied to a 2D image, we need

to follow the tensor operations. Let us assume the image to have height h and width w and the

number of input channels as c. So the volume of the input is h × w × c. Our first operation is

to take 1× 1 convolution filters and convolve them to get three different things queries, keys, and

values. Let the number of channels in the queries be cq, keys be ck and values be cv. Since it is a

1 × 1 convolution, we have not increased or decreased the height or width of the block. Now we

do the unfold operation; in the unfold operation, the input is a volume of h×w× ck, but the output

is a 2D tensor with one dimension as h×w and the other dimension as ck. We do this operation on
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Figure 3.2: Attention Module used in Attention-Densenet architecture

each of the queries, keys, and values. We now have queries, keys, and values in a state from where

we can apply the attention operation.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

After applying the attention operation, we get the tensor whose dimensions are h × w and cv.

We do a packing operation on the 2D tensor to convert it into a volume of size h×w× ck and then

finally apply the last linear operation to go from ck channels to co channels. The packing and the

linear operation, along with the standard denseblock output, is fed into the next denseblock. We

use this module in tandem with the densenet121 architecture. It increases the number of parameters

in the model by roughly 10%.

3.1.2.3 Results

We trained the Attention-Densenet model on one of the most critical pathologies and compiled

the ROC-AUC scores in table 3.3. We can see the score has improved for some of them, but not
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for all. ROC-AUC curves for a selected few pathologies are shown in figure 3.3. We hypothesize

that for some diseases, the radiograph does not provide many artifacts to attend on, and hence it

is not helping the classification. For these diseases, more number of parameters is harming the

overall classification because of overfitting. However, in the case of some diseases, it increases the

ROC-AUC score. We train these models for 20 epochs and report the best performing model over

the validation set. The code has been made public on github2.

Pathology AUC Score
Cardiomegaly 0.838
Atelectasis 0.789
Edema 0.868
Pleural Effusion 0.768
Pneumonia 0.900
Consolidation 0.887

Table 3.3: ROC-AUC scores for Attention-Densenet

3.1.3 Image Segmentation

3.1.3.1 Method

Radiologists use a systematic approach in reading a chest radiograph, both frontal as well as

lateral. In a chest radiograph depending on the darkness of the film, one can distinguish between

the boundaries of soft organs (like lungs, trachea), hard organs like bones, and other artifacts

like any outside body if injected by the patient. Black corresponds to air, dark grey corresponds

to fat tissues, light grey corresponds to soft tissue, off white corresponds to bones, and bright

white corresponds to metallic or outside bodies, it can also be a pacemaker in the patient’s heart.

Whenever there is a density change between two corresponding regions, there is a clear distinctive

boundary that can be seen in the radiograph.

2https://github.com/abkds/chexpert
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(a) Atelectasis (b) Consolidation

(c) Pneumonia

Figure 3.3: ROC Curves for Attention-Densenet

Atelectasis is a disease which is most easily identifiable from the radiograph. In this disease,

one lung deflates or shrinks compared to other organ and there is significant breathing problem

for the patient. We believe that, even though the densenet attention model provided a ROC-AUC

score of 0.789, it can definitely do much better. Densenet model might be getting bogged down

by the various other artifacts in the radiograph whereas the most important thing to concentrate for

finding Atelectasis is the size of the lungs itself. We feel that segmenting the image for the shape

of lungs in Atelectasis provides a easy way to distinguish between the area of each lung. If one

lung is substantially deflated in size compared to the other then it can be said that it is a case of

Atelectasis.

We use Double-DIP [23] to do the image segmentation. The Double-DIP method is a state-

of-the-art image segmentation technique based on coupled "Deep Image Prior" networks. It learns
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to segment the image in an unsupervised way except for the image itself. Including the Double-

DIP technique of segmenting the image in the pipeline for training the deep learning model can

improve the performance of the model as it removes all the unwanted artifacts from the radiograph

and generates a simple mask of the lung images. We show a sample generated mask in figure 3.4.

(a) Actual (b) Mask

Figure 3.4: Left: A sample radiograph of patient suffering from Atelectasis, Right: Image segmen-
tation of the radiograph showing different lung sizes

3.1.3.2 Training and Results

For training the network with segmented images, our pipeline has now become slightly more

complicated as we use an image segmentation step before feeding it to a neural network. Segment-

ing a single image of size 320×320 is very computationally expensive as the Double-DIP network

takes about 8-10 minutes to get a single image. It is not feasible to take all the two hundred thou-

sand images and do image segmentation on them. A very crucial detail to notice is that the shape

of the lungs is conspicuous in frontal radiograph images compared to lateral radiograph images.

So we decided to randomly sample 8000 frontal radiograph images from the dataset and segment

those images. Out of 8000 images, we sampled 4000 images with atelectasis and 4000 with no
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atelectasis. To save computational time, we resized the images to 80× 80. Each image took about

3-4 minutes to be segmented. We ran 8 parallel jobs over a few days.

After doing the segmentation, we had a new dataset of masks. We used this dataset to train a

new neural network specific to atelectasis. We went from a few simple models to more complex

models to test, which performs better. A straightforward convolutional neural network was trained

over the dataset to do the binary classification. The feed-forward net consisted of three convolu-

tional layers with a filter size of 5 × 5 and a filter depth of 10, 20, and 20. We added a dropout

layer after the first two layers and the third layer. There was a max-pooling layer after each convo-

lutional layer, which was followed by the dropout layer. After that, we had a flatten layer. The last

two layers were fully connected layers going from 720 to 50 and then 50 to 1 (since we are doing

binary classification). Training this simple network on the 8000 images yielded a ROC-AUC score

of 0.806, which already performed better than the previous atelectasis results. However, since we

had very few images, we trained it again on densenet121 for 6 epochs. The best checkpoint in

densenet121 gave a result of 0.885. This result was significantly better than all the previous results

for atelectasis. We found that this technique of segmenting the images for the network increases

the ROC-AUC scores for atelectasis. The ROC-AUC curve for atelectasis is shown in figure 3.5.

