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ABSTRACT

Spatial random fields are widely used to model the space-time correlation structure of different
objects in various fields, such as the soil moisture field in hydrological, agricultural and clima-
tological studies. Since physically derived representations of soil moisture fail to reproduce the
fast decay spatial correlation observed in available data, a jitter process is incorporated in the soil
moisture model to deflate its correlation structure. An empirical study shows that the new model
has successfully captured the spatial-temporal variability of soil moisture at small scales.

We are then able to study the relationship between the soil moisture field and savannas via
simulation after the theory of the space-time model of soil moisture has been well established. The
sizes of tree clusters in savannas are found to be following power-law distributions in many studies,
while the simulation results also indicate that the size of the soil moisture follows power laws. We
infer that the power laws with specific exponents observed in the tree cluster data result from the
power law of the soil moisture islands when the impact of fire and herbivores is accounted for.

The distribution properties of clusters or islands defined by specific thresholds and underlying
spatial random fields, such as the soil moisture islands, are commonly studied in practice. However,
there are no applicable statistical methods to analyze this type of clusters. Therefore, we introduce
a well-defined distribution function and provide estimation procedure for the function to study the
distribution properties of this type of clusters. Numerical experiments and an application to tree
clusters data are carried out to validate the results.

Partially linear single-index models are commonly used in the analysis of different kinds of
data. We are interested in the extended partially linear single-index models, which is more flexible
than the usual partially linear single-index models. We proposed local smoothing estimators for
parameter estimation, and introduced the penalized estimators for variable selection. A chi-squared
type of test statistic is also carried out for linear hypotheses. Simulation studies are presented to

support our analytic results and a real data analysis is provided for illustration.
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1. INTRODUCTION

Methodologies of spatial statistics, including the studies of stochastic processes, are widely
used in various fields. In particular, the space-time variability of soil moisture is of fundamental
interest in hydrological, agricultural and climatological studies, where techniques of spatial ran-
dom fields play an important role. In Chapter 2, a physically derived space-time mathematical
representation of the soil moisture field is carried out via the soil moisture balance equation driven
by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version,
it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions
observed in empirical data. This decay resulting from variations in local topography as well as in
local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively
over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil mois-
ture dynamics with the objective to deflate its correlation structure at small spatial scales which are
not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These
scales of order of several meters to several hundred meters are of great importance in ecohydro-
logic dynamics. Properties of space-time correlation functions and spectral densities of the model
with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabil-
ities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting
the derived model to a soil moisture dataset is presented in detail in Chapter 2.

Tree clusters in savannas are commonly found in sizes that follow power laws with well-
established exponents. It is of great interest that where does the power-law property of tree clusters
in savannas come from. Thanks to the space-time model of soil moisture described in Chapter 2,
we are able to simulate the soil moisture field with fast decay spatial correlation function as shown
in real data. In Chapter 3, by simulating soil moisture data, we show that the size distributions
of tree clusters could result from the space-time probabilistic structure of soil moisture, estimated
over the range of rainfall observed in semi-arid savannas; patterns of soil moisture display islands

whose size, for moisture thresholds above the mean, follow power laws. These islands are the



regions where trees are expected to exist and they have a fractal structure whose perimeter-area
relationship is the same as observed on field data for the clustering of trees. When the impact of
fire and herbivores is accounted for, as acting through the perimeter of the tree clusters, the power
law of the soil moisture islands is transformed into a power law with the same exponents observed
in the tree cluster data.

In Chapter 3, we simulate the soil moisture field and study the distribution of the sizes of the
soil moisture islands. This type of clustering procedure is very different from the traditional statis-
tical clustering analysis, which is based on discrete observations. This method of clustering defines
clusters as the connected areas where a well-defined spatial random field is above certain threshold.
Note that the defined clusters are correlated, and that the empirical distribution function calculated
from the clusters might not converge to a well-defined distribution function induced by a properly
defined random variable. Therefore, the problem now is that to define a valid distribution function
which can represent the characteristics of the clusters, and propose efficient estimation methodolo-
gies for estimating it. However, the available statistical techniques for analyzing clustering models
are not applicable to this problem. Thus in Chapter 4, we study the distribution properties of the
clusters by defining a distribution function of the clusters rigorously and providing methods to esti-
mate the spatial distribution function. The theoretical results shown in Chapter 4 are illustrated by
numerical experiments and an application to a real world problem about tree clusters in savanna.

After studying the modeling of stochastic processes and distributional properties of clusters
defined on spatial random fields, our interest lies in other hot topics of statistics: partially linear
single-index models and variable selection. In partially linear single-index models, there are two
different covariate matrices in the model for the linear part and non-linear part. All covariate
information needs to be divided into two parts before the model can be fitted. In contrast, in the
extended partially linear single-index models, all the covariate variables are included in one matrix,
which is contained in both the linear part and non-linear part of the model. In Chapter 5, we propose
local smoothing estimators for the model parameters and unknown function, whose asymptotic

properties are demonstrated. The profile estimating procedure for calculating the estimators is also



introduced. We show that the solution to the optimization of the profile objective function is unique
and has linear expressions, which leads to fast and accurate computations of the estimators. We
also employ the lasso penalty to obtain penalized estimators with consistency and oracle property
in order to carry out estimation and variable selection simultaneously. Finally, we develop a linear
hypothesis test for the model parameters. Simulation studies are presented to support our analytic

results and a real data analysis is provided for illustration.



2. SPACE-TIME MODELING OF SOIL MOISTURE*

2.1 Introduction and general background

The space-time variability of soil moisture is of fundamental interest in hydrological, agricul-
tural and climatological studies. Its probabilistic description at different temporal and spatial scales
presents challenges related to the description of the rainfall process, infiltration, and movement of
the water on the soil surface (e.g., [Kittredge, 1948] and [Eagleson, 1978]). An important feature
of the soil moisture dynamics is that its spatial correlation structure decays much faster than that
of the rainfall process and such a decay has not been accomplished with the existing physically
based schemes. A number of studies have been carried out to establish a theoretical basis for such
a probabilistic description (e.g., [Albertson and Montaldo, 2003] and [Pan et al., 2003]) but none
accomplishes a satisfactory result for temporal scales of one day and spatial scales of the order of
1 m? to 10,000 m? which are of fundamental importance in ecohydrology. Many of these studies
(e.g., [Isham et al., 2005] and [Rodriguez-Iturbe et al., 2006]) start from the basic soil moisture

balance equation at a point:

nZ,——= =1(t) — E(s) — L(s), (2.1)

where in the left-hand side S(t) represents the dimensionless relative soil moisture, n is the soil
porosity, and Z, is the depth of the root zone. On the right had-side, the terms I(¢), E'(s), and L(s)
are the rates of infiltration, evapotranspiration and leakage (the last two function of the current
level of soil moisture, S). Equation (2.1) can be rewritten as ([Rodriguez-Iturbe et al., 2006])

ds(t)

7, 22\
e

=(1—-9)Y(t)—VS(1t), (2.2)

“Reprinted with permission from “Space-time modeling of soil moisture” by Chen, Z., Mohanty, B. P. and Rodriguez-
Tturbe, 1., 2017. Adv. Water. Resour., 109, 343-354, Copyright [2020] by Elsevier.



where (1 — ¢) is the net rainfall coefficient which accounts for interception, Y (¢) [L] is the rainfall
on the point under consideration, and V' [L/T] is the soil water loss coefficient accounting for
transpiration, leakage and runoff losses. The spatial character of the analysis results from the
rainfall Y which is represented via a space-time model from where the characteristics of Y (¢) at
any point are then derived. This leads to a characterization of S(¢) which depends on space and
time via the rainfall process and whose space-time correlation structure can be analytically derived.

[Entekhabi and Rodriguez-Iturbe, 1994] used a different soil moisture balance equation which
explicitly incorporates the spatial spreading of soil moisture through a diffusion term:

Z 0S(x,t)

N0

= —nS(x,t) + kV2S(x,t) + &(x, 1), (2.3)

where the diffusion term encompasses not only subsurface diffusion but most importantly the
spread of moisture that takes place on the surface of the ground due to the topography and the
roughness of the terrain. The term nS(x,t) is equivalent to the term V.S(¢) in Equation (2.2)
and the rainfall input is explicitly represented in space and time by the term &(a,t). Similarly to
Equation (2.2) if the rainfall input is stationary the soil moisture will evolve to reach a statistical
equilibrium state also stationary in space and time.

The representation of the rainfall input in space and time into Equations (2.2) and (2.3) may be
carried out through several different probabilistic rainfall models. Thus, [Entekhabi and Rodriguez-
Iturbe, 1994] used the model proposed by [Waymire et al., 1984] which models the rain intensity,
£(t) in Equation (2.3) as rain bands which arrive in space and time according to an homogeneous
Poisson process. Each rainband has a random number of cell centers. The rain intensity is a maxi-
mum at the center of each cell (random variable exponentially distributed) and decreases from the
center of the cell with a Gaussian-like spread. The cells are born at a random distance and time
away from the storm origin. More details can be found in [Waymire et al., 1984].

[Isham et al., 2005] used a representation of the spatio-temporal rainfall input Y (¢) in Equation

(2.2) as that resulting from the [Cox and Isham, 1988] rainfall model. Here, rainfall occurences



are modelled by a sequence of circular rain cells with random area, random intensity and random
duration that occur in a Poisson process as described in detail in the next section. In both studies,
[Entekhabi and Rodriguez-Iturbe, 1994] and [Isham et al., 2005], the region under consideration
is assumed to be uniform in topography, soil, and vegetation chracteristics which make the losses
in Equations (2.2) and (2.3) independent of space. [Rodriguez-Iturbe et al., 2006] extended the
analysis of [Isham et al., 2005] to the case of an heterogeneous vegetation.

The focus of the analytical framework is well described by [Entekhabi and Rodriguez-Iturbe,
1994]: "The key question is then, how is the input rainfall spectrum modified in its space-time
structure when filtered through the land surface processes to yield the evolution of soil moisture?".
Regardless of the different rainfall models driving the soil moisture balance equation as well the
incorporation in Equation (2.3) of the diffusion term, the results of the analyses carried out by
[Entekhabi and Rodriguez-Iturbe, 1994] and [Isham et al., 2005] have a common characteristic
which is a key handicap for the use of those schemes towards the development of hydrologic
parametrizations and ecohydrological studies. They find that the space-time fluctuations of the
rainfall field are basically translated to the soil moisture field. The spatial and temporal variations
in soil moisture just reflect an scaled version of those of the rain field (The scale changes from
the rain field to the soil moisture field) and thus for scales of say 1 day and less than 1 km? lead
to spatial correlation structures which decay much slower than what is observed in the empirical
data. The modeling schemes with realistic parameters yield large correlations in soil moisture for
hundreds of meters and even kilometers as controlled by the rainfall field. The incorporation of
the diffusion term in Equation (2.3) with large values of "£" increases the lateral redistribution of
soil moisture and tend to decrease its spatial variability on small local scales . For smaller "£’s"
its impact is negligible. In all cases the resulting spatial correlation structure reflects that of the
rainfall field with unrealistic slow decay of the spatial correlation structure.

The next section of this chapter briefly describes the analytics of the [Cox and Isham, 1988]
rainfall model to be used in Section 2.3 as input into Equation (2.3) incorporating the diffusion

term as suggested by [Entekhabi and Rodriguez-Iturbe, 1994]. This will be followed in Section



2.4 by the development of a new model which incorporates a "jitter" process in the soil moisture
dynamics to represent the strong fluctuations in soil moisture arising from local and important
small scale variabilities in topography, soil, and vegetation characteristics. This new analytical
scheme is shown to lead to realistic space-time soil moisture fields. The new modelling scheme is

finally used to represent a set of daily level soil moisture data in an 800 m by 800 m plot.
2.2 The Cox and Isham rainfall model

Rainfall occurrences are modeled by a sequence of circular rain cell that occur in a Poisson
process of rate A in space and time. Each cell has a random radius, W, a random duration, D
and random average intensity during its duration, X, so that the total depth of the cell is X D.
The random variables are mutually independent and the triples (¥, D, X') are independent and
identically distributed over the cells. In this model, the cells overlap temporally as well as spatially
so that, at any particular spatial location v and time ¢, the rainfall process is the superposition
of all cells overlapping the space-time (u,t). If W and D are all exponentially distributed with
parameters p and 7 respectively (p = ,ua/l, n = MBI), then the mean and covariance function of the

total intensity Y (u, t) are (Cox and Isham,1988)

2m A
E(Y (u,t)) = AB(W?)pppx = np’;X, (2.4)
2mAE(X?) PLN  _nh—piy2
Fy(l, h) ~ T 1 + Z e nm=p s (25)

where I'y (I, 1) denotes the covariance between the rain intensity at two locations at a distance [
and with a temporal lag & > 0. For this rainfall model, the temporally aggregated rainfall process

is defined as [Rodriguez-Iturbe et al., 2006]

(m+1)T
Yi(u,m) = / Y (u,t)dt, (2.6)



where [mT, (m + 1)T] is the time window of integration with m representing the time lag from a
time origin and 7' the aggregation interval. The mean and variance of the temporally aggregated

rainfall are [Rodriguez-Iturbe et al., 2006]

2 A\uxT s ATAE(X?)(e"T 40T —1)

IU“YT = an 9 O-YT 773p2 9 (2'7)
and the spatial correlation and temporal correlation of the temporally aggregated rainfall are
l
7s(1) = corr(Y7(0,0),Y*(1,0)) = (1 + %) e, (2.8)
B . . B efan(efnT -9 + enT) B
yr(m) = corr(Y*(0,0),Y" (0,m)) = T T 1) m=12,.. (2.9)
By taking the Fourier transform on (2.5), the space-time spectrum of Y is obtained as
21)2AE(X? 2(2)°+2
Dy (v,w) = (2m)AE(XT) <2)5/2 2 . (2.10)
2
O R

where v and w are complementary to s and ¢ respectively (see [Whittle, 1962]). We can also obtain

the space spectrum and time spectrum of Y by

1 ImNE(X2) 2(2)*+ 2
Oy (v) = — / Oy (v, w)dw = (x?) 2(5) 25/2, (2.11)
21 Jr np [ §)2+U2]
1 4TAE(X?) 1
P = i} dv = ) 2.12
Y(w) (271')2 /']R2 Y(V, W) v p2 7]2 +w2 ( )

In Figure 2.1, the space-time spectrum of the rainfall intensity ®y (v, w) is plotted against v for
different temporal scales of variability. It shows that ®y (v, w) starts decaying at the 100 km scale
for all temporal scales, which indicates that at all temporal scales, the structured spatial variability
in the rainfall model is contained within the O to 100 km range. At larger scales (> 100 km),

there is equal amount of variability at every scale, implying unstructured or white-noise patterns



1le+06
I

1le+03
I

Dy(v, W)
1e+00
Il

™
? |
) 1 .
= — w - =5min
wi=1hr
— wl=12hr
©
? |
[}
-
T T T T T
1e-06 1e-05 le-04 1le-03 1le-02

v (m?)

Figure 2.1: The space-time spectrum of rainfall intensity ®y (v, w). Most parameters of the model
are based on analysis of empirical Italian data (Rodriguez-Iturbe et al. 2006): 7! = 0.25 days,
p~1 =16.6km, E(X?) = 2u3% = 1.29 x 10> mm? day 2, A = 1.66 x 10~* day~! km 2.



o
o
S |
[Ye)
- o
o
=
[}
o -
Q -
Te]
o
= S =
O B
5 5 g
0 -
S 8
2
Q
-
o
-
S
7o)
o
3
—
o
2
3 3
o T T T T T T T T
0.01 0.05 0.50 5.00 1e-06 5e-06 5e-05 5e-04
® (hr?) v (m)
(a) Time spectrum (b) Space spectrum

Figure 2.2: The space spectrum and time spectrum of rainfall intensity ®y (w) for the same param-
eters of Figure 2.1.

10



in the rainfall statistics. If we consider the spatial and temporal scales of variability in the rainfall
intensity separately from each other, from Figure 2.2a we can see that the structured temporal
variability of rainfall is contained in O to 20 h scale. Again, the space spectrum in Figure 2.2b
shows that the structured spatial variability is contained at < 100 km scales.

The [Waymire et al., 1984] model used by [Entekhabi and Rodriguez-Iturbe, 1994] to study the
space-time variability of soil moisture yields (for typical parameters) the spatial variability of the
rainfall process contained in the 1 km to 10 km range, which is smaller than the range of spatial
variability of the Cox and Isham rainfall model. In order to consider a wider range in the structured
spatial variability of the rainfall input into the soil moisture dynamics we use the Cox and Isham
rainfall model in this chapter although the conclusions are the same when using the [Waymire

et al., 1984] model.
2.3 Soil moisture dynamics with diffusion

We focus on the space-time soil moisture dynamics represented by Equation (2.3). Thus we
will be able to study the impact of the diffusion term on the statistical structure of the soil moisture
field. We emphasize that the diffusion term can only account for topographic induced processes.
Notice that the coefficient k£ in Equation (2.3) stands for k = k*/nZ,, where k* is the diffusion
coefficient controlling the spread of soil moisture in space, considered to be spatially constant.
Also, £ = 0 when there is no rain and thus its value represents an average over all possible values
of S throughout the rainfall process occurring continuously in time. For instance, if the diffusion
coefficient is 1 m? day~!, and the proportion of days with rainfall is 0.25, then k¥ = 0.25 m? day .
We will rewrite Equation (2.3) as

0S(u,t)

Z,
N0

= k*V2S(u,t) + I(u,t) — &(u,t), (2.13)

to emphasize that I(u,t) is the rate of infiltration after interception by vegetation has been ac-
counted for. £(u,t) are the evapotranspiration losses. We assume [ (u,t)/nZ,. = bY (u,t), where

the parameter b represents the proportion of rainfall that become infiltration after being standard-
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ized. Also, for the purpose of this chapter and following [Isham et al., 2005] and [Rodriguez-Iturbe
et al., 2006], we approximate the standardized loss £ /nZ, by the simple linear form £/nZ, = aS,
where the parameter a will depend on vegetation and soil characteristics. Equation (2.13) is then

written as
0S(u,t)

e kVZ2S(u,t) — aS(u,t) + bY (u,t). (2.14)

It follows that the expected value of the relative soil moisture is (see Appendix A.1)

2w A\ puxb
Hs (S(’U,, )) npga

(2.15)

which is the same as that for the case when there is no diffusion (k = 0). The space-time covariance

function of the soil moisture is

2P \E (X2
Ls(l,h) = #

~  v2)'+%)

) +3]) "t — (a + by

(2.16)

e—(a+ku2)h e nh
a + kv? n

- } Jo(ll/)dy,

where Jy(-) is the Bessel function of the first kind and [ = ||I||. Though the analytical form of the
covariance function for general (I, h) is not available, numerical calculations for this function are
simple. Figure 2.3a demonstrates the behavior of the autocorrelation function of .S for different
values of k. The range of values of k& was studied by [Entekhabi and Rodriguez-Iturbe, 1994],
who obtained an upper limit for & around of O(10°) (m? h™') or O(1) (km? day—!). As seen in
Figure 2.3a, the auto correlation function for realistic values of k is not very different from that
for k = 0 (no diffusion). This implies that incorporating the diffusion with k¥ < 1 km? day ! will
make little difference in the temporal correlation. Figure 2.3b shows that the spatial correlation
increases with the value of k£ and remains always unrealistically high for distances at which field
data shows a steep decrease in the spatial correlation. This decrease is caused by the variability

and fluctuations one observes in local topography and local soil and vegetation conditions in an
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Figure 2.3: Comparison of the auto correlation functions pg(0,h) = I's(0,h)/T's(0,0) and the
spatial correlation functions pg(l,0) = I's(1,0)/I's(0, 0) for different values of k. Note that k = 0
is the correlation without diffusion. For comparison purpose, we use nZ, = 500 mm, V' = 7 mm
day ~!. Other parameters are the same as in Figure 2.1.

otherwise homogeneous terrain. In order to adapt a model like Equation (2.14) for the realistic
representation of the soil moisture field at time and space scales frequently used in hydrology and
ecological studies it becomes necessary to include an additional source of fluctuations at the scales

of interest. This will be described in the next section via a "jitter" type of process.
2.4 Space-time variability of soil moisture with jitter
2.4.1 The space-time covariance function

As discussed before, the correlation structure resulting from the soil moisture balance equation

driven only by a stochastic rainfall dynamics is fundamentally controlled by the rainfall process
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resulting in a very slow decay of the correlation structure of the soil moisture when compared to
that observed in the field. The impact of fluctuations in topography, soil properties and vegetation
characteristics is of fundamental importance in leading to a much faster decay of the soil moisture
correlation structure. These fluctuations are here modeled via a jitter process acting on the space-
time soil moisture resulting from the soil moisture balance equation driven solely by rainfall.

