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ABSTRACT 

 

Nanoparticles and nanostructured materials have attracted great interest for 

treating bacteria as a potential chemical-free method. This research carries out 

experiments to evaluate the antibacterial properties of nanoparticles and nanostructured 

materials. The commonly found bacterium Staphylococcus aureus was chosen for this 

study because of the extensive research and development surrounding the bacteria, its 

importance in human disease, and its extensive antibiotic resistance, particularly with 

methicillin-resistant S. aureus (MRSA) strains. The specific strain S. aureus Xen36 was 

selected due to its property of bioluminescence, which allows for real-time monitoring of 

the bacterial loads. Materials investigated were fabricated as particles and deposited on 

metallic substrates. Substrate materials of copper, aluminum, steel, and nickel were chosen 

because of their wide applications in manufacturing, particularly in the oil/gas industry.   

Results involving nanoparticles showed that V2O5 nanoparticles have potential 

antibacterial effects on S. aureus. They are effective in reducing the bacterial load after 2 

and 24-hours of treatment. A decrease in bacterial load of 92.4%, 96.7%, and 94.3% was 

observed when cultured with the V2O5 nanoparticles at a concentration of 500ug/mL for 

24 hours (NP concentration and incubation time), 1mg/mL for 2 hours, and 1mg/mL for 

24 hours, respectively.  

Results involving nanostructured materials, i.e., nanoparticle V2O5 grown on 

nickel substrate. These materials cause a 99.1% decrease in bacterial load compared to a 

control over a 24-hour period.  
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This research suggests that the effectiveness using a V2O5 nanoparticles deposited 

on a nickel substrate has the potential to be used for control and elimination of bacterial 

growth. A physical mechanism is proposed to explain these effects.   
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SEM Scanning electron microscope 
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CHAPTER I 

INTRODUCTION  

 

The research in this thesis studies the potential antibacterial effects of a few 

selected nanomaterials. This chapter provides background information by giving a topical 

review, discussing Current Treatment of Bacteria with Nanomaterials. It provides a brief 

overview into current antibacterial nanomaterials, with an emphasis on physical and 

morphological-based treatments of bacteria. Mechanisms of attack and the potential for 

reusable nanomaterial treatments is also examined.  The review helps to set a foundation 

for this research on potential treatment methods. 

 

1.1 Current Treatment of Bacteria with Nanomaterials 

Nanomaterials are of great research interest in many fields owing to their unique 

properties compared to bulk materials. High surface area-to-volume ratios, Numerous 

nanomaterials have been proven to have antibacterial effects including silver, copper, 

carbon (graphite and graphene forms), and many metal oxides (notably zinc oxide). 

Applications include dental, textiles, paper, water treatment, wound dressing, surgical 

masks. Research has shown that the morphology of the nanomaterials is extremely 

important for the overall effectiveness and mechanism of treatment. Silver is the most 

commonly studied and most widely known antibacterial nanomaterial. Copper, metal 

oxides (particularly zinc oxide), and various carbon-based nanomaterials, including 

graphite and graphene, have also been shown to have wide-ranging antibacterial effects. 
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Table 1: An overview of materials with antibacterial effects [1-17]. 

 

Bacteria 

Numerous types, gram-negative and gram-positive, and species of bacteria have 

been tested with nanomaterials. Common model bacteria such as S. aureus [18], E. coli 

[19], and P. fluorescens [20] have all undergone extensive testing with various 

nanomaterials. However, emphasis is mainly placed on nanomaterials with commonly 

known antibacterial effects, such as silver, copper, zinc oxide, and gold [21-23]. A 

potential area of research remains in both nanomaterials and applications that have been 

recently discovered or have been less scrutinized. One such application (microbial 

contamination in metalworking fluids) is discussed in the appendix. 

Research on multiple types of bacteria is important due to their different structures, 

and hence different mechanism of resisting treatment. Figure 1 displays the morphological 
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difference between gram-positive (such as S. aureus) and gram-negative (such as E. coli 

and P. fluorescens) bacteria. Gram-negative bacteria are generally more resistant to 

treatment due to their thicker cell wall [24]. 

 

Figure 1: Differences in morphology between gram-negative and gram-positive 

bacteria 

Bacterial growth refers to the increase in size of individual cells. Proliferation of 

bacteria refers to the increase in the number of cells through reproduction [25]. Bacteria 

treatment methods fall into two main categories based on their mechanisms of action – 

bacteriostatic and bactericidal [26]. Bacteriostatic treatments stop bacteria from 

reproducing and prevents the proliferation of the culture, while not necessarily killing the 

bacterial cells. Bactericidal treatments work by directly killing bacterial cells [27]. While 

at first glance bactericidal treatments may seem superior to bacteriostatic biocides, it needs 

to be remembered that the success and flourishment of bacteria depends on the cultures’ 

ability to reproduce and proliferate. Due to the short life span of bacteria, bacteria cultures 

that cannot reproduce will die out quickly. Hence, depending on the mechanism and 

kinetics of the biocide, bacteriostatic treatments can be as effective as bactericidal 

treatments in dealing with the issue of microbial contamination [26]. 

Toxicity 

Much remains unknown about the toxicity of nanomaterials. Despite the relatively 

long history of nanomaterial fabrication and application, little is known about the effects 
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on environmental health and safety [28]. NPs and “ultrafine” particulates have been linked 

to cardiovascular disease and respiratory illnesses in humans [29]. Nanomaterials can 

cause classical toxicology assays to have variable results, making the tracking and 

assessing of the effects of nanomaterials difficult [30]. 

Reusable nanomaterials treatments remain an area of great interest, both to reduce 

costs and avoid unintended environmental effects. This is particularly in areas of 

application such as water treatment, where the chance of environmental exposure is high. 

Dong et. al and Yao et. al both showed that N-Halamine nanoparticles have potential as a 

reusable antibacterial agent due to its magnetic properties [31, 32]. Tian et. al fabricated a 

magnetic graphene-based nanocomposite that displayed antibacterial effects against S. 

aureus. Similar to the N-Halamine nanomaterials, this magnetic property allows for the 

treatment to be reusable. Reusable nanomaterials also have the likelihood of reducing the 

cost of treatment. Material does not need to be constantly added and could reduce both 

cost and waste stemming from treatment.  

Morphology and Mechanisms 

The size and shape of nanomaterials greatly influences their properties. Solubility, 

surface area, agglomeration, and more are all highly dependent on nanomaterial 

morphology. Hunt et. al showed that smaller Ag nanoparticles had higher levels of toxicity 

and uptake compared to larger particles [33]. Sadeghi et. al demonstrated that both the 

shape and size of Ag nanoparticles was instrumental in their antibacterial effects against 

both S. aureus and E. coli [34]. This study showed that Ag nanoparticles with higher 

surface area (nanoplates) had a greater antibacterial effect compared to nanorods and 

nanoparticles, which both have smaller surface areas. This size effect for Ag NPs has been 

reported multiple times in literature [35, 36]. This effect is important for future research 

dealing with antibacterial nanomaterials. While Ag NPs have been closely studied, many 

other materials that show antibacterial effects have not been studied as closely, particularly 

with the same rigor in regard to morphology. Size and shape need to be considered in 

addition to chemical makeup in the fabrication and testing of future materials. 
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Antibacterial activity can vary with different bacteria. Kim et. al showed that 

antibacterial nanomaterials can have different effects for different bacteria [37], especially 

for silver nanoparticles. This shows that along with the morphology of the nanomaterial, 

the morphology of the bacteria cell is also of great importance. Other nanoparticles, such 

as zinc oxide, show antibacterial effects against multiple types of bacteria [13]. Materials 

that show wide ranging effects against multiple types of bacteria have potential to be 

bacterial treatments in industry, where wide ranges of bacteria species are observed (for 

example, over 100 species of bacteria have been observed in metalworking fluids, 

including gram-positive, gram-negative, and mycobacteria species [46, 49, 56, 57, 58]).  

The morphology of antibacterial nanomaterials greatly influences its antibacterial 

effects. Hui et. al showed that the availability of the basal planes of graphene oxide is of 

great important to its antibacterial properties [38]. Liu et. al showed similar findings with 

graphene, and also emphasized the effects of lateral dimension and how it affected the 

mechanism of treatment [39]. Akhavan showed that the “sharp” shape of graphene and 

graphene oxide nanowalls contributed to their antibacterial effects [40]. Tu et. al used both 

TEM and molecular dynamics that the sharp morphology of graphene nanosheets (size of 

approximately 205nm lateral dimension and 1nm thick) can cut through the cell wall and 

extract phospholipids from E. coli, leading the cell death [41]. E. coli cells are 

approximately 0.5 um in width by 1 um in length. Three stages of this degradation process 

were observed under TEM – (1) initial toleration by E. coli of the nanosheets at low 

concentration, (2) damage to the cellular membranes, and (3) the cells losing their cellular 

integrity through membrane damage and cytoplasm loss. Two types of mechanisms were 

seen in the molecular dynamics simulation – an initial cutting and insertion of the 

nanosheets into the E. coli cellular membrane and extraction of the phospholipids from 

the membrane. The strong attraction between the graphene and phospholipids, due to the 

sp2 configuration of the carbons in the graphene, led to this extraction.  Simulations were 

performed for nanosheets with varying lateral sizes of 50 to 500nm (with that same 

thickness), all of which showed similar mechanisms. The antibacterial effect was greater 
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for greater lateral dimensions. This study gives evidence that a physical-based treatment 

with “sharp” nanomaterials has potential for treatment of bacteria.  

Compared to nanomaterials that rely on cellular uptake, these more “physical” 

treatments of bacteria are of great interest due to the possibility of fabrication of surfaces 

with similar properties. Fabrication of durable surfaces that can be reused and possibly 

cause less environmental damage and toxicity compared to loose nanomaterials. 

Antibacterial surfaces utilizing nanoparticles and nanostructures is another hot area of 

research, particularly in orthopedics [42]. Silver NPs have been successful immobilized 

on surfaces with antibacterial effect [43, 44]. These surfaces were fabricated with multiple 

substrate materials and killed the bacteria on contact without the need for cellular uptake.  

Nanomaterial treatments with mechanisms that rely on contact with the exterior of the 

bacteria have the potential for reusable and more durable treatments in the form of 

nanostructures on surfaces. The nanostructure can remain attached to the surface while 

still interacting with and treating the bacteria.  

