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ABSTRACT 

 

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), 

which is one of the leading infectious diseases worldwide. The current therapy for drug-

sensitive TB is complex and lasts for at least six months. Improper use of antibiotics 

during this regimen has led to the emergence of drug resistance, which represents a 

grave threat to human health. This problem is further exacerbated by the ability of the 

bacterium to persist in the host in a non-replicating state despite the use of antibiotics. 

The majority of antibiotics currently used to treat tuberculosis only affect replicating 

bacteria. Therefore, it is critical to develop new antitubercular drugs that can shorten the 

current therapy while maintaining activity against persistent bacteria as well as the drug-

resistant strains. In this dissertation, structural and drug discovery studies on Mtb 

proteins related to drug resistance and persistence are presented.  

InhA, the enoyl-ACP-reductase enzyme of the mycolic acid biosynthesis 

pathway, is the molecular target of the antitubercular prodrugs isoniazid and 

ethionamide, and it is one of the best validated targets for Mtb drug discovery. A target-

based high throughput screening and a structure-based drug design were performed to 

identify potent activation-free InhA inhibitors that were effective against drug-resistant 

Mtb strains. The molecular basis of InhA inhibition by these inhibitors was revealed by 

X-ray crystallography. In addition, the mode of action for ethionamide was revealed by 

using a cell-based activation system and X-ray crystallography. Furthermore, it was 

demonstrated that InhA is the clinically relevant primary target of isoniazid. The 
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regulation of InhA function was also studied, which revealed that phosphorylation of 

InhA occurs at its C-terminal. Phosphomimetic mutants showed that phosphorylation 

decreases InhA activity by decreasing the affinity toward cofactor NADH. The results of 

these studies are presented in Chapters II, III, IV, and V. 

It is essential to understand the physiology of the bacterium to target the 

persistent state of Mtb infection. In Chapter VI, I report our studies on CarD, an essential 

Mtb transcription regulator that is required for persistent infection. The structure of the 

CarD/RNAP complex was determined by X-ray crystallography and the CarD-DNA 

interactions were investigated.   
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CHAPTER I  

INTRODUCTION: FURTHERING OUR UNDERSTANDING OF DRUG 

SUSCEPTIBILITY, DRUG RESISTANCE AND PERSISTENCE OF Mycobacterium 

tuberculosis 

 

Background: Mycobacterium tuberculosis and TB 

 

Tuberculosis and Mtb pathogenesis 

Tuberculosis (TB) is an infectious disease that is as old as the history of 

humanity (Wirth et al., 2008). In humans, TB is caused mainly by the airborne pathogen 

Mycobacterium tuberculosis (Mtb). The presence of the Mtb DNA in Egyptian mummies 

dating back to 2000 B.C. indicates that humankind has been in constant battle with this 

pathogen since ancient times (Zink et al., 2003).  

TB is transmitted by inhalation of aerosol droplets containing the active Mtb that 

are directly expectorated from an individual with the acute disease. The pulmonary TB 

infection develops in lungs, where the bacteria are recognized and phagocytosed by the 

alveolar macrophages. These macrophages produce pro-inflammatory cytokines and 

chemokines, such as tumor necrosis factor (TNF)-α and interleukin-1 beta (IL-1β), to 

recruit more leukocytes to the infection site (Sakamoto, 2012). Neutrophils and 

monocytes phagocytose more bacteria together with the dendritic cells, which migrate to 

the lymph nodes to present mycobacterial antigens to lymphocytes and to activate the 

specific T cells (Silva Miranda et al., 2012). After phagocytosis, phagosomal maturation 
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is achieved by activation of macrophages with interferon-gamma (INF-γ) that is released 

by the T cells (Fenton et al., 1997). This results in the production of reactive-nitrogen 

(RNI) and reactive-oxygen (ROI) intermediates, acidification of the phagosome, and 

fusion of the phagosome with the lysosome (Schluger and Rom, 1998). However, Mtb 

can arrest the phagosome at an early stage of maturation and prevent acidification and 

the phagolysosome formation through various mechanisms such as blocking the proton 

ATPase pumps on the phagosomal membrane (Kaufmann, 2001; Stokes and Waddell, 

2009). The pH of the unmatured mycobacterial phagosomes remains around 6.2, 

whereas the pH of the phagolysosomes remains around 5.5 or lower (Russell, 2011). The 

ability of Mtb to regulate the fusion of the phagosome with the lysosome is also seen in 

other pathogenic mycobacterium species such as M. bovis, M. leprae and M. avium 

(Russell, 2005).  

Macrophages and the other immune cells gathered together through cytokine and 

chemokine signaling form the granuloma, which is the characteristic pathological 

signature of the tuberculosis disease. Inside the granuloma, macrophages that 

differentiate to epithelioid or foamy macrophages fuse to form giant, multinucleated 

cells. They are also surrounded by lymphocytes and fibroblasts (Silva Miranda et al., 

2012). The mature granuloma represents an equilibrium between the virulent 

mycobacteria and the host immune response (Bold and Ernst, 2009). Previously, it was 

thought that granuloma formation was only beneficial to the host by containing and 

restricting the mycobacteria at the site of infection; however, studies performed with a 

close relative of Mtb, Mycobacterium marinum, revealed that mycobacteria exploit the 
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formation of granuloma during the early stages in order to spread the infection by 

recruiting and infecting the newly arriving macrophages (Davis and Ramakrishnan, 

2009). The granuloma also protects Mtb from cytokine producing lymphocytes and 

provides a lipid rich medium for mycobacterial survival (Silva Miranda et al., 2012).  

Over time, the center of the granuloma undergoes necrosis (cell death), resulting in a 

caseous appearance. The bacteria in the caseous center of the granuloma are thought to 

be in a non-replicating persistent state, but are not completely killed (Trucksis, 2000). 

The caseating granuloma releases the bacteria into the extracellular environment where 

they can multiply again. Partially activated macrophages at the periphery of the 

granuloma and the non-activated macrophages throughout the body can phagocytose the 

released bacilli; however, Mtb can still proliferate in these cells (Trucksis, 2000). If the 

immune system fails to keep the infection under control with activated macrophages, 

then the tissue damaging immune response will dominate and the disease progresses to 

liquefaction and cavity formation (Rodriguez-Herrera and Jordan-Salivia, 1999; 

Trucksis, 2000). When this happens, the active Mtb multiplies extensively, spreading 

within the lung and through the respiratory tract allowing it to spread to new individuals 

(Lyadova, 2012).   

One factor that makes Mtb such a successful pathogen is the fact that even the 

fully activated mature macrophages cannot eradicate 100% of the resident Mtb. 

Persistent bacteria proceed to a dormant state with reduced metabolic activity and adapt 

to the nutrient and oxygen poor environment inside macrophages. Mtb can live in the 

host without causing an active disease for decades in this non-replicating chronic state 
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(called latent-infection), which is held in control by the immune response. Latent disease 

is characterized by a positive tuberculin skin test, but displays no radiological, clinical, 

or microbiological evidence for the active disease (Trucksis, 2000). In fact, only around 

10% of the Mtb infected individuals develop an active disease, and approximately 90% 

of the immunocompetent individuals infected with Mtb develop the latent disease. In 

general, immunocompromised individuals such as newborns and people with human-

immunodeficiency-virus (HIV) develop the active disease upon primary infection. This 

is thought to correlate with a high bacterial load, increased virulence, or one’s 

immunodeficiency (Hopewell and Jasmer, 2005). However, any deficiency in the 

immunity can cause reactivation of the latent disease (Trucksis, 2000). In many cases, 

the initial infection is controlled by the host immune response and the active disease 

develops later as a result of reactivation (Kaufmann, 2001). Aside from the lungs, other 

areas such as the central nervous system, internal organs, and the genitourinary tract can 

also be infected by Mtb that is known as extra-pulmonary TB. Indeed, around 15% of 

reactivated latent TB cases occur at extra-pulmonary sites (Sakamoto, 2012). 

 

TB treatment 

The tubercle bacillus was discovered in 1882 by Robert Koch (Koch, 1982). 

Before the introduction of anti-tubercular drugs in the 1940’s, the main treatment of 

tuberculosis involved isolating patients into sanatoriums where they could receive plenty 

of fresh air, sleep, wholesome food, and exercise. The Bacille Calmette Guerin (BCG) 

vaccine, which was developed from an attenuated bovine tuberculosis strain in 1921, 
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exhibited a protective effect against TB in young children, but failed to prevent primary 

infection with adult pulmonary TB and reactivation of the latent disease. Also, the 

efficacy of the vaccine varies from strain to strain and the culture medium, making it an 

ineffective TB vaccine (McShane et al., 2012; Venkataswamy et al., 2012). However, 

the BCG vaccine is still administered to infants at birth in regions where TB is endemic 

(Zumla et al., 2013b). Despite constant efforts and research, to date, there is still no 

approved vaccine that exhibits a preventive effect against adult pulmonary TB (Koff et 

al., 2013).   

Many anti-tubercular drugs have been developed to help mitigate TB. The first 

anti-tubercular drug was streptomycin (STM). It was isolated from the bacterium 

Streptomyces griseus in 1944 and then immediately used in clinical trials. In 1946, para-

aminosalicylic acid (PAS) was found to be effective against TB. The frequent emergence 

of STM resistance led to the development of multi-drug therapies. PAS and STM 

combination therapy demonstrated better potency and less drug resistance (Mitchison 

and Davies, 2012). In the field of tuberculosis research, the landmark discovery was that 

of the anti-tubercular drug isoniazid (INH), which has been in use as a first-line drug 

since 1952. The discovery of INH was based on the observation that nicotinamide 

exhibited activity against tubercle bacillus (Chorine, 1945). Soon after, other 

nicotinamide based drugs such as pyrazinamide (PZA), ethionamide (ETH), and 

prothionamide (PTH) were synthesized. In the following years, ethambutol (EMB) was 

discovered. Screening for antibiotics from soil bacteria led to the discovery of many 

anti-TB drugs including cycloserine, kanamycin (KAN), amikacin (AMK), 
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capreomycin, and finally, rifampicin (RIF), which were included in multi-drug regimens 

and are still in use today (Zhang, 2005) (Table 1-1 and Figure 1-1). 

Since the 1950s, a tremendous amount of research has been done on TB to 

understand, diagnose, and eliminate this ancient disease. Specifically, in the last 10-15 

years a number of promising compounds exhibited potency against Mtb in both in-vitro 

and in-vivo models (Mitchison and Davies, 2012). However, the current TB treatment 

against the acute infection still depends on the antibacterials discovered 50 years ago. 

The current TB regimen against drug-sensitive Mtb consists of two-phases and includes 

the use of four first-line anti-TB drugs (INH, EMB, PZA, and RIF) for a period of two 

months, followed by a combination of INH and RIF for an additional four months. This 

regimen is administered for pulmonary and most extra-pulmonary TB regardless of the 

HIV coinfection, and can achieve cure rates of >95% if implemented under the DOTS 

(directly observed treatment, short-course) strategy (Zumla et al., 2013a). INH has a 

high early bactericidal activity, which causes a significant decrease in the colony-

forming units in the first few weeks of the therapy. While the actively replicating 

bacteria can be efficiently killed during the initial phase of the treatment, the therapy is 

followed for six months in order to eradicate the persistent Mtb (Zumla et al., 2013a). 

However, the long-duration of treatment brings issues such as patient adherence, drug 

toxicity, intolerance, and pharmacokinetic drug-drug interactions, especially with the 

HIV drugs for the HIV-coinfected individuals. 
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Table 1-1. TB drugs and their molecular targets. 

Drug Year 

introd-

uced 

Clinical  

use 

Molecular Target / Effect 

STM 1944 No S12 and 16S rRNA of 30S ribosomal subunit / 

Inhibits protein synthesis  

PAS 1946 Limited 

use for 

XDR-TB 

Dihydrofolate reductase / Inhibits folate 

biosynthesis  

INH 1952 1
st
 line Enoyl-acyl-carrier-protein reductase  

(InhA) / Inhibits mycolic acid synthesis  

PZA 

 

1954 1
st
 line S1 component of 30S ribosomal subunit / Inhibits 

translation and trans-translation, acidifies 

cytoplasm 

EMB 1961 1
st
 line Arabinosyl transferases / Inhibits arabinogalactan 

biosynthesis  

RIF 1963 1
st
 line RNA polymerase, beta subunit / Inhibits 

transcription  

 

AMK 1972 2
nd

 line 30S ribosomal subunit / Inhibits protein synthesis  

KAN 1957 2
nd

 line 30S ribosomal subunit / Inhibits protein synthesis  

 

Capreomycin 1963 2
nd

 line Ribosome / Inhibits protein synthesis  

CIP 1981 2
nd

 line  DNA gyrase / Inhibits DNA supercoiling  

MFX 

 

1996 2
nd

 line DNA gyrase / Inhibits DNA supercoiling  

ETH 1961 2
nd

 line Enoyl-acyl-carrier-protein reductase  

(InhA) / Inhibits mycolic acid synthesis  

Cycloserine 1955 2
nd

 line D-alanine racemase and ligase / Inhibits 

peptidoglycan synthesis  

CFZ 1950s 3
rd

 line genomic DNA, potassium transporters / Proposed 

to intercalate to DNA 

 LZD 1990s 3
rd

 line 50S subunit of ribosome / Inhibits protein 

synthesis 

AMX/CLV 1978 3
rd

 line DD-carboxypeptidase and β-lactamase / Inhibits 

peptidoglycan biosynthesis 

PA-824 

nitroimidazole 

2000s Phase II 

trials 

ND /Inhibition of cell wall, mycolic acid 

synthesis, NO poisoning of cytochrome c oxidase 

SQ109 2003 Phase II 

trials 

MmpL3 / Inhibits mycolic acid biogenesis 

Bedaquiline 

 

2004 MDR-TB ATP synthase / Decreases intracellular ATP levels 
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Figure 1-1. Chemical structures of the TB drugs mentioned in the text.   
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Figure 1-1 Continued. 
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This results in interruptions in the treatment and presents challenges to the current 

therapy for the drug-susceptible TB (Zumla et al., 2013a). Therefore, investment has 

been made in significant drug-discovery and development efforts that can shorten the 

therapy, with fewer drug-drug interactions that are more tolerable.  

 

Problem of drug resistance and persistence  

The improper use of antibiotics, together, with the incompletion of the therapy 

for drug-susceptible TB leads to the emergence of drug resistant (Multi-drug resistant 

(MDR) and extensively drug resistant (XDR)) tuberculosis. Furthermore, an individual 

who develops MDR-TB can transmit this form of the disease to others (Zumla et al., 

2013b). MDR-TB strains are resistant to two or more drugs, usually to INH and RIF, and 

treatment of MDR-TB is administered for at least two years with second-line antibiotics 

such as amikacin (AMK), kanamycin (KAN), capreomycin, ciprofloxacin (CIP), 

moxifloxacin (MFX), ethionamide (ETH), and  cycloserine (Table 1-1). MDR-TB 

regimens include at least four second-line drugs administered under the DOTS strategy, 

which are determined based on factors such as previous treatment of the patient for 

MDR-TB, the presence of any underlying medical condition, drugs that were 

administered earlier to the patient, the adverse effects of the drugs, and the local 

resistance pattern of the disease (Zumla et al., 2013a; Zumla et al., 2013b).  

 XDR-TB are resistant to fluoroquinolones and at least one of the injectible 

second-line drugs: AMK, KAN, and capreomycin as well as INH and RIF (Campbell et 

al., 2011). Treatment of the XDR-TB is longer than the MDR-TB treatment and requires 
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the use of third-line antibiotics such as clofazimine (CFZ), linezolid (LZD), and 

amoxicillin plus clavulanate (AMX/CLV), which lack accessibility and are usually more 

toxic (Zumla et al., 2013a). While the MDR-TB cure rate is approximately 50% (Zhang, 

2005), the mortality rate for XDR-TB is close to 100% for patients co-infected with HIV 

(Zumla et al., 2013b). About half a million new MDR-TB cases were detected in 2011, 

and about one-tenth of those cases exhibited XDR-TB (Abubakar et al., 2013). Most of 

the second- and third-line drugs are toxic, they have severe side effects and treatment of 

MDR- and XDR-TB is very costly compared to the standard regimen (Campbell et al., 

2011).  

The acquired drug resistance of Mtb occurs through chromosomal mutations 

(Ford et al., 2011). These mutations usually happen in either the target or the activator 

gene for the drug (Sacchettini et al., 2008). Mutations are also observed in the promoter 

or intergenic regions, altering the gene expression levels of proteins related to the drug 

mechanism or the efflux pump systems (Calgin et al., 2013; Muller et al., 2011). For 

example, INH and ETH are both prodrugs that need to be activated in the cell, and INH 

resistant (INH
R
) and ETH resistant (ETH

R
) strains mostly carry mutations in the 

activator gene of these prodrugs, katG and ethA, respectively. Typically, 20-80% of the 

INH
R
 clinical isolates carry mutations in the katG gene. The most common katG 

mutation is the Ser315Thr mutation, which causes a deficiency in INH activation 

(Campbell et al., 2011; Suarez et al., 2009; Zhao et al., 2006). Similarly, 51% of ETH
R
 

isolates carry mutations in the ethA gene (Brossier et al., 2011; Morlock et al., 2003).   

On the other hand, 15-40 % of the INH
R
 clinical isolates carry mutations on either the 
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target gene of this drug inhA (such as S94A mutation) or within the inhA promoter 

(Zhang et al., 2005b). The S94A mutation results in a decreased affinity of the enzyme 

for the activated form of the drug (INH-NAD(H) adduct) (Vilcheze et al., 2006), while 

the promoter related mutations cause overexpression of the InhA protein leading to 

resistance (Rouse et al., 1995). Since INH and ETH both target InhA, mutations or 

overexpression of InhA cause cross-resistance to INH and ETH. Other INH
R
 strains have 

also been reported with mutations in the ndh and ahpC genes encoding for NADH 

dehydrogenase II and alkyl hydroperoxidase, which modulate the INH activity, NAD 

metabolism (by increased NADH/NAD
+
 ratios), and act as a marker of resistance, 

respectively (Miesel et al., 1998; Wilson and Collins, 1996). PZA is also a prodrug 

activated by the nicotinamidase/pyrazinamidase enzyme pncA, and PZA resistance is 

acquired through mutations in the pncA gene (Scorpio and Zhang, 1996). Resistance to 

RIF and fluoroquinoles occurs through mutations in the target genes rpoB and gryA/B, 

which encode for the RNAP β-subunit and DNA gyrase, respectively (Sandgren et al., 

2009). RpoB mutations occur at the amino acid positions Asp435, His445, and Ser450 of 

the of RNAP β-subunit, altering the affinity of the enzyme for the drug (Gill and Garcia, 

2011). The most common GyrA mutations are found at the amino acid positions Ala90 

and Asp94, preventing the drugs from effectively binding the enzyme (Campbell et al., 

2011).    

TB drug resistance presents a major global health problem by threatening the 

efforts of TB control. There is an urgent need for discovery and development of new 

drugs that will be effective on the drug-resistant strains and that also shorten the duration 
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of the TB treatment. Another challenge of completely eradicating TB is the ability of the 

bacteria to survive in the host in a non-replicating persistent or chronic state of infection 

despite the use of antibiotics. Mtb has the ability to adapt to the acidic, lytic, and nutrient 

poor environment inside the activated macrophages, which leads to persistence (Monack 

et al., 2004). Furthermore, the local drug concentration inside the granulomas might not 

be adequate to cause bacterial death, or some population of the bacteria might adopt a 

psyhiological state that makes them less susceptible to the used drugs (Sacchettini et al., 

2008). While some individuals can beat the primary infection by immune response 

without becoming sick, others are unable to eradicate the Mtb. Latent TB can reactivate 

after many years of the primary infection due to the dormant bacteria. It then leads to an 

active, progressive disease especially in immune-compromised people (Gomez and 

McKinney, 2004). Drug-resistance and persistence together lead to the development of 

chronic infection.  

According to the World Health Organization (WHO), a new TB infection occurs 

every second and it is estimated that one-third of the world’s population is infected with 

latent TB. In 2011, 1.4 million people died from TB, including 430,000 people co-

infected with HIV (Zumla et al., 2013b). TB is one of the leading causes of mortality in 

developing countries (Zaman, 2010).  The majority of the MDR-TB cases (~60%) are 

seen in Brazil, China, India, the Russian Federation, and South Africa. Of the new TB 

cases, 3.7% (~0.5 million people) are diagnosed as MDR-TB. However, this percentage 

rises up to 20% for previously reported cases (Abubakar et al., 2013). The WHO issued 

the DOTS strategy to identify, prevent, control, and cure TB. There are two main factors, 
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drug resistance and persistence, causing the resurgence of TB and making it such a 

difficult disease to eliminate (Sacchettini et al., 2008). These factors combine to make 

TB a serious global health threat. 

 

Drug discovery efforts against Mtb 

Determination of the genomic sequence of the virulent Mtb H37Rv strain in 1998 

opened a new era for anti-tubercular drug discovery (Mitra, 2012).  Among 4000 genes, 

around 40% were annotated with known functions, 44% were predicted with putative 

functions, and ~16% were designated as unique to this organism due to the lack of 

homology to the existing databases (Cole et al., 1998). Identification of the genes 

essential for the growth of the bacteria in various conditions suggested new drug targets 

for the development of novel anti-bacterial agents (Sassetti et al., 2003).  In order to 

decipher the Mtb biology to facilitate drug discovery, the Tuberculosis Structural 

Genomics Consortium (TBSGC) was founded in 2000, and aimed to determine the 

structures of functionally important proteins and potential drug targets for Mtb (Chim et 

al., 2011; Ioerger and Sacchettini, 2009). To date, more than 750 protein crystal 

structures were determined for Mtb and deposited in the Protein Data Bank (PDB, 

http://www.rcsb.org), and ~250 of these structures were contributed by TBSGC 

members (Chim et al., 2011). Once the structure of a target protein is solved, it can be 

used to understand the molecular basis of cellular processes and macromolecular 

interactions (as will be demonstrated in Chapter VI of this dissertation), and further for 
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structure-based drug design studies (as will be demonstrated in Chapter V of this 

dissertation).  

Three main strategies are followed toward drug development and to overcome 

drug-resistance against Mtb: i) identifying new drugs against the existing/validated drug 

targets, ii) identifying new drug targets that will be targeted by novel compounds, and  

iii) synergistic combination of new and existing drugs (Green and Garneau-Tsodikova, 

2013). The known and validated targets include DNA gyrase and components of the cell 

wall, cell membrane, and mycolic acid biosynthesis. Target based high-throughput 

screening (HTS) through a biochemical assay and structure-based drug design are the 

two conventional methods for the identification of hit/lead compounds against a 

validated target. These two approaches for identification of inhibitors for the Mtb enoyl-

reductase enzyme InhA will be demonstrated in chapters IV and V, respectively, of this 

dissertation. Conversely, identification and validation of new drug targets starts with the 

identification of an active compound against the organism in a whole-cell based HTS, 

followed up with additional experiments (forward chemical genetics, expression 

profiling, or chemical proteomics) to identify and verify the molecular target of the 

compound (Chan et al., 2010). The newly identified and promising drug targets for Mtb 

are the components of ATP homeostasis (such as the ATP synthase proton pump), the 

pantothenate synthesis pathway (such as pantothenate synthetase and pantothenate 

kinase), the enzymes in the shikimate pathway (such as dehydroquinase), the urease 

complex and its individual subunits, the chorismate-utilizing enzymes, the enzymes of 
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the glyoxylate shunt, and the drug transporters (such as the trehalose monomycolate 

transporter MmpL3) (Chim et al., 2011).       

The recent developments in anti-TB drug discovery include the identification of 

new fluoroquinolones (for example, MFX, levofloxacin (LFX), gatifloxacin (GTX)), 

nitroimidazole compounds (PA-824 and OPC67683), and 1,2-ethylenediamine 

derivatives (SQ109) (Table 1-1). Fluoroquinolones are a class of compounds effective 

against many bacterial species. They target the DNA gyrase and inhibit DNA 

supercoiling, which is especially important for DNA replication (Anand et al., 2011). 

They possess in-vivo and in-vitro bactericidal activity against drug-resistant Mtb and are 

included among the second-line TB drugs in the current tuberculosis therapy (Moadebi 

et al., 2007). PA824 and OPC67683, the 5-nitrorimidazole derivatives, are prodrugs with 

no cellular targets identified, and are potent against the drug-resistant and persistent 

bacteria. They are currently under Phase II and III clinical trials (Manjunatha et al., 

2006; Singh et al., 2008). Bedaquiline is an ATP synthase inhibitor that is potent against 

drug-sensitive and resistant bacteria (Andries et al., 2005). It was approved by the US 

Food and Drug Administration (FDA) as an anti-TB drug in 2012. It is the only new 

drug in the last 50 years that has been approved for TB treatment; however, its use is 

restricted to the treatment of multi drug-resistant Mtb strains only.   
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Targeting the actively replicating drug-susceptible and drug-resistant Mtb through 

the inhibition of mycolic acid biosynthesis pathways 

Mtb is a non-motile, rod-shaped, acid-fast, and aerobic bacterium belonging to 

the actinomycetales order of the actinobacteria class. Mtb is a slow growing organism 

with ~ 20 h of doubling time and contains a high G-C content (65%) in its genome (Cole 

et al., 1998). Mtb cells are impervious to gram staining or any other bacteriological stain 

due to the nature of the mycobacterial cell envelope. The mycobacterial cell envelope 

does not contain an outer membrane similar to the gram-negative bacteria, but has a 

unique cell wall structure that acts as an external permeability barrier. The mycobacterial 

cell wall is essential for mycobacterial viability, survival, and accounts for the intrinsic 

resistance of the bacteria to many chemical disinfectants, therapeutics and bactericidal 

agents (Brennan and Nikaido, 1995; Jarlier and Nikaido, 1994). In addition to the 

uniqueness of its structure and composition, the biosynthetic enzymes responsible for the 

synthesis of the characteristic features of the mycobacterial cell wall do not have 

homologs in mammalian systems. Therefore, the Mtb cell envelope is the preferred and 

promising source of molecular targets for drug discovery (Tomioka et al., 2008).  

 

Mtb cell wall 

The mycobacterial cell wall is composed of three covalently linked layers: 

peptidoglycan, arabinogalactan, and mycolic acids, which are often referred as the 

mycolyl-arabinogalactan-peptidoglycan complex (mAGP) (Figure 1-2). The 

peptidoglycan layer encapsulates the cytoplasmic membrane, comprising of repeating 
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units of N-acetyl-β-D-glucosaminyl-(14)-N-glycolylmuramic acid crosslinked by L-

alanyl-D-isoglutaminyl-meso-diaminopimelyl-D-alanine peptide chains (Schroeder et 

al., 2002). The arabinogalactan layer is composed of arabinan (D-Arabinofuranose) and 

galactan (alternating 5- and 6- linked β-D-Galactofuranose units) chains that are linked 

to the peptidoglycan through a phosphodiester linkage. Mycolic acids are attached to the 

branched hexaarabinofuranosyl termini of the arabinogalactan layer and constitute more 

than 40% of the weight of the cell wall (Schroeder et al., 2002). In addition to being 

covalently bound to the arabinogalactan layer, mycolic acids are also found in the cell 

wall in non-covalently bound forms such as trehalose 6,6’-dimycolate (TDM, cord 

factor). Lipoarabinomannan (LAM), phosphatidyllinositol mannosides (PIMs), trehalose 

monomycolates (TMMs), phenolic glycolipids (PGLs), and phthiocerol dimycocerosates 

(PDIMs) are the other extractable lipids present in the mycobacterial cell wall that play 

role in pathogenesis and virulence (Minnikin et al., 2002).   
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Figure 1-2. Schematic representation of the mycobacterial cell envelope. The figure 

is reproduced in part from Gokhale R.S. et al. (2007). Nat. Prod. Rep. 24(2), 267-277, 

and reproduced with permission of © [2007] The Royal Society of Chemistry. 
http://dx.doi.org/10.1039/B616817P 

 

 

Mycolic acid biosynthesis 

The hallmark components of the mycobacterial cell wall are the mycolic acids, 

which are essential for mycobacterial survival and the key to its virulence (Dubnau et al., 

2000). Mycolic acids are made of very long α-branched β-hydroxy fatty acids (C60-C90) 

and are divided into three different structural classes: the most abundant (~60%) α-

mycolic acids, the next most abundant (~30%) methoxymycolic acids, and the least 

abundant (~10%) ketomycolic acids (Schroeder et al., 2002). The α-mycolates contain 

two cis-cyclopropanes in their mero chain, while the methoxymycolates and 
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ketomycolates both contain a cis-cyclopropane or an α-methyl trans-cyclopropane in the 

proximal position of the mero chain (Figure 1-3). The methoxymycolates and 

ketomycolates differ by the presence of an α-methyl methyl-ether, or an α-methyl ketone 

moiety in the distal position of their mero chain (Figure 1-3). 

 

 

 

Figure 1-3. Chemical structures of the mycolic acids from M. tuberculosis. The 

figure is adapted from Takayama K et al. (2005). Clin. Microbiol. Rev. 18, 81-101, and 

reproduced with permission of © [2005] American Society for Microbiology. 

http://dx.doi.org/10.1128/CMR.18.1.81-101.2005  

 

 

In mycobacteria, the biosynthesis of mycolic acids is accomplished by two 

concerted type I (FAS-I) and type II (FAS-II) fatty acid biosynthetic pathways. The 

FAS-I system is also found in eukaryotes and is responsible for the de novo synthesis of 
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the medium-length (C16-C26) acyl-CoA chains. FAS-I functions as a single enzyme with 

multiple domains carrying discrete functions (Molle et al., 2010). In contrast, the FAS-II 

system is composed of multiple enzymes functioning successively. FAS-II elongates the 

FAS-I fatty acyl products leading to the production of meromycolates (C56). Following 

the introduction of various functional groups to the meromycolate chain by cyclopropane 

synthases, the condensation of the FAS-I (C26-acyl-CoA) and FAS-II (C56-

meromycolate) products by Pks13 (a polyketide synthase enzyme) yields the final 

product known as the mycolic acids (Bhatt et al., 2007b).  

Specifically, the FAS-II system elongates the acyl-CoA products of FAS-I by 

using the substrate malonyl-AcpM, which is generated from malonyl-CoA and 

phosphopantothenylated holo-AcpM by the FabD enzyme (Takayama et al., 2005). In 

the first cycle of FAS-II, the malonyl-AcpM and the FAS-I acyl-CoA product are 

condensed to a β-ketoacyl-AcpM by the FabH enzyme (Figure 1-4). The product of this 

condensation reaction is then reduced by the β-ketoacyl-AcpM reductase enzyme MabA. 

After that, the product is dehydrated by the β-hydroxyacyl-AcpM dehydratase enzyme 

HadABC, and finally reduced by the enoyl-AcpM reductase enzyme InhA (Figure 1-4) 

(Sacco et al., 2007). The resulting acyl-AcpM carries two more carbons when compared 

with the starting material, and it is fed into the next cycle as the substrate in the 

condensation reaction with malonyl-AcpM. However, this time the reaction is catalyzed 

by the KasA/KasB β-ketoacyl-AcpM synthases instead of FabH (Bhatt et al., 2007b). 

The successive iterations of the FAS-II cycle lead to the production of a very long chain 

(~C56) of meromycolates.  
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Figure 1-4. The FAS systems of mycobacteria. The FAS-I produces the medium-

length (C16-C26) acyl-CoA chains and these precursors are used in FAS-II, producing the 

meromycolates (C56). INH, ETH, TRC and TLM which inhibit InhA and KasA/B, 

respectively, are also shown above the enzymes they target. The figure is reproduced 

from Bhatt et al. (2007). Molecular Microbiology. 64, 6, 1442–1454, with permission of 

© [2007] John Wiley and Sons. http://dx.doi.org/10.1111/j.1365-2958.2007.05761.x.  
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FAS-II system components as drug targets 

Mycolic acids are essential for the integrity of the mycobacterial cell wall and 

play role in virulence and drug resistance (Singh et al., 2011). The enzymes in mycolic 

acid biosynthesis are also essential for the survival of mycobacteria (Bhatt et al., 2007b; 

Sacco et al., 2007). These enzymes represent excellent drug targets since no FAS-II 

system is present in humans (Kuo et al., 2003; Lu and Tonge, 2008; Payne et al., 2001). 

Components of the FAS-II system are conserved among many pathogens. Thus, 

selecting these enzymes as drug targets is also a useful strategy for broad spectrum 

antibiotic development (Lu and Tonge, 2008). Inhibitors that were designed to work 

against the enzymes of this pathway were experimentally shown to be suitable, potential 

antibacterial targets (Payne et al., 2001).  

 

InhA 

The enoyl reductase enzyme is one of the most studied enzymes as an 

antibacterial drug target in the FAS-II pathway. InhA is the trans-2-enoyl-ACP 

reductase and it catalyzes the last step in the elongation cycle of the FAS-II pathway 

while reducing the 2,3 double bond of trans-2-enoyl-ACP in an NADH dependent 

manner (Quemard et al., 1995). Recently, we have identified that InhA activity is 

regulated post-translationally by phosphorylation, and we elucidated the molecular basis 

of this regulation by X-ray crystallography (Molle et al., 2010). This study will be 

covered in Chapter III.  
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InhA has been identified as the primary cellular target of the anti-tubercular 

drugs isoniazid (INH), ethionamide (ETH), and also the anti-bacterial compound 

triclosan. The characterization of InhA as the molecular target of the frontline anti-

tubercular drug INH and the second-line drug ETH was achieved after extensive genetic 

and biochemical analysis. Furthermore, there are several lines of evidence proving that 

InhA is the primary target of INH and ETH. First, the inactivation of M. smegmatis InhA 

and INH treatment results in similar inhibition of the mycolic acid biosynthesis, 

accumulation of saturated FAS-I end products, and similar morphological changes in the 

cell wall leading to cell lysis (Oliveira et al., 2007; Vilcheze et al., 2000).  Next, 

overexpression of InhA in M. smegmatis, M. bovis, and Mtb causes 20- and 10-fold 

resistance to INH and ETH, respectively (Larsen et al., 2002). Also, clinical isolates 

resistant to INH contain mutations in the inhA gene and are cross-resistant to ETH 

(Morlock et al., 2003). Finally, the transfer of a single point mutation allele, S94A, of 

InhA to Mtb confers clinically relevant resistance levels to INH and ETH, and it inhibits 

mycolic acid biosynthesis (Vilcheze et al., 2006). Also, we have more recently 

demonstrated that InhA is the relevant molecular target of the antimycobacterial activity 

of INH, concluding the debates on the molecular target of this drug. This study will be 

discussed in Chapter II. 

Even though INH and ETH both inhibit InhA activity, neither one interacts with 

InhA directly; they are prodrugs needing activation inside the cell. The INH activation is 

done by the catalase-peroxidase enzyme, KatG. KatG oxidizes INH to an acyl radical, 

which in turn forms a covalent adduct with NADH (Rozwarski et al., 1998). ETH 
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activation is done by a FAD containing monooxygenase, EthA, generating the ETH-

NAD adduct (Vilcheze et al., 2005). Both the INH-NAD and the ETH-NAD adducts are 

tight binding inhibitors of InhA (Ki ~5 nM) (Wang et al., 2007). Noticeably, ~50 % of  

the clinical isolates of MDR and XDR Mtb strains, which  are resistant to INH, carry 

mutations in the activator katG gene (Dessen et al., 1995; Kuo et al., 2003). The reported 

minimal inhibitory concentration (MIC) of INH against wild-type Mtb and the katG 

S315T strain is 1.5 μM vs. 200 μM (Kuo et al., 2003). In contrast, the majority of the 

ETH resistant strains carry mutations in the activator gene ethA and in the ethR gene, 

which encodes for a transcription repressor regulating the EthA expression negatively 

(Engohang-Ndong et al., 2004).     

The determination of the crystal structure of InhA in complex with the INH-

NAD adduct elucidated the mechanism of action of INH against InhA (Rozwarski et al., 

1998). The INH-NAD adduct binds to the cofactor binding site of the enzyme adjacent 

to the fatty acyl substrate binding pocket, interacting with the active site residues 

(Figure 1-5). Specifically, the pyridine ring of the isonicotinic acyl moiety makes 

aromatic stacking interactions with Phe149, hydrophobic interactions with the side 

chains of residues Gly192, Pro193, Leu218, Tyr158, and Trp222, and a water mediated 

interaction with Met155. When compared with the InhA:NADH structure, it is observed 

that the Phe149 side chain adopts a different conformation by flipping ~ 90° to interact 

with the pyridine ring of the INH-NAD adduct (Rozwarski et al., 1998). Rotation of the 

Phe149 ring opens up a new pocket deep down in the InhA active site and appeals as a 

promising position to explore for drug design (Figure 1-5).    
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Figure 1-5. Binding mode of the INH-NAD adduct to the InhA active site (PDB ID: 

1ZID). The INH-NAD adduct (purple sticks) binds to the cofactor binding pocket and 

interacts with the surrounding InhA residues such as Y158 and F149. F149 flips 

90°compared to the InhA:NADH structure opening a new pocket, which is occupied by 

the pyridine ring of the adduct.  

 

 

The mode of action of ETH against InhA is homologous to the INH mechanism 

of action. We determined the crystal structure of InhA in complex with the ETH-NAD 

adduct (Wang et al., 2007). Similarly to the INH-NAD adduct, the ETH-NAD adduct 

also binds to the cofactor binding site of the enzyme and the ethyl-isonicotinic-acyl 

moiety gets positioned to the new pocket accommodated by the flipping of the Phe149 

side chain. The pyridine ring of the ethyl-isonicotinic-acyl group makes stacking 
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interactions with the Phe149 and is surrounded by the hydrophobic residues Tyr158, 

Met199, Trp222, Leu218, Met155, Met161, and Pro193 (Wang et al., 2007). Elucidation 

of the molecular mechanism of ETH action will be described in more detail in Chapter 

II.   

InhA is the cellular target of INH and ETH as well as the well known 

antibacterial compound triclosan. Triclosan (TRC) exhibits a broad spectrum activity 

against various gram-positive and gram-negative bacteria including P. falciparum, E. 

coli, and B. subtilis by inhibiting the bacterial FAS-II enoyl-reductase enzymes (Fang et 

al., 2010; Freundlich et al., 2009; Kuo et al., 2003; Parikh et al., 2000). Unlike INH and 

ETH, triclosan is not a prodrug and does not require activation before it interacts with 

InhA. The reported IC50 (inhibitory concentration for 50% inhibition of enzymatic 

activity) for TRC against InhA is 1.1 μM; however, the MIC against Mtb is around 138 

μM (40 μg/ml) (Freundlich et al., 2009). In addition, the bioavailability of TRC is quite 

low when compared with INH (Boyne et al., 2007), making it an attractive target for 

structure-based drug design to improve both the potency and the pharmacokinetic 

properties by chemical substitutions. Triclosan is composed of two phenyl rings (ring A 

and B) linked with an oxygen atom (Figure 1-6). The A ring is substituted with a 

hydroxyl at the 1-position and a chlorine at the 5-position. The B ring has two chlorine 

substitutions at the 2’- and 4’- positions. Substitutions at these positions were explored 

to elucidate the structure-activity relationship (SAR). The hydroxyl of the A ring and the 

chlorines at the 2’ and 4’ positions of the B ring were found to be important for the 

potency of the compound (Freundlich et al., 2009). In contrast, modifications in the 5-Cl 
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position with hydrophobic groups yielded better TRC derivatives (Freundlich et al., 

2009; Sullivan et al., 2006).   

 

 

 

Figure 1-6. Binding mode of triclosan to the InhA active site (PDB ID: 1P45). 
Triclosan (TRC; blue sticks) interacts with NAD

+
 (gray sticks) and the InhA active site 

residues. Y158, F149 and some other residues interacting with TRC are shown.  

 

 

The mode of action of triclosan against InhA differs from INH and ETH. TRC is 

an uncompetitive inhibitor of InhA and requires the cofactor NAD
+
 to be bound to the 

enzyme. TRC binds to the substrate binding pocket of InhA, stacking on top of the 

nicotinamide ring of NAD
+
 with one of its aromatic rings (ring A) (Figure 1-6). The 
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hydroxyl of this ring also makes H-bonding interactions with the 2’-hydroxyl of NAD
+
 

and the side chain of Tyr158. The rest of the TRC-InhA interactions are mediated 

through hydrophobic and van der Waals contacts between TRC and the residues Met103, 

Gly104, Met199, Phe149, Leu218, Ala157, Ile202, and Ile215 (Kuo et al., 2003). I will 

discuss our structure based drug design studies with triclosan analogs for the 

development of potent InhA inhibitors in Chapter V.  

Since InhA is an established target of INH, ETH, and TRC, and most of the 

MDR-TB strains are resistant to INH due to the loss of drug activation by KatG, InhA 

has been the focus of many drug-discovery efforts by both target-based HTS and 

structure-based drug design approaches. Several classes of compounds such as indole-5-

amides, pyrazole derivatives (Kuo et al., 2003), pyrrolidine carboxamides (He et al., 

2006), arylamides (He et al., 2007), imidazopiperidines (Wall et al., 2007) and a natural 

product pyridomycin (Hartkoorn et al., 2012) were identified as direct InhA inhibitors 

with sub-micromolar IC50 values. However, a majority of these compounds either 

showed no or very poor in-vivo activity. Some of these compounds even exhibited low 

membrane permeability against mycobacteria, limiting their use as anti-tubercular drugs 

(Lu et al., 2010). Therefore, more research is needed for identification of potent 

compounds that are active against InhA in vitro, and the drug-sensitive and drug-

resistant Mtb in vivo. We undertook a target based HTS drug discovery approach in 

collaboration with GlaxoSmithKline to develop and characterize novel and activation 

free InhA inhibitors, which will be discussed in Chapter IV of this dissertation. We also 
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performed structure-based drug design using TRC as a template to develop InhA 

inhibitors, which will be covered in Chapter V.  

In order to overcome the ETH resistance and lower the amount of the effective 

dose necessary to avoid toxic side effects, alternative approaches such as developing 

inhibitor compounds that will block the EthR-DNA interaction and then promote EthA 

production were followed. These approaches were based on the facts that increased EthA 

expression increases the ETH sensitivity, and an ethR null mutant BCG strain exhibits 

higher sensitivity to ETH than the parent strain (Belardinelli and Morbidoni, 2013). 

These studies resulted in identification of potent compounds that boosted the ETH 

activity both in vitro cultures and in vivo models (Flipo et al., 2012; Willand et al., 

2009).   

 

KasA/KasB 

KasA and KasB both function as the β-ketoacyl-ACP synthase enzymes in the 

FAS-II elongation cycle. They catalyze the condensation reaction between malonyl-

AcpM and the growing acyl chain (Slayden and Barry, 2002). The KasA enzyme has 

been shown to be essential for mycobacterial survival by both conditional depletion and 

transposon experiments (Bhatt et al., 2005; Sassetti et al., 2003). Thiolactomycin (TLM) 

is a natural product produced by both Nocardia and Streptomyces species and has been 

shown to inhibit bacterial Kas enzymes, including the mycobacterial KasA and KasB 

proteins (Brown et al., 2003). The antimycobacterial activity of TLM against Mtb is 

around 20 μg/ml (Kremer et al., 2000b). Overexpression of KasA and/or KasB in M. 
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bovis led to TLM resistance. However, it did not cause resistance to INH, ETH, isoxyl, 

or cerulenin, suggesting that the Kas enzymes are targeted by only TLM (Kremer et al., 

2000b).  

The crystal structure of Mtb KasA bound with TLM revealed the molecular basis 

of TLM interaction with KasA. TLM binds to the malonyl binding pocket of KasA 

forming two hydrogen bonds to the active site His311 and His345 residues (Figure 1-7). 

The isoprenoid moiety of TLM points to a lipophilic pocket and intercalates between 

two peptide bonds, Ala279-Pro280 and Gly403-Phe404, further stabilizing the 

interaction (Luckner et al., 2009). Binding of TLM to the active site, introduces a small 

conformational change (~0.9 Å) on the loop comprised by residues Phe402-Gly406, 

which contains the gate keeper residue Phe404 for the adjacent acyl channel (Figure 1-

7).  

To obtain more potent KasA inhibitors, several attempts were done on 

modification and optimization of the TLM scaffold, including adding more hydrophobic 

and longer substituents to the isoprenoid moiety. However, even subtle modifications at 

this position, disrupting the conjugated, planar structure, were not tolerated and the 

potency of the compound was lost (Kim et al., 2006; Kremer et al., 2000b). It was also 

proposed that the TLM molecule combined with a 40-50 carbon-long poly-ethylene-

glycol (PEG) might exhibit a good affinity toward the enzyme while increasing the 

solubility and the stability of the compound (Luckner et al., 2009). TLM and Kas 

enzymes are considered to be unexploited targets, considering the lack of cross-

resistance to other antibiotics and the susceptibility of the MDR strains to TLM (Kremer 
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et al., 2000b; Luckner et al., 2009; Singh et al., 2011). Therefore, they present potential 

for anti-tubercular drug discovery. 

 

 

 

Figure 1-7. Binding mode of thiolactomycin to the KasA active site (PDB ID: 

2WGE). Thiolactomycin (TLM; green sticks) interacts with the KasA active site 

residues His311 and His345. The isoprenoid moiety intercalates between the peptide 

bonds of Ala279-Pro280 and Gly403-Phe404. H-bonds are shown with dashed black 

lines. 

 

 

 

HadABC and CMASs 

Thiacetazone (TAC) is a bacteriostatic anti-tubercular drug that has been widely 

used in combination with INH in Africa and South America (Davidson and Le, 1992). 

The antimycobacterial activity of TAC against Mtb is 0.1 μg/ml (Alahari et al., 2007). 

TAC is a prodrug known to be activated by EthA (Dover et al., 2007). The cyclopropane 
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mycolic acid synthases (CMASs), which modify the double bonds at specific sites on 

mycolic acid precursors to form cyclopropane rings, were shown to be inhibited by 

TAC. Examination of the mycolic acid profiles of the TAC treated mycobacteria showed 

a significant loss of cyclopropanation in mycolates (accumulation of uncycloproponated 

mycolates). Also, overexpression of CMASs (cmaA2, mmaA2, and pcaA) resulted in 

increased resistance to TAC (Alahari et al., 2007). In addition, the HadA, HadB, and 

HadC proteins, which form the HadAB and HadBC heterodimers and function as the β-

hydroxyacyl-AcpM dehydratases in the FAS-II elongation cycle (Sacco et al., 2007), 

were recently proposed to be the molecular targets of thiacetazone (TAC). This was 

based on the experimental evidence that high levels of resistance to TAC were acquired 

upon overexpression of the hadABC operon and the isolated TAC-resistant mutants 

carried mutations in the hadABC genes (Belardinelli and Morbidoni, 2012). These 

results together suggest that TAC acts on the mycolic acid biosynthesis. Chemical 

analogues of TAC have been investigated against M. avium. Several of the analogues 

displayed better in vitro and in vivo activity than TAC (Bermudez et al., 2003). 

Structures of HadABC or CMASs in complex with TAC have not been determined yet. 

Determination of the molecular basis of TAC inhibition can aid the development of more 

potent inhibitors for these FAS-II system enzymes.  
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Understanding persistence for targeting non-replicating Mtb 

Mtb is one of the most successful organisms at adapting to long-term residence in 

macrophage phagosomes, and this adaptation is essential for the survival, pathogenesis, 

persistence, and transmission of the bacterium (Schnappinger et al., 2003).  This is what 

gives the bacterium its ability to persist in the host in a non-replicating state despite the 

use of antibiotics, where it will remain latent and then reactivate years later when the 

immune system wanes (Gupta and Chatterji, 2005; Honer zu Bentrup and Russell, 2001). 

“Persisters” are the bacteria that remain viable after exposure to antibiotics while also 

exhibiting resistance to a majority of available antibiotics (Hopewell and Jasmer, 2005). 

It is important to decipher the biology of persistent bacteria, and to understand the 

transition in and out of this state, to be able to target the latent infection (Bacon and 

Marsh, 2007). Most of the antibiotics currently used in the TB therapy are only potent 

against replicating bacteria; therefore, discovery of effective drugs against persistent 

bacteria is crucial. Furthermore, understanding the physiology of persistent Mtb will aid 

the development of  new anti-TB agents (Sacchettini et al., 2008).  

 

Transcriptional response of Mtb in persistent state 

It is known that Mtb can prevent phagosomal maturation into phagolysosomes in 

order to avoid the hostile environment inside macrophages. Mature phagosomes expose 

the bacterium to the microbicidal agents including acids, lytic enzymes, oxygenated 

lipids, and reactive oxygen and nitrogen intermediates (ROI and RNI) such as the 

superoxide anion (O2
-
), hydrogen peroxide (H2O2), the hydroxyl radical (•OH), the 
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singlet oxygen (
1
O2) and nitric oxide (NO)) (Bartos et al., 2004). Also, the phagosomal 

environment is poor in iron and nutrients. To counter this oxidative, nitrosative, hypoxic, 

and carbohydrate poor phagosomal environment, Mtb undergoes a number of 

physiological changes that include decreased replication rate, minimal metabolic 

activity, switching to anaerobic respiration, and usage of fatty acids as the main carbon 

source (Russell, 2005). Expression profiling and transcriptome analysis suggested that 

Mtb induces fatty-acid degradation enzymes, DNA repair proteins, and iron scavenging 

siderophore production in macrophages. The genes associated with the persistent state 

fall into three main categories: respiratory enzymes, fatty acid catabolism and metabolic 

enzymes, and stress-related response proteins. The differential expression of genes 

ensures that the bacteria can develop the necessary survival mechanisms against varying 

stress. 