Consider the soil moisture {S(u,t)} as a process related to the one represented in {S(u,t)}
by

S(u,t) = Z(u,t)S(u,t), (2.17)

where {Z(u,t)} is a non-negative stationary jitter process of mean pz and covariance function
I'z(s,t) independent of {S(w,t)}. The jitter should only increase the variability of soil mois-
ture, but should not change its expected value. Therefore we impose that ;i = 1, and a simple

calculation shows that the covariance function of S(u, t) is
L5l h) = Ts(l, h) + pTz (1 k) + Ts(l, WDz (1, h), (2.18)

where ug and I'g(l, h) are given by (2.15) and (2.16) respectively. For simplicity we assume
{Z(u,t)} has an exponential correlation structure, I'z(, h) = 0% exp(—al— h) with nonnegative

parameters « and (5. Equation (2.18) then becomes
Ts(l,h) = Ts(l, h) + pdoge =P 4 g2e ™ =PrTg(1, h). (2.19)

A special case for this model is when 5 = +oo. In this case, I'z(I, h) = 0 if h # 0, which
means the jitter {Z(w,t)} is uncorrelated (white noise) in time. Then I's(l,h) = I's(l,h) for
h # 0, and the effect of jitter deflates the autocorrelation of the soil moisture at a fixed location by
a factor 0%/ a%. Similarly, if @ = 400, the jitter is uncorrelated in space and deflates the spatial
correlation of the soil moisture at a fixed time point by a factor 0%/ O’%. These points are illustrated

by Figures 2.4 and 2.5, which also show that increase of variability of soil moisture caused by the
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jitter. Thus the incorporation of the jitter leads to the fast decay of the correlation structure of soil

moisture at small and medium scales.

2.4.2 The spectra and hydrologic gain

From (2.19), we are able to obtain the space-time spectrum of the soil moisture with jitter, .S,
whose expressions can be found in Appendix A.2. Figure 2.6 shows that for small time scale (< 1
h), the structured spatial variability in the soil moisture model with jitter process is contained in
the O to 1 km range. Interestingly, for larger time scales (12 h and above), some structured spatial
variability is also contained at 10 km to 100 km scale. Figure 2.7a also demonstrates that all the
spatial variability is contained in 0 to 100 km range. As for the temporal variability, Figure 2.7b

implies that the structured temporal variability is contained in < 10? h (40 day) scales. Again, from
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rameters are the same as in Figure 2.5.

Figure 2.7, we can see that only when k is of the order of 10 km? day ! or larger that the spectrum
starts being impacted by the diffusion coefficient.

[Entekhabi and Rodriguez-Iturbe, 1994] introduced the concept of hydrologic gain function,
which can be used to measure the transfer of variability from the rainfall to the soil moisture via

hydrologic processes operating at different scales. The hydrologic gain function is defined as

KA
ar
S
£

Gs(v,w) (2.20)

- Oy (v,w)’

For the soil moisture model without jitter, Gs(v,w) is a monotone decreasing function, no matter
what rainfall model is used ([Entekhabi and Rodriguez-Iturbe, 1994]), which lacks flexibility to

describe the relation between the stochastic fluctuations of rainfall and soil moisture.
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Figure 2.8 shows the behavior in the hydrologic gain function at different spatial scales with

! = 1 day) and diffusion coefficient ¥ = 1 km? day ~! for different

daily temporal scale (w™
variances of the jitter. The case 07 = 0 corresponds to the absence of jitter where for spatial
scales larger than 1 km at the daily time scale the hydrologic processes of loss and diffusion do
not alter the variability of the rainfall field when it is filtered to yield the soil moisture field with a
simple scaling between the variances of the two processes. For spatial scales smaller than 1 km,
the hydrologic dynamics lead to a transfer in the scales of variability where the spatial fluctuations
in the soil moisture field are increasingly smoothed at smaller-local-scales. The behavior of the
hydrologic gain function is fundamentally different for the case of the soil moisture with jitter.
Thus when 0% = 0.1, which is very close to the estimate we obtain in the empirical study described
in Section 2.5, the hydrologic gain function is firstly increasing and then tends to a constant. The
hydrologic gain function is constant at both large and small spatial scales, whose ranges depend
on the variance of the jitter. Figure 2.9a shows that the spatial range where the hydrologic gain
function is increasing and the constant to which it finally tends depends on the jitter parameters.
The increasing part of the hydrologic gain function demonstrates that the presence of the jitter
leads to an increase in the transfer of variability from the rainfall field to the soil moisture field for
an important range of spatial scales controlled by the variance of the jitter. Figure 2.9a also shows
that the spatial variability of the rainfall transfers into the spatial variability of the soil moisture
with constant rates at both large and small scales, and the rate at smaller spatial scales is greater
than the rate at larger spatial scales. This means that at smaller spatial scales, higher proportion
of spatial variability of the rainfall is transferred into the spatial variability of the soil moisture
through the hydrologic dynamics. Figure 2.9b shows a very different situation for the temporal

scales. When v~!

= 100 m is fixed, the hydrologic gain function is also constant at both large
and small temporal scales, but it is decreasing in some range. This implies that the rate at smaller
temporal scales is less than the rate at larger temporal scales, and a higher proportion of temporal

variability of the rainfall is transferred into the temporal variability of the soil moisture through

the hydrologic process at larger temporal scales. The asymptotic behavior of the hydrologic gain

21



function can be analytically described by combining (2.10), (A.15) and (2.20) (see Appendix A.3).
2.5 Empirical study

The empirical study is based on the soil moisture data described in [Mohanty and Skaggs,
2001] and the rainfall data corresponds to the nearest stations from Mesonet. For the rainfall, we
choose four Mesonet locations in Oklahoma: ACME, APAC, CHIC and NINN, and we first carry
out the estimation of the rainfall parameters based on the daily measurements taken during June
and July in 1997, when the soil moisture study was taken place. However, some measurements
are missing and the estimations based on only one-year data are highly uncertain. Thus we use
daily rainfall data at the four locations mentioned above during June and July from 1996 to 2016.
Since measurements for some years are missing, we finally ended with 11 years of data and a total
number of 11 (years) x 61 (days) x 4 (locations) rainfall data points. We assume that k¥ = 1 km?
day ! as a reasonable value of k& ([Entekhabi and Rodriguez-Iturbe, 1994]) although the results
are not sensitive to this assumption. The characterization of the rainfall space-time model based on
this limited data should be approached with care although it is considered adequate for the purpose
of this chapter. The estimation of the rainfall parameters is done as follows:

1. For each year, we estimate the rainfall parameters based on measurements of that year by
the methods described in [Rodriguez-Iturbe et al., 2006]. We put all the daily rainfall data obtained
during June to July in this year from 4 stations into one dataset. The mean rain cell radius p~* is
estimated by fitting the spatial correlation function of the temporally aggregated rainfall process to
the spatial correlation of the dataset. We have 4 stations and we obtain 6 sample spatial correlations
of 6 difference distances between different pairs of stations. Then the estimate of p is calculated

by least squares through Equation (2.8). The mean storm duration 7

is estimated by fitting
the temporal correlation function of the temporally aggregated rainfall process to the temporal
correlation of the dataset. For each station, we calculate the sample temporal correlation of time

lag m = 1 day, and take the median of the 4 obtained temporal correlation as the sample temporal

correlation of the whole dataset. Then the estimate of 7 is calculated through Equation (2.9) with
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m = 1. To estimate )\ and px, we have, from Equation (2.7),

2p°(e " + 0T — Dpiyr

A= 2.21
7TT2’I”O_)2/T Y ( )
T 7]2012/T
= 2.22
:uX 4(6777/1'* + 7]T - 1)IuyT ) ( )
where 7' = 1 day and the mean puyr and variance af,T of the temporally aggregated rainfall

are estimated from the rainfall dataset. We obtain 11 sets of estimated values (gy, 7k, )\Ak, LX)
k=1,2,..,11.

2. The (g, 1k, )\Ak, tx)’s when pix, > 100 mm day ! are excluded since these outcome values
of 11x lead to physically unrealistic values of the other parameters. This is likely to happen because
for extreme types of rainfall events the mathematical model is not an adequate representation of
the rainfall dynamics.

3. We calculate the means of the g;’s and 17j;’s as the estimates of p and 7 and take the medians
of the \;’s and [txy s as our estimates of A and px. The reason for that is that the obtained py’s
and 7j;’s are calculated directly from the data and the obtained values are quite close to each other,
namely the values are all at a reasonable scale (all g, *’s are within 10 km to 50 km and all 77, s
are within 1.5 h to 8 h). The estimates of (A, ux) are calculated using the estimates of (p,n)
through Equation (2.21) and Equation (2.22), and thus are not directly from the data. They exhibit
a large variability in the values obtained for different years. Because of the robustness of medians,
we use the medians instead of means as the estimates of A and px. The estimates finally obtained
are: p=0.047km™L, /) = 7.12 day ", A = 8.99 x 1075 km 2 day ', and jix = 37.74 mm day .

For the site in consideration the rainfall interception is very low and thus we use ¢ = 0 in
Equation (2.2). Estimated values of nZ, = 500 mm and V' = 7 mm day ! are used in Equation
(2.2). Then, correspondingly, a = V/nZ, = 7/500 day ! and b = 1/nZ, = 1/500 mm~'. From
(2.15), we obtain pg = 0.195, which is very close to the sample mean S = 0.186 calculated from
the soil moisture data.

The soil moisture data is measured by handheld sensors at point locations within three selected
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footprints of an air-borne Electronically Scanned Thinned Array Radiometer (ESTAR) during the
Southern Great Plains 1997 (SGP97) Hydrology Experiment in Oklahoma ([Mohanty and Skaggs,
2001]). For this study, we use the data corresponding to the LW21 pixel, which is a silt loam, flat,
split winter wheat/grass field. The pixel is a regular 7 x 7 square grid with 100 m spacings. The
measurements are taken for each point during 25 days in June to July. However, measurements of
8 days among the 25 days are missing, and we only have 25 — 8 = 17 days of measurements. Thus
our estimation is based on 17 x 49 soil moisture data points.

We proceed now to the estimation of the jitter parameters (0%, o, ). From (2.19), the spatial

correlation function of S is

Ts(1,0)/ (42 + Ts(1,0)) + oze™
Ts(0,0)/(u3 +Ts(0,0)) + 0%

p3(l,0) = (2.23)

Note from Figure 2.4a that for realistic parameter values, I's(/,0) ~ I'(0,0) for [ < 1000 m.
Thus if we let Cy = T's(0,0)/(u% + T's(0,0)), then Cy only depends on the rainfall parameters,

and (2.23) becomes
Co+ 0'%67041

2.24
oot (2.24)

p3(1,0) =

which allows direct estimations of 0% and «. From the data, we can get the estimates of spatial
correlations of soil moisture p; = p(l;,0) at Iy = 100m, I, = 100v/2 m,..., lsg = 600v/2 m,
which are horizontal, vertical and diagonal distances between two points on the grid. Then the
estimates of o and ¢% are calculated via least squares, namely we obtain & and 6% by minimizing

the objective function

Qe,a%) = Ipg(li,0) — pil*. (2.25)
This yields 6% = 0.187, @ = 5.84. We then estimate (3 through the following equation obtained
from (2.19),
1 Co(1 — ps(0,h
B~ log (pg(o, ho) — ol '05'( 0))) (2.26)
0 0z

where we use hy = 1 day, and pg(0, ho) is estimated from the soil moisture data as the average
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lag one autocorrelation computed through all 49 sample points, p5(0,1) = 0.635. This yields

~

3 = 0.76.

With these parameters for the jitter process, the model standard deviation is og = 0.105, which

is quite close to the sample standard deviation og = 0.085.

o
—
— rainfall correlation
— soil moisture correlation without jitter
soil moisture correlation with jitter
© — soil moisture sample correlation
e
—
o
7z < |
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~
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Figure 2.10: The spatial correlation function pz(l,0) of soil moisture with & = 1 km? day —*,

p = 0.047 km™, n = 712 day!, A = 8.99 x 1075 km~2 day !, uy = 37.74 mm day ',
a="T7/500day"!, b =1/500 mm~', 0% = 0.187, « = 5.84 and 3 = 0.76.
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Figure 2.11: The auto correlation function pg(0, h) of soil moisture with the same parameters as
in Figure 2.10.

Figure 2.10 shows that the spatial correlation functions of rainfall and soil moisture for mod-
els without jitter are close to 1 when [ < 1000 m, while the spatial correlation function of soil
moisture with jitter decays much faster and fits the sample spatial correlation quite well. For the
auto correlation, since we only have soil moisture data for 17 days, the sample auto correlations
for large time lags obtained from the data are quite unreliable. As shown in Figure 2.11 the sample
correlation function oscillates wildly around zero for lag larger than 6 days. The auto correlation
function of soil moisture with jitter decays much faster than that without jitter and for lag less than
5 days fits reasonably well the one obtained from the data.

Figure 2.12a shows the behavior in the spatial spectrum of soil moisture with jitter where the
structured spatial variability is contained in scales smaller than 100 km. Figure 2.12b shows the

behavior of the time spectrum of soil moisture with jitter, from where it is seen that the structured
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Figure 2.12: The space spectrum ®z(v) and the time spectrum ®5(w) of soil moisture with the
same parameters as in Figure 2.10.
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temporal variability is contained in scales less than 10° h (40 days).
Figure 2.13a shows the behavior in the hydrologic gain function with the estimated parameters

at different spatial scales and daily temporal scale w™?

= 1 day. The behavior of the hydrologic
gain function indicates that at the daily time scale, the spatial variability of the rainfall transfers into
the spatial variability of the soil moisture with constant rates at scales larger than 10 km and smaller
than 10 m and furthermore that the rate at scales smaller than 10 m is much greater than the rate at
scales larger than 10 km. This means that at scales smaller than 10 m, a higher proportion of spatial
variability of the rainfall is transferred into the spatial variability of the soil moisture through the
hydrologic dynamics. It should be emphasized that the interpretation of the soil moisture spectra
for large scales, e.g., larger than 1 km, is based on the theoretical results resulting from the model.
The available data only cover spatial distances of up to 1 km. Conversely, Figure 2.13b shows a
very different behavior for the hydrologic gain function with ! = 100 m. The hydrologic gain
is now decreasing, and is also constant at scales smaller than 1 hr and scales larger than 100 hr (4
days). This implies that at the 100 m spatial scale, for temporal scales less than 1 hr, the temporal
variability of rainfall transfers at a constant rate to the temporal variability of soil moisture. For

temporal scales larger than 1 hr the transfer of temporal variability from rainfall to soil moisture

increases up to scales of 100 hr where it becomes constant.
2.6 Conclusions

The commonly used space-time soil moisture models yield a transferred variability of the rain-
fall field to the soil moisture field that leads to spatial correlation structures which decay much
slower than what is observed in the field. Furthermore, incorporating a spatial diffusion term
into the stochastic soil moisture differential equation leads to an increase of the spatial correla-
tion function at small scales, say, less than 1 km for temporal scales of 1 day. Thus although the
incorporation of diffusion is reasonable it does not account for the spatial random fluctuations of
soil moisture at small spatial scales (meters to hundreds of meters) which result from important
local variation of surface topography, soil characteristics and vegetation conditions. The influence

of all the above local factors is accounted for through the incorporation of a jitter process in the
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modeling of the soil moisture dynamics.

The jitter process is controlled by three parameters, which make the model capable to repre-
sent the spatial-temporal variability of soil moisture at different scales (Figure 2.4 to Figure 2.9).
The jitter process also crucially changes the hydrologic gain function of soil moisture resulting
in an increase in the transfer of variability from the rainfall output to the soil moisture output via
hydrologic processes operating at different scales.

An empirical study confirms the validation of the theory where the new model incorporating
the jitter process successfully captures the spatial-temporal variability of soil moisture at small

scales.
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3. TREE CLUSTERS IN SAVANNAS RESULT FROM ISLANDS OF SOIL MOISTURE*

3.1 Introduction

“A savanna is not an ecologic middle ground between forests and grasslands, but a system with
its own characteristics, including a remarkably stable coexistence of trees and grasses” ([Rodriguez-
Iturbe and Porporato, 2005]). Savanna ecosystems globally cover near 33 million km? ([Ra-
mankutty and Foley, 1999]) and are highly productive and flammable ([Bowman et al., 2009]).
In semi-arid savannas, annual rainfall can be highly seasonal and typically between 250 mm and
750 mm of rain during the growing season ([Rodriguez-Iturbe and Porporato, 2005] and [Bowman
et al., 2009]) with a pronounced inter-annual rainfall variability, which, combined with the action
of fire, has led to interpretations that place savannas as non-stable transitional ecosystems. As the
climate becomes drier, the trees become sparser and lower and when moister they grade into wood-
lands (pages 258-277 of [Scholes, 1997]). The results presented here explain the spatial structure
of their vegetation as stable ecosystems with a matrix of grasses and clusters of trees following a
well-defined fractal structure in their sizes and perimeters.

Tree clusters in savannas, as many other patterns in nature, may result from endogenous dy-
namics or exogenous forces. Small-scale patterns are frequently explained via activation-inhibition
Turing type of dynamics, where diffusion or other mechanisms of movement play a key role ([Mur-
ray, 1993], [Meinhardt, 1993], [Rietkerk and van de Koppel, 2008], [Meron, 2011] and [Staver,
2018]). In addition to the existing endogenous dynamics, large-scale patterns frequently involve
a response to exogenous forces, for example in the case of stochastic drivers like precipitation,
which are filtered through the dominant dynamics controlling the existence of vegetation. This
is also the case of many other large-scale patterns like those existing in Antarctic krill ([Levin
et al., 1989]) where large scale oceanic dynamics is a key driver. In semi-arid savannas, soil mois-

ture is the dominant exogenous variable, resulting from stochastic rainfall events filtered through

“Reprinted with permission from “Tree clusters in savannas result from islands of soil moisture” by Rodriguez-Iturbe,
L., Chen, Z., Staver, A. C. and Levin, S. A., 2019. PNAS, 116, 6679-6683, Copyright [2020] by the National Academy
of Sciences of the United States of America.
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the space-time soil moisture-balance equation. Tree clusters in savannas and their fractal struc-
ture likely respond to these exogenous drivers (without denying the existence of an endogenous
dynamics-e.g., competition between trees and grasses) ([February et al., 2013]). This makes the
study of the probabilistic structure of soil moisture in savannas of crucial interest to explain their
observed vegetation patterns. The soil moisture balance equation can be written in a simplified

manner (Chapter 2) as

95(u,t) _ kVeS(u,t) — aS(u,t) +bY (u,t),
o 3.1)

S(u,t) = Z(u,t)S(u,t),

where all the terms have been normalized by n.Z, with n being the soil porosity and Z, the effective
root depth. S(u, t) is the soil moisture process driven by rainfall at spatial location w and time ¢, k
is the diffusion coefficient, a.S(u, t) is the moisture loss via evapotranspiration and leakage, b is the
normalized infiltration coefficient, Y (u, ) is the rainfall process ([Isham et al., 2005]) described
in Section 2.2. The losses are treated as linear functions of soil moisture as commonly represented
for semiarid regions ([Rodriguez-Iturbe and Porporato, 2005]). The diffusion term is included for
completeness but for realistic values of k it has little importance in the overall dynamics (Section
2.3 and [Entekhabi and Rodriguez-Iturbe, 1994]). Within a realistic range of small k values, the
correlation structure of the S(w, t) is not affected (Section 2.3). S(u, t) has a correlation structure
with an extremely slow decay fully dominated by the rainfall input which in geographical homo-
geneous regions may be still of the order of 0.9 at distances of several kilometers (Section 2.3 and
[Entekhabi and Rodriguez-Iturbe, 1994]). The slow decay of the rainfall spatial correlation is well
represented by the Cox and Isham model ([Cox and Isham, 1988]) described in Section 2.2. When
this model is the sole input, Y (u, t), in the soil moisture balance equation, it yields S(u, ) with an
unrealistically slow decay in spatial correlation which is fully dominated by the rainfall input for
distances of the order of hundred kilometers in regions with homogeneous topography and climate.
It is thus necessary to incorporate the crucial impact of fluctuations in topography, soil properties

and vegetation characteristics, which lead to a much faster decay of the soil moisture correlation
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Parameter Average Wet Dry

Rainfall model
p, km™? 0.047 0.047 0.047
n,d™! 7.12 7.12 7.12
A, km=2.d7! 899 x 1075 1.17 x 107* 6.29 x 1075
fx, mm-d~? 37.74 43.55 26.96
Soil moisture model

ap, d7! 0.014 0.014 0.014

by, mm~! 0.002 0.002 0.002

g, d72 0.025 0.025 0.025

by, mm 2 0.006 0.006 0.006

o) 5.84 5.84 5.84

I6] 0.755 0.755 0.755

o? 0.187 0.187 0.187
Mean rainfall during growing season, mm 497.42 746.12 248.71
Mean soil moisture during growing season, case 1 0.195 0.292 0.097
Mean soil moisture during growing season, case 2 0.341 0.511 0.170

Table 3.1: Parameters of the rainfall model and the soil moisture model. The values of param-
eters in column “average” are estimated from real data (Section 2.5 and [Mohanty and Skaggs,
2001]). The rainfall parameters are changed to what are called the wet and dry cases when the
mean growing season rainfall is 50% more or 50% less than the “average” rainfall case. Two sets
of parameters are used to represent different infiltration and evapotranspiration conditions. The
parameters of the jitter are considered independent of the rainfall and representative of the local
fluctuations on soil, topology and vegetation in savannas (Section 2.4).

structure. These fluctuations are modelled via a jitter process ([Rodriguez-Iturbe et al., 1987]),
Z(u,t), acting on the space-time soil moisture resulting from the soil moisture balance equation
driven solely by rainfall (Section 2.4). The resulting soil moisture field, S(u,t) = Z(u,t)S(u, t),
captures the space-time correlation structure observed in the field (see Section 2.3). The jitter pro-
cess increases the variance and deflates the correlation structure of S(w,t) without changing its
mean and without allowing negative values of .S (u,t).