Figure 3.5: ROC Curve for Atelectasis after Image Segmentation
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3.2 Clinical-Trial Matching

Our first approach is to segregate criteria which have basic conditions like ≥, >, < and ≤. Cri-

teria with the above comparisons can generally be viewed as structurally equivalent to a "Quantity

Comparator Amount". The comparator is a set which comprises of {≥, >,<,≤}. First, we nor-

malize all the criteria by replacing ≥ with "greater than or equal to", ≤ with "less than or equal to",

> with "greater than" and < with "less than". Doing the normalization operation brings uniformity

among all the criteria as it removes any symbols. In the next phase, we segregate the criteria by

using the longest common subsequence method. We match each criterion against the four phrases

discussed previously; it is considered to be a match if the longest common subsequence length

comes out to be equal to the phrase length. We do the segregation in the order of the longest phrase

to the smallest phrase because the smallest phrase in our case is a part of the longer phrase.

Following are some representative examples of criteria after doing the segregation.

• less than

– Geriatric Depression Scale (GDS) score of less than 6;

– a score of less than 10 points on the HAM-D-17

• greater than

– Alcohol intake greater than 30 grams (drink more than 2 beers OR equivalent per day).

– Mini Mental State Examination score greater than 15 / 30

• greater than or equal to

– Age greater than or equal to 55 years with a diagnosis of MCI

– MMSE score greater than or equal to 24

• less than or equal to

– Rosen-Modified Hachinski Ischemia Score less than or equal to 4.

– Creatinine less than or equal to 2x institutional upper limits of normal
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3.2.1 Variable Detection

Before jumping into any complicated machine learning models, it is essential to have a baseline

for our task of variable detection. Each criterion has a particular medical term (or variable), which

is compared against some numeric value to identify a particular patient. It is crucial to identify that

variable as that will help in the pipeline further by helping our user of the patient database even if

he/she is not well versed with the medical vocabulary. Furthermore, in the case of an automated

process to generate the query, the same identified variable can be directly used to fill in the query

column names.

For the baseline, we use a two-fold technique and use a similarity measure called the Jaccard

Similarity Score. The Jaccard Similarity Score between two pieces of text is given by

J(X,Y ) =
|X ∩ Y |
|X ∪ Y |

here X and Y are both tokenized strings. For a given criterion, we first find the criteria similar to the

given criteria by using the Jaccard similarity score and order them in decreasing order of similarity.

Since medical term (or variable) is most likely the term that finds similar criteria, we then take the

Longest Common Subsequence with the original criteria, and this common subsequence represents

our medical term. Although this is not a fool-proof technique, it works reasonably well in finding

the medical terms.

Following are some examples of variable detection:

• Criteria 1: Apathy Evaluation Scale-Clinician (AES-C) score of greater than or equal to 30

Most likely variable is "apathy evaluation scale-clinician aes-c score" or "apathy evaluation

score"

• Criteria 2: Mini-Mental State Examination (MMSE) greater than or equal to 25

Most likely variable is "mini-mental state examination mmse".

• Criteria 3: Non-demented: Montreal Cognitive Assessment greater than 26 and Clinical
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Dementia Rating = 0

Most likely variable is "montreal cognitive assessment clinical dementia rating" or "clinical

dementia rating"

• Criteria 4: Serum creatinine greater than 1.5 times the upper limit of normal

Most likely variable is "serum creatinine".

We also provide examples of text similarity with the similarity score in tables 3.4, 3.5, 3.6 and

3.7. Our baseline works pretty well for smaller criteria which have just one variable. For each of

the criteria given below the top 6 similar criteria matched in decreasing order of similarity score

has been presented.

Example 1: Body mass index greater than 22.5

Similarity Score Criterion
0.75 body mass index less than 18.5
0.75 Normal body mass index (BMI)
0.75 Body mass index of 18-32.
0.6 Body mass index between 18-32kg/m2
0.6 Body mass index (BMI) greater than 40
0.6 Have a Body mass index (BMI) greater than or equal to 23

Table 3.4: Similar criteria to "Body mass index greater than 22.5"

Example 2: Has cancer or a malignant tumor, untreated thyroid disorder or has a history of

seizure disorder

Example 3: Cerebral Spinal Fluid (CSF) Amyloid Beta 1-42 (A42) less than or equal to 600

pg/mL, or A ratio of total tau to A42 greater than or equal to 0.39.

Example 4:Clinical evidence or history of cerebrovascular accident; transient ischemic attack;

significant head injury with associated loss of consciousness, skull fracture or persisting cognitive

impairment; other unexplained or recurrent loss of consciousness for greater than or equal to 15

minutes

21



Similarity Score Criterion
0.88 Subjects who have cancer or a malignant tumor, untreated thyroid dis-

order, or a history of seizure disorder.
0.375 History of a seizure disorder.
0.375 History of seizure disorder
0.333 History of stroke or seizure disorder
0.333 History of seizure disorder or epilepsy
0.333 History or presence of seizure disorder

Table 3.5: Similar criteria to "Has cancer or a malignant tumor, treated thyroid disorder or has a
history of seizure disorder"

Similarity Score Criterion
0.66 Cerebral Spinal Fluid (CSF) Amyloid Beta 1-42 (Aβ42) less than or

equal to 600 pg/mL, or A ratio of total tau to Aβ42 greater than or
equal to 0.39.

0.33 Cerebral spinal fluid (CSF) result consistent with the presence of amy-
loid pathology

0.2 The patient has a ratio of total tau/Aβ42 in cerebrospinal fluid greater
than or equal to 0.28.

0.2 The patient has a ratio of total tau/Aβ42 in cerebrospinal fluid greater
than or equal to 0.30.

0.2 The patient has a ratio of total tau/Aβ42 in cerebrospinal fluid greater
than or equal to 0.30.

0.2 The patient has a ratio of total tau/Aβ42 in cerebrospinal fluid greater
than or equal to 0.28.

Table 3.6: Similar criteria to "Cerebral Spinal Fluid (CSF) Amyloid Beta 1-42 (A42) less than or
equal to 600 pg/mL, or A ratio of total tau to A42 greater than or equal to 0.39."

As we saw earlier that the method we used to find variables in particular criteria is miserable

when it comes to fetching out all the variables in long criteria. Even without using any natural

language processing methods, we were able to extract the variables pretty consistently for most of

the cases. After finding the first match of the current criteria, we find the common words between

both the criteria and store them in a list. For this list of common words, first, we generate another

list, which is essentially mapping to the positions (or indices) of the common words into the list.

