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ABSTRACT 

 

Arc faults have always been a concern for electrical systems as they can cause fires, 

personnel shock hazard, and system failure. In photovoltaic (PV) systems, a large number 

of electrical connectors and long wire runs are expected. Combined with the high DC 

voltage, deterioration of the wire insulation due to aging or other circumstances such as 

rodent bites and abrasion due to chaffing with trees, building walls, or conduit during 

installation can cause electric arcs to occur. These dc arcs may result in shock hazards, 

fires, and system failures or faults in the PV systems. NEC 2011 includes a requirement 

for new rooftop arrays to include UL1699B listed arc fault current interrupters (AFCI). 

NEC 2014 expands this requirement to include ground-mounted arrays as well.  

Existing commercialized techniques that rely on pattern recognition in the time 

domain, or frequency domain analysis using a Fourier Transform do not work well because 

the signal to noise ratio is low, and the arc signal is not periodic. Instead, wavelet transform 

provides a time-frequency approach to analyzing target signals with multiple resolutions.  

In this work, a technique for arc fault detection photovoltaic systems by using 

discrete wavelet transform (DWT) for feature extraction and support vector machines for 

decision making is proposed.  

The frequency characteristics of electric arcs in the PV systems are first studied. 

The fundamental feasibility of applying wavelet theory to detect arc fault and arc flash in 

solar PV power systems is then examined both in simulation using synthetic waveforms 
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generated in MATLAB / Simulink and experimentally using arc waveforms measured 

from actual dc PV systems with/without operating inverters.  

In the later chapter, a supervised learning method for arcing/non-arcing event 

classification using support vector machines (SVMs) is introduced. SVMs are believed to 

be one of the best “off-the-shelf” supervised learning algorithms. The main concept behind 

SVM is to create a hyperplane with a maximum margin between the two adjacent classes 

which helps bound the generalization error of the classification model. Different 

combinations of mother wavelets, decomposition levels, and kernel functions are 

examined in this work. Some of the strategies have shown very promising results. 
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1. INTRODUCTION  

 

1.1 Arc Faults in DC PV Systems 

There are three major catastrophic types of failures in photovoltaic (PV) arrays: 

ground faults, line-to-line faults, and arc faults [7]. In PV systems, a large number of 

electrical connectors and long wire runs are expected. Combined with the high DC 

voltage, deterioration of the wire insulation due to aging or other circumstances such as 

rodent bites and abrasion due to chaffing with trees, building walls, or conduit during 

                                                 

 Reprinted with permission from “Arc Fault and Flash Detection in DC Photovoltaic Arrays Using 

Wavelets,” by Z. Wang and R.S. Balog, 2013, IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 

1619-1624, © 2013 IEEE. Reprinted with permission from “Arc Fault Signal Detection – Fourier 

Transformation vs. Wavelet Decomposition Techniques Using Synthesized Data,” by Z. Wang and R.S. 

Balog, 2014, IEEE 40th Photovoltaic Specialists Conference (PVSC), pp. 3239-3244, © 2014 IEEE. 

 

Figure 1: Example of locations where arcing may occur in a PV array. 
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installation can cause electric arcs to occur. These DC arcs may result in shock hazards, 

fires, and system failures or faults in the PV systems [8]. 

Electrical arcs in PV systems can arise from series or parallel faults, as illustrated 

in Figure 1. Series arc faults often occur due to loose electrical connections while parallel 

faults can be caused by abrasion of conductors from thermal cycling or vibration, puncture 

of the insulation by rodents, or other failures within the PV system [9, 10].  

Figure 2 illustrates possible sources of arc faults due to the way a utility-scale DC 

PV power system is installed. Figure 3 [3] provides an example of aging cable connectors 

which are very likely to cause loose connections in an operating PV system. As long as 

this arc fault problem exists, PV systems face significant concerns about liability which 

threaten the extensive use. Thus, arc fault detection is extremely important for reliable and 

safe system operation [11, 12] and is a prerequisite for widespread adoption of DC PV 

systems [13-16]. 

 

 

Figure 2: Example of DC wiring in a ground-mounted PV array (photo credit: Robert S. Balog). 
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Even more important is to detect arc flash, the pre-fault (before a sustained arc 

forms) events of sparking and dielectric breakdown. Arc flash may only last for a short 

duration (less than a second) but serves as an early indicator of incipient arc faults. 

Detecting arc flash is a difficult problem because unlike a bolted “hard short” fault in 

which high current flows through a metal-to-metal connection [17]. Arc flash involves 

short-term current flowing through the ionized air or along an ion path and may not draw 

sufficiently high RMS current, or have a high enough I2t energy to trip a thermal circuit 

breaker. This is particularly true in finite-energy systems, such as many of the dc 

microgrids and systems energized by renewable energy sources. In these cases, an arc, 

like the one shown in Figure 4, can be sustained for hours or even days because the 

 

 

Figure 3: An example of aging cable connectors which are very likely to cause loose connection 

[3]. 
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overcurrent protection devices never activate [4]. Thus the fire and safety hazards are left 

undetected and unmitigated.  