Conclusion 

Numerous nanomaterials have been shown to have antibacterial effects. A large 

range of morphologies, mechanisms, and materials have shown to be effective for different 

types of bacteria. The material and morphology combinations lead to the different 

mechanisms observed. Much study has been done on common nanomaterials, such as 

silver, copper, gold, and zinc oxide. While viability as antibacterial treatments of these 

many nanomaterials have been proven in vivo, much remains to be discovered on the 

toxicity and environmental effects of these materials. Due to the differences versus bulk 

materials, these nanomaterials can be difficult to control, and could possibly have 

unintended and far-reaching effects on the environment and in the human body. Previous 

study indicates the strong potential of new nanomaterials for antibacterial treatment, 

particularly those that are environmentally-friendly. Fabrication and testing of new 

nanomaterials, with an emphasis on morphology could lead to potential bacteriostatic or 
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bactericidal treatments.  Research on more controllable and reusable nanomaterials is of 

great interest. 
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CHAPTER II 

MOTIVATION AND OBJECTIVES 

 

Numerous nanomaterials have been shown to have antibacterial properties. As 

discussed in Chapter 1, both the chemical makeup and the morphology of nanomaterials 

are important properties in effectively treating bacteria. Surfaces that have inherent 

antibacterial effects could be used for a wide range of applications including water 

treatment, medical implants, and reducing microbial contamination in industrial 

manufacturing. Current research on antibacterial surfaces generally focuses on chemically 

modifying the surface with materials such as silver, copper, and titanium dioxide that have 

known antibacterial effects. The morphological characteristics of these materials has been 

shown to play a significant role in the antibacterial properties. While much research has 

been carried out for the previously discussed materials, there remains a gap on the 

antibacterial properties of less common nanomaterials, especially for nanostructured 

surfaces. This research attempts to develop nanomaterials, particularly nanostructured 

surfaces, that can be used as passive treatments (i.e. where more treatment does not need 

to be continually added, such as with biocides) in order to producing effective and 

environmentally-friendly treatments against bacterial contamination.  

 

2.1 Objectives 

In order to prove the hypothesis, there are three main objectives for this research. The 

objectives are presented in a flow chart below in Figure 2. 

Objective 1, identification of effective nanoparticles affecting bacteria  

Objective 2, identification of nanostructured materials that have potential to treat bacteria 

Objective 3, generating understanding of the material-bacteria interaction 
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To obtain the objectives, the following experimental tasks are proposed: 

1) Nanomaterial fabrication 

The research will begin by fabricating various nanoparticles and nanostructures 

for testing with bacteria. The research starts with fabricating nanoparticles that 

have been studied in literature [1-2,7,121-122]. Nanostructures on metallic 

substrates will then be fabricated, with focus of substrate surface preparation and 

nanostructure coating generation. Specific emphasis will be placed on the 

morphology of the nanomaterials. Fabrication will take place concurrently with 

the bacteria testing in objectives (2) and (3) so that the fabrication methods and 

focus can be adjusted as results are found. Materials are analyzed using surface 

roughness, optical microscopy, and SEM. 

2) Nanoparticle bacteria testing 

Nanoparticles will be cultured with bacteria cells in vitro to observe antibacterial 

effects. Based on these results, a nanostructure using similar chemical and 

morphological makeup will be fabricated and testing in (3). Bacteria concentration 

is testing with luminescence and by 

3) Nanostructure bacteria testing 

A new testing protocol will be developed to test antibacterial coatings against a 

control substrate with a coating. The nanostructures fabricated in (1) will be tested 

here. A key factor that also needs to be considered is the durability of the coating. 

Coatings that lack durability and leach into the liquid during testing limit 

reusability and may not be suitable for future application. Further testing is done 

to ensure the consistency and validity of the testing process. Luminescence and 

SEM are used to analyze the reduction in bacteria load and changes to bacteria 

morphology, respectively. 
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Figure 2: Research flow chart 
 
2.2 Thesis Structure 

 
Chapter 1 provides background information about antibacterial nanomaterials, 

with emphasis on nanomaterial morphology and physical mechanisms. A potential 

application for the research in this thesis is also discussed in detail – microbial 

contamination of metalworking fluids. Motivations and objectives for the research are 

presented in Chapter 2. 

Chapters 3 and 4 consist of nanomaterial fabrication – nanoparticles in Chapter 3 

and surface treatment and nanostructure coating generation in Chapter 4. The fabrication 

of V2O5 nanomaterials is discussed in Chapters 3 and 4. Vanadium pentoxide 

nanomaterials have been shown to be useful additives in batteries due to their excellent 

electrical and thermal properties [45-47]. Multiple morphologies have been fabricated in 

literature, including nanowires [48], rods [49], spheres [50], sheets [51], and tubes [52]. 

Antibacterial Nanomaterials 

1) Nanoparticle 
Fabrication 

2) Surface Treatments 
and 

Coating Generation 

3) Nanoparticle Bacteria 
Testing 

4) Nanostructure 
Bacteria Testing 

Understanding and Future Applications 
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The resulting morphologies rely heavily on the methods of fabrication [53]. Few studies 

the antibacterial performance of V2O5 nanomaterials, with research contained to 

nanowires [48] and silver-loaded V2O5 nanotubes [54]. 

Bacteria testing with nanoparticles in discussed in Chapter 5, while bacteria testing 

with nanostructures on metallic substrates is presented and discussed in Chapter 6. 

Chapters 5 and 6 of this research tests the treatment of bacterium Staphylococcus aureus 

with various nanomaterials in vitro. S. aureus is a gram-positive, spherical bacterium 

(cocci) that is commonly found on human skin, nose, respiratory tract, and the lower 

reproductive tract in women. S. aureus can form “grape-like” clusters and causes a wide 

variety of diseases. The organism is a chemoorganotrophic (can oxidize chemical bonds 

in organic compounds for energy) and is a facultative anaerobe (can grow without oxygen) 

[55].  

20-30% of humans carry S. aureus on their bodies [56]. The bacteria are not always 

pathogenic (only certain strains are virulent). These virulent strains can cause a variety of 

infections, ranging from common to life-threatening. One of five most common causes of 

hospital-acquired infections [57]. Approximately 50,000 deaths each year are caused by 

S. aureus [58]. Wound infections after surgery and biofilms on medical devices in human 

body or on human tissue are one of the most common causes of infection. 

S. aureus has high levels of antibiotic resistance, particularly β-lactam antibiotics 

due to its production of β-lactamase [59]. Methicillin-resistant Staphylococcus aureus 

(MRSA) is of particular concern and can cause dangerous infections. New methods of 

treatment of S. aureus are an important area of research and are investigated further on. 

Conclusions and future research are discussed in depth in Chapter 7. 
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CHAPTER III 

NANOPARTICLE FABRICATION 

 

Three different types of nanoparticles were fabricated for this experiment – 

Zirconium phosphate (ZrP), Yttrium oxide (Y2O3), and Vanadium oxide (V2O5). All three 

used a hydrothermal method for preparation. Different morphologies resulted for each 

nanoparticle – nanoplatelets for the ZrP sample, a mixture of nanotubes and nanosheets 

for the Y2O3 sample, and nanosheets for the V2O5 sample. All chemicals in these studies 

were purchased from Sigma-Aldrich. 

 

3.1 ZrP Nanoplatelets 

 

The method used to fabricate the ZrP nanoplatelets was derived from literature 

[45, 60]. ZrP nanoplatelets can be prepared with a variety of methods including a reflux 

method, hydrothermal method, and hydrofluoric acid method. Zirconium phosphate 

nanoparticles were prepared with a hydrothermal method. The hydrothermal method 

allows for higher aspect ratios for the nanoplatelets in comparison to the reflux method, 

as well as more consistent sizes for the nanoplatelets [60]. This method also is safer than 

the hydrofluoric method due to the lack of HF in the process. These nanoplatelets have 

been shown in literature to have anti-wear and lubricating properties.  

 

ZrP Nanoplatelet Synthesis 

1) 4.0g of zirconyl chloride octahydrate (ZrOCl2×8H2O, >99.0 wt%, Sigma-Aldrich) 

was mixed with 40.0 mL of 12M H3PO4. 

2) The solution was transferred to a Teflon-lined pressure vessel. The vessel was 

sealed and heated to 200°C for 24 hours. 

3) The products were washed with DI water and centrifuged at 5000rpm three times. 

4) Dried at 65°C for 24 hours. 
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5) The resulting product was collected and ground with a mortar and pestle into a 

powder.  

 

Analysis 

Previous studies have characterized these nanoplatelets with optical microscopy, 

SEM, AFM, and XPS to verify morphology and chemical composition. The resulting 

morphology was a-ZrP nanoplatelets of approximately 1µm in lateral dimension with a 

thickness 200-400 times thinner than the lateral dimension [45, 60]. 

 

3.2 V2O5 Nanoparticles 

 

Vanadium oxide (V2O5) nanoparticles were fabricated with a hydrothermal 

process as used previously in literature [46, 61, 62]. The nanoparticles were made in 

conjunction with a V2O5-based nanostructure, which is discussion in detail in Chapter 4. 

First, a V2O5 precursor was prepared in a reaction with H2O2. The precursor underwent a 

hydrothermal process to obtain a final product of V2O5 nanoparticles.  

 

V2O5 precursor preparation 

1) Suspend 0.5 mmol (90.9 mg) of V2O5 bulk powder (99.99%) in 23.5 mL of DI 

water with magnetic stirring 

2) When fully combined (uniform appearance), 1.5 mL H2O2 solution (30% w/w in 

H2O) was added dropwise (while still stirring) 

3) Bubbles formed as the H2O2 solution was added and stirred 

4) The suspension became clearer and more transparent after approximately 40 

minutes of stirring 

 

Precursor reaction after mixing V2O5 powder and H2O2 solution: 

V"O$ + 4H"O" → 2[VO(O")"(OH")]. + 2H/ + H"O 
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V"O$ + 2H/ + 4H"O" + 3H"O → 2[VO(O")(OH")1]/ + O" 

 

2[VO(O")"(OH")]. + 4H/ + 2H"O → 2[VO(O")(OH")1]/ + O" 

 

2[VO(O")(OH")1]/ → 2[VO"]/ + O" + 6H"O 

 

Synthesis of V2O5 nanoparticles 

1) V2O5 precursor suspension was added to a Teflon hydrothermal autoclave 

2) Ni/Porous Ni substrate (as described in Chapter 4) was added directly into the 

suspension 

3) Autoclave was sealed and underwent the autoclave process for 7 hours at 180°C 

4) Autoclave cooled naturally in the air 

5) Autoclave chamber was opened, and three products were found: black Ni/Porous 

Ni/V2O5 samples, a green precipitation, and clear colorless liquid 

6) The precipitant and the black Ni/Porous Ni/V2O5 samples were cleaned with 

ethanol and DI water, dried in vacuum chamber overnight at 70°C 

7) Annealed for 30 minutes at 350°C 

8) The resulting product is a dark brown powder of V2O5 nanoparticles. 