Recall that the parameters of the model are estimated from soil moisture data collected via
handheld sensors at point locations within three selected footprints of an air-borne Electronically
Scanned Thinned Array Radiometer (ESTAR) during the Southern Great Plains 1997 (SGP97) Hy-

drology Experiment in Oklahoma ([Mohanty and Skaggs, 2001]). The jitter parameters estimated
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for the Oklahoma site (Section 2.5) have been used to characterize the jitter in the Kruger site
where the unique set of data related to the structure of the special vegetation is available ([Staver
et al., 2019]). The Kruger site does not have detailed soil moisture data and moreover, the rep-
resentation of the impact of very local heterogeneities is likely to be similar in this semiarid/arid
region. Rainfall data from the region were used to estimate the parameters of the rainfall model
and two different sets of parameters were used for a and b in the soil moisture balance equation
([Rodriguez-Iturbe et al., 2006]). The parameters values are listed in Table 3.1 and their estimation
is presented in Section 2.5. The two sets of evapotranspiration parameters, a; (¢ = 1, 2), and in-
filtration parameters b; (¢ = 1, 2) were used to represent different plant and soil conditions. Three
different rainfall conditions were analyzed. One denoted by average represents the case of the
Oklahoma site with 497 mm of growing season rainfall, the others correspond to the wet case (746

mm, growing season rainfall) and the dry case (249 mm, growing season rainfall).
3.2 Main results

We can now study via simulation the spatial variability of the soil moisture field by focusing
on soil moisture islands. At any given time, soil moisture islands are defined as pixels connected
through a shared edge (von Neumann neighborhood) where the soil moisture is above the chosen
threshold (see Figure B.1 in Appendix B.2 for examples). The simulation scheme for the soil
moisture field, S(u, t) is described in Appendix B.1.

Of special interest are the islands of soil moisture where trees have a high likelihood of res-
idence. These “islands” are made up of pixels that have average soil moisture above specific
thresholds chosen here as 0.2 and 0.3 for (ay, b;), and 0.18 and 0.35 for (asy, by). These thresholds
are average values of soil moisture in sandy soils where savanna trees have good conditions for
stable permanency ([Rodriguez-Iturbe and Porporato, 2005]). Also, the patterns analyzed refer
to Sy which is the average soil moisture, S, over each pixel of 10 m x 10 m during a period of
T = 30 days. For plants the time-averaged soil moisture is more relevant than the instantaneous or
daily values. The resulting patterns were very similar for averaging periods of a few days to over

3 months.
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It has been well established that trees in savannas occur in clusters whose areas follow power
law distributions, P(A > a) o« a™P ([Scanlon et al., 2007]). The p exponent was found to vary
in the Kalahari between 0.89 and 1.76 ([Scanlon et al., 2007]) but more recent and precise data
in the Kruger National Park region in South Africa found p to be remarkably consistent around
a representative value near 1.78 under different rainfall regimes and soil characteristics ([Staver
et al., 2019]).

From the simulations of the soil moisture field we find that the islands of connected pixels
with average soil moisture above the chosen thresholds closely follow well-defined power laws.
Figures 3.1 and 3.2 show P(A > a) for different values of mean growing season rainfall, different
thresholds, and different parameters for losses and infiltration. The power-law distribution fails to
describe the size of the islands only when the mean of soil moisture is very small or very large
compared to the threshold being used. Thus, when the mean soil moisture is relatively large, as in
the wet case with threshold equal to 0.2 (mean soil moisture equal to 0.292), most of the domain is
above the threshold and trees will be favored everywhere signaling the ecosystem is more likely to
be a forest rather than a savanna. When the mean of soil moisture is very small and the threshold
much higher, as in the dry case with threshold equal to 0.3 (mean soil moisture equal to 0.097),
islands of soil moisture are very rare signaling that trees will rarely cluster in that situation.

The exponents of the power laws, P(A > a) o a™?, are in the range from 0.48 to 0.7 with
a typical value around 0.51 for a savanna with the assumed average rainfall regime and threshold
of 0.2 for tree stable existence. It is interesting that this range of exponents is very similar to that
found for Korcak’s law ([Korvin, 1992], [Mandelbrot, 1982] and [Korcak, 1940]) which describes
the size distribution of ocean islands as a power law with exponent in the range from 0.5 to 0.75
depending on the region of the world.

These fractal properties of the soil moisture field .S (u, t) result from both the correlation struc-
ture of the rainfall process, Y (u,t), and the correlation structure of the jitter process, Z(u,t).
Firstly, the mean of the soil moisture field is totally determined by the rainfall process and the

parameters a and b. For a fixed threshold, the soil moisture islands have fractal properties only

35



1.000

0.200
Il

P(A>a)
0.050
Il

0.010
Il

0.002

Threshold = 0.2, E(S) = 0.195
Average Rain, slope = -0.51

T T
10 100

a

T
1000

T
10000

1.00
1

0.50
Il

P(A>a)

0.10
Il

Threshold = 0.2, E(Sy) = 0.292
Wet Rain

N

T
10 100
a

T
1000

T
10000

5e-01

5e-02

P(A>a)

5e-03

5e-04

Threshold = 0.2, E(St) = 0.097
Dry Rain, slope = -0.7

T
10 100
a

T
1000

T
10000

P(A>a)

P(A>a)

P(A>a)

5e-03 5e-02 5e-01

5e-04

0.050 0.500

0.005

0.001

0.050 0.500

0.005

0.001

Threshold = 0.3, E(Sy) = 0.195
Average Rain, slope = -0.68

o

T T
10 100

a

T
1000

T
10000

Threshold = 0.3, E(Sy) = 0.292

Wet Rain, slope = -0.51
B T T T T T
1 10 100 1000 10000
a
. obnﬂ%"«z’.
T,
%1 D
Threshold = 0.3, E(Sy) = 0.097
Dry Rain
T T T T T T T T
1 2 5 10 20 50 100 500

a

Figure 3.1: Distributions of soil moisture islands (case 1). Log-log plot of the P(A > a) distri-
bution for loss and infiltration parameters a; = 0.014 day~! and b; = 0.002 mm~!. Wet, average
and dry season cases are considered with thresholds 0.2 and 0.3. Here the horizontal axis is the
number pixels, where each pixel is 10 m x 10 m on the 1 km X 1 km field. The number of islands
in the last figure is much smaller than those in the other figures.
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when the threshold is not too far above or below the mean. As shown in Figure 3.2, when the mean
of soil moisture is 0.341, the soil moisture islands do not have fractal properties for a threshold of
0.18. This implies the soil moisture mean, which is independent from the jitter process, is a key
factor when analyzing the fractal properties of the islands. Besides, according to Equation (2.18),
the spatial correlation function of S(wu, t), denoted by p(1,0), can be expressed as

(05ps(1,0) + p2) 07pz(1,0) + 05ps(l,0)

pa(l,0) =
S0 (o3 + 1)} +

(1= 7)pz(1,0) +7, when ps(i,0) ~ 1, (3.2)

PYPS(Z’O)’ when PZ(laO) = 07

where pg(l,0) and pz(l,0) are the spatial correlation functions of the soil moisture field, S(u,t),
driven solely by rainfall and that of the jitter process, Z(u,t), respectively. The terms o%, 0%
and p% are the variances and mean of S(u,t) and Z(u,t), v = 0%/((0% + p2)o% + 03%) is a
constant depending on both the rainfall and the jitter. As shown in Figure B.2 in Appendix B.3
and ([Isham et al., 2005]), ps(l, 0) and the spatial correlation of the rainfall process are very close
to 1 when [ is less than 1 km with the parameters estimated in Section 2.5. Thus on a 1 km by 1
km field, the rainfall process, Y (u,t), and the soil moisture field, S(u, t), are almost constant for
any particular realization, and the shape of the correlation function of S(u, t) is totally determined
by the jitter Z(u,t), as shown in the above equation and Figure B.2 (Appendix B.3). However,
no matter how fast the correlation function of Z(wu,t) decays for small scales, the correlation of
S (u,t) has a lower bound v > 0 controlled by both the jitter and the rainfall, and thus it would
not die until [ becomes much larger. The size of the islands resulting solely from the jitter process
exhibit power-law behavior over a limited range of scales but fail to do so at larger scales due to
the fast decay of its correlation function (see Figure B.3 in Appendix B.4). As shown in Figure
B.2, the correlation function of Z(wu,t) is already very close to 0 at [ = 1 km. In contrast, the

correlation function of the soil moisture has a very heavy tail resulting from the rainfall process,

whose spatial correlation function only dies after distances of about 200 km (see [Isham et al.,
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2005] and [Rodriguez-Iturbe et al., 2006] for more details). Therefore, the islands of soil moisture
would still have fractal properties at larger scales.

Trees are likely to exist in soil moisture islands whose mean is above an adequate threshold
but most certainly they will not occupy the full extent of each island. Fire and herbivores are
important factors that will make their occupancy smaller than that of the island. The impact of fire
and herbivores will act through the perimeter, P, of the cluster. Let A’ denote the area of a tree
cluster, and A and P denote the area and perimeter of the soil moisture island on which the tree
cluster exists. Then one may write

A" A/P. (3.3)
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More complicated functional relations could be considered between A, A’ and P but would be quite
difficult to justify. For a fractal island Mandelbrot’s Area-Perimeter equation gives P oc AP/2,
where D is the fractal dimension of the perimeter ([Mandelbrot, 1982]). Figure 3.3 shows the
Area-Perimeter relationship for a typical case of the cases analyzed before. Other cases are shown
in Figures B.4 and B.5 (Appendix B.5). An excellent fit is obtained with D/2 = 0.68 or fractal
dimension 1.36 for the perimeter of the soil moisture islands. This value is very close to the
fractal dimension of 1.40 obtained for the perimeters of the tree clusters in the Kruger region
with rainfall of 500 mm/year ([Staver et al., 2019]). Figure 3.3 implies that for this typical case
A" oc AP/2 = A932 Figure 3.4 shows the distribution of the areas of tree clusters, A’, for the
typical case described before obtained from the distribution of A corresponding to soil moisture
islands derived via simulations. The plot has a slope of -1.62, very close to the exponent of 1.60
observed for the power laws of tree clusters sizes in the Kruger region for the case of rainfall of

500 mm/year ([Staver et al., 2019]).
3.3 Conclusions

We infer that the emergence of large-scale spatial patterns of savanna vegetation characterized
by clusters of trees in a matrix of grasses with power-law probability distribution of cluster sizes
and fractal perimeters of such clusters, result from spatial patterns of soil moisture in such ecosys-
tems. The islands of soil moisture above thresholds convenient for tree stable existence display
perimeters with the same fractal dimension as that of tree clusters and their sizes follow power
laws whose exponents match those found for tree clusters when the impact of fires and herbivores
is accounted for. When the rainfall regime is outside the range observed in savannas the soil mois-
ture spatial structure does not support the above conclusions reinforcing the understanding that
savannas are stable ecosystems and not just transitional unstable states between forests and grass-
lands. Because of large interannual fluctuations in the rainfall regime the sizes of tree clusters
may be affected but the fractal characteristics in their sizes and perimeters will remain relatively
stable. The parameter of the cluster-size power law changes in a relatively small range that reflects

changes in the rainfall regime as well as the impact of fire and herbivores.
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4. DISTRIBUTIONAL PROPERTIES AND ESTIMATION IN SPATIAL IMAGE
CLUSTERING*

4.1 Introduction

As shown in Chapter 3, analyses of clusters of soil, water and species have been of great in-
terest in agriculture, ecology and hydrology. See also, for example, [Asnera and Warner, 2003],
[Wootton, 2001], [Martin and Goldenfeld, 2006] and [Sole, 2007]. For instance, clusters of trees
have been analyzed frequently since their properties are closely related to the environmental con-
ditions. Many studies have been carried out based on spatial modeling (for instance, see Chapter
2) and simulations since data of clusters are often hard to collect. Real data have been used to
verify whether models and simulations are capable of reproducing patterns observed in nature (see
[Scanlon et al., 2007]).

In ecology, the analyses of clusters often focus on the spatial properties, such as the size of
an individual cluster and the locations of the centers of clusters, assuming the object of interest is
modeled by a continuous random process y(s, w), where s is the parameter of space and w is some
sample point. See Chapter 3 for modeling and simulations, and [Staver et al., 2019] for real data
analysis. For instance, {y(s,w) : s € D,w € Q} represents the soil moisture in some area D, and
{s € D : y(s) > 0.2} could be the set of interest where the number of trees might be relatively
large. Figure B.1 in Appendix B.2 is an example for illustration. Figure B.1a is a realization of the
random field y, and the clusters in red in Figure B.1b are the areas of interest (where y > 0.19).

However, traditional statistical cluster analysis mostly studies methods of grouping a set of
objects with similar properties based on discrete data points (see [Azzalini and Torelli, 2007],
[Cattelan and Varin, 2018], [Li, 2006], [McNicholas, 2016], [Menardi and Azzalini, 2014] and
[Steinwart, 2015] for existing clustering methods). In contrast, we are interested in the distribu-

tional properties of the clusters based on a stochastic process defined on a continuous domain,

“Reprinted with permission from “Distributional properties and estimation in spatial image clustering” by Chen, Z.
and Wang, S., 2019. Electron. J. Stat., 13, 4367-4390, Copyright [2020] by Electronic Journal of Statistics.
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assuming that the clusters can be easily identified. Currently there are no available statistical tools
to study data about clusters in hydrology and ecology. The most common and fundamental prop-
erty about this kind of cluster analysis is the size of an individual cluster, which contains much
information about the environmental conditions. Data of sizes of clusters of different objects, such
as canopies, have been collected and the “distribution” of the size of individual cluster has been
studied by many researchers. However, the mathematical and statistical definition of the size of
individual cluster has not been well defined and studied, though samples can be easily collected
from images obtained from many different ways, such as remote sensors. Note that since samples
of clusters are correlated, they can not be regarded as independent samples from an unknown dis-
tribution. In fact, given a well-defined spatial statistical model, it is generally difficult to define a
random variable as the size of an individual cluster and study its distribution.

Without a well defined distribution function of the clusters, it is difficult for researchers to study
the statistical properties of the data of image clustering and perform efficient statistical inferences.
Much information in the data is not utilized, which is possible to result in inaccurate conclusions.
Therefore, it is important to have a well defined distribution, and derive an efficient method to
estimate the defined distribution function. Then we are able to get the distributional properties of
the clusters, from which more accurate conclusions can be drawn.

The definition of the distribution function of image clusters in spatial random fields is crucial
and cannot be done in a usual way, namely induced by a random variable. Thus in this chapter
we define the distribution of the size of an individual cluster in a special way, without defining a
random variable to be the size of an individual cluster. The estimation of the defined distribution
function will be introduced and the asymptotic properties of the estimators will be investigated,
which enable us to make statistical inferences and hypothesis tests.

In the following sections, basic definitions are described in Section 4.2. Then main results are
presented in Section 4.3, which include some statistical properties in Section 4.3.1, the definition of
the distribution function and its estimation in Section 4.3.2, and applications to Gaussian random

fields in Section 4.3.3. A simulation study and a data analysis are carried out in Sections 4.4 and
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4.5, respectively. Some concluding remarks are given in Section 4.6.
4.2 Preliminaries

Let D be the spatial domain and (2, .%, P) be the probability space of interest where a random
process y(s,w), s € D, w € (), is defined. Without loss of generality (WLOG), we assume
D = [0, 1] for simplicity. To define the clusters of interest on D, we need the definitions of
open sets and connected sets as follows, which are standard definitions from point set topology

([Gemignani, 1990], Chapter 9).

Definition 4.2.1. (Open in D) A set S C D is called an open set in D if there exists an open set

S C R2 such that S = S N D.

Definition 4.2.2. (Connected and disconnected in D) A set S C D is called a disconnected set in
D if it can be divided into two disjoint nonempty open sets in D, i.e., there exist A and B open in
D suchthat A+ (0, B# 0, ANB =0, and S = AU B. Otherwise, S is called a connected set in
D.

All open sets and connected sets are meant to be open or connected in D if not specified.
Denote the area of interest by A = A(w), which is a subset of D depending on y. For instance,

A can be the area with soil moisture greater than some value c:

A=Alw)={s€D:y(s,w)>c}.

For simplicity, we assume ¢ = ( and

A=Aw)={se D:y(s,w) >0}

in the following sections. However, the conclusions still hold when A is more complicated. We
assume further that Vw € 2, y(s,w) is continuous in D and Vs € D, P(y(s) > 0) > 0. Then for
any fixed w, A = A(w) is open in D (an open set with respect to the topology of D). By a basic

property of R?, A can be represented as
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M
A:Ly%, (4.1)

where A,,’s are mutually exclusive, open and connected subsets of D, also known as the connected
components of A, and M is some positive integer or co, depending on w. We say s’ and s” are
connected if there exists m such that s’,s” € A,,. These A,,’s can be regarded as “islands” in
the spatial domain D. When two islands are “very close”, we consider them as a cluster since
they would affect each other. This consideration is reasonable in applications: think of two tree
canopies which are very close. They would probably be the same species and compete with each
other for groundwater. Therefore, they should be considered as one cluster. More clearly, for some
fixed positive number 0, if the distance between two islands is less than ¢, they should be in the

same cluster. We can now define clusters formally by introducing the following relation.

Definition 4.2.3. Suppose s',s" € A and § > 0. We say that s' and s" belong to the same
cluster, denoted by s' ~ s", if there exist 0 < n < oo and sy, Sa, ..., S, € A, such that for each

i=1,2,...n+1

Si—1 — Sill < (s = s0, " = Snt1)-

One may ask whether J could tend to 0 when the resolution £ tends to infinity. In general, in
practice people would identify clusters of specific objects with 6 = 0. Introduce ¢ here is for the
purpose of the theoretical derivations in probability. In applications, a fixed small § would lead to
a negligible difference compared to 6 = 0. For instance, when a study is focusing on the islands in
oceans one can set ¢ equal to 1 cm, and when studying clusters of soil moisture one can set ) equal
to 1 nm.