The presence of the ROI and RNI, DNA damaging agents, and the lack of 

nutrients in the phagosome, induces a ‘stress’ response in bacteria. Under stress, 

mycobacteria, like all other bacterial species, proceeds to a non-replicating state by 

coordinately shutting-down the transcription of the genes for active metabolism, through 

a process called ‘stringent response’. During stringent response, the genes for ribosomal 

proteins, ribosomal RNAs (rRNA), and cell-wall biosynthesis are downregulated 

(Godfrey et al., 2002). The stringent response is initiated and mediated by the synthesis 

of the hyper-phosphorylated guanine, ppGpp and pppGpp, referred together as 

(p)ppGpp, through a  pyrophosphoryl transfer from ATP to GDP or GTP by the RelA 

enzyme (Dahl et al., 2003; Godfrey et al., 2002). The RNAP open complex is 
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destabilized by (p)ppGpp at selected promoters through direct binding to the RNAP 

secondary channel and coordinating to the active site Mg
+2

 atom of RNAP. The relA 

knockout Mtb strains deficient of (p)ppGpp production were found to be severely 

impaired in their ability to sustain persistent infection (Dahl et al., 2003), indicating the 

importance of this response mechanism for the long-term survival of Mtb. Mtb RelA is a 

bifunctional enzyme capable of both synthesis and hydrolysis of (p)ppGpp (Avarbock et 

al., 1999). In E. coli, synthesis and hydrolysis of (p)ppGpp is done by the RelA and 

SpoT enzymes, respectively (Murray and Bremer, 1996). However, it was discovered 

that (p)ppGpp production itself is not sufficient for the establishment of stringent 

response, and another protein encoded by the dksA gene was required in E. coli for this 

regulation (Paul et al., 2004a). Mtb does not have a DksA homolog by sequence analysis 

and no other component of the mycobacterial stringent response was identified. 

Recently, a functional homolog of E. coli DksA was identified in Mtb and annotated as 

CarD (Stallings et al., 2009). The CarD protein participates in the regulation of 

transcription under stress conditions; however, it has not been determined yet if it 

functions synergistically with (p)ppGpp in the same manner as DksA.     

In the hypoxic environment of the phagosomes, Mtb can use nitrate instead of 

oxygen as a terminal electron acceptor for anaerobic respiration (Trivedi et al., 2012). 

Nitrate dependent respiration was also found recently to protect the non-replicating 

bacteria from acid stress and the reactive nitrogen intermediates (Tan et al., 2010). 

Therefore, the Mtb nitrate reductases, narGHJI, and the putative nitrate/nitrite 

transporter, narK2, are found to be highly upregulated in hypoxia (Wang et al., 2011). 
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The narGHJI and narK2 genes are part of the DosR/S/T (Dos) dormancy regulon, which 

is a two-component signaling system composed of two sensor histidine kinases, DosS 

and DosT, and the cognate response regulator DosR (Chen et al., 2013). The Dos 

regulon regulates the expression of ~50 genes under hypoxic conditions and in response 

to nitric oxide, and it is especially important for the non-replicating bacteria (Hu and 

Coates, 2011). Other important members of this regulon include hspX, acr, acg, fdxA, 

and pfkB genes, which encode for a heat shock protein, an α-crystallin, a putative 

nitroreductase, ferredoxin, and phosphofructokinase, respectively (Voskuil et al., 2004; 

Zhang et al., 2012b).  

The RNI production by macrophages were shown to be essential for host defense 

during both acute and persistent infection in murine models (Chan et al., 2005 ). As a 

response to the ROI and RNI, Mtb produces ROI scavenging enzymes catalase-

peroxidase (KatG), superoxide dismutases (SodA and SodC), thioredoxin/thioredoxin 

reductase system (Trx-TrxR), truncated hemoglobins (trHbs), and  the peroxidase and 

peroxynitrite reductase complex (AhpC, AhpD, SucB, and Lpd) (Voskuil et al., 2011). 

In order to maintain a reduced environment, Mtb utilizes mycothiol instead of 

glutathione, which is believed to act as an antioxidant buffer system under oxidative 

stress, and was also shown to be required for the ethionamide susceptibility of Mtb (Ung 

and Av-Gay, 2006; Vilcheze et al., 2008). In the presence of H2O2 and NO, in addition to 

the Dos regulon, the genes regulated by the transcriptional regulators SigH, SigE, IdeR, 

and FurA were also found to be highly induced (Voskuil et al., 2011). Among these, 

FurA regulates KatG, which is the only catalase-peroxidase enzyme of Mtb. KatG 
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degrades H2O2 to water and oxygen and is also involved in INH activation (Milano et al., 

2001). IdeR regulates a variety of proteins including putative transporters, siderophore 

synthesis, and  iron storage proteins (Rodriguez et al., 2002).   

The granuloma is rich in fatty acids and the energy metabolism of persistent Mtb 

switches from carbohydrates to lipids inside the macrophages. Enzymes for the β-

oxidation of fatty acids are utilized for the generation of acetyl-CoA that will be used in 

the tri-carboxylic acid (TCA) cycle (Kumar et al., 2011). Mtb replenishes the precursors 

required for gluconeogenesis by bypassing the two CO2 generating steps of the TCA 

cycle through the glyoxylate shunt, which converts isocitrate to glyoxylate and malate 

with isocitrate lyase and malate synthase enzymes, respectively. Isocitrate lyase (Icl) is a 

key enzyme for mycobacterial virulence and survival in the persistent state that the icl 

gene is upregulated during chronic infection and an icl knockout Mtb strain cannot 

establish persistent infection in mice (McKinney et al., 2000). The glyoxylate shunt is 

present in prokaryotes, fungi, and plants but not in mammals, which makes the enzymes 

of this pathway attractive drug targets. While it is challenging to target Icl due to its 

small and highly polar active site, the other enzyme of the glyoxylate shunt, malate 

synthase, has been shown to be a druggable target (Krieger et al., 2012; Sharma et al., 

2000). In addition to carbohydrate starvation, the phagosome environment is also poor in 

iron, which induces the upregulation of genes related to iron acquisition (mycobactin 

synthesis genes mbtA-L), iron transport, and iron storage (Reddy et al., 2012; Stokes and 

Waddell, 2009; Symeonidis and Marangos, 2012).    

 



 

39 

 

Overview of transcription  

RNA polymerase (RNAP) is responsible for the DNA-directed synthesis of 

RNA, called transcription. While eukaryotes have multiple RNAPs, each functioning to 

synthesize a different class of RNA, bacteria have a single RNAP. The bacterial RNAPs 

are comprised of four distinct subunits, alpha (α2), beta (β), beta prime (β’) and omega 

(ω), forming the core enzyme. A fifth subunit, sigma factor (σ), reversibly associates 

with the RNAP, forming the holoenzyme during transcription initiation (Figure 1-8). 

Currently, the crystal structures are available for the bacterial (E.coli, Thermus 

thermophilus and Thermus aquaticus) core RNAP (Zhang et al., 1999a), holoenzyme 

(Murakami, 2013; Murakami et al., 2002b; Vassylyev et al., 2002), holoenzyme with a 

“fork junction” DNA mimicking the open-complex (Murakami et al., 2002a), 

transcription initiation (Zhang et al., 2012a), and the elongation complexes (Vassylyev et 

al., 2007). The structure of the Mtb core/holo RNAP or any of its subunits has not been 

determined. 

 The architecture of the bacterial RNAPs is conserved among different species; 

however, it has been observed that the structural conservation among RNAPs is 

significantly greater than the sequence conservation (Darst, 2001). The overall structure 

of the bacterial RNAPs resembles a crab claw, where the β and β’ subunits form the two 

pincers creating a deep channel (primary or active-site channel) with a width of 27 Å 

(Darst et al., 2002). The primary channel accommodates the double-stranded DNA and 

the DNA-RNA hybrid. The two α subunits are located at the opposite surface of the 

main cleft. They interact with the β and β’ subunits through their N-terminal domains, 
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while they interact with the promoter DNA and transcription activators through their C-

terminal domains (Geszvain and Landick, 2005). The ω subunit interacts with the 

carboxy terminal tail of the β’ subunit and participates in RNAP assembly (Mathew and 

Chatterji, 2006). The RNAP molecule is approximately 150 Å long, 115 Å, tall and 110 

Å wide in size (Darst, 2001). The top and bottom of the main channel is connected by a 

β’ helical segment called the bridge helix. The active site is located at the base of the 

main channel formed between the pincers, where one or two Mg
2+

 ions are chelated by 

the three conserved aspartate residues of the β’ subunit opposite to the bridge helix and 

several water molecules (Vassylyev et al., 2002). The active site is highly conserved 

among species and is equipped with the structural elements required for the catalysis and 

maintaining of the nucleic acid scaffolds. Comparison of the different RNAP structures 

revealed the conformational flexibility of the enzyme and identified the rigid core and 

mobile domains. While the α-N-terminal domains, ω subunit, β and β’ regions around 

the active site form the rigid core modules, the β and β’ pincer domains (protrusion (β1), 

lobe (β2), and β’-clamp) are mobile and can open/close the main channel, providing the 

grip on the dsDNA. The other mobile domain is the β-flap which covers the RNA exit 

channel (Geszvain and Landick, 2005). Conformational changes in these mobile 

domains are observed upon transition of RNAP from the core to the holo enzyme 

(Vassylyev et al., 2002).  
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Figure 1-8. Structure of the bacterial RNAP. The crystal structure of the Thermus 

thermophilus transcription initiation complex is shown. Molecular surfaces for the α, β, 

β’, ω and σ subunits are shown in yellow, magenta, gray, orange and cyan colors, 

respectively. The β’-bridge helix connecting the bottom and the top of the main channel 

is colored green. The template and non-template dsDNA are shown in ribbon and sticks 

in dark blue. The active site is located deep inside the main chain between the β and β’ 

pincers, opposite to the bridge helix.  

 

 

 

Transcription starts with binding of the holoenzyme to the specific promoter sites 

on the dsDNA that is selected by the σ-factor, forming the RNAP close-complex (RPc). 

Next, about 17 base pairs (bp) around the transcription start site get separated (melted) 

by the holocomplex, leading to the formation of the RNAP open-complex (RPo), and the 

RNA chain synthesis is initiated. Both the β (β1 and β2 lobes) and β’ (β’ clamp) subunits 
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interact with the downstream dsDNA in the initiation complex and participate in the 

formation and stabilization of the open-complex (Geszvain and Landick, 2005; Zhang et 

al., 2012a). Before processive RNA production starts, RNAP usually undergoes cycles 

of short (2-15 nucleotides) transcript formation and release known as the abortive 

transcription (Goldman et al., 2009). Once the nascent RNA chain becomes 

approximately ten nucleotides, RNAP can escape the promoter, the σ factor dissociates, 

and the core RNAP proceeds toward the chain elongation forming the transcription 

elongation complex (TEC). During elongation RNAP translocates both itself and the 

melted transcription bubble along the DNA template. The NTP substrates are fed to the 

active site through a secondary channel, which is lined within the β’ subunit, forming a 

funnel from the surface of the enzyme to the active center (Darst, 2001). The newly 

synthesized RNA exits through the RNA-exit channel, which is covered by the β-flap 

and β’-lid regions. In prokaryotes, transcription termination occurs through one of two 

processes. It can occur when RNAP reaches a characteristic termination sequence/signal, 

which leads to the formation of a stem-loop RNA structure that will pause and release 

RNAP by disrupting the nucleic acid-protein interactions. Termination can also happen 

through the binding of Rho, which is a transcription termination factor, to the growing 

RNA chain, and pausing RNAP while unwinding the DNA-RNA hybrid (Darnell and 

Lodish, 2000).   

 

 

 



 

43 

 

Transcription regulation by RNAP interacting proteins 

Gene regulation and transcription control is mainly mediated by the transcription 

factors and transcription regulators that interact with the RNAP and the promoter DNA 

sequences to alter the transcription activity. While the majority of the transcription 

factors bind to specific DNA sequences with their characteristic DNA binding domains 

and facilitate or block the RNAP-promoter DNA interactions (activators and repressors), 

some transcription regulators solely interact with RNAP, and some are involved in the 

structuring of the bacterial nucleoid (nucleoid-associated proteins). The Mtb genome 

encodes ~190 transcription regulators of which ~140 are uncharacterized/putative 

transcription factors, 13 are sigma factors, 11 are two-component systems, and 5 are 

unpaired response regulators (Manganelli et al., 2004). During the varying stages of 

infection, different transcription regulators are utilized to ensure differential gene 

expression as a response to the environmental conditions (Raman et al., 2004). Below, 

the Mtb RNAP-interacting transcription regulators that are important for the 

establishment of the persistent infection will be discussed.  

 

Sigma factors 

Sigma factors are indispensable components of the transcription machinery that 

provide promoter specificity. The Mtb genome encodes for 13 σ factors that all belong to 

the σ70 class, which is E. coli’s principal σ factor (Manganelli et al., 2004). Each 

mycobacterial sigma factor (sigA-M) has its own specificity and is expressed under 

different growth conditions, allowing transcription of a different subset of genes. The 
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primary σ factor, sigA (σA), is responsible for the transcription of housekeeping genes, it 

is essential for bacterial viability, and it is constantly expressed. The other sigma factors, 

sigB, sigC, sigD, sigE, sigF, sigH, and sigJ, were found to be induced upon various 

stress conditions, starvation, and within the macrophages. Therefore, they are associated 

with persistent infection and virulence (Smith et al., 2005). This is especially true for σD, 

σE, and σH, which regulate the genes related to the persistent infection. These genes 

include the rel operon, icl, and the genes encoding for fatty acid degradation enzymes 

(such as fadE24), DNA repair proteins, thioredoxin and thioredoxin reductase (Rodrigue 

et al., 2006). Mtb strains with mutant σF, σB, and σJ display attenuated virulence and are 

more sensitive to various stresses, suggesting their involvement in adaptation to the 

stationary phase (Rodrigue et al., 2006). The σ function is usually regulated by anti-

sigma factors, which bind to σ and inhibit its interaction with RNAP and the promoter 

DNA. Four different anti-σ-factors were identified from the Mtb genome that regulate 

the functions of σE, σF, σH, and σL (Smith et al., 2005).  

The σ70 related σ-factors contain up to four conserved regions (regions 1,2,3 and 

4), which can further be divided into sub-regions (sub-regions 1.1-1.2, 2.1-2.4, 3.0-3.2 

and 4.1-4.2), and classified into four different groups (groups 1,2,3 and 4) based on their 

structural and functional organizations (Geszvain and Landick, 2005). Mtb σA, σB, and 

σF belong to groups 1, 2, and 3, respectively, and contain at least three conserved regions 

(regions 2, 3, and 4). The rest of the ten mycobacterial σ-factors belong to group 4, and 

are also described as the extracytoplasmic function (ECF) σ-factors, containing only 

regions 2 and 4. The Mtb RNAP core or holoenzyme structure is not available; however, 
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the crystal structures of the RNAP holoenzyme from Tth, E. coli and Taq revealed the 

details of the sigma-RNAP interactions (Murakami, 2013; Murakami et al., 2002b; 

Vassylyev et al., 2002). It has also been observed from the crystal structures of initiation 

complexes that the sequence specific interactions between RNAP and the promoter DNA 

are provided by the conserved regions of the σ-subunit (Murakami et al., 2002a). The 

major contact interface between the core RNAP and σ occurs between the coiled-coil 

region of the β’ clamp and the conserved σ sub-region 2.2 (Vassylyev et al., 2002). The 

other contacts are between the σ sub-region 3.1 and the β-subunit β1 protrusion domain, 

the σ sub-region 3.2 and the β’ rudder, lid loops and the C-terminus of the β subunit, and 

the σ sub-regions 4.1 and 4.2 with the β flap and β’ zinc finger domain. The σ-promoter 

DNA interactions occur through the sub-regions 2.4, 2.3, 3.0, and 4.2, which are 

involved in the -10 promoter recognition, transcription bubble melting, and the extended 

-10 element and the -35 promoter recognition, respectively (Rodrigue et al., 2006). The 

sub-region 4.2 was also shown to interact with other transcription regulators such as 

WhiB3 (Steyn et al., 2002).   

 

RbpA 

RbpA is a 14 kDa protein found only in actinomycetes and was first identified in 

Streptomyces coelicolor. It was found that in Mtb, during the stationary phase under 

starvation, the expression of the rbpA gene was upregulated ~8 fold (Betts et al., 2002). 

In M. Smegmatis, RpbA was associated with increased tolerance and resistance to 

antibiotic rifampicin (Dey et al., 2011). This was thought to occur via three alternate 
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mechanisms such as the competition of RbpA with rifampicin for the binding site, 

inducing allosteric conformational changes in the rifampicin binding site while 

influencing the drug’s binding affinity, and an indirect mechanism affecting the 

membrane permeability (Hu et al., 2012). Recently, it was identified that RbpA 

functions as a σ specific transcriptional activator and it regulates the access of the 

primary and stress related σ-factors, σA and σB but not σF, to the core RNAP during the 

stress response and stationary phase (Bortoluzzi et al., 2013; Hu et al., 2012) 

The NMR solution structure of RbpA revealed a well-defined core domain 

comprised of four β-strands and highly flexible N- and C-terminal regions. It was shown 

that RbpA interacts with σA and σB σ2 domains through these unstructured N- and C-

terminal regions (Bortoluzzi et al., 2013; Tabib-Salazar et al., 2013). Two different 

studies suggested that RbpA interacts with the RNAP β-subunit. However, one study 

proposed RbpA binds close to the RNAP active site where rifampicin binds, while the 

other study proposed the sandwich-barrel hybrid motif of the β-subunit on RNAP 

surface is the interaction interface (Dey et al., 2010; Hu et al., 2012). These studies 

suggest that RbpA stabilizes the σ binding to the core RNAP and facilitates open-

complex formation in order to promote transcription. Being an essential transcription 

regulator and playing an important role in the σ cycle makes RbpA a promising target to 

study (Tabib-Salazar et al., 2013).    
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CarD 

Microarray experiments to identify genes that are regulated differently under 

stress conditions resulted in identification of the Rv3583c gene of Mtb. Rv3583c encodes 

for a 17 kDa protein, which is a putative transcriptional factor that is annotated as CarD. 

CarD expression was found to be upregulated 4-8 fold when the bacteria was grown 

under oxidative stress, starvation, and in the presence of DNA damaging agents. CarD 

depleted strains failed to regulate the rRNA and ribosomal protein levels, pointing out its 

involvement in the stringent response mechanism (Stallings et al., 2009). The ability of 

Mtb CarD to complement the DksA function in a ∆dksA E. coli strain verified its 

involvement in rRNA and ribosomal protein transcription regulation and suggested that 

it was a functional homolog to E. coli DksA. In-vivo studies also demonstrated that 

absence of the CarD protein diminishes the persistent Mtb infection in mice. In addition, 

the CarD protein was essential both in-vivo and in-vitro conditions for mycobacterial 

growth under stress as well as under normal growth conditions. These findings all 

suggested that CarD has a pivotal role in the establishment of persistence. Understanding 

the biology of this protein can provide insights into Mtb’s adaptation to persistence and 

may offer new potential drug targets.   

The Mtb CarD protein belongs to the CarD-TRCF family of proteins. The N-

terminus of CarD proteins shows ~30% sequence identity to the Transcription Repair 

Coupling Factor (TRCF) RNAP interacting domain (RID). TRCF removes the stalled 

RNAP from a site of damaged DNA, recruits the DNA repair proteins, and interacts with 

the RNAP β-subunit β1 domain through this RID domain (Smith and Savery, 2005). 
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CarD homologs are found in all mycobacterial species and they are highly conserved 

(>95%) among actinobacteria. On the other hand, no homolog is present in humans. Mtb 

CarD has ~30% sequence identity and ~50% sequence similarity to the CarD protein 

from Myxococcus xanthus, which is the first identified protein from this family. M 

.xanthus CarD is involved in the carotenogenesis pathway, which is responsible for the 

carotenoid synthesis upon exposure to blue light. M. xanthus CarD is part of a complex 

regulatory network, and interacts with both RNAP and CarG with its N-terminal protein-

protein interaction domain. It also interacts with the carQRS promoter DNA with its C-

terminal DNA interaction domain (Nicolas et al., 1996; Penalver-Mellado et al., 2006). 

The M. xanthus CarD DNA binding domain resembles the eukaryotic high mobility 

group A-1 (HMGA1) proteins, which interact with the minor grove of AT rich DNA 

sequences through their ‘RGRP’ protein sequence motifs called ‘AT hook’s. In contrast, 

Mtb CarD does not have an AT hook motif and only exhibits homology to the N-

terminal domain of M. xanthus CarD. Therefore, Mtb CarD is also classified as a CarD-

N-terminal-like (CdnL) protein (Garcia-Moreno et al., 2010).   

Similar to M. xanthus CarD, Mtb CarD was also reported to interact with the 

RNAP β-subunit (Stallings et al., 2009). Based on the homology models generated 

according to the homologous TRCF-RNAP interaction, it was predicted that CarD 

proteins interact with the N-terminus (approximately the first 120 residues) of the β-

subunit. For Mtb CarD, this interaction is crucial for transcription regulation and is 

required for mycobacterial survival and adaptation to stress conditions (Weiss et al., 

2012). Furthermore, as was observed for RbpA protein, the CarD-RNAP interaction also 
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affects Mtb’s susceptibility to rifampicin. Loss of the CarD-RNAP interaction increases 

the sensitivity of mycobacteria to rifampicin (Weiss et al., 2012).  

Little is known about the mechanism of CarD regulation of RNAP. Recently, we 

have determined the crystal structure of Mtb CarD complexed with the RNAP β-lobes. 

The uncomplexed structure of the β-lobes was also solved to compare the 

conformational differences of RNAP in the bound and unbound states. We then 

investigated the CarD-DNA interaction (Gulten and Sacchettini, 2013). Another study 

was performed with a CarD homolog protein from Thermus thermophilus and suggested 

that CarD functions during transcription initiation as an activator by favoring 

interactions between RNAP and promoter DNA (Srivastava et al., 2013). Our structural 

studies of the Mtb CarD/RNAP complex and the insights gained through this complex 

structure will be discussed in the Chapter VI of this dissertation.  
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CHAPTER II 

DECIPHERING THE MECHANISM OF DRUG ACTION FOR ISONIAZID AND 

ETHIONAMIDE AGAINST TUBERCULOSIS AND LEPROSY
*
 

 

Overview 

Thioamide drugs, ethionamide (ETH) and prothionamide (PTH), are clinically 

effective in the treatment of Mycobacterium tuberculosis (Mtb), Mycobacterium leprae 

(M. leprae), and Mycobacterium avium (M. avium) complex infections. Although 

generally considered second-line drugs for tuberculosis, their use has increased 

considerably as the number of multidrug resistant and extensively drug resistant 

tuberculosis cases continues to rise. Despite the widespread use of thioamide drugs to 

treat tuberculosis and leprosy, their precise mechanisms of action remain unknown. 

Mycobacterium tuberculosis enoyl-acyl-ACP reductase (InhA) has been demonstrated to 

be the primary target of isoniazid (INH) and ETH. Recently, it was postulated that M. 

tuberculosis dihydrofolate reductase (DHFR) is also a target of INH, based on the 

findings that a 4R-INH-NADP adduct synthesized from INH by a nonenzymatic 

approach showed strong inhibition of DHFR in vitro, and overexpression of M. 

                                                 

*
Parts of this chapter are reprinted with permission from “Mycobacterium tuberculosis dihydrofolate 

reductase is not a target relevant to the antitubercular activity of isoniazid” by Wang F., Jain P., Gulten 

G., Liu Z., Feng Y., Ganesula K., Motiwala A.S., Ioerger T.R., Alland D., Vilcheze C., Jacobs, W.R.., 

Sacchettini J.C., 2010. Antimicrobial Agents and Chemotherapy, 54 (9), 3776–3782. Copyright © [2010] 

by American Society for Microbiology. DOI: 10.1128/AAC.00453-10, and from “Mechanism of 

thioamide drug action against tuberculosis and leprosy” by  Wang F., Langley R., Gulten G., Dover L.G., 

Besra G.S., Jacobs W.R, Sacchettini J.C., 2007. The Journal of Experimental Medicine, 204 (1), 73-78, 

Copyright © [2007] by Wang F. et al. DOI: 10.1084/jem.20062100.   
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tuberculosis dfrA in M. smegmatis conferred a 2-fold increase of resistance to INH. In 

the present study, a plasmid expressing M. tuberculosis dfrA was transformed into M. 

smegmatis and M. tuberculosis strains, respectively. The transformant strains were tested 

for their resistance to INH. Compared to the wild-type strains, overexpression of dfrA in 

M. smegmatis and M. tuberculosis did not confer any resistance to INH based on the 

MIC values. Similar negative results were obtained with 14 other overexpressed proteins 

that have been proposed to bind some form of INH-NAD(P) adduct. An Escherichia coli 

cell-based system was designed that allowed coexpression of both M. tuberculosis katG 

and dfrA genes in the presence of INH. The DHFR protein isolated from the 

experimental sample was not found bound with any INH-NADP adduct by enzyme 

inhibition assay and mass spectroscopic analysis. We also used whole-genome 

sequencing to determine whether polymorphisms in dfrA could be detected in six INH-

resistant clinical isolates known to lack mutations in inhA and katG, but no such 

mutations were found. The dfrA overexpression experiments, together with the 

biochemical and sequencing studies, conclusively demonstrate that DHFR is not a target 

relevant to the antitubercular activity of INH. In addition, using the cell-based activation 

method, we now have definitive evidence that both thioamides form covalent adducts 

with nicotinamide adenine dinucleotide (NAD) and that these adducts are tight-binding 

inhibitors of M. tuberculosis and M. leprae InhA. The crystal structures of the 

inhibited M. leprae and M. tuberculosis InhA complexes provide the molecular details of 

target–drug interactions. The purified ETH-NAD and PTH-NAD adducts both showed 

nano-molar Kis against M. tuberculosis and M. leprae InhA. Knowledge of the precise 
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structures and mechanisms of action of these drugs provides insights into designing new 

drugs that can overcome drug resistance. 

 

Introduction 

In 1952, isoniazid (INH) was discovered to have bactericidal activity against 

Mycobacterium tuberculosis (Bernstein et al., 1952). Since then, it has been used as a 

potent front-line drug against tuberculosis (Bloch, 1977). On the other hand, INH is not 

effective against Mycobacterium leprae, the causative agent of leprosy, most likely due 

to the dysfunction of the M. leprae katG gene. Thioamide drugs, ethionamide (ETH) and 

pro-thionamide (PTH), were introduced in the 1960s, and they are structurally similar to 

INH (Figure 2-1). They have been widely used in the treatment of mycobacterial 

infections caused by Mycobacterium tuberculosis, M. leprae, and M. avium complex 

infections (Fajardo et al., 2006; Yajko et al., 1987). ETH and PTH are both bacteriocidal 

and are essentially interchangeable in a chemotherapy regimen. They are the most 

frequently used drugs for the treatment of drug-resistant tuberculosis and, therefore, are 

becoming increasingly relevant as the number of multidrug-resistant and extensively 

drug-resistant cases is increasing worldwide (CDC, 2006; Crofton et al., 1997). 

Moreover, ETH and PTH are also used in a combined chemotherapy regimen with either 

dapsone or rifampin to treat leprosy (Katoch et al., 1992). Although we have previously 

speculated about the mechanism of action of ETH in M. tuberculosis based on an 

analogy to isoniazid’s (INH’s) mode of action (Banerjee et al., 1994; Rozwarski et al., 

1998; Vilcheze et al., 2006), definitive biochemical evidence that ETH targets InhA has 
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not been forthcoming. 

 

 

 

Figure 2-1. Chemical structure of ETH, PTH, and INH. Although these prodrugs 

have similar structures, INH is activated by a catalase-peroxidase, whereas ETH and 

PTH are activated by a flavin-dependent monooxygenase. 

 

 

 

The mechanism of action of INH has been studied for more than 50 years. 

Through lipid profiling, INH was found to inhibit mycolic acid biosynthesis in M. 

tuberculosis (Winder et al., 1970). In addition, the INH-induced inhibition of mycolic 

acid biosynthesis was demonstrated to correlate with the bactericidal activity of INH 

(Takayama et al., 1972). Further analysis of the lipids of INH-treated M. tuberculosis 

indicated that the elongation of fatty acids beyond C26 was inhibited, which suggested 

that the target of INH is an enzyme in fatty acid elongation (Takayama et al., 1975). 

Similar to INH, ETH and PTH also inhibit mycolic acid biosynthesis (Takayama et al., 

1972; Winder et al., 1971). INH is a prodrug that must first be activated by KatG, an 
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endogenous catalase/peroxidase (Zhang et al., 2005a). The mode of INH action 

remained unclear until an INH-NAD adduct was identified as the bound inhibitor in the 

active site of InhA, the enoyl-acyl ACP reductase involved in long-chain fatty acid 

biosynthesis, by protein crystallography (Rozwarski et al., 1998). It was hypothesized 

that KatG cleaves the hydrazide on INH to an isonicotinoyl radical, which then reacts 

with NAD to form an adduct that binds to and inhibits InhA (Timmins and Deretic, 

2006). The crystal structure of InhA bound with the adduct indicates that an 

isonicotinoyl moiety was covalently attached to the 4-position of the nicotinamide ring 

of NAD cofactor in an S configuration. The chemical structure of the INH-NAD adduct 

was found to be consistent with the molecular weight obtained by the mass analysis 

(Rozwarski et al., 1998). Later studies demonstrated that INH-NAD adduct could be 

generated by a KatG-catalyzed oxidation in the presence of NAD (Lei et al., 2000; 

Wilming and Johnsson, 1999), which strongly inhibits InhA (Ki = 5 nM) to block 

mycolic acid biosynthesis (Rawat et al., 2003; Rozwarski et al., 1998; Vilcheze et al., 

2006). Similar to INH, ETH and PTH are also prodrugs that require activation to exert 

antitubercular activity. KatG mutant strains resistant to INH are sensitive to ETH, 

indicating that ETH has a different activator (Fattorini et al., 1999; Morlock et al., 2003). 

Mutations of a gene designated ethA were repeatedly found in the clinical isolates 

resistant to ETH (DeBarber et al., 2000; Morlock et al., 2003). Like KatG, the 

overexpression of ethA in M. smegmatis resulted in substantially increased ETH 

sensitivity (Baulard et al., 2000). This evidence suggested that ethA is critical for the 

activation of ETH. ethA encodes a flavin monooxygenase found to catalyze the Baeyer-
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Villiger reaction to detoxify aromatic and long-chain ketones (Fraaije et al., 2004). The 

enzyme is membrane associated and has a tendency to form large oligomers after 

purification (Fraaije et al., 2004; Vannelli et al., 2002). The monooxygenase activity of 

the purified EthA is very low (kcat = 0.00045 s
−1

), suggesting that the enzyme may 

require other proteins or cellular components to be completely functional (Fraaije et al., 

2004). The active form of ETH has never been detected or isolated in vitro, although 

some inactive metabolites produced by the catalytic oxidation of ETH by EthA have 

been studied by TLC and HPLC (DeBarber et al., 2000).  

Mutations within the protein-coding and promoter regions of inhA are frequently 

observed in clinical isolates resistant to INH (Guo et al., 2006; Telenti, 1998). An S94A 

mutation in InhA, which was originally identified in an INH-resistant M. smegmatis 

strain, was later found in three M. tuberculosis clinical isolates that conferred resistance 

to both INH and ETH (Banerjee et al., 1994; Morlock et al., 2003). The S94A allele of 

inhA has been transferred into M. tuberculosis by a specialized linkage transduction, 

which was sufficient to confer 5-fold resistance to INH (Vilcheze et al., 2006). 

Moreover, overexpression of inhA in M. tuberculosis was found to confer 10-fold 

resistance to INH (Larsen et al., 2002). Indeed, several M. tuberculosis clinical isolates 

resistant to INH contain mutations in the inhA gene, and all have been found to be cross-

resistant to ETH (Lei et al., 2000). These genetic observations support that InhA is the 

primary target of INH. 

 Although genetic and biochemical studies have provided convincing evidence 

that InhA is the primary target of INH, other putative targets of INH have also been 
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proposed (Mdluli et al., 1998; Timmins et al., 2004). Previously, FAS-II elongation 

enzyme KasA was proposed to be the primary target of INH based on the mutations 

found in kasA of some clinical isolates and the formation of a complex between AcpM, 

KasA and INH (Mdluli et al., 1998). However, later it was demonstrated that InhA 

inhibition but not KasA inhibition induces the formation of this complex, and only InhA 

but not KasA gets inhibited by KatG activated INH in vitro (Kremer et al., 2003). 

Recently, 17 proteins other than InhA were identified from M. tuberculosis lysate that 

could tightly bind to an affinity matrix derived from INH-NADP or INH-NAD adducts 

by proteomic analysis (Argyrou et al., 2006a). Among these proteins, M. tuberculosis 

dihydrofolate reductase (DHFR) was shown to be strongly inhibited by an INH-NADP 

adduct in vitro (Ki app = 1 nM) in a separate study (Argyrou et al., 2006b). This INH-

NADP adduct was synthesized by incubating INH and NADP in the presence of Mn(III) 

as a catalyst. The crystal structure of the complex indicated that an acyclic 4R INH-

NADP adduct was selectively bound in the active site of DHFR. In addition, 

overexpression of dfrA in M. smegmatis caused a 2-fold increase of resistance to INH 

compared to the wild-type (Argyrou et al., 2006b). These observations were taken to 

suggest that M. tuberculosis DHFR is also a target of INH (Argyrou et al., 2006a; 

Argyrou et al., 2006b). 

There are several observations which conflict with the proposal that DHFR might 

be a target of INH. First, the MIC difference (2-fold) between the dfrA overexpressed M. 

smegmatis strain and the wild-type strain is not significant compared to the error of this 

type of experiment. Second, dfrA has not been clearly shown to be essential to M. 
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tuberculosis. Although it is an essential gene for nucleotide biosynthesis in many other 

organisms (Gangjee et al., 2007; Kompis et al., 2005), disruption of dfrA by transposon 

mutagenesis was found not to attenuate M. tuberculosis infection in mice (Sassetti and 

Rubin, 2003). Third, the endogenous formation of the 4R INH-NADP adduct by KatG 

catalysis has not been demonstrated.  

In this study, we elucidated the mechanism of drug action of ETH and PTH 

against M. tuberculosis and M. leprae using a cell based activation approach. To 

determine whether M. tuberculosis DHFR is a molecular target of INH, we investigated 

(i) whether overexpression of dfrA under relevant conditions confers resistance to INH 

in M. smegmatis and M. tuberculosis, (ii) whether the INH-NADP adduct is an activated 

INH product generated by KatG catalysis inside the cell, and (iii) whether mutations in 

dfrA could be observed in INH-resistant clinical isolates.  

 

Results and discussion 

 

Identification of the active form of ETH 

To identify the active form of ETH, we and others have attempted to use purified 

EthA to activate ETH and inhibit InhA in vitro but have never been able to observe any 

InhA inhibition (unpublished data). This might be due to the fact that purified EthA 

forms large oligomers (200-600 kDa) and has a very low enzymatic activity in vitro 

(Fraaije et al., 2004). Purification of EthA is only possible in the presence of detergents 

suggesting that the protein is membrane associated even though no transmembrane helix 
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or hydrophobic segments that could contribute to membrane anchoring is recognized 

from the protein sequence (Fraaije et al., 2004). It is possible that other proteins or 

cellular components are required for the full EthA activity. Because in vitro activation of 

the drugs ETH and PTH has not been possible by either chemical or enzymatic 

approaches, we developed a cell-based activation method. In this system, recombinant 

Mtb or M.leprae EthA and InhA were co-overexpressed in the same Escherichia coli 

cell, and ETH or PTH was added to the culture to test whether the drugs would inhibit 

InhA upon activation. Although ETH and PTH are both potent drugs against M. 

tuberculosis (MIC = ~0.5 μg/ml) (Quemard et al., 1992), they do not affect E. coli 

growth, even at very high concentrations (100 μg/ml), which is primarily caused by the 

absence of an EthA homologue in E. coli. 

InhA and EthA from M. tuberculosis were coexpressed in E. coli BL21 (DE3) in 

the presence of 100 μg/ml ETH. InhA was rapidly purified, and an in vitro enzyme assay 

was performed. InhA isolated from the experimental sample had <1% of the specific 

activity of InhA purified without the addition of ETH under the same assay condition. 

Mass analysis of denatured InhA from the experimental sample indicated the presence of 

a small molecule with a molecular weight of 798.2. This corresponds to the exact 

molecular weight of an ethyl-isonicotinic-acyl-NAD covalent adduct. Moreover, pure 

fractions of this small molecule showed strong inhibition to native InhA in vitro (Ki = 7 

± 5 nM), which is as potent as the INH-NAD adduct, the active form of INH (Ki = 5 

nM) (Vilcheze et al., 2006). When PTH was used in the same coexpression experiment, 

a compound with a molecular weight of 812.2 was identified that corresponds to the 
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exact weight of a propyl-isonicotinic-acyl-NAD adduct. This compound is also 

extremely potent against InhA in vitro (Ki = 2 ± 0.8 nM for Mtb InhA; Ki= 11 ± 6 nM 

for M.leprae InhA). 

Other than ETH and PTH, thioamide drugs such as thiacetazone and isoxl have 

been shown to be activated by EthA EthA (DeBarber et al., 2000). The same cell-based 

method was applied to test thiacetazone. InhA and EthA were co-overexpressed in the 

presence of TAC and InhA was purified to test the enzymatic activity. The isolated InhA 

was not inhibited under the same assay condition. As expected, mass analysis did not 

show the existence of any tightly bound inhibitor. These results indicate that, unlike 

ETH or PTH, thiacetazone does not target InhA, even though all of these thioamides are 

activated by EthA in M. tuberculosis.  

 

Structures of Mtb and M.leprae InhA with ETH-NAD and PTH-NAD adducts 

We have determined the crystal structures of M. tuberculosis InhA in complex 

with the ETH-NAD and the PTH-NAD adducts, and M. leprae InhA in complex with the 

PTH-NAD adduct to 2.2, 2.5 Å and 2.1 Å resolution, respectively. Mtb and M. leprae 

InhA proteins are highly similar in sequence and overall structure (90% sequence 

identity; RMSD = 1.3 Å for Cαs). The active site residues are also conserved. Unbiased 

electron density maps of each complex clearly indicated the presence of a modified 

NAD with an ethyl-isonicotinic-acyl or propyl-isonicotinic-acyl group covalently 

attached to the 4 position of the nicotinamide ring in a 4S configuration (Figure 2-2A). 

The chemical structures of both inhibitors are consistent with the molecular weights 
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obtained by the mass analysis. Similar to the structure of InhA bound with the adduct 

INH-NAD (Rozwarski et al., 1998), the ethyl-isonicotinic-acyl, or the propyl-

isonicotinic-acyl, moiety is found in a hydrophobic pocket that was formed by the 

rearrangement of the side chain of Phe
149

 (Figure 2-2B–D). The ethyl-isonicotinic acyl 

or the propyl-isonicotinic-acyl group also forces the side chain of Phe
149

 to rotate ~90°, 

forming an aromatic ring-stacking interaction with the pyridine ring (Figure 2-3A). The 

pocket is predominantly lined by hydrophobic groups from the conserved side chains of 

Tyr
158

, Phe
149

, Met
199

, Trp
222

, Leu
218

, Met
155

, Met
161

, and Pro
193

, and is adjacent and 

partly overlapped with the fatty acyl substrate-binding site. Indeed, the atoms common 

to ETH-NAD, PTH-NAD, and INH-NAD are in nearly identical positions. The only 

difference is the extra ethyl or propyl group at the 2 position of the pyridine ring of ETH 

or PTH. The ethyl group contributes to the binding of ETH-NAD adduct by forming π-

stacking interactions with the aromatic side chain of Tyr
158

 at a distance of ~3.3 Å. It is 

also within van der Waal interaction distances with side chains of Leu
218

 (3.3 Å) and 

Met
155

 (3.2 Å). The hydrogen-bonding interactions between the phosphate group of the 

adduct and residues of the nucleotide-binding site are well conserved. Therefore, it is 

very likely that mutations, such as S94A, that decrease the binding of NAD(H) and the 

INH-NAD adduct would also weaken the binding of ETH-NAD and PTH-NAD (Figure 

2-4). This explains why the S94A mutant strain of Mtb is co-resistant to both INH and 

ETH. 
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Figure 2-2. Active sites of the M. tuberculosis enoyl-acyl ACP reductases bound to 

inhibitors and the bound inhibitor. A) The crystal structure of PTH-NAD superimposed onto 

the simulated annealing omit electron density map contoured at 1 σ. Carbon atoms are gray, 

oxygen atoms are red, nitrogen atoms are blue, and phosphor atoms are orange. The 2-propyl-

isonicotinic acyl group is covalently attached to the 4 position of the nicotinamide ring of 

NADH in a 4S configuration. B) Cross section through the surface of the InhA active site with 

bound INH-NAD. C) Cross section through the surface of the InhA active site with bound ETH-

NAD showing that the 2-ethyl-isonicotinic acyl moiety protrudes into a hydrophobic binding 

pocket created by the rearrangement of the side chain of Phe
149

 (shown behind the transparent 

surface), which is similar to INH-NAD. D) Cross section through the surface of the InhA active 

site with bound PTH-NAD, which has a similar binding mode to INH-NAD and ETH-NAD. The 

carbon atoms of the adduct inhibitors and Phe
149

 are white and yellow, respectively. 
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Figure 2-3. M. tuberculosis InhA with bound inhibitors. A) Superposition of active 

sites of the M. tuberculosis InhA:NADH structure and the InhA:ETH-NAD structure, 

showing the side chain of Phe
149

 rotated 90° once the ETH-NAD adduct binds to the 

enzyme. The carbon atoms of residues and NADH in the InhA:NADH structure are 

cyan. The carbon atoms of residues and ETH-NAD in the InhA:ETH-NAD structure are 

gold. B) The stereo view of the active sites of the M. leprae InhA:PTH-NAD structure. 

The carbon atoms of residues and PTH-NAD adduct are gold and cyan, respectively. 

Other atoms are colored according to the atom type (red, oxygen atoms; blue, nitrogen 

atoms; yellow, sulfur atoms; and orange, phosphor atoms). 
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Figure 2-3 Continued. 

 

 

 

 

The structures reveal that the active forms of ETH and PTH inhibit M. leprae 

InhA in a similar way to M. tuberculosis InhA. Although no clinical or experimental 

mutant of M. leprae InhA has been reported thus far, based on the binding mode of the 

PTH-NAD adduct, it is very likely that the mutations of InhA found in ETH-resistant M. 

tuberculosis mutant strains, such as S94A, would also confer resistance of M. leprae to 

ETH and PTH. 
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Figure 2-4. Selected interactions between ETH-NAD and the active site of InhA. A 

conserved water molecule, TIP20, forms a hydrogen bond interaction with the nitrogen 

atom of the 2-ethyl-isonicotinic acyl moiety of the inhibitor at a distance of 2.9 Å. The 

other water molecule, TIP2, is in the center of a hydrogen bonding network, which 

interacts with the oxygen atom of the phosphate group of the adduct and the hydroxyl 

group of Ser
94

 at distances of 2.7 and 2.9 Å, respectively. 

 

 

 

It has been proposed that a free radical metabolite intermediate could be 

generated through EthA oxidation of ETH, similar to the activation of INH. However, no 

active species that inhibit InhA were isolated in vitro (DeBarber et al., 2000), which 

suggests that an unknown cell component, either a protein or cell membrane, is required 

for the formation of the adduct by the free radical intermediate. We believe that the 

inactive metabolites isolated in previous attempts could result from side reactions and 

quenching of the free radical intermediate in solution. It is still not clear how the 
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thioamide is oxidized by EthA. Tokuyama et al. demonstrated that a thioamide could be 

used as a precursor of a synthon equivalent to an imidoyl radical in converting 

thioamides to corresponding indole derivatives. Bu3SnH/Et3B has been used as a free 

radical initiator in pure organic solvent (Tokuyama et al., 1999). Similarly, we postulate 

that ETH is converted to an imidoyl radical, and this imidoyl radical subsequently 

attacks NAD
+
 to form an adduct, which is then converted to ethyl-isonicotinic-acyl-NAD 

adduct after hydrolysis to release the amine group. It is also possible that the imidoyl 

anion is the intermediate before forming the adduct with NAD (Figure 2-5). However, 

based on the current evidence, we are not certain if this reaction is catalyzed by EthA 

alone or requires the involvement of additional enzymes. 
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Figure 2-5. Possible reaction mechanisms for the activation of ETH and the 

formation of ETH-NAD. Two plausible mechanisms for the activation of ETH are 

shown. Either route will lead to the observed ETH-NAD adduct, retaining a tetrahedral 

carbon at position 4 of the nicotinamide ring. 

 

 

INH-NADP adduct formation was not observed in an E. coli-based activation system 

coexpressing katG and dfrA. 

 In the previous study, a synthetic INH-NADP adduct derived from INH 

demonstrated strong inhibition of M. tuberculosis DHFR in vitro (Ki app = 1 nM) 

(Argyrou et al., 2006b). However, the INH-NADP adduct was synthesized by using an 

inorganic catalyst, Mn(III). Thus, the yield of adduct generated from this approach might 
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not truly reflect an enzyme-mediated process inside the cell. To better mimic the in vivo 

activation of INH, a cell-based activation system was designed to examine the KatG-

catalyzed adduct formation and the inhibition of DHFR by the adduct. In this system, 

katG and dfrA were coexpressed in E. coli in the presence of INH to investigate whether 

the activated drug would inhibit DHFR. To construct this system, katG and dfrA were 

cotransformed into the E. coli BL21(DE3) strain and selected on 50 μg of kanamycin 

and carbenicillin/ml. The E. coli strain containing katG and dfrA genes was grown and 

induced in the presence and absence of INH, respectively. After the coexpression of both 

genes was confirmed by SDS-PAGE, recombinant KatG and DHFR proteins were 

readily purified. 

Mass spectroscopy was used to determine whether DHFR purified from the 

experimental sample was bound with any inhibitor. Before the mass spectroscopic 

analysis, the purified DHFR was concentrated and then denatured, followed by filtration 

to separate small molecules from the denatured protein. The MALDI mass spectrum of 

the filtrate, which ranged between 200 and 1,200 Da, was carefully analyzed. We were 

not able to identify any compound that has a molecular mass corresponding to an INH-

NADP adduct. The peaks shown on the spectrum most likely resulted from the cofactor 

NADP and some small fragments of the protein. 

An enzyme assay was performed to determine the activity of purified DHFR. 

DHFR isolated from the experimental sample was found to be fully active (specific 

activity of 12 µmol mg
-1

 min
-1

) compared to the enzyme purified from expression in the 

absence of INH. Since the acyclic 4R INH-NADP adduct is extremely potent against 
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DHFR in vitro, it would tightly bind to DHFR if the adduct is indeed generated by KatG 

catalysis inside the cell. However, both the activity assay result and the mass analysis 

indicated that no detectable amount of the INH-NADP adduct had bound to DHFR. The 

coexpressed KatG from the same experimental sample was purified and assayed for its 

activity in vitro. The specific catalase activity of isolated KatG was 17 mol mg
-1

 min
-1

, a 

finding comparable to published data (21 mol mg
-1

 min
-1

) (Lei et al., 2000), which 

confirmed that the lack of the INH-NADP adduct did not result from the absence of 

KatG activity. Therefore, the acyclic 4R INH-NADP adduct is not an activated INH 

product generated by KatG catalysis inside the E. coli cell-based system. Thus far, KatG 

is the only identified activator of INH, and it is very unlikely that INH could be activated 

by another unknown protein to form the INH-NADP adduct in M. tuberculosis. As a 

result, we conclude that the synthetic INH-NADP adduct is not biologically relevant to 

INH inhibition.  

 

INH-NAD adduct was detected in the E. coli-based activation system coexpressing 

katG and inhA 

 It has been shown that KatG activates INH and catalyzes the formation of an 

INH-NAD adduct in vitro (Timmins and Deretic, 2006; Wilming and Johnsson, 1999). 

In order to demonstrate that this KatG-catalyzed INH-NAD adduct formation and its 

inhibition of InhA can be reproduced in the E. coli-based system, both katG and inhA 

were transformed into E. coli and coexpressed in the presence of INH. InhA was rapidly 

purified by a Ni-NTA affinity column, and an in vitro enzyme assay was performed. 
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InhA isolated from the experimental sample had 15% of the specific activity of InhA 

purified without the addition of INH under the same assay condition. The bound 

inhibitor was isolated by denaturing the InhA purified from the experimental sample, 

and a 1 μM concentration of the inhibitor led to complete inhibition of native InhA. The 

crystal structure of InhA in complex with the inhibitor was solved to 2.4 Å resolution. In 

the active site of InhA, an unbiased electron density map clearly indicated the presence 

of a modified NAD with an isonicotinic-acyl group covalently attached to the 4-position 

of the nicotinamide ring in a 4S configuration, which is consistent with the previously 

identified INH-NAD adduct (Rozwarski et al., 1998). This is the first time that the 

activation of INH by KatG and the formation of the INH-NAD adduct has been 

demonstrated in a whole-cell environment. This confirms that our E. coli cell-based 

system is capable of activating the prodrug INH.  