After that, we find all the contiguous positional indices from this list. Finally, we combine each
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Similarity Score Criterion
0.52 Clinical evidence or history of stroke, transient ischemic attack, signifi-

cant head injury or other unexplained or recurrent loss of consciousness
greater than or equal to 15 minutes

0.290 History of head trauma or injury causing loss of consciousness, lasting
more than three (3) minutes or associated with skull fracture or inter-
cranial bleeding or abnormal MRI.

0.259 history of head trauma associated with injury-onset cognitive com-
plaints or loss of consciousness for 10 minutes or longer.

0.25 History of severe head injury (with loss of consciousness greater than
30 minutes)

0.25 history of significant head trauma with loss if consciousness greater than
10 minutes

0.20 History of stroke or multiple (greater than 3 discreet episodes) Transient
Ischemic Attacks (TIAs), severe head trauma with cognitive sequelae,
uncontrolled seizures, or unexplained prolonged loss of consciousness
(greater than 1 minute) during the past year.

Table 3.7: Similar criteria to example 4

contiguous positional index list and fetch the name of the variable. As an example, let us take the

following criteria: Has cancer or a malignant tumor, untreated thyroid disorder or has a history of

seizure disorder. The first match for this criteria is Subjects who have cancer or a malignant tumor,

untreated thyroid disorder, or a history of seizure disorder. The list of common words is as follows,

[’cancer’,’malignant’,’tumor’,’untreated’,’thyroid’,’disorder’,’history’,’seizure’,’disorder’]. Now we

map this to an array of positional indices, which for this example will result in the following array

[1, 4, 5, 7, 8, 9, 13, 15, 16]. Now from this list, we can see that the list of the positional indices

which are contiguous are [[1], [4, 5], [7, 8, 9], [13], [15, 16]]. With this final list, we map it back

to the name of the variables, which in this case results in [’cancer’, ’malignant tumor’, ’untreated

thyroid disorder’, ’history’, ’seizure disorder’]. We can see that our simple method was able to

find all the four variables correctly while incorrectly finding history as well, which is certainly not

a variable. We apply this technique to various criteria, some examples have been shown in table

3.8. We see that the recall is high as it identifies all the variables, but precision varies depending

on the number of common words. The algorithm to find the list of contiguous indices from the list

23



of indices has been given in the appendix for reference A.1.

Criterion Variables Detected
Has cancer or a malignant tumor, untreated thyroid dis-
order or has a history of seizure disorder

cancer, malignant tumor, untreated
thyroid disorder , history, seizure
disorder

Clinical evidence or history of cerebrovascular accident;
transient ischemic attack; significant head injury with as-
sociated loss of consciousness, skull fracture or persist-
ing cognitive impairment; other unexplained or recurrent
loss of consciousness for greater than or equal to 15 min-
utes

Clinical evidence, history, cere-
brovascular accident, transient is-
chemic attack, significant head in-
jury, loss, consciousness, skull frac-
ture, persisting cognitive impair-
ment, unexplained, recurrent, con-
sciousness, minutes

Must have at least two of the following: resting tremor,
bradykinesia, rigidity (must have either resting tremor or
bradykinesia); OR either asymmetric resting tremor or
asymmetric bradykinesia

least two, resting tremor, rigid-
ity,bradykinesia

Poorly controlled high blood pressure (systolic blood
pressure of 160 mmHg or higher and/or diastolic blood
pressure of 100 mmHg or higher) despite treatment dur-
ing the 3 months prior to dosing, or treatment refractory
high blood pressure, defined as treatment requiring 3 or
more antihypertensives from different classes.

high blood pressure, systolic blood
pressure, mmHg, higher and/or di-
astolic, blood pressure, mmHg,
higher, despite treatment,months

Table 3.8: Examples of variable detection

3.2.2 NDCG

NDCG or Normalized Discounted Cumulative Gain helps us in measuring the ranking quality

of a search algorithm. It uses a graded relevance scale. The primary assumption is that more rele-

vant documents should be at the top of the returned list. "Gain" in this context means usefulness.

NDCG comes from Discounted Cumulative Gain, which in turn comes from Cumulative Gain.

Cumulative Gain (CG) is the simply the sum of the relevances returned by the system. Let us

assume that an information retrieval system returns p results and the document di has relevance
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reli then the Cumulative Gain is given by

CGp =

p∑
i=1

reli

We can see from the definition that Cumulative Gain does not take into account the order of

the retrieved documents. Even if the most relevant document is moved to a different position, then

the Cumulative Gain will not change. We want a metric that gives more weightage to an important

document being at the top of the list.

Discounted Cumulative Gain (DCG) builds of top of Cumulative Gain. It penalizes the rele-

vance of a document retrieved at a lower rank. The penalizing factor is given log(i+ 1) where i is

the rank of the document. DCG is exactly given by

DCGp =

p∑
i=1

reli
log(i+ 1)

To compare the DCGs across query search results, which can be of varying lengths, we need

to normalize the DCGs. The core idea is that if a search query returns p documents, we consider

the best retrieved relevant p documents and calculate the Ideal DCG. Ideal DCG, as it sounds, is

the best an information retrieval can do. Dividing DCG by IDCG gives is NDCG

nDCGp =
DCGp

IDCGp

The NDCG value always lies between 0.0 and 1.0, making it easier to compare the different

query search results. We judge a system by the average NDCGs across all the test queries.

We handpicked 24 data points in our case and marked the most relevant retrieved results man-

ually. We use the mean NDCG score calculated across this dataset as a metric for our system.
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3.3 Embeddings

3.3.1 BioSent2Vec

We use vanilla BioSent2Vec [16], which is a deep learning model based on the Sentence to

Vector based model but has been trained on the MIMIC-III dataset. It generates a R700 size em-

bedding for each sentence. Following is an example of the similarity scores generated and similar

sentences. We use two previously used examples to show how the model performs in tables 3.9

and 3.10

Similarity Score Criterion
0.84 Clinical evidence or history of stroke, transient ischemic attack, signifi-

cant head injury or other unexplained or recurrent loss of consciousness
greater than or equal to 15 minutes

0.82 History of major stroke, head injury with loss of consciousness of
greater than 30 minutes, or other neurological/systemic illness that may
affect cognition

0.809 History of stroke or multiple (greater than 3 discreet episodes) Transient
Ischemic Attacks (TIAs), severe head trauma with cognitive sequelae,
uncontrolled seizures, or unexplained prolonged loss of consciousness
(greater than 1 minute) during the past year.