Unlike an AC system in which power electronics are typically only found at the 

point-of-load, a dc system requires the use of dc/dc converters throughout the distribution 

systems [18] which adds distributed capacitance throughout the system providing 

numerous coupling pathways for high-frequency signals. High-frequency noise from the 

dc/dc converter switching and other electromagnetic interference could obfuscate the arc 

signature, allowing an arc to establish and be sustained undetected [19].  

In order to meet the goal of the SunShot Initiative launched by the U.S. Department 

of Energy in 2011, arc fault protection must be provided within the context of $0.40/watt 

balance of system and $0.10/watt power electronics costs. A highly integrated arc fault 

detector and circuit interrupter is the best solution to address the safety needs of the 

industry installations and retrofit applications [20]. 

 

Figure 4: Arcing persists in the DC wiring even after a fire consumes a portion of the combiner 

box [4]. 
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1.2 Outlook for Photovoltaic Industry 

The growth of photovoltaics (PV) has been increasing exponentially for more than 

two decades around the world, as illustrated in Figure 5 [2]. During this period of time, 

PV has evolved from a small market of applications by early adopters towards a 

mainstream electricity source. Economic incentives, such as feed-in tariffs, were 

implemented by a number of governments when PV systems were first recognized as a 

promising renewable energy source. Consequently, the cost of PV installation declined 

significantly due to the improvements in the technology and economies of the scale [2, 21, 

22].  

PV deployment has grown rapidly in the United States over the past several years. 

As shown in Figure 6 [5], the compound annual growth rates (CAGR) for the U.S. 

residential commercial and utility-scale PV sectors from 2010-2015 were 46%, 43%, and 

101%, respectively. Wide adoption of solar energy has been acknowledged to strengthen 

 

Figure 5: Cumulative regional PV installation [2]. 
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U.S. economic competitiveness in the renewable energy race, help cut carbon pollution to 

combat climate change, and secure America’s energy future. The United States has 

immense potential to power the country with solar energy: photovoltaic (PV) panels on 

just 0.6% of the nation’s total land area could supply enough electricity to power the entire 

United States [23]. PV can also be installed on rooftops without actually using any land. 

Further, as a domestic energy source, solar supports broader national priorities, including 

national security, economic growth, and job creation [23-25]. 

The SunShot Initiative was launched in 2011 by the U.S. Department of Energy 

launched with the goal of making solar electricity cost-competitive with conventionally 

generated electricity by 2020 [25, 26]. At the time, this meant reducing photovoltaic (PV) 

and concentrating solar power (CSP) prices by approximately 75% - relative to 2010 

prices – across the residential, commercial, and utility-scale sectors. The SunShot Vision 

 

Figure 6: U.S. PV market growth, 2004-2015, in gigawatts of direct current (DC) capacity [5]. 
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Study published by the Department of Energy’s Solar Energy Technologies Office 

(SETO) in 2012 projected that achieving the SunShot price-reduction targets could result 

in solar meeting roughly 14% of U.S. electricity demand by 2030 (11% PV, 3% CSP) and 

27% (19% PV, 8% CSP) by 2050 – while reducing fossil fuel use, cutting emissions of 

greenhouse gases and other pollutants, creating solar-related jobs, and lowering consumer 

electricity cost [25, 26]. 

The SunShot initiative aims to reduce the total installed cost of solar energy 

systems to $0.06 per kilowatt-hour (kWh) by 2020 [25, 26]. Over the past five years, 

cumulative U.S. solar deployment has increased more than tenfold. The system price has 

dropped by 54% for utility scale, 63% for commercial, and 55% for residential systems 

(shown in Figure 7) and the levelized cost of energy (LCOE) has dropped by as much as 

65% (shown in Figure 8) [6]. The recent report series “On the Path to SunShot” [6, 27-33] 

shows that today, at the halfway mark of the SunShot Initiative’s 2020 target date, SunShot 

is about 70% of its way toward achieving the program’s goal. Since SunShot’s launch in 

2011, the average price per kWh of a utility-scale photovoltaic (PV) project has dropped 

from about $0.21 to $0.11 [6]. 

Although the remarkable reduction in PV system prices and LCOE have been 

archived since the launch of the SunShot Initiative, significant additional reductions are 

needed to realize the 2020 SunShot Initiative. Among the various research to reach the 

SunShot goal, intelligent power electronics devices that maximize the power output from 

the PV arrays while ensuring overall system safety, reliability, and controllability are 

indispensable. A smart inverter functionality of predicting faults and improve system 
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reliability could effectively extend the lifetime of the PV installations, and more 

importantly, guarantees human safety around the systems.   

  

 

Figure 7: Historical, current, and SunShot 2020 target system prices for the utility, commercial 

and residential sectors (weighted national average for fixed-tilt systems) [6]. 
 