 

Overexpression of dfrA does not confer resistance to INH 

The most direct evidence to support that DHFR is a target of INH comes from 

the observation that overexpression of dfrA in M. smegmatis conferred a 2-fold increase 

in resistance to INH (Argyrou et al., 2006b). Therefore, we first reexamined whether 

overexpression of this protein using a strong promoter in M. smegmatis would lead to 

increased resistance to INH. Use of cosmids harboring a gene on a multicopy plasmid 

along with its native promoter might be a desired approach to overexpress putative 

targets. However, this can result in a failure to observe overexpression whether the 

expression of the protein is from a tightly regulated promoter. To eliminate the 
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promoter-specific effect, a novel T7-based expression system was developed for the 

efficient expression of proteins in mycobacteria. In brief, an M. smegmatis strain 

(mc
2
4517) was generated by integrating a plasmid expressing the T7 polymerase under 

the acetamidase-inducible promoter into the genome at the mycobacteriophage L5 

attachment site. M. tuberculosis genes were cloned under the T7 promoter on a separate 

episomal plasmid pYUB1062. Protein expression was induced by the addition of 0.2% 

acetamide. To ensure overexpression of dfrA and inhA, protein lysates were analyzed on 

SDS gels, and a high level of expression was observed within 6 h of induction as a 

distinct band corresponding to the expected size compared to the uninduced control 

(Figure 2-6). The strains overexpressing dfrA (mc
2
5097) and inhA (mc

2
5089) were then 

tested for their susceptibility to INH and ETH and the results obtained are summarized 

in Table 2-1. The MIC for the inhA overexpression strain mc
2
5089 increased more than 

60-fold to 300 μg/ml for INH, compared to the wild-type strain. In contrast to InhA, we 

did not observe any increase in MIC for mc
2
5097, the strain overexpressing DHFR, 

which had been reported to confer 2-fold resistance to INH when induced in M. 

smegmatis with an acetamidase promoter (Argyrou et al., 2006b). Other than DHFR and 

InhA, 16 additional proteins from M. tuberculosis were identified in a previous study 

(Argyrou et al., 2006a) that bound to an INH-NAD or INH- NADP adduct in vitro. We 

applied the same T7 promoter system to successfully overexpress 14 of these genes in 

M. smegmatis, but none of them could confer resistance to INH or ETH (Table 2-1). 

Since this analysis was done in liquid culture, we also tested the ability of the strains to 

grow on plates with two times the MIC for INH. As shown in Figure 2-7, the M. smeg- 
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Figure 2-6. Overexpression of the proteins in M. smegmatis confirmed by SDS-

PAGE analysis. Lanes: M, marker; 1, vector; 2, Rv0155 (PntAA, 40 kDa); 3, Rv1484 

(InhA, 29.5 kDa); 4, Rv2763c (DfrA, 17.4 kDa); 5, Rv1996 (34.9 kDa); 6, Rv2623 (32.7 

kDa); 7, Rv2766c (FabG5, 30.8 kDa); 8, Rv2858 (AldC, 50 kDa); 9, uninduced Rv2763c 

(DfrA); 10, induced Rv2763c (DfrA). 
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Table 2-1. MICs determined in 7H9 broth by serial dilution method after 

overexpressing the INH-NAD binding proteins from M. tuberculosis H37Rv in M. 

smegmatis. 

Overexpressed protein MIC ( μg/ml)
a
 

INH ETH 

None (mc
2
4517 parental strain) 4.7 9.4 

Rv1484 (InhA) 300 150 

Rv2763c (DfrA) 4.7 9.4 

Rv3248c (SahH) 4.7 9.4 

Rv0753c (MmsA) 4.7 9.4 

Rv1187 (RocA) 4.7 9.4 

Rv0155 (PntAA) 4.7 9.4 

Rv2623 (universal stress protein) 4.7 9.4 

Rv1996 (universal stress protein) 4.7 9.4 

Rv0468 (FadB2) 4.7 9.4 

Rv2691 (CeoB/TrkA) 4.7 9.4 

Rv0091 (Mtn/Sah) NA NA 

Rv2858c (AldC) 4.7 9.4 

Rv1059 (unknown) 4.7 9.4 

Rv0926c (unknown) 4.7 9.4 

Rv3777 (probable oxidoreductase) 4.7 9.4 

Rv2971 (probable oxidoreductase) NA NA 

Rv2766 (FabG5) 4.7 9.4 

Rv2671 (RibD) 4.7 9.4 

a
 NA, not available (overexpression was not successful). 
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matis strain containing the overexpressed DHFR (mc
2
5072) failed to grow on an INH-

containing plate, while the strain overexpressing InhA (mc
2
5071) showed complete 

resistance. To find out whether DHFR was indeed expressed, the strain containing the 

overexpressed DHFR was plated on medium containing the known DHFR inhibitor 

trimethoprim. Strain mc
2
5072 (DHFR overexpresser) was able to grow on medium 

containing 50 or 150 μg of trimethoprim/ml. In contrast, the parental strain mc
2
5069 or 

the strain overexpressing InhA (mc
2
5071) failed to grow on trimethoprim-containing 

plates. One possible explanation for the difference between our findings and those 

reported previously (Argyrou et al., 2006b) might be that the growth inhibition 

experiment in the previous study was carried out at 30°C, which is not optimal for 

growth, whereas the growth inhibition experiments in our study were performed at 37°C. 

Our observation that the overexpression of M. tuberculosis InhA but not DHFR confers 

resistance to INH and ETH in M. smegmatis using this new expression system is 

consistent with InhA being the primary target of INH and ETH. Even though DHFR has 

been shown to bind an INH-NADP adduct in vitro, this phenomenon is not sufficient to 

confer INH or ETH resistance in mycobacterial cells. 
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Figure 2-7. Growth of the wild-type M. smegmatis strain and transformed strains 

overexpressing DHFR or InhA on media containing the known DHFR inhibitor 

trimethoprim (50 or 150 μg/ml) or INH (10 or 120 μg/ml). 

 

 

 

A second overexpression experiment was conducted using the H37Rv strain of 

M. tuberculosis, which is more disease relevant, compared to M. smegmatis. The M. 

tuberculosis H37Rv strain was transformed with the pMV261::dfrA plasmid. The MIC 

of INH for the M. tuberculosis strain overexpressing dfrA is identical to that of the wild-

type H37Rv strain (0.06 μg/ml). On plates with three times the MIC for INH, no growth 

of the M. tuberculosis strain overexpressing dfrA was observed. In contrast, the M. 

tuberculosis strain overexpressing inhA survived (Figure 2-8), which is consistent with 
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the previous report that the MIC for M. tuberculosis overexpressing inhA (1.0 μg/ml) 

increased 20-fold compared to the wild-type H37Rv strain (MIC 0.06 μg/ml) (Larsen et 

al., 2002). Therefore, similar to what we observed in our M. smegmatis experiment, 

overexpression of dfrA did not prevent growth inhibition of M. tuberculosis by INH, 

which genetically demonstrates that M. tuberculosis DHFR is not a relevant target of 

INH. 

 

Absence of polymorphisms in dfrA in INH-resistant clinical isolates  

As an alternative approach to determining whether DHFR might be a relevant 

target of INH, we used whole-genome sequencing to determine whether mutations in 

dfrA could be observed in INH-resistant clinical isolates. If DHFR were a target of INH, 

then it might be expected that mutations might occur in dfrA in INH-resistant clinical 

isolates lacking mutations in inhA or katG. Although mutations in inhA or katG and their 

promoters account for most cases of resistance to INH, the remaining 10 to 25% of cases 

must have mutations in other genes relevant to INH toxicity (Zhang et al., 1993). 
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Figure 2-8. Growth of M. tuberculosis H37Rv strains overexpressing DHFR or 

InhA on media containing INH (0.2 μg/ml) or kanamycin (100 μg/ml). Spots: A, 

pMV261::inhA (InhA overexpresser); B, pMV261 (plasmid only); C to F, four 

independent transformants of pMV261::dfrA (DHFR overexpresser). 

 

 

 

We sequenced the genomes of six clinical isolates that were INH resistant but 

known not to have relevant mutations in inhA, katG, or their promoters. The six strains 

were sequenced by using an Illumina Genome Analyzer II (see Materials and Methods). 

The depth of coverage (i.e., the number of reads overlapping each site, averaged over the 

whole genome) was 36.9x to 49.4x for each strain, providing high confidence in the final 

base calls. This method has been used successfully to identify known and novel 

mutations associated with resistance to INH, rifampin, pyrazinamide, kanamycin, 

ofloxacin, streptomycin, etc., in many other strains sequenced in our lab. 

Coding regions for the 17 putative INH-NADH-binding proteins identified 
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earlier (Argyrou et al., 2006a) were searched for polymorphisms. The 100-bp regions 

upstream of the operon containing each gene were also searched for possible SNPs in the 

promoter region that might affect expression level. None of the six clinical isolates 

harbored any mutations in dfrA or its promoter (Table 2-2). Furthermore, few 

nonsynonymous mutations were found in any of the other 16 genes identified as 

potential proteins that can bind an INH-NAD(P)H adduct. Strain 5358 showed the most 

mutations, due to its evolutionary distance from the others (5358 belongs to the M. bovis 

family), but most of the mutations in strain 5358 were also observed in the genome for 

INH-sensitive M. bovis BCG, implying that they are not responsible for INH resistance. 

The only sites where there are potentially relevant differences (i.e., nonsynonymous and 

not in BCG) are a 931-bp deletion of mtn in 5400, aldC(T21A) in 5297, the a-64c 

promoter mutation upstream of Rv1059, the 1-bp frameshift mutation in Rv1059 in 

5297, and Rv3777:P101A in 5297. 

For completeness, other genes traditionally associated with INH resistance were 

also searched, including katG, iniC, ndh, ahpC, etc. (Hazbon et al., 2006), but no known 

mutations responsible for INH resistance could be identified (Table 2-3). Two strains 

showed mutations in katG (F129S in strain 5400 and G285V in strain 5324), and one 

strain has a mutation in efpA (Q513R in strain 5324). None of these mutations has been 

previously reported in INH-resistant strains. The katG F129S mutation is located at the 

dimer interface, and the katG G285V mutation is located at the mouth of the active site 

entrance, so their effect on INH activation is unclear. Mutations in mshA, which 

catalyzes the first step in mycothiol biosynthesis, have also been linked with INH and  
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Table 2-2. Mutations in genes identified as potential INH-NAD(P) binders
a 

   Mutation in strain    

5071 5072 5297 5324 5358 5400 M.bovis 

BCG 

 Protein        

Rv2763c/dfrA None None None None None None None 

Rv3248c/sahH None None None None None None None 

Rv0753c/mmsA None None None None None None None 

Rv1187/rocA None None None None None None None 

Rv0155/pntAa A274A None None None None None None 

Rv2623  None None None None None None None 

Rv1996  None None None None None None None 

Rv0468/fadB2 None None None None L87L None L87L 

Rv2691/ceoB T117A T117A T117A T117A T117A T117A T117A 

Rv0091/mtn None A155P None Q174Q None 931-bp 

deletion 

None 

Rv2858c/aldC None None T21A None P77P None P77P 

Rv1059  a-64c
b
 1-bp 

deletion 

in P99 

None None None None None 

Rv3777  None None P101 None None None None 

Rv3777  V160A V160A V160A V160A V160A V160A V160A 

Rv3777  L63L L63L L63L L63L L63L L63L L63L 

Rv0926c  None None None None None None None 

Rv2766c/fabG5 None None None None None None None 

Rv2671/ribD None None None None None None None 

Rv2971  None None None None N152H None N152H 

a
Argyrou et al. (Argyrou et al., 2006a). Mutations are indicated relative to the amino 

acid in the H37Rv reference sequence. Mutations that are shared with M. bovis BCG are 

assumed not to cause isoniazid resistance. 
b
Single nucleotide polymorphism in promoter 

region. 
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Table 2-3. Mutations in genes traditionally associated with INH resistance
a
 

    Mutation(s) in strain:   

5071 5072 5297 5324 5358 5400 M.bovis    

BCG Protein 

Rv1484/inhA None None None None None None None 

Rv1908c/katG None None None G285V R463L F129S R463L 

Rv1909c/furA None None None None A46V None A46V 

Rv1854c/ndh None None None None G313R None G313R 

Rv0342/iniA None None None None N88S, 

H481Q 

None N88S, 

H481Q 

Rv0341/iniB None None None None None None None 

Rv0343/iniC None None None None None None None 

Rv3139/fadE24 None None None None None None None 

Rv2245/kasA None None None None None None None 

Rv2246/kasB None None None None None None None 

Rv2428/ahpC None None None None None None None 

Rv2242 None None None None A363T None A363T 

Rv0340 None None None None None None None 

Rv1592c I322V I322V I322V I322V I322V I322V I322V 

Rv1772 None None None None Deletion None Deletion 

Rv2846c/efpA None None None Q513R T15R None T15R 

Rv0486/mshA N111S N111S None N111S None N111S None 

a
 Mutations are indicated relative to the amino acid in the H37Rv reference sequence. 

Synonymous mutations are excluded. 
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ETH resistance, but the N111S allele appears in the Erdman strain, which is as 

susceptible to these drugs as H37Rv (Vilcheze et al., 2008). Although the true cause of 

INH resistance in these six strains remains undetermined, the lack of mutations in dfrA 

and the 16 other putative INH-NAD(P)-binding proteins suggests that they are unlikely 

to be targets of INH. We also have sequenced the dfrA gene in six additional M. 

tuberculosis strains known to be INH-resistant but with no known relevant mutations. 

None of these had a mutation in the dfrA gene. Consistent with our findings, a recent 

large-scale screening of 127 INH-resistant M. tuberculosis isolates from Singapore by 

PCR sequencing also revealed no mutations within dfrA (Ho et al., 2009). 

 

Experimental methods 

 

Cloning, expression, and purification 

The M. tuberculosis dfrA, katG and inhA genes were cloned as previously 

described (Argyrou et al., 2006b; Dessen et al., 1995). M. tuberculosis ethA was cloned 

from genomic DNA (National Institutes of Health contract N01-AI-75320; Colorado 

State University). The amplified product was inserted into pET28b using the NdeI and 

NotI restriction sites. M. leprae ethA and inhA were cloned from genomic DNA. The 

amplified product of M. leprae ethA was inserted into pET15b using the NdeI and 

BamHI restriction sites. M. leprae inhA was inserted into pET30b using the NdeI and 

HindIII restriction sites. 

The plasmids of M. tuberculosis katG and dfrA, inhA and katG, inhA and ethA, 
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and M.leprae inhA and ethA were singly and doubly transformed into E. coli BL21(DE3) 

(EMD Bioscience, catalog no. 69387-3). The strains containing both plasmids were 

cultured in LB-Miller medium containing 50 μg/ml kanamycin and 50 μg/ml 

carbenicillin at 37°C until OD600 reached 0.5. Expression of both genes was induced for 

20 h at 16°C by addition of 1 mM isopropyl β-D-thiogalactopyranoside. At the same 

time of induction, 100 μg/ml of INH or ETH or PTH was also added to the culture. The 

same protocol was used for the strains containing just the dfrA or inhA plasmids.  

Recombinant M. tuberculosis DHFR and KatG was purified according to a 

previously described method (Argyrou et al., 2006b; Zhao et al., 2006). Recombinant 

InhA was purified according to the method described in Chapters III and IV. The 

coexpression and purification of M. leprae ethA and inhA were conducted using 

protocols similar to those used for the M. tuberculosis enzymes. 

 

Mass spectroscopy analysis for adduct identification  

InhA purified from the experimental strain containing both inhA and ethA genes 

was concentrated and heated for 40 s at 100°C. After the heat treatment, ETH-NAD or 

PTH-NAD was separated from denatured enzymes by filtration, using a centricon device 

(cutoff size = 30 kD). The concentration of ETH-NAD and PTH-NAD was determined 

by its absorbance at 260 and 326 nM (Lei et al., 2000). The molecular weight of both 

adducts was determined by matrix-assisted laser desorption/ionization (MALDI) 

performed on an ABI Voyager-DE STR (AME Bioscience): ETH-NAD, calculated 

weight = 797.2 and found weight = 797.3 (negative mode), and calculated weight = 
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799.2 and found weight = 799.2 (positive mode); PTH-NAD, calculated weight = 811.2 

and found weight = 811.3 (negative mode). Mass spectrometry analysis for DHFR was 

performed in a similar way. Purified DHFR was heated for 60 s at 100°C. After the heat 

treatment, denatured enzyme was separated by filtration, using a Centricon (cutoff, 3 

kDa). The filtrate was used for MALDI experiment.  

 

DHFR, KatG and InhA enzymatic activity assays  

All assays were carried out on a Cary 100 Bio Spectrophotometer at 25°C. 

DHFR assays are performed by monitoring the oxidation of NADPH and reduction of 

dihydrofolate (DHF) at 340 nm. Reactions were initiated by adding DHFR (10 nM) to 

assay mixtures containing NADPH (10 μM), DHF (4.5 μM), and phosphate buffer (pH 

7.5, 50 mM). The KatG activity was assayed as previously described (Zhao et al., 2006). 

InhA activity was monitored by oxidation of NADH at 340 nm. Reactions were initiated 

by adding 50 μM of substrate dodecenoyl-CoA to assay mixtures containing 1 nM InhA, 

100 μM NADH, and 3–2,000 nM of adduct inhibitors. The IC50 was determined from the 

dose-response plot of enzyme fractional activity as a function of inhibitor concentration. 

Ki was obtained by dividing the IC50 value by 1 + [S1]/Km1 + [S2]/Km2, where [S1] and 

[S2] are the concentrations of dodecenoyl-CoA and NADH, and Km1 and Km2 are their 

Michaelis constants. 
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Crystallization of InhA in complex with the INH-NAD, ETH-NAD and PTH-NAD 

adducts  

Crystallization was accomplished by the hanging-drop vapor diffusion method. 

Mtb or M. leprae InhA in complex with INH-NAD, ETH-NAD or PTH-NAD was 

cocrystallized in hanging droplets containing 2 μl of protein solution at 10 mg/ml and 

with 2 μl of buffer (12% 2-methyl-2,4-pentanediol, 4% dimethyl sulfoxide, 0.1 M 

HEPES, and 0.025 M sodium citrate) at 16°C  against 1 ml of the same buffer. Diamond 

or cubic shaped protein crystals appeared 4 days later. 

 

Data collection and processing 

Data were collected at 121 K using cryoprotection solution containing reservoir 

solution with an additional 30% MPD. Crystals of M. tuberculosis InhA:INH-NAD, 

InhA:ETH-NAD and M. leprae InhA:PTH-NAD diffracted x-rays to 2.4, 2.2 and 1.8 Å 

using the beamline 23-ID at the Advanced Photon Source (Argonne National 

Laboratory, Argonne, IL). Diffraction data were collected from a single crystal with 1° 

oscillation widths for a range of 120°. Crystals of M. tuberculosis InhA:PTH-NAD were 

diffracted to 2.5 Å using a Raxis image plate detector coupled to a Rigaku x-ray 

generator using a copper rotating anode (CuKα, λ = 1.54 Å). The data were integrated 

and reduced using HKL-2000 (HKL Research, Inc.) (Otwinowski and Minor, 1997). 

 

Structure determination and model refinement 

Crystals produced from InhA in complex with ETH-NAD were isomorphous to 
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those of the native enzyme. Initial phases were obtained by molecular replacement using 

the apo-InhA structure (1ENY) and refined with CNS software (Brunger et al., 1998). Fo 

– Fc and 2Fo – Fc electron density maps were calculated, and an additional density 

resembling the inhibitor was found. The ligand was fit into the additional density, and 

the whole model was rebuilt using XtalView (McRee, 1999). During the final cycles of 

the refinement, water molecules were added into peaks above 3 σ of the Fo − Fc electron 

density maps that were within hydrogen-bonding distances from the appropriate protein 

atoms.  

 

T7-based expression system for mycobacteria 

  

Construction of M. smegmatis expression strain, mc
2
4517 

pT7Pol26 was digested with BamHI to excise the RNA polymerase gene of 

bacteriophage T7. The 2.7-kb BamHI DNA fragment was ligated to BamHI-digested 

pSD26 plasmid, and the orientation was confirmed by digestion with the appropriate 

restriction enzymes. The DNA fragment of an acetamidase promoter fused to T7 

polymerase was then cloned into pMV306, to generate pYUB1232. The expression 

strain mc
2
4517 was obtained after electroporating pYUB1232 into M. smegmatis 

mc
2
155. 

 

Construction of expression plasmids 

pYUB1062, the parental expression plasmid, was constructed by combining the 
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NarI/SspI DNA fragment (948 bp) from pET30a plasmid and the NarI/EcoRV DNA 

fragment (4,026 bp) of pMV206. Shuttle vector pYUB1062 contains an oriE for 

replication in E. coli, oriM for replication in mycobacteria, a hygromycin cassette for 

antibiotic selection, a T7 promoter/terminator, and a histidine tag region for the 

purification of overproduced protein. The various M. tuberculosis genes were cloned 

into pYUB1062 using NdeI or NcoI as the upstream site and an appropriate down-stream 

site.  

 

Expression of INH-NAD- or INH-NADP-binding proteins from M. tuberculosis 

M. smegmatis mc
2
4517 cells were transformed with plasmids expressing INH-

NAD- or INH-NADP-binding protein of M. tuberculosis. A single bacterial colony was 

grown in all cases at 37°C to an A600 of 0.6 to 0.8 in Middlebrook 7H9 broth medium 

supplemented with 0.2% Tween 80, 0.05% glycerol, kanamycin (20 μg/ml), and 

hygromycin B (100 μg/ml). Cell cultures were diluted 1:100 in 50 ml of the same liquid 

medium and cells were grown to mid-exponential phase (A600 0.5 to 0.6) at 37°C at 120 

rpm before induction with acetamide. The bacterial cultures were divided into equal 

volumes, and 0.2% (wt/vol) acetamide was added to the one of the aliquots (the other 

aliquot was used as a control). Expression of protein was determined after 6 h of 

induction by analyzing the cell-free protein extract by 10 to 20% SDS-PAGE. 

 

MIC determination 

M. smegmatis cells expressing the M. tuberculosis proteins were grown to an OD 
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of 0.6 and then induced with 0.2% acetamide for 6 h until the OD reached 1.0. The cells 

were then diluted by 10
5
-fold and incubated in 200 μl of 7H9 medium containing INH 

(0, 0.6, 1.2, 4.7, 9.4, 18.6, 37.5, 75, 150, and 300 μg/ml) in a 96-well plate. The plates 

were incubated at 37°C and observed after 72 h. The MIC was determined as the 

concentration of drug at which no visible growth was observed. MICs for M. 

tuberculosis strains were determined by using an MTT assay (Martin et al., 2005). The 

concentrations of INH tested were 0, 0.015, 0.03, 0.06, 0.12, 0.24, 0.48, 0.96, 1.92, and 

3.84 μg/ml. 

 

Sequencing of clinical isolates  

Six INH-resistant clinical isolates (strains 5071, 5072, 5297, 5324, 5358, and 

5400) were obtained for whole-genome sequencing. The clinical isolates were collected 

from Mexico between 1991 and 1996 by the Laboratory of Clinical Microbiology, 

Instituto Nacional de Ciencias Me´dicasy Nutricio´n Salvador Zubira´n, Mexico City, 

under an IRB-approved protocol. Five of the six strains were genotyped as belonging to 

SNP cluster group SCG_3b, whereas strain 5358 belongs to the M. bovis family based 

on spoligotyping. MICs for INH ranged from 0.2 to 8.0 μg/ml compared to 0.03 μg/ml 

for H37Rv. 

Genomic DNA was extracted by using a CTAB (cetyltrimethylammonium 

bromide) protocol as previously described (Larsen et al., 2007). The DNA library was 

constructed by using a genomic DNA sample preparation kit (Illumina). The sample was 

first fragmented by using a nebulization technique. Then, the double-stranded DNA 
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fragments comprised of 3 or 5 overhangs were converted into blunt ends, using T4 DNA 

polymerase and Klenow enzyme. Klenow 3 -to-5 exonuclease minus was used to add an 

“A” base to the phosphorylated 3 blunt end of the DNA fragments so that the fragments 

could be ligated to the adaptors, which have a single “T” base overhang at their 3 end. 

The ligated DNA was then size selected on a 2% agarose gel. DNA fragments of 300 bp 

were excised from the preparative portion of the gel. DNA was then recovered by using 

a Qiagen gel extraction kit and PCR amplified to produce the final DNA library. A total 

of 5 pmol of DNA from each strain was loaded onto a different lane of the sequencing 

chip (eight lanes total), and the clusters were generated on the cluster generation station 

of a Genome Analyzer II using the Illumina Cluster generation kit. Bacteriophage X174 

DNA was used as a control. 

The sequencing reaction was run for 36 cycles (tagging, imaging, and cleavage 

of one terminal base at a time), and four images of each tile on the chip were taken in 

different wavelengths for exciting each base-specific fluorophore. Image analysis and 

base-calling were done by using v0.3 of the Illumina GA Pipeline software. 

The 36 bp reads that were generated for each strain were mapped (aligned) 

against H37Rv as a reference sequence (or M. bovis in the case of strain 5358, which 

was the closest reference strain by spoligotyping). Apparent differences (at sites where 

the consensus base from overlapping reads differed from the expected base in the 

reference sequence), along with sites where coverage was low or observed bases were 

heterogeneous, were identified, and local contig-building was used to resolve them into 

SNPs versus indels, based on alignment to the corresponding region in the reference 
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genome. 

 

Additional unpublished results  

 

Coexpression experiments for InhA-EthA, Dhfr-KatG and Dhfr-EthA 

Initial coexpression trials for InhA and EthA or Dhfr and KatG were performed 

using a duet expression vector. The corresponding genes were successively cloned into 

the multiple cloning sites of the pETDuet (Novagen) vector. Each gene sequence was 

verified by DNA sequencing. Individual colonies harboring the InhA-EthA, Dhfr-KatG, 

or Dhfr-EthA pETDuet plasmids were inoculated into Luria broth (LB) medium. 

Coexpression was tested in both small (5 ml) and large scale (2 L) cultures. The cells 

were grown till the log phase and were induced with IPTG at 18 °C and 37 °C.  Samples 

were aliquoted from each flask and subjected to SDS-PAGE analysis. However, it was 

found that coexpression from a single plasmid did not yield either a good amount of 

protein expression or soluble protein (Figure 2-9B). Therefore, coexpression 

experiments were performed by co-transformation of two individual plasmids carrying 

each gene into the same E. coli cell. Mtb and M.leprae InhA and EthA, or Mtb Dhfr and 

KatG were cloned into individual expression vectors with different antibiotic selection 

markers (pET15b with carbenecillin marker and pET28b or pET30b (Novagen) with 

kanamycin marker), which were simultaneously cotransformed to E. coli BL21(DE3) 

cells. This approach yielded sufficient amount of soluble InhA, Dhfr and KatG proteins 

required for the subsequent analysis and experiments.  
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Figure 2-9. Recombinant coexpression of Mtb Dhfr and KatG proteins in E.coli. A) 
Plasmids carrying Dhfr and KatG genes were co-transformed to E.coli BL21(DE3) cells. 

Two individual colonies carrying both plasmids were inoculated into LB medium and 

protein expression was induced by 1 mM IPTG. Over-expression of both proteins (Dhfr- 

17.5 kDa and KatG- 80 kDa) was clearly visible in the SDS-PAGE gel. B) Dhfr and 

KatG genes were cloned into pETDuet vector and the presence of both inserts were 

verified by DNA sequencing. Four individual colonies were inoculated into LB medium 

and expression was induced by 1 mM IPTG. As seen from the SDS-PAGE gel, there was 

no over-expression for either protein. For both panels, NI represents before IPTG 

induction (non-induced), I is after IPTG induction (induced).     

 

 

We have shown that both INH and ETH target InhA by forming structurally 

similar adducts with NAD
+
. Since it was proposed that Dhfr was inhibited by the INH-

NADP adduct, we tested if the same hypothesis can hold for ETH, which is a structural 

analog of INH. Similar to the Dhfr/KatG coexpression experiment, Dhfr and EthA were 

coexpressed in the presence of 100 μg/ml ETH, to determine if the cell activated ETH 

can inhibit Dhfr. However, despite the optimization of induction time, temperature and 

the expression host cell line, no soluble Dhfr protein was obtained when it was 

coexpressed with EthA (Figure 2-10). It is very likely that the ETH-NAD adduct will 
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also not target Dhfr, as we have shown that the INH-NAD adduct does not bind to Dhfr 

in vivo (see Results and Discussion for details).   

 

 

 

Figure 2-10. Recombinant coexpression of Mtb Dhfr and EthA proteins in E.coli. A) 
The plasmids carrying the dhfr and ethA genes were co-transformed to E. coli 

BL21(DE3) cells. A single colony carrying both plasmids was inoculated into 5 ml LB 

medium and protein expression was induced by 1 mM IPTG. Over-expression of both 

proteins (Dhfr- 17.5 kDa and EthA- 55 kDa) was clearly visible in the SDS-PAGE gel. 

B) Dhfr and EthA were overexpressed in the presence of ETH. Cells were lysed by 

French press and spinned at 16K rpm. The lysate (L), supernatant (S) and pellet (P) were 

run on a SDS-PAGE gel. As concluded from the gel, the majority of the Dhfr protein 

was in pellet (insoluble).   

 

 

Inhibition of InhA activity by the cell-activated ETH 

After coexpression of Mtb InhA and EthA in the presence of 100 μg/ml ETH, 

InhA was purified and the enzymatic activity was monitored. As a control experiment, 

either InhA was singly expressed in the presence of ETH or InhA and EthA were 

coexpressed in the absence of ETH. The InhA protein isolated from the experimental 
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sample (InhA+EthA+ETH) displayed very low (<1%) enzymatic activity (Figure 2-11). 

In contrast, the control experiments, where InhA and EthA were coexpressed in the 

absence of ETH, or InhA was singly expressed in the presence of ETH, showed that 

InhA activity was retained in these situations (Figure 2-11). This demonstrated that ETH 

was a pro-drug and it could not inhibit InhA without activation by EthA. In addition, 

InhA inhibition was solely due to the in vivo activated ETH molecule (ETH-NAD 

adduct), and it was not an artifact caused by coexpression or the experimental design.      

 

 

 

 

Figure 2-11. InhA inhibition after coexpression with EthA in the presence of ETH. 

InhA activity was inhibited only by the in vivo activated ETH.  
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Summary  

Isoniazid (INH) and ethionamide (ETH) have been used for the treatment of M. 

tuberculosis and M. leprae infections, the causative agents of tuberculosis and leprosy 

diseases, respectively. Both INH and ETH are prodrugs requiring activation inside the 

cell. The mechanism of action for INH has been established. INH is activated by the 

catalase-peroxidase KatG enzyme and forms an adduct with NAD
+ 

in
 
the 4-position of 

the nicotinamide ring in an S
 
configuration. In contrast, the active form of ETH has not 

been demonstrated before this study. The enoyl-reductase enzyme, InhA, has been 

shown to be the molecular target of both drugs. Recently, it was proposed that the 

dihydrofolate reductase enzyme, Dhfr, of Mtb was also a target of INH, based on the 

findings that a non-enzymatically generated 4R-INH-NADP adduct strongly inhibited 

Dhfr in vitro, and Dhfr overexpression in M. Smegmatis confered 2-fold resistance to 

INH. In this study, an E. coli cell-based activation system was developed, which allowed 

the coexpression of the activator and the target gene of a drug in the presence of the drug 

compound. To determine the active form of ETH, Mtb and M. leprae InhA and EthA 

proteins were co-overexpressed in the presence of ETH, and the active form of ETH was 

isolated and characterized by mass spectrometry and X-ray crystallography. It was 

demonstrated that ETH displayed a similar mode of action as INH, and the biologically 

active form of ETH was consisted of an ETH-NAD
+
 adduct in a 4S configuration. 

Similarly, to test whether Dhfr and InhA were molecular targets of INH, Dhfr/KatG or 

InhA/KatG proteins were coexpressed in the presence of INH. Mass spectrometry and 

enzymatic assays verified that only InhA but not the Dhfr protein was bound with the 
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INH-NAD(P) adduct. In addition, it was verified that overexpression of the Dhfr protein 

in M. Smegmatis and Mtb did not confer resistance to INH, and INH resistant clinical 

isolates did not carry polymorphisms in the dfrA gene. These findings conclusively 

demonstrated that Dhfr was not a target relevant to the antitubercular action of INH.   
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CHAPTER III  

REGULATION OF INHA ACTIVITY BY PHOSPHORYLATION

 

 

Overview  

The remarkable survival ability of Mycobacterium tuberculosis in infected hosts 

is related to the presence of cell wall-associated mycolic acids. Despite their importance, 

the mechanisms that modulate expression of these lipids in response to environmental 

changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of 

InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary 

target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is 

the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological 

relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative 

(T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely 

impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity 

to NADH. Importantly, introduction of inhA_T266D/E failed to complement growth and 

mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a 

similar manner to what is observed following isoniazid treatment. This study suggests 

that phosphorylation of InhA may represent an unusual mechanism that allows M. 

                                                 


 Reprinted with permission from “Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth 

of Mycobacterium tuberculosis” by Gulten G., Molle V., Vilchèze C., Veyron-Churlet R., Zanella-Cléon 

I., Sacchettini J.C., Jacobs W.R., Kremer L., 2010. Molecular Microbiology, 78(6), 1591–1605, Copyright 

© [2010] by Blackwell Publishing Ltd. DOI: 10.1111/j.1365-2958.2010.07446.x.  
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tuberculosis to regulate its mycolic acid content, thus offering a new approach to future 

anti-tuberculosis drug development. 

 

Introduction 

Mycolic acids are the major and distinguishing molecular components of the 

Mycobacterium tuberculosis cell envelope. These very long α-alkyl β-hydroxyl fatty 

acids are found either unbound as esters of trehalose or glycerol that are extractable with 

organic solvents or attached to the terminal penta-arabinofuranosyl units of 

arabinogalactan, the polysaccharide that, together with peptidoglycan, forms the 

insoluble cell-wall skeleton (McNeil et al., 1991). These lipids play an important role in 

the formation of an outer membrane and in cell-wall impermeability, virulence, immune 

evasion (Bhatt et al., 2007a; Bhatt et al., 2007b; Dao et al., 2008; Dubnau et al., 2000; 

Glickman et al., 2000; Rao et al., 2006) and the distinctive acid-fast staining of M. 

tuberculosis (Bhatt et al., 2007a). Recent studies have also revealed free mycolic acids in 

M. tuberculosis biofilms (Ojha et al., 2008). Mycolic acid synthesis is tightly related to 

cell division, as evidenced by the fact that isoniazid (INH) and ethionamide (ETH), two 

antitubercular drugs, inhibit mycolic acid biosynthesis, resulting in cell lysis (Takayama 

et al., 1972). This metabolic pathway thus represents an important reservoir of targets for 

new drugs (Dover et al., 2008), which are more critical than ever since the emergence of 

multidrug-resistant and extremely drug-resistant strains of M. tuberculosis.  

Biosynthesis of mycolic acids depends on two distinct fatty acid synthases: the 

eukaryotic-like type I (FAS-I) and the prokaryotic-like type II (FAS-II) enzymes. FAS-I 
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is a single polypeptide that performs de novo biosynthesis of medium-length acyl-CoAs 

(C16 and C24–C26) (Bloch, 1975; Zimhony et al., 2004). These are used as primers by the 

FAS-II system and are iteratively condensed with malonyl- Acyl Carrier Protein (ACP) 

in a reaction catalysed by mtFabH, the β-ketoacyl-ACP synthase III of M. tuberculosis 

(Brown et al., 2005; Choi et al., 2000; Scarsdale et al., 2001). During the second step of 

the elongation cycle, the resulting β-ketoacyl-ACP product is reduced by MabA, the 

NADPH-dependent β-ketoacyl reductase of M. tuberculosis (Banerjee et al., 1998; 

Marrakchi et al., 2002). The resulting β-hydroxyacyl-ACP is then dehydrated by a set of 

dehydratases, HadABC (Brown et al., 2007; Sacco et al., 2007), and finally reduced by 

the NADH-dependent 2-trans-enoyl-ACP reductase, InhA (Quemard et al., 1995). The 

succeeding steps of condensation of the elongating chain with malonyl-ACP units are 

performed by the β-ketoacyl-ACP synthases KasA and KasB (Bhatt et al., 2007a; 

Kremer et al., 2002; Schaeffer et al., 2001), leading to very long-chain meromycolyl-

ACPs (up to C56), which are the direct precursors of mycolic acids (Kremer et al., 2000a; 

Takayama et al., 2005).  

InhA belongs to the family of short-chain dehydrogenases/reductases (Dessen et 

al., 1995; Quemard et al., 1995). Genetic studies have revealed that inhA is essential in 

mycobacteria (Vilcheze et al., 2000). Thermal inactivation of InhA in a Mycobacterium 

smegmatis strain carrying an inhA-thermosensitive allele resulted in inhibition of 

mycolic acid biosynthesis and cell lysis in a manner similar to that seen in INH-treated 

bacteria (Vilcheze et al., 2000). It is now clear that INH is activated by the catalase 

peroxidase KatG to form a hypothetical isonicotinoyl radical that binds to NAD. The 



 

97 

 

resulting INH-NAD adduct inhibits InhA (Rozwarski et al., 1998), leading to 

accumulation of long-chain fatty acids, inhibition of mycolic acid biosynthesis and 

ultimately cell death (Vilcheze et al., 2000). INH resistance also involves several genes 

but only mutations in inhA have a dominant phenotype, whereas all other mechanisms of 

resistance (katG, ndh, msh, nat) are recessive (Vilcheze and Jacobs, 2007). The inhA 

gene product was originally identified as a putative target for INH and ETH in M. 

smegmatis (Banerjee et al., 1994). An increasing body of evidence has since pointed to 

InhA as the primary target of the two drugs (Kremer et al., 2003; Larsen et al., 2002; 

Vilcheze et al., 2000; Wang et al., 2007), culminating in the demonstration that transfer 

of an inhA S94A mutant allele in M. tuberculosis was sufficient for conferring resistance 

to both INH and ETH and establishing InhA as the clinically relevant target of INH 

(Vilcheze et al., 2006). InhA is one of the best-validated targets for the development of 

antitubercular agents. Further studies on INH, as well as on other small-molecule 

inhibitors of InhA, hold significant promise for the delivery of novel anti-tubercular 

agents effective against drug-resistant M. tuberculosis (am Ende et al., 2008; Freundlich 

et al., 2009; He et al., 2007; He et al., 2006; Oliveira et al., 2007; Tonge et al., 2007; 

Vilcheze and Jacobs, 2007). This prompted us to seek new alternatives for InhA 

inactivation, ultimately leading to mycolic acid and cell growth inhibition. Indeed, 

mycolic acid biosynthesis and cell division are very likely to be related (Lacave et al., 

1989; Lacave et al., 1987; Takayama et al., 1972). We hypothesized that the activity of 

InhA might be controlled by post-translational modification in M. tuberculosis. This idea 

was supported by (i) the recent demonstration that the keto-reductase activity of MabA is 
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regulated by Ser/Thr protein kinase (STPK)-dependent phosphorylation, providing the 

first information on the molecular mechanism(s) involved in mycolic acid regulation 

through phosphorylation of a FAS-II enzyme (Veyron-Churlet et al., 2010) and (ii) the 

fact that genes encoding the two FAS-II reductases, MabA and InhA, are in the same 

operon in the M. tuberculosis genome (Banerjee et al., 1998; Cole et al., 1998).  

Many of the stimuli encountered by M. tuberculosis are transduced via sensor 

kinases in the membrane, allowing the pathogen to adapt to survive in hostile 

environments. In addition to the classical two-component systems, M. tuberculosis 

contains 11 eukaryotic-like STPKs (Av-Gay and Everett, 2000; Cole et al., 1998). There 

is now an increasing body of evidence suggesting that, in M. tuberculosis, many STPKs 

are involved in regulating metabolic processes, transport of metabolites, cell division or 

virulence (Molle and Kremer, 2010). Signalling through Ser/Thr phosphorylation has 

recently emerged as a key regulatory mechanism in pathogenic mycobacteria (Molle and 

Kremer, 2010; Wehenkel et al., 2008).  

As a first step to decipher an original molecular mechanism for future drug 

development by specifically targeting InhA, this study was undertaken to determine 

whether InhA represents a new substrate of M. tuberculosis SPTKs and to investigate 

whether phosphorylation negatively regulates InhA activity and consequently mycolic 

acid biosynthesis and mycobacterial growth.  
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Results 

 

 InhA is phosphorylated in vitro by multiple Ser/Thr kinases (STPK)  

By analogy with the mode of action of INH, we reasoned that inhibition of 

mycolic acid biosynthesis might occur in vivo via post-translational modifications of 

InhA capable of reducing the enoyl reductase (ENR) activity of the enzyme. This 

prompted us to examine whether InhA could be modified by phosphorylation, a reaction 

that changes the physicochemical properties of defined Ser or Thr residues by 

introducing negative charges, which can ultimately affect the overall activity of the 

protein. This was first investigated in vitro in the presence of purified STPKs (PknA to 

PknL). The kinase domains of several transmembrane kinases from M. tuberculosis were 

expressed as GST-tagged fusion proteins and purified from Escherichia coli as reported 

earlier (Molle et al., 2006). The purified kinases were incubated with InhA and [γ-
33

P]-

ATP, resolved by SDS-PAGE and their phosphorylation profiles analysed by 

autoradiography. The presence of intense radioactive signals indicated that InhA was 

phosphorylated by multiple kinases, including PknA, PknB, PknE and PknL (Figure 3-

1A). No signal was observed in the presence of PknF, PknH or PknK, all of which 

displayed various autokinase activities as reported earlier (Molle et al., 2006). These 

results clearly indicate that InhA is a specific substrate and interacts with various STPKs 

in vitro, suggesting that this key protein of the mycolic acid biosynthetic pathway might 

be regulated in mycobacteria by multiple extracellular signals.  
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Figure 3-1. M. tuberculosis InhA is phosphorylated in vitro by Ser/Thr kinases on 

residue Thr-266. A) In vitro phosphorylation of InhA by multiple kinases. Eight 

recombinant STPKs (PknA to PknL) encoded by the M. tuberculosis genome were 

expressed and purified as GST fusions and incubated with purified His-tagged InhA and 

radiolabelled [γ-
33

P]-ATP. The quantity between the STPKs varied from 0.2 to 1 μg in 

order to obtain the optimal autophosphorylation activity for each specific kinase. 

Samples were separated by SDS-PAGE, stained with Coomassie blue (upper panel) and 

visualized by autoradiography after overnight exposure to a film (lower panel). Upper 

bands reflect the autophosphorylation activity of each kinase and the lower bands 

correspond to the phosphorylation signal of InhA. B) Mass spectrometric analysis of 

PknB-phosphorylated InhA. MS/MS spectrum of the triply charged ion [M+3H]
3+

 at m/z 

1051.51 of peptide (241–269) (monoisotopic mass: 3151.52 Da). Unambiguous location 

of the phosphate group on Thr-266 was shown by observation of the ‘y’ C-terminal 

daughter ion series. Starting from the C-terminal residue, all ‘y’ ions lose phosphoric 

acid (-98 Da) after the Thr-266 phosphorylated residue. C) In vitro phosphorylation of 

the InhA_T266A mutant. Purified InhA_WT and InhA_T266A were incubated with 

PknB and [γ-
33

P]-ATP. Samples were separated by SDS-PAGE, stained with Coomassie 

blue and visualized by autoradiography after overnight exposure to a film, as indicated. 
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Figure 3-1 Continued. 
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InhA is phosphorylated on a unique threonine residue  

Mass spectrometry was used to identify the number and nature of the 

phosphorylation sites on InhA. Such a method has been successfully used to elucidate 

the phosphorylation sites in a sequence-specific fashion for several M. tuberculosis 

STPK substrates (Barthe et al., 2009; Canova et al., 2009; Veyron-Churlet et al., 2009; 

Veyron-Churlet et al., 2010). InhA was incubated with unlabelled ATP in the presence 

of PknB (one of the most active kinases for InhA, Figure 3-1A) and subjected to mass 

spectrometric analysis after tryptic and chymotryptic digestion. Spectral identification 

and phosphorylation determination were achieved with the paragon algorithm from the 

ProteinPilot® 2.0 database-searching software (Applied Biosystems) using the 

phosphorylation emphasis criterion against a homemade database that included the 

sequences of InhA and derivatives. The phosphopeptides identified by the software were 

then validated by manual examination of the corresponding MS/MS spectra. Manual 

validations were performed based on neutral loss of H3PO4 from the precursor ion and 

the assignment of major fragment ions to b- and y-ion series or to the corresponding 

neutral loss of H3PO4 from these ions. The sequence coverage of the protein was 94% 

and phosphorylation occurred only on peptide (241–269) with an 80 Da mass increment 

from 3071.53 Da (theoretical MW) to 3151.52 Da (monoisotopic mass). The MS/MS 

spectra unambiguously confirmed the presence of a phosphate group on Thr-266 

(Figures 3-1B and A-1A). Then, in order to prevent in vitro phosphorylation on Thr-

266, this residue was changed to alanine by site-directed mutagenesis. The 

corresponding phosphoablative InhA_T266A mutant was expressed and purified as a 
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His-tagged protein in E. coli BL21(DE3)Star harbouring pETPhos_inhA_T266A. The 

resulting InhA_T266A mutant protein was purified and incubated with PknB in the 

presence of [γ-
33

P]-ATP. Following separation by SDS-PAGE and analysis by 

autoradiography, total abrogation of the phosphorylation signal was observed compared 

with InhA_WT (Figure 3-1C). Similar results were obtained when InhA_T266A was 

incubated in the presence of either PknA, PknE or PknL (data not shown), indicating that 

Thr-266 represents the phosphoacceptor for all four kinases.  

Taken together, these results indicate that Thr-266 represents the unique 

phosphorylation site in InhA and suggest that phosphorylation of this residue is likely to 

play a critical role in the regulation of InhA activity.  

 

In vivo phosphorylation of InhA  

To corroborate the in vitro results, it was necessary to confirm the 

phosphorylation state of the InhA protein in vivo. The inhA gene was cloned into the 

pMK1 mycobacterial expression vector under the control of the strong promoter hsp60 

(Table A-1). The resulting construct was used to transform Mycobacterium bovis BCG 

Pasteur in order to allow over-production of recombinant His-tagged InhA, which was 

purified and subjected to 2D-gel electrophoresis. As shown in Figure 3-2A, two spots, 

presumably corresponding to the non-phosphorylated form followed in the acidic 

direction by a mono-phosphorylated form of InhA, were clearly detected. Definitive 

identification and localization of Thr-266 as the unique phosphorylation site in InhA in 

vivo was achieved by mass spectrometric analysis using InhA purified from M. bovis 
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BCG cultures. LC-MS/MS identified an 80 Da mass increase corresponding to the 

peptide (241–269), supporting the conclusion that InhA is phosphorylated in vivo in M. 

bovis BCG (Figures 3-2B and A-1B). Together, these results confirm that Thr-266 

corresponds to the primary phosphorylation site both in vitro and in vivo.  

 

ENR activity is strongly reduced for the InhA_T266D and InhA_T266E 

phosphomimetic mutants  

Earlier studies showed that the acidic Asp or Glu amino acids qualitatively 

mimic the effect of phosphorylation with regard to functional activity. Following a 

strategy successfully used to demonstrate the role of phosphorylation on the condensing 

activity of mtFabH (Veyron-Churlet et al., 2009) and the β-ketoacyl-ACP reductase 

MabA (Veyron-Churlet et al., 2010), we first expressed and purified the 

phosphomimetics InhA_T266D and InhA_T266E. Next, we determined the in vitro ENR 

activity of these mimetics and compared their enzymatic activity with those of 

InhA_WT in the presence of increasing concentrations of trans-2-dodecenoyl-CoA (DD-

CoA). Figure 3-3A clearly shows a strongly reduced activity of the two phosphomimetic 

mutants. The effect of mutation at T266 on the enzymatic activity was then calculated as 

the remaining per cent activity. The phosphoablative InhA_T266A protein showed very 

similar catalytic activity to the wild-type enzyme, indicating that this residue is not 

involved in catalysis (Figure 3-3A, 3-3B, and Table 3-1). 
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Figure 3-2. In vivo phosphorylation of InhA in mycobacteria. A) Phosphorylation 

profile of InhA purified from recombinant M. bovis BCG carrying the pMK1_inhA_WT. 

Bacteria were lysed and the soluble fraction was incubated with Ni-NTA agarose beads 

to purify the His-tagged InhA. The protein preparation was loaded on a 7 cm immobiline 

strip (Bio-Rad, pH 5–8) and electrophoresed on a Protean IEF Cell (Bio-Rad) for the 

first dimension and on a 10% SDS-PAGE for the second dimension, then stained with 

Coomassie blue. The grey circles represent the different phosphorylated isoforms, as 

indicated: np, non-phosphorylated; 1P; mono-phosphorylated. B) Mass spectrometric 

analysis of InhA purified in vivo. MS/MS spectrum of the triply charged ion [M+3H]
3+

 

at m/z 1051.51 of peptide (241–269) (monoisotopic mass: 3151.52 Da). The phosphate 

group on T266 was unambiguously located by observing the ‘y’ C-terminal daughter ion 

series. Starting from the C-terminal residue, all ‘y’ ions lose phosphoric acid (-98 Da) 

after the T266 phosphorylated residue.  
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InhA_T266E and InhA_T266D mutants showed only ~30% residual enzymatic 

activity. Subsequent enzymatic studies were focused on Asp and Glu mutants to 

determine the reason behind this significant loss of function. Initial velocity studies with 

Asp and Glu mutants suggested that both followed a random order reaction mechanism 

with preferred NADH binding prior to DD-CoA binding, which was reported previously 

for wild-type InhA (Parikh et al., 1999; Quemard et al., 1995) (Figures 3-3A and 3-3C). 

This preferred-ordered pathway towards NADH binding resulted in sigmodial initial 

velocity curves as the NADH concentrations were varied at a fixed DD-CoA 

concentration (Figure 3-3A, right panel). On the other hand, when the concentration of 

DD-CoA was varied at fixed concentrations of NADH, a pattern similar to substrate 

inhibition was observed (Figure 3-3A, left panel). The steady-state kinetic parameters, 

kcat and Km, calculated for DD-CoA for InhA_WT, InhA_T266A, InhA_T266D and 

InhA_T266E mutants are presented in Table 3-1. Both Asp and Glu mutants exhibited 

Km values for DD-CoA very similar to those of the wild-type and T266A mutant 

enzymes but kcat and Vmax values for the wild type and Ala mutant showed three- to 

fourfold higher catalytic turnover and maximum velocity compared with the 

phosphomimetic mutants. kcat/Km, which defines the substrate specificity, is almost the 

same for all four enzymes. This suggests that the overall observed decrease in the 

activity (100% wild type versus 30% mutants) is not due to the deficiency in the DD-

CoA substrate binding.  
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Figure 3-3. Enoyl reductase (ENR) activity of InhA_WT and mutant derivatives. 
InhA_WT and the single mutants carrying a Thr→Ala, a Thr→Asp or a Thr→Glu 

mutation at position 266 were purified from recombinant E. coli, dialysed and assayed 

for ENR activity. A) Enzymatic activity in the presence of 150 μM NADH and 

increasing concentrations of DD-CoA (left panel). Initial velocity for the wild-type and 

mutant enzymes measured as the NADH concentration was varied at a fixed DD-CoA 

concentration (50 μM) is presented in the right panel. B) Activity of the various InhA 

variants in the presence of 100 μM NADH and 50 μM DD-CoA. The activity of 

InhA_WT was arbitrarily set at 100%. Values are means of triplicates and are 

representative of three sets of experiments with independent protein preparations. Error 

bars represent the standard error. C) Proposed preferred pathway reaction mechanism for 

InhA_T266D and InhA_T266E enzymes. Both of the enzymes bind preferably to NADH 

first, followed by DD-CoA binding. Since the enzymes kinetically prefer NADH binding 

first, decreased affinity towards NADH can affect the overall in vitro activity of the 

mutant enzymes.  
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Figure 3-3 Continued.  