0.808 History of severe head injury (with loss of consciousness greater than
30 minutes)

0.79 history of head injury with loss of consciousness greater than 1 hour

Table 3.9: Similarity found using BioSent2Vec for example 4

Vanilla BioSent2Vec gives us an NDCG score of 0.4643

3.3.2 BERT Embeddings

The Natural Language Processing domain historically has suffered from the fact that there are

not many massive labeled datasets for a variety of tasks like Question Answering and Sentiment

Analysis. Even the vast datasets available have a maximum of a few hundred thousand data points.

Modern deep neural networks require many data points to train and perform well on a required task.
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Similarity Score Criterion
0.94 Subjects who have cancer or a malignant tumor, untreated thyroid dis-

order, or a history of seizure disorder.
0.69 have a history of a seizure disorder;
0.66 History of seizure disorder or epilepsy
0.629 Seizure disorder, history of stroke, focal brain lesion, traumatic brain

injury, substance abuse, malignancy.’
0.629 are totally blind in both eyes, have photosensitivity or photophobia,

Parkinsons disease, known untreated sleep apnea or other sleep dis-
orders, seizure disorder, bipolar, schizophrenia, are actively receiving
chemotherapy or radiation therapy for cancer.

0.581 Personal medical history and/or clinically determined disorders: current
B12 deficiency, positive syphilis serology, chronic sinusitis or any un-
treated thyroid disease, significant head trauma, or history of difficulty
with smell and/or taste prior to AD diagnosis.

0.577 Examples include malignant cancer, chemotherapy, untreated thyroid
disease, heart failure, or renal insufficiency.

Table 3.10: Similarity found using BioSent2Vec for example 2

In the domain of images, various transfer learning methods were pretty standard, which allowed

researchers to start from a set of initial weights transferred from networks that have already been

trained on enormous datasets like imagenet [4].

3.3.2.1 Transfer Learning

Transfer learning is the idea of exploiting knowledge learned from one task to solve related

tasks. For most of its brief history, Neural Networks were operating in the domain of isolated

learning, which meant training a neural network from scratch for solving a problem and training it

again from scratch for any other task. Getting vast amounts of data like imagenet is not possible

for a myriad of other tasks. True Artificial General Intelligence (AGI) can only be reached if the

knowledge gained from other tasks is utilized on specialized tasks. Such a system can solve many

problems and will not be bogged down by the fact that most machine learning algorithms require

vast amounts of data.

Take, for example, humans rarely learn anything from scratch. Most of the time, all we do is
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transfer skills learned from one domain and sharpen that skill pertaining to the new domain (fine-

tuning in neural network literature). If we are learning statistics, learning machine learning is not

that of a challenging task, and many skills are transferable. Humans also learn passively without

directly participating. In the case of driving a car, even when we have not driven but sat with

someone who drives a car, we have seen the movements. When the time comes to drive, humans

fully utilize this prior knowledge to learn the skill quickly. This example serves as motivation that

learning from a prior knowledge only saves time, but the knowledge helps in generalizing to a

myriad of other tasks.

Imagenet correctly solved the problem of vast amounts of data for image tasks by providing

millions of labeled images and thus ushering unparalleled innovation in the domain of neural net-

work for images. The process of labeling a vast amount of images required years of painstaking

hard work of researchers from Stanford. Since no other domain has such a vast labeled dataset,

training a network on specific task results in a network which excels at that task but is hardly

generalizable to any other task.

Classical machine learning means that you have two tasks Task 1 and Task 2 and two datasets,

Dataset 1 and Dataset 2, but independent models are learned on each of them even when the tasks

might be similar (not same). In the case of transfer learning, Task 1 is a task which can serve as

general knowledge which can encompass broad knowledge by training on huge datasets and then

the knowledge is transferred to another network whose task is to train a model on another relevant

dataset.

There are three main questions in transfer learning: 1. What to transfer? Which part of knowl-

edge is transferable from source learner to target keeping in mind which common knowledge would

benefit the target most. 2. When to transfer? One needs to be cognizant of scenarios where trans-

ferring knowledge can worsen the performance. 3. How to transfer? Identifying ways in which the

knowledge can be transferred, one of the most common ways being transferring the model weights

to the new network.

This naturally brings us to BERT and many other BERT derivatives, which have been state-
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of-the-art on a variety of Natural Language Processing tasks. BERT revolutionized the domain by

introducing transfer learning of an unparalleled scale. Transfer learning in NLP is not new; there

were models like OpenAI-GPT, Infersent [14], Universal Sentence Decoder [15] but none of them

were as good as BERT [18] in generalizing to new tasks and at the same time easily adaptable to

new tasks. BERT built on the idea of transformers, which are its core module stacked on top of

each other. Transformers were first introduced by Vaswani et al. [17].

3.3.2.2 BERT Structure

BERT is deeply bidirectional, unsupervised language representation pretrained on a plain text

corpus. "Deeply bidirectional" gave it an edge over other such models of the time, and being

unsupervised gave it access to limitless text corpora. The "deeply bidirectional" property made

BERT very powerful. BERT is made of stacking transformers on top of each other; for the small

model, they stacked 12 and 24 for the bigger one. The key ingredient which made the model

shine was not just the bidirectional model but also the tasks on which it was trained. Training

on language modeling and using the bidirectional model is like cheating the system since the

model already has access to future words, which it obviously does not have during inference time.

The authors of BERT came up with Masked Language Model and Sentence Entailment tasks. In

Masked Language Model, a random small percentage of words is omitted from a sentence, and

those words are made to predict. In the Sentence Entailment task, BERT is made to predict if a

sentence B naturally occurs after A.