 

Analysis 

 The resulting morphology of the nanoparticles made with this method are 

nanosheets, as seen in literature [51]. Dimensions of the nanosheets range from 500nm to 

tens of microns. Morphology of these nanosheets grown directly on a substrate (as seen in 

Chapter 4) hints that the lateral dimensions of the nanosheets may be from 2-5µm, but this 

needs to be affirmed through further testing. Additional analysis, particularly with SEM 

and EDS, should be performed in order to validate both the chemical composition and 

morphology of the fabricated nanomaterials. 
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3.3 Y2O3 Nanotubes and Nanosheets 

 

The method used for fabrication is found in literature [63]. Erbium-ytterbium-

doped yttrium oxide nanoparticles (Y2O3:Er3+, Yb3+) were prepared with a hydrothermal 

method. The resulting morphology was a mix of nanotubes and nanosheets. Different 

morphologies can be fabricated by changing the reaction temperature and pH values. 

These nanoparticles have been shown in literature to have applications in bioimaging [64], 

optical engineering [65], and lubrication [66, 67]. 

 

Preparation of Y2O3 nanotubes and nanosheets 

1) 1.34g of Y2O3 powder (>99.99%, Sigma-Aldrich) was dissolved into 250 mL of 

HNO3 solution (2.8 wt%) at 60°C. This produced a transparent yttrium nitrate 

solution. 

2) 27 mg of Er(NO3)3×5H2O and 3 mg of Yb(NO3)3×5H2O was added to the solution 

3) The pH of the solution was adjusted to 7.0 by adding a KOH solution (15 wt%) 

4) After adding the correct amount of KOH solution, the resulting volume was 900 

mL 

5) This solution was transferred into a 2L Teflon-lined pressure vessel. The vessel 

was sealed and heated to 200°C for 12 hours 

6) The vessel was let to naturally cool to room temperature. 

7) The precipitation was collected with centrifugation, washed with DI water three 

times, and dried at room temperature. This yielded a resulting precursor. 

8) The precursor was then calcined at 1000°C for 3 hours in air to yield a mixture of 

Y2O3:Er3+, Yb3+ nanotubes and nanosheets. 

 

Analysis 

 TEM imaging was used in literature to analyze the fabricated nanotubes and 

nanosheets. The nanotubes were 200nm long, with diameters ranging from 20-50nm. The 
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nanosheets were approximately 250nm in lateral dimension. A high amount of 

crystallinity was observed in the samples. XRD was also used to confirm the chemical 

composition of the samples. 
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CHAPTER IV 

FABRICATION OF NANOSTRUCTURED MATERIALS 

 

The goal of the surface treatment and coating generation was to fabricate 

nanostructured material containing V2O5 nanoparticles on a metallic substrate. The two 

main methods were a hydrothermal method and spin-coating. Multiple base substrate 

materials were used – namely nickel, aluminum, copper, and steel. These substrates are 

widely found and are common in many industrial applications. Surface preparation 

methods included sanding, chemical etching, electrodeposition, and leaving the surface 

as-received. SEM, optical microscopy, and roughness testing were used to analyze the 

samples, both for the surface preparation and the coating generation. 

 

4.1 Surface Preparation 

Materials 

Materials were selected upon ease of availability and to have a diversity of 

different substrate materials. Aluminum, steel, copper and nickel were selected as possible 

substrates for the coating generation. The nickel selected (alloy 200/201, shim stock, 

0.13mm thickness) had already been successfully fabricated with a V2O5 nanostructure in 

literature [47]. Images of the bulk material and substrate composition are below. 
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Figure 3: Bulk images of 4 selected substrate materials (from left) (a) aluminum 
corrosion coupon, (b) steel corrosion coupon, (c) copper shim stock, and (d) nickel 

shim stock 
 

Substrate materials composition, heat treatment, and grain structure 

Aluminum corrosion coupon, T6 heat treatment 

Composition   Si Fe Cu Mn Mg Cr Zn Ti 
 6061 alloy Max 0.8 0.7 0.40 0.15 1.2 0.35 0.25 0.15 
  Min 0.40   0.15   0.8 0.04     

Steel corrosion coupon, 883673 heat treatment 

Composition C Mn P S Si Ni Cr Mo Al Cu 
 1010 alloy 0.090 0.380 0.009 0.010 0.012 0.030 0.046 0.010 0.039 0.038 

Nickel Shim Stock 

Composition   Ni Fe C Mn Si Cu S 
 Ni 200/201 Max   0.40 0.15 0.35 0.35 0.25 0.01 
  Min 99.0             

Copper shim stock 

Composition   Cu O 
110 Cu Max 99.9   
  Min   0.05 

 

a b 

c d 
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Of the substrates used for fabrication, aluminum, copper, and nickel have a face-

centered-cubic (FCC) structure. In contrast, at room temperature, the steel sample used 

has a body-centered-cubic (BCC) structure. 

 

Methods 

Multiple methods of surface treatment were attempted before coating generation. 

The aim of the study was to find a low cost and efficient method of surface treatment that 

yielded a suitable coating. The four methods of surface treatment included sanding, 

chemical etching, electrodeposition, and as-received (no surface treatment). Materials 

were prepared in conjunction with the bacteria experiments in Chapter 6, so certain 

materials were eliminated due to other factors. This is described in detail in Chapter 6. 

The table below gives a summary of the surface treatments attempted. 

 

 Material 

Surface Treatment Aluminum Copper Nickel Steel 

As-received x x x x 

Sanding x x x x 

Chemical etching   x  

Electrodeposition   x  

 
Table 2: Surface preparation methods of metal substrates 

 

As-received: Materials were ultrasonically cleaned in acetone, DI water, and ethanol. 

Sanding: Materials were wet sanded with 400 grit silicon carbide sandpaper and water. 

The materials were then cleaned with acetone, DI water, and ethanol. 
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Chemical etching: Nickel was etched with 3M HNO3. The substrate was then cleaned 

with DI water, acetone, and ethanol. 

Electrodeposition: Nickel was prepared with an electrodeposition process using a salt 

and an anode. Two materials were used for as anodes: a carbon rod and another piece of 

cleaned nickel. The resulting structure was a Ni/Porous Ni substrate. 

 

Ni/Porous Ni substrate preparation with electrodeposition 

1) Cleaned with DI water, 0.1M HNO3, and ethanol (90%) and dried 

2) Electrodeposition 

a. Cathode: Ni sheet (99.0% Ni, 0.13mm thick) 

b. Anode 

i. Graphite rod (99.995% carbon, 6mm thick) 

ii. Ni sheet (same as cathode) 

Note: two different anodes were used and compared (separately, 

not at the same time) 

c. Aqueous electrolyte of 0.2M NiCl2 (98%) and 4.0M NH4Cl (>= 99.5%) 

d. Current density of 0.5 A/cm2 for 7 minutes 

3) Rinse with acetone, DI water, and ethanol 

4) Vacuum dried overnight at 70°C 

The electrodeposition process attempts to fabricate a porous surface on the nickel 

substrate. This porous structure consisted of micro-channels of 10-20µm in diameter as 

described in literature [47]. The resulted from the streams of H2 bubbles during the 

electrodeposition process. Initially, the carbon rod was used as an anode. The anode was 

switched to a Ni sheet after difficulty in producing a consistent surface (to the naked eye) 

during the process. Images of the electrodeposited surfaces can be seen in Figure 9 and in 

literature [47]. 
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Sample Analysis 

Surface Roughness 

Surface roughness was characterized with a Mahr Perthometer M2. This 

instrument uses a stylus tip in contact with the surface to measure surface roughness. Three 

measurements were taken for each material and surface treatment combination (in 

different locations on the surface) and averaged. This allowed for a consistent and accurate 

characterization of the surface roughness for each sample. Ra is the average roughness, 

the arithmetic average of the surface profile, and Rz is the mean roughness depth (with 

five sampling lengths of 0.8mm). Surface roughness is taken over each sampling length 

and then averaged. 

 

 

  

Figure 4: Mahr Perthometer M2 used for surface roughness measurements 
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Material (results in µm) 

Surface 
Treatment Method 

Aluminum Copper Nickel Steel 

Avg 
Std 
Dev Avg Std Dev Avg Std Dev Avg Std Dev 

As-
received 

Ra 0.205 0.030 0.264 0.006 0.286 0.015 0.828 0.036 
Rz 1.86 0.33 1.74 0.11 2.18 0.07 4.76 0.36 

  
        

Sanding 
Ra 0.234 0.035     0.292 0.005 0.589 0.052 
Rz 2.03 0.03     2.63 0.11 3.22 0.19 

  
        

Chemical 
etching 

Ra         0.138 0.012     
Rz         1.14 0.10     

  
        

Electro-
deposition 

Ra         7.537 0.915     
Rz         39.70 3.65     

 
Table 3: Surface Roughness of metal substrates after surface preparation (results 
in µm). The sampling length used was 0.8mm. Note the high surface roughness for 

the electrodeposited surface. Standard deviations for all materials are within 
acceptable ranges in comparison to the means for both Ra and Rz measurements. 

 

Microscopy 
 

Prepared substrates were analyzed with a Keyence VHX-600K Digital 

Microscope. Samples were cleaned with DI water, acetone, and ethanol before microscopy 

to minimize contamination. Surface roughness and morphology were compared for each 

sample under a magnification of 200x. The electrodeposited surfaces of nickel were 

further analyzed with SEM, allowing a greater level of detail into the morphology. The 

analysis of the surface finishes before attempting coating generation may hint as to why 

certain combination of material and surface finish were successful while others were not. 
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 The as-received and cleaned samples had a wide range of surface finishes. This 

was expected as the nickel and copper samples were very smooth in comparison to the 

corrosion coupon samples of aluminum and steel. 

 

Figure 5: As-received/cleaned (a) nickel, (b) aluminum, (c) steel, 
(d) copper as viewed under an optical microscope (200x) 

a b 

c d 

a b 

c 

Figure 6: Sanded (400 grit, silicon carbide paper) (a) nickel, (b) aluminum, (c) steel 
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Sanding the samples resulted in more uniform surfaces that were similar in 

comparison to the other materials. This allowed the effects of the material irrespective of 

surface finish to be compared in the coating generation process further on. 

 

 
 

The nickel etched surface did not yield a visible change in comparison to the as-

received nickel in the Figure 5. 

Figure 7: Nickel etched with 3M nitric acid (HNO3) imaged with an optical 
microscope (200x) 
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The resulting morphologies of the electrodeposited nickel were quite different 

(Figure 8 for the nickel sheet anode and literature for the carbon rod anode [47]).  This in 

turn led to the nickel-V2O5 nanocomposite using the carbon anode electrodeposition 

having a more uniform distribution of V2O5 flowers compared to the nickel anode 

electrodeposition sample. The porous morphology of the nickel electrodeposited with the 

carbon rod has a more uniform morphology that may lead to better growth and deposition 

of the V2O5 nanostructure. In addition, the surface roughness values of the 

electrodeposited surfaces were much higher than the other surface preparation methods. 