 

 

Fluorescence experiments clearly indicated that both Asp and Glu mutants had 

three- to fourfold decreased binding affinity for NADH while InhA_T266A displayed 

approximately twofold reduction compared with InhA_WT as judged by the Kd values 

(Table 3-1). This suggests that T266 is an important residue for NADH binding and 

mutation of this residue can affect the binding of the enzyme to NADH. However, the 

overall effect on enzymatic activity is not linearly related to the fold decrease in NADH 

binding affinity since T266A is catalytically as active as the wildtype enzyme. Because 

phosphomimetic mutant enzymes kinetically prefer NADH binding first, the overall 

activity for these mutant proteins were affected significantly by the decreased affinity 

towards NADH. It is therefore very likely that the change in the NADH binding affinity 

is responsible for the decreased activity of the phosphomimetic InhA mutants.  
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Table 3-1. Steady-state kinetic parameters Km, kcat, Vmax and kcat/Km for DD-CoA, 

for wild-type and mutant InhA enzymes. 

 Activity (%) Km (μM) kcat (min
-1

) 

Vmax 

(μMmin
-1

mg
-1

) 

kcat/Km 

(min
-1

 μM
-1

) 

Kd (NADH) 

(μM) 

InhA_WT 100 40.9 ± 15.4 320.4 ± 52.7 11.4 ± 1.9 9.9 ±   2.7 1.5 ± 0.2 

InhA_T266A 102.6 ± 7.8 52.3 ± 3.6 427.4 ± 34.4 15.3 ± 1.2 8.2 ± 0.2 3.5 ± 0.4 

InhA_T266D 31.4 ± 6.3 19.6 ± 5.6 87.3 ± 4.4 3.1 ± 0.1 6.0 ± 2.7 4.7 ± 0.6 

InhA_T266E 29.5 ± 1.2 20.3 ± 4.9 149.4 ± 11.9 4.1 ± 0.8 6.9 ± 2.3 6.0 ± 0.6 

 

Dissociation constants for NADH are presented. The values were determined in triplicate and the 

average numbers calculated from three different experiments are represented. For each InhA 

enzyme, kcat/Km was calculated from three independent experiments and the mean kcat/Km is 

presented. Values are mean ± standard error.  

 

 

Local structural changes generated by Thr-266 mutations  

Recombinant InhA_WT, InhA_T266D and InhA_T266E proteins were purified 

from E. coli and subjected to crystallographic studies. In the InhA_WT structure, the 

OG1 atom of T266 interacts with the NE2 atom of Q267 (3.08 Å) and carbonyl oxygen 

of G263 (2.74 Å) (Figure A-2). For the T266D/E mutants, due to the loss of the Thr 

residue, this direct H-bonding interaction between residues T266 and Q267 is lost. 

Instead, a new water molecule (H2O #9 and #5 for InhA_T266D and InhA_T266E 

mutants respectively) is introduced between residues 266 and 267 (Figure A-2). 

Regarding the InhA_T266D structure, this makes H-bonding interactions with the NE 

atom of Q267 (3.01 Å), the carbonyl oxygen of G263 (2.74 Å) and the carbonyl oxygen 

of T254 from the neighboring subunit (2.77 Å). In InhA_T266E these interaction 

distances are 3.0 Å, 2.71 Å and 2.79 Å respectively. Notably, the direct interaction 

between the side-chains of residues 266 and 267 is completely abrogated in the mutant 
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structures. On the other hand, OD1 and OD2 atoms of D266 interact with NE2 and ND1 

of H265 (3.07 Å and 3.45 Å respectively), causing a ~15 degree flip in the H265 ring. 

For E266, the distances are: OE1 of E266 with NE2 of H265 4.4 Å; ND1 of H265 3.04 

Å; OE2 of E266 with ND1 H265 3.5 Å and NE2 of H265 3.8 Å. OE2 of E266 and OD2 

of D266 also H-bonds with the carbonyl oxygen of T254 from the neighbor subunit (3.0 

Å), which is not present in the wild-type InhA:NADH structure (3.7 Å) (Figure A-2). In 

summary, mutation of Thr→Asp or Thr→Glu led to local structural changes limited to 

the surrounding of the mutated residue. 

 

Growth defect of fast- and slow-growing mycobacteria overexpressing InhA 

phosphomimetic proteins  

Mycobacterium smegmatis mc
2
155 was transformed with pMK1 derivatives 

allowing constitutive expression of the different inhA alleles under the control of the 

strong hsp60 promoter (Table A-1): inhA_WT, the phosphoablative inhA_T266A or the 

phosphomimetic inhA_T266D and inhA_T266E. Transformed mycobacteria were 

selected on Middlebrook 7H10 plates. As shown in Figure 3-4A, which illustrates the 

morphology and size of M. smegmatis colonies after 4 days’ incubation at 37°C, it is 

clear that overexpression of InhA_T266A did not impair growth of M. smegmatis as 

compared with the strain overproducing InhA_WT. In contrast, overexpression of either 

InhA_T266D or InhA_T266E was accompanied by a decrease in the growth rate 

compared with the strains overexpressing InhA_WT or InhA_T266A (Figure 3-4A). 

Similar results were also observed in M. bovis BCG strains harbouring these plasmids 
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(Figure A-3). Taken together, these results indicate that overexpression of the 

phosphomimetic InhA alleles severely altered mycobacterial growth in both fast- and 

slow-growing mycobacterial species. Our results show that the impaired ENR activity of 

InhA_T266D or InhA_T266E is likely to be responsible for this growth defect, 

presumably by inhibiting FAS-II activity, either interacting with other FAS-II system 

enzymes or forming non-functional oligomers. Because InhA acts as a tetramer in 

mycobacteria, overproduction of InhA_T266D or InhA_T266E may lead to 

unproductive InhA multimers, which may coexist with functional InhA multimers.  

The hypothesis that the impaired in vitro activity of InhA_T266D or 

InhA_T266E is linked to a different oligomerization state than InhA_WT can, however, 

be excluded since both mutant enzymes formed only tetramers in solution as 

demonstrated by gel-filtration chromatography (data not shown), and by the fact that we 

could crystallize and determine the structures of the tetrameric InhA_T266D and T266E 

mutants (Figure A-4). Western blot analysis from M. smegmatis and M. bovis BCG 

cultures revealed both the endogenous and the recombinant InhA proteins in each strain, 

which can be clearly distinguished by the presence (recombinant InhA) or absence 

(endogenous InhA) of a His-tag (Figures 3-4B and A-3). 
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Figure 3-4. Overexpression of the various InhA variants and effect on growth in M. 

smegmatis. A) Electrocompetent M. smegmatis mc
2
155 was transformed with the empty 

pMK1 construct, the pMK1_inhA_WT, pMK1_inhA_T266A, pMK1_inhA_T266D or 

pMK1_inhA_T266E to allow constitutive expression of the various inhA alleles under 

the control of the strong hsp60 promoter. Transformed mycobacteria were plated and 

incubated at 37°C for 3 days. B) InhA expression levels in the InhA-overproducing M. 

smegmatis mc
2
155 strains. Western blot analysis of M. smegmatis mc

2
155 cultures 

overexpressing the phosphoablative inhA_T266A and phosphomimetic inhA_T266D and 

inhA_T266E alleles were harvested, resuspended in PBS and disrupted. Equal amounts 

of crude lysates (20 μg) were loaded onto a 4–12% acrylamide gel, subjected to 

electrophoresis and transferred onto a membrane for immunoblot analysis using rabbit 

anti-InhA antibodies. Endogenous and recombinant InhA proteins are indicated by 

arrowheads.  
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Although the recombinant InhA forms are produced in large excess compared 

with the endogenous InhA, the presence of significant amounts of endogenous protein 

may explain the partial growth defect in the phosphomimetic strains. The growth 

impairment also hampers further examination and evaluation of the possible link 

between growth defect and mycolic acid biosynthesis inhibition in the mycobacterial 

strains overproducing the phosphomimetic mutants. We then explored whether this 

could be demonstrated by generating isogenic strains carrying either the phosphoablative 

or the phosphomimetic inhA alleles in M. tuberculosis.  

 

Transfer of T266D or T266E point mutations in InhA is lethal to M. tuberculosis  

Using specialized linkage transduction (Vilcheze et al., 2006) we could transfer a 

single-point mutant allele (T266A) into inhA in M. bovis BCG and M. tuberculosis 

H37Rv (Figure 3-5A), indicating that introduction of the phosphoablative inhA allele 

was not lethal. In addition, the growth curves of M. tuberculosis bearing either the 

inhA_WT or the inhA_T266A allele were similar, indicating that introduction of the 

T266A mutation did not alter growth of M. tuberculosis (data not shown). In contrast, 

and despite several attempts, we could not transfer the T266D or T266E alleles (Figure 

3-5A) into a wild-type genetic background, suggesting that these single mutations were 

lethal to M. bovis BCG and M. tuberculosis strains. To test this hypothesis, we 

performed allelic replacements using M. tuberculosis inhA merodiploid strains 

constructed by integrating a functional copy of inhA into the chromosome of M. 

tuberculosis H37Rv using the integrative pMV361 vector, which inserts at the attB 
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chromosomal site. Gene replacements were carried out using specialized linkage 

transduction as described above. Interestingly, only in the presence of a complementing 

copy of the wild-type inhA were we able to introduce the T266D or T266E mutation into 

both the M. tuberculosis H37Rv and the M. tuberculosis CDC1551 merodiploid strains, 

as shown by Southern blot (Figure 3-5B) and PCR analyses (data not shown). Sequence 

analysis confirmed the presence of the expected inhA alleles in the various strains (data 

not shown).  

Taken together, these results indicate that a single T266D or T266E point 

mutation within InhA confers lethality on M. tuberculosis. They also strongly suggest 

that, in the absence of wild-type InhA, transfer of a phosphomimetic allele leads to cell 

death.  

 

  



 

115 

 

 

Figure 3-5. Construction and analysis of M. tuberculosis inhA_T266A, 

inhA_T266D and inhA_T266E isogenic strains. A) Schematic representation of the 

specialized transduction phage. A replicating shuttle phasmid phAE159 containing 

inhA carrying the T266A, T266D or T266E mutation, sacB, a hyg resistance cassette, 

and hemZ was used to transduce M. bovis BCG or M. tuberculosis H37Rv. When 

recombination occurs before the point mutation, this results in a recombinant strain 

carrying the T266A, T266D or T266E mutation. Hygromycin-resistant transductants 

are screened by PCR and the presence of the desired mutations is confirmed by 

sequencing. The results of introducing phosphoablative (T266A) or phosphomimetic 

(T266D, T266E) mutations into the chromosomal inhA gene in the various strains are 

indicated: +, isogenic strain obtained; -, no isogenic strain obtained; ND, not 

determined. B) Allelic exchange replacement in InhA merodiploid strains. 

Merodiploid strains of M. tuberculosis H37Rv (Rv::inhA) and CDC1551 (1551::inhA) 

were obtained following transformation with the integrative construct pMV361_inhA. 

These strains were used as receptor strains for specialized transduction, as described 

above. Hygromycin- and kanamycin-resistant strains were screened by PCR and 

sequencing. Southern blot analysis using the inhA probe of the corresponding BamHI 

restriction profiles of DNA from Rv::inhA + phAE159::inhA(T266E) (lane 1), 

Rv::inhA + phAE159::inhA(T266D) (lane 2), H37Rv + phAE159::inhA(T266E) (lane 

3), H37Rv + phAE159::inhA(T266D) (lane 4), H37Rv + phAE159::inhA(T266A) 

(lane 5), H37Rv (lane 6), CDC1551 + phAE159::inhA(T266D) (lane 7), CDC1551 + 

phAE159::inhA(T266E) (lane 8), 1551::inhA (lane 9), 1551::inhA + 

phAE159::inhA(T266D) (lane 10) and 1551::inhA + phAE159::inhA(T266E) (lane 11). 

Sizes of the expected BamHI fragments are indicated. 
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Figure 3-5 Continued. 

 

 

Lack of ENR activity complementation with the InhA phosphomimetic mutants in 

InhA-thermosensitive mutant strain 

To investigate whether cell death occurring in a phosphomimetic strain is 

associated with inhibition of mycolic acid biosynthesis, we took advantage of using an 

inhAthermosensitive (Ts) mutant of M. smegmatis (m
2
2359) carrying an inhA_V238F 

allele (Vilcheze et al., 2000). At a non-permissive temperature (42°C), thermal 

inactivation of InhA occurred, resulting in mycolic acid biosynthesis inhibition and 
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leading to a drastic morphological change and cell death in a manner similar to the result 

in INH treated cells (Vilcheze et al., 2000). M. smegmatis m
2
2359 was therefore 

transformed with either the empty pMK1 vector or the pMK1 derivatives, allowing 

constitutive expression of the different inhA alleles, and selected for kanamycin 

resistance. Cultures were grown at the permissive temperature (30°C), then plated and 

grown at either 30°C or 42°C for 4–5 days. Figure 3-6A shows that cells transformed 

with constructs carrying either the inhA_WT or inhA_T266A alleles could grow on 

Middlebrook plates at the non-permissive temperature, indicating that functional 

complementation occurred. In sharp contrast, neither the inhA (T266D) nor the inhA 

(T266E) alleles restored growth at 42°C, indicating that introduction of these mutations 

was lethal in the absence of functionally active InhA (Figure 3-6A). These phenotypes 

cannot be attributed to an eventual alteration of the expression levels of the various InhA 

mutants, as demonstrated by Western blot analysis (Figure 3-6B). Comparable 

expression levels of the various InhA variants were found at either 30°C or 42°C. 

Moreover, due to the presence of an additional His-tag in the pMK1_InhA-derived 

constructs, it became possible to distinguish the recombinant variants (InhA_WT, 

T266A, T266D and T266E) from the endogenous protein (InhA_V238F) in the various 

strains. Importantly, following a temperature shift to 42°C, only the strains 

overexpressing InhA_WT or InhA_T266A could grow in broth medium, whereas those 

harbouring either the empty pMK1 plasmid or the pMK1-inhA_T266D/E constructs 

failed to grow (Figure 3-6C). Overall, these results indicate that the T266D or T266E 

phosphomimetic proteins (even when present in large excess compared with the 
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endogenous protein) cannot complement thermal inactivation of InhA_V238F at the 

non-permissive temperature.  

The usefulness of these strains prompted us to examine whether this lethal 

phenotype was related to de novo mycolic acid biosynthesis inhibition. This was 

achieved by shifting the temperature of the various strains to 42°C prior to labelling with 

[1-
14

C]-acetate. After a further 3 h incubation at 42°C, cells were harvested and fatty 

acid methyl esters (FAMEs) and mycolic acid methyl esters (MAMEs) were extracted 

and separated by thin layer chromatography (TLC). As shown on the autoradiogram, and 

consistently with a previous study (Vilcheze et al., 2000), mycolic acid biosynthesis was 

almost completely abrogated in M. smegmatis mc
2
2359 carrying the empty pMK1 at 

42°C (Figure 3-6D). In contrast, M. smegmatis mc
2
2359 transformed with either 

pMK1_inhA_WT or pMK1_inhA_T266A displayed a wild-type mycolic acid profile at 

both 30°C and 42°C. Importantly, synthesis of mycolic acids in the phosphomimetic 

strains was severely impaired at the non-permissive temperature. Synthesis of α- and 

epoxy-mycolates was almost completely abrogated. The shorter-chain α′-mycolates, only 

present in this particular mycobacterial species, appeared less affected, as could be 

observed also when M. smegmatis cultures were treated with INH (Figure 3-6D). This 

observation is consistent with previous studies reporting that α′-mycolates are less 

affected than the other mycolic acid subtypes after treatment with FAS-II-inhibitory 

drugs such as INH (Kremer et al., 2003) or thiolactomycin (Slayden et al., 1996). 
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Figure 3-6. Functional complementation of M. smegmatis m
2
2359 with InhA_WT or 

InhA_T266A but not with phosphomimetics InhA_T266D or InhA_T266E. A) An 

inhA(Ts) mutant of M. smegmatis (mc
2
2359) resistant to INH was transformed with 

pMK1, pMK1_inhA_WT, pMK1_inhA_T266A, pMK1_inhA_T266D or 

pMK1_inhA_T266E and grown either at the permissive temperature (30°C) or at the 

non-permissive temperature (42°C). B) InhA expression levels. The various InhA levels 

of the parental strain and complemented mc
2
2359 strains were analysed by 

immunoblotting using rabbit anti-InhA antibodies. Cells were grown at the permissive 

temperature (30°C) or shifted at the non-permissive temperature (42°C), harvested, 

resuspended in PBS and disrupted. Equal amounts of crude lysates were loaded onto a 

4–12% acrylamide gel, subjected to electrophoresis and transferred onto a membrane for 

immunoblot analysis. Endogenous (InhA_V238F) and recombinant InhA proteins are 

indicated by arrowheads. C) Growth curves of the strains described in (A) in Sauton 

broth medium, following temperature shift at 42°C. D) De novo biosynthesis inhibition 

of mycolic acids. Cultures of M. smegmatis mc
2
2359 harbouring pMK1, 

pMK1_inhA_WT, pMK1_inhA_T266A, pMK1_inhA_T266D or pMK1_inhA_T266E 

were grown at 30°C. The cultures were shifted to 42°C for 3 h and labelled by adding [1-
14

C]-acetate (1 μCi ml
-1

). After 3 h at 42°C, cultures were harvested and FAMEs and 

MAMEs were extracted and analysed by one-dimensional TLC using petroleum 

ether/acetone (95/5, v/v). Detection of the radiolabelled FAMEs and MAMEs was 

performed by autoradiography, exposing the TLC plates to X-ray films for 24 h. α, α′ 

and epoxy correspond to α-mycolates, α′-mycolates and epoxy-mycolates respectively. 
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Figure 3-6 Continued. 
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Figure 3-6 Continued. 

 

 

Overall, these results clearly indicate that, in the absence of a functional 

endogenous protein, the T266D or T266E mutants cannot restore mycolic acid 

production, leading to mycobacterial growth inhibition. Importantly, this mycolic acid 

profile was reminiscent of that observed in INH-treated cultures (Vilcheze et al., 2000), 

leading to the conclusion that phosphomimetic mutants of InhA inhibit mycolic acid 

biosynthesis in a way similar to INH treatment. 
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Discussion 

In this study, a combination of genetic, biochemical and structural approaches 

was used to provide, for the first time, evidence that phosphorylation of InhA negatively 

regulates de novo biosynthesis of mycolic acids in M. tuberculosis. We found that 

phosphorylation occurred both in vitro and in vivo on a unique residue, identified as Thr-

266, although InhA was not identified in the recent phosphoproteomic study performed 

on M. tuberculosis (Prisic et al., 2010). Moreover, enzymatic analyses clearly indicated 

reduced ENR activity of InhA phosphomimetic mutant proteins, suggesting that 

phosphorylation may negatively regulate mycolic acid production. This hypothesis is 

supported by the following three facts: transfer of single T266D or T266E mutations into 

M. tuberculosis was lethal, unless an additional copy of inhA was present in a merodiplid 

strain; overexpression of InhA_T266D/E severely impaired growth in both fast- and 

slow-growing mycobacterial species; and T266D or T266E phosphomimetic proteins 

could not complement thermal inactivation of InhA_V238F at the non-permissive 

temperature in an inhA(Ts) mutant of M. smegmatis, leading to strong inhibition of α- 

and epoxy-mycolic acid production and growth arrest. It is noteworthy that, during 

review of our manuscript, an independent study has been accepted for publication (Khan 

et al., 2010), presenting very similar results and conclusions by demonstrating that (i) 

InhA was phosphorylated in vivo at Thr-266, (ii) phosphorylation of InhA resulted in 

decreased enzymatic activity, and (iii) an InhA_T266E mutant was unable to rescue a M. 

smegmatis conditional inhA gene replacement mutant. Therefore, from both studies it 

can be inferred that STPKdependent phosphorylation of InhA may represent an 
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important mechanism controlling mycolic acid biosynthesis and largely supports and 

extends the emerging theme that Ser/Thr phosphorylation plays a critical role in the 

regulation of cell-wall biosynthesis and cell division in mycobacteria (Molle and 

Kremer, 2010; Wehenkel et al., 2008).  

One hypothesis could be STPK-dependent phosphorylation of InhA is used by 

M. tuberculosis during the nonreplicating dormant state, known to correlate with a 

slowdown of cell division, energy metabolism and lipid biosynthesis (Betts et al., 2002). 

However, further studies are required to investigate whether InhA 

(hyper)phosphorylation participates in the inhibition of mycolic acid metabolism during 

the ‘persistent’ state.  

From a purely mechanistic perspective, our kinetic studies revealed that both 

InhA phosphomimetics followed a preferred-order pathway with NADH binding 

preceding DD-CoA binding. Both mutant proteins exhibited a three- to fourfold 

decreased binding affinity to NADH even though the mutation site was not at the 

cofactor binding pocket of InhA. Since there is a kinetic advantage when InhA binds to 

NADH first, it appears very likely that the overall activity for the mutant proteins was 

affected significantly by the decreased affinity towards NADH. T266 is very close to the 

C-terminal end of the protein (266 of 269 residues) and crystallographic studies 

indicated that mutation at this residue was not accompanied by significant differences in 

the secondary structure and did not alter the overall backbone conformation of the 

protein. Both T266E and T266D complexed with NAD
+
/NADH crystallized in the same 

space group (P6222) as the wildtype protein, with one molecule in the asymmetric unit 
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(Table A-3). As for InhA_WT, all mutant proteins formed tetramers in solution as 

judged by the gel-filtration chromatography profile (data not shown), indicating that 

mutation of the Thr-266 residue does not alter the oligomeric state of the protein. 

Moreover, the comparison of the tetrameric structures generated by crystallographic 

symmetry-related molecules for the wild type and Asp/Glu mutants revealed that the 

Rmsd value between the superimposed structures was 0.3 Å (Figure A-4). Structural 

differences due to Thr→Asp or Thr→Glu replacements were limited to the surroundings 

of the mutated residue and introduced only subtle and local structural changes, 

perturbing the H-bonding network and introducing water molecules (Figure A-2). The 

active site of InhA protein was ~15– 20 Å away from the mutation site in InhA_T266 

(Figure A-5). Although no significant structural difference or conformational change 

was observed at either the active site residues or the substrate/cofactor binding pockets 

between native and mutants structures, it remains possible that mutations cause changes 

in the network of interactions and affect the interaction and communication between the 

subunits of the functional tetramer. This in turn may affect NADH binding affinity and 

the overall enzymatic activity of the phosphomimetic InhA mutants. Based on our 

enzymatic analyses, it is noteworthy that NADH binding is affected even though the 

mutation site is ~16 Å away from the cofactor binding pocket.  

InhA is one of the best-validated targets for antitubercular agents and several 

recent studies reported the development of new InhA inhibitors (am Ende et al., 2008; 

Freundlich et al., 2009; He et al., 2007; He et al., 2006; Oliveira et al., 2007; Tonge et 

al., 2007; Vilcheze and Jacobs, 2007). Our work suggests that displacement of the 
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unphosphorylated/phosphorylated InhA balance in favour of the phosphorylated isoform 

rapidly leads to mycolic acid cessation, as happens following INH treatment, and to 

mycobacterial growth inhibition. Therefore, an elegant hypothesis arising from the 

present work is that, by increasing the activity of the kinases, it may be possible to 

directly alter mycobacterial growth, opening new and original perspectives for future 

anti-tuberculosis drug development. Indeed, small molecules that modulate the activity 

of STPK may be of great therapeutic value in inhibiting M. tuberculosis growth. 

Bryostatin, a natural product synthesized by a marine bacterium, which activates 

eukaryotic intracellular STPKs (Hale et al., 2002), is one of these molecules. 

Interestingly, bryostatin acts directly on the Bacillus subtilis Ser/Thr kinase PrkC, which 

contains an extracellular domain able to bind to peptidoglycan fragments and this signals 

the bacteria to exit dormancy by stimulating germination (Shah et al., 2008). PrkC, like 

M. tuberculosis PknB, possesses the PASTA (Penicillin And Ser/Thr kinase Associated) 

domains, which are found in the extracellular portion of membrane associated STPKs 

and which have been proposed to bind to peptidoglycan and act as signalling molecules. 

In this context, bryostatin or other STPK-activating molecules, along with the recent 

structural determination of the M. tuberculosis PknB PASTA domains (Barthe et al., 

2010), may provide new therapeutic strategies to be developed against tuberculosis. 

From our results, it can also be inferred that STPK-induced phosphorylation of InhA 

would be active on M. tuberculosis clinical isolates carrying the inhA alleles (I21, S94 or 

I194) that confer resistance to INH (Hazbon et al., 2006; Ramaswamy et al., 2003), since 
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phosphorylation occurs exclusively on Thr-266, a residue that has never been linked to 

INH resistance. 

The present study provides a foundation for further investigation of a seemingly 

important functional linkage between STPKs and the FAS-II system. It also provides 

conceptual advances in our understanding of the mycolic acid metabolic adaptation and 

regulatory events exploited by M. tuberculosis to adapt its mycolic acid cell-wall 

content. Although very challenging, future studies should now help to identify 

extracellular cues sensed by the different kinases and leading to InhA phosphorylation. 

This will not only allow us to understand how M. tuberculosis senses its environment 

and mediates its response in a co-ordinated manner to regulate mycolic acid 

biosynthesis, but also to possibly link InhA phosphorylation to the establishment of the 

non-replicating persistent state. One can also anticipate that similar strategies involving 

STPK-dependent mechanisms will be found to be used by pathogenic mycobacteria to 

regulate expression of other cell-wall lipids/glycolipids to respond to the various signals 

encountered during infection or latency.  

 

Experimental procedures 

 

Bacterial strains, plasmid, phage and growth conditions 

Strains used for cloning and expression of recombinant proteins were E. coli 

TOP10 (Invitrogen) and BL21(DE3)pLysS (Novagen) or BL21(DE3)Star (Novagen) 
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grown in LB medium at 37°C. Media were supplemented with ampicillin (100 μg ml
-1

) 

or kanamycin (25 μg ml
-1

), as required. Mycobacterial strains used were M. smegmatis 

mc
2
155, M. bovis BCG Pasteur 1173P2 and M. tuberculosis H37Rv, Erdman and 

CDC1551. Mycobacteria were grown on Middlebrook 7H11 agar plates with OADC 

enrichment (Difco) or in Sauton’s medium containing 0.05% tyloxapol (Sigma) 

supplemented with kanamycin (25 μg ml
-1

) or hygromycin (50 μg ml
-1

) when required. 

The shuttle phasmid phAE159 (Bardarov et al., 2002) and the integrative plasmid 

pMV361 (Stover et al., 1991) were reported earlier.  

 

Cloning, expression and purification of recombinant InhA and mutant proteins 

 For in vitro kinase assays, the inhA gene was amplified by PCR using M. 

tuberculosis H37Rv genomic DNA as a template and a set of primers containing NdeI 

and NheI restriction sites (Table A-2). This amplified product was digested with NdeI 

and NheI and ligated into pETPhos (Canova et al., 2008), generating pETPhos_inhA_WT 

(Table A-1). Sitedirected mutagenesis was directly performed on this vector using 

inverse-PCR amplification with the self-complementary primers (Table A-2). All 

constructs were verified by DNA sequencing. Recombinant InhA proteins were 

overexpressed in E. coli BL21(DE3) and purified as described (Veyron-Churlet et al., 

2010). Fractions containing pure InhA proteins were pooled, dialysed when required and 

stored at -20°C until further use. For enzymatic or crystallographic studies, inhA_T266A, 

inhA_T266D and inhA_T266E were amplified from H37Rv genomic DNA using the 

inhA_forward primer (containing an NdeI site) with the appropriate reverse primer 
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(containing a HindIII site) (Table A-2). The amplified products were digested with NdeI 

and HindIII and ligated into pET30b (Novagen). Mutation sites were verified by DNA 

sequencing. Expression and purification of InhA_WT (Quemard et al., 1995), 

InhA_T266A, InhA_T266D and InhA_T266E proteins were performed in E. coli 

BL21(DE3) as described (Freundlich et al., 2009). 

 

Construction of the integrative pMV361_inhA and cosmid p004_inhA_hemZ 

inhA was amplified from H37Rv genomic DNA using primers inhAE1 and 

inhAH1 (Table A-2). The PCR fragment was cut with EcoRI and HindIII and cloned 

into EcoRI–HindIII-cut pMV361 (Table A-1), generating pMV361_inhA. To produce 

p004_inhA_hemZ, the hemZ gene was PCR-amplified from H37Rv genomic DNA using 

the RR and RL primers (Table A-2). inhA was then PCR-amplified using upstream LL 

primers and downstream LR-266A, LR-266D or LR-266E primers (Table A-2). PCR 

fragments were cut with Van91I, cloned into Van91I-cut p004 (Table A-1). All 

constructs were sequenced before use.  

 

Specialized transduction 

The transducing mycobacteriophages were prepared as described (Bardarov et 

al., 2002). Briefly, the recombinant cosmids p004_inhA_hemZ were cut with PacI and 

ligated to the PacI-cut shuttle phasmid phAE159. The resulting phasmids were packaged 

in vitro (GigapackII, Strattagene) and transduced into E. coli HB101. Phasmid DNA was 
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electroporated into M. smegmatis mc2155 and the resulting transducing phages were 

amplified to obtain high-titre phage lysates. M. bovis BCG and M. tuberculosis H37Rv, 

Erdman and CDC1551 strains (100 ml) were grown to log phase (OD600 about 1.0), spun 

down, washed twice with mycobacteriophage (MP) buffer (50 mM Tris, 150 mM NaCl, 

10 mM MgCl2, 2 mM CaCl2; 100 ml) and finally resuspended in MP buffer (10 ml). The 

cell suspension (1 ml) was mixed with high-titre phage lysate (1010–1011 pfu ml
-1

, 1 

ml) and incubated at 37°C for 4 h. After centrifugation, the cell pellet was resuspended 

in Middlebrook 7H9 medium (0.4 ml) and plated onto Middlebrook 7H10 plates 

containing 75 μg ml
-1

 hygromycin. Plates were then incubated at 37°C for 4 weeks and 

transductants screened by PCR using the primer pairs TW361 and TW398 (Table A-2) 

to verify that the inhA–hemZ region had been disrupted and TW 361 and p004R (Table 

A-2) to check the integration of the sacB–hyg cassette between inhA and hemZ. 

Confirmation of allelic exchange was by Southern blotting on genomic DNA of HygR 

transductants digested with BamHI and probed with inhA. 

 

In vitro kinase assay 

 In vitro phosphorylation was performed as described (Molle et al., 2003) with 4 

μg of InhA in 20 μl of buffer P (25 mM Tris-HCl, pH 7.0; 1 mM DTT; 5 mM MgCl2; 1 

mM EDTA) with 200 μCi ml
-1

 [γ-
33

P]-ATP corresponding to 65 nM (PerkinElmer, 3000 

Ci mmol
-1

), and 0.2–1.0 μg of kinase in order to obtain for each specific kinase its 

optimal autophosphorylation activity for 30 min at 37°C. Cloning, expression and 
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purification of the eight recombinant GST-tagged STPKs from M. tuberculosis were 

described previously (Molle et al., 2006).  

 

Mass spectrometry analysis 

Purified InhA_WT and mutant derivatives were subjected to in vitro 

phosphorylation by GST-tagged PknB as described above, except that [γ-
33

P]-ATP was 

replaced with 5 mM unlabelled ATP. Purified InhA from M. bovis BCG cultures was 

subjected to mass spectrometry without further treatment. Subsequent mass 

spectrometric analyses were performed as previously reported (Fiuza et al., 2008).  

 

Overexpression of InhA proteins in mycobacteria  

inhA was amplified by PCR using M. tuberculosis H37Rv chromosomal DNA as 

template and a set of primers containing an NdeI and an EcoRI restriction site (Table A-

2). This amplified product was then digested by NdeI and EcoRI and ligated into the 

pMK1 expression vector (Table A-1). The resulting construct was electroporated into M. 

bovis BCG and transformants were grown in broth medium and harvested for 

immunoblotting analysis as described previously (Kremer et al., 2003).  

 

ENR assay  

Enoyl reductase activity was monitored spectrophotometrically by following the 

change in absorption at 340 nm via the oxidation of NADH to NAD
+
. All reactions were 

performed with a Cary 100 spectrophotometer at 25°C in 100 mM phosphate buffer pH 
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7.5 using 80 nM of either wild-type or mutant enzyme. Kinetic parameters Km, kcat and 

Vmax for DD-CoA were determined at a fixed saturating concentration of NADH (150 

μM) while varying the concentration of DD-CoA (25– 100 μM) using the equation v = 

kcat[E]0[S]/(Km + [S]). The percentage of remaining activity was calculated by comparing 

the rate of the reaction of the mutant enzyme to the rate of the reaction of the wild-type 

enzyme in the presence of 50 μM DD-CoA and 100 μM NADH with wild-type enzyme 

activity set at 100%. 

 

Fluorescence measurements 

Binding constants of NADH to the wild-type, Asp and Glu mutant enzymes were 

obtained by measuring the protein fluorescence using a Cary Eclipse spectrofluorometer 

at 25°C. Excitation and emission wavelengths were 280 nm and 335 nm respectively. 

Emission was first monitored between 300 and 450 nm and 335 nm was selected as λmax. 

Approximately 0.7–0.76 μM protein solutions in 100 mM Pipes buffer pH 7.0 were 

titrated with various concentrations of NADH (0–20 μM). The contribution of NADH 

fluorescence to final fluorescence intensity was checked with a control experiment by 

titrating NADH into buffer in the absence of protein. The fluorescence intensities at λmax 

for a corresponding NADH concentration were corrected for dilution factors and NADH 

contributions before any calculations. At the concentrations used for InhA and NADH, 

the fluorescence intensity change due to inner filter effect was negligible. Kd values were 

calculated using the equation ∆F = ∆Fmax - Kd*(∆F/[NADH]), where F represents 

fluorescence intensity (Li and Lin, 1996).  
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Complementation studies of the inhA(Ts) M. smegmatis strain 

Cultures of M. smegmatis strains mc
2
2359 (InhA(Ts), INHresistant) were grown 

at 30°C. Competent bacteria were prepared and transformed with pMK1, 

pMK1_inhA_WT, pMK1_inhA_T266A, pMK1_inhA_T266D or pMK1_inhA_T266E. 

Clones selected on kanamycin were grown in Sauton medium at 30°C to mid-log phase 

and plated at 30°C or 42°C for 3–5 days. 

 

Mycolic acid biosynthesis 

Cultures of M. smegmatis mc
2
2359 (InhA(Ts), INH-resistant) were grown to 

mid-log phase in Sauton medium at 30°C. The temperature was then shifted to 42°C for 

3 h and cultures were labelled by adding [1-
14

C]-acetate (1 μCi ml
-1

). After a further 3 h 

incubation at 42°C, cells were harvested and FAMEs and MAMEs were extracted as 

reported (Kremer et al., 2002). Equal amounts of counts were subjected to TLC using 

petroleum ether/acetone (95/5, v/v) and exposed overnight to a Kodak X-Omat film. As 

a control of mycolic biosynthesis inhibition, M. smegmatis mc
2
155 (InhA_WT, 

INHsensitive) was treated with 50 μg ml
-1

 INH for 3 h and labeled by adding [1-
14

C]-

acetate (1 μCi ml
-1

) for another 3 h at 37°C prior to mycolic acid extraction and analysis.  
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Additional unpublished results 

 

ENR assays with in vitro phosphorylated InhA 

In order to determine whether phosphorylation has any effect on InhA enzymatic 

activity, two serine-threonine kinases of Mtb, PknB and PknF, were used in an in vitro 

phosphorylation assay. As a negative control, two kinase-dead mutants of PknB 

(PknB
K40M

) and PknF (PknF
K41M

) were also included in the assays. The kinase domains 

were expressed in E. coli and purified to homogeneity as described previously (Molle et 

al., 2006). As seen from the in vitro phosphorylation experiments done with [γ-
33

P]-ATP 

(Figure 3-1A), InhA was phosphorylated by PknB but not by PknF. InhA and PknB/F 

were incubated at different molar ratios (1:20 or 1:10 kinase:InhA) at 37 °C in the 

presence of 1 mM ATP, 5 mM MgCl2, and 1 mM DTT in phosphate buffer pH 7.5. 

Control experiments lacking either kinase, ATP or both were also set in the same way. 1 

μl from this reaction mixture was aliquoted and InhA activity was monitored by the 

oxidation of NADH at 340 nm. However, the assay results were inconsistent and no 

difference in the InhA activity between the phosphorylation and control reactions was 

observed. Also, there was no correlation of InhA activity with the type of the kinase used 

in the assay; i.e., no difference was observed if the assay was performed with the wild-

type or K40M/K41M mutant kinases. There may be a couple of reasons for the 

inconsistency in these experiments. The first issue was the stability of InhA in the 

phosphorylation reaction mixture. It was observed that InhA protein heavily precipitated 

after incubation at 37 °C, which meant that 1 μl aliquot from each reaction mixture did 
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not have equal amount of InhA protein to be used in the enzymatic assay. Also, since the 

efficiency of the phosphorylation reaction (phosphorylated/non-phosphorylated InhA 

ratio) was not known, it was difficult to compare the enzymatic activity from a mixture 

of phosphorylated and non-phosphorylated protein. Therefore, to overcome these issues, 

the phosphomimetic T266D and T266E mutants of InhA were generated. Even though 

aspartate and glutamate do not mimic the size of a phospho group perfectly, they do 

mimic the negative charge. Mimicking of serine and/or threonine phosphorylation by 

aspartate or glutamate has been widely used in the literature (Leger et al., 1997; Veyron-

Churlet et al., 2009; Veyron-Churlet et al., 2010).       

 

Intrinsic fluorescence quenching experiments 

The affinity of the wild-type and mutant InhA proteins for NADH was 

determined by the intrinsic fluorescence quenching. InhA has four tryptophan residues, 

two of which (Trp222 and Trp230) lie close to the NADH binding pocket. It has been 

observed that InhA undergoes conformational changes upon transition from the apo form 

to the NADH bound form (Dias et al., 2007). Particularly, the substrate binding loop of 

the enzyme (residues 196-219) gets ordered and moves ~2 Å upon NADH binding (Dias 

et al., 2007). In addition, there are multiple tyrosine residues positioned close to the 

NADH binding pocket (especially the catalytic Tyr158), which may also contribute to 

the intrinsic protein fluorescence. Therefore, quenching of the intrinsic fluorescence by 

NADH titration reflects the NADH binding to the enzyme.  
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Initial excitation and emission scans showed that InhA had an excitation 

maximum at 280 nm. The emission was monitored between 300-450 nm and 335 nm 

was selected as the λmax. At this emission wavelength, NADH did not contribute to the 

fluorescence intensity since the λexcitation and λemis for NADH were around 340 nm and 

450 nm, respectively.  

 As the NADH concentration was increased, a decrease was observed in the 

fluorescence (Figure 3-7A). When the wild-type and the T266D and T266E mutant 

proteins were compared, it was observed that the fluorescence quenching (the difference 

between Fmax and Fobserved; i.e., ∆F) was greater for the wild-type enzyme than the 

mutants (Figures 3-7B and 3-7C). This indicated that NADH bound tighter to the wild-

type enzyme. The Kd values for NADH binding were calculated from the fluorescence 

quenching data as described in the Experimental Procedures.  
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Figure 3-7. Intrinsic fluorescence quenching experiments for the wild-type and 

mutant InhA enzymes. A) Fluorescence quenching of wild-type InhA by NADH 

titration. The fluorescence intensity decreased as the concentration of NADH (0-54.5 

µM) increased. Each titration is indicated with a different line color and the 

corresponding NADH concentrations are given on the right of the chart. B and C) 

Comparison of the fluorescence quenching of the wild-type and the T266 mutant InhA 

proteins. ∆Fwt was greater than ∆FT266A, ∆FT266D  and ∆FT266E, indicating that NADH 

bound tighter to the wild-type enzyme. 
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Figure 3-7 Continued. 
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Summary  

InhA has a pivotal role in mycolic acid synthesis and it is essential for 

mycobacterial viability (Vilcheze et al., 2000). Being the molecular target of isoniazid 

and ethionamide, it still is one of the best-validated targets for antitubercular drug 

discovery. Therefore, understanding InhA regulation is quite important.  

Phosphorylation/dephosphorylation is considered a central signal transduction 

mechanism that allows regulation of different cellular processes like growth, 

differentiation, mobility, and survival (Stock et al., 1989). It was recently shown that in 

Mtb, members of the FASII system, MabA, FabH, KasA, KasB and HadABC, were 

substrates of multiple serine-threonine kinases (STPK), and their functions were 

regulated by phosphorylation. While for the KasA, FabH, MabA, and HadABC enzymes 

phosphorylation decreased the enzymatic activity, for the KasB enzyme phosphorylation 

positively affected (increased) the activity (Molle and Kremer, 2010). In this study, it 

was demonstrated that InhA was also phosphorylated at a single threonine residue by the 

STPKs. Phosphorylation regulated the InhA function negatively. Kinetic studies and 

fluorescence experiments performed with the phosphomimetic T266D and T266E 

mutants showed that they retained only 30% of the enzymatic activity, which was due to 

their reduced affinity for NADH. The crystal structures of the wild-type and 

T266D/T266E mutants revealed the local structural changes around the mutated residue 

and indicated no significant conformational changes in the protein backbone and at the 

active site. InhA functions as a tetramer and it is possible that mutation of T266 alters 

the network of interactions between the different subunits. It was noteworthy that even 



 

139 

 

though the residue T266 lay ~16 Å away from the NADH binding site, mutation of this 

residue affected the cofactor binding and the enzyme activity significantly.  

The effect of InhA phosphorylation on cell viability and growth was also 

demonstrated by genetic experiments. The M. smegmatis and M. bovis strains over-

expressing the phosphomimetic InhA proteins displayed growth defects compared with 

the strains harboring the wild-type or the phosphoablative plasmids. The transfer of a 

point T266A mutation into the inhA gene in Mtb indicated that introduction of the 

phosphoablative allele was not lethal and did not have any effect on cell growth. In 

contrast, the transfer of T266D or T266E point mutations to the inhA gene was not 

feasible, suggesting that these alleles were lethal for Mtb. These results together implied 

that the presence of the phosphomimetic proteins became lethal for the cell because of 

the decreased InhA activity.   

It is intriguing that all of the FASII enzymes are regulated by phosphorylation. 

Why does Mtb choose to phosphorylate all of the enzymes belonging to the same 

pathway? One suggested explanation is that altering the activity of these enzymes will 

lead to a tightly regulated system, which will allow adaptation to various growth 

conditions (Molle and Kremer, 2010). While phosphorylation of each individual FASII 

enzyme does not abolish the enzymatic activity completely, the cumulative effects of the 

partially reduced enzyme activities could result in a complete stop of the mycolic acid 

production.  

  



 

140 

 

CHAPTER IV  

ACTIVATION-FREE INHIBITOR DISCOVERY STUDIES FOR INHA 

 

Overview 

 The enoyl-reductase enzyme of the FASII system in Mtb, InhA, which is the 

biological target of the anti-tubercular drug isoniazid, has been shown to be essential for 

mycobacterial viability. Inhibition of InhA activity leads to the accumulation of FASI 

end products, which results in the disruption of mycolic acid biosynthesis, causing 

mycobacterial cell death. Considering that no FASII system is present in humans, InhA 

has been the focus of many drug discovery efforts since the 1990s. However, despite 

several reports on identification of potent InhA inhibitors, many of which were also 

effective in vivo against Mtb, INH remains the only first-line drug targeting InhA in the 

current TB treatment. The majority of the INH resistant Mtb clinical isolates were found 

to develop resistance through the mutations in the INH activator katG gene, which 

underlines the importance of the discovery of activation-free inhibitors.  

 In this work, we report novel InhA inhibitors that do not require activation by 

KatG. A target-based high-throughput screening (HTS) performed by GlaxoSmithKline 

(GSK) among a library of a million compounds resulted in the identification of a 

previously unexplored class of InhA inhibitors displaying good potency. These 

compounds effectively inhibited InhA enzymatic activity at nanomolar concentrations. 

The structural basis of InhA inhibition by this new class of GSK inhibitor compounds 

was determined by X-ray crystallography. The crystal structures of InhA complexed 



 

141 

 

with the GSK compounds shed light on the binding mode of these inhibitors, providing 

future assistance for further inhibitor development. Subsequent chemical optimizations 

yielded InhA inhibitor lead compounds, which exhibited potent activity against drug-

sensitive and drug-resistant Mtb strains with good pharmacokinetic properties. They 

represent a promising class of inhibitors for future studies.   

 

Introduction 

Although the drugs currently used to treat  tuberculosis (TB) were discovered 

more than 50 years ago, TB still accounts for 1.4 million deaths every year (Zumla et al., 

2013b). While the majority of the TB cases are treatable with the current regimen of 

drugs, nevertheless, the rising incidences of multi-drug resistant and extensively drug 

resistant cases worldwide is threatening to nullify our advances in the fight against this 

disease. The current TB treatment regimen is long, complex and has several adverse 

effects, so lack of adherence is not unusual, leading to suboptimal responses (treatment 

failure and relapse), emergence of resistance, and continuous spread of the disease. In 

the last forty years there has been only one new drug approved for TB (Andries et al., 

2005). Thus, there is a critical need for the development of drugs with shorter, simpler 

regimens as well as novel mechanisms of action that can be used for the treatment of the 

drug-resistant forms of the disease.  

  Both target-based and phenotypic screening approaches have been employed for 

the identification of new anti-tubercular drug leads (Kondreddi et al., 2013; Magnet et 

al., 2010; North et al., 2013). While a limited, but significant number of examples exist 
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for the latter (Rao et al., 2013; Remuinan et al., 2013), target-based approaches have 

encountered very limited success as previously demonstrated in the antibacterial field 

(Payne et al., 2007). Rather than invalidating the target-based approaches per se, this 

situation highlights the disconnect between the concepts like genetic validation of target 

essentiality and the amenability of that target to small molecule drug discovery. 

Confidence that inhibition of a single target will allow resolution of an infection cannot 

be fully supported by genetic validation of essentiality. A deeper understanding of the 

systems biology and the mechanisms underlying the antibiotic killing are important for 

the discovery of new antimicrobial therapies through the target-based approaches. 

Additionally, for reasons that are not always obvious, some targets are clearly more 

chemically tractable than others. For example, protein and cell wall synthesis and DNA 

gyrase have delivered multiple classes of published leads and marketed drugs, whereas 

there are no known inhibitors for many other essential gene products, despite a long 

history of antibacterial research (Kohanski et al., 2010; North et al., 2013; Payne et al., 

2007). In the antitubercular field, only a very limited number of targets such as InhA, 

RpoB, DNA Gyrase, ATP synthase, and DprE1 have been shown to be targeted by 

potent bactericidal drugs or promising leads. 

Isoniazid (INH) is a frontline anti-TB drug targeting InhA and it is an essential 

component of the TB treatment regimen. It has been administrated to more than 40 

million people saving millions of lives. Its outstanding bactericidal effect rapidly blocks 

the bacterial transmission and significantly improves the patient’s condition after a few 

weeks of treatment. Despite the seemingly simple structure of INH, its mode of action 
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has remained elusive for many years. INH penetrates the tubercle bacilli by passive 

diffusion and is activated by the bacterial anti-oxidant enzyme KatG to a range of 

reactive species including the isonicotinoyl radical, which forms an adduct with the 

nicotinamide adenine dinucleotide (NAD
+
). This adduct inhibits the enoyl-ACP 

reductase enzyme encoded by the inhA gene leading to the block of mycolic acid 

biosynthesis. The dependency on KatG activation for the INH-mediated killing is also 

the source of the main clinical weakness associated with the use of INH, as between 40-

95% of INH-resistant Mtb clinical isolates develop mutations in katG, leading to a 

decreased activation of INH to its active form. While mutations are also detected in 

clinical isolates within the inhA promoter region, these can be successfully treated in 

most instances by increasing the dose of isoniazid. 

On the basis of the mode of action of INH, it has been proposed that direct 

inhibitors of Mtb enoyl-ACP reductase would retain the outstanding antitubercular-cidal 

profile of INH while overcoming most of the problems associated with its pro-drug 

nature, such as the resistance and toxicity issues. Also, compounds inhibiting InhA 

without requiring activation by KatG could be active under anaerobic conditions, given 

the fact that the catalase-mediated activation is suppressed by hypoxia. Novel classes of 

direct InhA inhibitors have been identified previously using high-throughput screening 

strategies. They include the indole-5-amides (Kuo et al., 2003), the pyrazole derivatives 

(Kuo et al., 2003), the pyrrolidine carboxamides (He et al., 2006), the arylamides (He et 

al., 2007), and the imidazopiperidines (Wall et al., 2007). Additionally, the natural 

product pyridomycin was found to target InhA (Hartkoorn et al., 2012). However, most 
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of these compounds showed a lack of correlation between the enzymatic inhibition and 

the whole cell activity, had moderate potencies or narrow selectivity windows, making 

them unsuitable for further progression as drug leads. 

GlaxoSmithKline, under the sponsorship of the TB Alliance has carried out a 

high-througput screen against InhA using the GSK compound collection and has 

identified the thiadiazole series as the most promising small molecule anti-tubercular 

family. The structural basis of InhA inhibition by the thiadiazoles has been determined 

by X-ray crystallography. In the present study, we present the novel lead compound and 

its attractive anti-tubercular properties. 