The relation ~ groups together the points of A which are close to each other. Since ~ is
reflective, symmetric and transitive, it is an equivalence relation in A. Let S/ ~ denote the quotient

space of a set .S by an equivalence relation ~. Now we can define clusters as follows.

Definition 4.2.4. (Clusters). The equivalence classes partitioned by the equivalence relation ~ in

A (elements of A/ ~) are called clusters and denoted by {Cs} gen.

The definition of clusters seem to be abstract and complicated at a first glance. In fact, each
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cluster C'z defined in Definition 4.2.4 is just a union of “islands” (connected components) of A,

which is shown in the following theorem. Let

d(s,S) = illég |s" = s||, d(5,S8")= inf ||s'=$"|

s'es’ s"eS

denote the distance between a point and a set and between two sets in R?, respectively.

Theorem 4.2.1. Suppose that {Cs}gen are the clusters defined in Definition 4.2.4 and { A, } oo,

are the connected components of A. Then for any cluster C = Cp of A, we have

C = U A,

i:A;CC
Proof. See Appendix C.1. [
Let \(+) denote the Lebesgue measure in R? and R, = [0, o). Then we have

Definition 4.2.5. (Number of clusters). For x € R, define
N, =card({f € A: N(Cp) > x}),

which is the number of clusters with Lebesgue measure greater than x.

When z = 0, N, = N, is the total number of clusters. Let
B(s,r)={s":||s —s| <r}
denote the open balls in R2. For each 3 € A, define
Cs={seD:d(s,Cs) <5/2}.

Then Cj3’s are open and mutually exclusive since by Definition 4.2.3 and 4.2.4, d(Cj,Cs) > 6

if 3 # 3. Furthermore, each C's contains an open set B(s,d) N D, where s5 € C. Therefore,
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AN(Cg) = 162 /16 (since A(B(sg,d) N D) > 7(5/2)?/4 for sufficient small §) and

A(D)16 16
N, < Ng< ——— = — <00, 4.0
0 T 02 w2 >0 (4.2)

0

N

In applications, collected data are often transferred into images with certain resolutions. There-
fore, the information we have is based on pixels or grid points. In this chapter, we assume that

1 2 20—1 \*
Gk:{?,?,...,Z—k,l} CR, ]{321,2,...,

are the sets of grid points, and
G = kul Gi = lim Gy

is the set of all grid points when the resolution goes to infinity.

Now we have similar definitions for the grid points.

Definition 4.2.6. Suppose s',s" € AN Gy, for some k and 6 > 0. We say that s’ and s" belong to
the same cluster of Gy, denoted by s' % s", if there exist 0 < n < oo and s1, So, ..., S, € AN G,
such that for each i = 1,2,....,n + 1, at least one of the following two conditions is satisfied
(so=15"8p1=5",8 = (Yi,2:),1=0,1,....,n+1):

(1) lyi—1 — il + |zi-1 — 25| = 27% (s; is in the Von Neumann Neighborhood of s;_1);

(2) ||si—1 — si|| < O (si—1 and s; are very close).

G . : G
We say s' ~ s" if there exists K > 0 such that for all k > K, s' ~ s".

Definition 4.2.6 has one more “neighborhood” condition than Definition 4.2.3. The reason is
that when identifying clusters in the continuous domain D, we only need to consider the true dis-
tance between points. However, for finite resolution k, the true image, A(w) = {s € D : y(s,w) > 0}
is approximated by the pixels (G, w). When 27% < §, no points of A; would satisfy condition
(2) of Definition 4.2.6, and each cluster can only contain one pixel. In practice, it is reasonable to
group these points in A N G, that are neighbors when studying the cluster properties with finite

resolution k. Therefore, condition (1) is added to Definition 4.2.6, although it is not necessary for
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theoretical derivations for § > 0 and k — oo.

Definition 4.2.7. (Clusters of grids). The equivalence classes partitioned by the equivalence rela-

tion 5 in Gy, (elements of AN Gy/ %) are called clusters of Gy, and denoted by {Cj .} gen,.

Definition 4.2.8. (Number of clusters on grids). For x € R_, define
Nx,k = card({ﬁ € Ak : )‘k(cﬁik) > I}) )

where ), is the counting measure defined in G, (each grid point with mass 4=).

Similarly to Equation (4.2), define
ég,k = {S eD: d(SaCB,k) < 5/2},

and C3;,’s are open and mutually exclusive. Thus we have

A(D) 16

0K Nop S Nop  ——t = —— <
kS AORS T 2)2)0 T wer T

4.3)

4.3 Main results
4.3.1 Some statistical properties

To study the statistical properties of the clusters from real data, we need to ensure that when
the resolution gets higher, the plot with pixels obtained from the data becomes closer to the true
spatial random field. In other words, the clusters of (G;’s should be almost the same as the true
clusters. Since the definition of clusters is based on connectivity, we need the following theorem,

which shows the relationship between the connectivity of girds and the connectivity in D.
Theorem 4.3.1. Suppose s',s" € ANG. Then s' £ s if and only if s' ~ s".

Proof. See Appendix C.2. U
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Before we define the distribution function through N, ;, we should make sure that IV, . is well

defined, i.e., we should make sure that /V, ; is a random variable.
Theorem 4.3.2. Foranyz € R, and k € N, Ny i« Q= Nis a random variable.

Proof. See Appendix C.3. [

Let () be the empty set and

0S ={seD:Ve>0,B(s,e)NS #0D,B(s,e) NS £ 0}

denote the boundary of S C R2. The next lemma and theorem show the behavior of N, 1, when the

resolution £ goes to infinity.

Lemma 4.3.1. Suppose that the random process y satisfies

A(OA(w)) =A(0{se€ D :y(s,w) >0}) =0, Vwe. 4.4)

Then for any x € R, N, is a random variable. Define

Us={weQ: ANCij(w)) #z, i=1,2,...,No(w)}, 4.5)

where C, Cs, ..., Cy, denote the clusters of interest. Then N, — N, as k — oo for all w € U,.
Proof. See Appendix C.4. [

Theorem 4.3.3. Suppose that the random process y satisfies the condition in Lemma 4.3.1. Then

Vo € Ry, U, C Q) is measurable with respect to .. Define

V={reR,:PU,) =1} (4.6)

Then R \V is at most countable. In other words,



except for an at most countable set in R ..

Proof. According to the proof of Lemma 4.3.1, Equation (C.1) holds for all w € €2. Thus for any

r € R, we can rewrite U, as

(e ol e o)

U, = U U ﬂ {weQ: Nyyjpp(w) = Noyiynp(w)},

h=1j=1k=j

which indicates that U, is measurable.

Now suppose R\ V' is uncountable. Since

RA\V={zecR,:P(U,) <1} = D {xeR+:P(Ux)<1_%},

there exists mg € N, such that {:L’ cR,:PU,) <1~ mio} is uncountable. Then we can choose

a sequence

™ 1

myo
such that x; # x; if i # j. Let U = Q\U,. Then U consists of w’s such that y(s,w) has at
least one cluster with size x. Since, by Equation (4.2), the number of clusters is finite, Vw € (2, it

cannot belong to infinite many sets in {Ug }{2,. In other words, lim sup Ug, = (. Thus by Fatou’s

1—00
Lemma,
. . . 1 1
0= P(0) = P(limsup U ) = limsup P(U; ) > limsup — = —,
i—00 ’ i—00 ‘ imoo Mo Mo

which is a contradiction.

]

By Equation (4.2) we know that Nj is bounded and F(Ny) < oo. Besides, P(Ny > 0) >
P(y((0,0)) > 0) > 0 and E(Ny) > 0. Define

reV. 4.7)
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Then we have the following corollary:

Corollary 4.3.1. Suppose that y satisfies the conditions in Lemma 4.3.1 and xo € V. Then

:ch—>I£lO Ny = N, a.s., 4.8)
zeV

and F (x) is continuous in V.

Proof. Fixw € U,,. Let C, (s, ..., Cy, be the clusters and

v = min |[AC;) — xol.

1<i< Ny

Then v > 0 and when |z — 29| < yand z € V, N, = N,,. Since P(U,,) = 1, we have

lim N, = N, .S.
T=T9 ¥ Zo> a.s
zeV

Finally, by the Dominated Convergence Theorem, we have

- 1 E(N,) =
lim F(z) =1— —— lim F(N,)=1— ——> = F(xo)
et ENo) & E(No)
Hence F'(x) is continuous in V. H

Remark 1. Now it is obvious that F° (x) has all the properties of distribution functions, but it is only
defined in V. Note that V is dense in R, , we can let the right limit of £'(z) be the well-defined
distribution function. It may look strange that the distribution function of clusters has the form
(4.7). One can think of F(N) as the expected number of clusters, and F(N,) as the expected
number of clusters with size greater than z. Then E(N,)/E(Ny) can be regarded as the proportion
of clusters with size greater than z, which should be 1 — F(m) by definition. This suggests that

the right limit of F'(x) should be the cumulative distribution function of the size of clusters. This

idea comes from practical problems in various fields, such as agriculture, ecology and hydrology
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([Pascual et al., 2002], [Scanlon et al., 2007] and [Staver et al., 2019]). More examples will be

given after the Empirical Distribution Function (EDF) is defined in the next section.
4.3.2 The distribution function and its estimation

Now we are ready to formally obtain the distribution function of cluster size.

Theorem 4.3.4. Suppose y satisfies the conditions in Lemma 4.3.1 and F (x) is defined as in
Corollary 4.3.1. Define
F(z)= inf F(2), zeR,, (4.9)

zeVN|z,00)

and F(x) = 0 when x < 0. Then F(x) has the following properties:
(1) F(x) is non-decreasing;
(2) F(—00) = 0, F(+00) = 1;
(3) F(x) is right continuous.

Therefore, F(x) is a valid distribution function defined in R.

Proof. (1) follows immediately by the definition of F'(z). Note that F(z) = F(z) = 1 when
x> \(D) = 1, we have F(—oc0) = 0, F(+00) = 1 and (2) holds. Besides, Yz, € R, and Ve > 0,

by the definition of F'(x), there exists z/ € V such that 0 < F(z') — F(z) < €/2. Note that

F'(z) is monotone and continuous in V' and that R, \V is at most countable, there exists z” >

such that 0 < F(2”) — F(2') < ¢/2. Lety = 2" — . When 0 < & — 9 < 7, since F'(z) = F(x)

when x € V', we have

= F(a") — F(z0)

= F(2") — F(z') + F(2) — F ()

<€/2+€/2=F¢,

which completes the proof. 0
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For any real function & defined in R, let € (h) = {z € R : h is continuous at x} . Define

E(Nx,k:)
E(Nog)’

F(z)=1- z eR. (4.10)

The following theorem shows explicitly what V' in (4.6) is and how we can approximate the true
distribution function F' at resolution k. Though the distribution functions are not induced by spe-
cific random variables, we will show that F}, converges to F' in distribution, which means F}(x)

converges to F'(x) for all z € € (F).

Theorem 4.3.5. Under the same conditions as in Theorem 4.3.3, we have V. = € (F) N R,.

Moreover, Fi(z) is well-defined and

Fk(x)zF(x) as k — oo.

Proof. First note that 0 € V N €(F). Vxy € V\{0} and ¢ > 0, since F is continuous at o,
there exists 2/, 2” € V, such that 2’ < zy < 2’ and F(2") — ¢ < F(x9) < F(2') + e. Let

v = min(z” — xg, o — 2’). Then for all z satisfying |z — 2| < 7, we have
F(z)—e< F(z")—e=F(2")—e < F(x)) < F(a') +e=F(z') + e < F(z) +e.

Hence 2o € €(F)NRyand V C €(F) NR,.
Now suppose zy € Ry \V. Then by definition, P(UZ) > 0. Vv > 0, since R, \V is at most

countable, there exist 2" € (2o —,70) NV and 2" € (xg, 70 +7) NV. Note that w € Ug, implies
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there is at least one cluster with size xy and N,/(w) > N,»(w), we have

E (Ny — Nyr)
E(No)
< E ((Ny — Now) 1y ,—n.>0})
g E(No)
E (Ln,—Ny>0p) _ P(Nor > Nor)
-~ E(No)  E(V)
P(U;,)

E(No)

F(z") = F(a') = F(a") = F(a) =

> 0.

=

The last term above is a constant only depending on z,, which indicates that lim,_,,, F'(x) #
F(z0) and 2y € R, \%(F). Therefore, R,\V C R \%(F) and €(F) "R, C V. Hence
V=%¢F)NR,.

Now since P(Ny; > 0) > P(y((1,1)) > 0) > 0 when £ is large, by Equation (4.3) we have
0 < E(Npx) < oo and thus Fy(z) is well defined in R. To show Fj(z) EA F(z), it suffices to
show that Vo € V, Fy(x) — F(x). Since Nyj’s and N, ;’s are bounded, we have, by Theorem

4.3.3 and the Dominated Convergence Theorem,

, limy 00 F(Ny k) E(N,)
dm (@) i o0 B(No k) BNy L@ wel
which completes the proof. ]

We now address the problem of estimating the distribution function Fj(z) for some specific k.
In practice, data are often obtained as images with some fixed resolution. For instance (see Section
2.5), a 800 m by 800 m square field D is divided into 64 pixels, each pixel is 100 m by 100 m.
Then a remote sensor detects the soil moisture of the center point of each pixel, and produces a
image of soil moisture with resolution £ = 3. Now let y denote the process of soil moisture and
¢ = 0.2 be the threshold. After each measurement, we obtain a realization of y at 64 locations
and a series of sizes of clusters z1, o, ..., Tn,. Suppose n different fields D, Dy, ..., D,, with same
size and similar soil properties are chosen, and they are far away from each other so that the soil

moisture of each field is considered to be independent of each other. Then we have y1,vs, ..., yn
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that are independent and identically distributed random processes defined in D, Dy, ..., D, re-
spectively. After measuring the soil moisture of field D;, i = 1,2, ..., n, a series of sizes of clusters
Ti1, Ti2, s TiNy ., 1S Obtained, where N, ; is the corresponding number of clusters with size
greater than « in D;. Then in practice, a commonly used EDF of clusters Fkn(x) is defined as the

sample EDF of the whole data set

xl,la R3] xl,Noykyl ) x?,la R3] xQ,N&kyQ? R3] xn,la R3] xn,NO’k,n-
It is obvious that it is equivalent to define Fy, ,,(z) as

- - Nx 7
Fk,n(x) =1- —%fl i l}: . “4.11)
i=14V0,k,

We now show an asymptotic property of this EDF in the following theorem.

Theorem 4.3.6. Suppose that vy, s, ...,Yy, are independent and identically distributed random

processes that are defined in D and satisfy the condition in Lemma 4.3.1. Define

Ty, = sup | Fn(x) — Fi(z)|.

z€R

Then we have

T, =5 0, (4.12)
ie., I k.n converges to Iy, almost surely uniformly.

Proof. Letz; = j/2%, j =0,1,2,...,2% and
IQ = (-OO,ZEl), ]j = [ZE]‘,ZE]‘+1), j = 1, 2, ,Qk — 1, ]2k = [17 OO)
Then by the definition of N, ;, (note that A\, (-) only takes finite values), we have

Ny = ij7k, Vo € Ij

)
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and

Fi(z) = Fu(z;), Fen(z) = Fea(z;), Yrel,.

Therefore,

k

A

Fin(75) — Fi(x;)

A

Frn(75) — Fr(x5)|-

T, = sup |Fj,n(x) — F(z)| = max

z€R 0<j<2k

<
j=0

Note that by the strong law of large numbers (SLLN) we have

% Z?:l Nfﬂjvkﬂ' E(Nﬂv],k) a.s. - k
— - 50, j=0,1,2,.., 2
>y Nowi E(Nog)

A

Fin(x)) — Fr(xy)| =

Since there are only finite many j’s, we conclude that

A

Eyn(z;) — Fio(zj)| =30,

T.<)

=0

as desired. O]

4.3.3 Applications to Gaussian random fields

All results of the previous section are based on the condition (4.4) in Lemma 4.3.1. Note that
the area of interest A = {y > 0} = {y > 0}\{y = 0} is the difference between an excursion
set and a level set, and many results of properties of level sets and excursion sets have already
been obtained; see, for example, [Flores and Leon, 2010], [Worsley, 1995] and [Worsley, 1997].
The following theorem is based on Rice’s Formula (see Chapter 11 of [Adler and Taylor, 2007]
and [Ulrich, 1984]), which makes the condition (4.4) easy to check when y is a Gaussian random
field. Let Vy denote the almost surely gradient of y: (Jy/ds;,dy/0ss), and V?y denote the
almost surely Hessian matrix of y with entries 0*y/ds;0s;. The joint distribution of (y, Vy, V?y)
is defined as the joint distribution of y, Vy and the 2(2 + 1) /2 = 3 dimensional vector vech(V?y).

First of all, we introduce the following lemma, which is necessary for the proof of the next theorem.
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Lemma 4.3.2. Suppose that [ is a deterministic function defined in D and f € €1(D). Let

By=0{seD: f(s)>0}, Ry={seD: f(s)=Vf(s)=0}.

Then \(By) = 0if A(Ry) = 0.

Proof. See Appendix C.5.

]

Now suppose that y is a centered Gaussian random field (GRF) defined in D. Furthermore,

assume that y is twice continuously differentiable almost surely, i.e., y € ‘52(D) a.s., and the joint

distributions of (y, Vy, V2y) are non-degenerate. Let C'(s, ) denote the covariance function of y

and Cj;(s, t) denote the covariance function of 9*y/ds;0s;, namely for s,t € D,

O(s.t) = B (y(s)y(t)). cij<s,t>=E( Py 0 <t>).

&siasj 5 8@875]

Then we have the main theorem of this subsection:

Theorem 4.3.7. Suppose that, for some finite K > 0, a > 0 and small enough |t — s

max |Cy;(t,t) + Cyj(s, s) — 2C;ii(s, 1) < K |In|t — of |~

i,=1,2

and

|C(t,t) + C(s,s) — 2C(s, )| < K [In |t — 5|7+
Then condition (4.4) in Lemma 4.3.1 holds.

Proof. By Lemma 4.3.2, condition (4.4) is satisfied if with probability one,

Ro(w) ={s € D :y(s) = Vy(s) = 0}

(4.13)

, Ci;’s satisfy

(4.14)

(4.15)

has zero Lebesgue measure. In Theorem 11.2.1, Corollary 11.2.2 and Lemma 11.2.12 of [Adler

and Taylor, 2007], let T = D, B = (0,00), f = Vy, g = y. Then Lemma 11.2.12 indicates
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that when conditions (4.14) and (4.15) are satisfied, Ry = () with probability one. This implies
A(Rp) = 0 a.s., as desired. O

Remark 2. If y is stationary, we can let C'(t) = C(t1,t2) be the covariance function of y. By
the property of GRF, C' is fourth differentiable and (4.14) becomes (see Section 5.5 of [Adler and
Taylor, 2007])

otC otC

0) — t)| < K |Inft]) " 4.16
z{]n;al},% 82@'82%‘( ) 82@-82@( ) ’n’ H ( )

when ¢ is small enough. (4.15) is not needed anymore since the differentiability of C' implies that
the left hand side of (4.15) is O(|t — s|). Condition (4.16) is satisfied, for example, when ¥ is

isotropic and C' is the Matern covariance function with v > 2.
4.4 Simulation study

Firstly, we simulated y as a Gaussian process in D with mean 0 and isotropic Gaussian covari-
ance function K (r) = e, We used 6 = 0.001 and y was simulated n = 500 times with k = 3,
k =5,k = T7and k = 9 respectively. Then we calculated the EDFs and plotted them against x as
in Figure 4.1a. After that, instead of fixing the sample size, we fix k£ = 7 and use n = 25, n = 50,
n = 100 and n = 500 respectively. The EDFs with different sample sizes are shown in Figure

4.1b.
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Figure 4.1: The EDFs of the areas of clusters with covariance function K;(r) = e~ (a), the
EDFs of n = 500 samples with different resolutions and 6 = 0.001. (b), the EDFs of resolution
k = 7 with different sample sizes and o = 0.001.