 

 

Figure 8: Historical, current, and SunShot LCOE calculations [6]. 
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1.3 Arc Faults in AC Systems 

AC arc faults have been well studied. The detection of AC arc faults has been well 

developed [12, 34-38] with commercial products designed and UL listed [39] for safety 

[40-42]. Comparatively, a much smaller body of work pertaining to arcs in dc electrical 

systems and commercialization of sensing and protecting devices has only recently begun 

[43]. A significant complication to their detection is that arcs in dc systems are not 

periodic, and thus may not have easily recognizable amplitude or frequency signatures for 

pattern recognition-based detection techniques. Spectral analysis using Fourier techniques 

to decompose the frequencies of a sustained arc or bolted fault requires a linear system 

and a stationary signal, and therefore Fourier techniques are not capable of reliably 

detecting arc flash.  

In AC systems, signal decomposition using wavelet transform and wavelet packet 

have been proposed and worked well to detect the impulse-like effect of the discontinuous 

arc due to periodic extinguishing and re-ignition associated with the main frequency zero-

crossing [11, 12, 34-36, 44]. Waveforms shown in Figure 9 are wavelet decomposition 

result of an AC arcing event at a residential house in College Station, Texas. The arcing 

was occurring within a 15A standard-duty single-pole light switch in a bathroom location. 

It is worth noting that the UL listed arc-fault current interrupter installed upstream in the 

circuit breaker box, in accordance with NEC and local code requirements, failed to detect 

the arc and de-energize the branch circuit. The arcing had been occurring sporadically for 

many weeks before this data being captured. The arc created enough energy to make the 

switch warm to the touch and created audible “cracking” noise. 
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While the exact algorithm in the circuit breaker is unknown, referring to Figure 9, 

the left is a healthy signal on the bottom, and above it shows a 3-level wavelet transform 

result of this non-arcing signal. On the right is the 3-level wavelet transform on the arcing 

signal with the same wavelet and the original time domain waveform of the arcing event.  

It is worth noting that the comparison of the wavelet analysis results of these real-

world signals matches what was demonstrated in the aforementioned literature: under AC 

conditions, the electric arc phenomenon can be described as “spark gap”. The spark gap 

will not conduct until the applied voltage across the gap reaches the breakdown point. The 

spark gap stops conducting once the voltage decreases to the breakdown point. This “re-

ignition and extinction” process occurs every time the line voltage waveform hits the zero 

crossing. Since wavelet transform is particularly effective at discriminating discontinuous 

transients in the signal, impulse-like signals show up in the wavelet transform whenever 

the arc re-ignites or extinguishes. The pattern of this arcing event is periodic with two 

times the frequency of the supplied voltage. Thus, it is fairly easy to be detected in practice.  
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Figure 9: Electric arc in AC systems. 

On the left is the 3-level wavelet decomposition and the original signal of a healthy 60Hz 

voltage signal; on the right is the 3-level wavelet decomposition and the original signal of the 

same system with arc happening. 
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1.4 Motivation of This Work 

While arc faults are rare in photovoltaic installations, more than a dozen 

documented arc-faults have led to fires and resulted in significant damage to the PV 

system and surrounding structures [45]. 

Arc faults can occur in PV systems for a variety of reasons. In the exposed wires, 

there can be chaffing or abrasion to external conditions. For wires in a conduit, thermal 

expansion may be sufficient to cause abrasion, particularly if wire insulation was damaged 

during installation. Also, the modular nature of the string design means that there are a 

large number of connectors in the wiring between modules. Each module connector is a 

potential point of failure. In addition, modern grid-interactive PV system designs employ 

voltages as high as 600V [46]. High-voltage DC arcs are difficult to extinguish while the 

system is energized. Moreover, a traditional PV module has no means to disconnect the 

power source from the DC conductors. Even when the system is shut down, the conductors 

remain energized by the solar cells.  

The PV electrical fire incidents caused by arc faults are the result of high-

temperature plasmas produced as current passes across separated and damaged 

conductors. In response, the 2011 National Electrical Code Section 690.11 – requiring 

listed PV arc-fault circuit interrupters on PV installations – was created to reduce the 

likelihood of an electrical fire [46]. For PV inverter, smart combiner box, and original 

equipment manufacturer (OEM) products to become listed, the device must undergo a 



 

13 

 

sequence of tests defined in UL 1699B to verify its safety, ability to detect arc faults, and 

ensure a basic level of unwanted tripping [43]. 

From Sandia’s unwanted tripping survey with UL 1699B-listed products [47], it is 

evident that there are limitations in algorithms of most of the listed products on the market. 

The motivation of this work is to study the electrical characteristics of the arc, extract 

salient features, and develop a more robust solution to avoid no-detection and false 

detection in real-world applications.  
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1.5 Dissertation Outline 

This dissertation is organized as follows: 

Chapter II: Existing arc fault detection approach in PV 

 An existing arc fault detection approach which is widely adopted on many 

AFCIs on the market is studied. 