 

Results and discussion 

 

Biochemical and antimicrobial characterization of the hit structure GSK826625A 

Several screening campaigns were run against InhA with an overall 0.63% of 

true hits after the removal of the quenchers. The campaign covered a total of 1.9 million 

compounds (HTS details to be published elsewhere) unearthing GSK826625A 

(GSK625A) and GSK826613A (GSK613A) (Table 4-1) as the most attractive 

representative structures.  
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Table 4-1. Structures and activities of the hit compounds GSK613A and GSK625A. 
Compounds were assessed for activity against M. tuberculosis H37Rv and against a 

broad-spectrum bacterial panel, cytotoxicity in HepG2 cells, clearance (in vitro and in 

vivo) and bioavailability (% F) in mice. o/e: over-expression 

 

 

 

GSK613 

 

GSK625 

InhA IC50 8 nM 4 nM 

MIC H37Rv 2 μM 1 μM 

MIC shift o/e > 4 fold > 4 fold 

Antibacterial 

panel 

≥64 μg/mL ≥64 μg/mL 

HepG2 cytotox > 100 μM > 100 μM 

In vitro Cli 

mouse 

11.9 mL/min.g 14.9 mL/min.g 

In vitro Cli 

human 

2.9 mL/min.g 2.8 mL/min.g 

In vivo Cli mice 157mL/min/Kg 120 mL/min/Kg 

% F 4 % 88 % 

 

 

 

GSK613A (N-(1-(2-chloro-6-fluorobenzyl)-1H-pyrazol-3-yl)-5-(1-(3-methyl-1H-

pyrazol-1-yl)ethyl)-1,3,4-thiadiazol-2-amine) was progressed to enzymatic mode of 

action studies. GSK613A was a selective inhibitor against Mtb enoyl-ACP reductase and 

it was inactive against human FAS. Steady state competition experiments showed that 

the hit structure competed with the fatty acid substrate for binding to the enzyme, but it 
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was uncompetive with NADH, consistent with inhibitors binding to a pre-formed 

enzyme:NADH complex (Figure 4-1). 

 

 

 

Figure 4-1.Inhibition of InhA by members of the thiadiazole family. Double 

reciprocal plots in the absence of inhibitor (○) and in the presence of 3 nM (●), 15 nM 

(□), 40 nM (■) and 80 nM (△) inhibitor compound. The patterns of inhibition observed 

is consistent with the compound binding to the InhA:NADH complex.  

 

 

 

Whole cell mode of action confirmation in InhA overexpressor 

In clinical isolates, over-expression of InhA translates into INH and ETH 

resistance, which confirms that the enoyl ACP-reductase is the main antitubercular target 

for both drugs (Vilcheze et al., 2006). Similarly, two Mycobacterium smegmatis and M. 

bovis BCG strains over-expressing the M. smegmatis or Mtb InhA protein were 
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constructed and the susceptibility of these strains for the compounds were tested in order 

to verify that the whole-cell activity of the inhibitors was mediated mainly or solely by 

the inhibition of InhA. A reproducible shift in minimum inhibitory concentration (MIC) 

values higher than 4-fold in strains overexpressing the target was considered as an 

indication that the antitubercular activity was mainly mediated by InhA inhibition. The 

thiadiazoles GSK625A and GSK613A met this criterion (Table 4-1). 

 

Structure of the InhA: GSK625A complex 

InhA was co-crystallized with GSK625A and GSK2136490A (GSK490A) in the 

presence of the cofactor NAD
+
. GSK490A is an analog of GSK625A, and lacks the 

halide substituted phenyl ring attached to the pyrazole ring (Figure 4-2). GSK490A 

displayed ~6000 fold less inhibitory activity (IC50 = 28 μM) against InhA compared with 

the GSK625A (IC50 = 4 nM). The reason behind this potency difference was revealed by 

crystallography.  

  The enzyme:inhibitor complex crystallization was successful only in the 

presence of the cofactor NAD(H) in agreement with the uncompetitive character of these 

inhibitor compounds (Figure 4-1). Crystals of the InhA:NAD
+
:GSK490A ternary 

complex were determined to be in the P6222 space group with one molecule in the 

asymmetric unit (ASU), whereas the crystals of the InhA:NAD
+
:GSK625A complex 

belonged to the P212121 space group with four molecules in the ASU. Both structures 

were solved by molecular replacement using the previously determined InhA:NADH 

structure as a model (PDB ID: 3OEW) (Molle et al., 2010), to a resolution of 2.0 Å and 
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2.9 Å, respectively. The structures were refined to Rwork of 19% and 20%, and Rfree of 

21% and 23%, respectively, with excellent stereochemistry (Table 4-2). 

The crystal structures revealed that both compounds bound to the hydrophobic 

substrate binding pocket of InhA, which was surrounded by the residues Met103, 

Phe149, Tyr158, Ala198, Met199, Ile202, Leu207 and Ile215. Comparison of the 

InhA:GSK inhibitors and the InhA:NAD
+
:C16-fatty acyl substrate analog structure 

(PDB ID: 1BVR) (Rozwarski et al., 1999) revealed that the aromatic rings of the GSK 

compounds occupied the same pocket as the thioester and the trans double bond portion 

of the C16-substrate analog (Figure 4-2A), and they positioned proximate to NAD
+
, 

which is in agreement with the competitive behavior of the inhibitors relative to the 

DDCoA substrate.  
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Table 4-2. Data collection and refinement statistics for the InhA:GSK625A  and 

InhA:GSK490A structures. Highest resolution shells are given in parenthesis.  

 

 InhA: GSK490A InhA:GSK625A 

Data collection   

Space group P6222 P212121 

Cell dimensions 

a, b, c (Å) 

α, β, γ (
0
) 

 

 

97.9, 97.9, 139.4 

90.0, 90.0, 120.0 

 

 

90.2, 104.2, 190.8 

90.0, 90.0, 90.0 

Wavelength (Å) 1.542 1.542 

Resolution (Å) 24.2-2.0 (2.01) 47.7-2.91 (2.91) 

Completeness (%) 99.7 (99.9) 97.7 (95.5) 

Redundancy 8.3 (8.0) 3.9 (3.8) 

I/Iσ 21.8 (3.0) 13.9 (1.8) 

Rsym (%) 2.8 (35.2) 6.1 (57.4) 

Refinement   

Resolution 23.2-2.01 34.7- 2.91 

No. reflections 26922 39444 

Rwork/ Rfree 0.19/ 0.21 0.20/ 0.23 

No. atoms 

Protein 

Water 

 

2058 

179 

 

8264 

55 

B-factors 

Protein 

Water 

 

35.5 

42.8 

 

74.1 

54.9 

R.m.s deviations 

Bond lengths (Å) 

Bond angles (
°
) 

 

0.007 

1.426 

 

0.012 

1.726 
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Figure 4-2. Binding mode of the thiadiazoles to the InhA active site. A) A cross-section 

through the surface of the active site of InhA. InhA:NAD
+
:GSK structures (490 (purple) and 625 

(green), respectively) are superposed with the InhA:NAD
+
:C16-fatty acyl substrate analog 

(orange) structure. As seen from the figure, the GSK compounds occupied the substrate binding 

pocket. B-C) Key interactions between the GSK compounds 490 and 625 and the InhA active 

site. Compounds interacted with NAD
+
 (gray) and M98 via H-bonds; with G96, F97, M103, 

F149, M161, I202, and L207 through hydrophobic and van der Waals interactions. GSK625 has 

additional hydrophobic and van der Waals interactions with G104, A157, Y158, A198, and 

M199 compared with GSK490, which results in more than 1000 fold better potency. Atom 

coloring is oxygen red; nitrogen blue; sulfur yellow; chlorine and fluoride green. H-bonds are 

shown with dashed black lines.   
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  The specificity and potency of the thiadiazoles for InhA was provided by the 

interactions with both NAD
+
 and the protein backbone. GSK625A and GSK490A 

interacted with the cofactor NAD(H) via π-π stacking interactions through their pyrazole 

rings (3.6 - 4 Å) (Figure 4-2). In addition, the nitrogen of the pyrazole ring made a 

hydrogen bond to the 2’ hydroxyl of the ribose moiety of NAD
+
 (2.7 and 3.2 Å).  The 

other key interactions were the direct H-bonding between (i) the nitrogen of the 

thiadiazole ring and the amide NH of Met98, and (ii) the nitrogen linking the pyrazole 

and the thiadiazole rings and the carbonyl oxygen of Met98 (2.4 & 2.9 Å, respectively) 

(Figure 4-2). Met98 was the only residue that participated in a direct hydrogen bonding 

interaction with the thiadiazoles.  

Hydrophobic and van der Waals interactions between the inhibitors and the side 

chains of the residues Gly96, Phe97, Met103, Phe149, Met161, Ile202, and Leu207 

dominated the ligand-protein interactions for both compounds (Figure 4-2). This was 

not surprising since the inhibitors occupied the hydrophobic substrate binding pocket. 

Compared with the GSK490A, the halide substituted aryl group of GSK625A made 

additional hydrophobic and van der Waals interactions with Gly104, Ala157, Tyr158, 

Ala198, and Met199. In particular, the fluoride atom of GSK625A interacted with 

Gly104. This can explain a shift of three orders of magnitude in the enzymatic potency 

of the two thiadiazoles (GSK490A IC50=28 μM; GSK625A IC50=4 nM).  

Noticeably, neither GSK490A nor GSK625A caused a significant conformational 

change in the main chain backbone of InhA (rmsd is 0.5 Å), or perturbed the position or 

conformation of the active site residues. Exceptionally, in the InhA:GSK625A structure, 
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the substrate binding loop (especially the helix between the residues 208-226) moved 2.2 

Å away from the active site (the distance between the Cαs of Glu209) compared with the 

InhA: NAD(H) structure, due to the presence of the halide substituted phenyl moiety of 

the inhibitor. Unlike the INH-NADH adduct, GSK compounds did not cause the flipping 

of the Phe149 side chain, thus they did not interact with the isonicotinic acid binding 

pocket. The catalytic residue Tyr158 also adopted the identical position as in the 

InhA:NAD(H) structure (PDB ID: 3OEW) (Molle et al., 2010). It is worth noting that 

Tyr158 did not make any hydrogen bonds with the GSK inhibitors and it participated in 

ligand binding only through van der Waals interactions (4.2-5.4 Å). In contrast to the 

previously identified InhA inhibitors such as pyrolidine carboxamides (He et al., 2006), 

Genzyme10850 and triclosan (Kuo et al., 2003), the GSK inhibitors did not interact with 

Tyr158 directly. Consequently, the GSK compounds are representatives of a new class 

of inhibitors, which do not need this conserved network of interaction with Tyr158 for 

their potency.  

Recently, it was proposed that high affinity slow binding inhibition of InhA is 

related to the ordering of the substrate binding loop through the increased residence time 

of the inhibitor compounds on the enzyme (Lu and Tonge, 2008). Importantly, in both 

InhA:NAD
+
:GSK490A and InhA:NAD

+
:GSK625A structures, the substrate binding loop 

(residues 197-226) was ordered and well resolved in the crystal structure, as previously 

seen with the high-affinity slow onset FabI inhibitor structures. This implies that the 

compounds may also be slow, tight binding inhibitors, which generally enhances in vivo 

activity and increases their potential as antitubercular drugs. 



 

153 

 

The thiadiazoles are bactericidal  

In order to test whether the thiadiazoles share the fast killing mode of action of 

INH, we determined the in vitro killing rates of GSK625A at 20X MIC in growth 

medium inoculated with approximately 10
6
 bacteria, during seven days (Figure 4-3A). 

After the first two days of incubation, GSK625A behaved similarly to INH, killing more 

than 99% of the initial inoculum. Due to the high spontaneous mutation frequency to 

INH resistance, the number of bacteria increased after 4 days of culture in the presence 

of this drug. In contrast, the number of colony forming units kept decreasing down to the 

detection limit for the cultures treated with GSK625A. A very similar effect was also 

observed against Mtb growing inside the THP1 differentiated macrophages (Figure 4-

3B), indicating the potent activity against the actively growing intracellular bacteria. 
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Figure 4-3. In vitro activity of GSK625A. A) Time killing kinetics of GSK625A in 

growth medium. B) Activity of GSK625A against Mtb growing inside THP1 

macrophages. 
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GSK625A generates resistant mutants at lower frequency than INH and mutations 

map in the InhA operon as established by targeted PCR 

The in vitro rate of spontaneous resistance for GSK625A at 20X the MIC was 

3.7x10
-8

 mutants/cfu, very similar to the frequency obtained with rifampicin and two 

orders of magnitude lower than that for isoniazid (Bergval et al., 2009). This rate is 

consistent with the presence of a single defined target. GSK625A resistant mutants 

exhibited a shift in MIC values by at least an order of magnitude and displayed no cross-

resistance with other antitubercular compounds such as INH or RIF (Table 4-3). Since 

the GSK compounds bound to the enzyme competitively with the DDCoA, it could be 

expected that mutations in the substrate binding site could affect the interaction of the 

thiadiazoles with the protein, while leaving the INH and ETH activity unaffected. The 

inhA alleles from single colonies of the seventeen mutants were amplified and 

sequenced. Four different point mutations were found in the protein coding regions from 

all mutants, producing a single amino acid change at either of two positions: Gly96 or 

Met103. These two amino acids map to the active site of the enzyme (Figure 4-2) and 

have not been reported previously to be involved in resistance to any InhA inhibitor. 
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Table 4-3. GSK625A resistant strains carry mutations in the inhA gene. 
Spontaneous resistant mutant colonies were isolated and sequenced resulting in a 

number of key InhA mutations being identified. All mutations gave rise to significant 

MIC shifts against GSK625A.  

   InhA operon mutations 

  

H37Rv 

MIC 

G96V 

fold 

change 

M103V 

fold 

change 

M103I 

fold 

change 

M103T 

fold 

change 

GSK625A 1 >16 >16 >16 >16 

INH 0.4 1 1 1 1 

Rifampicin 0.002 1 1 1 1 

 

 

In order to link the point mutations in inhA to the resistant phenotype, the drug 

sensitivity of the encoded enzyme and the bacteria expressing the mutant genes were 

analyzed. Wild-type InhA and the four different point mutants were over-expressed as 

untagged proteins in E. coli and purified. All mutant enzymes displayed in vitro Vmax 

and Km values similar to the wild type enzyme. A good correlation was observed 

between the IC50 and the MIC values (Table 4-4). For the whole-cell analysis, the 

complete inhA operon (fabG1-inhA-hemZ) from the wild type H37Rv strain and from the 

resistant mutants were cloned in a multicopy plasmid and transformed into fast growing 

M. smegmatis mc
2
155 and into slow growing M. bovis BCG and M. tuberculosis H37Rv. 

In all cases, the genetic transformation of the mutant operons conferred resistance to the 

thiadiazoles well above that obtained by expressing the wild type version from the 

multicopy plasmid (Table 4-3).  
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Table 4-4. Activity of GSK625 against InhA purified mutant proteins and Mtb 

H37Rv carrying the mutated alleles. 

 

 

 

 

Activity of the thiadiazoles against sensitive and M(X)DR Mtb clinical isolates 

Other InhA inhibitors, such as INH and ETH have been in use for decades and 

resistant Mtb strains have emerged without identifiable mutations in inhA or in any other 

studied gene (Vilcheze and Jacobs, 2007). It was therefore relevant to test a variety of 

clinical drug-resistant isolates for the possibility of pre-existing cross-resistance to the 

thiadiazole class. Two thiadiazole compounds were tested in a first instance against a 

group of INH-resistant clinical isolates with characterized mutations, either in KatG (the 

most frequent resistant class) or in nucleotide position 15 upstream of the transcription 

start site for InhA (promoter-up mutations). The compounds retained full activity against 

the first group of mutants, while a moderate shift (4-8 times) in MIC was observed 

against the group of strains over-expressing InhA, as described above for the laboratory 

constructs (Table 4-5).  

 

 

 

InhA allele InhA IC50 (uM) IC50 Ratio MIC (uM) MIC Ratio

Wild Type 0.0028 1 1 1

M103I 0.396 144 >125 >125

M103V 1.011 368 >125 >125

M103T 0.829 302 >125 >125

G96V >1 >357 >125 >125
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Table 4-5. Activity of thiadiazole derivatives against INH resistant clinical isolates. 

CI: Clinical isolate; NT: not determined. 

 

 

 

GSK625A has been tested against recent clinical isolates of Mtb at two different 

TB reference centers (National Institute of Health Carlos III, Madrid and Hospital Vall 

d’Hebron, Barcelona) and two observations were noteworthy. The first one was that the 

MIC90 obtained with 100 recently isolated Mtb stains (Table 4-6) ranged from 0.3 to 3 

μM, showing that the thiadiazole sensitivity of our laboratory H37Rv strain was 

representative for the majority of the Mtb strains circulating in Spain, which were 

therefore sensitive to the compound. The second was that GSK625A was active against 

the most resistant isolates present in the sample (13 XDR and 12 MDR), with MIC 

values similar to that of the laboratory strain H37Rv independently of the resistance 

profile of the clinical strains (Tables 4-6 and 4-7).  

 

 

Wild Type

Compound/Strain H37Rv CI1 CI2 CI3 CI4 CI5 CI6 CI7

MIC (ug/ml) 2 >8 >8 >8 2 2 2 1

Ratio 1 >4 >4 >4 1 1 1 0.5

MIC (ug/ml) 1 8 8 NT 1 0.5 0.5 NT

Ratio 1 8 8 1 0.5 0.5

MIC (ug/ml) 0.25 2 2 2 64 32 32 32

Ratio 1 8 8 8 256 128 128 128

KatG mutant

GSK826613A

GSK826625A

INH (ug/ml)

-15 InhA 

S

N
N

N
N

N

N
N

F

Cl

S

N
N

N
N

N
N

N

F

Cl



 

159 

 

Table 4-6. Activity of GSK625A against recently isolated clinical strains. 

 

 

  

Strain MIC(uM) Strain MIC(uM) Strain MIC(uM) Strain MIC(uM)

175 1 10 3 2177 0.3 2557 1

186 0.3 105 3 2194 1 2637 HSRZ 3

191 3 122 3 2195 1 2638 HSRZ 3

200 0.3 135 3 2199 HS 1 2644 H 9

205 0.3 143 HSERZ 1 2200 0.3 2645 HER 1

207 0.3 153 3 2206 HR 3 2901 1

209 0.3 163 3 2207 HR 3 2935 1

215 3 1901 H 1 2221 M 0.1 2936 1

224 0.3 1943 1 2225 0.3 2944 1

228 0.3 1946 1 2227 1 2945 3

236 9 1947 1 2229 1 2948 3

238 0.3 1969 1 2231 1 2980 1

241 1 1973 0.3 2234 1 2982 3

243 3 2014 0.3 2247 H 1 2983 0.3

248 1 2018 0.3 2271 HRSZ 0.3 3020 1

250 3 2019 3 2285 HERZ 3 3023 3

252 9 2020 1 2316 H 1 3035 3

256 1 2038 1 2471 1 3043 1

258 3 2047 0.3 2482 1 34 3

263 0.3 2049 0.3 2496 1 42 HSERZ 3

268 9 2140 0.3 2497 1 52 0.3

271 1 2152 1 2521 0.3 62 9

275 3 2157 0.3 2527 1 70 9

301 3 2166 0.3 2545 1 86 3

320 1 2169 HR 1 2547 1 91 1

H37Rv 1

Resistences Genotype

H

R

E

Z

S

INH

Rif

Etahmbutol

Pirazinamyde

Streptemycin

KatG (S315G)

KatG (S315G); -15 InhA

-15 InhA

INH
R
 No KatG, No InhA
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Table 4-7. Activity of GSK625A against Mtb strains resistant to different 

antitubercular compounds. The resistant profile of the tested isolates is shown. 

 

 

 

 

Lead optimization and identification of GSK2505693A 

Despite the interesting in vitro anti-tubercular profile stated in Table 4-1, the 

initial thiadiazole hits were affected by a number of compound development liabilities 

(drug metabolism and pharmacokinetics (DMPK) properties) that precluded their 

progression to the available in vivo acute murine TB efficacy model. Further medicinal 

chemistry efforts were hence dedicated to the identification of optimized compounds that 

were able to retain or even improve the anti-tubercular profile and simultaneously meet 

the good pharmacokinetic exposure values. These efforts led to the identification of 

GSK2505693A (GSK693A) as a new lead representative structure (Table 4-8).  

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 H37Rv

R R R S S R R R R R R R R R R R S S R S S R S R S R R R R R S

R R S S S R R R S R R R R R R R S R R R S R S R R R R R R R S

R R S S S R R R S R R R R R R R S R R S S ND S R S S R R R R S

R R S S S R R S R R S S R R R R S S R R R ND S R S R R R R R S

R ND R S S R R R S R S S  R R S R S S S R S R S R R S R R S

R R R ND S R ND S S R S R S R R R S S R S R S S S S R S S R S S

R R R R S R R S S R S R S R R R S S R S S S S R ND R R S S

S S S S S R S

S S R R R R S S

R R R/S R R R R R R R R R R S R S R R R R R R R R S

R R R R R R R S R R R R  S  S

S S S S S S S S S S R S R S S R ND S S R S S S R S S S R S

R R R S S R S R S S S  S

3 9 1 1 3 3 3 9 1 1 1 3 27 3 3 1 0 3 3 1 1 27 1 3 3 3 27 3 9 3 3

PAS

GSK826625A (uM)

Compound/Strain

Kanamycin

Amikacin

Moxifloxacin

Ciprofloxacin

Ofloxacino

Etionamide

Rifampicin

Isoniacid

Etambutol

Streptomycin

Pirazinamide

Capreomycin
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Table 4-8. Structure of the optimized lead GSK693A. The lead was assessed for 

activity against M. tuberculosis H37Rv both intra- and extracellularly and against a 

broad-spectrum bacterial panel, cytotoxicity in HepG2 cells, clearance (in vitro and in 

vivo) and bioavailability (% F) in mice. 

 

 

 

InhA IC50  7 nM 

MIC H37Rv  0.2 μM 

MIC intracellular 0.2 μM 

Antibacterial panel ≥64 μg/mL 

HepG2 cytotox > 100 μM 

In vitro Cli mouse 2.1 mL/min.g 

In vitro Cli human 0.2 mL/min.g 

In vivo Cli mice 157mL/min/Kg 

% F (at 100 mg/Kg) 92 % 

 

 

GSK693A improved the previous leads’ in vitro potency values against H37Rv 

and was able to reach acceptable exposure levels after a single oral administration at 50 

mg/kg. The cross resistance experiments with the previously isolated mutants showed 

that the observed TB activity for the new lead compound was target related (data not 

shown). GSK693A fulfilled the minimum requirements in terms of in vitro potency and 

the PK properties to be progressed to in vivo proof of concept efficacy studies in both 

acute and chronic TB murine infection models.  
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Acute and chronic in vivo efficacy of GSK693A 

The in vivo acute efficacy of GSK693A was evaluated using a previously 

reported model (Rullas et al., 2010) at doses of 30, 100 and 300 mg/Kg, using 

Moxifloxacin as a positive control at 30 mg/Kg. GSK2505693A at 100 mg/Kg was 

shown to match the efficacy of moxifloxacin at 30 mg/Kg (Figure 4-4A). The higher 

dose employed (300 mg/kg) produced a log cfu reduction in the lungs of infected mice 

equivalent to INH (data not shown). GSK693A was also progressed for evaluation in an 

established model of TB infection. In this model GSK693A (300 mg/Kg) was able to 

almost match the behaviour of isoniazid (25 mg/Kg) (Figure 4-4B).  
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Figure 4-4. Dose-response studies of GSK693A. A) In an acute murine model of TB 

efficacy. B) In chronic, established murine model of TB infection.  
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Figure 4-4 Continued. 
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Experimental procedures 

 

Bacterial strains and culture 

Mycobacterium smegmatis mc
2
155 (Snapper et al., 1990) and M. bovis BCG 

Pasteur (Institut Pasteur) were grown at 37ºC in Middlebrook 7H9 broth (Difco) 

supplemented with 0.0025% Tween 80 and 10% albumin-dextrose-catalase (ADC) or on 

Middlebrook 7H10 plates supplemented with 10% oleic acid-albumin-dextrose-catalase 

(OADC). Cell-free extracts were done in 7H9 supplemented with 100 ml of 10X AS 

solution (5% albumin solution in salt: 10 mg albumin, 1.7 mg NaCl in 200ml water), 2.5 

ml of 10% Tween 80 solution and 0.1% carbon substrate (acetamide, succinate, or 

glucose). Escherichia coli DH5α was grown in LB broth (LB). 

 

Cloning and purification of InhA  

The inhA gene was amplified from Mtb genomic DNA by PCR and cloned into 

the pET15b vector (Novagen) using NcoI and BamHI restriction sites. The plasmid was 

transformed into BL21(DE3) E.coli cells for protein overexpression. Cells carrying InhA 

over-expression plasmid were cultured in terrific broth media together with 100 μg/ml 

carbenicillin as the antibiotic resistance selection marker at 37ºC with continuous 

shaking till the OD600 reached 0.6-0.8. Cells were cooled down to 18ºC and induced with 

0.5 mM IPTG for 16-18 hours, which gave ~20 mg of soluble protein per liter culture. 

The cells were harvested and resuspended for lysis in 50 mM PIPES buffer pH 6.8 

(buffer A) including DNAse and protease inhibitor PMSF, lysed by French press and 
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were centrifuged at 15K rpm for 45 minutes. The supernatant was loaded on a blue-

sepharose column which was pre-equilibrated with buffer A. The fractions containing 

the InhA protein were eluted from the column by using a gradient of buffer B (50 mM 

PIPES pH 6.8 and 2 M NaCl). These fractions were pooled and then loaded onto an 

hydrophobic octyl-sepharose column pre-equilibrated with buffer B. After consecutive 

wash steps with buffer A, the majority of the impurities were removed and the InhA 

protein was eluted from the column with water. The fractions containing InhA were 

pooled and supplied with 50 mM PIPES pH 6.8 buffer immediately. As the final 

purification step, the protein was concentrated and run through a Superdex S200 gel 

filtration column. The purity of the protein was checked by SDS-PAGE and activity was 

verified by enzymatic assay. The protein was concentrated to 10 mg/ml, stored in -80ºC 

and used for further biochemical and crystallographic studies. 

 

InhA biochemical assays 

InhA catalyzes the last step in the elongation cycle of the FAS-II pathway and 

reduces the 2,3 double bond of trans-2-enoyl-ACP in a NADH dependent manner 

(Quemard et al., 1995). High Throughput Screening (HTS) and Led Optimization (LO) 

biochemical assays were based in the oxidation of the cofactor in the presence of 

dodecenoyl-CoA (DDCoA). 

InhA inhibition by file compounds in a high throughput format was assessed 

using a substrate-induced quenching (SIQ) assay as described previously (Vazquez et al., 

2006). Reaction mixtures (3µl) containing 100 µM test compound, 150 µM DDCoA, 
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100µM NAD
+
, 30µM NADH, 10 nM resorufin, 0.2% w/v pluronic acid F-127, 0.01% 

BSA, 1% DMSO and 1.25nM InhA in 30mM PIPES buffer at pH 6.8 were incubated in 

glass-bottom 1536-well plates for 1 hour at 20°C and 95% relative humidity. Plates were 

then read in a confocal microscope (4-Channel Reader, Evotec Technologies) using 1D-

FIDA settings with beamscanner, 532nm excitation with a laser power of 150µW for 

200ms/well. Confocal FLINT data from each screening plate were normalized against 

control wells containing reaction mixtures in the absence of test compounds (high 

controls) and in the absence of enzyme (low controls). Assay quality was monitored for 

each plate using the Z’ factor (Zhang et al., 1999b) and the inhibition observed in 

additional control wells containing a known inhibitor at its IC50. In order to identify and 

discard signal quenchers, each plate was pre-read before addition of the enzyme.  

Enzymatic activity to support LO phase was measured fluorimetrically by 

following the NADH oxidation at exc=340 nm and em= 480 nm, using 50 μM NADH 

and 50 μM DDCoA as substrates. Dose-response experiments to determine IC50 were 

performed using 5 nM InhA, percentage of remaining enzymatic activity (%AR) at 

different compound concentrations were calculated with the next formula [%AR = 

100*((sample – control 2)/(control 1- control 2))] where sample is the enzymatic activity 

for each compound concentration, control 1 is the enzyme activity in absence of any 

compound and control 2 is NADH oxidation in absence of the enzyme. IC50 were 

calculated fitting %AR to a 2 parameter equation [%AR = 100% /(1+ (compound conc/ 

IC50)^s)], where s is a slope factor, using GraFit 5.0.12 software (Eritacus Software Ltd). 

All reactions were run in 30 mM PIPES buffer, pH 6.8, at 25 ºC. 
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Crystallization  

Crystallization of the native protein and the protein-inhibitor complexes was 

done by using both hanging drop and sitting drop methods. For all of the crystallization 

trials, NAD
+
 was used as the cofactor at 10 fold molar excess compared to the protein 

concentration. Protein-inhibitor complex crystals were obtained by co-crystallization, 

except for the compounds GSK133 and GSK915.  The complex structures with GSK133 

and GSK915 were obtained by soaking of the native protein crystals crystallized in 20% 

(v/v) Peg400, 5% (v/v) ethylene glycol, 0.2 M HEPES pH 7.4 in the presence of NAD
+
. 

The crystals were soaked with 2-4 mM of inhibitor compound for 30 min-4 h. All of the 

inhibitor compounds were dissolved in 100% DMSO and 10-100 mM stock solutions 

were used in the experiments. For co-crystallization trials, briefly, 0.2 mM InhA, 2 mM 

NAD
+
 and 1-2 mM inhibitor compound was incubated at room temperature for ~20 min 

and screened against the sparse matrix crystallization conditions. The crystallization 

conditions for the different InhA:GSK inhibitor co-crystals were as follows: GSK876 

and GSK735 in 10-20% (v/v) 2-Methyl-2,4-pentanediol, 0.1 M HEPES pH 7.5, 4% (v/v) 

DMSO and 50 mM NaCitrate pH 6.5; GSK218 in 0.2 M NaAcetate trihydrate, 0.1 M 

Tris HCl pH 8.5, 30% (w/v) Peg4000; GSK713 in 0.1 M N-(2-acetamido) 

iminodiaceticacid pH 6.8, 6% (v/v) DMSO, 14-24% (w/v) Peg3350, 0.18 M NH4(OAc); 

GSK490 in 1.6 M tri-sodium citrate dehydrate pH 6.5; GSK625 in 1.1 M Sodium 

malonate, 0.1 M HEPES pH 7.0, 0.5% (v/v) Jeffamine ED-2001 pH 7.0. 
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Data collection and processing  

The diffraction data were collected at 120 K under cryoproction by a Rigaku 

Raxis detector coupled to an X-ray generator with a rotating copper anode (λ= 1.541 Å)  

and at the beamlines 23ID and 19ID of Advanced Photon Source, Argonne National 

laboratory. Data was processed by HKL2000 (Otwinowski and Minor, 1997).  InhA-

GSK inhibitor complex crystal structures were solved by molecular replacement (MR) 

using the PDB entry 3OEW as a search model. The models were built by XtalView and 

Coot and were further refined by using Refmac in CCP4 package (Murshudov et al., 

1997; Winn et al., 2011). Data processing statistics are given in Table 4-2. 

  

Cloning and overexpression of InhA in mycobacteria 

Double digestion with BglII and BamHI liberates M. smegmatis and Mtb inhA 

genes from plasmids pATB15 and pATB14, respectively. The 918bp and 917bp 

fragments were cloned into pATB45 that was previously linearized by BamHI digestion. 

Ligations were performed into E. coli DH5α cells. The inhA gene in the final plasmids 

was verified by sequencing. Electroporation of M. smegmatis mc
2
155 and M. bovis BCG 

were carried out according to the method of Snapper et al. (Snapper et al., 1990) and the 

transformants were selected on Middlebrook 7H10 plates supplemented with 10% 

OADC and 50 µg/ml hygromycin. Verification of the transformants was made by colony 

PCR using the PuRe Taq Ready-To-Go PCR Beads kit (GE Healthcare) with the primers 

P1 (5'-AATCCAAAGTTCAAACGAGGGG-3') and  P2 (5'-CCACCACCCGATAAGA 

GAAAGG-3'). 
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Protein expression levels were followed by SDS-PAGE. M. smegmatis mc
2
155 

and M. bovis BCG cultures were grown in Middlebrook 7H9 broth with 0.0025% Tween 

80 and 10% ADC to OD600nm=0.6. The cells were harvested by centrifugation (5000 rpm 

for 5 min) and resuspended in 5 ml sterile distilled water. 0.5 ml of M. smegmatis 

mc
2
155 or M. bovis BCG cells were used to inoculate 250 ml conical flasks containing 

100 ml minimal medium with 1% acetamide, 0.1% succinate, or 0.1% succinate plus 1% 

acetamide (for M.Smegmatis) or with 0.1% acetate, 0.1% acetate plus 1% acetamide, 

10% ADC or 10 % ADC plus 1% acetamide (for M.bovis). Cultures were incubated at 

37ºC and harvested after 24 hours (M. smegmatis) or 7 days (M. bovis). 

Cell-free extracts were prepared from both cultures using the Mini-BeadBeater 

(Biospec Products). 50 ml of bacterial cells were resuspended in 1 ml buffer of 50 mM 

HEPES/KOH pH 7.5, 10 mM MgCl2, 60 mM NH4Cl, 10% (v/v) glycerol, 5 mM 2-

mercaptoethanol and mixed with 0.5 ml of 0.1mm sterile glass beads and shaken for 1 

min three times, while incubating the samples on ice for 1 min between pulses. The 

supernatant was recovered after centrifugation. Cell-free extracts were analysed by SDS-

PAGE and protein concentration was determined using the BCA protein assay (Pierce). 

 

Isolation and characterization of Mtb H37Rv GSK625A resistant mutants 

GSK625A-resistant M. tuberculosis H37Rv mutants were isolated by plating 10
8
 

CFU on Middlebrook 7H10 plates supplemented with 10% OADC containing the 

compound at 20µM (20X MIC). After 4 weeks of incubation at 37ºC, colonies were 

identified and selected through several passages in inhibitor-containing plates.  
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Single colonies were used to amplify and sequence the inhA alleles. DNAs of the 

17 resistant mutants were extracted from liquid cultures grown in Middlebrook 7H9 

broth supplemented with 0.0025% Tween 80 and 10% ADC. 1 ml of culture was 

centrifuged; the pellet was resuspended in 500 µl of distilled water and incubated at 

90ºC for 1 h, and then filtrated by using 0.22µm filters. 5 µl of the supernatant was used 

as a source of genomic DNA for amplification of the inhA gene. PCRs of the entire gene 

were performed for each mutant by using the PuRe Taq Ready-To-Go PCR Beads kit. A 

988 bp region was amplified with the primers Forward (5'-CAGCTTCCTGGCTTCC 

GAG-3') and Reverse (5'-TAACGTTCTCCAGGAACGG-3'). PCR products were 

purified and sequenced using the dRhodamine Terminator Cycle Sequencing Ready 

Reaction kit in an ABI Prism 310 automated DNA sequencer (Applied Biosystems).  

 

Complementation experiments 

The whole fabG1-inhA-hemH operon from wild type H37Rv and mutants 

carrying the four mutant alleles (M103V, G96V, M103I, M103T) were cloned in the 

shuttle vector pSUM36 (Ainsa et al., 1996). M. tuberculosis H37Rv was transformed 

with the five plasmids and transformants were selected using kanamycin, and verified by 

colony PCR using the PuRe Taq Ready-To-Go PCR Beads kit. The sequences of the 

primers were as follows: pSUM36_2, 5'-GTTGTGTGGAATTGTGAGCGG-3'; 

Inharev1, 5'-GAAACGCGATCGACGAGTCGG-3'. Positive transformants were used 

for minimum inhibitory concentration (MIC) determination experiments. 
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MIC determination against mycobacteria and clinical strains 

The measurement of the MIC against Mycobacterium strains for each tested 

compound was performed in 96-well flat-bottom, polystyrene microtiter plates in a final 

volume of 200 μl. Ten two-fold drug dilutions in DMSO starting from 50 mM were 

performed. Drug solutions were added to Middlebrook 7H9 medium and Isoniazid 

(INH) (Sigma Aldrich) was used as a positive control with two-fold dilutions of INH 

starting at 160 μg/ml. The inoculum was standardized to approximately 1x10
7
 cfu/ml 

and diluted 100 fold in Middlebrook 7H9 broth. This inoculum (100 μl) was added to the 

entire plate except the G-12 and H-12 wells that were used as blank controls. All plates 

were placed in a sealed box to prevent drying of the peripheral wells and incubated at 

37ºC without shaking for six days. Resazurin solution was prepared by dissolving one 

tablet of resazurin (VWR) in 30 ml of sterile phosphate buffered saline. Of this solution, 

25 μl were added to each well. Fluorescence was measured (Spectramax M5 Molecular 

Devices, Exc. 530nm, Emis. 590 nm) after 48 hours to determine the MIC value.  

The BACTEC MGIT 960 System (Becton Dickinson) was used for MIC 

determination in clinical isolates (Institute Carlos III and Hospital Val d’Hebron) 

following the manufacturer instructions. 

 

Intracellular activity determination  

Bacteria were grown in Middlebrook 7H9 broth supplemented with 10% ADC, 

0.4% Glycerol and 0.05% Tween 80 until the mid-log phase. The bacteria were then 

harvested, washed with RPMI (Roswell Park Memorial Institute) medium with 10% 
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FCS (fetal calf serum) and resuspended in the same buffer. The suspension was 

dispersed by sonication, using a probe sonicator (Ultrawave), at power level moderate 

and pulse level 40 KHz; 2 rounds of  8 pulses (1
st
 round 1min/pulse, 2

nd
 round 30 

secs/pulse). Between the pulses samples were placed in ice for 5 secs to avoid heat 

damage. Two centrifugation cycles at 1500 rpm 5 min recovering the supernatant were 

performed to collect the final bacterial suspension. Bacteria were quantified by 

measuring the absorbance at 600nm, where 0.1 OD corresponded to 3x10
8
 bacteria. 

PMA-differentiated THP-1 cells (PMA 20 ng/mL for 48h) were infected with 

Mtb H37Rv at a multiplicity of infection of one. Infection was performed in antibiotic 

free RPMI supplemented with 10% FCS. After adding bacteria, culture plates were 

incubated for 4 hours at 37°C with 5% CO2. Non-engulfed bacteria were removed by 

washing 5 times with warm RPMI.  

Master plates of compounds were prepared and added to each well (final DMSO 

concentration lower than 0.5%). After 5 days of incubation the cells were lysed in 100 μl 

of 0.06% SDS for 10 min at room temperature and dilutions were prepared. Lysate 

dilutions of 1:10 and 1:100 were each plated separately in duplicate sets on 7H10 agar 

plates supplemented with OADC. The plates were then allowed to dry and subsequently 

incubated in a humidified incubator at 37°C. Colonies were first counted on 18
th

 day, 

and then again on the 21
st
 day of the incubation. 
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General antimicrobial activity assay 

Whole cell antimicrobial activity was determined by broth microdilution using 

the Clinical and Laboratory Standards Institute recommended procedure, Document M7-

A7, "Methods for Dilution Susceptibility Tests for Bacteria that Grow Aerobically". 

Compounds have been evaluated against a panel of Gram-positive and Gram-negative 

organisms, including Enterococcus faecium, Enterococcus faecalis, Haemophilus 

influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, Escherichia coli and 

Streptococcus pyogenes. The MIC was determined as the lowest concentration of 

compound producing a >80 % reduction in fluorescence observed. 

 

HepG2 cytotoxicity assay 

HepG2 cells (HB-8065) were fed fresh medium (Essential Minimum Eagle 

Medium, EMEM, supplemented with 5% FCS and 2 mM L-glutamine) on the day before 

subculturing. On the day of plate seeding, 100 μL of 100,000 cells/mL was added to 

every well of a collagen coated, black clear bottom, 96-well microplate (Becton 

Dickinson) except in column 11, where 100μL of culture medium was dispensed. The 

plates were incubated for 24 h before the addition of 10 doses of 1:2 dilutions of test 

substances to achieve a final concentration of 0.5% DMSO. Plates were incubated for 48 

hours at 37ºC under 5% CO2 and 95% relative humidity. Then the culture medium was 

removed and 200μL of fresh culture medium with 50 μL of Resazurin solution were 

added. After 90 minutes, plates were removed from the incubator and were left at room 

temperature protected from light for 15 minutes to allow the fluorescence to stabilize. 
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Resazurine (BDH) was used to read out the viability of the cells. The fluorescence was 

measured at an excitation wavelength of 515 nm and an emission wavelength of 590 nm 

in a Microplate reader1420 Multilabel HTS counter Victor 2 (Wallac). 

The fluorescence value of each well was corrected by subtracting the background 

value (average of column 11) from the absolute value. The percent of inhibition was 

calculated relatively to the DMSO control wells (average of column 12). For each 

compound, the average value of the duplicate samples was calculated and the curve was 

fitted to Sigmoidal dose-response (variable slope) nonlinear regression curve adjustment 

(GraphPadPrism 5 (GraphPad Software, Inc).) in order to calculate the IC50 (Tox50). 

 

Microsomal fraction stability assay 

Pooled mouse, rat, dog and human liver microsomes were purchased from 

Xenotech. The microsomes (final protein concentration 0.5 mg/ml, 5 mM MgCl2) and 

the test compound (final substrate concentration 0.5 µM; final DMSO concentration 0.5 

%) in 0.1 M phosphate buffer pH 7.4 were pre-incubated at 37°C prior to the addition of 

NADPH (final concentration 1 mM) to initiate the reaction. The final incubation volume 

was 600 µl. Control samples were included for each tested compound, where 0.1 M 

phosphate buffer pH 7.4 was added instead of NADPH (minus NADPH). Midazolan was 

included as a control in every experiment. Each compound was incubated for 30 minutes 

and samples (90 µl) were aliquoted at 0, 5, 10, 20 and 30 minutes. The minus NADPH 

control was sampled at 0 and 30 minutes only. The reactions were stopped by the 

addition of 200 µl of acetonitrile:methanol (3:1) containing an internal standard, 
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followed by the centrifugation at 3700 rpm for 15 minutes at 4°C to precipitate the 

protein. Quantitative analysis was performed using specific LC-MS/MS conditions. The 

ln peak area ratio (compound peak area/internal standard peak area) was plotted against 

time and the gradient of the line was determined. Subsequently, half-life and intrinsic 

clearance were calculated using the equations below: 

Elimination rate constant (k) = (-gradient) 

Half life (t1/2) (min) = 0.693/k 

Intrinsic Clearance (CLint) (ml/min/g protein) = (V x 0.693) / t1/2 where V is the 

incubation volume ml/g microsomal protein. 

 

Killing kinetics and in vivo assays 

Bacteria were grown at 37ºC in 7H9 broth ADC Tyloxapol to mid-exponenetial 

phase and then diluted in 10ml fresh Middlebrook 7H9 to an 5x10
5
 cfus/ml. Incubation 

was continued after the addition of compounds at 20X the MIC. At specified time points, 

aliquots of cultures were withdrawn, serially diluted in 7H9 broth Tyloxapol and plated 

on solid culture medium. Plates were then incubated at 37ºC and CFU were counted 

after 3 to 4 weeks. 

Specific Pathogen-free 6-8-week-old female C57BL/6j mice (18 – 20 g) were 

obtained from Harlan (Harlan Interfauna Iberica, Spain). The experiments were 

performed at AAALAC-accredited GlaxoSmithKline Laboratory Animal Science animal 

facilities in Tres Cantos (Madrid, Spain). The mice were kept in air-conditioned facilities 

with fifteen air changes per hour. Room temperature and relative humidity were 22 ± 3 
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ºC and 40- 70%, respectively. The mice were accommodated in groups of up to five 

individuals in Tecniplast® type IV cages with autoclaved dust free corncob bedding 

(Panlab, Barcelona, Spain). The mice were maintained under a twelve hours light/dark 

period. Autoclaved tap water and γ-irradiated pelleted diet were provided ad libitum.  

All the experiments were approved by the DDW Ethical Committee. The animal 

research complied with Spanish and European Union legislation on Animal Research 

and GlaxoSmithKline policy on the Care and Use of Animals. 

 

Pharmacokinetic studies  

Experimental compounds were administered by oral gavage at 50 mg/kg single 

dose at a volume of 20 ml/kg to n=5 mice. All mice received treatment in the fed state. 

25 μl of peripheral total blood was taken from the lateral tail vein of each mouse at 15, 

30 and 45 minutes, 1, 2, 4, 8 and 24 hours for the establishment of compound 

concentrations. LC-MS was used as the analytical method of choice to determine the 

concentration of the compound in blood. The non-compartmental data analysis (NCA) 

was performed with WinNonlin Phoenix 6.3 (Pharsight, Certara L.P) and supplementary 

analysis was performed with GraphPad Prism 5. 

 

In vivo acute efficacy assessment 

The mice were intratracheally infected with 100,000 CFU/mouse (Mtb H37Rv). 

The products were administered for eight consecutive days starting one day after 

infection. Lungs were harvested 24 hours after the last administration. For the chronic 
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assay, mice were infected with 100,000 CFU/mouse and the products administered daily 

seven days a week for eight consecutive weeks starting six weeks after the infection. All 

lung lobes were aseptically removed 24 hours after the last administration, homogenized 

and frozen. Homogenates were plated in 10% OADC-7H11 medium for 14 days at 37ºC. 

The homogenates from compound treated mice were incubated for 18 days at 37ºC in 

plates supplemented with 0.4% (w,v) activated charcoal (Sigma Aldrich) to prevent the 

effect of product carryover. 

 

Additional results 

 

HTS screening and lead selection 

Several screening campaigns were run by GSK against InhA, which covered a 

total of 1.9 million compounds. The initial average hit rate of 3.7% was reduced to 

0.63% of true hits after the removal of false positives. Dose-response studies were 

performed on the true hits using compound concentrations ranging from 1.7 nM to 100 

µM, and several chemotypes showing IC50 less than 10 μM were found (Table 4-9). All 

of the identified inhibitors were progressed to the enzymatic mode of action studies 

where non-specific enzyme inhibitors were removed. The new filtered InhA inhibitors 

were selective against InhA. Steady state competition experiments showed that most of 

the compounds competed with the fatty acid substrate for binding to the enzyme, but 

they were uncompetive with NADH, which is consistent with inhibitors binding to a pre-

formed enzyme:NADH complex.  
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The antitubercular activity of the newly identified InhA inhibitors was tested 

against M. tuberculosis H37Rv in liquid medium (Table 4-9). A robust correlation was 

observed between the enzymatic and whole cell activities for compounds from the same 

series. Thiadiazoles or arylbenzamides were found to be nanomolar inhibitors of InhA 

with MICs against H37Rv in the micromolar range, while for the other series, like the 

triazines, IC50 and MIC values were very similar. This contrast between the chemical 

series may reflect differences in cell penetration, intracellular accumulation or enzymatic 

mode of action, but it could also stem from off-target activities. When the physico-

chemical profiles of the selected InhA inhibitors were evaluated and compared, the 

thiadiazole series emerged as the family with the best balanced scaffold (Table 4-9). A 

complete profile of GSK826613 and GSK826625 thiadiazoles was built to ascertain their 

value as antitubercular leads. As described in the results and discussion section of this 

chapter, further development of these series yielded the identification of GSK2505693A 

as the potent lead compound that was effective against M(X)DR Mtb strains.  
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Table 4-9. InhA inhibitor hits identified from the HTS screen. Hits belonged to 

different chemical series and displayed good inhibitory activity (IC50 < 10 μM) against 

InhA. 
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Crystal structures of the InhA:GSK compound complexes 

The co-crystal structures of the InhA:GSK compounds were determined by X-ray 

crystallography. The tested compounds belonged to different chemical series to 

understand the differences in the binding mode of these inhibitors. Compounds received 

from GSK were directly used for crystallographic studies without further chemical 

modifications.  

In total, 13 compounds were received and eight of these compounds, which had 

various degrees of inhibitory activities (IC50: 2 nM to 28 μM), were successfully co-

crystallized with InhA. The co-crystal structures were obtained for two compounds from 

the thiadiazole series (compounds 490 and 625; Figure 4-2), four compounds from the 

aryl benzamide series (compounds 218, 876, SB713 and 915; Figure 4-5), one 

compound from the benzazepin sulfonamide series (compound 735; Figure 4-6 (co-

crystal structure with compound 246 was determined by GSK)), and one compound from 

the benzothiazole series (compound 133; Figure 4-6).  
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Figure 4-5. The aryl benzamide series of GSK inihibitors. The scaffold of this series and the 

corresponding substituents for each compound is shown. The compounds which were 

successfully co-crystallized with InhA are marked with an asterix (*).  
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Figure 4-6. The benzazepin sulfonamide (735 and 246) and the benzothiazole (133) series of 

GSK compounds. The compounds which were successfully co-crystallized with InhA are 

marked with an asterix (*).   

 

 

The co-crystal structures of InhA:GSK compounds revealed that all of the 

investigated compounds bound to the hydrophobic substrate binding pocket of InhA, 

which was surrounded by residues Met199, Leu207, Ile215, Leu218, Met103, Met155, 

Met161, Phe149, Tyr158, Ala198 and Ile202 (Figure 4-7). As was observed for the 

thiadiazole series, compounds belonging to the aryl benzamide, the benzazepin 

sulfonamide or the benzothiazole series also formed the enzyme:inhibitor complex only 

in the presence of the cofactor NAD
+
, verifying the uncompetitive character of the 

inhibitor compounds relative to NADH.  
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Figure 4-7. Binding mode of the GSK inhibitors to the InhA active site. Eight InhA:GSK co-

crystal structures (light blue) are superimposed with NAD
+
 (blue) and the C16-fatty acyl 

substrate analog (orange). A cross-section through the surface of the active site of InhA is 

shown. As seen from the figure, GSK compounds occupied the substrate binding pocket. 