This morphology difference is important and may play a role in the mechanism of 

treatment discussed in Chapter 6. 

 

Figure 8: Nickel with electrodeposition (nickel as anode) viewed with 
SEM (a) 100x, (b) 500x, (c) 1500x 

c 

a b 
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4.2 Coating Generation 

Two different methods were used to generate a V2O5 coating on the metallic 

substrate – spin-coating and a hydrothermal method. Successful coating was achieved with 

the nickel substrates treated with electrodeposition followed by a hydrothermal process. 

Other methods, substrates, and pre-coating generation surface treatments did not achieve 

the same level of consistency – both when viewed in bulk and under microscopy (optical 

and SEM). 

 

Hydrothermal Method 

V2O5 Nanostructure on Nickel/Porous Nickel Substrate 

The methods used below are described in literature [111]. A V2O5 precursor was 

first made, followed by a hydrothermal method, vacuuming drying, and annealing. The 

formation of V2O5 nanosheets on the electrodeposited nickel surface resulted from 2-

dimensional growth during the hydrothermal process. The porosity of the FCC-structured 

nickel allowed for the growth of the nanosheets directly on the substrate. The annealing 

process further increased the crystallinity. This growth mechanism was proposed and 

validated with SEM at various timepoints in literature [47] 

V2O5 precursor preparation 

5) Suspend 0.5 mmol (90.9 mg) of V2O5 bulk powder (99.99%) in 23.5 mL of DI 

water with magnetic stirring 

6) When fully combined (uniform appearance), 1.5 mL H2O2 solution (30% w/w in 

H2O) was added dropwise (while still stirring) 

7) Bubbles formed as the H2O2 solution was added and stirred 

8) The suspension became clearer and more transparent after approximately 40 

minutes of stirring 

Precursor reaction after mixing V2O5 powder and H2O2 solution: 
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V"O$ + 4H"O" → 2[VO(O")"(OH")]. + 2H/ + H"O 

 

V"O$ + 2H/ + 4H"O" + 3H"O → 2[VO(O")(OH")1]/ + O" 

 

2[VO(O")"(OH")]. + 4H/ + 2H"O → 2[VO(O")(OH")1]/ + O" 

 

2[VO(O")(OH")1]/ → 2[VO"]/ + O" + 6H"O 

Synthesis of V2O5 nanosheet structure 

9) V2O5 precursor suspension was added to a Teflon hydrothermal autoclave 

10) Ni/Porous Ni substrate was added directly into the suspension 

11) Autoclave was sealed and underwent the autoclave process for 7 hours at 180°C 

12) Autoclave cooled naturally in the air 

13) Autoclave chamber was opened, and three products were found: black Ni/Porous 

Ni/V2O5 samples, a green precipitation, and clear colorless liquid 

14) The precipitant and the black Ni/Porous Ni/V2O5 samples were clean with 

ethanol and DI water, dried in vacuum chamber overnight at 70°C 

15) Annealed for 30 minutes at 350°C 

 

Analysis 

 The as-fabricated Ni/V2O5 nanocomposite was analyzed with SEM. XRD has also 

been used for analysis in literature [47]. Figure 9 shows the morphology of the sample 

with electrodeposition with nickel. The morphology of the carbon anode electrodeposition 

can be seen in literature [47]. The Ni/V2O5 nanocomposite resulting from the nickel sheet 

electrodeposition was imaged with a Hitachi S4800 SEM. The samples in literature are 
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more clearly defined and higher consistency than that in Figure 9. The differing 

electrodeposition materials is on clear importance. 

 

 

Other Substrate Materials 

An identical hydrothermal method was done on copper, aluminum, steel, and 

nickel (with different surface preparations) substrates. The sanded copper substrate had a 

consistent black coating, similar to appearance to the nickel substrate. However, the 

coating came off of the substrate into liquid LB in the bacteria experiment (discussed in 

a b 

c 

Figure 9: V2O5 nanostructure on nickel electrodeposited substrate (nickel as anode) 
viewed with SEM (a) 100x, (b) 500x, (c) 1500x 
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Chapter 6), so the coating was unsuccessful. The as-received copper sample had a less 

consistent coating and also came off into the liquid LB (Chapter 6).  

 

 
The aluminum substrates (as seen below) did not achieve consistent coatings. 

The coating was blotchy and varied from yellow to green to black in appearance. 

 

The coating did not adhere to the steel substrate at all (for both as-received and 

sanded sample), so that coating process was also unsuccessful. This was not surprising 

b a 

Figure 10: Unsuccessful copper coating generation (a) as-received and (b) sanded. 

b a 

Figure 11: Unsuccessful aluminum coating generation (a) as-received and (b) sanded. 
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due to the different crystal structure of the steel (BCC) compared to the electrodeposited 

nickel (FCC). 

 

 

The nickel substrates without the electrodeposition also did not achieve consistent 

coatings. This shows that the electrodeposition process is an essential part of the Ni/V2O5 

nanocomposite. The lack of porosity and growth sites for the 2-dimensional V2O5 

nanosheets may have played a role in the unsuccessful deposition. The unsuccessful 

samples can be seen below. 

 

 

4.3 Discussion 

Implications 

These methods resulted in the successful fabrication of a 2-dimensional nickel-

V2O5 nanocomposite. These materials went on to be tested with bacteria (Chapter 6). This 

research also attempted to find alternative methods of fabrication of the nanocomposite, 

a b 

Figure 12: Unsuccessful steel coating generation (a) as-received and (b) sanded. 

a b 

c 

Figure 13: Unsuccessful nickel coating generation (a) as-received, (b) sanded, 
(c) chemically etched with HNO3. 
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both in terms of different base materials, different surface treatments, and different coating 

generation methods. This morphology difference of the electrodeposited nickel surfaces 

is of particular importance and may play a role in the mechanism of treatment discussed 

in Chapter 6. The morphology and crystal structure of the electrodeposited nickel 

facilitated the growth of the 2D V2O5 nanosheets directly on the substrate and allowed for 

a consistent and nanostructured surface finish. 

Limitations and Problems 

Many of the coating generation attempts were unsuccessful. This came from 

various reasons, including inadequate attachment of the coating to the substrate (such as 

the hydrothermal method with the copper sample), inconsistency from sample to sample 

(such as the aluminum samples that underwent the hydrothermal method, as well as the 

nickel samples that did not undergo electrodeposition), and simply lack of any 

attachment whatsoever, as seen in the steel substrate. 

There was also inconsistency in the electrodeposition of the nickel, as seen below. 

Variables, including time, voltage, surface area submerged, had to be carefully controlled 

to achieve a consistent surface treatment. A consistent surface was generally more easily 

Figure 14: Poor electrodeposition on nickel substrate. Notice the 
inconsistency, corrosion, and flaking on the samples. 
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achieved with using nickel as the anode (in comparison with the carbon rod), however, 

this resulted in a different surface morphology for the nickel/porous nickel substrate, 

which then resulted in a different morphology for the nickel V2O5 nanocomposite. Hence, 

despite it being easier to electrodeposit with the nickel anode, it may be necessary to use 

the carbon anode if that specific morphology is desired. 

Future Work 

Scalability of the surface preparation and coating generations is important, 

specifically when certain applications are considered. Larger industrial applications (such 

as in a tank containing metalworking fluids) require much larger surface areas than other 

applications. Electrodeposition and the hydrothermal method used for the successful V2O5 

coating generation are not as scalable as the other methods attempted. Future work can 

look at scaling up the scaling up the methods used, as well as attempted new methods that 

can achieve similar morphological and chemical properties. Certain combinations worked 

better than others, and many lessons were learned in the process. 

Different surface treatments could also be attempted, particularly in sanded with a 

much coarser grit. The surface roughness of the electrodeposited nickel was much higher 

than the other surface treatments, so perhaps a different surface treatment that could 

produce similar roughness levels could be successful. Electrodeposition of nickel onto 

other substrates could also be attempted. 

Further analysis of the samples, particularly with high-powered SEM and EDS, 

could help compare the different samples and potentially solve some of the issues in the 

fabrication process for the as-received, sanded, and etched samples. Copper has a natural 

antibacterial effect, so if a more stable coating could be achieved on the copper than 

perhaps this combination would be a better treatment than the nickel-V2O5 nanocomposite 

material. Further microscopy would allow the nanomorphology of other materials, like the 

copper-V2O5 nanocomposite to be studied in greater detail, and the methods and materials 

could possibly be improved.  
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CHAPTER V 

EFFECTS OF NANOPARTICLES ON BACTERIA 

 

This chapter discusses the treatment of methicillin-resistant S. aureus with various 

nanoparticles. Experiments were performed in vitro at the Texas A&M Health Science 

Center. Major results showed significant bacteria reduction with V2O5 nanoparticles, with 

a 92.4% reduction after 24 hours at a concentration 500µg/mL, and reductions of 96.7% 

and 94.3% with a concentration of 1mg/mL after 2 and 24 hours, respectively. Results 

were quantified in CFU/mL and used to show the potential of treatment of S. aureus with 

V2O5 nanoparticles. These experiments were performed as a baseline before the bacteria-

nanostructured substrate tests described in Chapter 6. 

5.1 Nanoparticles  

 The nanoparticles tested were V2O5, Y2O3, and ZrP. The NPs were fabricated with 

the methods described in Chapter 3. The V2O2 nanoparticles have a nanosheet 

morphology, as reported in literature [47, 62]. Y2O3 nanoparticles consisted of a mix of 

nanosheets and nanotubes, while the ZrP nanoparticles consisted of nanosheets with lateral 

dimensions of 1µm. Neither Y2O3 nor ZrP nanomaterials have been shown in literature to 

have an antibacterial effect. One study showed antibacterial activity for V2O2 

nanoparticles, but for a different morphology (nanorods) [4], or in combination with Ag 

NPs, which have well known antibacterial effects [10]. 

The first step was to show that nanoparticles with specific morphologies are 

effective against bacteria. The V2O5 nanoparticles tested proved to be effective, as shown 

later on in this research. The next step for this research is further analysis with TEM to 

predict the antibacterial mechanism. This imaging may give insight into whether the 

treatment is bacteriostatic or bactericidal. At the beginning of this experiment, the initial 

concentration tested was 100µg/mL. This concentration, however, did not show a decrease 

in bacteria proliferation in any of the experimental samples compared to the control. The 
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concentrations were increased to 500µg/mL and 1 mg/mL, at which point decreases in 

bacteria proliferation were seen. The difference at 2 hours and 500µg/mL was not 

statistically significant, which may indicate that the MIC (minimum inhibitory 

concentration) for the treatment is between these two concentrations. Further treatment 

may allow for a MIC to be determined. More testing and analysis are needed before a 

conclusion can be formed. 