Figure 4.1a shows the convergence rate of the distribution function. When n = 500 is fixed,
Frn(z) and Fy,(x) are almost identical. This indicates that the convergence of the distribution
function in resolution is quite fast. Regarding the sample sizes, Figure 4.1b shows that when k = 7
is fixed, F~,(z) is close to [ (z) when n > 100.

We also considered the distribution function with covariance function K»(r) = sin(r)/r, which
is only valid in R%, d < 3. We used the same value of § and plotted the EDF curves for different
resolutions and sample sizes, as described above. The results are shown in Figure 4.2. Though
the shape of the EDF curves of K are different from the curves obtained using K7, both of them

essentially converged at & = 7.
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Figure 4.2: The EDFs of the areas of clusters with covariance function K5(r) = sin(r)/r. (a), the
EDFs of n = 500 samples with different resolutions and 6 = 0.001. (b), the EDFs of resolution
k = 7 with different sample sizes and 6 = 0.001.

Finally we changed the covariance function to the exponential covariance function K3(r) =
e 19" and used § = 0.01. Note that K3 is not differentiable at r = 0 and that a centered Gaussian
process with covariance function K (1) = e~1%" does not satisfy the conditions of Theorem 4.3.7
(K3(r) = e is not differentiable at r = 0 and y is not differentiable in D). We again simulated
y 500 times with k from 6 to 10. The corresponding EDFs Fkn (x) against = are shown in Figure

A

4.3a. We also plot the complimentary EDFs 1 — F'(z) against = in log-log scale in Figure 4.3b.
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Figure 4.3: The EDFs of n = 500 samples for different resolutions and 6 = 0.01 with covariance
function K3(r) = ¢!, (a), the EDFs versus z in original scale. (b), the complimentary EDFs
versus x in log-log scale.

Figure 4.3 suggests that the EDF still converges as k gets large, though K3(r) = e~1%" does not
satisfy the condition of Theorem 4.3.7. However, it converges much slower compared to the EDF

with covariance /(1) = e and the EDF with K (r) = sin(r)/r.
4.5 Data analysis

In this section we perform an analysis of the tree clusters data introduced in [Staver et al.,
2019]. The tree clusters data were collected across n = 10 landscapes in April 2012 in Kruger
National Park, South Africa, with each pixel = 56 cm on a side. Let y(s) denote the height of the
tree at location s and y(s) = 0 imply that there is no tree presenting at s. According to [Staver
et al., 2019], the area of interest is the set of locations where there are trees with height > 3.5
meters presenting, namely

A={se D:y(s)> 3.5},
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Figure 4.4: The complimentary EDF of the area of the tree clusters in the log-log scale. The
horizontal axis, z, is in unit of number of pixels (56 cm X 56 cm each).

and the tree clusters are the connected components in A. The tree clusters in the data set are
identified by Moore Neighborhood, which are equivalent to the tree clusters identified by Von
Neumann Neighborhood with § satisfying v/2] < § < 2I, where | = 56 cm is the side length of
each pixel.

The data set we analyzed is Dataset S1 in the Supporting Information of [Staver et al., 2019],
which contains the areas and the perimeters of M = 2,450,127 identified tree clusters. This data
set is available on the PNAS website and more detailed descriptions and analyses of this data set
can be found in [Staver et al., 2019].

The complimentary EDF 1 — F'(z) versus z is plotted in the log-log scale in Figure 4.4. We

observe in Figure 4.4 that the size of tree clusters, x, may have a log-log linear relationship with
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its complimentary distribution function 1 — F(z). Let z;, i = 1,2,..., M, be the samples of
sizes of tree clusters that we obtained, and y; = 1 — F(:cz), i = 1,2,..., M, be the value of the
complimentary EDF at x;. A simple linear regression of log(y;) versus log(x;) resulted in a slope

of —1.26 and R? = 0.98. This implies that for the tree clusters,
1—F(x) oz,

and the size of tree clusters has a power-law distribution. Interestingly, a recently developed soil
moisture space-time model has shown that the soil moisture clusters also have a similar power-law
distributional property, indicating that the distributional properties of tree clusters result from the
space-time probabilistic structure of soil moisture fields (Section 3.2).

This type of power-law clustering distribution is of great interest in various fields. For instance,
the power-law cluster size distribution for the nonwetting phase in sandstones reveals the existence
of ganglia of all sizes presenting a large surface area for dissolution and reaction in waterflooded
oil reservoirs or CO2 storage sites ([Iglauer et al., 2010]). In addition, the power-law distribution
of forest fires indicates the relationship between fire probability and population density, which can
be used in forest-fire danger rating method and system ([Song et al., 2006]). Moreover, the change
in the power-law distribution of vegetation patterns should be regarded as early warning signals of

ecological transitions ([Kefi et al., 2014]).
4.6 Concluding remarks

In this chapter, we considered the problem of a particular and practically useful image clus-
tering focusing on the distributional properties of clusters of spatial random fields. It is different
from the traditional statistical clustering models. A formal definition of a well-defined distribution
function of the clusters F'(x) in given in Theorem 4.3.4. The definition of distribution function at
specific resolution Fj,(z) and the EDF Fkn(a:) are also defined, respectively. The asymptotic prop-
erties of these two functions under general conditions are shown in Theorems 4.3.5 and 4.3.6. This

provides an efficient way to estimate F'(x) in applications. However, the regularity condition (4.4)
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in Lemma 4.3.1 is not easy to verify. Theorem 4.3.7 shows that under the Gaussian assumption,
instead of verifying condition (4.4), one can verify the smoothness of the covariance function of
the Gaussian random field to ensure the asymptotic results holds.

The simulation studies demonstrated the convergence of Fk,n (x) with different covariance func-
tions and different values of £ and n. The results imply that the convergence rate depends highly
on the smoothness of the covariance function K (-). When the isotropic exponential covariance
function K (r) = e~ is used, F},(z) appears to converge, though K (r) = e~ '" does not satisfy

the regularity conditions of Theorem 4.3.7 (K (r) = =10

is not differentiable at » = 0 and y is
not differentiable in D).

Section 4.5 presented an analysis of a data set of tree clusters that became publicly available
recently. Based on this data set, we obtained the empirical distribution function of the size of
tree clusters. The result indicates that the tree clusters have a power-law distributional property,
which is widely observed in many studies ([Scanlon et al., 2007] [Staver et al., 2019] and Chapter
3). A recently developed space-time model of soil moisture has indicated that the soil moisture
clusters also have similar distributional properties. We conjecture that this power-law distributional
property may result from some specific covariance functions, such as the isotropic exponential
covariance function K (r) = e

As a future research problem, it would be interesting to study the relationship between the
model of the random field, y, and F', the distribution of the size of clusters. Assuming that y is a
Gaussian Markov random field, /' mainly depends on C, the covariance function of y. Studying
the relationship between C' and F' is of great importance in many related fields since one can get
the information of the random field through the image data using the relationship. In addition, in
Section 4.3.2, we assume that Dy, D, ..., D, are far from each other so that vy, vs, ..., y, are
independent. However, in applications, Dy, D-, ..., D,, might be close to each other and v, v»,
..., Yo would be correlated. In this case, how to obtain the distributional properties of the size
of clusters using correlated data still remains a nontrivial question. Furthermore, in this chapter

we have obtained the main results when the domain D is bounded. When the area of D tends to
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infinity, stronger regularity conditions might be needed, and the asymptotic limiting distribution of

cluster size could be very different from the case when D is bounded.
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5. INFERENCES FOR EXTENDED PARTIALLY LINEAR SINGLE-INDEX MODELS

5.1 Introduction

Regression models are powerful tools for the analysis of the relationship between a response
variable and some covariates. In many simple cases, a linear model F(y|r) = 2T 3 can be used to
fit the data, where x is the covariate vector and y is the response. However, the linear assumption
may be violated in some cases and the relationship between the response and the covariates can
be better explained via a link function g: E(y|z) = g(2T ). This single-index model has been
proposed and studied in detail (see [Ichimura, 1993], [Horowitz and Hirdle, 1996], and [Liang and
Wang, 2005]). However, sometimes neither of these two models is able to sufficiently represent
the relationship between the response and covariates. [Carroll et al., 1997] introduced the partially
linear single-index model, which is a combination of the linear model and single-index model, and
is defined by

y=2"84g(x"0) +e, (5.1)

where y is the response, x and z are covariates with dimensions p and ¢ respectively, ¢ and [ are
p-dimensional and g-dimensional vectors of parameters, g is the unknown link function, and e is
the random error. Different estimation and testing methodologies have been proposed for model
selection and estimations of the parameters and the link function; see [Yu and Ruppert, 2002],
[Xia et al., 2002], [Xia and Hérdle, 2006] and [Liang et al., 2010] for more details. The partially
linear single-index models have also been generalized for analysis of data with more complicated
correlation structure, such as longitudinal data, which are widely studied in many fields such as
epidemiology and biology. See, for example, [Wang et al., 2005], [Li and Hsing, 2010], and [Chen
et al., 2015].

In practice, the covariates in the partially linear single-index models (5.1) are manually divided
into two parts before the model is fitted to the data: One part becomes the covariates of the linear

form z, and the other becomes the covariates of the single-index form z. However, this procedure
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may result in a misspecification of the model: some covariate variables of = should actually be-
long to z, while some covariate variables of z should actually belong to x. The model selection
methods for model (5.1) are not able to detect the misspecification after x and z are specified. This
problem can be solved by using the extended partially linear single-index model, which was firstly

introduced in [Xia et al., 1999] and has the form

y=2a"B+g(z"0) +e. (5.2)

Here x denotes all the covariates in the model, and it appears in both the linear part and the single-
index part of the model. The extended partially linear single-index model (5.2) is an extension of
the partially linear single-index model (5.1) and is able to prevent the misspecification problem
mentioned above.

Since x appears both in the linear part and the single-index part, it is natural to first consider
the identifiability of the model parameters before deriving estimation methodologies. [Xia et al.,
1999] and [Lin and Kulasekera, 2007] have proposed and investigated the identifiability prob-
lem of extended partially linear single-index models, and obtained the regularity conditions that
ensure the identifiability. [Xia et al., 1999] also proposed a simple kernel estimation for estimat-
ing the model parameters, which is similar to the estimation for the parameters of partially linear
single-index models (Equation (5.1)). Since the dimension of the parameters of extended partially
linear single-index models is much larger than the dimension of the parameters of partially linear
single-index models, similar estimation methods would be less efficient for extended partially lin-
ear single-index models. Recently, [Dong et al., 2016] introduced a new estimation method based
on orthogonal series expansion. We propose the local linear smoothing estimators for the estima-
tion of extended partially linear single-index models and introduce the profile estimating procedure
of the estimation. We show that the solution to the optimization of the profile objective function is
unique and can be expressed as linear forms, which leads to fast and accurate computations for the

parameter estimation.
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Although extended partially linear single-index models (5.2) eliminate the possibility of the
model misspecification discussed above, the number of model parameters becomes larger since all
covariate variables appear twice. Therefore, it is of importance to conduct variable selection to
prevent model overfitting, which may lead to biased or inefficient estimators and predictions. We
propose the penalized local linear smoothing estimation for extended partially linear single-index
models with the use of penalty functions, such as the least absolute shrinkage and selection op-
erator (lasso). The estimators defined by the approach have several advantages (see Chapters 2
and 3 of [Fan and Gijbels, 1996]), and the variable selection procedure is automatically completed
during the estimation procedure. As shown in the empirical study in Section 5.5, when the model
parameters contain a substantial number of zeros (sparsity), the penalized estimators have better
performance compared with the non-penalized estimators, even if the sample size is large. There-
fore, in practice, estimating the parameters using the penalized estimators is always recommended
when some covariates are known to be redundant.

After studying the estimation procedure of the model parameters, hypothesis testing for the lin-
ear constraints of the parameters is also considered. Based on the difference between the minimum
values of the objective function in the null space and in the alternative space, a chi-squared type of
test statistic is proposed for this type of linear hypotheses.

Our main contributions are several fold. We propose local linear smoothing estimators for ex-
tended partially linear single-index models and provide very efficient ways to compute the estima-
tors. Moreover, we propose penalized local linear smoothing estimators to estimate the parameters
with sparsity and to conduct variable selection simultaneously, which is more efficient when the
model parameters contain sparsity. In addition, we introduce a chi-squared test statistic for general
linear hypothesis testings for the parameters in this setting.

The rest of this chapter consists of the following sections. In Section 5.2, we propose the local
linear smoothing estimating methodology for estimating (3, 6 and the link function g(-). Then we
discuss the uniqueness of the solution of the optimization problem resulting from the estimation

procedure, and derive the large sample theory for the estimators. In Section 5.3, we introduce the
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penalized local smoothing estimators and show the asymptotic properties of the proposed penalized
estimators. In Section 5.4, we provide a test statistic for the linear hypothesis testings for the model
parameters. In Section 5.5, several numerical studies are conducted to assess the performance of
the proposed methods. In Section 5.6, the extended partially linear single-index model is fitted to
a publicly available data set about concrete slump test. Section 5.7 gives some additional remarks

and concludes the chapter.
5.2 Local smoothing estimators

Formally, an extended partially linear single-index model with independent and identically

distributed covariates and errors can be expressed as

Ui ::EiTBO—I—g(x;TFHO) +e (1=1,2,...,n), (5.3)

where [y and 6, are the true model parameters, (;, €;)’s are independent and identically distributed
pairs of covariates and errors, and z; and e; are independent. For identifiability, we assume 6, has
unit L, norm, namely ||6y|| = 1, the first element of 6, is positive and 6, is orthogonal to [,
namely 316, = 0 (see [Lin and Kulasekera, 2007] for more details).

The nonparametric link function g(u) and its derivative ¢'(u) are estimated by local smoothing

estimation as
((ulB,0),4'(u|B,0)) = argmin Y {y; — 278 —a b (270 —u)}* K (270 — u),
L ——

where K, (270 —u) = K ((7'0 — ) /h) /h with a symmetric kernel function K(-) and band-
width h. By basic calculations, §(u|3, ) can be expressed as (see [Chen et al., 2015] for similar

results for partially linear single-index models)

3(ul3,0) = 3 si(ul6) (i — 7B),

=1

which may be abbreviated as §(u) when no confusion arises, where s;(u|6) depends on the kernel
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function and the observed data but is independent of 3 (see equations (5.8) and (5.9) below). Then

the local smoothing estimators of 3, and 6, can be computed through

(8.6:) = arg min G($, 6) = arg min Zl {yi =278~ 9(7018,0)}", (54)

with restriction BTél = (. The estimate can be done in two steps with profiling. The first step is to

fix 6 and calculate

By = argmin G(8, 6). (5.5)
BTH=0
Then the estimator él 18
) S Th _ a0 TplA 2 : A
0, = arggmmz {yi —x; By — §(z; 0| By, 9)} = argemln G(By,0). (5.6)
i=1

Finally, we standardize 6 and get the estimator of 6 by

) = b1)1[61]]. 57)

The asymptotic properties of the local smoothing estimators are of great interest. We present
the following regularity conditions to show the asymptotic normality and consistency of the local

smoothing estimators.

Regularity Assumptions:

Assumption 1. The density of 270, fy(-), is positive, bounded away from 0 and second contin-
uously differentiable in % = {xTH e re X }, where O is the compact parameter space of
6 and 2" is the compact support of x.

Assumption 2. For any § € ©, the second derivative of the function p, (u|f) = E (z|2760 = u)
with respect to u is bounded and continuous.

Assumption 3. The link function g(-) is twice continuously differentiable and ¢”(-) # 0 on an

open subinterval in % .
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Assumption 4. The function g(z7) and the density of 270, fy(x), are both three times contin-
uously differentiable with respect to . The third derivatives are uniformly Lipschitz continuous
over © C RP forallz € 2.

Assumption 5. The kernel function K (-) is a symmetric, bounded and continuously differen-
tiable probability density function. Furthermore, K (-) is positive on the whole real line, R, and
J WK (v))de < o0 (i,j = 1,2).

Assumption 6. The variance of e, 0, is positive, and E(|e|?) < oo for some vy > 3.

Assumption 7. The bandwidth & satisfies nh® — 0 and nh3+3/0=1 /logn — oo as n — oo.

One key question is whether Equation (5.5) has a solution and if so, whether the solution is
unique. Theorem 5.2.1 below shows that there exists a unique solution to Equation (5.5), and
provides an efficient way to calculate the solution. The following definitions are necessary for the
introduction of Theorem 5.2.1.

Denote the covariance matrix X = (1, xs, ..., :pn)T and the response vector Y = (y1, 4o, . . ., yn)T,

and let %' (X)) be the column space of X. Define 7' = X6 and n x n matrix Dy with entries

(O Kisty) Kij — (300, Kistis) Kijti

(Do)ij = - . 5 m y
(25:1 Kis) (25:1 Kistis) - (25:1 Kistz‘s)

(i,j=1,2,....,n), (58

where

tij =t; —t; :x?9_$?97 Kij=Ky(ty;) (,j=1,2,...,n).

When T' = X0 # cl,, for any ¢ € R, where 1,, = (1,1,...,1)T € R", by the Cauchy-Schwarz

n n n 2
(Z K> (Z Kist?5> — (Z Kistis> > 0.
s=1 s=1 s=1

Then for any Z = (21, 29,...,2,)7 € R"and i = 1,2,...,n, the optimization problem

inequality, we have



has unique solution a; which can be expressed as a; = Z;‘:l (Dg)ijzj. When Z =Y — X3, we

have

n

9(@l'0) = (Do)ij (y; — 2] 5) . (5.9)

j=1
Let Xy = (I, — Dg) X and Y, = (I, — Dg) Y, where I, is the n X n identity matrix. Assume
0 # 0. Besides, let BT be the Moore—Penrose inverse of any matrix B. The following theorem
gives an explicit simple expression of the estimators and provides an efficient way to calculate

them.

Theorem 5.2.1. Suppose n > p > 2, 1, ¢ €(X), rank(X) = p and K(-) > 0. Then the

optimization problem in (5.5) has a unique solution expressed as
. e Nt an . -1 .
fo= (XI%) X0¥y = (X7 % +007) X7, (5.10)

Equation (5.10) provides two different methods for calculating Bg when @ is fixed. The latter
equation implies that the solution Ba can be obtained by solving a linear system, which is very

efficient and accurate. However, to solve the linear system
(Xg’fce + eeT) 5= XTI, (5.11)

in any software, for example in R, the coefficient matrix should be nonsingular. This requires K (-)
to be strictly positive on the whole real line R. Many functions with good properties satisfy this
condition, such as the standard normal density ¢(-), but they would tend to 0 very quickly since
they satisfy the regularity conditions. For instance, ¢(v) would be close to 0 when |v| > 3. Con-
sequently, when the sample size is not large enough and A is relative small, many entries of Dy,
defined in (5.8), would be very close to 0. This would cause computational issues since it might
make the coefficient matrix in (5.11) close to singular. Therefore, in these cases, though calculat-
ing the Moore—Penrose inverse numerically might be inefficient and lead to larger computational

errors, we need to use it in order to get rid of singularity issues.
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Since we are estimating ¢, with ||0y|| = 1, alternatively, we can minimize the profile objective

function only on the unit ball:

bs = angmin >~ {ys — 76y — §(70)3n.0)}

lel=1 =

With a reasonably chosen bandwidth 5, the linear system (5.11) can be solved much more easily
with the restriction ||6|| = 1, especially when the dimensions of the parameters are high. Since the
solution 65 is not a universal optimizer, it is expected to be less efficient compared with 6 obtained
from (5.6) and (5.7). Howeyver, ég is still useful as it can be easily calculated and used as the initial
value in the calculation of 6.

An estimating procedure based on kernel smoothing was introduced in [Xia et al., 1999]. This
kernel smoothing estimation has an objective function similar to Equation (5.4), with ¢ based on
kernel smoothing estimation. Therefore, by profiling, one can also obtain the profile estimator Bo
for each fixed 6, as shown in Equation (3.2) of [Xia et al., 1999]. However, this profile estimator is
obtained by optimizing the objective function without the constraint 370 = 0, which implies that
the profile kernel smoothing estimator [y is not guaranteed to be orthogonal to §. Therefore, due
to identifiability issues, 39 might not be close to the true value [, even if 6 is very close to 6. This
issue is indicated by the simulation results presented in Section 5.5. To resolve this issue, we add
the condition 376 = 0 when optimizing the objective function S,, proposed in [Xia et al., 1999],
and implement the method of Lagrange multipliers to calculate the estimators. The performance
of this Lagrange kernel smoothing estimators is also assessed as shown in Section 5.5.