 

 

As a common scaffold, all of the investigated GSK inhibitors, including the 

thiadiazole series, had aromatic pyrazole/thiazole/pyrimidine/imidazole or pyridine 

rings, which interacted with the nicotinamide ring of NAD
+
 via π-π stacking interactions 

(3.6 - 4 Å). In addition, the nitrogen of these aromatic rings made H-bonds to the 2’ 

hydroxyl of the ribose moiety of NAD
+
 (2.6-3 Å), except for the compound GSK218. 

For compound GSK218 this interaction was provided by the H-bonding of the linker 

methoxy oxygen atom between the 2-methylpyridyl and the phenyl rings to the 2’ 

hydroxyl of the NAD
+
 ribose (Figure 4-8). This direct H-bonding interaction with 

NAD
+
 was important for tight inhibitor binding, but it was not enough for potency. This 
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can be clearly seen by comparing the co-crystal structures of compounds GSK490 and 

GSK876. Both compounds interacted with NAD
+
 through direct H-bonding with the 

nitrogen atom in their pyrazole and pyrimidine rings, but they displayed IC50 values of 

28 μM and 60 nM. 

 

 

 

 

Figure 4-8. Binding mode of the aryl benzamide series to the InhA active site. A) Four 

InhA:GSK co-crystal structures are superimposed. The GSK compounds are shown in ball-and-

stick in green (218), magenta (SB713), purple (876) and orange (915) colors. NAD
+
 is shown in 

cyan sticks. B) Key interactions between the aryl benzamide compounds and the InhA active 

site. As a representative, interaction of the compound 218 (green) with the substrate binding 

pocket residues is shown. GSK218 interacts with NAD
+
 (cyan) and M98 via H-bonds; with 

M199, M161, P99, Q100, F149, Y158 and F97 through hydrophobic and van der Waals 

interactions. For both panels atom coloring is: oxygen red; nitrogen blue; sulfur yellow; chlorine 

and fluoride green. 
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Based on the InhA:GSK inhibitor co-crystal structures, one of the key 

interactions identified between the inhibitor compounds and InhA was the direct H-

bonding between the inhibitor compound and the carbonyl oxygen and/or the amide NH 

of the main chain Met98. The range of this interaction varied between 2.7 to 3.3 Å 

(Figures 4-8 and 4-9). For compounds belonging to the thiadiazole series, these 

interactions were present between (i) the nitrogen of the thiadiazole ring and the amide 

NH of Met98, and (ii) the nitrogen linking the pyrazole and the thiadiazole rings and the 

carbonyl oxygen of Met98 (Figure 4-2). In comparison, for compounds belonging to the 

aryl benzamide series, this interaction was provided by the amide nitrogen of the 

inhibitor and the carbonyl oxygen of Met98 (2.7-3.4 Å) (Figure 4-8). For compounds 

735 and 133 belonging to the benzazepin sulfonamide and the benzothiazole series, H-

bonding was present between the sulfonamide nitrogen and the carbonyl oxygen of 

Met98 (3.0 Å), and the sulfur atom of the benzothiazole ring and the amide nitrogen of 

Met98 (3.3 Å) (Figure 4-9).   
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Figure 4-9. Binding mode of the benzothiazole and the benzazepin sulfonamide series to the 

InhA active site. Details of the InhA:GSK133 (A) and the InhA:GSK735 (B) interactions. Both 

GSK133 (purple) and GSK735 (gold) H-bond to NAD
+
 (cyan), Met98 and Gln100, and make 

hydrophobic and van der Waals interactions with the surrounding residues. Compounds also 

interact with the nicotinamide ring of NAD
+
 via π-π stacking. 

 

 

Hydrophobic and van der Waals interactions between the inhibitors and the side 

chains of the active site residues Met161, Phe97, Leu207, Met199, Met103, Ala198, 

Thr196, Gly96, Pro99, Gln100, Phe149, Tyr158 and Ile202 dominated the ligand-protein 

interactions for all classes of the inhibitors (Figures 4-8 and 4-9). This was expected as 

the inhibitors occupied the hydrophobic substrate binding pocket of the enzyme. 

Moreover, compounds 133 and 735 were unique in their direct, strong H-bonding 

interaction with the amide NH of Gln100 through their carboxylate and sulfonyl groups, 

respectively (2.3 and 3.0 Å). Furthermore, compounds having an additional halide 
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substituted aryl group toward the end of the substrate binding pocket (compounds 218, 

625, 876, 713, 915, and 735) formed additional hydrophobic and van der Waals 

interactions with the main chain residues (Gln100, Met98, Gly104, Leu207 and Ile202)  

compared with the compounds 490 and 133. It was observed that the compounds 

involved in multiple interactions with the protein residues were more potent against the 

enzyme.  This difference can be clearly seen when the compounds 490 and 625 were 

compared.  

As was observed with the thiadiazole series, inhibitors belonging to the other 

series also did not cause a significant conformational change in the main chain backbone 

of InhA. In all of the co-crystal structures, the substrate binding loop (residues 197-226) 

was ordered and present in the crystal structure. Similar to GSK826625, GSK218 and 

GSK713 also caused the movement of the substrate binding loop by 3.3 Å and 1.6 Å 

away from the active site compared with the InhA:NAD(H) structure. This movement 

was caused by the interaction of the substrate binding loop with the halide substituted 

benzene moiety of the inhibitor compounds. The shift of the substrate binding loop 

indicates the flexible nature of the substrate binding crevice, which is necessary to 

accommodate the varying chain length fatty acyl substrates. Excluding the substrate 

binding loop, the RMSD of the main chain Cαs between the InhA:NAD(H) and 

InhA:NAD
+
:GSK compound structures was less than 0.5 Å. The catalytic residue 

Tyr158 did not make any H-bonds with the inhibitors; it participated in ligand binding 

only through van der Waals interactions (4.2-5.4 Å). In addition, the side chain of 

Phe149 adopted the identical position as in the InhA:NAD(H) structure. Unlike the INH-
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NADH adduct, none of the GSK compounds caused the flipping of the Phe149 side 

chain, and so they did not interact with the isonicotinic acid binding pocket.  

 

Summary  

Drug discovery is a long and tedious process. It takes at least 10-15 years for a 

single drug to come to the market. There are many factors considered before a 

compound can be administered as a drug, such as in vivo activity, low frequency of drug 

resistance, low toxicity, oral availability, and affordability. For target-based approaches, 

the drug discovery process starts with the target selection, hit/lead identification, 

verification and optimization. However, a highly potent compound active in vitro against 

an enzyme does not guarantee that a similarly good activity will also be obtained in vivo 

against the organism. Even after compounds are optimized for in vivo activity, they may 

not exhibit good pharmacokinetic (PK) properties (bioavailability, solubility, 

Absorption, Distribution, Metabolization and Excretion (ADME)), which will block 

further progress into drug development. Therefore, it is very important to run and invest 

resources in drug discovery projects, especially for diseases such as tuberculosis, which 

is particularly difficult to eradicate due to the unique biology of its causative agent Mtb.  

In this study, the collaboration with GSK and TB alliance resulted in the 

identification of compounds that exhibited potent antitubercular activity. These 

compounds were activation-free inhibitors of the InhA enzyme. The co-crystal structures 

of the InhA:GSK compounds revealed the details of the protein-inhibitor interactions 

and highlighted the substituents or chemical entities required for potency. These features 
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were considered in designing new analogs of the hits.  The GSK inhibitors bound to the 

hydrophobic substrate channel of InhA, and achieved their specificity and potency 

against the enzyme by three types of interactions: (1) π-π stacking interaction with 

NAD
+
, (2) direct H-bonding interaction with NAD

+
 and the main chain backbone 

carbonyl oxygen and the amide NH (especially for Met98), (3) hydrophobic and van der 

Waals interactions with the side chain residues surrounding the substrate binding pocket, 

by the presence of hydrophobic moieties. It was observed that interaction of the 

compounds with the cofactor NAD(H) and the substrate binding loop was necessary for 

high potency.  

As a result of this collaboration, we reached the objective of developing novel 

activation-free InhA inhibitors that are active against the INH resistant Mtb strains 

carrying mutations in the katG gene. The lead thiadiazole compounds represent a 

previously unexplored class of InhA inhibitors. However, the initial compounds of this 

series did not have optimum PK values and additional chemical optimization was 

needed. Further chemistry yielded the final compound GSK693 as a new lead 

representative structure. GSK693 exhibited good antitubercular activity in vivo as well 

as in murine models. It is a promising compound for further drug development studies.    
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CHAPTER V  

STRUCTURE-BASED DRUG DESIGN STUDIES FOR INHA WITH TRICLOSAN 

ANALOGS

 

 

Overview  

Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl 

carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which 

leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design 

approach, a series of 5-substituted triclosan derivatives was developed. Two groups of 

derivatives with alkyl and aryl substituents, respectively, were identified with 

dramatically enhanced potency against purified InhA. The most efficacious inhibitor 

displayed an IC50 value of 21 nM, which was 50-fold more potent than triclosan. X-ray 

crystal structures of InhA in complex with four triclosan derivatives revealed the 

structural basis for the inhibitory activity. Six selected triclosan derivatives were tested 

against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best 

inhibitor had an MIC value of 4.7 μgmL
-1 

(13 μM), which represents a tenfold 

improvement over the bacteriocidal activity of triclosan. A subset of these triclosan 

analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis 

                                                 


 Reprinted with permission from “Triclosan derivatives: towards potent inhibitors of drug-sensitive and 

drug-resistant Mycobacterium tuberculosis” by Freundlich J.S., Wang F., Vilcheze C., Gulten G., Langley 

R., Schiehser G.A., Jacobus D.P., Jacobs W.R, Sacchettini  J.C., 2009. ChemMedChem, 4, 241-248, 

Copyright © [2009] by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. DOI: 10.1002/cmdc. 

200800261.  
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strains, demonstrating the significant potential for structure-based design in the 

development of next generation antitubercular drugs. 

 

Introduction 

For nearly fifty years, isoniazid (INH) has been utilized as a frontline drug to 

treat tuberculosis (TB) (Vilcheze and Jacobs, 2007). INH is a key component of short 

course chemotherapy for TB treatment, which entails six months of daily administration, 

and is also the sole component for TB prophylaxis, which includes nine months of daily 

administration. The emergence of INH-resistant strains has compromised TB control 

programs worldwide (CDC, 2006; Crofton et al., 1997). 

INH and ethionamide (ETH) are known to target the Mycobacterium tuberculosis 

enoyl acyl carrier protein (ACP) reductase (InhA) (Banerjee et al., 1994; Rozwarski et 

al., 1998; Vilcheze et al., 2006; Wang et al., 2007), validating it as an excellent 

antitubercular drug target. INH and ETH are prodrugs, and their activities are dependent 

on activation in M. tuberculosis by KatG, a catalase/peroxidase enzyme, and EthA, a 

flavin monooxygenase, respectively (DeBarber et al., 2000; Morlock et al., 2003). Upon 

activation, INH or ETH forms a covalent adduct with NAD cofactor, which inhibits 

InhA. As prodrugs, INH and ETH are highly specific and effective. However, mutations 

in activators katG and ethA have been linked to most of the clinical resistance in the 

diagnosed cases of drug-resistant TB (Hazbon et al., 2006; Morlock et al., 2003). 

Compounds that do not require activation and directly target InhA represent a promising 

approach to circumvent this resistance mechanism. The first report of such small-
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molecule InhA inhibitors came from our laboratories in 2003, featuring triclosan and 

two members of the Genzyme compound library (Kuo et al., 2003). Triclosan, for 

example, inhibits InhA without the need for prior activation, although its use as an 

antitubercular may be limited by its less than optimal bioavailability (Wang et al., 2004). 

These small molecules, however, represent reasonable starting points for structure-based 

drug discovery efforts to afford effective InhA inhibitors. Aiding such an effort are 

several crystal structures, such as those of InhA:NADH (Dessen et al., 1995), 

InhA:NAD
+
:triclosan (Kuo et al., 2003), InhA: NAD

+
:Genz-10850 (Kuo et al., 2003), 

InhA:NAD
+
:C16-substrate (Rozwarski et al., 1999), and InhA: INH-NAD (Rozwarski et 

al., 1998) that were accessible at the outset of these investigations. During the course of 

this work, Sullivan et al. reported the X-ray structures of two triclosan analogues with 5-

alkyl (n-pentyl and n-octyl) moieties, lacking the two B-ring chlorines (Vilcheze et al., 

2006). This collection of structures provided a precisely defined active site of InhA and 

a thorough understanding of the ligand–enzyme interactions that render potent enzyme 

inhibition. 

One promising route for the design of potent InhA inhibitors involves triclosan, a 

commercially available compound that has been reported to inhibit the enoyl acyl ACP 

reductases (ENR) from several species, including Plasmodium falciparum (Surolia and 

Surolia, 2001), Escherichia coli (Heath et al., 1998), Bacillus subtilis (Heath et al., 

2000), Brassica napus, (Roujeinikova et al., 1999) and Pseudomonas aeruginosa 

(Hoang and Schweizer, 1999). The structures of ENR from E. coli (FabI) (Levy et al., 

1999), B. napus (Roujeinikova et al., 1999), P. falciparum (PfENR) (Perozzo et al., 
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2002), and M. tuberculosis (InhA) (Kuo et al., 2003) bound with triclosan have been 

characterized. In our laboratories, a series of 5-substituted triclosan derivatives was 

designed and synthesized in order to optimize the potency of triclosan in parallel against 

both purified PfENR (Freundlich et al., 2007) and InhA. This report discusses these 

efforts focused specifically on the SAR developed versus purified InhA and INH-

sensitive and resistant M. tuberculosis. 

 

Results and discussion 

Our efforts began with a survey of the complex structures of InhA bound with 

INH–NAD (Rozwarski et al., 1998) and triclosan (Kuo et al., 2003), respectively. Two 

hydrophobic cavities capable of being filled were identified: the substrate-binding site 

and the pocket into which the isonicotinoyl group of INH–NAD protrudes. To date, all 

reported inhibitors of InhA occupied the hydrophobic cavity of the substrate-binding 

site, except the INH–NAD and ETH–NAD adducts. The isonicotinoyl moiety of the 

INH–NAD and ETH–NAD adducts were found in a hydrophobic pocket formed by 

movement of the side chain of Phe 149. The pocket was underneath the fatty acyl 

substrate-binding site (Figure 5-1) and, lined predominantly by hydrophobic groups 

from the side chains of Tyr 158, Phe 149, Met 199, Trp 222, Leu 218, Met 155, Met161, 

Gly 192, and Pro 193. This pocket may also serve as a portal to the external solvent to 

the left side of the active site (Figure 5-1). The active forms of both INH and ETH 

occupied the same pocket and were extremely potent against InhA (Ki =5 nM and 7 nM, 

respectively) (Vilcheze et al., 2006; Wang et al., 2007), validating this cavity as a 
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suitable site to target with new inhibitors. Superimposition of the structures of 

InhA:INH–NAD and InhA:NAD
+
:triclosan indicated that the chlorine atom at the 5-

position of the triclosan A-ring was about 2 Å away from the binding pocket of 

isonicotinoyl moiety of the INH-NAD adduct and was in contact with Pro 193, Met 199, 

and Phe 149 through van der Waals interactions. Based on this structural information, 

we hypothesized that it may be possible to replace the 5-chloro with various moieties to 

occupy this isonicotinoyl binding pocket and, thus, increase the in vitro activity against 

InhA.  

It should be noted that this strategy contrasts with that of Sullivan et al. to extend 

relatively long n-alkyl chains off what is essentially the triclosan 5-position (in 

molecules where the two B-ring chlorines have been excised) to mimic substrate 

analogue trans-2-hexadece-noyl-(N-acetylcysteamine)thioester, whose structure with 

InhA we reported in 1999 (Rozwarski et al., 1999). 
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Figure 5-1. Cross-section through the surface of the InhA active site of super-

imposed structures of InhA in complex with the INH–NAD adduct and triclosan. 
The carbon atoms of the INH–NAD adduct and triclosan are colored in gold and white, 

respectively. Other atoms are colored according to the atom type: oxygen, red; nitrogen, 

blue; chlorine, cyan; phosphorus, purple. This figure was produced using Spock (version 

V1.ob170) (Christopher, 1998). 

 

 

 

A series of triclosan derivatives with modifications at the 5-position of triclosan 

was evaluated for their inhibition of purified InhA. These small molecules were 

prepared during the course of a concurrent program to investigate 5-substituted triclosan 

analogues as PfENR inhibitors (Freundlich et al., 2007). Inhibitors with hydrophobic 

substituents, such as alkyl groups (compounds 2 and 7) were much more potent than 

those with hydrophilic substituents (compounds 3, 4 and 5) (Table 5-1). This result is 

consistent with our proposal that the 5-substituent of triclosan projects into a 

hydrophobic cavity of InhA. It is interesting to note the lack of activity of phenyl 

derivative 6, which may be explained by a potential steric clash with Phe 149 (as 

clarified below). 
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Following the initial modest activity of compounds 2 and 7, a series of 5-alkyl 

triclosan derivatives was examined for their inhibitory activity against InhA. Their 

potency against InhA appeared to increase with the chain length of the 5-alkyl groups 

(Table 5-2). Highest inhibitory potencies were observed for compounds 10 and 12 with 

four-carbon chains. Sullivan observed the same trend with 5-alkyl substituted, des-

chloro triclosan derivatives (Sullivan et al., 2006). 

 

 

 

Table 5-1. In vitro activities of select triclosan derivatives against M. tuberculosis 

InhA.
[a]

 

 

 

  

Compound R InhA IC50 [nM] 

    

triclosan Cl 1100± 180 

2 Me 800 ±99 

3 2H-tetrazol-5-yl >10 000  

4 COOH >10 000  

5 C(O)NH2 >10 000  

6 Ph >10 000  

7 CH2(C6H11) 110 ±31 

 [a] Values reported as the mean ±standard error for at least three in-dependent 

measurements. 
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Table 5-2. In vitro activities of select triclosan derivatives against M. tuberculosis 

InhA.
[a] 

 

 

 

 

Compound R
1
 R

2
 InhA IC50 [nM]  

8 CH2CH3 Cl 120 ±19  

9 (CH2)2CH3 Cl 91 ±15  

10 (CH2)3CH3 Cl 55 ±20  

11 CH2CH(CH3)2 Cl 96 ±46  

12 (CH2)2CH(CH3)2 Cl 63 ±9  

13 CH2CH(CH3)CH2C

H3 

Cl 130 ±56  

14 2-pyridyl CN >10 000   

15 3-pyridyl Cl >10 000   

16 4-pyridyl CN >10 000   

17 CH2(2-pyridyl) Cl 29 ±11  

18 CH2(3-pyridyl) Cl 42 ±10  

19 CH2(4-pyridyl) CN 75 ±16  

20 o-CH3-Ph Cl 1300 ±77  

21 o-CH3-Ph CN >10 000 ±110  

22 m-CH3-Ph Cl 870  

23 p-F-Ph Cl >10 000   

24 CH2Ph Cl 51 ±6  

25 (CH2)2Ph Cl 21 ±8  

26 (CH2)3Ph Cl 50 ±14  

[a] Values reported as the mean ±standard error for at least three independent 

measurements. 
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It was found that the in vitro activity of those inhibitors was optimal at a carbon 

chain length of eight. Triclosan inhibitors show better in vitro activity than their des-

chloro counterparts, with 5-substituents of the same carbon chain length, from the report 

by Sullivan et al. (ethyl, IC50 =120 ± 19 nM vs. 2000 ± 700 nM; n-butyl, IC50 =55 ± 20 

nM vs. 80 ± 15 nM), suggesting that the two chlorine atoms on the B-ring contribute to 

the binding of the inhibitor to the enzyme. Molecular modeling suggests that this may be 

due to favorable van der Waals interactions of the 4’-Cl with Phe 97 and Met 103. These 

results imply that the hypothesis of Sullivan et al. (Sullivan et al., 2006) that the B-ring 

chlorines do not contribute to efficacy may not be correct. 

The alkyl substituents investigated in previous studies were all linear in nature. In 

the present report, compounds 11, 12, and 13, with β- or γ-branched methyl substituents, 

failed to improve upon the potency of their straight-chain counterparts of the same chain 

length (compounds 9 and 10). Similarly, cyclohexylmethyl analogue 7 exhibited an IC50 

value of 110 nM. The 2.8 Å crystal structure of InhA in complex with compound 7 

(Figure 5-2) was solved to provide a structural basis for the activity difference amongst 

the alkyl substituents. The crystal belonged to I4122, a space group for InhA that has not 

been reported previously. It is worth noting that the substrate binding loop (residues 

195–205) was ordered in the structure of InhA bound with compound 7, while it has 

been disordered in the structures of InhA bound with triclosan, and all other triclosan 

derivatives solved to date. The structure was readily superimposed on that of InhA in 

complex with 5-pentyl-2-phenoxy-phenol (Sullivan et al., 2006),  which  intriguingly  

features  a  somewhat  strained C4-C5 portion of the pendant alkyl chain, and the C16 
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substrate analogue (Rozwarski et al., 1999) (overlapping the position of C4 to C7 of the 

U-shaped acyl chain). The 5-cyclohexylmethyl group formed predominantly 

hydrophobic interactions with the side chains of Phe 149, Ile 215, Leu 218, Met 155, Tyr 

158, and Met 199. Based on this structure, we hypothesized that 5-substituents with a 

longer alkyl chain would create more extensive hydrophobic interactions in this pocket. 

Therefore, it was not surprising that the potency of the 5-alkyl triclosan analogues 

increased with the chain length. However, it is not so obvious from a structural point of 

view why our limited subset of methyl-branched inhibitors do not exhibit greater 

potency than the nonbranched inhibitors of the same chain length. A possible 

explanation could be steric clashes with one or more of the side chains of Phe 149, Tyr 

158, and Met 199 with the branched methyl groups. Compared to the structure of InhA 

bound with the 5-pentylphenol derivative designed by Sullivan et al., the side chain of 

Met 199 on the substrate-binding loop flipped ~ 100° to form a hydrophobic interaction 

with the cyclohexyl group at a distance of 3.6 Å. In addition, the B-ring of compound 7 

also rotated ~ 30° from its position in 5-pentyl-2-phenoxyphenol to allow the 4’-chloride 

to form a weak hydrogen-bonding interaction with the amide NH of Met 98 at a distance 

of 3.2 Å. 
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Figure 5-2. The superposition of crystal structures of InhA (ribbons and tubes, key 

residues in stick format) in complex with 5-pentyl-2-phenoxyphenol (Sullivan et al., 

2006) (purple) and compound 7 (carbon atoms in gray) in the presence of NAD
+
 

(cyan). The B-ring of the 5-pentyl triclosan analogue was in a different orientation from 

7, because of the lack of two chlorides. The cyclohexylmethyl group of compound 7 

was in a similar position to the pentyl group of 5-pentyl triclosan analogue. This figure, 

in addition to Figure 3 and 4, was made using SwissPDB viewer (version 3.7) (Guex 

and Peitsch, 1997). 

 

 

 

Analogues of phenyl 6 were examined to improve upon the surprisingly poor 

enzyme inhibition observed (Table 5-2). Pyridyl derivatives 14–16 and simple phenyl 

analogues 20–23 were also poor InhA inhibitors. Although the crystal structures for 

InhA bound with 5-phenyl or 5-pyridyl triclosan analogues have not been obtained to 

date, the inhibitors were modeled (McRee, 1999) into the active site based on the 
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structure of InhA:triclosan. A directly attached aryl group at the 5-position appeared to 

be too close to the side chain of Phe 149 (shortest distance was ~ 1.4 Å between the aryl 

substituent and the phenyl group of Phe 149), leading to steric clashes. The hydrophobic 

pocket of interest was separated from the 5-position by a distance of 2.5 Å. 

Therefore, to reorient and better position the hydrophobic aryl group into the 

target pocket, a linker varying from 1–3 carbons was incorporated between the aryl 

substituent and the 5-position carbon on the A-ring (Table 5-2). Consistent with the 

molecular modeling results, an evaluation of 5-position substituents of the type 

(CH2)nAr demonstrated that carbon linkers significantly increased the inhibitory potency 

versus purified enzyme. Among them, compound 25 had the highest potency (IC50 =21 

nM), representing a 50-fold increase compared to triclosan. It is the most potent 

triclosan derivative against purified InhA we have studied to date. Compounds 24 and 

26, with similar activities against InhA (24, IC50 =51 nM; 26, 50 nM), were also active 

inhibitors. The crystal structures of InhA bound with 24 and 25 showed that the 

(CH2)nAr group extended into the pocket and formed hydrophobic interactions with 

residues Leu218, Ile 215, Phe149, Met199, and Pro 193 (Figure 5-3). The triclosan 

backbone atoms of compounds 24 and 25 were in nearly identical positions, but their 5-

substituents were clearly different. The phenyl group of derivative 24 was positioned in 

the center of the binding pocket, while the phenyl group of derivative 25 protruded ~2 Å 

deeper into, and was closer to the end of, the binding pocket due to the longer carbon 

linker. Thus, compound 25 additionally engaged Trp222 in a hydrophobic interaction. 

The side chains of Leu 218 and Ile215 rotated 30° and shifted 1.5 Å, respectively, to 
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accommodate the phenyl ring of compound 25, which also flipped ~70° from the 

position of the phenyl group of compound 24. All of these conformational changes 

suggest that there were more hydrophobic interactions between the active site residues 

and the 5-substituent of compound 25 than that of compound 24, which may explain 

why compound 25 was twice as potent than compound 24 against InhA. 

To further increase the potency of the 5-(CH2)nAr series through potential 

mimicry of the INH–NAD isonicotinoyl moiety, derivatives with 5-CH2(n-pyridyl) (n 

=2, 3, and 4) substituents (compounds 17–19) were examined for in vitro activity. In the 

crystal structure of InhA:INH–NAD (Rozwarski et al., 1998), the pyridyl group of the 

INH–NAD adduct formed a hydrogen-bonding interaction with a buried water molecule. 

Without a carbon linker, the 5-pyridyl triclosan derivatives 14–16 showed very low 

activity against InhA (IC50 >10 μM), presumably due to a steric clash with Phe 149. In 

contrast, with a one-carbon linker, pyridyl analogues 17–19 were all potent inhibitors 

(IC50 < 80 nM), and their IC50 values were in the order 17 <18 <19. Compared to benzyl 

derivative 24, the activity of 17 increased approximately twofold while the activity of 

compound 18 increased only slightly, and compound 19 was slightly less potent. The 

structure of InhA:NAD
+
:17 demonstrated that the pyridyl ring of derivative 17 extended 

into the substrate-binding site to form hydrophobic interactions with the side chains of 

Tyr 158 and Phe 149 (Figure 5-4). These interactions are similar to those of the phenyl 

group in InhA:NAD
+
:24. However, the nitrogen atom on the 2-position of the pyridyl 

ring also formed a hydrogen-bonding interaction with the side chain carboxylate of Glu 

219 through a water molecule. Modeling studies indicated that similar interactions could  
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Figure 5-3. The superposition of crystal structures of InhA (ribbons and tubes, key 

residues in stick format) in complex with triclosan (carbon atoms in gray), 

compound 24 (purple), and compound 25 (gold) in the presence of NAD
+
 (cyan). 

The 5-phenyl groups of compounds 24 and 25 are shown making van der Waals 

contacts with the side chains of Tyr 158, Pro 193, Leu 218, Ile 215, and Phe 149. The 

movements of Ile 215 and Leu 218 in response to the triclosan 5-substituent are 

depicted by showing this residue in stick format with the coloring of the respective 

ligand. It should be noted that Met 199 is not depicted for the sake of clarity. 

 

 

 

also exist for 18, but were not likely for 19, based on the distance between the pyridyl 

nitrogen atom and the side chain oxygen of Glu 219. The nitrogen atom of 19 potentially 

pointed to the hydrophobic side chains of residues Met 155 and Leu 218, which may not 

be favored energetically. The superimposition of InhA:NAD
+
:17 and 
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InhA:NAD
+
:triclosan (Kuo et al., 2003), demonstrated movement of both Glu 219 and 

Leu 218 to accommodate the 5-pyridylmethyl moiety. 

A comparison of the X-ray crystal structures of bound compounds 7, 17, 24, and 

25 with that of INH–NAD (PDB code 1ZID) is instructive. At the outset, our goal was to 

reach from the 5-position of triclosan into the isonicotinoyl-binding pocket. The Phe 149 

side chains from the four triclosan analogue structures overlapped well with each other, 

but not that of 1ZID. In 1ZID, the isonicotinoyl group of INH was stabilized by the 

rotation of Phe 149. The various triclosan 5-substituents, however, did not occupy the 

same volume as the isonicotinoyl group, orienting similarly to the C16 chain of the 

structurally characterized substrate analogue (Rozwarski et al., 1999) and the appended 

alkyl substituent in the structures reported by Sullivan et al. (Sullivan et al., 2006), and 

thus did not perturb Phe 149. In the 1ZID structure, the movement of Phe 149 evidently 

displaced Tyr 158. While this motion was tolerated in 1ZID, in the triclosan structures, 

the phenol moiety is positioned through an interaction with the hydroxyl of Tyr 158. 

Loss of the triclosan phenol–Tyr 158 interaction would most likely result in complete 

loss of inhibitor binding, supported by the observed weak inhibitory activity of des-

phenol triclosan analogues against InhA. Thus, while the triclosan analogues can attempt 

to place substituents proximal to the INH binding pocket, they cannot occupy the exact 

volume of the isonicotinoyl moiety, as this would ultimately require the movement of 

Phe 149 and Tyr 158, thus losing a key hydrogen-bonding interaction with Tyr 158. 



 

206 

 

 

Figure  5-4. The superposition of crystal structures of InhA (ribbons and tubes, key 

residues in stick format) in complex with triclosan (purple) and compound 17 

(carbon atoms in gray) in the presence of NAD
+
 (cyan). The nitrogen atom on the 

pyridyl ring formed a hydrogen-bonding interaction with the side chain of Glu 219 

through a water molecule. The side chain of Glu 219 rotated 90° from its original 

position (purple) to form this hydrogen-bonding interaction. It should be noted that Phe 

149 is not depicted for the sake of clarity. 

 

 

 

The activities of three 5-alkyl (7, 10, and 11) and three 5-aryl triclosan 

derivatives (24, 25, and 26) against six different M. tuberculosis strains were assayed 

(Table 5-3). Among these strains, H37Rv is the M. tuberculosis wild-type, sensitive to 

isoniazid. The InhA(S94A) strain, carrying the inhA(S94A) allele, has been demonstrated 

to confer resistance to isoniazid through the weakening of co-factor binding (Vilcheze et 

al., 2006). The InhA(C-15T) strain is a M. tuberculosis spontaneous mutant carrying the 
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inhA expression region mutation (C-15T) (Vilcheze et al., 2006). It has been shown that 

the C-15T inhA promoter mutation mediates enhanced transcription of inhA, resulting in 

INH and ETH resistance. The ∆katG mutant features the complete deletion of the katG 

gene and, thus, INH activation cannot take place. Most significantly, strains 12081 and 

5071 are multidrug resistant clinical isolates from Mexico that are INH resistant without 

known mutations in katG, inhA, ndh, and ahpC. The 12081 (SCG V) strain was, in our 

hands, resistant to INH, streptomycin, and rifampicin, while 5071 (SCG 3b) was 

resistant to only INH and streptomycin. 

The selected six compounds with high potency against InhA in vitro (IC50 ≤ 110 

nM) all demonstrated good antitubercular activity against the wild-type H37Rv strain, 

exhibiting improvements over the whole-cell efficacy of triclosan. Clearly, the 5-chloro 

group of triclosan is not optimal and the use of larger and more hydrophobic moieties is 

advantageous both in terms of InhA inhibition and whole-cell potency. The most active 

compound, 26 (MIC =13 μM), was superior to that of ETH (MIC =18 μM) (Vilcheze et 

al., 2006), while being greater than tenfold more potent than triclosan. The activities of 

these compounds against purified InhA and cultured tuberculosis strains generally 

correlated well. For example, compound 10, which had two-fold higher activity against 

InhA than compound 11, also exhibited twofold better antitubercular activity. This 

supports a hypothesis that the straight chain 5-alkyl substituent has an advantage over 

the analogous branched derivative. In addition, compound 26, which displayed the 

highest antitubercular activity in the series, also had the second highest potency against 

InhA. Exceptions may be noted such as with compound 25, which showed the highest  
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Table 5-3. Minimum Inhibitory Concentration (MIC) values of triclosan 

derivatives against wild-type and mutant M. tuberculosis strains. 

 

Compound H37Rv 

 

 

[μgmL
-1

] 

([μM]) 

H37Rv 

inhA 

(S94 A)  

[μgmL
-1

] 

([μM]) 

H37Rv 

PmabA 

inhA 

(C-15T) 

[μgmL
-1

] 

([μM]) 

H37Rv 

∆katG 

 

[μgmL
-1

] 

([μM]) 

Clinical 

isolate 

12081 

[μgmL
-1

] 

([μM]) 

Clinical 

isolate 

 5071 

[μgmL
-1

] 

([μM]) 

7 9.4 (27) 37 (110) 37 (110) 19 (55) 37 (110) 4.7 (13) 

10 9.4 (30) 37 (120) 37 (120) 19 (60) 37 (120) 4.7 (15) 

11 19 (60) 37 (120) 37 (120) 37 (120) 75 (240) 19 (60) 

24 9.4 (27) 75 (220) 37 (110) 19 (55) 75 (220) 9.4 (27) 

25 19 (52) 75 (210) 75 (210) 37 (110) 75 (210) 19 (52) 

26 4.7 (13) 19 (50) 19 (50) 9.4 (26) 37 (100) 4.7 (13) 

INH 0.060 

(0.44) 

0.50 (3.6) 0.80 (5.8) >200 

(>1400) 

1.0 (7.3) 8.0 (56) 

triclosan 40 (140)      

 

 

 

potency among the (CH2)nAr series and yet the worst antitubercular activity. As may be 

expected, a number of factors other than in vitro efficacy against purified InhA, 

including pharmacokinetic parameters, contribute to the whole-cell inhibition of 

mycobacterial growth. 

It is interesting to compare the H37Rv data for 5-n-butyltri-closan (10) and the  

corresponding des-chloro analogue of Sullivan and co-workers. While compound 10 

(IC50 =55 nM) was slightly more active than its des-chloro analogue against InhA (IC50 
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=80 nM) (Sullivan et al., 2006), the des-chloro compound (MIC =10.8 μM) was more 

efficacious against H37Rv compared with compound 10 (MIC =30 μM). It should be 

noted that the most potent triclosan analogue reported to date is the n-octyl analogue 

reported by Sullivan et al. (InhA, IC50 =5.0 nM; H37Rv, MIC =6.5 μM) (Sullivan et al., 

2006). 

Triclosan has previously been reported to display promising activity against both 

INH sensitive and resistant M. tuberculosis strains (Kuo et al., 2003; Sullivan et al., 

2006). We next examined five strains against which the triclosan family of compounds 

had not been tested. Compared to their efficacy against the wild-type strain, five of the 

six analogues examined showed 4–8-fold lower activity against the InhA(S94A) and 

InhA(C-15T) strains. This was slightly lower, yet still comparable in magnitude, to the 

8- and 13-fold losses in potency for INH against these two strains, respectively. The 

InhA(C-15T) strain has a higher expression of InhA, which leads to resistance to 

compounds that target the protein. The resistance to triclosan by InhA(S94A) strains of 

either M. tuberculosis or other bacteria has not been previously reported to the best of 

our knowledge. Mutation of the G93V in FabI, a residue conserved in InhA, has 

previously been found to confer E. coli resistance to triclosan (McMurry et al., 1998). 

The inhA(S94A) mutation has been demonstrated to decrease the efficacy of INH by 

weakening the binding of INH–NAD (Vilcheze et al., 2006). Comparatively, the binding 

of triclosan and its analogues to InhA depends greatly on the interaction between the 

diaryl ether scaffold and NAD
+
. Quemard and co-workers reported that the S94A 

mutation weakened the binding of NADH by ~500-fold (Quemard et al., 1995). It is 
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proposed that the same mutation may decrease the stability of the InhA: NAD
+
:triclosan 

derivative complex and, thereby, diminish inhibition. The resistance of the InhA(S94A) 

and InhA(C-15T) strains to triclosan derivatives is supportive of our proposal that the 

target of these triclosan relatives is indeed InhA. 

The activity of the triclosan analogue subset against the ∆katG mutant further 

substantiates the potential advantage of these InhA inhibitors over INH. While INH was 

more than 3000-times less active against the ∆katG mutant, the triclosan analogues were 

only twofold less active, as measured by their MIC values. This is consistent with our 

genetic, enzymatic, and X-ray crystallographic data that demonstrate InhA inhibition by 

the triclosan family without the need for activation. It, therefore, follows that one would 

expect a lack of cross-resistance with many INH-resistant M. tuberculosis strains, where 

the katG mutations represent the dominant allele conferring resistance. Sullivan and 

colleagues have also demonstrated their phenol diaryl ethers to not suffer significant 

losses in potency against clinical isolates with varying degrees of INH resistance 

(Sullivan et al., 2006). 

The two clinical strains shown in Table 5-3 were much more sensitive to the 

triclosan analogues compared with INH. Strain 12081 afforded 17-fold resistance to 

INH, which was reduced to a 4–8 factor resistance against the triclosan subset. Against 

clinical isolate 5071, the triclosan subset maintained or improved (in two cases by 

twofold) their respective wild-type potencies. These results should be contrasted to the 

greater than two orders of magnitude resistance conferred against INH. Thus, triclosan 

analogues may, in general, offer a high degree of activity against INH resistant M. 
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tuberculosis. 

 

Conclusions 

The efficacy of these 5-substituted triclosan analogues has been shown to be 

tunable through a structure-based optimization of the 5-position. Novel analogues 

afforded a 50-fold increase in InhA inhibition and tenfold in bacteriocidal activity. Most 

significantly, these triclosan derivatives demonstrated efficacy against INH-resistant 

laboratory and clinical strains of M. tuberculosis. Further studies of triclosan and other 

small-molecule inhibitors of InhA hold significant promise for the delivery of novel 

antitubercular agents that are effective against drug-resistant M. tuberculosis. Current 

efforts are underway to examine the physiochemical properties of our most promising 

analogues. Substitution of the phenol will be investigated to avoid potential liabilities 

due to rapid Phase II metabolism (Wang et al., 2004), preceding clearance. In addition, 

other modifications to the A-and/or B-rings of the diaryl ether scaffold can be envisioned 

that would potentially increase the stability of these derivatives to oxidative metabolism, 

while not sacrificing efficacy. 

 

Experimental procedures 

 

Triclosan analogue synthesis 

The small molecules tested against InhA and the mycobacterial strains were 

synthesized as described previously in the literature (Freundlich et al., 2007). 
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Cloning, expression, and purification for Mycobacterium tuberculosis inhA 

M. tuberculosis inhA was cloned into E. coli BL21 (DE3) as described previously 

(Dessen et al., 1995). The transformed E. coli were cultured in Terrific Broth media with 

50 μg mL
-1

  carbenicillin at 37 °C until an OD600 of 0.8 was observed. inhA expression 

was induced for 20 h at 16 °C through addition of 1 mM isopropyl β-D-

thiogalactopyranoside. The resulting cells harvested through centrifugation were re-

suspended in 50 mM PIPES (pH 6.8) and 1 mM phenylmethylsulfonyl fluoride and 

lysed via French press. Exposure to DNAse I was followed by removal of insoluble 

material through centrifugation. The supernatant was subjected to a HiTrap Blue 

Sepharose column (AP Biotech), pre-equilibrated with the same buffer, using a fast 

protein liquid chromatography system and eluted through a NaCl gradient (0–2 M). 

Elution with 0.9 M NaCl solution afforded fractions containing InhA that were 

subsequently subjected to an octyl-sepharose column (AP Biotech), pre-equilibrated 

with 1 M NaCl, and eluted through a NaCl gradient (1–0 M). Pooling of InhA fractions 

and gel filtration through a Superdex 200 column were carried out to separate 

monomeric protein from aggregated material. SDS-PAGE and Coomassie Blue staining 

were consistent with homogeneous InhA, yielding 40 mg L
-1

 from E. coli culture. 

 

InhA enzyme assay 

Experiments were carried out utilizing a Cary100 Bio spectrophotometer at 25 

°C, through monitoring the oxidation of NADH to NAD
+
 at 340 nm. Reactions were 
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initiated via addition of dodecenoyl-CoA (50 μM) substrate to mixtures containing InhA 

(5 nM), NADH (100 μM), and inhibitor (1–10000 nM). The IC50 values were determined 

from a dose-response plot of enzyme fractional activity versus the concentration of 

inhibitor. 

 

Antimycobacterial assays 

The relevant M. tuberculosis strains were obtained from laboratory stocks and 

grown in Middlebrook 7H9 medium (Difco), supplemented with 10 % (v/v) OADC 

enrichment (Difco), 0.2% (v/v) glycerol, and 0.05 % (v/v) tyloxapol to an OD600 of ~ 

1.0. The cultures were diluted 4 logs and 0.1 mL of the resulting dilutions were 

inoculated into 2 mL of Middlebrook 7H9 media with varying concentrations of 

inhibitor. The cultures were incubated with shaking at 37 °C for four weeks. The MIC 

was defined as the concentration of inhibitor that prevented visible mycobacterial 

growth. 

 

Crystallization of InhA with selected inhibitors 

The hanging drop vapor diffusion method was utilized. Typically, InhA was 

incubated with an inhibitor and NAD
+
 in the molar ratio of 1:2:100 for 2 h. Co-

crystallization was then attempted in hanging droplets consisting of 2 μL of 10 mg mL
-1

 

protein solution and 2 μL of buffer (20% PEG 3350, 6% DMSO, 0.1 M N-(2-

acetamido)iminodiacetic acid pH 6.8, 0.08 M NH4OAc) at 16°C in Linbro plates against 

0.5 mL of the same buffer. Protein crystals were observed after approximately four days.  
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Data collection and processing 

Data were collected at 121 K utilizing cryo-protection solution with reservoir 

solution and an added 30% ethylene glycol. A crystal of InhA:17 diffracted X-rays to 

1.98 Å at beam line 23ID at the Advanced Photo Source (APS), Argonne National 

Laboratory.  Crystals of InhA:24, InhA:25 and InhA:7 diffracted X-rays to 2.30 Å, 2.80 

Å and 1.98 Å, respectively, using a Rigaku Raxis detector coupled to an X-ray generator 

with a copper rotating anode (CuKα, λ=1.54 Å). Diffraction data was obtained from a 

single crystal with 0.5° degree oscillation widths for a range of 180°. The data were 

integrated and reduced using HKL2000 (Table 5-4)  (Otwinowski and Minor, 1997).  

 

Structure determination and model refinement 

Initial phases of the InhA:inhibitor complexes were obtained through molecular 

replacement utilizing the apo-InhA structure (PDB code: 1ENY) and refined with CCP4 

(Collaborative Computational Project, 1994) (Table 5-4). Electron density maps were 

calculated and additional density was found, consistent with the respective inhibitor. The 

inhibitor was fit into the additional density and the whole model was rebuilt utilizing 

XtalView (McRee, 1999). In the final refinement cycles, water molecules were added 

into peaks above 3-σ of the Fo–Fc electron density maps, such that the water molecules 

were within hydrogen-bonding distance from the appropriate protein atoms. Final 

statistics are in Table 5-4. 
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Table 5-4. Data collection and refinement statistics for reported X-ray structures.
[a] 

 

 InhA: 7 InhA: 17 InhA: 24 InhA: 25 

Maximum resolution [Å] 1.97 1.98 2.30 2.80 

Space group I4(1)22 C2 C2 I4(1)22 

a [Å] 90.0 125.6 125.6 90.0 

b [Å] 90.0 92.3 92.4 90.0 

c [Å] 183.9 103.0 102.4 183.1 

α [°] 90.0 90.0 90.0 90.0 

β [°] 90.0 106.4 106.5 90.0 

γ [°] 90.0 90.0 90.0 90.0 

Unique reflections
[b]

 27 204  

(2964) 

71 784 

(6260) 

43 113 

(3799) 

9708  

(1063) 

Rsym [%] 6.0 (74.3) 9.9 (70.5) 10.3 (88.3) 12.8 (82.3) 

Completeness [%] 99.8 (100) 87.3 (65.5) 99.1 (98.5) 99.8 (100) 

Redundancy 10.2 (10.0) 3.7 (2.1) 5.3 (4.9) 8.5 (8.6) 

I/σ 42.5 (4.3) 15.7 (1.3) 28.6 (3.3) 22.3 (3.7) 

Resolution range [Å] 19.92- 1.97 19.96–1.98 19.85–2.30 19.85–2.8 

# reflections 25 755 68885 46 976 9157 

# atoms per subunit     

Protein 1994 7826 7739 1994 

Cofactor (NAD) 52 176 176 52 

Ligand 22 88 88 23 

Solvent 168 703 253 11 

Rcryst [%] 20.7 20.0 20 22.1 

Rfree [%] 25.2 25.3 26 26.8 

Average B-factors [Å2
] 35.0 1.98 40.2 54.8 

[a] PDB accession code are 3FNG (7), 3FNE (17), 3FNF (24), and 3FNH (25). [b] The value of 

the highest resolution shell is given in parentheses. 
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Additional unpublished results 

 

Activity of JPC2278 against InhA 

The 5-p-methylphenyl substituted triclosan derivative, named as JPC2278 

(Figure 5-5A), which was not tested initially together with the other analogs, was also 

tested for in vitro inhibition against InhA. The compound showed surprisingly good 

activity against InhA with an IC50 of 77.6 ± 2.8 nM (Figure 5-5B). This result was 

unexpected, because the other close derivatives of JPC2278 with a 5-phenyl (Table 5-1, 

compound 6), a 5-o-methylphenyl (Table 5-2, compound 20), a 5-m-methylphenyl 

(Table 5-2, compound 22), and a 5-p-fluorophenyl (Table 5-2, compound 23) group did 

not display any inhibitory activity (IC50 > 10 μM) for InhA (Figure 5-5C).    

In order to understand the structural basis of the activity difference between these 

analogs, JPC2278 was manually modeled into the InhA active site. The A-rings of the 

JPC2278 and compound 25 (the 5-ethylbenzene derivative, Table 5-2) from the InhA:25 

complex structure were superimposed to position JPC2278 into the binding site (Figure 

5-6). While the initial docking experiments with compounds 6 and 15 suggested that 

directly attached aryl group at the 5 position will lead to steric clashes with Phe149 (see 

Results and Discussion for details), it was seen from the JPC2278:InhA model that the 

methylphenyl group lay in close proximity (<3.0 Å) to the side chains of Phe149 and 

Pro193 to make favorable hydrophobic and van der Waals interactions. In addition, a π-

π stacking aromatic interaction was present between Phe149 and the phenyl ring of the 

compound. 
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Figure 5-5. Chemical structure and inhibition activity of JPC2278 for InhA. A) 

Chemical structure of JPC2278. B) Inhibition activity of JPC2278 against InhA. C) 

Comparison of the inhibition activity of JPC2278 and its close analogs against InhA. 

 

 

 

It is likely that the potent activity of JPC2278 compared with its structural 

analogs, was due to the p-methyl substituent. Based on the model, in the absence of the 

p-methyl substituent, the hydrophobic and van der Waals interactions between the -CH3 

group and Phe149 and Pro193 would be lost. This can explain why the 5-p-

methylphenyl had better potency than the 5-phenyl derivative. A methyl substituent at 

the -meta or -ortho positions may position too close to Phe149 and cause steric clashes. 

On the other hand, a single fluorine substitution at the -para position did not restore acti- 
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Figure 5-6. Docking of JPC2278 to the InhA active site. JPC2278 (salmon color) is 

superposed manually with the A-ring of compound 25 (blue color) from the crystal 

structure of InhA: 25. Based on this model, the methylbenzene substituent lies in close 

proximity to the side chains of F149 and P193 (< 3.0 Å) and makes favorable 

hydrophobic and van der Waals interactions.   

 

 

 

vity. This could be due to the high negative charge density and low polarizability 

character of the fluorine atom. The affinity loss might result from the close 

electrostatically repulsive contacts between the organic fluorine, with its high negative 

charge density, and the negatively polarized π-clouds of the Phe149 side chain. A similar 

phenomenon was also observed with neprylisin, a mammalian Zn
II
-dependent 

metalloprotease, inhibitors, where any fluorine substituent at a phenyl ring in the binding 



 

219 

 

pocket caused a decrease in affinity. This was explained by the electrostatically 

unfavorable close contacts of organic fluorine with the negatively polarized π-surfaces of 

the surrounding aromatic amino acid side chains (Morgenthalera et al., 2008). In 

contrast, fluorination of the benzimidazole moiety of the neprylisin inhibitor, which was 

surrounded by three Arg side chains, led to an increase in the binding affinity. Thus, the 

authors partitioned the active site of neprylisin to fluorophilic and fluorophobic regions  

(Morgenthalera et al., 2008). Similarly, the two chlorine substituents on the B ring of 

triclosan can make favorable interactions with the surrounding residues, whereas the –F 

of JPC2278 cannot. Organic fluorine prefers dipolar interactions and orientating into the 

electropositive protein environments (Bissantz et al., 2010; Morgenthalera et al., 2008). 

This might explain why a hydrophobic –CH3 group was more potent than the –F 

substituent for the JPC2278 analogs.   

 

Challenges in obtaining the InhA-ligand complex crystals 

Two methods are usually followed to obtain protein-ligand crystals: co-

crystallization and soaking. Soaking of the native crystals with the ligand compound 

solution is usually preferred over co-crystallization, because it’s rapid, easy to optimize, 

and there is no need to search for new crystallization conditions. In contrast, co-

crystallization requires the incubation of the ligand with protein prior to crystallization 

and often results that the crystallization conditions for the native protein do not yield 

protein-ligand complex crystals. This brings the requirement of searching for new 

crystallization conditions, which is time and material consuming.  
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 For InhA, the native crystals can be obtained fairly easily in a week using the 

published crystallization condition of 12% methylpentanediol (MPD), 4% 

dimethylsulfoxide (DMSO), 100 mM Hepes at pH 7.5, and 50 mM sodium citrate at pH 

6.5 (Rozwarski et al., 1998). However, these crystals are very sensitive to soaking with 

compounds dissolved in DMSO, acetonitrile, ethanol or methanol. The crystals cannot 

tolerate >2% of any organic solvent that is required to keep the compounds in solution. 