 

5.2 Cell culture 

S. aureus Xen36 was selected as the bacteria for this experiment. S. aureus is a 

common gram-positive bacterium used for in vitro study. The Xen36 strain contains a 

copy of the Photorhabdus luminescens lux operon, which gives the bacteria 

bioluminescence. This allows for real-time monitoring of the bacterial load during 

luminescence assays. Bacteria was cultured in liquid media in 96 well plates, and the initial 

and final bacteria concentrations were quantified in CFU/mL. 

1) S. aureus Xen36 was inoculated into liquid LB and incubated overnight. The 

concentration was determined with a Nanodrop spectrophotometer and diluted to 

a starting concentration of 4.50*105 CFU/mL with liquid LB. 

2) 10mg of each nanomaterial was weighed. 

3) An initial dilution of 10mg/mL for each nanomaterial sample was made with DI 

water and vortexed. 

4) The samples were then diluted down to the desired testing concentrations of 

500µg/mL and 1mg/mL with liquid LB containing S. aureus. 

5) Using a 96 well plate, 150µL was deposited per well. The test was performed in 

triplicate (three wells were used per concentration). 

6) Samples were incubated for both two and 24 hours at 37°C. 

7) When the incubation period was finished, the samples were removed from the 

incubator and were testing for luminescence. Results were quantified in CPS 
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(counts per second). Three measurements were taken for each well and the results 

were recorded. 

8) Based on the luminescence results, the CFU/mL was tested using serial dilutions 

and plate counting. 100 µL was deposited for three different concentrations 

(ranging from neat to 109) onto LB agar plates. Three depositions were performed 

for each concentration for each sample. These plates were incubated overnight 

before counting the plates. The CFU/mL for each sample was determined and 

recorded. 

9) Samples for each liquid culture were fixed for further analysis. SEM and optical 

microscopy were used to analyze the resulting bacteria cell morphology and 

thereby predict the treatment morphology. 

 

5.3  Effects of NPs on cells 

Summary 

The V2O2 nanosheets proved to be effective against S. aureus. Neither the ZrP nanosheets 

or the mixture of Y2O3 nanotubes or nanosheets were effective at either concentration or 

after either treatment time period. 

Zirconium phosphate 

 The ZrP nanoparticles did not show an effect against S. aureus. The bacteria load 

was actually higher for the ZrP culture than the control for both NP concentrations and 

incubation times. The bacteria count ranged from 10% (1mg/mL, 2 hours incubation) to 

61.3% (1mg/mL, 24 hours incubation) higher than the control, but neither of these 

differences is of statistical significance. 

Vanadium oxide 

Significant antibacterial activity was seen in the V2O5 sample at a concentration of 

1mg/mL after 2 hours incubation (96.73% decrease) and at both 500µg/mL and 1mg/mL 

concentrations after 24 hours (92.44% and 94.30% decreases, respectively). 
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Yttrium oxide 

 The Y2O3 nanomaterials were also not effective against S. aureus. At the 

500µg/mL concentration, after both 2- and 24-hours of treatment. 

 

 
 

Figure 15: Plots showing the results for various nanoparticles cultured with S. 
aureus. 

 

The antibacterial effect was calculated with the formula: 

Percent	killing = 	
control − test

control ∗ 100 
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A positive value indicates a reduction in bacteria compared to the control. 90% killing 

indicates a one-log reduction, while 99% killing indicates a two-log reduction, and so 

forth. 

500 µg/mL, 2hours Avg 
(CFU/mL) Std Dev p-value Percent Killing 

ZrP 8.67E+06 2.78E+06 0.486 -26.8% 
V2O5 3.37E+06 6.24E+04 0.117 50.7% 
Y2O3 8.33E+06 2.46E+06 0.531 -22.0% 
Control 6.83E+06 1.84E+06 1 

 
     

500 µg/mL, 24 hours Avg Std Dev p-value Percent Killing 
ZrP 4.00E+09 7.07E+08 0.110 -50.0% 
V2O5 2.02E+08 2.25E+07 0.002 92.4% 
Y2O3 3.50E+09 7.07E+08 0.234 -31.3% 
Control 2.67E+09 1.65E+08 1 

 
     

1 mg/mL, 2 hours Avg Std Dev p-value Percent Killing 
ZrP 5.50E+06 1.41E+06 0.747 -10.0% 
V2O5 1.63E+05 1.93E+04 0.043 96.7% 
Y2O3 4.00E+06 7.07E+05 0.453 20.0% 
Control 5.00E+06 1.47E+06 1 

 
     

1 mg/mL, 24 hours Avg Std Dev p-value Percent Killing 
ZrP 2.50E+09 4.08E+08 0.068 -61.3% 
V2O5 8.83E+07 6.24E+06 0.005 94.3% 
Y2O3 1.55E+09 2.55E+08 1 0.0% 
Control 1.55E+09 1.47E+08 1 

 

 
Table 4: Nanoparticle and S. aureus culture results. Results are quantified in 
CFU/mL. A two-tailed t test for unequal variances was used, with significance 

determined with a p value <0.05. Tests were performed in triplicate. 
 

5.4 Summary 

This research shows potential viability of V2O5 nanoparticles in treating bacteria. 

There are, however, many variables that need to be considered before moving forward 
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with this project. Determining MIC through several tests of different concentrations and 

time periods is a possible next step. More importantly, toxicity testing of V2O5 

nanoparticles and imaging to determine possible mechanisms should be undertaken. 

Nanotechnology can have unintended consequences due to the lack of understanding of 

how nanoparticles interact with the environment, wildlife, and the human body, and 

further testing should be completed before potential applications can be identified. 

Different types of bacteria could also be tested, such as gram-negative model organisms 

E. coli and P. aeruginosa. These subsequent tests, coupled with microscopy, may help 

determine and understand the treatment mechanisms. Despite the need for further 

understanding before applications can be developed, this research sets a baseline to the 

potential of V2O5 nanoparticles as a treatment for bacteria. 

Future work includes the development of potential applications for the treatment. 

These applications will most likely have an industrial focus due to the toxicity seen in 

V2O5 powder. TEM imaging to view the interactions between the V2O5 would also be 

valuable to predict the mechanism of treatment. This research also indicates that 2-

dimension V2O5 nanomaterials as a whole may have a potential for treatment against 

bacteria, which sets the foundation for the work in the next chapter. 
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CHAPTER VI 

EFFECTS OF A V2O5-BASED NANOSTRUCTURE ON BACTERIA 

 

This chapter discusses the treatment of methicillin-resistant S. aureus with a 

nickel-V2O5 nanocomposite. Experiments were performed in vitro at the Texas A&M 

Health Science Center. Methods were developed to test potential antibacterial surfaces 

against bacteria cultured in liquid media. Major results showed a 99.1% reduction in 

bacteria with a V2O5-nanocomposite compared to the control after 24-hours of treatment. 

This reduction was not seen however after two hours of treatment. SEM imaging shows 

both the bacteria cells and the nanocomposite after testing, but resolution and material 

preparation difficulties did not allow for the S. aureus morphology of the control sample 

to be compared to the bacteria cultured with the nickel-V2O5 nanocomposite. 

This experiment also showed that morphology of the V2O5 nanostructure was very 

important in the antibacterial effects. An alternate morphology of Ni/V2O5 (as fabricated 

in Chapter 4) was tested with S. aureus, which did not reduce the bacterial load 

significantly after either 2- or 24-hours of treatment.  

 

6.1 V2O5 Nanocomposite 

The Ni/V2O5 nanocomposite tested and shown to be effective has a flower-like 

morphology of V2O5 nanosheets of a nickel substrate. SEM images can be seen in 

literature [47]. The purpose of this work was to show the viability of using a V2O5-based 

nanocomposite as a treatment against S. aureus. The first step of the experimental process 

was to develop testing methods to test the antibacterial surface with bacteria cultured in 

liquid LB. A control experiment was performed to validate the consistency of the testing 

protocol. The next step was to show the effectiveness of the fabricated V2O5 

nanocomposite against S. aureus.  
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A main point of consideration was how to compare and analyze the results. There 

is not a baseline for antibacterial surface effectiveness, and comparing the nanostructure 

to just a positive, liquid-only control is problematic due to possible effects from the 

substrate (as the nanostructure is the main item of interest). After deliberation, a 

methodology was devised. A cleaned sample of the substrate would be used for the 

control. This would allow the percent reduction to be calculated, and nanocomposites with 

different substrate materials could be compared. 

 

6.2 Cell Culture 

S. aureus Xen36 was selected as the bacteria for this experiment. S. aureus is a 

common gram-positive bacterium used for in vitro study. The Xen36 strain contains a 

copy of the Photorhabdus luminescens lux operon, which gives the bacteria 

bioluminescence [68]. This allows for real-time monitoring of the bacterial load during 

luminescence assays. Bacteria was cultured in liquid media in 12 well tissue plates and 

incubated with shaking. 

 

1) Care was used in handling the samples and were moved by holding them on the 

edge with forceps. 

2) S. aureus Xen36 was inoculated into liquid LB and incubated overnight. The 

concentration was determined with a Nanodrop spectrophotometer and diluted to 

a starting concentration of 103 CFU/mL with liquid LB.  

3) Samples (approximately 1cm x 1cm in dimension) were sterilized in 70% ethanol 

for 30 minutes. The samples were let dry completely in a biosafety cabinet to 

minimize contamination. 

4) After drying, each sample was placed in a well of a 12 well tissue culture plate. 

5) Two mL of the bacteria liquid culture was deposited in each well (enough to fully 

cover sample). 
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6) The well plate was covered and placed on the shaking incubator with the well taped 

to the shaker for security. The shaker was set to 110 rpm with an incubation time 

of two or 24 hours. 

7) When the incubation period was finished, the samples were removed from the 

incubator and were testing for luminescence. Results were quantified in CPS 

(counts per second). Three measurements were taken for each well and the results 

were recorded. 

8) Based on the luminescence results, the CFU/mL was tested using serial dilutions 

and plate counting. 100 µL was deposited for three different concentrations 

(ranging from neat to 10^9) onto LB agar plates. Three depositions were performed 

for each concentration for each sample. These plates were incubated overnight 

before counting the plates. 

9) Samples for each liquid culture were fixed for further analysis. SEM and optical 

microscopy were used to analyze the resulting bacteria cell morphology and 

thereby predict the treatment mechanism. 
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6.3 Results 

Luminescence Testing 

Results were quantified with luminescence testing in counts/second (CPS). Initial 

testing during the development of the experimental methods were performed and showed 

a linear trend with CFU/mL and CPS with this. Future testing should confirm that data 

with CFU results. 