The following theorem shows the asymptotic normality of the local smoothing estimators.

Theorem 5.2.2. Suppose that the regularity assumptions 1-7 are satisfied. Then we have, as n —

oo,

ﬁfﬁo 2 N(0,0°TH),
0 — 0,

1
n2
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where
P=EAAT), A= ({z-p"00)}", [0@"60) {w - Px(wTeo)}]T>T

5.3 Penalized local smoothing estimators

In a real-world problem, the true model is usually unknown and either overfitting or underfit-
ting of the model could happen, especially when the number of parameters is relatively large but
not sufficient observations are available. Therefore, in these cases, we would like to estimate the
parameters and conduct a variable selection simultaneously. This motivates us to use the penalized
local smoothing estimators to perform the data analyses. In this section, we propose the penal-
ized local smoothing estimators with the implementation of the lasso penalty to carry out variable

selection as well as parameter estimation. The penalized estimators (B s 6 Ag) are defined as

<B)\1, 9~,\2) = arg min G,(3,0)

BTO=0
. 1
— argin { 36(5.0) 4\ 51, + na 01, |

BT9=0

éAz = éAQ/Hé)\zH?

where G(3,0) is defined in Equation (5.4), A\; and ), are the tuning parameters of 3 and 6 respec-
tively, 8], = >_7_, [B;| and [|0]|, = >_7_, [0k|. Let S and T' denote the sets of the subscripts
of the nonzero elements of (5, and 6, respectively. For example, S = {1,3} implies 5y; # 0 and

Bos # 0. Forany | € RP and A = {iy,42,...,94} C {1,2,...,p}, letlsy = (L, by, ..., 1;, ) be

i) A

the vector containing elements of [ with subscripts in A and A° = {1,2,...,p} \ A. Similarly, let

X 4 be the matrix containing columns of X corresponding to the elements in A.

Theorem 5.3.1. Suppose that the regularity assumptions 1-7 are satisfied and that \; — 0,
n'2\; = oo for i = 1,2. Then we have:

(a) Br,se = 0 and Oy, re = 0 for large enough n;
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(b)

ﬁ)qs - BOS __@} N(()’ J2F:—>7

1
nz
9)\2T - 6)()T

where

T

I, = E(AAD), A= ({JCS — Pag (xTeo)}Ta [gl(xTHO) {xT - pr(xTQO)HT>

In practice, the tuning parameters, A\; and )y, can be chosen via cross-validation. Other meth-
ods, such as the Akaike information criterion and Bayesian information criterion, can also be

applied to determine \; and )\, (see [Liang et al., 2010] for more details).
5.4 Hypothesis testing

Consider the general linear hypothesis

Hy:Weg=0 versus Hy:WE#QO, (5.12)

where ¢ = (B7,607)T and W is a m x 2p full rank matrix. Let €y and €2, be the parameter spaces

of Hy and H, respectively. Define

G(Hy) = jnf G(&), G(H) = inf G(©),

and the test statistic
_ n{G(H,) — G(H))}

v G(H)

. (5.13)

Then we have the following theorem for testing the hypotheses in (5.12).

Theorem 5.4.1. Suppose that the regularity assumptions 1-7 are satisfied. We have:
(a) under Hy in (5.12), V' — X2, in distribution;
(b) under Hy in (5.12), the test is consistent;

(c) under the local alternative of n'*W ¢ — d for some m dimensional d # 0, V' converges in
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distribution to a noncentral chi-squared distribution with m degrees of freedom and noncentrality
parameter

Y=o 2dN(WTTWT) ™1,
where 1 is defined in Theorem 5.2.2.

5.5 Simulation study

In this section, we evaluate our proposed methods empirically, and compare them with the
method introduced in [Xia et al., 1999] via simulation. We provide three examples here: the first
example is from [Xia et al., 1999], where the number of the parameters is relatively small; in the
second example, the number of the parameters is relatively large, where the penalized estimators
are expected to have better performance; the third example is about hypothesis testings in extended

partially linear single-index models.
Example 5.5.1. We firstly considered the example shown in [Xia et al., 1999], which can be written

as

Y; = 031'1 + O.4ZEZ'_1 + exXp {—2 (O&’L’Z — 0.6ZL’Z'_1>2} + 0.161',

where

€T; = 0.8$i_1 +¢€ + 0.561'_1, €, € N(O, 1),

and all e;, €; are independent of each other. The model above can also be expressed as
y; = Prx; + Paxi_1 + exp {—2 (z;cosa — x;_q sin 04)2} + 0.1e;, (5.14)

where 51 = 0.3, 53 = 0.4 and « = arcsin(0.6) = 0.6435.

Five different methods were used in this example: the kernel smoothing estimators introduced
in [Xia et al., 1999], the Lagrange kernel smoothing estimators and the local smoothing estima-
tors described in Section 5.2, the penalized kernel smoothing estimators and the penalized local
smoothing estimators proposed in Section 5.3. Although penalized estimation was not discussed in

[Xia et al., 1999], for comparison purposes, we could simply add the lasso penalty to the objective
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n 20 100 200

Parameters Methods Bias SMSE Bias SMSE Bias SMSE
KSE -0.0040 0.3045 0.0090 0.3094 0.0171 0.3056

LKSE 0.0004 0.0068 -0.0001 0.0040 0.0000 0.0021

o1 LSE -0.0008 0.0054 -0.0005 0.0033 -0.0002 0.0020
PKSE -0.0010 0.0154 -0.0009 0.0071 -0.0007 0.0035

PLSE -0.0024 0.0087 -0.0014 0.0048 -0.0009 0.0029

KSE 0.0030 0.2284 -0.0067 0.2322 -0.0130 0.2291

LKSE -0.0006 0.0072 0.0001 0.0042 -0.0001 0.0025

5o LSE 0.0003 0.0059 0.0003 0.0037 0.0000 0.0023
PKSE -0.0010 0.0122 0.0002 0.0063 -0.0006 0.0033

PLSE  -0.0003 0.0069 0.0005 0.0044 -0.0005 0.0027

KSE 0.0014 0.0121 -0.0005 0.0066 0.0002 0.0039

LKSE 0.0013 0.0120 -0.0003 0.0065 0.0001 0.0039

« LSE -0.0016 0.0087 -0.0011 0.0054 -0.0003 0.0034
PKSE -0.0005 0.0337 -0.0017 0.0161 -0.0005 0.0078

PLSE -0.0036 0.0171 -0.0028 0.0099 -0.0009 0.0059

Table 5.1: Simulation results of model (5.14). KSE, kernel smoothing estimator; LKSE, Lagrange
kernel smoothing estimator; LSE, local smoothing estimator; PKSE, penalized kernel smoothing
estimator; PLSE, penalized local smoothing estimator; SMSE, square root of mean squared error.

function of their kernel smoothing estimators to obtain the penalized kernel smoothing estimators.
We simulated 500 independent data sets with sample size n = 50, n = 100 and n = 200. The
estimation procedure of the kernel smoothing estimators is the same as shown in [Xia et al., 1999].
For the local smoothing estimators, it is expected that / is determined by cross-validation for each
simulated data set. However, due to a substantial computational burden, for each n, we firstly
fixed h € [0.1,0.3], ran 500 replications and calculated the mean squared error of the parameters.
Then h,, was obtained by minimizing the mean squared error. After i was determined, the tuning
parameters A\; and A\, were determined in a similar way. All optimizations were done in R via the
nloptr() function from the nloptr package.

Table 5.1 shows the bias and the square root of mean squared error for the five methods obtained
in our simulations. Although the kernel smoothing estimator and the Lagrange kernel smoothing

estimator for o have similar performance, the Lagrange kernel smoothing estimator for 3 is sig-
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nificantly better than the kernel smoothing estimator of /3 in terms of bias and mean squared error.
Furthermore, while the biases of the local smoothing estimators and Lagrange kernel smoothing
estimators are similar with both of them being nearly negligible relative to the square root of mean
squared errors, the square root of mean squared error of the local smoothing estimators is notice-
ably smaller than the square root of mean squared error of the Lagrange kernel smoothing estima-
tors, especially when the sample size n is relatively small. In addition, both penalized estimators
have worse performance compared with the two non-penalized estimators, even for a relatively
small sample size. The main reason is that the parameters are not sparse here. Moreover, for sam-
ple size n = 200, we compared the computation time of calculating the local smoothing estimators
using and without using Theorem 5.2.1. About 42% of the computation time had been reduced
by applying the results of Theorem 5.2.1, which implies that the calculation methods provided by

Theorem 5.2.1 have successfully accelerated the estimating procedure.

Example 5.5.2. We now consider an extended partially linear single-index model with more pa-

rameters, which is model (5.3) with link function and parameters
gu) = (1+u?)™", By =(2,-1,0,0,0), 6= (1,2,0,0,0)/v/5, (5.15)
and the covariates and random errors are independent and identically distributed as
zy; ~ N(0,1), e ~ N(0,0.1%).

We simulated 500 independent data sets with sample sizes n = 50, n = 100 and n = 200
from this model. Since the sample size is relatively small and the model parameters are sparse, the
penalized estimators are expected to have better performance.

Table 5.2 shows the square root of mean squared error, the average number of the true zero
parameters that were correctly set to zero and the average number of the truly nonzero parameters
that were incorrectly set to zero for the five methods obtained in our simulations. Again, for 3,

the mean squared error of the Lagrange kernel smoothing estimator is significantly smaller than
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n 20 100 200

Parameters Methods SMSE C I SMSE C I SMSE C 1
KSE 0.5492 091 O 05183 1.34 0 04314 194 O

LKSE 0.1158 1.01 0 0.0630 1.67 0 0.0427 231 O

6] LSE 0.1171 1.11 0 0.0676 1.77 0 0.0412 244 0
PKSE 0.0436 2.03 0 0.0278 2.53 0 0.0170 2.82 0

PLSE 0.0280 2.51 0 0.0199 275 0 0.0132 2.89 0

KSE 0.0906 0.66 0 0.0602 087 0 0.0402 1.19 0

LKSE 0.0951 060 0O 0.0578 092 0 0.0391 1.20 O

0 LSE 0.0984 0.52 0 0.0583 085 0 0.0354 122 0
PKSE 0.0196 275 0 0.0137 277 0 0.0059 297 0

PLSE 0.0057 299 0 0.0048 298 0 0.0029 3.00 0

Table 5.2: Simulation results of model (5.15). KSE, kernel smoothing estimator; LKSE, Lagrange
kernel smoothing estimator; LSE, local smoothing estimator; PKSE, penalized kernel smoothing
estimator; PLSE, penalized local smoothing estimator; SMSE, square root of mean squared error;
C, the average number of the true zero parameters that were correctly set to zero (less than 0.01);
I, the average number of the truly nonzero parameters that were incorrectly set to zero.

the mean squared error of the kernel smoothing estimator. This implies that the implementation
of the method of Lagrange multipliers has led to huge improvement in performance of the kernel
smoothing estimators. Besides, the results in Table 5.2 also indicate that while the Lagrange kernel
smoothing estimators and the local smoothing estimators have similar performance, the penalized
estimators have much better performance compared with the estimators without penalty. Although
the computation was heavy, we also tried to simulate a small number of replications for n = 400,
and the results are similar to those for n = 200. Therefore, we can conclude that even if the sample
size is relatively large, the penalized estimators are more preferable as long as the model contains
sparsity. In addition, Table 5.2 also indicates that penalized local smoothing estimators perform
significantly better than the penalized kernel smoothing estimators, especially when the sample

size is relatively small (n = 50 and n = 100).

Example 5.5.3. To investigate the performance of the test statistic V' described in Section 5.4, we

consider model (5.3) with link function and parameters
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g(“z) = 3U2, 60 = (27 _37 07 0)7 00 = (37 2’ ¢ C)/\/l_?)’

where c ranges from 0 to 0.6 with increment 0.05. The covariates and random errors are indepen-

dent and identically distributed as
Tig ~ U(O,l) €; ~ N(O, 012)

For each value of ¢, we simulated 300 independent data sets with sample sizes n = 50, n = 100

and n = 200 from the model, and considered the following null and alternative hypotheses:
H02ﬁ3:ﬁ420 VEersus H1153:54:C

with the nominal level equal to 0.05. The power function (or type I error when ¢ = 0) versus c is

plotted in Figure 5.1.
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Figure 5.1: The power function (or type I error when ¢ = 0) versus c for sample size n = 50
(dotted), n = 100 (dashed) and n = 200 (solid). The nominal level is equal to 0.05 (horizontal
dot-dash).

Figure 5.1 shows that when ¢ = 0, the type I error of the test is equal to 0.05, 0.06 and 0.05
for n = 50, n = 100 and n = 200, respectively, which is close to the nominal level apart from its
standard errors. Also, Figure 5.1 implies that the power function increases quite fast as c increases.

Overall, V' leads to a powerful test whose size is also well controlled.
5.6 Real data application

We applied the proposed methods to analyze a publicly available data set of concrete slump
test data, which was firstly introduced and analyzed in [Yeh, 2007] (see [Yeh, 2006] and [Yeh,
2007] for more related information). The high-performance concrete is highly complex, and thus

it is very difficult to model its behavior using available information. In this data set, there are 7
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Figure 5.2: The value of §(u) versus u obtained from the concrete slump test data set.

input covariates: cement (kg/m?®), blast furnace slag (kg/m?), fly ash (kg/m?), water (kg/m?), super-
plasticizer (kg/m?®), coarse aggregate (kg/m?), and fineaggregate (kg/m?), and 3 output variables:
concrete slump (cm), concrete flow (cm) and 28-day compressive strength (mpa). We focused
on modeling the concrete slump using all the 7 available input covariates. The data set contains
103 observations and a multiple linear regression model yields an R? value of 0.32. Some further
exploratory analysis indicates strong nonlinear relationships between the concrete slump and the
covariate variables, which leads to the use of nonlinear models for predictions and simulations of
concrete slump ([ Yeh, 2008] and [Yeh, 2009]).

The local smoothing estimation, Lagrange kernel smoothing estimation and their penalized
versions were applied to the analysis of the data set after the covariates were standardized. For

the penalized local smoothing estimation, we firstly performed a 10-fold cross-validation to the
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data set to select the bandwidth and the tuning parameters. Then we computed the estimates of the

parameters with the tuning parameters and obtained
0= (0.152,0.558,0.031, —0.722, —0.166, —0.302, —0.158)7,

3 = (10.817,12.927,12.570, 6.056, 0.032, 11.407, 8.975)7 .

The results indicate that the third element of § and the fifth element of B are effectively zero.
Therefore, the nonparametric part of the model might not depend on the third covariate (fly ash),
while the linear part of the model might not depend on the fifth covariate (superplasticizer).
Figure 5.2 shows the estimate of the link function g(u) with —2 < u < 2 obtained from the
penalized local smoothing estimation. The function drops rapidly when « > 0.5. These estimates
of parameters and the link function yields an R? value equal to 0.82, while the R? values obtained
by using the local smoothing estimation, Lagrange kernel smoothing estimation and penalized
kernel smoothing estimation are 0.57, 0.44 and 0.47, respectively. The R? value of the penalized
kernel smoothing estimation is much smaller than the R? value of the penalized local smoothing
estimation. This, together with the results of the simulations shown in Section 5.5, implies that
the penalized local smoothing estimation has better performance and is more robust, especially for
real world problems when no prior information of the model parameters is available. Overall, the
local smoothing estimation method has the best performance among all the estimation methods,
while the other three methods also lead to substantial improvements compared with the simple

linear model apporach.
5.7 Discussion

In this chapter, we considered the extended partially linear single-index models (5.3), which
are more flexible compared with the partially linear single-index models (5.1). However, extended
partially linear single-index models often have more parameters, making it more difficult to es-
timate the parameters. We proposed the local smoothing estimators in Section 5.2 for parameter

estimation, and introduced the chi-squared test statistic in Section 5.4 for testing general linear hy-
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potheses. Furthermore, for data sets with too many covariates (which lead to sparse parameters),
we proposed the penalized local smoothing estimators in Section 5.3 for conducting parameter
estimation and variable selection simultaneously. The uniqueness and linear expressions of the so-
lution to the optimization of the profile objective function are shown in Section 5.2, resulting in fast
and accurate computations for the solution. In addition, the performance of the kernel smoothing
estimators introduced in [Xia et al., 1999] can be improved by implementing the method of La-
grange multipliers to calculate the profile estimator. Besides, asymptotic properties of the proposed
estimators and test statistic were also introduced and discussed in detail.

Simulation studies were presented in Section 5.5 to assess the performance of the proposed es-
timators and test statistic. We compared the five estimation methods for a model containing a small
number of parameters introduced in [Xia et al., 1999], and for a model containing more parameters.
The simulation results indicate that the Lagrange kernel smoothing estimators have much better
performance compared with the kernel smoothing estimators, especially for 5. Besides, the results
of the first example implies the local smoothing estimators perform better than the Lagrange kernel
smoothing estimators, and the results of the second example implies the penalized local smoothing
estimators perform better than the penalized kernel smoothing estimators. The results also indicate
that the penalized estimators would generally outperform the non-penalized estimators when the
model contains sparsity. For the test statistic V' defined in (5.13), the simulation results show that
it is powerful with good size control.

An interesting real-world data set of concrete slump test data was analyzed in Section 5.6. We
fitted the extended partially linear single-index model to the data and used introduced methods to
estimate the parameters and the link function. The estimated link function ¢(u«) shown in Figure
5.2 has a special pattern, which might result from some characteristic of the data. The fitted R?
was more than doubled to 0.82 from 0.32 by fitting the extended partially linear single-index model
with penalized local smoothing estimators instead of a multiple linear regression model.

As a future research problem, it would be interesting to study the extended partially linear

single-index models with more complicated correlation structure. For instance, the covariates
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could be time series with auto correlation, or the measurements are taken from different subjects

over time as in longitudinal data.
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6. SUMMARY AND CONCLUSIONS

In Chapter 2, a space-time model of soil moisture was developed with a jitter process incor-
porated to deflate the correlation structure at small spatial scales. The theoretical properties of
the model, including the correlation structure, power spectrum and gain function, were carefully
studied. Then the new model was fitted to a set of soil moisture data with all the parameters esti-
mated. The results indicate that with the jitter process that accounts for local variation of surface
topography, soil characteristics and vegetation conditions, the model has successfully reproduced
the fast decay spatial correlation observed in the soil moisture data.

In Chapter 3, the soil moisture field was simulated from the model introduced in Chapter 2 to
study the distributional properties of the soil moisture islands. The soil moisture islands, which
are defined as the clusters of areas where the soil moisture is above certain threshold, were found
to follow a power-law distribution in size. Also, the sizes of tree clusters in savannas are power-
law distributed. We infer that the emergence of large-scale spatial patterns of savanna vegetation
characterized by clusters of trees in a matrix of grasses with power-law probability distribution of
cluster sizes and fractal perimeters of such clusters, result from spatial patterns of soil moisture in
such ecosystems.

Motivated by the studies of the practical problems of interest presented in Chapters 2 and 3,
in Chapter 4, we considered the statistical distributional properties of image clustering of spatial
random fields. A well-defined distribution function was defined and its analytical properties were
fully studied. We then showed that the corresponding empirical distribution function, which comes
from spatial image data and has already been used in many studies, converges to the defined dis-
tribution function as the sample size tends to infinity. Thus the empirical distribution function can
be used as an estimator of the distribution function, as shown in numerical experiments and an
application to tree clusters data.