3.3.2.3 BioBERT

Our task pertains to the biomedical domain. It is a known fact in computer science that for any

algorithm or neural network model that "Garbage in, garbage out". Using BERT trained on the

Wikipedia corpus or book corpus for tasks on biomedical texts will result in inferior results as the

text in the biomedical domain is very different from everyday speech and includes dense jargon and

domain-specific terms. Researchers trained the BERT model further on the PubMed and MIMIC-

III datasets; they fine-tuned the model for 23 days resulting in weights which they call BioBERT
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[24]. In essence, BioBERT is just BERT trained on a biomedical text corpus. BioBERT uses

WordPiece [25] tokenization; it mitigates the out-of-vocabulary issue. With the help of word piece

tokenization, any new word can be broken down into smaller, more frequent subwords. Instead

of having WordPiece tokens specific for the biomedical domain, the authors decided to continue

with the BERT WordPiece tokens to have compatibility with BERT. The authors also point out

that cased tokens give slightly better results on tasks compared to uncased ones, which is to be

expected since biomedical texts generally contain terms which are cased.

3.3.2.4 Sentence BERT

Our goal is to find sentence similarity between by using similarity between pairs of sentences.

This process poses an immediate challenge in a model like BERT because even for a dataset of

n = 10000 sentences, we have a total of n·(n−1)
2

pairs which are equal to 49995000. At inference

time, let us say we want to find the pair with the highest similarity; it will take a considerable

amount of time and make the computation infeasible, and with the quadratic relation, even small

dataset sizes are already in the range of 50 million. To cope up with this, Reimers et al. [26]

proposed Sentence-BERT or SBERT (figure 3.6). They used the classic Siamese twin network

technique to decouple the networks so that we have two networks which are sharing the same

weights. This way, the same network is independently used to generate the embeddings of each

sentence in a pair. BERT produces various embeddings as output, [CLS], and output vectors for

each token in the sentence. They use three strategies for generating an embedding for sentence

similarity tasks. First is using the [CLS] itself; second is pooling the output vectors and taking a

mean which is referred to as MEAN and the third is taking a max of all the output vectors called the

MAX strategy.

The authors show that BERT does not readily capture the meaning of a sentence in the em-

bedding produced at the [CLS] token. The hypothesis is that BERT does not train on language

modeling tasks, instead it trains on Masked Language Model which does not necessarily give better

sentence embeddings. However, since BERT already has much knowledge embedded, it is easy to

fine-tune it on an NLI dataset to generate useful sentence embeddings. So much so, their network
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Figure 3.6: Sentence BERT Architecture 3

outperformed the state-of-the-art at that time with fine-tuning on the SNLI dataset.

3.3.3 Methodology

With the knowledge that BERT performs well, we use BERT for sentence similarity in our

task. As mentioned earlier, it did not make sense to start with original BERT weights (trained

on WikiCorpus) for our biomedical domain; we directly went ahead and started with BioBERT

weights, which were published by the authors. BioBERT did not necessarily generate the correct

sentence embeddings needed for the sentence similarity task. It was imperative to train it on

a Natural Language Inference task to train it to encode the meaning of a biomedical sentence

accurately. The most appropriate NLI dataset for the same was MedNLI [27]. MedNLI contains

entailment information on medical texts, where each data point contains a pair of sentences. A data

point has the basic structure of (SA, SB, y) where SA is the first sentence, SB is the second sentence,

and y is the label. The label y can be either entailment, neutral, or contradiction depending on the

sentence SB. The MedNLI dataset contains a total of 11, 232 points in the training set and a total

3Reprinted with permission from "Sentence-bert: Sentence embeddings using siamese bert networks"
by N. Reimers and I. Gurevych, 2019 Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing, 3982-3992, Copyright 2019 by Association for Computational Linguistics.
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of 1, 395 sentences in the dataset. We fine-tune the SBERT network loaded with BioBERT weights

for four epochs.

We use a custom dataset which comprises of clinical trial texts for Alzheimer’s disease patients.

We bootstrap the dataset by using BioSent2Vec [16]. BioSent2Vec is an earlier state of the art

model which generates embeddings for medical text. We use the embeddings generated from

this dataset and apply k-Nearest Neighbors to the embeddings. K-Nearest Neighbors generates a

bunch of clusters that we manually label to generate 1000 data points with positive and negative

pairs showing which sentences are similar and which are not.

From here onward, we refer to SBERT with BioBERT weights as SBioBERT. SBioBERT

trained on the MedNLI evaluates to the results in table 3.11. The evaluation shows that there is

ample scope for improvement in the metrics. Before continuing the training on our dataset, we

changed the head of SBioBERT and replaced it with a multi-layer deep neural network with a re-

gressive loss function. We take the embeddings from the first sentence and generate the embedding

u. From the other sentence, we generate the embedding v; we take concatenation of |u − v|, u, v

as the input to the deep neural network head and in the generate an activation between 0 and 1, we

use Pearson loss to optimize our network and then we further evaluate the metrics on our dataset

which have been mentioned in table 3.12.

Cosine Similarity
Pearson 0.5315

Spearman 0.6791

(a)

Manhattan Distance
Pearson 0.6564

Spearman 0.6807

(b)

Euclidean Distance
Pearson 0.6423

Spearman 0.6763

(c)

Dot Product
Pearson 0.4293

Spearman 0.4831

(d)

Table 3.11: Sentence Similarity Metrics on the development dataset after training on MedNLI

SBioBERT trained on MedNLI returns an NDCG score of 0.4736 on our system. Continuing

training the SBioBERT on our custom similarity dataset improves the NDCG score from 0.4736 to

0.6210
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Cosine Similarity
Pearson 0.9366

Spearman 0.9196

(a)

Manhattan Distance
Pearson 0.9173

Spearman 0.8903

(b)

Euclidean Distance
Pearson 0.9173

Spearman 0.8904

(c)

Dot Product
Pearson 0.8468

Spearman 0.8643

(d)

Table 3.12: Sentence Similarity Metrics on the development dataset after training on MedNLI and
continuing training on our dataset

3.3.4 Named Entity Recognition

Most of the medical texts (trial texts in our case) revolve around certain conditions or dis-

eases, which are the "core" topics being discussed in a piece of trial text. Trials have mentions

of lots of these diseases in a single text. Let us take a straightforward and concrete example of

a text. In the example text, ’Has a malignant tumor, untreated thyroid disorder or has a history

of seizure disorder’, we see that there are three topics which have been underlined. Let us say

this is the query, and we are trying to rank the documents, and we use a model like BERT or any

other model which tries to encode the entire sentence into a single embedding. The model tries to

encode as much information as possible in one array of numbers, which has to take into account

all the topics mentioned. In the medical domain, literature shows that it is better to match against

particular topics, if they are present, to keep the recall high. In such a scenario, one would try to

do a simple text match, but for that, we need to know the named entities.