 

 

Table 5: Ni/V2O5 Nanocomposite and S. aureus culture results. 0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

Ni w/ V2O5 Ni Control Positive Control

Luminescence
(CPS = 

counts/s)

Nickel with V2O5 Nanostructure 2h incubation

Figure 16: Results of the bacteria testing with V2O5 nanocomposite after 2 
hours. 
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Table 6: Results of the bacteria cultured with V2O5 nanocomposite after 2 and 24 
hours of treatment 

 

  

2-hour incubation Average Std Dev Percent killing 
Ni w/ V2O5 nanostructure 1.94E+03  -9.79% 
Ni control 1.77E+03 7.56E+01  
Positive control 2.34E+03 3.66E+02  

24-hour incubation Average Std Dev Percent killing 
Ni w/ V2O5 nanostructure 1.36E+04 2.74E+02 99.11% 
Ni control 1.53E+06 1.55E+05  
Positive control 1.83E+06 1.49E+04  

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

Ni w/ V2O5 Ni control Positive control

Luminescence
(CPS = 

counts/s)

Nickel with V2O5 Nanostructure 24 h incubation

Figure 17: Results of the bacteria testing with V2O5 nanocomposite after 24 
hours. 
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Imaging  

 After testing, the sample were prepared for SEM imaging. Liquid LB containing 

bacteria was removed from the culture, fixed with glutaraldehyde, and dehydrated with an 

ethanol series before imaging. Images of S. aureus for the control and test samples are 

seen below in Figures 18 and 19. Difficulties in obtaining a sufficient resolution did not 

allow the morphology of the bacteria cells to be compared as rigorously as desired. The 

blurry imaging (particularly in Figure 19) may be caused by insufficient drying during the 

fixation process. The shape and size of the individual cells can be in Figure 18. Further 

imaging should be completed in the future, with particular consideration on the fixing and 

dehydrating processes. 

Figure 18: SEM imaging of S. aureus after incubation for 2 hours. Bacteria was 
fixed with a glutaraldehyde solution and dehydrated with ethanol before imaging. 
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Figure 19: SEM imaging of the Ni/V2O5 nanocomposite after incubation with S. 
aureus at magnifications of (a) 500x, (b) 1000x, and (c) 1500x.  

a b 

c 

Figure 20: SEM imaging of bacteria in the liquid LB cultured with the Ni/V2O5 nanocomposite. 
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SEM of the Ni/V2O5 nanocomposite is seen above in Figure 19. Similar to Figures 

27 and 28, the resolution was not high enough to determine if individual S. aureus cells 

were left on the surface after the fixing and dehydrating process. 

SEM imaging of the samples did not yield conclusive details about the bacteria 

and material interactions. Magnifications of higher than 1500x did not yield images of 

high resolution. The method of preparing the samples for imaging (fixing with a 

glutaraldehyde solution and dehydrating with ethanol) could also be an issue. Future work 

involving higher resolution imaging (either with different SEM equipment or with better 

material preparation) is key to predicting the bacteria-material interactions.  

 
6.4 Discussion 

A total of eight experiments were performed in the development of the 

experimental methods. Initially, the samples were incubation without shaking. Shaking 

was added after the first experiment to possibly increase the amount of interaction between 

the bacteria and the nanostructure surface and to increase the consistency of the results. 

The shaking machine can be seen in Figure 21. This shaking facilitated the testing of the 

stability of the coating in liquid LB. This led to the removal of one of the substrate 

materials from the testing pool, as discussed later. 

 

 Picking the ideal tissue well size was an important part of the methods 

development. Initially, 6-well tissue culture plates were used. These wells were 34.8mm 

in diameter and a well volume of 16.8mL (Sigma-Aldrich). Results from the first test were 

Figure 21: Well plate incubating on a shaker 



 

47 

 

inconsistent (Figure 23), and well size was identified as a possible cause due to drying out 

of the samples during tested. Well size was switched to a 12-well tissue plate which had a 

smaller well volume of 22.1mm and a well volume of 6.9mL. Well size is compared in 

Figure 22. The goal was to lower the surface area of the liquid and decrease the drying out 

of the sample, which would then hopefully lead to more consistent results. 

 
Figure 23: Plot showing the inconsistency in the 6 well plate. Notice the large 

standard deviation in the copper control compared to the mean. Conclusions 
cannot be drawn from this data due to the inconsistency of the control. 

 

Figure 22: Images comparing the different well sizes used (a) 6 well plate and (b) 
12 well plate. Coating coming off from the copper substrate can also be seen in all 

three samples on the top row in (a) 
 

a b 

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

Cu w/ v2o5 Cu control Positive control

Luminescence
(CPS = 

counts/s)

Copper Substrate Test with a 6 well plate
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 Coating durability was also an area of concern. As seen in Chapter 4, the copper 

sample prepped with sanding resulted in a consistent surface coating. However, when 

tested in liquid LB with shaking, the coating was not durable and leached into the liquid 

(as seen in Figure 22 and 24). Copper was eliminated from the testing pool due to this 

issue. This issue was also the case for some of the aluminum samples (Figure 24). 

Aluminum was also eliminated as a potential substrate partially due to this issue. 

 

 Incubation time is also important. Differences, particularly for the Ni/V2O5 

sample prepared with electrodeposition with the carbon rod, are notable. This sample 

showed a 99.1% reduction in bacteria compared to the control over 24 hours, but no 

reduction was seen at the 2-hour time point. Testing multiple incubation times in 

important for future work. Multiple data points will allow a curve to be established and 

for the mechanism to be better understood. Incubation time results can also affect the 

potential applications for this treatment. 

   

Control Experiment 

As discussed in the methods section of this chapter, a control experiment was run 

to validate the consistency of the control samples. This data from the control reinforced 

a b c 

Figure 24: Image of (a) Ni-V2O5, (b) Cu-V2O5, and (c) Al-V2O5 in liquid LB 

cultured with S. aureus after 24 hours of incubation with. The coatings on the 

Cu-V2O5 and the Al-V2O5 samples were not durable and came off/leached into 

the liquid LB. The coating on the nickel substrate was much more durable and 

did not visibility come off/leach into the liquid. 
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the confidence in the validity of the testing protocol, specifically after the previously 

variables were adjusted (shaking, well size, triplicate testing). Samples of the nickel 

control and the aluminum control, as well as the positive liquid-only controls, were testing 

to validate the consistency. Experimental setup is seen in Figure 25 with the results of the 

experiment in Figure 26. The means of the controls were similar within their materials. 

The aluminum control showed a strong antibacterial effect in comparison to the other 

controls. The nickel, however, had similar CPS values to the positive control with small 

standard deviations. 

 
 

      

Figure 25: Control experiment with aluminum 6061 (top row) and nickel 
substrates (second row), (a) before incubation and (b) after incubation. The 

positive control is in the third row in both photos. 

a b 



 

50 

 

 
Figure 26: Control experiment with aluminum and nickel substrate, along with a 

positive control without a substrate. 
 

Due to the results from the control experiment, the composition of the substrates, 

particularly the aluminum samples, were also scrutinized. The aluminum substrate was 

6061 aluminum, which contains trace amounts of copper (0.4%) and other elements (see 

Chapter 4 for more information on substrate composition). This copper in the material 

may be having an antibacterial effect during the experiment and may be affecting the 

results. We decided to focus on the nickel substrate after this test. Possible future testing 

and fabrication could use an aluminum alloy that does not contain copper. 

 

  

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

Al 6061 control Ni control Positive control

Luminescence
(CPS = 

counts/s)

Control Test
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Nanostructure Morphology 

      

 
 
 
 
 
 
 
Table 7: The results above show the difference in antibacterial activity for the two 

different Ni/V2O5 nanocomposite morphologies. The different morphologies can be 
seen in literature for sample 1 and in Figure 9 for sample 2 [47]. Negative values 

indicate increased growth and positive values indicate reduction in comparison to 
the control. 

 

The results for the different morphologies are significant. One morphology yielded 

a 99.1% reduction, while the other lead to increases of over 250% in comparison to the 

control. While this is still just an initial viability test, future testing should be conducted, 

particularly with multiple samples and after 2 and 24 hours of treatment. 

 

Possible Mechanisms 

Multiple mechanisms could be accounting for the antibacterial effects seen for the 

nanostructured V2O2 on nickel substrate. One such proposed mechanism for the 

antibacterial effect of the is illustrated below in Figure 27. This mechanism is similar to 

that of the graphene nanosheets and E. coli discussed in detail in Chapter 1. The sharp 

edges and morphology of the deposited nanosheets could be damaging the cell wall of the 

bacteria, causing leakage of intracellular components out of the cell. This mechanism has 

been shown in literature for nanoparticles with a similar morphology to the fabricated 

V2O5 nanomaterials discussed in this research [41], but the mechanism has not been seen 

or applied for antibacterial surfaces.  

2-hour incubation Percent killing 
Ni w/ V2O5 sample 1 -9.8% 
Ni w/ V2O5 sample 2 20.7% 

24-hour incubation Percent killing 
Ni w/ V2O5 sample 1 99.1% 
Ni w/ V2O5 sample 2 -253.1% 
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Other proposed mechanisms include reduced adhesion to the surface [69], 

disruption of the permeability of the cellular membrane [70], and formation of reactive 

oxygen species (ROS) [71], all of which have been shown for other antibacterial 

nanomaterials. 

 

6.5 Summary 

This research shows the viability of using a V2O5 nanocomposite surface in 

treating bacteria. Effective treatment was show over 24-hour time periods. SEM imaging 

of both S. aureus controls and those incubated with the Ni/V2O5 nanocomposite were 

inconclusive for validating potential mechanisms. Greater imaging resolution and better 

material preparation is needed for higher quality imaging of bacteria morphology. Further 

imaging may allow for a more accurate prediction of a possible mechanism of treatment. 

A proposed mechanism for the material-bacteria interaction involving damage to the 

bacteria membrane and leakage of intercellular components out of the cell is illustrated 

and presented. 

Figure 27: One of the proposed mechanisms for the antibacterial effect of Ni/V2O5 
nanocomposite. The sharp edges of the deposited nanosheets cut through the cell wall 

and lead to leakage of intracellular components 
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Future work should further replicate and confirm the antibacterial effect after 

various times of treatment. This would further allow the mechanism to be studied and to 

understand the difference between the 2- and 24-hour incubation periods. This will help 

development a trend for the amount of time needed for effective bacteria reduction and 

will further shed light on the treatment mechanism. This project would also benefit from 

multiple trials of the same experiment to validate consistency of the data.  
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CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH 

 

Antibacterial nanomaterials are an important area of current research due to 

potential new methods and physical mechanisms of treatment. These antibacterial 

nanomaterials have a wide range of potential applications, including manufacturing, water 

treatment, oil/gas, and biomedicine. Several nanoparticles and nanostructures were 

fabricated using a variety of substrate materials, surface treatments, and coating generation 

methods. Bacterium S. aureus was tested with the fabricated nanoparticles and 

nanostructures. The inserted bioluminescence lux operon in the strain used (S. aureus 

Xen36) allowed for quick determinations of the bacterial loads. Following bacteria testing 

and microscopic analysis, V2O5 nanomaterials were shown to have potential as 

antibacterial agents. 