 The intrinsic limitations of the tradition approach are explained. 

Chapter III: Arc signal analysis using wavelet transform 

 The fundamental theory of discrete wavelet is introduced.  

 The reason why wavelet transform might be a better fit for this application 

than the traditional Fourier-based approaches is analyzed. 

 Hardware implementation strategy of the wavelet transform is illustrated. 

Its feasibility for sample-by-sample real-time analysis is explained. 

 A mathematic model of the arc is simulated in MATLAB / Simulink. 

 Real-world waveforms measured from photovoltaic modules and an 

experimental arc generator are tested. 

Chapter IV: Arc fault detection using wavelet transform and support vector 

machines 

 A few basic concepts of machine learning are introduced. 

 Feature extraction using wavelet transform and Parseval’s theorem is 

proposed. 

 Theory and derivation of support vector machines are briefly described. 
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 A couple of feature rescaling strategies are evaluated using cross-

validation. 

 An exhaustive search for the optimal feature extraction and feature 

selection strategies is performed. 

Chapter V: Contributions and future work 

 The contributions of the work are summarized. 

 Future research interests are presented. 
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2. EXISTING ARC FAULT DETECTION APPROACH IN PV

There are currently commercial products available and even required in some 

applications for AC arc detection in residential AC systems. Known as arc fault circuit 

interrupters (AFCIs), these products are required to detect both series and parallel arc 

faults [39]. AFCIs typically use current sensors and analog filters to acquire a filtered 

analog current signal in a specific frequency band where the arc fault signal is assumed to 

be most detectable. The filtered time-domain current signal is then processed, usually by 

proprietary detection algorithms and carefully tuned threshold setting in a digital signal 

processor (DSP) or microprocessor [40, 42]. Some research, however, has shown that 

neither branch/feeder AFCI nor combination AFCI would accurately detect all series arc 

faults [48]. This could be in part due to how the threshold of the detection algorithm was 

tuned and the assumptions made in the filter as to the frequencies in which the arc 

signature signal appears. 

To give an example, a commercially available solution is designed to detect arc 

fault in a dc PV system using fast Fourier transform (FFT) as the detection method. The 

process, shown in Figure 10, uses a wide bandwidth coupled inductor circuit. An isolation 

transformer is used to isolate the high DC voltage and current from the arc monitoring 

circuit. The application in a PV string array is shown in Figure 11. The detection method 

∗  Reprinted with permission from “Arc Fault and Flash Signal Analysis in DC Distribution Systems 
Using Wavelet Transformation,” by Z. Wang and R.S. Balog, 2015, IEEE Transactions on Smart Grid, vol. 

6, pp. 1955-1963. © 2015 IEEE
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assumes that the arc signature lies predominantly in the frequency band between 40 kHz 

and 100 kHz and uses a pre-filter to condition the analog signal [49]. Nevertheless, other 

non-arcing related signals, such as switching harmonics from inverters and DC/DC 

optimizers may also generate signals in this frequency band which can lead to false 

detection or non-detection by masking the arc signature. Obviously, non-detection is 

detrimental since the hazard is undetected. False detection is also undesirable because the 

response may unnecessarily shut down the system, causing loss of revenue or even the 

potential for grid instability when the PV generation trips offline unexpectedly and 

needlessly. 

 Although the conventional Fourier transform is deeply researched and widely 

used, the fact that it works best for periodic signals is a significant limitation. The nature 

of arc faults in power systems is not periodic [11]. Further, only frequency information is 

given by traditional Fourier transform approaches; not enough time-domain information 

is provided to find out exactly when the event occurs. Such temporal localization could 

help correlate the electrical arc characteristics with other accompanying events such as 

lighting or fast transients that couple from other devices in the system. 

The short-time Fourier transform (STFT) is a Fourier-related transform used to 

determine the sinusoidal frequency and phase content of local sections of a signal as it 

changes over time. This transform still has a fundamental drawback in that the length of 

the window used in the STFT is the same for all frequencies which leads to a fixed 

resolution. The window length selection then becomes a tradeoff between frequency 

resolution and time resolution. A large number of samples is required to obtain high 
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frequency resolution, which in turn causes low time resolution. A shorter window provides 

better time resolution but inferior frequency resolution [50, 51]. 

It is also worth pointing out that in order to minimize the spectral leakage, window size 

usually has to be chosen carefully to meet the coherent sampling requirement. However, 

the arc fault signature is distributed in a wide frequency band [49, 52]. It is impossible to 

choose a perfect window to accurately extract all the relevant information using Fourier 

transform based methods. 

In conclusion, discrete STFT might be suitable for time-frequency domain analysis 

of harmonic related disturbances, but it is not ideal for capturing abrupt disturbances or 

short transient signals. 