Even short periods (<30 minutes) of soaking irreversibly damages the crystals causing 

cracks or dissolving of the crystal, which often results in the loss of diffraction. 

Furthermore, dissolving the compounds in an aqueous crystallization solution or adding 

the compound powder to the crystal drop is also not feasible as most of the compounds 

are hydrophobic and have very poor solubility in aqueous solutions. Even though native 

InhA crystals can be obtained in some other unpublished crystallization conditions, none 

of those produce high diffraction quality crystals that can be further used for soaking. 

Out of the all InhA: inhibitor complex crystal structures described in this dissertation (12 

structures in total), only two complex crystals were obtained through soaking. The 

majority of the complex crystals were obtained by co-crystallization.  

For co-crystallization experiments multiple approaches were followed. Since 

both GSK inhibitors and triclosan derivatives were uncompetitive inhibitors, all of the 

co-crystallization experiments were performed in the presence of NAD
+
. It was observed 

that at least 10 fold molar excess of NAD
+
 was needed for successful crystallization. All 

of the inhibitor compounds were dissolved in 100% DMSO and 10-100 mM stock solutions 

were used in experiments. The molar ratio of the compound to InhA was kept between 
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two to five fold; however, a key factor to consider was the final concentration of DMSO, 

because InhA protein cannot tolerate more than 4% of DMSO in solution. It was also 

observed that in some cases, instead of mixing the concentrated protein solution (10 

mg/ml) with the inhibitor compound, mixing a more diluted (1 mg/ml) protein solution 

with the compound and then co-concentration helped successful protein-inhibitor 

complex formation. It also prevented protein precipitation by lowering the local DMSO 

concentration. Once the protein was incubated with NAD
+
 and the inhibitor compound 

for approximately 20 minutes at room temperature, crystallization plates were set with: i) 

the published native crystallization condition, ii) the sparse-matrix crystallization screens 

(~900 crystallization conditions). Among the ten co-crystal structures mentioned in this 

dissertation, only two of them were obtained in the native crystallization conditions and 

the other eight required for screening of new crystallization conditions. All of the 

triclosan derivatives were also co-crystallized in a previously unpublished crystallization 

condition.    

To sum up, obtaining InhA-ligand crystals was not feasible by soaking. Co-

crystallization and searching of new crystallization conditions were necessary. Finding 

the right crystal, which diffracted to high resolution and contained the ligand, required a 

lot of screening and collection of many data sets.  

 

Summary  

Triclosan is composed of two phenyl rings (ring A and B) linked with an oxygen 

atom. The hydroxyl of the A ring and the chlorines at the 2’ and 4’ positions of the B 
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ring are important for the potency of the compound. In the InhA:NAD
+
: triclosan crystal 

structure, the 5-chlorine of the A ring was positioned at the entrance of the  INH-NAD 

adduct binding pocket (2 Å distance) (Kuo et al., 2003). In this study, the 5-Cl position 

of the A ring was modified with different substituents of hydrophobic and hydrophilic 

character in order to occupy the INH-NAD adduct binding pocket (Figure 5-2). The 

derivatives were first investigated by enzymatic assays and the compounds showing 

good enzyme inhibition were used for the crystallographic studies.  

It was found by enzymatic assays that compounds with hydrophobic substituents 

at the 5-position such as alkyl groups showed better inhibition than the compounds with 

hydrophilic substituents like carboxylate groups (Tables 5-1 and 5-2). The potency of 

the hydrophobic group substituted compounds increased with the chain length of the 

alkyl substituents up to four carbon chains. A similar trend was also observed by 

Sullivan et. al. with an optimum chain length of eight carbons for the des-chloro 

triclosan derivatives. The most potent derivatives were the compounds 17 and 25 with 2-

pyridyl-methyl and benzylmethyl substituents (Table 5-2). 

The comparison of the InhA:triclosan derivative structures with the InhA:INH-

NAD(H) adduct and the InhA:C16 fatty acyl substrate analog structures revealed that the 

hydrophobic moieties attached to the 5-position of the A ring did not perturb the side 

chain of Phe149, and thus, they did not occupy the same pocket as the INH-NAD(H) 

adduct (Figure 5-7). Instead, these substituents were positioned similar to the substrate 

analog. In the InhA:INH-NAD structure, flipping of the Phe149 side chain was 

accompanied by the movement of the Tyr158 side chain (Rozwarski et al., 1998) 
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(Figure 5-7B). However, in the InhA:triclosan derivative structures, Tyr158 was a key 

residue for inhibitor binding due to the direct H-bonding interaction with the hydroxyl of 

the A ring. Importantly, loss of this interaction resulted in loss of potency. The 5-

substituted triclosan analogs were positioned proximal to the isonicotinoyl binding 

pocket but they were not able to access to this site as this would require the movement of 

Phe149 and Tyr158 simultaneously, which in turn would cause the loss of the direct H-

bonding interaction between the compound and Tyr158. Even though the 5-substituted 

derivatives could not reach INH-NAD binding pocket, these derivatizations clearly 

increased the inhibitor potency by 10 to 50 fold compared with the parent compound 

triclosan. Notably, the 5-substituted derivatives were activation free inhibitors and found 

to be effective against the isoniazid resistant strains. For instance, derivative #7 

displayed an MIC of 19 μg ml
-1

 against the Mtb H37Rv ΔkatG strain compared to INH 

having an MIC of >200 μg ml
-1

 against the same strain. 
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Figure 5-7. Comparison of the InhA:triclosan derivative structures with the InhA: 

INH-NAD(H) adduct and the InhA:C16 fatty acyl substrate analog structures. A) A 

cross-section through the surface of the active site of InhA. Four InhA:triclosan analog 

structures (light blue) were superposed with the InhA:C16 fatty acyl substrate analog 

structure. NAD
+
 and the C16-fatty acyl substrate analog are shown in blue and orange 

sticks, respectively. As seen from the figure, triclosan analogs occupied the substrate 

binding pocket. B) Comparison of the conformation of Tyr158 and Phe149 in the InhA: 

triclosan analogs structures (light blue) with the InhA:INH-NAD structure (orange) 

(PDB ID:1ZID). The INH-NAD adduct causes rotation of the Phe149 side chain ~90°, 

which in turn moves Tyr158 away from NAD(H). In contrast, none of the triclosan 

analogs perturbed the side chain of Phe149, and the A ring hydroxyl H-bonded with the 

side chain of Tyr158 (2.3 Å). For both panels atom coloring is: oxygen red; nitrogen 

blue; sulfur yellow; chlorine green. 
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Figure 5-7 Continued. 
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CHAPTER VI 

STRUCTURAL STUDIES ON THE MYCOBACTERIAL TRANSCRIPTION 

REGULATOR, CARD

 

 

Overview  

CarD from Mycobacterium tuberculosis (Mtb) is an essential protein shown to be 

involved in stringent response through downregulation of rRNA and ribosomal protein 

genes. CarD interacts with the β-subunit of RNAP and this interaction is vital for Mtb’s 

survival during the persistent infection state. We have determined the crystal structure of 

CarD in complex with the RNAP β-subunit β1 and β2 domains at 2.1 Å resolution. The 

structure reveals the molecular basis of CarD/RNAP interaction, providing a basis to 

further our understanding of RNAP regulation by CarD. The structural fold of the CarD 

N-terminal domain is conserved in RNAP interacting proteins such as TRCF-RID and 

CdnL, and displays similar interactions to the predicted homology model based on the 

TRCF/RNAP β1 structure. Interestingly, the structure of the C-terminal domain, which 

is required for complete CarD function in vivo, represents a distinct DNA-binding fold. 

                                                 


Reprinted with permission from “Structure of the Mtb CarD/RNAP β-Lobes complex reveals the 

molecular basis of interaction and presents a distinct DNA-Binding domain for Mtb CarD” by Gulten G. 

and Sacchettini J.C., 2013. Structure, 21, 1859–1869, Copyright © [2013] by Elsevier Ltd. DOI: 

10.1016/j.str.2013.08.014. 
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Introduction 

Tuberculosis (TB) is a global health threat responsible for approximately two 

million deaths annually (WHO, 2013). The treatment for the primary causative agent of 

TB, Mycobacterium tuberculosis (Mtb), is challenging due to the emergence of 

multidrug (MDR-TB) and extensively drug-resistant (XDR-TB) strains. Because most of 

the antibiotics currently used for Mtb therapy are potent only against replicating bacteria, 

mycobacteria are able to survive in the host in a nonreplicating, persistent, or chronic 

state. Identifying new drugs that can target Mtb during the persistent stages of infection 

is very important (Gupta et al., 2009; Raman et al., 2008; Sacchettini et al., 2008). 

In Mtb, the gene product of Rv3583c, annotated CarD, is required for persistence, 

and has been identified as an essential protein in vitro and in vivo during normal growth 

conditions as well as under genotoxic stress and nutrient deprivation (Stallings et al., 

2009). Microarray studies have shown that not only is Rv3583c upregulated in response 

to oxidative stress, DNA damage, and starvation, but also that depletion of Mtb CarD 

results in loss of transcriptional regulation of rRNA and ribosomal components, 

indicating its involvement in stringent response (Stallings et al., 2009). Mtb CarD can be 

used to complement Escherichia coli DksA protein, which regulates stringent response 

alongside the main stringent response element hyperphosphorylated guanine nucleotide 

((p)ppGpp), suggesting that the two proteins are functional homologs. DksA directly 

interacts with the RNA polymerase (RNAP) through the RNAP secondary channel and 

potentiates the effect of (p)ppGpp (Paul et al., 2004b; Srivatsan and Wang, 2008). Mtb 

produces (p)ppGpp, but does not have a DksA homolog. 
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The first and best studied CarD protein is from Myxococcus xanthus and is a 

transcription regulator involved in carotenogenesis. M. xanthus CarD interacts with 

RNAP, CarG, and the carQRS promoter DNA through its N- and C-terminal domains 

(Nicolas et al., 1996; Penalver-Mellado et al., 2006). Mtb CarD shares only a 30% 

sequence homology with the N terminus of M. xanthus CarD, and the C-terminal domain 

is not similar, suggesting that Mtb CarD does not contain the HMG1-like DNA-binding 

domain (AT hook DNA-binding motif sequence) found in M. xanthus CarD (Figure B-

1). Bacterial two hybrid assays and immunoprecipitation experiments have shown that 

Mtb CarD associates with the RNAP β-subunit (Stallings et al., 2009; Weiss et al., 

2012). All CarD and CarD N-terminal like (CdnL) proteins belong to the transcription-

repair coupling factor (TRCF) family of proteins, and share sequence and structural 

homology with the TRCF RNAP interacting domain (RID). Also, they are thought to 

interact with RNAP in a homologous manner as TRCF. The previously determined 

crystal structure of the Tth TRCF-RID/Taq RNAP β1 complex (Westblade et al., 2010) 

and the homology models generated for CarD-RNAP interaction based on this structure 

(Weiss et al., 2012) predicted a similar set of interactions of CarD with RNAP. 

However, the mechanism CarD uses to regulate RNAP function and transcription, and 

the role of the Mtb CarD C-terminal domain are unknown. The CarD/RNAP interaction 

is crucial for Mtb’s stringent response, viability, and resistance to oxidative stress and 

loss of the CarD/RNAP interaction sensitizes Mtb to the anti-TB drug rifampicin, 

emphasizing the importance of understanding this protein-protein interaction. 

Here, we report the crystal structure of Mtb CarD complexed with the Mtb RNAP 
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β-subunit lobe domains at 2.1 Å resolution. The CarD/RNAP β structure reveals that the 

RNAP CarD binding site is located on the β-subunit arm of the RNAP claws, 

specifically on the solvent exposed surface of the β1 domain, and is far from the 

catalytic center of the RNAP. The structure not only provides insight into the molecular 

basis of RNAP interaction with Mtb CarD, but also with other CarD family proteins and 

CarD homologs. The structural basis for the RNAP regulation through CarD interaction, 

which is distinct from the DksA regulation mechanism, is presented by comparing the 

uncomplexed Mtb RNAP-β and CarD/RNAP-β complex structures. While the structural 

fold of the CarD N-terminal domain is conserved among other CarD, CdnL, and TRCF-

RID domains, the C-terminal domain structure is not been identified in any other 

structure in the Protein Data Bank (PDB). We show that Mtb CarD is a DNA-binding 

protein with a distinct DNA-binding domain and that it exhibits a nonsequence-specific 

DNA-binding mode. 

 

Results and discussion 

 

Structure determination of Mtb Rpobtr and the CarD/RNAP complex 

E. coli expression plasmids for the full-length Mtb RNAP β-subunit (RpoB) and 

several truncations (based on the secondary structure predictions) were made to test for 

recombinant protein expression. One truncation containing the β-lobes (consisting of 

residues 47–433) of RpoB (referred as RpoBtr) yielded soluble protein and when co-

expressed with Mtb CarD resulted in complex formation, and it was chosen for 
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subsequent crystallographic studies. The β1 (residues 47–172 and 375–428, 

corresponding to the Taq-β residues 1–130 and 334–395 of the TRCF/β1 structure) and 

β2 (residues 177–370) domains contained within this truncation are important for RNAP 

regulation. They form the β-arm of the RNAP claws that cover the DNA/RNA hybrid 

and dsDNA in the transcription complex. Regulation through these domains often occurs 

through interaction with various regulatory proteins such as TRCF and sigma70 

(Vassylyev et al., 2002; Westblade et al., 2010). RpoB does not have any dispensable 

regions, and the archaebacterial split site, which maps around residue 570 of RpoB, is 

not contained within the β-subunit truncation used in this work. Crystals of RpoBtr were 

determined to be in the P212121 space group with two molecules in the ASU. The 

RpoBtr structure was solved by single-wavelength anomalous diffraction using Se-Met 

derived crystals to a resolution of 2.9 Å. Subsequently, the resolution was improved to 

2.5 Å for native (non Se-Met) RpoBtr crystals. The structure was refined to Rwork = 21% 

and Rfree = 26%, with excellent stereochemistry (Table 6-1). 
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Table 6-1. Data collection and refinement statistics. 

 Se-Met RpoBtr Native RpoBtr CarD/RpoBtr 

complex 

Data collection    

Space group P212121 P212121 C2221 

Cell dimensions 

a, b, c (Å) 

α, β, γ (
0
) 

 

52.8, 124.1, 135.5 

90,90,90 

 

53.1, 123.9, 135.6 

90,90,90 

 

49.1, 128.9, 225.5 

90,90,90 

Wavelength 0.979 0.979 0.979 

Resolution (Å) 2.8 (2.79) 2.5 (2.45) 2.1 (2.11) 

Completeness (%) 98.5 (90.3) 99.5 (97) 98.1 (92) 

Redundancy 3.1 (3.1) 7.0 (6.3) 4.8 (4.6) 

I/Iσ 13.9 (2.4) 15.1 (1.9) 10.1 (2.0) 

Rsym (%) 5.28 (53.4) 5.45 (65.7) 7.8 (73.14) 

Refinement    

Resolution 48.6-2.79 49-2.45 37.6-2.11 

No. reflections 22552 33551 40747 

Rwork/ Rfree 0.24/0.28 0.21/0.26 0.20/0.23 

No. atoms 

Protein 

Water 

 

5844 

19 

 

6097 

126 

 

4203 

305 

B-factors 

Protein 

Water 

 

95.2 

57.1 

 

46.4 

47.3 

 

31.4 

45.0 

R.m.s deviations 

Bond lengths (Å) 

Bond angles (
°
) 

 

0.010 

1.52 

 

0.003 

0.68 

 

0.005 

0.87 

Highest resolution shell values are given in parenthesis. 

 

 

Full-length CarD bound to RpoBtr was crystallized after co-expression and 

purification of the complex. The crystals belonged to the C2221 space group with a 

single copy of the heterodimer in the ASU. The structure of the CarD/RpoBtr complex 
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(hereafter referred to as the CarD/RNAP complex) was determined by molecular 

replacement, using the uncomplexed RpoBtr β1 and β2 domain structures as two 

individual search molecules. After locating RpoBtr using molecular replacement and 

initial refinement, there was clear electron density |Fo|- |Fc| that was unaccounted for 

(Figure B-2A). This extra electron density belonged to the protein, and the entire atomic 

model of CarD was manually built into the difference electron density map. The crystal 

structure of the complex was refined to Rwork = 20% and Rfree = 23% using diffraction 

data to 2.1 Å resolution. 

 

Overall structure of Mtb CarD 

Mtb CarD belongs to the α + β protein class (SCOP) (Murzin et al., 1995). The 

structure is composed of two distinct domains: an all β-stranded N-terminal domain 

(residues 1–49) and an all α-helical C-terminal domain (residues 63–160; Figures 6-1A 

and  6-2A). The N- and C-terminal domains are connected by a six-residue twisted α 

helix (α1) and an eight residue loop. The N-terminal domain has a Tudor-like fold 

(Selenko et al., 2001) consisting of four antiparallel β strands. Residues Thr26, Ile27, 

Lys28, and Gly29, which lie on the β-turn connecting the β2 and β3 strands, were the 

only residues disordered in the N-terminal domain. 
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Figure 6-1. Ribbon representation of the Mtb CarD/RNAP β1-β2 domain complex 

structure. RpoBtr is represented by orange ribbons; CarD is represented by blue 

ribbons. A) Overall structure of the complex. β1 and β2 domains of RNAP β-subunit, β4 

strands of each protein, and N and C termini of each chain are labeled. The interdomain 

bridging β sheet of RpoBtr (β7 and β15) is also indicated. B) Zoom of the CarD-RNAP 

interface. Direct and water-mediated H-bonding interactions between side chains and 

backbone-backbone interactions are shown. Hydrogen bonds and nonbonded contacts 

between RpoBtr and CarD are formed by the residues located on the β4 strands of both 

proteins, on the loop connecting α12 and α13 of the RNAP β1 domain, and on the turn 

between the β1 and β2 strands of CarD. H-bonds are represented by dashed lines and 

water molecules are shown in red spheres. For the distances, refer to Table 6-2. See also 

Figure B-2.  

 

 

The structure of the CarD N-terminal domain is conserved among RNAP 

interacting proteins such as TRCF-RID and Thermus thermophilus (Tth) CdnL (CarD N-

terminal like protein involved in cell division). Superposition of the Mtb CarD N-

terminal domain structure with the Tth CdnL N-terminal domain (PDB ID: 2LQK) 
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(Gallego-Garcia et al., 2012) and Tth TRCF-RID structures (PDB ID: 3MLQ) 

(Westblade et al., 2010) gives a root-mean-square deviation (rmsd) of 1.1 Å over the Cα 

backbone for residues 1–49 (Figure 6-2A). 

 

 

 

Figure 6-2. Ribbon representation of Mtb CarD. A) Superposition of Mtb CarD N-terminal 

domain structure (blue) with the Tth CdnL-NMR structure (yellow) and the Tth TRCF-RID 

structure (cyan). The RNAP-interacting β4 strand is labeled. The rmsd over the Cα backbone is 

1.1 Å. B) Ribbon representation of the CarD C-terminal domain. The helices contain mostly 

hydrophobic amino acids at their helix-helix interfaces, generating a hydrophobic core. The 

remainder of the structure is omitted for clarity.  C) The leucine zipper present between α4 and 

α5 in the C-terminal domain of CarD is formed by residues Leu120, Leu111, Leu128, and 

Leu135, and surrounded by hydrophobic residues Val104, Val108, and Ala131. The rest of the 

structure is omitted for clarity. The leucine zipper lies inside the hydrophobic core of CarD and 

is not involved in dimerization or DNA interaction. In both panels, hydrophobic residues are 

shown with yellow sticks. See also Figure B-1.  
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Figure 6-2 Continued. 
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The CarD C-terminal domain is comprised of an α-helical bundle of five α 

helices that contains an unexpected internal leucine zipper between helices α4 and α5 

(Figures 6-2B and 6-2C). Helices α4 and α5 interact only through hydrophobic and van 

der Waals interactions, afforded by the leucine zipper. Helices α2 and α3 are positioned 

parallel to each other, whereas α4, α5, and α6 pack orthogonally to each other. Helices 

α3 and α4 are connected by a γ-turn, while α4-α5 and α5-α6 are connected by β-turns 

(Figure 6-2B). The loop connecting α2 and α3, spanning residues His78 to Asn83, is 

completely disordered in the structure. The helices contain mostly hydrophobic amino 

acids at their helix-helix interfaces, generating a hydrophobic core. There are just two 

polar interactions inside this compact bundle, the hydrogen bonds between Lys95 (α3)-

Glu106 (α4; 2.7 Å) and Arg132 (α5)-Asp155 (α6; 2.9 Å). 

The three-helix bundle of α3, α4, and α5 is involved in DNA binding (see DNA-

binding studies on Mtb CarD section for details). The structure of this three-helix bundle 

is unlike other DNA-binding proteins in the PDB, including all of the other HTH motifs 

and leucine zipper domains. DNA-binding proteins with classical HTH motifs usually 

insert their second (recognition) α helix in the major groove for base-specific DNA 

interaction. Leucine zippers containing DNA-binding proteins usually dimerize through 

the hydrophobic leucine zipper region, while also interacting with the major groove of 

the DNA; however, this is not the case for CarD. The DNA-interacting region of Mtb 

CarD is mapped to the N termini of α3 and α5, the C terminus of α4, and the β-turn 

connecting α4 and α5. The leucine zipper motif of CarD appears to stabilize the 

conformation of α4 and α5 inside the hydrophobic core and is not involved directly in 
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dimerization or DNA interaction (Figure 6-2C). 

Neither the AT-hook DNA-binding motif of M. xanthus CarD nor any other 

recognizable DNA-binding motif is present in the Mtb CarD protein sequence. Structural 

similarity searches of the CarD C-terminal domain structure, using the PDBeFold, 

VAST, and DALI servers against the PDB and Structural Classification of Proteins 

database, did not identify any significant structural homologs. The structural alignment 

scores were well below the threshold of significance (VAST score < 5.5, VAST -log(p) 

value < 4.0, and Q-score < 0.49) for each alignment program (Gibrat et al., 1996; Holm 

and Rosenstrom, 2010; Krissinel and Henrick, 2004). It has been observed that the 

VAST hits do not share any common functional or structural features with Mtb CarD, 

besides being α-helical proteins. 

 

Overall structure of Mtb RNAP β1-β2 domains 

The RpoBtr structure reported here consists of the β1 and β2 domains of the Mtb 

RNAP β-subunit (corresponding to the protrusion and lobe domains, respectively, of 

eukaryotic RNAP II) that form the RNAP claws, together, with the β’ subunit. RNAP 

interacts with the transcription bubble nontemplate strand, especially with the G+2 base, 

through the β2 domain residues, and these interactions are critical for sequence-specific 

promoter recognition of RNAP along with the transcription bubble formation and 

stability (Zhang et al., 2012a). 

The RpoBtr β1 domain aligns well with the β1 domain from the TRCF/β1 

structure (rmsd 1.04 Å). However, superposition of the RpoBtr β1 domain with the E. 
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coli, Tth, and Taq RNAP β-lobe structures gives an rmsd of approximately 10 Å over the 

Cα atoms of the β2 domain (Figures B-3A and B-3B). β-lobes are known to have 

conformational flexibility (Tagami et al., 2010), and the relative conformation adopted 

by the β1 and β2 domains of RpoBtr has not been observed in any other bacterial core or 

holo RNAP structure. The two molecules in the ASU of the uncomplexed RpoBtr 

structure, RpoBtr_A and RpoBtr_B, are also in different conformations. When the β1 

domains of RpoBtr_A and RpoBtr_B are aligned, the rmsd of the Cαs of the β2 domains 

is 5.2 Å (over 191 atom pairs). The conformational difference observed in the β1-β2 

domain-domain orientation can be explained by rotation around the hinge axis centered 

on the two stranded antiparallel β sheet connecting the two domains (Figure B-3C). 

The RNAP β-subunits are structurally highly conserved among different 

kingdoms, even though sequence conservation is low (Lane and Darst, 2010; Severinov 

et al., 1996). As expected, the secondary and the tertiary structure of the Mtb RNAP β1-

β2 domains are almost identical to the E. coli and Tth RNAP β1-β2 domains (Figures B-

3A and B-3B). The β1 domain (residues 47–172 and 375–428) consists of four 

antiparallel β strands flanked by five α helices on one side and one α-helix and a β-

hairpin from the other side (Figure 6-3A). The β2 domain (residues 177–370) is 

composed of four antiparallel β strands flanked by seven α helices. The two domains are 

connected by a two-stranded antiparallel β sheet (the β7 strand and β15 strand), 

positioned like a bridge (Figure 6-3A). In contrast to other bacterial RNAPs, RpoBtr has 

an additional 12-residue β-hairpin connecting α11 and the bridge strand β15 on the β2 

domain. 
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Figure 6-3. Conformational differences in RpoBtr in the uncomplexed and 

complexed forms. A) Ribbon representation of an uncomplexed RpoBtr molecule. The 

secondary structure assignments were done with PDBsum server (Laskowski, 2009). B) 

The conformational differences observed in the β1-β2 domain-domain orientation 

between uncomplexed RpoBtr (green) and RpoBtr complexed with CarD (orange). 

Superposition of the β1 domains yields an rmsd of 2.8 Å over the Cαs of the β2 domains. 

The hinge axis centered on the two-stranded antiparallel β sheet (β7 and β15) bridging 

the two domains is also shown. C) Local conformational changes of the RNAP β1 

domain residues at the CarD/RNAP interface. β1-E404, S143, and E140 change 

conformation to interact with CarD-H13, R47, T45, and Y11. D) Local conformational 

changes of the RNAP β1 domain residues at the β1-β2 domain interface. E396 and R392 

of the β1 domain make additional water-mediated interactions with the β2 domain 

residues P277 and G278 in the CarD/RNAP complex. The CarD residues are shown in 

blue. Coloring of RpoBtr is the same as in (B). Molecular visualization and analysis, 

including rmsd calculations, were performed with the UCSF Chimera package (Pettersen 

et al., 2004). See also Figure B-3.  
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Overall structure of the CarD/RNAP-β1-β2 complex 

The CarD binding site of RNAP is located at the solvent exposed surface of the 

β1 domain, which is approximately 70 Å away from the RNAP active site Mg
+2

 (based 

on the Tth EC; PDB ID: 2O5I) (Figure 6-4A). Despite the long distance between the 

binding site and the active site, this domain serves as an interaction module for various 

regulatory proteins, including sigma factors at different stages of transcription, and is 

important for RNAP DNA binding and open complex stability (Trinh et al., 2006; 

Vassylyev et al., 2002). 

At the CarD-RNAP interface, the primary four-stranded β sheet of the CarD N-

terminal domain forms an extended eight-stranded β sheet with the β1 domain of the 

RNAP β-subunit (see Figure B-2 for a stereo image). Specifically, the β4 strand of CarD 

comprising residues Leu44 to Pro49 forms an antiparallel β sheet with the β4 strand 

residues Thr138 to Gln144 of RpoBtr (1:1 heterodimer; Figures 6-1A and  B-2B). This 

results in a mixed β sheet in the 1↑ 2↓ 3↑ 4↓ 4’↑ 3’↓ 2’↑ 1’↓ topology. Surprisingly, 

association of RNAP with CarD results in only a 500 Å
2
 (otherwise solvent exposed) 

buried surface area, which is below average (1,500–2,000 Å
2
) for heteromeric protein-

protein complexes (Kleanthous, 2000). While the buried surface is relatively small, it is 

rich in intermolecular hydrogen bonds. There are eight hydrogen bonds and 69 

nonbonded contacts between RpoBtr and CarD formed by the residues located on the β4 

strands of both proteins, on the loop connecting α12 and α13 of the RNAP β1 domain, 

and on the turn between the β1 and β2 strands of CarD.  Specifically, β1-Ile141 interacts 

with CarD-Arg47 (2.8 Å), and β1-Ser143 interacts with CarD-Thr45 (2.7 Å) through 
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four backbone-backbone hydrogen bonds (Figure 6-1B).  Interestingly, the side chain-

specific hydrogen bonding interactions are present only between β1-Lys142:CarD-His14 

(2.9 Å), β1-Glu140:CarD-Tyr11 (2.4 Å), β1-Thr138:CarD-Asn52 (2.8 Å), and β1-

Gln144:CarD-Gly42 (3.0 Å; Figure 6-1B).  

 

 

 

 

Figure 6-4. Superposition of the Mtb CarD/RNAP complex structure with the 

bacterial elongation and initiation complex structures. The Mtb CarD/RNAP 

complex is colored as previously (RpoBtr is orange and CarD is blue). A) Superposition 

of the Mtb CarD/RNAP complex structure with the Tth RNAP EC structure (PDB ID: 

2O5I). Tth RNAP is gray, the DNA duplex and DNA-RNA hybrid are dark blue, and the 

active site Mg
+2

 is shown as a magenta sphere. The molecular surface of the α and β’ 

subunits is shown in gray, where the β1-β2 domains of the Tth RNAP are represented as 

ribbons under a transparent yellow surface. CarD binds to the solvent exposed surface of 

the β1 domain, ~70 Å away from the catalytic center. B) Superposition of the Mtb 

CarD/RNAP complex structure with the Taq RNAP IC structure (PDB ID: 1L9Z). The 

molecular surface of the Taq RNAP is gray except for the β1-β2 domains, which are 

represented as a transparent yellow surface. The DNA duplex is colored dark blue. The 

flexible α1 and eight-residue loop of CarD are cyan. CarD’s DNA interacting patches as 

determined by EMSA are green. The direction of transcription is also indicated. The 

CarD C-terminal DNA interaction domain lies in proximity to the downstream end of the 

dsDNA in the initiation complex (~ 40 Å).  
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The intermolecular interface is also stabilized by electrostatic, hydrophobic, and 

van der Waals interactions (Figure B-2). In fact, electrostatic forces contribute 

significantly to the CarD/RNAP interaction because altering the local charge distribution 

at the interface was reported to abolish CarD/RNAP interaction completely (Weiss et al., 

2012). A more detailed analysis of the intermolecular contacts is provided in Table 6-2. 

In contrast to the structural model generated by homology modeling (based on 

Tth TRCF-RID/β1 structure), mutagenesis and two-hybrid assays (Weiss et al., 2012), 

which suggested that β1-Glu132 interacts with both Arg25 and Arg47 directly through 

hydrogen bonding and that these residues are critical for intermolecular interaction, we 

observed from the Mtb CarD/RNAP structure that β1-Glu132 is not in direct contact 

with CarD-Arg25 and CarD-Arg47 (5.0 Å and 6.1 Å, respectively). Arg25 interacts with 

β1-Ile141 only through van der Waals interactions and does not appear crucial for 

CarD/RNAP interaction. Similarly, Glu132 and Arg47 interact only through a water 

molecule in the CarD/RNAP crystal structure, and Arg47 is engaged in other hydrogen 

bonding and van der Waals interactions with β1-Ile141, β1-Glu140, and β1-Gly139 

(Table 6-2). Therefore, loss of the CarD/RNAP interaction, as suggested by two-hybrid 

assays, upon E132R, R25E, and R47E mutations, should be due to these factors rather 

than the disruption of the direct interaction between Glu132-Arg25 and Glu132-Arg47. 
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Table 6-2. Details of the intermolecular interactions between Mtb β1 domain 

residues and Mtb CarD. See also Figure B-4.    

 

RNAP β1 CarD Distance 

(Å) 

Interaction type 

Thr138 Asn52 2.8 H-bond and van der Waals 

 Pro49 

Val56 

3.5 

3.9 

van der Waals 

van der Waals 

    

Gly139 Pro49 3.5 van der Waals 

 Arg47 3.5 van der Waals 

    

Glu140 Arg47 3.4 van der Waals 

 Val48 3.8 van der Waals 

 Tyr11 2.4 H-bond and van der Waals 

 Val56 3.6 van der Waals 

    

Ile141 Arg47 2.8 H-bond and van der Waals 

 Thr45 3.4 van der Waals 

 Val46 3.2 van der Waals, hydrophobic 

 Arg25 3.9 van der Waals 

    

Lys142 Thr45 3.3 van der Waals 

 His14 2.9 H-bond and van der Waals 

    

Ser143 Thr45 2.8 H-bond and van der Waals 

 Leu44 3.6 van der Waals 

    

Gln144 Leu44 3.8 van der Waals 

 Asp43 3.8 van der Waals 

 Gly42 3.0 H-bond and  van der Waals 

    

Glu404 His14 3.8 van der Waals 

 His13 3.4 van der Waals 

    

Ala405 His13 3.7 van der Waals 

 His14 3.7 van der Waals 

    

Thr407 His14 3.3 van der Waals 
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Comparison of Mtb CarD/RNAP and Tth TRCF-RID/β1 complex structures 

reveals that CarD and TRCF-RID display a similar set of interactions with RNAP, even 

though there is no sequence conservation between the CarD β4- (
43

DLTVRVP
49

) and 

TRCF β4- (
358

EGKLYLP
364

) strands that interact with the RNAP β1 domain (except for 

the last proline residues;  Figure B-4A). CarD residues Tyr11, His13, and His14, located 

on the turn between β1 and β2 strands, also interact with the RNAP-β1 domain, which 

was not observed in the TRCF-RID/β1 structure. We have tested the contribution of Y11 

and H14 to the CarD/RNAP interaction by generating CarD-Y11A-H14A mutant, and 

comparing the thermal stability of CarD-Y11A-H14A/RpoBtr and CarD-wt/RpoBtr 

complexes by ThermoFluor (DSF) experiments. The thermal denaturation profiles 

suggested that the CarD-Y11A-H14A/RpoBtr complex is less stable than the CarD-

wt/RpoBtr complex (TmC11A–14A = 37.9 ± 0.1 °C versus TmCwt = 39.2 ± 0.1
 
°C; Figure 

B-4B), which was also supported by the size exclusion chromatography (data not shown) 

consistent with our structure that these residues are involved in CarD/RNAP interaction. 

On the other hand, the salt bridge interaction observed in the TRCF-RID/β1 structure 

between residues RNAP Glu110 and TRCF Tyr362 and Arg341 (Westblade et al., 2010) 

is not present in CarD/RNAP structure. 

 

DNA binding studies on Mtb CarD 

Mtb CarD is classified as a CdnL protein due to the lack of a DNA-binding motif 

in its protein sequence. It has been proposed that CdnL proteins do not interact with 

DNA directly (Garcia-Moreno et al., 2010). We have tested whether Mtb CarD can 
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interact with DNA by electrophoretic mobility shift assay (EMSA). 

Because CarD is required for stringent response in mycobacteria, we tested CarD 

binding to ribosomal protein and rRNA operons. The 200–300 base pairs (bp) upstream 

of the rpsH, 16S, 23S, and 5S rRNA genes were amplified for gel shift assays. Our 

results showed a clear shift of electrophoretic mobility between the free DNA and the 

CarD-bound DNA for these probes (Figure 6-5A). The gel shift assays done with 

various random DNA probes, as well as DNase footprinting experiments (data not 

shown), suggested that Mtb CarD does not show a sequence preference for DNA 

binding, indicating a nonspecific DNA-binding mode. 

To elucidate the Mtb CarD-DNA interaction further, four different N- and C-

terminally truncated CarD variants (CarD61–162, CarD83–162, CarD1–53, CarD1–74) were 

cloned and expressed to test each domain’s DNA-binding activity. CarD61–162 and 

CarD83–162 contain the α-helical C-terminal domain and exhibited a gel shift, although 

with different mobilities, which could be due to the charge, size, and shape differences 

of the two constructs. EMSA results verified that the C-terminal domain is the DNA 

interaction domain (Figure 6-5B). The N-terminal domain is not involved in DNA 

interaction and is required only for RNAP interaction as observed from the CarD/RNAP 

structure. 
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Figure 6-5.  DNA binding activity of Mtb CarD determined by EMSA. A) CarD 

interaction with upstream DNA of 16S rRNA gene (313 bp). Lane 1: MW (molecular 

weight) marker. Lane 2: DNA probe, no protein. Lanes 3–7: 4.4–13.8 μM CarD. B) 

Interaction of CarD domains and a well-known non-DNA-binding protein with 16S 

rRNA upstream DNA probe. Lane 1: InhA (10 μM). Lane 2: CarD1–53 (10 μM). Lane 3: 

CarD1–74 (10 μM). Lanes 4 and 5: CarD61–162 (5 and 10 μM). Lanes 6 and 7: CarD83–162 

(5 and 10 μM). Lane 8: CarD full length (10 μM). Lane 9: 16S rRNA upstream DNA 

probe, no protein. Lane 10: MW marker. C) EMSA experiments with CarD mutant 

proteins. Mutation of Arg and Lys residues to Ala significantly reduced the DNA-

binding activity of Mtb CarD. R87A-R88A-K90A showed the greatest effect. Lanes 1, 8, 

15: 16S rRNA upstream DNA probe, no protein. Lanes 2–7, 9–14, and 16–21: 0–44 μM 

mutant CarD protein (as labeled on the gel). Lanes 22 and 23: 11 and 22 μM native 

CarD. (D and E) Mutations are mapped on the ribbon representation and electrostatic 

potential surface of CarD. R87-R88-K90 are red, K125-R126-K130 are dark orange, and 

R114-R118 are light orange. Gel imaging was done using the Bio-Rad Chemidoc XRS+ 

molecular imager, by excitation at 255 nm and emission at 520 nm. Electrostatic 

potential surface calculations were done with PyMol (The PyMOL Molecular Graphics 

System, Version 0.99rc6, Schrödinger) using APBS as the macromolecular electrostatics 

calculation program (Baker et al., 2001).  
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Figure 6-5 Continued. 

 

 

Electrostatic potential surface calculations on the Mtb CarD structure revealed a 

single positively charged patch in the C-terminal domain formed by helices α3, α4, and 

α5 (Figures 6-5D and 6-5E). The basic residues contributing to this positively charged 

surface, i.e., Arg87-Arg88-Lys90 on α3, Arg114-Arg118 on α4, and Lys125-Arg126-

Lys130 on α5, were mutated to alanine and subjected to EMSA. As anticipated, mutation 

of all the aforementioned Arg and Lys residues to Ala significantly reduced the DNA-
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binding activity of CarD, with the R87A-R88A-K90A mutation located on the solvent 

exposed surface of α3, showing the greatest effect (Figure 6-5C), suggesting that the 

CarD-DNA interaction is mainly electrostatically driven, as expected. 

Sequence independent DNA-binding modes are commonly seen in bacterial 

nucleoid associated proteins, which are involved in chromosome compaction and 

structuring, DNA replication, repair, and transcription (Basu et al., 2009). The M. 

xanthus CarD protein, which has affinity for AT-rich DNA sequences, and the M. 

xanthus CdnL protein, which does not have a DNA-binding sequence motif, were both 

localized to the nucleoid, but this localization was proposed to occur through protein-

protein interactions with RNAP (Elias-Arnanz et al., 2010; Garcia-Moreno et al., 2010). 

It is plausible that Mtb CarD also localizes to the nucleoid in the same manner as the M. 

xanthus CdnL and M. xanthus CarD proteins, but considering the sequence-independent 

DNA-binding activity, we suggest that this localization might be provided by the DNA-

binding ability of CarD rather than by associating and tailing with RNAP. The C-

terminal domain, and thereby the DNA-binding activity of Mtb CarD, is crucial for 

mycobacterial viability because CarD depletion cannot be complemented with the RID 

domain alone (Weiss et al., 2012). 

 

Conformational changes in RNAP upon CarD binding 

The conformation of the β1 and β2 domains observed in the CarD/RNAP 

complex differs from the conformations observed in the uncomplexed RpoBtr structure. 

Superposition of the uncomplexed RpoBtr_A and RpoBtr_B β1 domains with the 
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CarD/RpoBtr β1 domain structure gives an rmsd of 6.8 Å and 2.8 Å, respectively, over 

the Cαs of the β2 domains (Figure 6-3B). In this context, the conformation of RpoBtr in 

complex with CarD is closer to the conformation of the uncomplexed RpoBtr_B 

molecule. It was reported in the TRCF/β1 structure that the RNAP β4 strand undergoes a 

‘‘register shift’’ with respect to the β3 strand in the complex structure (Westblade et al., 

2010). In contrast, CarD does not cause a register shift or conformational rearrangement 

in the β4 strand upon RNAP binding. 

The CarD/RNAP β1 domain interaction causes local conformational changes 

primarily in the nearby RNAP side chains that are propagated through the water-

mediated network of interactions and transferred to the β1-β2 domain interface and β2 

domain residues. In particular, in the CarD/RNAP complex, β1-Glu404, Ser143, and 

Glu140 change conformation to interact with CarD-His13, Arg47, Thr45, and Tyr11, 

respectively (Figure 6-3C). The side chain of β1-Lys142 also moves 1.4 Å and loses 

direct H-bonding interaction with β1-Ile406, instead forming hydrogen bonds with 

CarD-His14 and β1-Glu140. Consecutively, the β1 domain residues Glu396 and Arg392, 

located at the β1-β2 domain interface of RpoBtr, adopt different conformations in 

CarD/RNAP complex and make additional water mediated interactions with the β2 

domain residues Pro277 and Gly278 (Figure 6-3D). This can explain the particular 

conformation adopted by the two domains in the complex structure. 

 

RNAP regulation by CarD 

The CarD/RNAP structure indicates that CarD and the functional homolog DksA 
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regulate RNAP through different mechanisms. DksA is proposed to bind to the RNAP 

secondary channel, very close to the active site, to coordinate to a (p)ppGpp-bound 

active site Mg
2+

 ion through its coiled-coil Asp residues, and stabilize the (p)ppGpp-

RNAP complex (Perederina et al., 2004). In contrast, CarD interacts with the β1 domain 

of the β-subunit, approximately 70 Å away from the active site, through its Tudor-fold 

N-terminal domain. It is interesting that even though CarD and DksA do not share 

sequence and structural homology, CarD can complement DksA function in a ∆dksA E. 

coli strain (Stallings et al., 2009). Furthermore, DksA is not a DNA-binding protein, 

whereas we have shown that CarD can interact with DNA. Whether CarD functions 

synergistically with (p)ppGpp the same way as DksA needs to be determined 

experimentally. 

It is not known whether CarD regulates RNAP function during transcription 

initiation or elongation, or has any effect on the rate of transcription. Based on our 

structural data, we propose that CarD might be involved in RNAP regulation in three 

different ways. The first is by inducing conformational changes in the β-lobes and 

affecting the open complex stability and the downstream non-specific DNA-binding 

activity of RNAP. This can explain how Mtb CarD can complement DksA, which 

destabilizes the open complex together with (p)ppGpp during stringent response in E. 

coli (Paul et al., 2004a; Stallings et al., 2009). Bacterial RNAP β1 and β2 domains 

(equivalently eukaryotic RNAP II protrusion and lobe domains) are involved in various 

processes during transcription such as downstream DNA binding and selection of the 

transcription initiation site, formation and stabilization of the open complex, maintaining 
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the proper transcription bubble via downstream DNA gripping, keeping the template and 

nontemplate strand-separated DNA in place during transcription initiation, and covering 

the DNA/RNA hybrid inside the RNAP active-site channel (Figures 6-4A and 6-4B) 

(Lane and Darst, 2010; Murakami et al., 2002a; Nechaev et al., 2000; Trautinger and 

Lloyd, 2002; Trinh et al., 2006). Therefore, conformational changes in this region may 

likely alter critical interactions of RNAP with DNA and DNA/RNA hybrid. To test if 

CarD interaction with the β1 domain would affect RNAP’s DNA-binding affinity, we 

compared the nonspecific DNA-binding activity of RpoBtr in both the uncomplexed 

form and in complex with CarD by EMSA. Our results suggest that the CarD/RpoBtr 

complex has a higher affinity than the uncomplexed RpoBtr for the same DNA probe 

(Figure 6-6). We propose that CarD might affect the DNA-binding affinity of the β-

lobes, and the affinity change of RpoBtr for DNA may result primarily from the 

conformational changes of the β-lobes induced by CarD interaction. 

Overlay of the Taq RNAP initiation complex and CarD/RNAP complex 

structures show that the CarD C-terminal DNA interaction domain lies in proximity 

(<40 Å) to the downstream end of dsDNA in the initiation complex (Figure 6-4B), 

suggesting that CarD may interact with the promoter DNA together with RNAP during 

initiation. The CarD C-terminal domain is connected to the CarD N-terminal domain by 

a twisted α1 helix and a short loop and may adopt a different relative conformation in 

solution than the one observed in the crystal structure. Therefore, a second possibility is 

that this domain can either function as an anchor on DNA to hold CarD in place and 

strengthen the CarD/ RNAP interaction or it can have a direct functional role in 
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transcription regulation such as promoter selection and binding. The role of the C-

terminal domain on CarD function is currently under investigation. 

 

 

 

Figure 6-6. Comparison of the DNA binding activity of RpoBtr by EMSA. A) 
Uncomplexed form. Lane 1: dsDNA probe, no protein. Lanes 2–10: 0.5–32 μM RpoBtr. 

B) In complex with CarD. The CarD/RpoBtr complex has higher affinity than the 

uncomplexed RpoBtr for the same DNA probe. Lanes 1–9: 0.5–32 μM RpoBtr/CarD 

complex. Lane 10: dsDNA probe, no protein.  

 

 

 

Another possible mechanism is allosteric regulation by inducing conformational 

changes around the RNAP active site despite the distance of the CarD binding site from 

the RNAP catalytic center. In fact, mutations at the interface that weaken the 

CarD/RNAP interaction were reported to make Mtb more susceptible to rifampicin (Rif), 

which binds to the RNAP active site and inhibits transcription elongation. This suggests 

that CarD/RNAP interaction is able to induce conformational changes not only in the 
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β1-β2 domains but also in the Rif binding pocket, causing Rif to bind more weakly to 

RNAP. The clinically isolated Rif-resistant Mtb strains carrying mutations on distant β 

residues, such as Val170, which do not interact directly with Rif, affect the conformation 

of the Rif binding pocket, and alter the affinity of RNAP for the drug (Campbell et al., 

2001). Similarly, CarD interaction with the β-lobes may result in a reduced affinity of 

RNAP for Rif. A more complete understanding of the effect of CarD on RNAP both 

structurally and functionally must await the solution of the full-length RNAP/CarD 

structure. 

The CarD/RNAP structure presented here reveals the molecular basis of this 

protein-protein interaction and provides insights into RNAP regulation by CarD. EMSA 

experiments revealed an unexpected DNA-binding activity for Mtb CarD, which is 

required for complete in vivo function and mycobacterial viability, and is provided by a 

distinct domain not associated with RNAP interaction. Determination of the CarD/DNA 

complex and RNAP/CarD/DNA ternary complex crystal structures is needed to further 

characterize the transcriptional regulation by CarD. 

 

Experimental procedures 

 

Generation of expression constructs and cloning 

Rv3583c, encoding the Mtb CarD protein, and DNA encoding the Mtb RNAP β-

subunit (Rv0667) residues 47–433 (labeled RpoBtr), were amplified from Mtb H37Rv 

genomic DNA by PCR. The genes were inserted into pET15b and pET30b (Novagen) 
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expression vectors using the NdeI-BamHI and NdeI-HindIII restriction sites. The 

pET15b construct contained an N-terminal 6X-His tag and labeled RpoBtr-NHis, while 

the pET30b construct had a stop codon at the end of the gene sequence, generating an 

untagged protein (CarD-notag). DNA encoding the full length and truncated CarD 

proteins (CarD1-74, CarD1-53, CarD61-162 and CarD83-162) were amplified from Mtb H37Rv 

genomic DNA by PCR with the NdeI-HindIII restriction sites and inserted into the 

pET28b vector (Novagen). CarD_R87A-R88A-K90A, CarD_R114A-R118A, and 

CarD_K125A-R126A-K130A plasmids were generated using a site directed mutagenesis 

kit (Stratagene). The sequence of each construct was verified by DNA sequencing. The 

primers used in this study are provided in Table B-1. 

 

Expression and purification 

Expression plasmids for the uncomplexed RpoBtr, native, and mutant CarD 

proteins were transformed to E. coli BL21(DE3) cells, and recombinant protein 

expression was induced with 1 mM IPTG. For co-expression of Mtb RNAP β1-β2 

domains and Mtb CarD, the plasmids RpoBtr-NHis and CarD-notag were cotransformed 

into E. coli Rosetta2(DE3)pLysS cells, and expression was induced with 0.75 mM IPTG. 

Proteins were extracted with French press and purified by metal affinity and size 

exclusion chromatography. The RpoBtr-NHis:CarD complex eluted as a single peak 

from the size exclusion column. Co-elution of RpoBtr and CarD from the IMAC and 

size-exclusion columns was verified by SDS-PAGE. Finally, the purified proteins were 
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concentrated to 10 mg/ml and stored at -80°C for further use. Details of the expression 

and purification process are provided in Appendix B. 

 

Crystallization 

RpoBtr-NHis-SeMet and native protein crystals were obtained using hanging-

drop vapor diffusion method by incubating 2 μl of purified protein solution with 2 μl of 

crystallization solution (0.1 M MgCl2, 0.1 M HEPES [pH 7.5], 10% [w/v] PEG4000, and 

0.2 M potassium citrate tribasic monohydrate, and 20% [w/v] PEG3350, respectively) at 

16°C. The RpoBtr-NHis:CarD complex was crystallized by mixing 2 μl of protein 

solution with 2 μl of mother liquor (2% [v/v] tacsimate [pH 5.0], 0.1 M sodium citrate 

tribasic dihydrate [pH 5.6], and 14% [w/v] PEG3350) by hanging-drop vapor diffusion. 

Crystals were cryo-protected with 20% (v/v) ethylene glycol and flash-frozen prior to 

data collection. Data were collected at the Advanced Light Source (ALS; Lawrence 

Berkeley National Laboratory) and at the Advanced Photon Source (APS beamlines 

23ID and 19ID; Argonne National Laboratory) at 0.979 Å.  