 

The major findings are summarized in the following. 

1. The nanoparticles of V2O5 showed potential for antibacterial treatment. Results 

indicated that they are effective after 2 and 24-hours of treatment when tested in 

vivo against S. aureus, with a decrease in bacterial load of 92.4%, 96.7%, and 

94.3% at concentrations of 500ug/mL for 24 hours, 1mg/mL for 2 hours, and 

1mg/mL for 24 hours, respectively. In addition, the Ni/V2O5 nanocomposite 

caused a 99.1% decrease in bacterial load in comparison to the control.  

2. Nanostructured materials, including a Ni sheet deposited with nanostructured 

V2O5, were evaluated with S. aureus. Results showed that the V2O5 nanostructured 

surfaces with sharp morphological characteristic do not promote cell proliferation. 

A physical model was proposed that the sharp morphology of the deposited V2O5 

nanosheets may be damaging the cell wall of cells and causing lysis. 

  



 

55 

 

Multiple future recommendations for expanded research and study remain: 

• The mechanism of treatment is also difficult to study without high quality electron 

microscopy. Bacteria morphology, particularly differences between the control 

samples and effective test samples will give hints towards the mechanism of treatment. 

Both individual cells and the interaction between the nanostructure and the cells should 

be imaged. Resolution of the images needs to be high in order to see these interactions. 

Multiple incubation time points and nanostructure morphologies should be studied. 

This will further allow the bacteriostatic and/or bactericidal effects of the materials to 

be studied. 

• Nanostructure durability is also an area of concern. Both the copper and aluminum 

substrates resulted in their coating coming off into the LB liquid during incubation. 

This was minimized in for the nickel substrates; however, this was not rigorously 

tested with quantitative analysis. Future testing could add comparing the weights of 

the nanocomposite before and after incubation to determine if any leaching of the 

coatings into the liquid or corrosion took place. The LB liquid could also be checked 

for the presence of V2O5 materials that came off of the nanocomposite. Improving the 

durability by preventing the leaching is also important is producing a reusable and 

environmentally friendly antibacterial surface. It is also important to show the 

mechanism of treatment, as the mechanism is not yet fully understood. 

• Future testing can also study different types of bacteria, including gram-negative and 

mycobacteria species. Showing effective treatment over a wide range of bacteria 

species could expand potential future applications and increase interest in the use of 

V2O5 nanomaterials for bacteria treatment. Further toxicity testing for V2O5 

nanomaterials is also lacking. Without this nanotoxicity data, use of these treatment 

methods may not be worth the risk due to potential health risks and environmental 

exposure. 
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APPENDIX 

TREATMENTS OF MICROBIAL CONTAMINATION IN 

METALWORKING FLUIDS 

 This research has one potential application. This section, background of this 

application and review of the state-of-the art is provided for future reference.   

A.1 Introduction 

Processes using metalworking fluids (MWFs) include machining, forging, 

and stamping [72]. These fluids are used to provide lubrication and cooling. In 

2016, the global MWF market size was valued at $9.62 billion (USD). 

Metalworking fluids fall under four categories: Insoluble (or straight oils), which 

contain 60-100% mineral oil, soluble oil (30-85% MO), semi-synthetic fluid (5-

30% MO), and synthetic fluid, which contains no mineral oil and is water-based 

[25, 73]. These different fluids represent a trade-off in MWFs between cooling and 

lubrication [74]. Metalworking fluid concentration, pH levels, microbial activity, 

emulsion stability, corrosion susceptibility and the addition of additives vary with 

application and the type of fluid used [75-77].  

 

Common Additives in Metalworking Fluids 

Anti-foam 

Anti-fogging 

Anti-wear 

Corrosion inhibitors 

Extreme pressure 

Odorizers/Fragrances 

pH buffers 

Stabilizers 
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Table 8: Common additives in MWFs [77] 
 

Microbial contamination of metalworking fluids is a major problem in the 

industry, due to the low effectiveness and lack of options in treatment methods. 

Add. Contamination and the bi-products of contamination (such as sludge and 

organic waste) can lead to fluid, tool, and workpiece degradation. Aerosolization 

of the fluid and contaminants is commonplace due to the high shear forces used in 

metalworking [73, 78, 79]. Exposure to these contaminants can have wide-ranging 

and long-lasting detrimental effects on workers, including dermatitis, asthma, and 

hypersensitivity pneumonitis [73]. Recently, governments around the world have 

placed regulations on the uses of MWFs due to the exposure risks [80-82]. here 

other review papers on MWFs.  Other literature reviews on microbial 

contamination, such as those by Saha et. al [75] and  do not provide a detailed look 

into treatment mechanisms or bacterial resistance to these mechanisms. This paper 

presents a literature review of treatment methods of microbial contamination in 

metalworking fluids, with an emphasis on mechanisms of treatment.  

a. Bacteria: 

The fluid environment of metalworking fluids is a favorable environment for 

bacterial growth [83]. Fatty acids, petroleum oil, and petroleum sulfonates act as 

food sources for bacterial species [84]. Over 100 different species of bacteria have 

been observed in metalworking fluids. Both gram-positive, gram-negative and 

mycobacteria have been observed [75, 78, 85, 86]. High degrees of microbial 

loading can be present in metalworking fluids, ranging from 10^4 to 10^10 

CFU/mL (colony-forming units). The types of bacteria and bacterial metabolic 

activity varies with the type of metalworking fluid and application. The most 

common genus found in MWFs is Pseudomonads [83]. Pseudomonas aeruginosa, 

Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes are common 

Pseudomonads found in MWFs [85, 87]. 
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Pseudomonas aeruginosa is a gram-negative bacterium with multi-drug 

resistance [88]. Exposure to the bacteria can lead to ventilator-associated 

pneumonia, sepsis syndromes, and other complications. P. aeruginosa has been 

known to form biofilms, increasing its resistance towards treatment [89]. 

Mycobacterium immunogenum is of particular concern in the metalworking 

industry. M. immunogenum is a non-tuberculosis causing mycobacteria. M. 

immunogenum is known to cause cancer, asthma, pulmonary infections, and of 

particular importance, hypersensitivity pneumonitis [76, 90-92]. Exposure to M. 

immunogenum is generally through inhalation of aerosolized bacteria. M. 

immunogenum has particularly high presence in the automotive industry [93]. This 

may be due to particular mix of materials and contaminants that are prevalent in 

the fluid in the industry, notably chromium, iron, and nickel [90]. The virulence of 

M. immunogenum is generally considered to be low compared to other species of 

mycobacteria (such as tuberculosis-causing mycobacteria), but the exposure and 

health hazards remain an issue in metalworking  [94]. 

The co-contaminant effect seen in metalworking fluids is of particular 

interest. This effect takes place when multiple bacteria species are present. This 

combination has shown to have a mutual protective mechanism for the bacteria 

[95]. This mechanism may change the uptake and distribution of biocides in the 

cells, thereby changing the concentration and effectiveness of the treatment. 

Selvaraju et. al has shown that P.  fluorescens, while in isolation has low virulence 

and is generally non-pathogenic, has shown to increase the biocide resistant of M. 

k immunogenum. This effect makes the study of treatment methods difficult, as  

testing treatment methods against particular bacterial species is not enough. 
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Table 9: Predominant Bacteria in MWFs [95-100] 

b. Biofilms: 

Biofilms can also be a problem in metalworking fluids. Biofilms 

are able to share nutrients as well as protect other bacterial cells in the 

biofilm from harmful factors and treatment methods [101]. This shielding 

effect makes current treatment methods, such as biocides, and UV 

irradiation, less effective. Biofilms contain an abundance of bacterial 

species, making selective treatment, such as antibiotics, difficult [102]. 

Biofilms can also be resistant to cleaning and replacing of fluid [103]. 
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Water-containing environments, such as synthetic metalworking fluids can 

lead to greater biofilm formation [102, 104]. 

c. Bacterial Detection: 

Tracking the bacterial load is an important step in evaluating both 

the efficacy and effectiveness of treatment methods [105]. qPCR 

(Quantitative Polymerase Chain Reaction) is generally used to track the 

real-time bacterial load in metalworking fluids [90]. FISH (fluorescent in 

situ hybridization) [75], DGGE (Denaturing gradient gel electrophoresis) 

[87], FAME (fatty acid methyl ester) [106], and MTT assay (tetrazolium 

salt assay) [103] are also commonly used to track bacterial loads. 

 

A.2 Treatment Methods using Biocides 

Biocides can be built into the fluid as an additive or used at the end site 

during the cleaning and recycling process [107]. The most common treatment 

methods currently used are the use of biocides and cleaning and replacement of 

the fluid [25]. Major biocide types are displayed in Table 10. The most commonly 

used biocides in metalworking fluids are formaldehydes, isothiazolones, and 

phenols [83].  

 

a. Biocide Mechanisms: 

Bacterial growth refers to the increase in size of individual cells. 

Proliferation of bacteria refers to the increase in the number of cells through 

reproduction [25]. Biocides fall into two main categories based on their 

mechanisms of action – bacteriostatic and bactericidal [26]. Bacteriostatic 

biocides stop bacteria from reproducing and prevents the proliferation of the 

culture, while not necessarily killing the bacterial cells. Bactericidal biocides 

work by directly killing bacterial cells [27]. While at first glance bactericidal 
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biocides may seem superior to bacteriostatic biocides, it needs to be 

remembered that the success and flourishment of bacteria depends on the 

cultures ability to reproduce and proliferate. Due to the short life span of 

bacteria, bacteria cultures that cannot reproduce will die out quickly. Hence, 

depending on the mechanism and kinetics of the biocide, bacteriostatic 

biocides can be as effective as bactericidal biocides in dealing with the issue 

of microbial contamination in metalworking fluids [26].  

 
 

Table 10: Biocide Types and Mechanisms [27, 95, 101] 
(Most commonly used biocides in MWFs are in bold) 

Biocides do not have selective toxicity, which is the process of killing 

microbial cells but not the host cell [108]. This is in contrast to antibiotics, 
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which generally have selective toxicity. Since biocides are not used as 

medicines (again in contrast to antibiotics), this is not as large of an issue. The 

lack of selective toxicity can however lead to both health and environmental 

issues upon exposure and is an important factor for the heavy government 

regulation of biocidal products. Biocides do, however, have target specificity, 

similar to antibiotics. Biocides are designed to attack and disrupt specific 

cellular mechanisms and targets. Generally antibiotics attack one target, 

whereas biocides generally attack several [109]. The main target sites in 

bacteria for biocides are the cell wall, cytoplasmic membrane, and the 

cytoplasm. Cell wall and membrane damage can cause leakage and lysis, 

leading to cell death [27]. Biocides enter the cell through diffusion or through 

pores in the cell wall. The method of transport for the biocide depends on the 

biocide size, chemical makeup, and polarity [27]. 