A model like SciBERT [28] can help us in identifying the set of named entities that are going

to be the core topics of a query text. Let us take an example query which contains the phrase

"seizure disorder". The NER model will identify this phrase as an entity. It is possible that in

the documents, there are terms like "epileptic disorder". Instead of doing naive text-matching, we

can first find the distance between the embeddings of both the phrases found by the NER model.

Whenever the match is high, that is a probable candidate. This process will weed out many non-

candidates and leave us with a small set of candidates on which we can run powerful BERT (or

any other model) to help us with the ranking.

We combine classic, and machine learning approaches to build a robust entity detector. We take
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the weights made publicly available by the authors of SciBERT and BioBERT and train them on

two medical entity detection datasets NCBI-Disease 4 and bc5cdr 5. The F1-scores for the training

on both the datasets have been presented in table 3.13. BioBERT on bc5cdr performs the best with

an F1-score of 0.8665. We use the BioBERT model for named entity recognition. One caveat is

that in the entity recognition datasets, the only label available is ENTITY without distinguishing

between the different types of medical entities.

SciBERT BioBERT
NCBI-Disease 0.8499 0.8324
bc5cdr 0.8621 0.8665

Table 3.13: Model performance on Medical NER datasets

Our entity detector uses a two-pronged approach. We use a publicly available dataset PubMed

Phrases 6. PubMed Phrases comprises of coherent text segments that are beneficial for information

retrieval and human comprehension. The dataset contains around 700, 000 phrases. Although

huge, still the dataset is not exhaustive. Few examples of medical text which we were not able to

find in the PubMed phrases are "trifascicular block", "dabigatran rivaroxaban", "apixaban". The

longest n-gram in the PubMed phrases consists of 11 words, and the shortest n-gram consists of 2

words. The distribution of n-grams based on the number of tokens is given in table 3.14.

To make an efficient entity detector out of PubMed Phrases was not straightforward. Let us

say we want to find the phrase "mental disorders". Doing a linear search over the dataset on 128gb

memory and 48 core machine takes around 5 seconds for 100 searches. One might think of various

ways to improve the performance of the search. The obvious next step is to hash the phrases,

which does speed it up by a factor of 25000, but now we lose the ability to search if our phrase is

a substring of a longer phrase. The solution to this problem was to build a suffix-trie data structure

4https://www.ncbi.nlm.nih.gov/research/bionlp/Data/disease/
5https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/
6https://www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/IRET/DATASET/
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n-gram Phrase Count
1 0
2 373723
3 247577
4 66886
5 14260
6 2783
7 564
8 92
9 25
10 3
11 2

Table 3.14: Distribution of n-grams in PubMed Phrases

where the string was tokenized by breaking at spaces. Since the suffix-trie consists of the suffixes

of the phrases, it increases the number of entries to 912, 983; searches in trie are 250 times faster

than the linear search.

Our final algorithm first predicts the named entities using the machine learning models and

then uses the trie based data structure to find the entities. We go for the longest possible n-gram by

searching in the reverse order of the generated n-grams from the text starting from all the 11-grams

to all 2-grams sequentially. As there can be repetitions between the phrases generated by both

the algorithms or the entity generated by one algorithm may be a substring of another entity. We

resolve such discrepancies and generate a final list of entities in the linear order of occurrence in

the original medical text. Resolving the discrepancies, looks simple but has tricky edge cases. We

provide the code for that in the appendix A.2

3.3.5 BM25 + SBioBERT

3.3.5.1 BM25

BM25 or Best Matching 25 is an information retrieval ranking algorithm which has its roots

in the domain of probabilistic information retrieval. It was developed by Stephen E. Robertson,

Karen Spärck Jones, and others in the 1970s and 1980s. BM25 improves on earlier information
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retrieval methods, which consider term frequency (TF) and inverse document frequency (IDF).

In a nutshell, term frequency means how many times a query occurs in a document, and inverse

document frequency means the inverse of the frequency of term occurring in various documents.

If a term is rare, then its inverse document frequency will be high, and hence it is given more

weightage. Similarly, if a term occurs more in a text, then the document is about that term and

should be given more weightage.

But we can see that there are drawbacks in just considering TF as it is. Let us say if one

document has a term dog occurring 10 times than another document that does not necessarily

mean that that document is 10 times more critical. BM25 introduces parameters to dampen the

effect of term frequency. It quickly saturates the weightage given to term frequency even if the

term frequency increases a lot. BM25 also takes into consideration the length of the document. If a

document is small in length, then we can be very confident with more matches, but if the document

is long, it takes time to be more confident of the matches. Combining everything we get BM25

with some nudgeable parameters as follows:

score(D,Q) =
n∑

i=1

IDF (qi) ·
f (qi, D) · (k1 + 1)

f (qi, D) + k1 ·
(
1− b+ b · |D|

avgdl

)
Here k1 is a hyperparameter which is generally set 1.25, D is the document, Q is the query.

avgdl is the average document length, and |D| is the document length of the current document at

hand. Research has shown that BM25 can perform well on new corpuses comparatively better than

deep learning networks, which have millions of parameters and can be easily affected by slight

differences in the test distribution. Deep-learning based information retrieval is further affected by

adversarial inputs [29].

3.3.5.2 Method

We extend the BM25 by incorporating BERT embeddings. Our idea at its core is pretty simple.

The original BM25 depends on the exact phrase or text matches to identify relevant text. Extract

phrase matching seems too harsh. For example, if we have we have to match a word like "disease",

36



"disorder" would also be a relevant match but BM25 cannot possibly identify that. We build the

embeddings by using BM25 weights and individual tokens instead of taking the BERT embeddings

directly; this will give more weight to tokens, according to BM25. We do the same thing with the

query before applying to match the documents.

Searching through an array of vectors can be very slow. For this, we used a vector index library

called Faiss [30]. Faiss is a vector index building software that helps in efficient searches based on

similarity metrics like Cosine similarity or Euclidean distance. Faiss also provides GPU support.