 

Data collection and structure determination 

The structure of the Mtb RNAP β-subunit β1-β2 domains was solved by single-

wavelength anomalous diffraction (SAD) using RpoBtr-NHis-SeMet crystals. Crystals 

belonged to the P212121 space group and diffracted to 2.9 Å. Subsequently, resolution 

was improved to 2.5 Å by diffraction data obtained from native (non-SeMet) RpoBtr-

NHis crystals. Refinement and iterative manual model building was performed with 
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Phenix (Adams et al., 2010) and COOT (Emsley et al., 2010), and the final model had 

Rwork and Rfree values of 0.21 and 0.26, respectively. 

The RpoBtr-NHis:CarD complex crystals belonged to the C2221 space group and 

the diffraction data to 2.1 Å resolution was processed with Denzo/Scalepack. The 

structure was solved by MR using the RpoBtr β1 and β2 domains as two different search 

ensembles (Phaser, CCP4) (McCoy et al., 2007; Winn et al., 2011). After locating one 

copy of RpoBtr in the ASU, CarD was built into the additional |Fo|-|Fc| density manually. 

The final model included one RpoBtr:CarD complex in the ASU, and the structure was 

refined with Phenix Refine to a Rwork = 0.20 and an Rfree = 0.23. Data collection and 

processing statistics are provided in Table 6-1. Details of the data collection and 

structure determination are provided in Appendix B.  

 

EMSAs 

For EMSA, DNA 200–300 bp upstream of the rpsH, 16S, 23S, and 5S rRNA 

promoters were amplified from H37Rv genomic DNA with PCR (for primers, see Table 

S1) and purified by gel-extraction. At room temperature, 40 ng of double-stranded DNA 

was incubated with different amounts of protein (0–8 μg) for 30 min in 25 mM Tris (pH 

7.5) and 50 mM NaCl. As a negative control, a known non-DNA-binding protein, enoyl-

ACP reductase InhA from Mtb, was used to confirm that binding of Mtb CarD to DNA is 

protein-specific. The mixture was loaded on a precast 10% nondenaturing polyacryl-

amide gel and the gel was run at a constant voltage (120 V) with prechilled 0.5X TBE 

(89 mM Tris base, 89 mM boric acid, 1 mM EDTA [pH 8.0]) buffer at 4
°
C. After the run 
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was completed, the gel was stained with 1X Syber green (Invitrogen) DNA stain 

solution for 30 min in the dark and imaged (Jing et al., 2003). 

 

ThermoFluor measurements 

Differential scanning fluorimetry experiments were carried out with 1 μM of 

CarD/RpoBtr or CarD-Y11A-H14A/RpoBtr complex in 200 mM Tris (pH 7.5) 100 mM 

NaCl buffer, in the presence of 5X Sypro orange dye (Molecular Probes), in a 20 μl 

reaction volume. The temperature of the samples was changed from 25°C to 95°C at a 

heating rate of 0.5°C/min, and the fluorescence was monitored with an Mx3005P qPCR 

instrument (Agilent). The melting point (Tm) was calculated as the lowest point of the 

first derivative plot (DeSantis et al., 2012).  

 

Additional unpublished results 

 

Degradation of CarD protein in solution 

It was observed that CarD protein (with N-terminal His-tag or without any tag) 

underwent proteolytic cleavage over time in solution (Figure 6-7). Addition of EDTA, 

protease inhibitor cocktail or PMSF did not help in preventing the truncation of the 

protein. To eliminate any possible protease contamination coming along the purification, 

the protein was passed through high-salt washes and several columns including gel 

filtration and benzamidine FF columns. Even though 99% pure protein was obtained, the 

proteolytic cleavage still persisted.  
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Figure 6-7. Degradation of the CarD protein in solution over time. Purified CarD (full 

length- 18 kDa) was incubated in 25 mM Tris 7.5, 150 mM NaCl buffer at 18 °C for four weeks. 

At the end of each week, a sample was aliquoted for SDS-PAGE. Consistent with the mass-

spectrometry analysis, the truncation products at around 8 and 14 kDa were observed. As judged 

from the SDS-PAGE, CarD is >98% pure and further purifications did not resolve the truncation 

issue. Addition of protease inhibitors or EDTA also did not prevent the degradation.    

 

 

The degradation of the protein was analyzed by mass spectrometry. The ESI-FT 

mass analysis resulted in seven major peaks indicating that CarD was truncated at three 

different aminoacid positions; i.e., Leu37, Phe71, and Leu74 (Figure 6-8), which 

suggested a chymotrypsin like cleavage. The single, double and triple alanine mutants of 

the protein at these residues (L37A, F71A-L74A, L37A-F71A-L74A) were generated to 

increase the protein stability; however, none of the mutant proteins prevented the 

truncation of the protein (data not shown). In parallel with these observations, a similar 

truncation behavior for the Mtb CarD protein was reported in a recent publication. In 

those experiments, only a C-terminally His-tagged CarD construct was observed to be 

stable in solution and yielded full length protein crystals. The crystal structure revealed 

that the C-terminal His-tag induced dimerization through the N-terminal domain of the 
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protein and prevented the proteolysis (Kaur et al., 2013). 

 

 

 

 

Figure 6-8. ESI-FT mass spectrometry analysis of the CarD protein. As concluded from the 

spectrum, seven major peptides were produced as a result of truncation. Below, the peptide 

masses were mapped to the protein sequence, showing the corresponding region for each peak 

(A-F).  CarD got truncated at three different aminoacid positions, i.e., Leu37, Phe71 and Leu74.  
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Structure determination of uncomplexed CarD 

Despite several attempts, the crystals for the full length protein could not be 

obtained due to the proteolytic cleavage of CarD over time in solution. None of the 

single, double or triple mutant proteins (L37A, F71A-L74A, and L37A-F71A-L74A) 

yielded full length protein crystals. Crystallization trials set with the full length protein 

resulted in formation of the truncated CarD crystals, which covered only the C-terminal 

of the protein (residues 82 -141). Mass spectrometry analysis (MSWIFT) also confirmed 

that these crystals were the truncation products with molecular weights of 10 and 14 kDa 

(Figure 6-9C). Interestingly, complex formation between the Mtb CarD and RNAP 

proteins prevented the proteolysis of CarD, and hence, the full length CarD bound to the 

β-subunit of RNAP was crystallized after co-expression and purification of the complex 

(as described in the results and discussion section of this chapter). Compared with the 

uncomplexed CarD protein, CarD complexed with RpoBtr was stable in solution, and 

could be stored without any degradation.  

The truncated CarD crystals were obtained in the presence of nucleating agents 

like seaweed, hydroxyapatite and bioglass. Wild-type and Se-met derivatized fine hair-

like crystals were obtained in 0.2 M trisodium citrate monohydrate and 20% (w/v) 

Peg3350 in 2 to 3 weeks (Figure 6-9B). The crystals belonged to the P61 space group 

with unit cell dimensions of 67.6, 67.6, 33.7 Å, containing one molecule in the 

asymmetric unit. Diffraction data was collected at Argonne National Laboratory 

Advanced Photon Source (APS) at 0.97 Å to a resolution of 2.0 Å. The structure was 

solved by single wavelength anomalous dispersion (SAD) method, using the diffraction 
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data obtained from the Se-Met crystals. Model building and structure refinement was 

done with Coot and Phenix Refine, respectively, yielding a final model with Rwork=22% 

and Rfree=27% (Table 6-3). 

 

 

 

Figure 6-9. Truncated CarD crystals. A) SDS-PAGE of the CarD protein before 

setting the crystal plate (lane 1) and the truncated CarD crystals obtained after two 

weeks (lanes 4-9). B)  Fine hair-like crystals of the truncated CarD protein. Crystals 

were obtained in the presence of seaweed, which can be seen next to the crystals as the 

brownish spots. C) MSWIFT analysis of the crystals verified that they were truncation 

products of the CarD protein with molecular weights of 10 and 14 kDa.  
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Table 6-3. Data collection, phasing and refinement statistics for truncated CarD 

structure. 

 
 Se-Met CarD C-

term. Truncation 

Data collection  

Space group P61 

Cell dimensions 

a, b, c (Å) 

α, β, γ (
0
) 

 

67.6, 67.6, 33.7 

90, 90, 120 

Wavelength  0.979 

Resolution (Å) 1.95 (1.95) 

Completeness (%) 99.6 (99.9) 

Redundancy 6.6 (6.6) 

I/Iσ 13.0 (2.6) 

Rsym 0.39 (0.04) 

Refinement  

Resolution 58.5-1.95 

No. reflections 6266 

Rwork/ Rfree 0.22/0.27 

No. atoms 

 

Protein 

 

491 

B factors 36.7 

RMSD deviations 

Bond distances (Å) 

Bond angles (
0
) 

 

0.022 

1.96 

  

Highest resolution shell values are given in parenthesis. 
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No significant conformational differences were observed between the protease 

truncated CarD C-terminal and the full-length CarD C-terminal domain structures. The 

structure of the truncated CarD C-terminal domain (residues 82-141) was comprised of 

three α-helices with two helix-turn-helix (HTH) motifs (Figure 6-10). This three-helix 

bundle covered α3, α4, and α5 (numbered according to the full length structure), and 

comprised the leucine zipper motif between the α4 and α5. Also, it represented the DNA 

interaction domain of the protein as described in the results and discussion section of this 

chapter. 

 

Characterization of the CarD-DNA interaction  

The CarD-DNA interaction was examined extensively by using several DNA 

probes with different sequence, length, shape and secondary structures. It was observed 

that CarD had similar binding affinity to the dsDNAs generated from the 200-300 bp 

upstream of the rpsH, 16S, 23S and 5S rRNA genes. Next, to narrow down the specific 

DNA region needed for the CarD interaction, the 16S, 23S and 5S rRNA upstream 

dsDNAs were digested at a single restriction site with the restriction enzymes, BsrI or 

NheI, generating pieces of DNA varying in length from 76 bp to 237 bp (Figure 6-11). 

These restrictedly digested fragments were used in EMSA experiments as the DNA 

probes. Mtb CarD interacted with each restricted fragment, showing a slightly higher 

affinity for the longest (237 bp) fragment. In fact, it was observed that longer the length 

of the dsDNA, the higher was the affinity of CarD.  
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Figure 6-10. Structure of the truncated CarD protein. A) The amino acid sequence of 

the Mtb CarD C-terminus that was crystallized is shown. Positively charged residues that 

were tested for DNA interaction are colored blue. The secondary structure elements are 

presented below the sequence. B) Cartoon representation of the structure of the three 

helix bundle of CarD C-terminal domain. Only two polar interactions were present 

between K95-E106 and N92-D110. On the right, the leucine zipper formed by the side 

chains of the residues Leu120, Leu111, L128, and L135 on the α4 and α5 is shown. α3 is 

omitted from the structure for clarity.     
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Figure 6-11. EMSA experiments with the restrictedly digested 16S, 23S and 5S 

rRNA upstream DNA probes. The 16S, 23S and 5S rRNA upstream dsDNAs were digested 

at a single site with the restriction enzymes, BsrI or NheI, generating pieces of DNA varying in 

length from 76 bp to 237 bp. CarD binding to each fragment was tested. A) A diagram showing 

the restriction digestion map of the 16S, 23S and 5S rRNA upstream dsDNA sequences. B) 

EMSA with the BsrI digested 16S rRNA upstream DNA probe. Lanes 1-4: 76 bp fragment + 0-

33 μM CarD. Lanes 5-9: 237 bp fragment + 0-33 μM CarD.  C) EMSA with the NheI digested 

23S rRNA upstream DNA probe. Lanes 1-4: 98 bp fragment + 0-33 μM CarD. Lanes 5-9: 152 

bp fragment + 0-33 μM CarD. M: Molecular marker.  
 

 

Intriguingly, there was no conserved sequence motif in the DNA sequences 

tested for the EMSA experiments leading us to suspect the sequence specificity of the 

Mtb CarD-DNA interaction. The DNA binding specificity of Mtb CarD was further 

tested by using randomly generated linear dsDNA sequences of similar length that were 
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not related to the stringent response. EMSA experiments demonstrated that Mtb CarD 

was also able bind to these non-specific DNA sequences, supporting the idea of 

sequence independent DNA-binding (Figure 6-12A). CarD was even able to bind to the 

dsDNA sequences of the molecular markers (Figure 6-12A), confirming the non-

sequence specific binding mode. Moreover, the CarD-DNA interaction was strongly 

dependent on salt concentration, indicating mainly electrostatic interactions rather than 

the base specific interactions are present (Figure 6-12B). In addition, the CarD-DNA 

interaction was not affected by the reaction buffer pH (pH range 5.0-9.0) (data not 

shown), supporting the involvement of the arginine or lysine residues in DNA 

interaction. At the tested pHs, Arg and Lys residues would be positively charged due to 

their high pKa values and can contribute to electrostatic interactions with the negatively 

charged DNA backbone. 

Next, it was investigated if the DNA binding activity of CarD was dependent on 

the secondary and tertiary structure of the DNA probe. Cruciform DNA and bulged 

DNA probes were used in EMSA experiments to test if CarD could interact with DNA in 

different conformations. Mtb CarD did not show any binding to these probes. 

Furthermore, CarD did not show any binding to the single stranded DNAs (data not 

shown). Consequently, based on the EMSA results it was concluded that the DNA 

binding mode of Mtb CarD was not sequence dependent and the protein was able to bind 

to any linear duplex DNA sequence longer than approximately 80 bp with similar 

affinity.  
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Figure 6-12. Non-specific DNA binding, and salt and buffer effect on the DNA 

binding. A) EMSA experiments performed with the DNA probes in different sizes that are not 

related to the stringent response. Lanes 1-2: Mtb MurI gene sequence (816 bp) + 0-11 μM CarD.  

Lanes 3-4: Mtb WhiB6 gene sequence (351 bp) + 0-11 μM CarD. Lanes 5-6: Mtb Rv1993 gene 

sequence (273 bp) + 0-11 μM CarD. Lanes 7-8: 16S rRNA upstream dsDNA probe (313 bp) + 0-

11 μM CarD. Lane 9: molecular marker + 11 μM CarD. Lane 10: molecular marker. B) pH and 

salt dependence of the CarD-DNA interaction. Lane 1: 23S upstream DNA probe. Lanes 2-6: 

23S upstream DNA probe + 11 μM CarD in acetate pH 5.0, Tris pH 6.8, Tris pH 7.5, Tris pH 8.5 

and Tris pH 9.0, respectively. Lanes 7-9: 23S upstream DNA probe + 11 μM CarD in 0, 100 and 

500 mM NaCl, respectively, in the reaction buffer.  
 

 

Complex formation between CarD and RNAP 

Before we started the complex formation trials of Mtb CarD and RNAP, there 

was a single report in the literature suggesting that CarD interacts with the N-terminus of 

the RNAP β-subunit (Stallings et al., 2009). A subsequent report on the Tth TRCF-

RID/RNAP β1 structure had predicted that the Mtb CarD/RNAP interaction region 

would also be located on the β1 domain of the β-subunit, between the conserved residues 

123 to 153 of RNAP (Westblade et al., 2010). Even though Mtb RNAP displays ~50% 

identity and ~70% similarity to the E.coli and Taq RNAPs, whose structures have been 

solved (Murakami et al., 2002a; Opalka et al., 2010), there is no reported structure of the 
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full length Mtb RNAP or its β subunit in the PDB till date. It is well accepted that it is 

difficult to crystallize large proteins or protein-protein complexes due to the presence of 

high number of flexible domains and loops in these macromolecules (Dale et al., 2003). 

Therefore, to facilitate crystallization and increase the probability of getting high 

resolution diffracting crystals of the complex, we focused on the RpoB domains that 

were needed for the complex formation with Mtb CarD. Different constructs were 

designed for the β-subunit covering the predicted interaction region based on the 

secondary structure predictions and homology models generated using the published Taq 

and Tth RNAP structures. The homology models suggested that the first 40 residues of 

Mtb RpoB would be disordered without any secondary structure, and this disordered 

region could significantly lower the chances of obtaining high-resolution diffracting 

crystals. Therefore, the residue 40 was selected as the N-terminal starting point for the β-

subunit constructs. Four different constructs of the β-subunit spanning the residues 40-

403, 47-174, 47-433, and 1-1172 (full length β-subunit) were cloned and tested for 

soluble recombinant protein expression.  

Mtb CarD and the β-subunit variants were co-expressed in E. coli to investigate 

the complex formation between the two proteins. In order to facilitate the purification of 

the complex, a co-expression system was selected that allowed us to put an N-terminal 

His6-tag on one of the protein constructs, while keeping the other protein tagless. The 

CarD-no-tag plasmid was co-transformed with the RpoB-N-His plasmids in E. coli 

Rosetta2(DE3)pLysS cells. Separately, RpoB-no-tag plasmids were co-transformed with 

the CarD-N-His plasmid. This allowed us to examine in vivo complex formation 
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between the proteins by analysis of the co-elution profiles from the IMAC purification 

on SDS-PAGE gels. Among these co-expression systems, CarD-no-tag co-expression 

with the RpoB-tr-N-His (47-433) construct showed that both proteins co-eluted from the 

IMAC with gradient elution. The band corresponding to CarD was verified by mass 

spectrometry and SDS-PAGE gel sequencing. To confirm that the co-elution of the two 

proteins represented a stable complex, size-exclusion chromatography was performed. 

Both proteins co-eluted from the gel-filtration column giving a single peak for the 

complex (Figure 6-13). Even though the full length RpoB was able to associate with 

CarD in vivo as judged by the IMAC results, this association was found to be weak since 

both of the proteins eluted under separate peaks from the gel-filtration column (data not 

shown). The RpoB-47-174 construct did not give any soluble protein expression, while 

the RpoB-40-403 construct dissociated from CarD on the gel-filtration column similar to 

the full length RpoB construct. As the primary objective of this study was to determine 

the crystal structure of the complex, the stable complex formed between the RpoB-tr-N-

His (47-433) and CarD-no-tag constructs (RpoBtr:CarD complex) was selected for 

crystallographic studies.  

Conversely, there was no complex formation upon co-expression of the CarD-

NHis and RpoBtr-notag constructs, which suggested that the N-terminal His6-tag on 

CarD interfered with the protein-protein interaction.  
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Figure 6-13. Co-purification of the CarD-RNAP complex. After co-elution from the 

IMAC, fractions were combined, concentrated and loaded to the gel-filtration column 

(lane 1). Both proteins co-eluted in a single peak (lanes 5-8). Uncomplexed RpoBtr 

eluted later than the CarD/RpoBtr complex as expected (lanes 11-15). The elution 

chromatogram is shown below the SDS-PAGE gel.   
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CHAPTER VII 

CONCLUSIONS 

 

Tuberculosis is caused by the bacterium Mycobacterium tuberculosis, and 

continues to be a global health threat. It is estimated that one-third of the world’s 

population is infected by latent Mtb. Emergence of the multi-drug resistant Mtb strains 

along with the ability of the bacterium to persist in host for years, despite the use of 

antibiotics, exacerbates the problem and threatens the efforts to keep TB under control. 

Current TB therapy continues for at least six months and requires administration of at 

least four drugs, which were discovered decades ago. Furthermore, co-infection with 

HIV raises the mortality rates to close to 100% in the case of extensively-drug resistant 

TB. Therefore, it is incredibly urgent to discover new anti-tubercular agents that are 

effective against drug-resistant and persistent bacteria.  

Chapter I of this dissertation introduced the facts about TB disease, provided a 

brief explanation of TB drugs, current TB therapy, drug-resistance, and persistence, as it 

aimed to further our understanding of these concepts. The important components of the 

mycolic acid biosynthesis pathway, which represent valuable drug targets, were 

described in detail. Also, the transcriptional response and regulation of Mtb during 

adaptation to persistent state was examined in order to understand the factors required 

for the establishment of this state. Lastly, an overview of transcription and regulation of 

transcription by RNAP interacting proteins of Mtb was given.    
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Chapter II described the mechanism of drug action of isoniazid and ethionamide 

against Mtb and M. leprae. By developing a cell-based activation method, the active 

forms of ethionamide and prothionamide were isolated and characterized by mass-

spectrometry and X-ray crystallography. It was found that isoniazid and ethionamide 

targeted and inhibited InhA in a similar manner as both formed adducts with the cofactor 

NAD
+
. The crystal structures of InhA complexed with the adducts revealed the binding 

mode of these prodrugs. Using the same cell-based activation method, it was shown that 

InhA and not Dhfr was the primary cellular target of isoniazid. Absence of mutations in 

the dfrA gene in isoniazid resistant clinical isolates and the fact that overexpression of 

Dhfr did not cause any resistance to isoniazid confirmed that InhA was the clinically 

relevant target of isoniazid, bringing an end to the controversies about the target of this 

anti-TB drug.  

The biochemical and structural investigations on regulation of the InhA enzyme 

was addressed in Chapter III. Since InhA is an essential protein and is a well validated 

drug target, deciphering its post-translational regulation is quite important to understand 

the regulation of mycolic acid production in mycobacteria. It was found that InhA 

function was regulated negatively by phosphorylation. In vitro phosphorylation assays 

indicated that InhA was phosphorylated by multiple Mtb serine-threonine kinases at a 

single threonine residue (T266) close to the C-terminal of the protein. Enzymatic assays 

and fluorescence quenching experiments done with the phosphomimetic aspartate and 

glutamate mutants suggested that the decreased enzymatic activity was mainly due to the 

decreased affinity of the enzyme for NADH. The crystal structures of the wild-type and 
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phosphomimetic InhA proteins revealed that the mutation of T266 to aspartate or 

glutamate caused local structural changes by perturbing the H-bonding network and 

introducing water molecules. It was noteworthy that even though T266 was 15 Å away 

from the active site and not involved in catalysis, mutation of this residue caused 

significant activity loss. In addition, transfer of the T266D or T266E InhA alleles to 

mycobacteria was lethal confirming the required InhA activity for cell viability. 

Chapters IV and V covered the drug discovery studies for InhA. A target based 

high-throughput screening (HTS) was performed in collaboration with GlaxoSmithKline 

(GSK), and a structure based drug design study on triclosan scaffold was performed in 

collaboration with the Jacobus Pharmaceutical Company that led to the discovery of 

highly potent InhA inhibitors. The HTS at GSK resulted in the identification of multiple 

hits belonging to different chemical series. Among these, the thiadiazole series were the 

most potent and featured the best pharmacokinetic properties; therefore, these series of 

compounds were further studied. The optimized GSK lead compound was a potent 

inhibitor of InhA with an IC50 of 7 nM and was effective against drug-sensitive and 

drug-resistant clinical strains. It also showed better pharmacokinetic properties than the 

mother compound. In addition, the broad spectrum antibacterial compound triclosan was 

used as a template for structure-based drug design. Triclosan derivatives modified at the 

5-position were tested in vitro and in vivo for anti-tubercular activity. It was seen that 

hydrophobic alkyl and aryl substituents increased the potency of the derivatives toward 

InhA, with the most potent compound having an IC50 of 21 nM. Triclosan derivatives 

were also active against the drug-resistant Mtb strains. The binding mode of the GSK 
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inhibitors and triclosan analogs were determined by X-ray crystallography. It was seen 

that both sets of inhibitors bound to the hydrophobic substrate binding pocket of the 

enzyme interacting with NAD
+
 and the protein backbone. In regard to the GSK 

inhibitors, InhA residue Met98 was involved in direct H-bonding with the inhibitor 

compound, whereas for triclosan derivatives Tyr158 made an H-bond with the inhibitor 

compounds. It is noteworthy that both GSK inhibitors and triclosan derivatives are 

activation-free inhibitors unlike isoniazid, which Mtb develops a majority of the drug 

resistance against due to the mutations in the activator gene katG.  

Chapter VI discussed the structural and functional studies on CarD, which is an 

Mtb transcription regulator that is essential for bacterial viability and the establishment 

of persistence. CarD is involved in stringent response through downregulation of rRNA 

and ribosomal protein genes, and it interacts with the β-subunit of RNAP. The crystal 

structure of the CarD/RNAP complex revealed the molecular basis of this important 

protein-protein interaction and suggested possible mechanisms CarD can employ on 

RNAP for transcription regulation. Furthermore, it was found that CarD could bind to 

dsDNA through its C-terminal α-helical domain.  
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APPENDIX A 

SUPPLEMENTAL MATERIAL FOR CHAPTER III 

  

 

 

 

 

 

 

 

 

 

 

Figure A-1. Mass spectrometric analysis of phosphorylated InhA. A) Mass 

spectrometric analysis of in vitro PknB-phosphorylated InhA. MS/MS spectrum of the 

triply charged ion [M +3H]
3+

 at m/z 1051.51of peptide [241-269] (monoisotopic mass: 

3151.52 Da). Unambiguous location of the phosphate group on Thr266 was shown by 

observation of the “y” C-terminal daughter ion series. Starting from the C-terminal 

residue, all “y” ions lose phosphoric acid (-98 Da) after the Thr266 phosphorylated 

residue. B) Mass spectrometric analysis of InhA purified in vivo. MS/MS spectrum of 

the triply charged ion [M+3H]
3+

 at m/z 1051.51 of peptide [241-269] (monoisotopic 

mass: 3151.52Da). The phosphate group on T266 was unambiguously located by 

observing the “y” C-terminal daughter ion series. Starting from the C-terminal residue, 

all “y” ions lose phosphoric acid (-98 Da) after the T266 phosphorylated residue. 
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Figure A-1 Continued. 
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Figure A-1 Continued. 
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Figure A-2. Structures of binary complexes of InhA_WT:NADH, InhA_T266D: 

NADH and InhA_T266E:NADH. Crystals were obtained using the hanging drop vapor-

diffusion method by mixing 2 μl of 5-10 mg/ml protein solution containing NADH (1:2 ratio of 

enzyme to NADH) with an equal volume of reservoir solution (100 mM Hepes 7.2, 50 mM 

sodium citrate 6.5, 8-12% methylpentanediol and 4% DMSO). Crystals were cryoprotected by 

30% MPD mixed with reservoir solution prior to flash-cooling at 100K in a cold nitrogen stream. 

Data sets were collected at 0.97947 Å using synchrotron radiation on GM/CA-CAT 23ID 

beamline at Advanced Photon Source, Argonne National Laboratory. Data were processed and 

scaled by DENZO/Scalepack (Otwinowski and Minor (1997)  Methods in Enzymology, 307-326) 

and initial phases were obtained by molecular replacement using previously published wild-

type_InhA:NAD+ structure (PDB code: 2AQ8) as a starting model. Model building and 

refinement of the structures were done by Coot (Emsley and Cowtan (2004) Acta Crystallogr D 

Biol Crystallogr. 60, 2126-32) and Phenix (Adams et al. (2002) Acta Cryst. D. 58, 1948-1954), 

respectively. In the final refinement cycles, water molecules were added to the peaks above 3 σ 

of the Fo-Fc electron density map such that the water molecules were within H-bonding distance 

to the surrounding protein/water molecules. Data collection and processing statistics are 

provided in Table A-3. Comparative three-dimensional structures and H-bonding interaction of 

InhA-WT, InhA_T266D and InhA_T266 are represented in the up, middle and low down panels, 

respectively. A new water molecule (W9), not present in InhA_WT, is introduced between 

residues D266 and N267 residues. As observed in T266D structure, a new water molecule (W5) 

is found to be present introduced between D266 and N267 residues in the T266E structure. 

Atomic coordinates and structure factors of wild-type InhA:NADH, T266D:NADH and 

T266E:NADH were deposited in the PDB with the accession codes 3OEW, 3OF2 and 3OEY, 

respectively. 



 

308 

 

 

 

 

Figure A-2 Continued. 
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Figure A-3. Overexpression of the various InhA variants and effect on growth in M. 

bovis BCG. A) Electrocompetent M. bovis BCG were transformed with the empty 

pMK1 construct, the pMK1::inhA_WT, pMK1::inhA_T266A, pMK1::inhA_T266D or 

pMK1::inhA_T266E to allow constitutive expression of the various inhA alleles under 

the control of the strong hsp60 promoter. Transformed mycobacteria were plated and 

incubated at 37°C for 3 weeks. B) InhA expression levels in the InhA-overproducing M. 

bovis BCG strains. Western blot analysis of M. bovis BCG cells overexpressing the 

phosphoablative inhA_T266A and phosphomimetic inhA_T266D and inhA_T266E 

alleles were harvested, resuspended in PBS and disrupted. Equal amounts of crude 

lysates (20 μg) were then loaded onto a 4-12% acrylamide gel, subjected to 

electrophoresis and transferred onto a membrane for immunoblot analysis using rabbit 

anti-InhA antibodies. Endogenous and recombinant InhA proteins are indicated by 

arrowheads. 
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Figure A-4. Superimposition of InhA_WT (green), InhA_T266D (orange) and 

InhA_ T266E (blue) tetrameric structures. The Rmsd is 0.3 Å. NADH is represented 

as spheres (carbon purple, oxygen red, nitrogen blue and phosphate cyan). 
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Figure A-5. The crystal structure of InhA_T266D mutant. The figure shows the 

proximity of the mutation site to the active site. NADH is represented with cyan sticks, 

C16 fatty acid substrate analog (PDB:1BVR) with yellow sticks. Substrate binding loop 

is colored green. 
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Table A-1. Bacterial strains and plasmids used in this study. 

Strains or Plasmids Genotype or Description Source or Reference  

E. coli  TOP10 F
-
 mcrA (mrr-hsdRMS-mcrBC) Invitrogen  

 φ80lacZ M15 lacX74 deoR recA1 araD139   

 (ara-leu)7697 galU galK rpsL endA1 nupG;   

 used for general cloning   

    

E. coli BL21(DE3)Star F2  ompT  hsdSB(rB2  mB2)  gal  dcm  (DE3); Stratagene  

 used to express recombinant proteins in E. coli   

     

M. bovis BCG 1173P2 Vaccine strain  WHO, Stockholm  

M. smegmatis mc
2
155 ept-1   (Snapper et al., 1990)  

    

M. smegmatis mc
2
2359 ept-1 attB::pYUB412::ndh inhA40 (Vilcheze et al., 2000)  

 INH-R, Ts mutant of mc
2
2354   

    

pETPhos pET15b  (Novagen)  derivative  including  the (Canova et al., 2008)  

 replacement  of  the  thrombin  site  coding   

 sequence  with  a  tobacco  etch  virus  (TEV)   

 protease site and Ser to Gly mutagenesis in the   

 Nterm His-tag    

pETPhos_inhA_WT pETPhos derivative used to express His-tagged This work  

 fusion of WT InhA in E.coli   

    

pETPhos_inhA_T266A pETPhos derivative used to express His-tagged This work  

 fusion of InhA_T266A in E.coli   

    

pETPhos_inhA_T266D pETPhos derivative used to express His-tagged This work  

 fusion of InhA_T266D in E.coli   

    

pETPhos_inhA_T266E pETPhos derivative used to express His-tagged This work  

 fusion of InhA_T266E in E.coli   

    

pMK1 E.  coli/mycobacterial  shuttle  vector,  allows (Veyron-Churlet et al.,  

 expression   of   N-term   His-tagged   proteins, 2010)  

 derived from pMV261 (Stover et al., 1991) and   

 containing the pET28a polylinker   

pMK1_inhA_WT pMK1  derivative  used  to  express  His-tagged This work  

 fusion of WT InhA in mycobacteria   

    

pMK1_inhA_T266A pMK1  derivative  used  to  express  His-tagged This work  

 fusion of InhA_T266A in mycobacteria   

    

pMK1_inhA_T266D pMK1  derivative  used  to  express  His-tagged This work  

 fusion of InhA_T266D in mycobacteria   
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Table A-1 Continued.  

Strains or Plasmids Genotype or Description Source or Reference  

pMK1_inhA_T266E pMK1  derivative  used  to  express  His-tagged This work  

 fusion of InhA_T266E in mycobacteria   

    

pSD26 Acetamide-inducible expression vector (Daugelat et al., 2003)  

pSD26_inhA_WT pSD26  derivative  used  to  induce  His-tagged This work  

 fusion of WT InhA in mycobacteria   

    

pSD26_inhA_T266A pSD26  derivative  used  to  induce  His-tagged This work  

 fusion of InhA_T266A in mycobacteria   

      

      

pSD26_inhA_T266D pSD26  derivative  used  to  induce  His-tagged This work 

 fusion of InhA_T266D in mycobacteria  

   

pSD26_inhA_T266E pSD26  derivative  used  to  induce  His-tagged This work 

 fusion of InhA_T266E in mycobacteria  

   

p004 pJSC347   (Sambandamurthy   et   al.,   2002) Hsu and Jacobs, 

 derivative containing lambda phage cos sites, a manuscript in 

 hyg resistance marker and a sacB cassette. preparation 
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Table A-2. Primers used in this study. 

Primers 5' to 3' Sequence
ab

 

pMK1 InhA dir tcatcatatgacaggactgctggacgg (NdeI) 

pMK1 InhA rev tacggaattctagagcaattgggtgtgcgc (EcoRI) 

pSD26 InhA dir tataggatccatgacaggactgctggacggc (BamHI) 

pSD26 InhA WT rev gagcaattgggtgtgcgcgc 

pSD26 InhA T266A rev gagcaattgggcgtgcgcgc 

pSD26 InhA T266D rev gagcaattggtcgtgcgcgc 

pSD26 InhA T266E rev gagcaattgctcgtgcgcgc 

InhA T266A dir cgccgacggcggcgcgcacgcccaattgctctagaattcg 

InhA T266A rev cgaattctagagcaattgggcgtgcgcgccgccgtcggcg 

InhA T266D dir cgccgacggcggcgcgcacgaccaattgctctagaattcg 

InhA T266D rev cgaattctagagcaattggtcgtgcgcgccgccgtcggcg 

InhA T266E dir cgccgacggcggcgcgcacgagcaattgctctagaattcg 

InhA T266E rev cgaattctagagcaattgctcgtgcgcgccgccgtcggcg 

inhA_forward agagaagcatatgatgacaggactgctggacgg caaacg ttctggttagcg (ndei) 

inhA_T266A reverse cccaagcttttactagagcaattgggcgtgcgcgccgcc gtcggcgtagatg (hindiii) 

inhA_T266D reverse cccaagcttttactagagcaattggtcgtgcgcgccgcc gtcggcgtagatg (hindiii) 

inhA_T266E reverse cccaagcttttactagagcaattgctcgtgcgcgccgcc gtcggcgtagatg (hindiii) 

a
Restriction sites are underlined and specified into brackets. 

  

b
Mutagenized bases are shown in bold. 
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Table A-3. Data collection and processing statistics for InhA_WT:NADH, 

InhA_T266D:NADH and InhA_T266E:NADH crystal structures. 

 
 InhA_WT InhA_T266D InhA_T266E 

Unit cell dimensions a,c (Å) 98.551, 139.714 98.366, 139.887 98.154, 139.439 

Space group P6222 P6222 P6222 

Number of unique reflections 23240 39230 27393 

Data collection resolution range 40.88-2.1 40.9-1.75 40.78-2.0 

Refinement resolution range (Å) 40.88- 2.1 40.9-2.0 40.78-2.0 

Completeness 96.7 (98.3) 99.5 (97.4) 99.6 (99.9) 

I/σ 19.45(5.28) 14.3 (7.4) 36.97 (9.39) 

Rsym 3.5 (18.85) 4.36 (10.05) 1.79 (9.56) 

Rfactor/ Rfree 0.1667/ 0.2086 0.1756/ 0.2033 0.1819/0.2143 

Redundancy 11.1 (11.3) 9.3 (9.5) 17.5 (16.7) 

Total protein residues 268 268 268 

Heteroatoms 2 2 2 

 (MPD) (MPD) (MPD) 

 (NADH) (NADH) (NADH) 

Water molecules 186 207 191 

Average B-factors (A
2
)    

Protein 42.57 34.26 35.80 

NADH 47.32 35.88 37.22 

Water 51.52 43.51 42.94 

total 49.95, 45.69 40.96 41.43 
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Table A-3 Continued.  

 InhA_WT InhA_T266D InhA_T266E 

Ramachandran analysis    

MolProbity (Davis et al., 2007)    

Favorable regions 96.99 96.24 96.24 

Allowed region 100 100 100 

Disallowed 0 0 0 

r.m.s.d    

Bond lengths (Å) 0.008 0.007 0.007 

Bond angles (
0
) 1.211 1.094 1.19 

Rsym =∑  h∑i|Ihi - ‹Ih›|/∑  h∑iIhi where Ihi is the intensity of observation I of reflection h. 

Rfactor ∑= h||Fo| - |Fc||∑|F/ o| where Fo and Fc are observed and calculated structure factors, 

respectively. Rfree is calculated on 5% of the data omitted at random. 
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER IV  

 

Table B-1. Primers that are used in this work.  

Construct Forward 5’ 3’  Reverse 5’ 3’  

CarD-notag GGGAAT TCCATATGATTT 

TCAAGGTCGGAGACACCGTTGTC  

GATCCCAAGCTTTCAAGACGCGGCGGC

TAAAACCTCGTCAAG  

CarD-Nterm-1-53 

(CarD1-53) 

GGGAATTCCATATGATTTTCAAGG

TCGGAGACACCGTTGTC  

CCCAAGCTTTTAGGCGTTTTCAGCGGG

AACTCGTA  

CarD-Nterm-1-74 

(CarD1-74) 

GGGAATTCCATATGATTTTCAAGG

TCGGAGACACCGTTGTC  

CCCAAGCTTTTACAACACCTGGAAAAC

CTTGTCCAGG  

CarD-Cterm-61-

162 (CarD61-162) 

AGAGAAGCATATGATGGTCGTCG

GGCAGGAAGGCCTGG  

GATCCCAAGCTTTCAAGACGCGGCGGC

TAAAACCTCGTCAAG  

CarD-Cterm-83-

162 (CarD83-162) 

AGAGAAGCATATGATGACGAACT

GGTCACGTCGTTACAAGGC   

GATCCCAAGCTTTCAAGACGCGGCGGC

TAAAACCTCGTCAAG  

CarD_R87A-

R88A-K90A 

ACCGAGGAGCCGACGAACTGGTC

AGCTGCTTACGCGGCGAACCTCG

AG  

CTCGAGGTTCGCCGCGTAAGCAGCTGA

CCAGTTCGTCGGCTCCTCGGT  

CarD_R114A-

R118A 

GCGATTTGTGGCGTGCCGACCAG

GAGGCTGGCTTGTC  

 GACAAGCCAGCCTCCTGGTCGGCACG

CCACAAATCGC  

CarD_K125A-

R126A-K130A 

CTTGTCGGCCGGTGAGGCGGCCA

TGCTGGCCGCGGCCCGGCAGATT  

GGCCGCGGCCAGCATGGCCGCCTCACC

GGCCGACAAG  

CarD_Y11A-H14A CGGAGACACCGTTGTCGCTCCAC

ACGCCGGTGCTGCGTTAGTC 

GACTAACGCAGCACCGGCGTGTGGAGC

GACAACGGTGTCTCCG 

RpoBtr-NHis AGAGAAGCATATGATGCTCCTTG

ACGTCCAGACCGATTCG  

CGCGGATCCTTACATGAATTGGCTCAG

CTGGCT  

16S-upstream AGACTGGCAGGGTCGCCCCGAAG

CGG  

 CGCCAGCGTTCGTCCTGAGCCAGGATC  
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Figure B-1. Protein sequence alignment of Mtb CarD. Mtb CarD sequence is aligned with the closest homologs 

(determined by the BLAST search) and M. xanthus CarD and CdnL proteins. Identical residues are colored dark gray and 

boxed, similar residues are shaded with light gray. M. xanthus CarD has additional 135 residues at the C-terminus compared 

to Mtb CarD. The AT-hook DNA binding motif (four ‘RGRP’ motifs) of M. xanthus CarD are shaded in yellow boxes. The 

secondary structure of Mtb CarD is shown above its sequence. The missing residues in the final model are indicted by dashed 

lines. Alignment is generated by ClustalW. Figure B-1 is related to Figure 6-2. 
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Figure B-2. Stereo images of the CarD/RNAP complex and electrostatic potential 

surface representation of the CarD/RNAP interface. A) The |Fo|-|Fc| density (shown 

at 1.8 sigma in green) for CarD at the protein-protein interface was unambiguous after 

locating RpoBtr in the complex structure by MR. Cα backbone of the final model of the 

complex is included for clarity. B) The 2|Fo|-|Fc| map at 2.0 sigma of the CarD/RNAP 

interface after refinement. RpoBtr residues are shown in orange; CarD residues are 

shown in gray sticks. Images were prepared by Pymol. C) Wall-eyed stereo image of the 

CarD/RNAP complex in cartoon representation. D) CarD displays a positively charged 

surface (left), and RNAP has a negatively charged surface (right) at the interface. 

Electrostatic potential molecular surface calculations were done and images were 

prepared with PyMol using APBS as the macromolecular electrostatics calculation 

program. In all panels, RpoBtr is shown in orange, CarD is shown in blue ribbons. 

Figure B-2 is related to Figure 6-1. 
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Figure B-2 Continued. 
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Figure B-2 Continued. 
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Figure B-3. Comparison of the uncomplexed Mtb β1 and β2 domain structure 

(green) with the Tth (dark pink, PDB ID: 2O5I), Taq (yellow, PDB ID: 1I6V) and E. 

coli (light pink, PDB ID: 4IGC) RNAP β1 and β2 domain structures. Rest of the Tth, 

Taq and E. coli RNAP structures is omitted for clarity. Superposition of the β1 (A) and 

β2 (B) domains results ~10 Å RMSD over the Cα atoms of the other domain, which 

indicates that the relative conformation adopted by the two domains in RpoBtr is 

different than other bacterial core or holo RNAP structures. C) Superposition of the 

uncomplexed RpoBtr β1 domains of the two molecules in the ASU (RpoBtr_A 

(magenta) and RpoBtr_B (green)) gives an RMSD of 5.2 Å (over 191 atom pairs) on the 

Cαs of the β2 domains. The conformational difference observed in the β1-β2 domain-

domain orientation can be explained by a 13º rotation around the hinge axis centered on 

the two stranded anti-parallel β-sheet connecting the two domains. Figure B-3 is related 

to Figure 6-3. 
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Figure B-3 Continued. 
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Figure B-4. Comparison of CarD/RNAP interaction with TRCF-RID/RNAP 

interaction and the DSF experiments on CarD/RpoBtr and CarD-Y11A-

H14A/RpoBtr complexes. A) The CarD/RNAP interface (this study, left panel) and the 

TRCF-RID/RNAP interface (PDB ID: 3MLQ, right panel) are displayed. The sequence 

of the β4-strands is given below each chain with conserved residues in bold. Important 

residues for intermolecular interaction are labeled, and H-bonds are shown with gray 

lines. B) Differential scanning fluorimetry (DSF) experiments on CarD/RpoBtr (filled 

squares, solid line) and CarD-Y11A-H14A/RpoBtr (open circles, dashed line) 

complexes. Equal amount of each complex (1 μM) in 200 mM Tris pH 7.5, 100 mM 

NaCl buffer was mixed with 5X Sypro orange dye. The temperature of the samples was 

changed from 25 to 95 °C at a heating rate of 0.5 °C/min, and the fluorescence was 

monitored. The first derivative of fluorescence d(RFU)/dT is plotted against temperature 

and the melting point (Tm, indicated with red lines) was calculated as the lowest point of 

the first derivative plot. Experiments were repeated five times and standard errors are 

calculated. Figure B-4 is related to Table 6-2. 
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Figure B-4 Continued. 

 

 

 

Supplemental experimental procedures 

 

Expression and purification 

For recombinant expression of uncomplexed RpoBtr, native and mutant CarD 

proteins, the corresponding plasmids were transformed into E. coli BL21(DE3) cells. 

The cells were grown at 37 ºC in the presence of antibiotic to an OD600 of 0.6, and 

protein expression was induced with 1 mM IPTG at 18 ºC overnight. The cells were 

harvested, resuspended in buffer A (25 mM Tris pH 7.5, 500 mM NaCl, 5 mM 

imidazole, 2 mM β-ME, 2 mM MgCl2, 40 μg/ml DNAse, and protease inhibitor 
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cocktail) and lysed by French press. After centrifuging the lysate, the supernatant was 

loaded onto a His Trap FF column pre-equilibrated with buffer A. After washing the 

column with at least 5 column volumes of buffer A, column bound proteins were eluted 

with a gradient of buffer B (15-100%) (25 mM Tris pH 7.5, 500 mM NaCl, 500 mM 

imidazole, 2 mM β-ME). Fractions containing RpoBtr-NHis or CarD were pooled, 

dialyzed against buffer C (25 mM Tris 7.5, 100 mM NaCl, 2 mM DTT), concentrated, 

and loaded onto a Superdex 200 gel filtration column pre-equilibrated with buffer C. 

Final pure protein was concentrated to 15 mg/ml and stored at -80 ºC.  

Selenomethionine (Se-Met) incorporated RpoBtr-NHis was expressed by using a 

methionine auxotrophic E. coli strain B834(DE3) in minimal media supplemented with 

Se-Met (Doublié, S. (1997). Methods Enzymol.276, 523–530). Purification of the Se-Met 

labeled protein was performed the same way as the native protein, except that the DTT 

concentration in buffer C was increased to 5 mM.  

For co-expression of Mtb RNAP β1-β2 domains and Mtb CarD, the plasmids 

RpoBtr-NHis and CarD-notag were cotransformed into E. coli Rosetta2(DE3)pLysS 

cells. The cells were grown at 37 ºC in the presence of kanamycin and carbenecillin to 

an OD600 of 0.6 and were induced with 0.75 mM IPTG at 18 ºC overnight. The cells 

were harvested by centrifugation at 3000 x g and resuspended in buffer D (25 mM Tris 

pH 7.5, 200 mM NaCl, 5% (v/v) glycerol, 5 mM imidazole, 2 mM β-ME, 2 mM MgCl2, 

40 μg/ml DNAse, and protease inhibitor cocktail), lysed by French press, centrifuged at 

16 K rpm for 45 min, and the supernatant was loaded onto a His Trap FF column pre-

equilibrated with buffer D. The column was washed with at least 5 column volumes of 
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buffer D and a stepwise gradient (5-25%) of buffer E (25 mM Tris pH 7.5, 200 mM 

NaCl, 300 mM imidazole, 2 mM β-ME). Column bound proteins were eluted with a 

gradient of buffer E (25-100%). Fractions containing the RpoBtr-NHis:CarD complex 

were pooled, concentrated, and loaded onto a Superdex 200 gel filtration column pre-

equilibrated with buffer C (25 mM Tris 7.5, 100 mM NaCl, 2 mM DTT). The RpoBtr-

NHis:CarD complex eluted as a single peak from the size exclusion column. Co-elution 

of RpoBtr and CarD from the IMAC and size-exclusion columns was verified by SDS-

PAGE. Protein concentrations were estimated using the extinction coefficients of 17000 

M
-1

cm
-1

 for CarD, 32490 M
-1

cm
-1

 for RpoBtr, and 49000 M
-1

cm
-1

 for RpoBtr/CarD 

complex at 280 nm using NanoDrop. Finally, the purified complex was concentrated to 

10 mg/ml and stored at -80 ºC for further use. 

 

Data collection and structure determination 

Molecular replacement (MR) trials to determine the structure of Mtb RpoBtr 

using homologous E. coli, Tth, and Taq RNAP structures did not yield a solution. The 

structure of the Mtb RNAP β-subunit β1-β2 domains was solved by single-wavelength 

anomalous diffraction (SAD) using RpoBtr-NHis-SeMet crystals. Crystals belonged to 

the P212121 space group and diffracted to 2.9 Å. Data was collected at the selenium peak 

wavelength (0.979 Å), processed with Denzo/Scalepack (Minor et al. (2006) Acta 

Crystallogr D Biol Crystallogr. 62, 859-66) and Phenix AutoSol, and Autobuilt modules 

were used to determine the initial phases and obtain the first atomic model (Adams et al. 

(2010) Acta Crystallogr D Biol Crystallogr. 66, 213-21). Subsequently, resolution of the 
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RpoBtr structure was improved to 2.5 Å by diffraction data obtained from native (non-

SeMet) RpoBtr-NHis crystals, which also belonged to the P212121 space group with two 

molecules in the ASU. The structure of native RpoBtr-NHis was obtained by MR using 

the RpoBtr-NHis-SeMet protein structure as the search model. The structure comprised 

residues 47-426 of the β-subunit and included six additional residues at the N-terminus 

between the His-tag and the first methionine residue. Refinement was performed with 

Phenix Refine. NCS restraints were applied to the atomic positions and individual B-

factors subsequent to simulated annealing and rigid-body refinements. Iterative manual 

model building was done with COOT (Emsley et al. (2010) Acta Crystallogr D Biol 

Crystallogr. 66, 486-501). Water molecules were added to |Fo-Fc| peaks >3σ and the 

model was further refined using Phenix Refine. The final model had Rwork and Rfree 

values of 0.21 and 0.26, respectively.  

The RpoBtr-NHis:CarD complex crystals belonged to the C2221 space group and 

the diffraction data to 2.1 Å resolution was processed with Denzo/Scalepack. The 

structure was solved by MR using the RpoBtr β1 and β2 domains as two different search 

ensembles (Phaser, CCP4) (McCoy et al. (2007) J Appl Crystallogr. 40, 658-674; Winn 

et al. (2011) Acta Crystallogr D Biol Crystallogr. 67, 235-42). After locating one copy 

of RpoBtr in the ASU, the additional |Fo-Fc| density for the CarD N-terminal domain β-

strands and the C-terminal domain helices were visible with enough clarity to allow us to 

build CarD manually. After a few cycles of rigid-body and simulated-annealing 

refinements, the |Fo-Fc| density for the side chains gradually improved. The model was 

further refined with Phenix Refine and water molecules were added to |Fo-Fc| peaks 
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>3σ. In the final stages of refinement, TLS refinement (four TLS groups: β1 domain, β2 

domain, CarD N-terminal domain, and CarD C-terminal domain) was included. Iterative 

cycles of model building and refinement resulted in a final model which included one 

RpoBtr:CarD complex in the ASU with an Rwork= 0.20 and an Rfree= 0.23. Data 

collection and processing statistics are provided in Table 6-1. 
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