In Chapter 5, variable selection and statistical inferences of the extended partially linear single-

index models were studied. We proposed the local smoothing estimators to estimate the model
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parameters as well as the unknown link function. Due to the relatively large number of parame-
ters contained in these models, we also proposed the penalized local smoothing estimators for the
analyses of data sets with sparsity. For linear hypotheses about the parameters, A chi-squared type
of test statistic was introduced. The results of simulation studies imply that the local smoothing
estimators and the penalized local smoothing estimators are more efficient than the kernel smooth-
ing estimators and the penalized kernel smoothing estimators. Besides, the proposed test statistic
were shown to be powerful and control the size of the test well. Finally, a real data analysis was

provided to illustrate the proposed methodology.
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APPENDIX A

SUPPLEMENTARY INFORMATION FOR CHAPTER 2

A.1 Calculations for equations of soil moisture driven solely by rainfall

The solution to (2.14) is given by

S(u,t) = b/oo dz /OO drGlu, z, 7)Y (2,1 — 7). (A1)
—00 0

where

_ —n/2 . o |’LL — Z|2
G(u, z,7) = (47kT) exp 4 —art : (A.2)
4kt

From (A.1) and (2.4), it follows that the expected value of the relative soil moisture is

& e b 2T Al x b
uszEwWszmW/nd;/ drG(u, z,1) = X = T (A3)
—00 0 a np<a

which is the same as that for the case when there is no diffusion (k = 0). From (2.10) and (2.14),

it follows that the spectral density of S is (see [Whittle, 1962])

27b)2AE (X 2(8)*+2
@S(V,UJ) — ( i ) ( ) = (2) 2 (A4)
C @ ] ) ek ) )
Consequently, the space spectrum and time spectrum of .S are given by
Bs() = 5 [ sl
V) =— v, w)dw
S o " S\,
(27b)2AE(X?) 2(8)° +% (A5)
- 5/2 ’
@] e Aot 2)
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1
Pg(w) = 2 /R2 Og(v,w)dv

~ 2mPAB(X?) [2(8)" + 5| v (A.6)
/ 57 dv.
"o v

8) + 2| 0P W) (@t k)R

From (A.4), after taking the inverse Fourier transform (see Appendix B for definition), the space-

time covariance function of the soil moisture is

VAE(X?)
Is(l,h) = ————=-
22 —(a+kv? -
| e (s
2 2 5/2 a+ kv?
R [(g) + V2} n? — (a+ kv?)?| "
27’ AE(X?) (A7)
= 2
2 2
% v (2 (2)" + %) o—(atkr)h  nh
/ - Jo(ll/)dV,
0 )2 21%% 1 o k12)2 a+ kv’ Ui
[(5) +v2 [P = (a+ kv?)?]
where Jy(-) is the Bessel function of the first kind and [ = ||||.
A.2 Space-time spectral density of soil moisture incorporating jitter
We define the Fourier Transform of a d dimensional function f as
FENO = [ e, (A8
R
then the corresponding inverse transform is
F@@) = 5 [ e ealee (A9)
(2m)¢ Jpa
According to the property of Fourier Transform,
F(fufe) = @m) " F (f1) * Z(f), (A.10)

96



or, equivalently, with &; = .Z(f,), P2 = Z (f2), we then have
(2m) 1Py x By = F(FHD1).F (D)), (A.11)

where "*" denotes convolution.
Now from (2.18), by taking Fourier Transform, we are able to obtain the space-time spectrum

of the soil moisture with jitter S as
Ds(v,w) = Pg(v,w) + pe®z(v,w) + Psuz(v,w), (A.12)

To calculate ®g. (v, w) above, note that ®g, (v, w) = F(I'sI'z) and we have

Bs.z(v,0) 2 (2m) B F(Dg) + F(Ty)

= (2m) PP (v, w) * Dz (v,w)

_2WPAE(X?)afo} / 2(9)°+% . (A13)
’ = [(5) 402" (02 + o -l

/R (WQﬂlLyQ (a+k:x12)2+y2) (52+ (i —y)2> dy.

Note also that the second integral above is a convolution of two functions, and using (A.11), we

obtain

CI)S*Z(V, w) =

27’ AE(X?)ao} / 2(8)°+2
’ = 1(5)°

5/2 ’
+22| (a2 4 v - wl?) A14)

1 1 a+ kz?+ 3 1 n+ 6 e
n? —(a+kx?)? la+kz?w?+ (a+ ka2 4+ 08)?2  n(n+5)? 4+ w? '
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Thus finally we have

Ps(v,w) = Ps(v,w) + uz®y(v,w) + Pz (v,w)

_ (2mh)°AE(X?) 2(9)°+% . Amapodd
o 5/2 2 2\3/2( 32 2
P [(§)2+u2] (02 + w?) [(a + kv2)? + w?] (a® +v2)%2(52 + w?)
| 2PPAB(X?)ac / 2(2)" + 2 1 '
) 5/2 2 _ 2)2
PR ] T ey T TR
1 a+kz?+ 3 1 n+ 5 e
a+ ke’ +(a+k?+ B8 nn+pP+w? )
(A.15)
By using polar coordinates, the last term ®g, (v, w) can also be expressed as
2T’ AE(X?)ao?, [ 1 a+kr?+ 1 n+p
bg,z(v,w) = 2 _
P o la+kr2w?+ (a+ka2+8)2 n(n+B)?+w?
92(2 2 + z> 27
2 §/22) ; {/ [a? + 22 + U2I— 20 cos 6]3/2 de} dr,
(&) +02) " 2 — (a2

(A.16)

which implies ® (v, w) only depends on v = ||| and w. Again, the space spectrum of S can be

obtained as

1
Ps(v) = %/R<I>S(V,w)dw
(27b)’AE(X?) 2 (5)2 + ¥ 2racip? 2w AE(X?)aoy

2 5/2 2 2)3/2 2
L [ R 2 (R R o "
2

0 x 2T
2 x
do 3 dx
/ 5/2 {/ ) 3 7 372 } ,
0 [(§)2+x2] (a+ ka?)(n + a + ka?) L0 [a? + 22 + v? — 2vx cos b]

(A.17)
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and the time spectrum of S'is given by

B s(w) = ﬁ/}R B (v, w)d

2mbPAE(X?) /°° 2(8)°+%]v .
' 0 [(5)2 +”2] " o+ ) [+ k) + 02
280% 1% 27Tb2)\E(X2)0%‘
f? 4 w? p
/°° 2(2)" + 2 z { 1 at+k®+B8 1 n+P }dx
0 a+kr?w? + (a+ kx> + )2 n(n+B)?* + w? '

(8)" + 2] 2n? — (a+ ka?)?

(A.18)

A.3 The asymptotic behavior of the hydrologic gain function

We call f ~ gif f/g — cons. # 0. Then when w is fixed, from (2.10) we know that
Py (v,w) ~ v~3. According to (A.15),
1 1
Ps(v,w) ~ —, Pz(rw)~ —. (A.19)

7’

Also, by (A.16),

2m
x 1
df ~ — A.20
/0 [a? + 22 + v% — 2vz cos 0]3/2 v3’ (A.20)
and thus ®g, 7 (v, w) ~ v~3. Therefore,
1
Ps(v,w) = Ps(v,w) + PPz (v,w) + Pz (v,w) ~ i Oy (v, w). (A.21)

Similar result holds when v is fixed.

99



APPENDIX B

SUPPLEMENTARY INFORMATION FOR CHAPTER 3

B.1 Simulation of the soil moisture field

The probabilistic structure of the soil moisture field, S’(u, t), is studied via simulation with
the parameter values given in Table 3.1 and 500 runs for each set of parameters. For each run the
rainfall process Y (u, t) is generated in a 500 km x 500 km square field. We then divide the 1 km x
1 km square at the center of the rainfall field into 100 x 100 square pixels (u;,7 = 1,2, ...,10000)
of 10 m x 10 m each. At the center of each pixel, we calculate the soil moisture solely driven by
rainfall, S(u, t), for 30 consecutive days, (S(u;,j),j = 1,2,...,30) through the balance equation
with £ = 0. The jitter process is also simulated at the center of each pixel for 30 days and the
soil moisture, S(u,t) is obtained by multiplying S(w,t) by Z(u,t). Focusing on the impact of
soil moisture on vegetation the average of S(u,t) over a number of days, Sr(u,t), is specially
relevant. This average over every pixel was studied at different levels of temporal aggregation with
very similar results. Chapter 3 presents the results of S (u,t), for T = 30 days. With k& = 0, we

are able to calculate the soil moisture process S(u, t) by ([Isham et al., 2005])

00 t
S(u,t) = b/ e Y (u,t —v)dv = b/ e~ VY (u, v)dv. (B.1)
0

—0o0

By replacing oo by some large number 7', S(u, t) can be approximated by
t
S(u,t) ~ b/ e~ VY (u, v)do. (B.2)
-7

Here we use 7' = 1 year, and the rainfall occurrences are simulated in the time period [—7',0].
Then S(u,t) is simulated at u = wy, Us, ..., Wigo00 and t = 1,2, ...,30 (30 consecutive days).
The jitter process, Z(u,t), is simulated as a Chi-squared field on the 1 km X 1 km area. For

U = U, Us, ..., U000 and t = 1,2, ..., 30, we firstly simulate a Gaussian Random Field X (u, ?)
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with mean and covariance function

E (X (u,t)) =0,
(B.3)
PX(Z, h) _ 6—&[/2—5}7,/2'
Then Z(u, t) is calculated as
Z(u,t) =1+ 2 (X2(u,t) — 1). (B.4)

2

Simple calculations can show that this transformation results in a shifted Chi-squared distribution

of Z(u,t) with E (Z(u,t)) = 1 and T (I, h) = e~
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B.2 Examples of the soil moisture field and soil moisture islands

0.30

- 0.25

~ 0.20

0.15

(a) (b)

Figure B.1: Examples of the soil moisture field and soil moisture islands. (a), the soil moisture
field at a moment in time. (b), soil moisture islands (in red) above a threshold equal to 0.19.
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B.3 Correlation functions

o N o
- ] — rainfall correlation - ] — rainfall correlation
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Figure B.2: Correlation functions of the rainfall process Y (u,t), the soil moisture field driven
by rainfall S(u,t), the soil moisture field with jitter S(u,t), and the jitter process Z(u,t) with
parameters estimated in Section 2.5. (a), the spatial correlation for 0 < [ < 20 km. Note that the
spatial correlation function of S(u,t) and Y (u,t) are the same ([Rodriguez-Iturbe et al., 1987]).
(b), the temporal correlation for 0 < A < 100 days.
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B.4 Distributions of jitter islands

1 km by 1 km 10 km by 10 km
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Figure B.3: Distributions of jitter islands plotted in log-log scale. The threshold for both plots is
1.0, and a pixel for both plots is 10 m x 10 m. (a), the jitter process is simulated on a 1 km x 1 km
field (10* pixels in total). The power law exists until the number of pixels is close to the maximum
number of pixels. (b), the jitter process is simulated on a 10 km x 10 km field (10° pixels in total).
The curve becomes bent before 10 pixels, which cannot result from an edge effect since 10* pixels
only cover 1% of the total area.

B.5 Area vs. perimeter of soil moisture islands
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Figure B.4: Perimeter vs. area are plotted at log-log scale with (ay, b;) and three different mean
growing season rainfall (average, wet and dry). These plots show that the slopes are very close

under different cases.
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Figure B.5: Perimeter vs. area are plotted at log-log scale with (as, by) and three different mean
growing season rainfall (average, wet and dry). These plots show that the slopes are very close

under different cases.
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B.6 Distributions of soil moisture islands with and without jitter processes
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Figure B.6: Distributions of soil moisture islands with and without jitter processes. (a), the soil
moisture islands on the soil moisture field without jitter. (b), the soil moisture islands on the soil
moisture field with independent jitter in both space and time. (c), the soil moisture islands on the
soil moisture field with jitter independent in space but correlated in time. Here a = a; = 0.014
day ! and b = b; = 0.002 mm~! are used, and the rainfall parameters and jitter parameters are
from the ‘average’ column in Table 3.1. The soil moisture islands are calculated with threshold
equal to 0.2.
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APPENDIX C

SUPPLEMENTARY INFORMATION FOR CHAPTER 4

C.1 Proof of Theorem 4.2.1

Proof. For any s € C, there exists m such that s € A,,. By Definitions 4.2.2 and 4.2.3, Vs € A,,,
§ ~ s. Thus we have § € C by Definition 4.2.4. Hence A,, C C'and s € A,, C Ui:AiCc A,;. Since

s is arbitrary, we conclude that C' C (J;. 4.~ Ai and thus C = (J;. 4 - As.

C.2 Proof of Theorem 4.3.1

Proof. The proof consists of two parts.

(Necessity) Assume that s’ < s Then there exists K > 0 such that s’ %5 s” when k > K. Fix k >
max{ K, —log, 0}. Then since 2% < 4, Definition 4.2.6 implies that there exist sy, s9, ..., 8, €
AN Gy such that ||s; 1 —s;]| < 9,7 =1,2,...,n+ 1, where sy = s’ and s,,,; = s”. Thus the

condition of Definition 4.2.3 is satisfied for all i = 1,2, ...,n + 1, which means s’ ~ s”.

(Sufficiency) Assume that s’ ~ s”. Then there exist 0 < n < oo and sy, Sg, ..., S, € A, such that
foreachi =1,2,...,n+ 1, ||si—1 — 8| < 9 (& = sg, " = s,41). Note that sq, $o, ..., s, might not

belong to GG. Let

1
6:5 (5— max 1H5i1_3iH) > 0.

i=1,2,...n+

Since G is dense in D and A is open, for each i = 1, ..., n, there exists §; such that 5, € GN AN

B(si,€). Let §g = ¢/, 5,11 = §”. Then we have

15i-1 — Sall < [[8i-1 — sica|| + |[si—1 — sil| + [|si — 54|

<€+ _max |si—1 — sil| +€=24.

=14,
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Besides, since foralli = 0,1,...,n + 1, 5, € AN G, there exists K; > 0, such that 5, € AN G,
for all £ > K. Let K = max{Ky, K1,..., K11}, we have, when k > K, §; € AN G for all
i =0,1,...,n+ 1. This satisfies the condition (2) in Definition 4.2.6, which implies s’ % s for all

el )
k > K. Hence s’ ~ s”, as desired.

C.3 Proof of Theorem 4.3.2

Proof. Let (X)) denote the o-algebra generated by a random variable X (information contained
by X). Fix z € R and k € N,. It suffices to show that N, ;, is a composition of two measurable
functions. Let E), be the set of 25 x 2F matrices whose entries are 0 or 1, and the collection of all

subsets of F, is defined as the o-algebra in E}. Define f; : {2 — FEj. such that
fk(w)(m,n) = 1{y(m/2k,n/2k)>0}’ m = 1527"'>2k7 n = 1727"'72k7

i.e., the (m,n)™ entry of fi(w) is equal to 1 if y (m/2%,n/2¥) > 0 and is equal to O otherwise.

Then f;, is measurable since Ve € Ej, we can express f; ' (e) as

ok ok

sz_l(e) = ﬂ ﬂ Fm,m

n=1m=1

where F,,,, = {y (m/2",n/2F) > 0} or F,,,, = {y (m/2¥,n/2¥) < 0}, depending on e(m, n),

the (m,n)™" entry of e. Now for e € Ej, let
Q. = {(m,n) ce(m,n)=1,m=12,..,28 n=1,2, ...,2’“} .

We define an equivalence class ~ in (), (similar to Definition 4.2.6) as follows: if ¢ = (m’,n’)
and ¢’ = (m”,n"), then ¢ ~ ¢" if there exist 0 < [ < oo and q1, g2, ..., @1 € Q.. such that for each
i=1,2,...,1 + 1, at least one of the following two conditions is satisfied (qo = s, 21 = ¢", ¢; =

(mi,ni),z’ = O, 1, ,l—'— 1)
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(D) |mi—y — my| + |nir — | = 15
(2) ’mi,1 — m,-|2 + ’774;1 - ni]2 < (5 : Qk)2

Now we define g, ; as the number of "clusters" with size larger than x on a given matrix in [j;:

Gug t By = N, gyp(e) = card <{U € Q./ ~: card(U) 4R S m}) )

Then automatically g, j is measurable since any subset of £, belongs to the o-algebra defined in

E. Finally, it is clear that IV, , = ¢, 1 © fi, which completes the proof. L]

C.4 Proof of Lemma 4.3.1

Proof. We first prove the case when x = 0 (note that Uy = (). Fix w € (). Note that from
Theorem 4.2.1,
Ci= |J 4, i=12..N,

where C;’s are open, nonempty and mutually exclusive. Since G is dense in D, there exists K; €
N, such that for any & > K, C; NGy # 0,1 = 1,2,..., Ng. Besides, from the first part of the
proof of Theorem 4.3.1, there exists Ky € N, such that for any k > K, s T s implies 5" ~ §”.
Let K = max{K;, Ky}. Then we can choose s; such that s; € C; N Gk, i = 1,2,..., Ny. For
k > K,if i # j then s; and s; must belong to different clusters in G, since s; % s; would imply
s; ~ s;. Therefore, there should be at least N, different clusters in G, and thus Ny, > Ny when
k > K. Therefore, we have

lim inf N07k = N().
k—o0

Now it suffices to show

lim sup Ny, < Np.

k—o0
Suppose lim sup,,_, ., Nox > Np. Then there exists an increasing sequence of integer { k,, }2° ; such
that k&, > K and Ny, > Ny for all n. Let C 4, Co i,

ooy CNg 1., k. DE the clusters of Gy, and s; € Cji, C Cy, j = 1,2,..., Ny, as chosen above. Let s,
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be a point in Cn,114,, n = 1,2,.... Since D is compact in R?, there exists a subsequence of 3,
that converges to a limit s € D. WLOG, we can assume s,, — § as n — oo. Then there exists
N € N, suchthat ||3, — Sy|| < d foralln > N. Again, WLOG, assume 5y € (. Then Sy ~ sy,
which implies sy < s1 by Theorem 4.3.1. Hence there exists o > /N such that sy Grkffo s1. Since
150y — SN < 0, we have

Grng . Grng
S§51 ~ SN ~ Spg-

However, this is a contradiction since s; € Cl,kno, Sng € C’Nﬁl,kno, s1 and s, would not belong
to a same cluster of Gkno- Hence we conclude that Ny, — Ny for all w € @ = Uy, which also
implies that N, is a random variable.

Now we prove the case when = > (. From the proof above, there exists X € N, such that
Nox = Ny and ¢ o implies ' ~ s” forall £ > K. Let Cy, Cop, ..., Cn, 1 be the clusters
of Gy. Then for any ¢ and j, either C;, C C; or Cj;, N C; = 0. Assume that C;, C C},

7 =1,2,..., Nyg. Then we have
1\? 1\?
Me(Cjn) = (?) D gy,(s) = (?) D g (s), j=1,2,... N,
seGy seGy

which is a Riemann sum. To show that it converges to the Lebesgue integral

/ 1o (s)ds = A(C)), j=1,2,.., N,
D

it suffices to show that the set of discontinuous points of I, has zero Lebesgue measure, i.e.,
AOC;) = 0forj =1,2,...,Ny. For j = 1, suppose s € dC;. Then for any 0 < € < §/2, there
exist s’ and s” such that s’ € B(s,e) N C{ and s” € B(s,e) N Cy, y(s"”) > 0. Since ||s' — s"|| < 0,
if y(s’) > 0, we would have s ~ s” and s € (', which contradicts the fact that s € C{. Thus

y(s') < 0. Therefore, for any 0 < € < /2, there exist s’ and s” in B(s, €) such that y(s') < 0,
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y(s") > 0. By the definition of 0 A(w), we have s € 0A(w). Therefore, we have shown that
0C; C 0A(w) =0{s € D :y(s,w) >0},

and thus

AOC)) = MOA(w)) = 0.

Similarly, this equation holds when j = 2, 3, ..., Ny. Therefore, Vw € ),
/\k(Cng) — )\(C]), j = 1, 2, ...,NQ(CU). (Cl)

Now to show N, is a random variable, it suffices to show that VI € N,

[c.oluNNe olNe O B¢ o)

{we:N,(w) =1} =JNUMN{weQ: Nosrjgulw) =1}

p=1q=pr=1k=r

WLOG, assume A(C}) = AN(C2) = -+ = MCly,). Suppose N (w) = 1. Letp = 1ifl = 0.
Otherwise, choose p > 0 large enough such that z + 1/p < A(Cy,). Then we have A\(C;) >
x+1/p,i=1,2,...Nyand \(C;) <z +1/p,i = N, + 1, N, + 2, ..., Ny. By (C.1), there exists
r > 0, such that for all k£ > r, \,(Cjx) > x4+ 1/p, j = 1,2,..., Ny and N\ (Cj) < z = 1/p,
Jj =Ny +1,N, +2,...,Ny. Therefore, forall ¢ > pand k > r, Ny41/4%(w) = [, which implies
that w is in the right hand side (RHS). Thus the left hand side (LHS) C RHS.