We index our dataset and create a flat index of vectors based on BM25 embeddings. Whenever we

get a query, we create a BM25 based embedding on the fly and find the nearest neighbor by using

Faiss search methods and return the top k matches. This method provides substantial increase over

all the previous methods giving us a NDCG score of 0.8070. A compilation of all the NDCG scores

is given in table 3.15.

Model NDCG
BioSent2Vec 0.4643
SBioBERT + MedNLI 0.4736
SBioBERT + MedNLI + Sentence Similarity 0.6210
BM25 + SBioBERT 0.8070

Table 3.15: NDCG Scores for various models

3.3.6 TextMed - A visual tool for analyzing medical text

To complement our work we made a visual tool for analyzing these medical criteria. We

provide the end user a smooth interface to enter text and search for similar text and entities in text.

The interface will help the user in identifying the core concepts in a medical text.

In figure 3.7, we see that component 1 is the input search box where the user enters the input

for querying. The user can press the yellow color button to analyze the text whenever the user is

ready. Component 4 gives the user a choice to select a model from a list of pretrained models.
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Figure 3.7: TextMed tool - Interface

Currently, the user can only choose ENTITY, which the user wants us to identify in the text. Later

versions will support named entities, and the user can choose from them. After the user presses the

search button, the server will return an analysis of text consisting of the entities in the text and the

most similar texts. Component 2 will display the entities in the text. Component 3 will display the

table which contains the top five similar texts in decreasing order of similarity. The table provides

an option to search over the retrieved criteria. The user can also download the retrieved criteria in

the form of a comma-separated file.

We use the criteria "History of stroke, transient ischemic attack, traumatic brain injury or severe

cerebrovascular disease by clinical diagnosis or past MRI/CT; " as an example.

The Entity Recognition component show in figure 3.8 displays the entities identified by our

algorithm. It boxes the entities and labels them. The entities for the current example are "History

of", "stroke", "transient ischemic attack", "traumatic brain injury", and "cerebrovascular disease".

Our model didn’t identify MRI/CT as an entity in this example.
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Figure 3.8: TextMed tool - Entity Recognition

Figure 3.9: TextMed tool - Table

The table in figure 3.9 shows the retrieved similar medical texts. The first one is the query itself

and the remaining are presented in order of decreasing similarity. The user can search through the

retrieved text. We show the search functionality in figure 3.10. A search for the word "evidence"

filters out the criteria that contain the word "evidence".
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Figure 3.10: TextMed tool - Search

3.3.7 Fake Electronic Health Records

There are various legal, privacy, and security concerns in dealing with real Electronic Health

Records. Anonymized EHRs are bought and sold by various institutions ranging from government,

insurance and clinical groups [31]. Anonymized EHRs are also at risk for re-identification which

can cause issues of privacy, consent, and confidentiality. It is imperative that to conduct research

on EHRs, one needs some sort of real-looking fake data. It is impossible to get hold of real or

anonymized EHRs.

Synthea [32], is an open-source software package that simulates the lifespans of synthetic

patients, modeling the 10 most frequent reasons for primary care encounters and the 10 chronic

conditions with the highest morbidity in the United States. We use Synthea in our workflow to

extend our algorithms to actual patient matching.

3.3.7.1 Method

We generate a population of 5000 fake EHRs. Since our original criteria dataset revolved

around Alzheimer’s disease, our methods revolve around identifying patients with Alzheimer’s like

conditions. Out of 5000 patients, 228 have Alzheimer’s disorder of varying degrees. Each patient

generated by the Synthea tool contains certain essential conditions, observations over a period,

patient details (name and address), and immunizations throughout the years. Synthea generates

only past 10-year records of all the above.
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The data is structured. Each condition the patient has, has a unique code referring to a medical

database for which the resource urn is also given. However, since criteria are free text, this makes

the entire problem interesting. Let us say someone has "hypothyroidism," but the criteria might

say "has a thyroid disorder", we still have to match "thyroid disorder" against hypothyroidism.

We develop a reverse index of terms occurring in the conditions and observations and then use

the BM25 + SBioBERT model to generate embeddings for all the terms. When a query criterion

comes, we first breakdown the query criteria into core terms and then match the individual core

term with vectors in the vector index. If there is a match, we fetch the list of patient ids associated

with that vector. We take the intersection or union of the patient identification numbers depending

upon the structure of the sentence. If we are not able to fetch any core terms in the input criteria, we

simply embed the entire criteria text and match it against the patient conditions and observations.

Using this technique, we can fetch the relevant patients.
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4. SUMMARY AND CONCLUSIONS

4.1 Medical Diagnosis

We apply progressively simpler to advanced techniques in identifying diseases in chest ra-

diographs. We first apply simple augmentation techniques in hopes of increasing the size of the

dataset. Modern deep neural networks require millions of data inputs. Our augmentation methods

provide a way of artificially increasing the size of the data and balancing the dataset for proper

training. Augmentation helps us in achieving better ROC-AUC scores over the baseline.

We come up with a novel architecture incorporating attention module in the densenet naming

it attention-densenet. We hypothesized that many diseases have multiple artifacts in an image

responsible for the diagnosis of the disease. Our attention module is inspired by the attention

module used in NLP transformers. We show that our attention-densenet works appropriately for

some pathologies by improving over the baseline. However, it fails to do so in other pathologies.

We conclude that for the diseases in which it does not perform well, there are not many things to

attend on, and the increase in the number of parameters causes overfitting, thereby harming the

performance on the pertaining diseases.

We show that knowing the essential criteria of how doctors identify a particular pathology

can significantly reduce the computation time and increase the efficiency of the machine learning

models. Doctors identify atelectasis based on the difference in the size of the lungs, as seen in the

radiograph. We showed that removing many unnecessary artifacts and just concentrating on the

size of the lungs by using a mask improves the overall performance of the system. We conclude

that even in the era of deep learning, knowing about the problem statement and using information

about the domain can significantly help in improving the system performance.

Deep learning can solve a task if massive amounts of data are available. In certain domains

like medical imaging, generating big datasets is challenging. CheXpert, the dataset we have used,

contains around two hundred thousand data-points, which is modest for modern deep learning
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algorithms. We show that a mix of novel architecture, augmentation, and knowledge about the

domain can help us in making efficient systems.