 

 

Figure 10: System diagram of a commercially available solution. 

 

 

Figure 11: System application of SM73201 to detect series arc faults by sensing current. 
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3. ARC SIGNAL ANALYSIS USING WAVELET TRANSFORM 

 

3.1 Discrete Wavelet Transform 

The wavelet transform is a mathematical tool for signal analysis first introduced in 

1909 and further developed gradually since the 1970s. Wavelet theory establishes that a 

general transient signal can be constructed by the superposition of a set of special pieces 

of signals that occur with different time scales and at distinct times. A few typical 

continuous wavelet functions are given in Figure 12 [53]. For any signals that can be used 

as wavelets, they must satisfy the admissibility criteria: 

 The signal must have a zero mean; 

 The signal must be oscillatory; 

 The signal must decay to zero quickly. 

The wavelet transform (WT) is a linear transformation like the Fourier transform. 

Unlike FFT, it allows time localization of different frequency components of a given 

                                                 

 Reprinted with permission from “Arc Fault and Flash Detection in DC Photovoltaic Arrays Using 

Wavelets,” by Z. Wang and R.S. Balog, 2013, IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 

1619-1624, © 2013 IEEE. Reprinted with permission from “Arc Fault Signal Detection – Fourier 

Transformation vs. Wavelet Decomposition Techniques Using Synthesized Data,” by Z. Wang and R.S. 

Balog, 2014, IEEE 40th Photovoltaic Specialists Conference (PVSC), pp. 3239-3244, © 2014 IEEE. 

Reprinted with permission from “Arc Fault and Flash Signal Analysis in DC Distribution Systems Using 

Wavelet Transformation,” by Z. Wang and R.S. Balog, 2015, IEEE Transactions on Smart Grid, vol. 6, pp. 

1955-1963, © 2015 IEEE. Reprinted with permission from “High Fidelity Replay Arc Fault Detection 

Testbed,” by H. Zhu, Z. Wang, S. McConnell, P.C. Hatton, R.S. Balog and J. Johnson, 2016, IEEE 43rd 

Photovoltaic Specialists Conference (PVSC), pp. 1767-1772, © 2016 IEEE. Reprinted with permission from 

“Arc Generator for Photovoltaic Arc Fault Detector Testing,” by P.C. Hatton, M. Bathaniah, Z. Wang, and 

R.S. Balog, 2016, IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp. 1702-1707, © 2016 IEEE. 

Reprinted with permission from “Real Time Arc Fault Detection in PV Systems Using Wavelet 

Decomposition,” by H. Zhu, Z. Wang, R.S. Balog, 2016, IEEE 43rd Photovoltaic Specialists Conference 

(PVSC), pp. 1767-1772, © 2016 IEEE. 
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signal [54]. The wavelet transform cuts up data or functions or operators into different 

frequency components, and then studies each component with a resolution matched to its 

scale. 

The wavelet analysis procedure is based on a wavelet prototype function called a "mother 

wavelet" which provides a localized signal processing method to decompose the 

differential signal into a series of wavelet components, each of which is a time-domain 

signal that covers a specific frequency band [55, 56]. Wavelets are particularly effective 

in approximating functions with discontinuities or sharp changes like power system fault 

signals [57]. With proper choice of the mother wavelet, the wavelet transformation is a 

good tool for signal analysis and fault feature extraction.  

The wavelet transform is a powerful tool for statistical analysis in signal processing 

which have been adopted in a broad range of applications, for example: 

 Data and image compression 

 Partial differential equation solving 

 Pattern extraction and recognition 

 Texture analysis 

 Noise/trend reduction 

 Signal de-noising 

 Due to the wide variety of signals and problems encountered in power 

engineering, there are various suitable applications of the wavelet transform, such as fault 

detection, load forecasting, and power system measurement. In addition, information 

about power disturbance signals is often a combination of features that are well localized 
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(a) Scaling function and wavelet function of Daubechies 3 (db3) 
 

      
     

 (b) Scaling function and wavelet function of Daubechies 9 (db9) 
 

      
 

(c) Scaling function and wavelet function of Symlets 13 (sym13) 
 

Figure 12: Scaling and wavelet functions of db3, db9, and sym13. 
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temporally or spatially such as power system transients. This requires the use of versatile 

analysis methods to handle signals regarding their time-frequency localization, which is 

an excellent area to apply the special property of wavelets [58]. 