Now suppose that w is in RHS. Then there exists gy > 0 such that

wE U m {NHl/qO,k(w) = l} ,

r=1k=r

which indicates that N, (w) > [ by (C.1). Suppose N,(w) > [. Then for all ¢ > 1/(A(Cy,) — ),
we have z + 1/q < A\(Cy, ). Similarly, as the proof above, when £ is large enough, we would have
Nyi1/¢%(w) > 1, which is a contradiction since w is in RHS. Hence N,(w) = [ and w is in LHS.

This implies LHS = RHS.
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Finally, assume w € U,. Again, WLOG, we can assume \(C;) > =z, ¢ = 1,2,..., N, and
MNC;) <z, = N, +1,N, + 2,..., Ny. Then we have, for sufficiently large &k, A\;(C;x) > z,
j=1,2,...Nyand \,(Cjx) < z,j = Ny + 1, N, + 2, ..., Ng. Thus N, = N, for sufficiently

large k, which implies Vw € U,, N, — N, as k — oo, as desired. O

C.5 Proof of Lemma 4.3.2

Proof. Firstly, note that for any = € By and € > 0, there exist 2’ and x” such that 2/, 2" € B(zx,¢)

and f(z') > 0, f(2”) < 0. Since f is continuous, we have f(x) = 0and By C {f(x) = 0}. Since

A(Bo) = A(Bo N {V f(z) = 0}) + A(Bo N {V f(z) # 0})
<AM{f (@) = 0} N {Vf(2) = 0}) + A{f(2) = 0} N {Vf(2) £ 0})
— MRo) + M{/(x) = 0} N {V(x) £ 0}),

it suffices to show A({ f(z) = 0} N{V f(z) # 0}) = 0. Since A\(0D) = 0, it suffices to show

A{f(z) =0} n{Vf(z) #0} N D% =0,

where D° = (0,1)? is the interior of D. Let Sy = {f(z) = 0} N{V f(x) # 0} N D°. Now suppose
x = (x1,29) € Sp. WLOG, we can assume that df(z)/0xs # 0. By the Implicit Function

Theorem, there exist !, 72 > 0 and a continuously differentiable function g : I, — J, such that

{1, 9(0)) o € L} = {(y1,12) € Lo x T = f(y1,92) = 0}

= (L x J2) N {f(y) = 0},

where I, = (v — v}, 21 + L) and J, = (22 — 72, 22 + 7?2) are the neighborhoods of z; and x,
respectively. Now we show that the above set has zero Lebesgue measure. For any 0 < v < ~1
and € > 0, since g is uniformly continuous in [x; — 7, x; + ], there exists £ > 0 such that when

2 2" € [xy—v,x1+v] and |21 — 23] <&, |g(21) —g(22)| < €. Choose K € Nsuch that 2y/K < ¢
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and let

k=21 —v+—, k=0,1,2,.. K.

Then we have

{(z,9(2): z€[t1 =m0 +1]} C

where the Lebesgue measure of RHS is

K
22 zK — 2p—1)€ = 4re.
k=1

Since ¢ is arbitrary, we conclude that

A{(z,9(2) s z € [11 = 7,21 +191}) = 0.

By letting y 1 ., we obtain

A{(y1,9()) s 1 € I}) = 0.

Finally, note that I,, x J, exists for each z in Sy, {I, X J,}.es, is an open cover of Sy. Since R?
is Lindelof, there exists a countable subcover {1, X J,}22, of Sy ([Gemignani, 1990], Chapter 7).

Therefore, we have

A(So) = A (G (0N (I Jn>>>

n=1
)

<D A (SN (I x J))
< ZA({f(w =0} N (In x Jn))

—ZA (y1,9(01)) s 91 € I}) =0,
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which completes the proof.
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APPENDIX D

SUPPLEMENTARY INFORMATION FOR CHAPTER 5

D.1 Proof of Theorem 5.2.1

Let ker(A) denote the kernel (null space) of matrix A. The following lemma is necessary for

the proof of Theorem 5.2.1.

Lemma D.1.1. Suppose 1,, ¢ € (X). Then
ker(l, — Dy) = span{T, 1, }.
Proof. Firstly, we have, for: = 1,2, ..., n,

(ti, 0) = arg mlnz (tj — a; — bltl])2 Kij;
a;,b; ER j=1

(1,0) = arg minz (1—a; — bitij)Q K.
ai,b;ER =1

Recall that the optimization problem

has unique solution

;=Y (Dg)ijz. (D.1)

Therefore, we have DyT' = T and Dyl,, = 1,,. Hence, span{T, 1,,} C ker(I,, — Dy), and it suffices
to show

ker(I,, — Dy) C span{T, 1, }.
This is equivalent to show that for any £ = (&, &, ..., &,)T € R” satisfying (1, — Dyg) € = 0, there
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exist ap, @ € Rsuch that & = aqt; + oo (1 = 1,2, ...,n). It means that {(¢;,&;)}!, are all on a

straight line of R2. Since (I, — Dyg) & = 0, we have

If t;, = t;,, we have t;,; = t;,; and K;,; = K,,; for j = 1,2,...,n by definition. Therefore, the
right hand side of the equation above is the same for ¢ = i; and ¢ = 79, which implies &;, = &,,.

Let §;; = & — & and define the slope of the line containing (¢;, ;) and (¢;,&;) by

_ &6y

t—t I(t; #t:) = fw[(w#o) (1,7 =1,2,...,n).

Then the observation above indicates that
§ij = lijtiy, (1,5 =1,2,...,n). (D.2)

Again, since (I, — Dg) £ = 0, we have that, foralli = 1,2,....,n

(Do Kist) (Z}L Kij&) — (o1 Kistis) (ZL Kijtijfj)

§i = (2}-‘:1 Kz’j) (0, Kist?) — (2}‘:1 Kijtij) (S, Kistis)

which, by (D.2), can be rearranged as

Z Kzst2 (Z ij (llj - lzs) t”> - O (D3)
J=1

Without loss of generality, assume t; < o < - -+ < £,. Let

E=min{l <s<n:t; >t}
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Then (¢1,&1) = (t2,&) = -+ = (tg—1,&—1)- Since T # cl,,, k < n, K(-) > 0 and (D.3), we have

ZKlj llj lls tl] ZKlgtlj ll] lls) =0

forall s > k. Let m = arg max{/;,} and replace s by m in the equation above. Since K;,t;; > 0
s>k

for j > k, we have

llj_llm:O (]:k,k—i—l,,n),

which implies that (tg,&x), (tke1,Eks1)s - - -5 (En, &) are all on the line containing (¢1,&;) and
(tm,&m)- Since (t1,&1) = (t2,&) = -+ = (tg—1,&k—1) are also on the same line, the proof is
complete.

O

Proof of Theorem 5.2.1. Firstly, we prove that the first equation in Equation (5.10) holds. By the

definition of §(x76|3,0) and Dy, By can be rewritten as

~ ~ 2
o= gmin 3" (s~ 75 9(a7013,0))" = ngmin |55 ~ o]
BTO=0 5 BT6=0
By taking the derivative of the right hand side of the equation above, it suffices to show that

~mo~ \ T o~ o~
g = (X5 %) Xis

satisfies X X405 = XIYy and 8,76 = 0. By basic linear algebra, it is trivial to see that

X g X, 0By = X g }79. Besides, by the properties of the Moore—Penrose inverse and (/,, — Dy) X0 =
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0 by Lemma D.1.1, we have

g {(nge)* (f(gf(@)] (%1% X
= [ x7] % (X;FX9>+ (;zg;ze)* Xry,
= [(1, = Do) X0 X (57 %) (X3 %) X3

= 0.

Therefore, 3; is a solution to (5.5). To show that it is unique, let Be be another solution to (5.5).

Then we have
Hf/e — XoBs ‘o H (3?9 - X@ﬁg) + <X96§ - Xe@e) ‘2
(34

~ - 2
— HYQ X8

Y

which implies X (B;‘ — 39) = (I, — Dg) X (6; — 5};) = 0. By Lemma D.1.1, there exist

a1, s € R such that X (55 — Bg) = a1 X0+ asl,, or
X (5; _ By — a10> — apl,,.
Since 1,, ¢ € (X), ag = 0. Then rank(X) = p implies
5; - Be = az0.

Since 07 3; = 67 3y = 0, multiplying both sides of the equation above by 67 yields a; = 0. Hence

B; = Pp and the solution to (5.5) is unique.

Now by the uniqueness of the solution, to show the second equation in Equation (5.10), it
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suffices to show
. - -1
Bo = (XGTXQ + eeT) X7,
is also a solution to (5.5). According to Lemma D.1.1, rank(Xy) = p — 1 and 6 ¢ € (X]). Then

we have

rank ()N(gffg + 60T> = rank ((Xg, 9)) =p
and thus X7 Xy + 697 is invertible. Let A = 376. Then
(KT X0+ 007) o = XT Rofly + 30 = XV,
or
X7 (5(959 - f@) — ).
Multiplying both sides of the equation above by 7 yields A\ = 0 and X7 X,y = X[ Y,. Hence,
Bg is also a solution to (5.5), as desired. []

D.2 Proof of Theorem 5.2.2

We first introduce a lemma to be used in the proof of the asymptotic results, whose proof is
almost the same as the proofs of Lemmas 1-3 in the Appendix of [Chen et al., 2015] and will be

omitted here.

Lemma D.2.1. Suppose that the regularity assumptions 1-7 are satisfied. Then we have

sug) Z s;(ulf)g (x760) — g(u)| = o0,(1), (D.4)
wl |55
sug) sj(ul@)x; — pe(u)| = 0p(1), (D.5)
wl |y

= 0,(1), (D.6)

120



= 0,(1). (D.7)

sup
u,0

> si(ulb)e;
=1

We now show some results to simplify the estimating equations.

Lemma D.2.2. Suppose that the regularity assumptions 1-7 are satisfied. Then we have

a n

su(? W (Z sj(ulf)g (1’?9) - g(u)) = 0,(1), (D.8)
u, J:l
a n
; e

Proof. Let
T J—
;0 —u K,=K(), K=K (y (i=12..n),

V; =

h )
gi=g(l0), g =4 "), hi=gi—gu) (i=1,2,..n).

We first show (D.8). Noting that } 7, s;(u|f) = 1 for all u and 6, we have

Z si(ulf)g (x760) — g(u) = > s;(ul6) (g (¢]6) — g(u))

_ (e X Kw?) (ap 22 KGhy) — (G 20 Kivi) (57 22 Kjvihy)
(o T Kawd) (5 X K)) = (5 X Kaw)”

A - Ay

A3 — A,

Let A} = 0A;/Ou. Then

0 [ . AL — AL (Az — Ay) — (A — Ag) (A — A
@<Zsj<u|e>g<xj9>—g<u>)=< oo o SRS

J=1

Denote

= / K(v)odv, s = / K (v)vdv.
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Since

E (A5 = Ag) = fo(u)(p2 — i) > 0

for all u and 6, by the regularity conditions of fp(u), we have
su171£> |As — Ayl = 0,(1), slfg) A3 — Ay 7" = 0,(1).
Therefore, to show (D.8), it suffices to show
81}1(5) [(A] = AY) (Az — Ay) — (A1 — Ag) (A — A))| = 0,(1). (D.10)

Since K (-) is symmetric, we have

P(rne)) -2 (o (@)
o (5) (5) o= [ () (55 o

= —fou)7s = 2fy(w)p2 + o(1) = fy(u)pz + O(h) = O(1).

Similarly, we also have
( ZKU) w)py + O(h) = O(1),

2

B (o mon) ) = (D ST g ) on + 00

The variances of the summations above are of order O((nh®)~!) = o(1). Therefore,

(nh > Kb ) (fe(U)g"( u) + f@(u)gl(u)) 1sh® + O(K%) = O(h?),

— O(h?).

| () (S ) + (S S ) (5 S )

Since E(K,v;) = o(h) and E(K;v;h;) = o(h), it can be readily seen that |A}| = 0,(1). By (D.4),
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we have

A — sup

ua

Z (ul6)g (+70) — g(u)

=1

sup [Az — Ay| = 0,(1),
u,l

which implies that (D.10) holds, and thus (D.8) holds. Similarly, for § = (6y, 65, ..., 6,)"

show that, for j = 1,2, ..., p,

% (Z 5;(uld)g (ijG) — g(u)) ' = 0,(1),

J=1

which implies that (D.9) holds, completing the proof.

Let

T\ T 1T T T -
Lemma D.2.3. Suppose that the regularity assumptions 1-7 are satisfied. Then we have
> M0 (v — ol - gaTh)) = {Z (v — B = g(ald)) } -
i=1

i=1
%

Proof. We take the derivatives of (5.4) with respect to 3 and ¢ and obtain

0= +[le=2]).

Z (y% - %TB - Q(%Tél)> (Z Sj(x?él‘él)xj — Iz) =0,

i=1 j=1
=0.
6=0,

- 0
(v = B = g(aTdy)) <%g<x’f 0)
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(D.13)

(D.14)



Firstly, by combining (D.5) and (D.13), we have
> (w—alB=a@l0n) (v —pu(al0)) = > (=l B = g(al0)) - 0,(1).  (©.15)

=1 =1

Since

O auT IS (2,
599(@i ) a:él_ {jZI <8USJ(U\9)) g(x 9)} R e
- (0 0 0 0, (|6 -0 3 |
+3  gg#i(9) ) (a) +0y ([lo =81 + [} - 3]).
Jj=1 u=z7 0,,0=0,
Next, by (D.8) we have
(—sj (u|6y) > (xJTél) =g (u) + 0,(1). (D.17)
7j=1
Besides, by (D.9) and (D.6),
> (s e = =3 ssuih) (mpoal)) +op(1)
= 96" J i / 007> P
= = > si(uld)g (@ 0)w; + 0,(1) (D.13)
j=1
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By replacing u by szél in (D.17) and (D.18), and combining (D.16), we obtain

.
%g(xi 0)

= g’(m?éﬂ (wz - Pm@?él)) + 0O, <H9 - élH + Hﬁ o BH) :

6=>0,

This equation, together with (D.14) and (D.15), implies (D.12), which completes the proof. ]

Proof of Theorem 5.2.2. By Lemma D.2.3, the asymptotic normality of the estimators can be
shown by following the proof of Theorem 1 of [Chen et al., 2015]. Therefore, the details are
omitted here. By Theorem 1 of [Chen et al., 2015] and the Law of Large Numbers, the Moore-

Penrose inverse of the asymptotic covariance matrix is

_ 1 1 - T _ T
F_JL%OEZAiAi = E (AAT).

=1

D.3 Proof of Theorem 5.3.1

Recall that .S and T are the sets of the subscripts of the nonzero elements of (3, and 6, respec-

tively.

Proof. This proof is similar to the proof of Theorem 5.2.2 in [Liang et al., 2010] and consists of
three steps: Step 1 determines the order of the penalized estimators (BATl S5 é§2T)T; Step 2 demon-
strates the sparsity of ( BAT1 g9 ész)T; Step 3 shows that the estimators are asymptotically normally
distributed.

Step 1. Let k,, satisfy x,, — 0 and r,(\; + A2) ™' — 00, ug,us € RP and ||uy|| = [|ug|| = C

for some constant C' > 0. Denote 5 = 5y + k,uq and 0 = 6y + K, us and

Go(5.6) ~ Gyl 00) = 5 {G(5.0) — G, o))
+ (A (81, mde 61, =m0 + e ol

1
= 5in1 + 1.
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With some algebra, we have

L= Ay — a8 - g(=7013,0)}" =3 {yi — 2T By — §(27 00|60, 00)}°
i=1 i=1
= > {9(]018,0) — 4(«] 0|80, 00) + = B — ] By}
=1

X {szﬁ + g(z] 018,0) + z] Bo + G(z] 00| B, 0o) — 2%} (D.19)
n 2
=K, Z { U + g €; 90)U2)T (Il — E(xz\xfﬁo))}

=1

n

+ K Z {(U1 + g’(l’iTeo)uz)T (:1:1 — E(xz|xlT90))} e; + Op(nl/Qﬁi).

=1

In addition,

Lol < M| 18]y = [1Bolly | + ne| 11611, — 1160l |
<nAL |8 = Bolly +nAa |0 — 6o,

= n/in()\l + )\2)0

Since n'/2(\; + A2) — oo and K, (A + X2)! — 0o, we conclude that I, , = o0,(nx2) and the
second term on the right-hand side of (D.19) is O,(n"'/%k,) = o,(nx2). Thus, the first term on
the right-hand side of (D.19) dominates the second term and [, ». For any 6 > 0, there exists C

such that

pr {glf Gp(Bo + Knur, 0o + Kpuz) > G,(Bo, Qo)} >1-9,
C

where Ue = {(uf,u)” : |Jwi]| = |luzl] = C} C R*. Hence, the convergence rate of
(8,50 0%,r)" 5 Op(rin).

Step 2. Let ||B1s — Bos|| = Op(n=1/%) and ||017 — bor|| = O,(n~1/2). We then show that

(BT, T = arg;nin G,(B,0), (D.20)
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where

V={(87,0T)" : Bs = Bus, 00 = 011, ||Bse|| < Cn~ V2, ||0r]] < =V}

for some constant C' and (3*7, 8*T)" € V with B% = 0and 67 = 0.

For k € S¢, we have

10GB,0) 10 N~ 74 .01 2
2 9B, _53&2{% 7 B — g(x;018,0)}

=1

= Op (n[|8 = fBol| +nll0 — 6o]]) .

Since ||8 — Bo|| = Op(n™Y2), |10 — 6o|| = O,(n"/%), when (3, # 0 we obtain

0Gy(6,0) _ 10G(B,0) | o(nABll,)
By, 2 OB 9By

= Op(n'?) + nAisgn(By)

=n'? {n'2X\isgn(Br) + O,(1)} .

Since n'/2\; — o0, dG,(83,0) /0 has different signs for £, € (—Cn~"/2,Cn~"/?). Therefore,
Br = 0 minimizes G, when n is sufficient large. Similarly, we can show that for £ € 7 0, = 0
minimizes GG, when n is sufficient large. This completes the proof of (D.20) (sparsity).

Step 3. From Step 2, we have B,\l ge = 0 and éAQTc = (. The asymptotic distribution of

(BY 4,07 )" can be obtained by following the proof of Theorem 5.2.2 and thus omitted.

D.4 Proof of Theorem 5.4.1

Proof. This proof follows the proof of Theorem 3.2 in [Fan and Huang, 2005] and the proof of
Theorem 4 in [Liang et al., 2010]. Denote A;(6y) defined in (D.11) by A;. Let

-1

n + n +
M, = (; AT > wr (W (; AAT ) WT> w.
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Let f ~ and é 4 denote the values of parameters at which the objective function Denote

£ = argmin G(&), ¢, = argmin G(§).

£e £e

With some algebra, the difference G(H,) — G(H;) can be written as

~

G(Hy) — G(H,) = G(&) — G(&)

= (& —&)" ZAiAzT> (& —&o) + 0p(1).
i=1
Since éo = fl — Mnfl + 0,(1), we have

G(Ho) — G(Hy) = (Mn&)T (i Ai/\?> (Mn§1> + 0p(1)

-1

(a) Under Hy, W& = 0, and thus by Theorem 5.2.2 we have

nsWé 5 N (0,6°Wrw?).

(néngl)T <W (n_l i AiAiT> ) WT> (n%W&) +0,(1).

(D.21)

This, together with n=' >~ | A;,A7 — T almost surely and Equation (D.22), yields V' — 2 in

distribution.

(b) Under Hy, W¢ # 0, and thus n%Wél ~ n'/2. Then from (D.22), G(H,) — G(H,) ~ n.

Since G(H,)/n — 0%, V — oo as n — oo. Therefore, the power function goes to 1 as n — oo

and the test is consistent.

(c) Under the local alternative of n'/2W¢ — d # 0, by Theorem 5.2.2 we have

nWé 5 N (d,*Wwrrw?).

This, together with n=! >~"" | A;AT — T almost surely and Equation (D.22), implies V' — x2,(¢)
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in distribution, where the noncentrality parameter is

Y=o 2dN(WDTWT)~td.
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