An important property to consider of biocides (and of all additives used in 

metalworking fluids) is the potential for interactions with other additives [25]. 

These interactions can be either synergistic or antagonistic. Additives will 

many times show low or no effect when used singularly, but when used in 

conjunction with other additives, a larger effect is seen. This effect makes 

testing the efficacy of biocides difficult, as biocides many have different effects 

or kinetics in the presence of different additives. This effect has been seen with 

combinations of coolants and biocides in metalworking fluids, and the term 

“biocide potentiator” was termed by Bennett [25]. 

b. Cons of Biocides: 

Biocide Resistance: 

Bacteria in metalworking fluids commonly show resistance against 

biocides. Bacterial resistance mechanisms can either be intrinsic or acquired 

[110]. Gram-negative bacteria are generally more resistance than gram-

positive bacteria due to the outer membrane preventing treatment from entering 
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the cell. Furthermore, mycobacteria are generally more resistance to treatment 

than gram-negative bacteria [27]. Bacteria are generally less resistant to 

biocides in comparison to antibiotics. This may be due to the multi-target 

mechanisms used in biocides [109]. The primary intrinsic mechanisms used by 

bacteria is active efflux [111]. Active efflux uses active transport to move 

unwanted material through the cytoplasmic membrane and out of the cell. 

Other intrinsic mechanisms used by bacteria include the use of constitutive 

enzymes to degrade preservatives and biocides and spore coats. Acquired 

mechanisms include plasmid-mediated resistance, phenotypically-acquired 

resistance, and adaptations for homeostasis [110]. 

Biocide Regulations: 

The use of biocides is heavily regulated by the EPA (Environmental 

Protection Agency) in the United States and the European Union [81]. The 

Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), and reviews of 

the act, notably the Federal Environmental Pesticide Control Act (FEPCA) of 

1972 and the Pesticide Registration Improvement Act of 2003 (PRIA), give the 

EPA the authority to supervise the manufacture, sale, transport, and use of 

biocides in the United States [112]. New biocides must be approved for use by 

the EPA before use. 

c. Biocide Conclusion: 

The wide range of resistance mechanisms towards biocides makes biocidal 

treatment less effective and the development of new, successful biocides more 

difficult. Biocides are the most effective treatment of microbial contamination 

currently used in the metalworking fluid industry. However, the drawbacks to 

its use including inadequate effectiveness, microbial resistance, potential 

health and irritant problems, and regulations for use. These drawbacks show a 

potential need for different treatment methods. 
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A.3 Cleaning and Replacement of Fluid 

Cleaning, recycling, and replacing metalworking fluids is another method 

commonly used to treat microbial contamination [113]. All metalworking fluids are 

designed for long term use. Cleaning can be used to remove microorganisms, as well 

as remove the bi-products of these organisms, such as organic waste and sludge. 

a) Cleaning Mechanisms/Pros: 

Different methods are used to clean water-based fluids (synthetics) versus 

non-water-based fluids. In water-based fluids, many additives are attracted to the 

workpiece or other metal surfaces in the working environment. Over time, this 

causes additives to be removed from the fluid environment, which slowly 

decreases the concentration of additives in the fluid. In addition, additives can also 

be degraded by microbial activity, temperature, oxidation, filtration, and 

evaporation. These degradation processes lead to changes in the makeup of the 

MWF and reduces the effectiveness of both the additives and the fluid. As the 

water-based fluid ages, the composition of the fluid changes leading to poorer 

wettability and increased surface tension, which can lead to residual mineral oil 

build up that is not removed by the MWF. An important method of dealing with 

these changes in monitoring the fluid makeup, with a focus on the concentration, 

pH levels, microbial contamination, conductivity, and tramp oil [114]. 

In non-water-based fluids, the focus is the separation of the water phase 

from the oil phase. Important properties to monitor in non-water-based fluids 

include viscosity, TBN (total base number), TAN (total acid number), flash point, 

contamination by solids, density, and microbial contamination (which is less 

common than in water-based fluids [72]) [114]. 

The separation of the water phase from the chemical phase can be 

accomplished by chemical or physical means. An acid and salt process is the 

traditional chemical separation that was used, however, due to regulations and new 

technologies, this method is no longer used in Europe or the United States [114]. 
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Organic fraction is the current method of chemical separation that is generally 

used, and involves the anaerobic digestion of the organic waste [115, 116]. 

Methane is the main biproduct of this process. Physical separation methods include 

evaporation and membrane filtration [114]. 

b) Cons: 

Replacing fluid is not ideal for multiple reasons – mainly due to high cost 

and difficult and heavily regulated disposal procedures. The main problems with 

this method of treatment is prohibitive cost and not fully removing the bacteria 

[117]. The bacteria cannot ever be fully removed from cleaning and replacement 

alone [95], and the remaining bacteria will proliferate. For example [114], consider 

a fluid with a microbial load of 10^7 CFU/mL. 99.9% of the fluid is removed 

during the cleaning process, and new fluid is added to the system. The new 

concentration of bacteria is 10^4 CFU/mL. This is still quite high and will quickly 

proliferate to the original levels of contamination. This can also lead to increased 

levels of biocide and treatment resistance. In addition, biofilms have shown to be 

resistant to fluid cleaning and replacing [75, 103]. 

The recycling and disposal of metalworking fluids is heavily regulated in 

the United States and Europe. Regulations such as the Pollution Protection Act, 

Toxic Substances Control Act, Resource Conservation and Recovery Act (RCRA), 

have brought large changes to disposal regulations in the United States. Source 

reduction, which is the method of reducing waste before it is created, and on-site 

recycling was highly encouraged on a national scale [118]. These regulations make 

this method of dealing with contamination costly and labor intensive and make 

other treatment methods (particularly those that deal with the root cause of the 

problem) preferable. 
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A.4 UV Irradiation 

a) Mechanism: 

Ultraviolet irradiation uses short-wavelength ultraviolet (UV-C) light to 

kill bacteria [119]. The wavelength of UV-C is in the range of 200-280nm [75]. 

This method was first described in 1879 by Downes and Blunt [120]. The radiation 

damages the cell DNA by destroying nucleic acids. Dimerization of both RNA and 

DNA prevents the replication and cellular division. This leads to cell death. 

b) Pros: 

This method can be used in water and in air [121]. It is commonly used in 

the medical community to sterilize instruments and surfaces. Many factors affect 

the effectiveness in its use to treat bacteria, such as the intensity and wavelength 

of the UV light, the time of exposure, and the intrinsic bacterial susceptibility 

against UV [122]. 

c) Cons: 

In comparison to other treatment methods, UV irradiation has low 

antimicrobial performance [123, 124]. Exposure time is very important (usually 6-

8 hours are needed for effective treatment), which can lead to UV treatment being 

slower than other methods. UV light is also quickly attenuated by water and other 

liquids. Hence, UV irradiation is only effective in shallow and clear fluids [125] 

and surface decontamination and is harmful to eyes and skin [126]. While use in 

conjunction with biocides may solve some of the issues plaguing UV treatment, 

high cost and lack of ease of use make the technology less preferable than other 

treatments. 

A.5 Other Treatment Methods 

a) Thermophilic aerobic technology (TAT) 

Thermophilic aerobic technology (TAT) is a promising new treatment 

technology that can be used for preventing microbial contamination. While not 



 

79 

 

commonly used with MWFs, Rozich et. al have explored the use of this treatment 

in industrial waste [127]. TAT can reduce the bi-products of microbes in MWFs 

in a cost-effective and environmentally friendly way. TAT is used at the end use 

of the fluid, allowing the use in conjunction with cleaning and replacing the fluid 

while reducing the costs. The organic waste or sludge is initially sent to a 

thermophilic biological reactor, which digests and breaks down the waste. The 

waste is then sent to a solid separations system that separates the liquid waste 

from the solid. The liquid waste is removed from the system, while part of the 

solid waste returns to the thermophilic biological reactor, and the other solid waste 

is chemically treated before returning to the thermophilic biological reactor. The 

wastes are eventually converted to carbon dioxide and water. Up to 90% of 

organic waste and sludge can be removed using this process. A drawback to this 

process is that it treats the effects of microbial contamination and not the root 

cause. Many of the detrimental effects of contamination would still exist in the 

MWF, so a combination of TAT and other treatment methods would be necessary. 

b) Nanotechnology 

The use of technology in metalworking fluids is of high interest in current 

research. Much of the research has focused on improving the cooling and 

lubrication properties of the fluid [128-130], however a small amount of research 

has focused on microbial contamination. Bakalova et. al have shown that both Ag 

and SiO2 nanoparticles have antibacterial effects in metalworking fluids [131] 

while also having effects on friction and wear volume. These nanoparticles that 

have also shown antibacterial effects in vitro in other studies (need reference). The 

use of nanoparticles is not without drawbacks, as they can be aerosolized during 

the metalworking process [132] and may have toxic effects when inhaled [133, 

134]. 

Chang et. al developed a nanoemulsion that has shown antibacterial 

activity against multiple bacteria species, notably M. immunogenum and P. 
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aeruginosa, without the use of biocides [124]. The oil droplet size of 11nm is the 

smallest size that had been achieved thus far in literature. Biocidal effects were 

evident at concentrations from 1-5% in both the short and long-term. Emulsion 

stability, which is generally decreased with microbial contamination, also showed 

improvement with this method. 

The use of nanotechnology and materials in metalworking fluids is 

encouraging, and more research is necessary on these treatment methods, both in 

different types of nanoparticles and in interactions with other additives. 

A.6 Conclusion 

Microbial contamination of MWFs remains as a major problem in the 

metalworking industry. Many drawbacks for current treatment methods are 

evident. Biocides can be vulnerable to bacterial resistance and many times show 

inadequate antimicrobial performance. They also can have complex interactions 

with other additives, making their use difficult, and are heavily regulated due to 

health risks. UV irradiation has low-microbial performance compared to other 

methods and its energy is rapidly attenuated by liquid, making it only useful for 

surface decontamination and clear fluids. Biofilms are also an area of concern with 

UV irradiation. Cleaning and replacing fluid can be used to lower the bacterial load 

in MWFs, however this is expensive and is not fully effective in preventing and 

treating biofilms. New technologies such as thermophilic aerobic technology and 

the use of nanomaterials show promising potential, however more practice and 

research are necessary before these technologies can become widespread. 

 