The discrete wavelet transform is any wavelet transform for which the wavelets 

are discretely sampled. The discrete wavelet transform (DWT) is defined as 

 


Zn kj nnskjC )()(),( ,     ZkZj  ,  

 


Zn kj nnskjD )()(),( ,  

ZkZj  ,  

where ),( kjC  and ),( kjD  are the corresponding approximation and detail coefficients, 

n is the sample number, )(ns  is the signal to be analyzed, )(n  is the discrete scaling 

function (also called the father wavelet), and )(n is the mother wavelet. For dyadic-

orthonormal wavelet transform, a series of rescaled and shifted functions can be derived 

by: 

)2(2)( 2/

, knn jj

kj     

)2(2)( 2/

, knn jj

kj     

where the set of )(, nkj s are called daughter wavelets 

With this initial setting, the DWT can be easily implemented by the multi-

resolution analysis (MRA). Impulse responses of the low-pass and the high-pass filters 

corresponding to the continuous wavelets in Figure 12 are listed in Figure 13. As shown 

in Figure 14, at each level j, approximation signal Aj (represented by linear combinations



 

23 

 

 

      
 

(a) Impulse response of the low-pass and the high-pass filter of Daubechies 3 (db3) 
 

      
     

 (b) Impulse response of the low-pass and the high-pass filter of Daubechies 9 (db9) 
 

      
 

 

(c) Impulse response of the low-pass and the high-pass filter of Symlets 13 (sym13) 
 

Figure 13: Impulse response of low-pass and high-pass filters used db3, db9, and sym13. 
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of father wavelets at the jth level) and detail signal Dj (represented by linear combinations 

of mother wavelets at the jth level) can be created：  

 


Jj jJ DAs
 

The function above signifies that s is the sum of its J-th level approximation AJ 

improved by the fine details Djs[59].  

 

  

Vj

A1

A0

D1

A2 D2

 

Figure 14: Dyadic wavelet decomposition tree. 
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3.2 Filter Banks and Selection of Mother Wavelet 

Multi-resolution signal analysis using DWT can be implemented by filter banks, 

where a wavelet and a scaling function are associated with a high-pass and a low-pass 

filter respectively. As shown in Figure 15, on each level of decomposition, the input signal 

is split into a lower frequency component and a higher frequency component. With dyadic 

wavelet filters (wavelet transform), only the low-frequency part is further decomposed. In 

comparison, binary-tree wavelet filters (wavelet packets), which split both low- and high-

frequency components on each level, lead to decomposed signals with an equal bandwidth 

[50]. In this thesis, only dyadic wavelet filter implementation is discussed.  

The criteria for selecting the mother wavelet adopted in this dissertation are 

summarized in [60, 61]: 

1) The wavelet function should have a sufficient number of vanishing moments to 

represent the salient features of the disturbances. 

 

Figure 15: Dyadic filter bank. 
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2) The wavelet should provide sharp cutoff frequencies to reduce the amount of 

leakage energy into the adjacent resolution levels. 

3) The wavelet basis should be orthonormal. 

4) For applications where the information lasts for a very short instant, wavelets with 

fewer numbers of coefficients are better choices; on the other hand, for signal signature 

spread over a longer period, wavelets with larger numbers of coefficients tend to show 

smoother results. 

There are several well-known families of orthogonal wavelets named after their 

inventors. An incomplete list includes Harr, Meyer family, Daubechies family, Coiflets 

family, and Symmlets family [62]. Daubechies wavelets are chosen in this paper due to 

their outstanding performance in detecting waveform discontinuities [60, 63]. 

The frequency response of filter banks of Daubechies 3 (db3), Daubechies 9 (db9), 

and Daubechies 19 (db19) are shown in Figure 16. It can be seen that the frequency 

response of db9 filters has a significantly sharper cutoff frequency in comparison with that 

of db3 filters. But db19 does not provide an equally significant improvement over db9. 

Considering the extra computational load brought on by wavelets with more coefficients, 

db9 is a good compromise. 

For a dyadic-orthonormal wavelet transform, the first level detail signal has a 

frequency range of fs/4-fs/2, where fs is the sampling frequency of the time domain 

disturbance signal. The second-, third-, fourth-, fifth-, and higher-level signals have 

frequency ranges of fs/4-fs/8, fs/8-fs/16, fs/16-fs/32, fs/32-fs/64, respectively. 
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By way of example, consider a DC system in which there is switching noise 

introduced by the power electronic converters in the system. The original time domain 

waveform and the spectrum of this signal are plotted in Figure 17(a). Wavelet analysis 

using db3, db9, and db19 is performed on this signal. The 4th level detail component was 

designed to span the frequency band 31.3 kHz – 62.5 kHz. The FFT in Figure 17(a) shows 

that only one harmonic resides in this frequency band and has a magnitude of only about 

0.002 Amps. As shown in Figure 17(b), it obvious by inspection that db9 and db19 provide 

better approximations of the designated frequency band of the original signal than db3, 

but db19 does not provide a substantial improvement in comparison with db9.  