4.2 Clinical-Trial Matching

We start with a straightforward baseline method that uses the Jaccard similarity measure to

match texts. Jaccard similarity considers the exact phrase matching between two pieces of text

without taking order into account. We use the phrase matching intuitively to retrieve variable

names. We use stopwords to weed out matches that are not variable names. Although simple, this

algorithm runs in O(n2), where n is the number of sentences in the dataset. Exact phrase matching

does not take into account variations in phrases which can be readily handled by machine learning

algorithms.

We then move on to sentence embedding methods. In sentence embedding methods, the goal

is to project the text into a Rd space where d is the number of dimensions and use a similarity

metric to find the closeness. We start with a medical equivalent of sent2vec called BioSent2Vec.

BioSent2Vec is trained on massive medical corpora. BioSent2Vec projects the sentence into a Rd,

and we use a cosine similarity metric to produce a ranking of similar texts.

BioSent2Vec is a massive model which is almost 21gb on disk. It is difficult to fine-tune such

large models with small datasets. Our dataset contains merely 16k sentences. We then move on to

BERT. BERT models are relatively smaller and can easily be fine-tuned with smaller datasets to get

the desired results. The authors of BERT trained it on Wikipedia, which would be unsuitable for

biomedical texts. We went ahead and used BioBERT, which is a BERT model trained on PubMed

articles and the MIMIC-III dataset.

BERT models are not known for generating sentences which encompass the sentence seman-

tics. We use Sentence BERT starting with BioBERT weights and train it on the MedNLI dataset.

We then continue the training with a custom generated sentence similarity dataset and provide

increasingly better results on the NDCG metric.

We hypothesize that medical texts generally revolve around a few core topics. Our first method

of variable finding was relatively slow and not scalable to massive datasets. We build a named
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entity recognizer based on the BioBERT model and trained it on the bc5cdr dataset. We couple

this entity recognizer with a suffix-trie data structure based on the PubMed phrases dataset and

build an efficient and accurate entity recognizer.

We combine the classical BM25 algorithm from information retrieval with the named entity

recognizer trained from BM25, this model gives more weightage to terms specific to medical texts

and can also handle variations in the phrase. We generate the embeddings for each document based

on this method and store it in a fast vector index, which has been optimized for search. We use this

method and achieve better NDCG scores than the previous models.

We combine all of our techniques and present them to the end-user in the form of a visual tool

called TextMed. TextMed allows the user to enter a search query and returns a thorough analysis

of the text. It displays all the entities present in the query text and returns the top 5 document

matches. It allows the user to save the returned data in a comma-separated file. The user can also

search in the table or sort the data if needed.

We use Synthea tool to generate fake patient data. We continue our research on patient match-

ing. We use the BM25 + SBioBERT algorithm for generating the index vectors. We index the

conditions and observations found in patient data. We build a reverse index for easy searching.

We try to parse the original criterion and extract variables to find matches and then take union or

intersection of the resultant sets to get the final set of patients satisfying a criteria.

4.3 Future Work

Since we have the inverted index of the patient with respect to observations and conditions,

our next goal remains to correctly break down the criteria into a given set of conditions, which

can then be used to do queries on the inverted index. We need to convert the criteria to a bunch

of and or conditions. We can use classical NLP approaches like building the parse tree or newer

ML approaches like those used for Sentence-to-SQL tasks. The ML approaches help in building

SQL queries from natural language. These approaches can help us breaking the criterion into a

set of conditions. Although the conditions exist in criteria as being present or not present, the

observations generally have some value associated with it. We need to be able to parse the numeric
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conditions correctly from the criterion so that it helps us in constructing the right query against the

index.

We will construct a medical dataset equivalent to those of sequence to SQL tasks. Once we

have such a dataset, we can think of training models or even apply classical algorithms to parse the

criteria and have a benchmark for the generation of correct conditions. It is straightforward to map

the conditions to the patients once they are generated accurately. Another challenge is to identify

negation in the criterion. Many times it happens that the negation is not easy to identify from the

sentence making the task more challenging. Our dataset should take into consideration negation

examples to be able to generate useful queries.

We will integrate the feature for extracting conditions against the patient database into our

TextMed tool. In this way, we will provide the user with a complete end-to-end experience.
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APPENDIX A

CODE

Listing A.1: Combine indices to extract variable

def find_contiguous(positions):

i = 0

contiguous = []

while i < len(positions):

current = [positions[i]]

while i+1 < len(positions) and positions[i+1] == positions[i]+1:

current.append(positions[i+1])

i = i+1

contiguous.append(current)

i = i+1

return contiguous

Listing A.2: Resolving entities generated from Machine Learning Model and PubMed Phrases

def all_start_indices(string, substring):

string = string.lower()

index = 0

indices = []

while index < len(string):

found = _index(string, substring, index)

if found is None:

return indices

else:

indices.append(found)

index = found + len(substring)

return indices
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def get_entities(data, verbose=True):

orig = data.lower()

data = clean_text(data)

prediction = bc5cdr_NER.predict(data, verbose=False)

entities = [’ ’.join(entity) for entity in combine_entities(prediction)]

confirmed_entities, probable_entities = get_entities_from_pubmed(data)

_entities = []

for entity in entities:

if len(entity.split()) > 4:

_entities.extend(entity.split())

elif entity == ’’:

pass

else:

_entities.append(entity)

if verbose:

print("ML NER: ", _entities)

print("Phrase ", confirmed_entities)

print("Phrase ", probable_entities)

entities_start = []

all_entities = set(confirmed_entities).union(probable_entities).union(

↪→ _entities)

for entity in all_entities:

entities_start.extend([(entity, idx) for idx in all_start_indices(orig,

↪→ entity)])

entities_start = sorted(entities_start, key=cmp_to_key(compare))

return entities_start
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def _uniq(entities_start):

result = [(’’, -1)]

for tup in entities_start:

if tup[1] != result[-1][1]:

result.append(tup)

return result[1:]

def remove_substr(entities_start):

if len(entities_start) == 0:

return []

result = [entities_start[0]]

for tup in entities_start[1:]:

if tup[1] > result[-1][1] + len(result[-1][0]):

result.append(tup)

return result

def _get_entities(data, verbose=False):

return [e[0] for e in remove_substr(_uniq(get_entities(data, verbose=

↪→ verbose)))]
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