Since the goal of wavelet analysis is to separate the arc fault signal from electronic 

converter noise (which resides in specific frequency bands) and other electrical 

disturbances (which usually vary slowly), a narrower transition frequency region leads to 

less information leaking into other decomposition levels and a more accurate signal 

approximation. While the db9 and the db19 filter banks are better choices than the db3 

filter bank, from a hardware implementation standpoint, db9 filters require less 

mathematical operations than db19 wavelet. Thus we can tradeoff the accuracy of the 

wavelet decomposition with processing overhead of the real-time wavelet filter banks 

implemented in a microcontroller (MCU) or digital signal processor (DSP).  
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(a) db3 

 
(b) db9 

 
     (c) db19 

 
Figure 16: Frequency response of filter banks using db3, db9, and db19. 
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(a) 

 

 
(b) 

 
Figure 17: (a) DC system with switching noise: Time trace of the signal (blue); FFT spectrums 

of the signal (red). 

(b)Frequency response of filter banks using db3, db9, and db19. 
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3.3 Hardware Implementation of DWT 

  The hardware implementation of a 3-level DWT filter bank is illustrated in Figure 

18. In order to implement the process with optimal efficiency, the cascaded filtering 

process can be reassigned into different sampling periods instead of completing the entire 

decomposition in a single sampling period. 

As shown in the figure above, the digital signal processing device only needs to 

perform one or zero filtering process in one sampling period with the optimized 

implementation strategy. Given the length of the filter M (number of filter coefficients) 

and the total number of decompositions D, the average number of complex multiplications 

in one sampling period is MD 2)21(   , which asymptotically approaches 2L. The 

memory space needed for the process is MD   samples. 

In comparison, the total number of complex multiplications needed for radix-2 

FFT over a sequence of N complex-valued numbers is NN 2log)2/( , and the memory 

space needed would be 2N. Considering the number of samples needed in STFT to achieve 

a fine frequency resolution, N is a large number comparing with the filter length M, which 

makes the FFT not ideal for sample-by-sample real-time implementations. 
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Figure 18: Hardware Implementation of a 3-level DWT.
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3.4 Arc Signal Analysis Using DWT - Simulation 

To simulate the arcing condition, black box modeling is commonly used to 

describe the arc interaction with the electrical network. The black box models use voltage 

and current traces from a circuit breaker test, together with a select differential equation, 

to produce a mathematical model for the desired arc under study. Most published work 

using black box models is based on the well-known Cassie and Mayr models. The 

mathematical model is tuned to a set of measured data by means of a proper selection of 

arc parameters including the time constant and the cooling power, which is normally taken 

as a function of arc current and voltage [64].  

An example circuit with series arcing is created in Simulink, as shown in Figure 

19, which is based on the Cassie arc model blockset developed in [19]. The Cassie arc 

model is written as a differential equation [65]: 











 1

1ln1
2

2

CU

u

dt

gd

dt

dg

g 
 

g the conductance of the arc 

u the voltage across the arc 

i the current through the arc 

Uc the constant arc voltage 

τ           the arc time constant 

The system bus voltage source is comprised of a dominant 1,000V DC component 

with small-amplitude AC components at 120Hz and 2,000Hz which represent single-
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phase double-frequency power ripple and power electronic switching noise respectively. 

The sustained series arc starts at 0.5s.  

The FFT results are shown in Figure 20. The DC voltage, without arc fault, is 

shown on the left side of Figure 20 while the voltage with the arc is shown on the right-

hand side of the figure. There is no easily distinguishable change in the FFT spectrum 

from before and after the onset of the arc. 

 

Figure 19: Simulink model. 

DC array system with 120Hz double-frequency power line ripple (AC voltage 2), 2 kHz 

switching ripple (AC voltage 1), and series arcing (Cassie arc model details listed in Table I). 

The arc model initially behaves as an ideal conductance with the value 1e4 Siemens until the 

arc “switches on” and then is governed by (4). This simulates the separation of the electrodes 

that initiates the arc. 

 

 

 

Table I: Parameters used with the Cassie arc model 

τ 1.2e-6 s UC 100 V 

g(0) 

 

1e4 S Separation time 0.5 s 
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By contrast, the result of the wavelet transform (Daubechies 9) shown in Figure 

21 clearly demonstrates an obvious difference in the wavelet transform from before and 

after the onset of the arc. This wavelet transform provides an easily observable signal. The 

chaotic characteristic of arc should be easily detected by DSP/microprocessor programs. 

 

Figure 20: FFT analysis of the synthetic DC voltage. 

(a) Voltage FFT signal before onset of arcing (analysis window starts at 0.2s); (b) Voltage FFT 

after onset of arcing   
 

 

 

 

 

Figure 21: Wavelet decomposition result of synthetic arcing waveform. 

(At 0.5s, the switch across the arc generator opens and current begins to flow in the arc. Load 

voltage signal is processed by wavelet transform by Daubechies 9 as above.) 
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3.5 Arc Signal Analysis Using DWT – Real-World Signal 

3.5.1 Experiment Setup and Test Procedure 

The experiment performed demonstrates a series arc sustained for about half a 

second. The arc fault generator (shown in Figure 22) is comprised of two brass electrodes 

(a stationary electrode and a movable electrode) contained in a polycarbonate tube for 

safety. The series arcing condition is created initially placing the electrodes in contact and 

then gradually separating the two electrodes until a desired air gap, in this case 2mm, is 

achieved. This is the so-called “pull-apart method” for generating a series arc. The system 

is powered by two PV panels connected in series (details are in Table II). A resistor serves 

as the load in this experiment. The brass electrodes are polished before every experiment 

trial to remove the oxidized and melted brass from the previous experiment. Figure 23(a) 

shows the electrical circuit design; Figure 23(b) shows the experiment station; Figure 

23(c) arcing event.  

3.5.2 Load Voltage Signal Processing 

According to some previous research study and arc fault signal analysis on DC 

systems, the bandwidth for the FFT analysis is adjusted as 1.5 kHz – 45 kHz [52]. Since 

the sampling frequency of the acquired data is 1 MHz, the frequency band of the 4th – 6th 

level of wavelet decomposition was selected to be approximately 7.8 kHz – 62.5 kHz. 

Waveforms shown in Figure 24 are the sensed load voltage signal and the processed FFT 
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(a) Design of the arc generator 

 

 
 

(b) The arc generator 
 

Figure 22: The arc generator made for the arc signal acquisition experiment. 
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Voltage 
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Arc Fault 

Generator

Solar Panels

 
(a) Circuit diagram of the experiment 

 

 

(b) Experiment Setup 

 

 

(c) Arc created in the experiment 

Figure 23: Experiment setup for arc signal acquisition. 



38 

results for both arcing and non-arcing portions of the waveform as computed using 

MATLAB. Figure 25 shows the 4th – 6th level of wavelet decomposition using Daubechies 

9 mother wavelet. 

3.5.3 Result Discussion 

From the result in the previous section, it can be seen that it is possible to detect 

arc faults using FFT, but it is not as significant as using wavelet transform, especially 

when it comes to the problem for a threshold setting for arc fault determination. Setting 

the detection thresholds involves consideration of the signal-to-noise ratio, which may 

change from application to application. However, when using wavelet transformation, the 

arc signature is significantly distinguished from the non-arcing signal and is easy to be 

detected when the detection method is embedded in a microcontroller for real-time arc 

fault detection. Further, since the wavelet transform preserves the time-domain 

localization information, the precise time of the arc is available for cross-correlation with 

Table II: Experimental conditions 

Load type Fixed resistance: 10 Ohms 

DC source type 2 PV panels connected in series 

Panel type 1STH-245-WH 

Radiance 815 W/m2 

Panel temperature 39 ̊C 

Ambient temperature 26 ̊C 

Oscilloscope Tektronix MSO 4034 

Sampling rate 1 MHz/S 

Bandwidth 350MHz 

Memory size 10M points 
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other system events to improve the confidence of arc fault detection rather than some other 

benign electrical events.  

  

 

Figure 25: Wavelet transform result. 

Top: 31.3 ~ 62.5 kHz; Middle: 15.6 ~ 31.3 kHz; Bottom: 7.81 ~ 15.6 kHz 

 

Figure 24: The load voltage and FFT results for non-arcing and arcing part of the signal. 
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3.5.4 Signal Analysis Using Composite Signal 

To better approximate real-world input for arc fault detectors in PV systems, the 

arcing information needs to be combined with the real-world background noise. Rather 

than combining the inverter noise data and synthetic arc signal using simple amplitude 

superposition, we can combine the signals at specific relative power magnitudes. Knowing 

the relative strength of one signal versus the other allows one to explore the limits and 

therefore the range of detectability. We define a metric called the arc-signal-to-noise ratio 

(ASNR) which determines the proportion of power from each source in the composite 

signal.  

noise

arc

P

P
ASNR 

 

Adjusting this user-specified parameter in the synthesizing process enables the 

synthesis of a family of test signals for validation, sensitivity, and efficacy studies of the 

detection algorithm based on real-world signals and scenarios. The composite signal is 

synthesized by using the function: 

original

desired

composite
ASNR

ASNR
ArcInvArc 

 

The performance of the FFT arc detection method compared to the wavelet 

decomposition method are further studied using the synthetic waveforms.  

In this work, a test signal is synthesized using time-domain inverter noise signal 

data measured from a PV array and time-domain arc signals obtained from an arc 

generator. Once these synthetic signals are created with specified ASNR levels, discrete 
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Fourier transform and discrete wavelet transform are comparatively studied. The influence 

of sampling frequency on the two analysis approaches is examined. The wavelet transform 

analysis with distinct types of wavelets are also evaluated and compared. Some analysis 

results are shown below. 

3.5.4.A. Composite Signal with High-Rate Data (Fs=1MHz) 

A composite signal with a duration of one second is synthesized by combining 

inverter noise and arc fault signals at a sampling rate of 1MHz to achieve an ASNR of 0.1. 

FFT analysis, shown in Figure 26, is first performed on the entire one-second sample 

(second from top), the non-arcing portion (third from top) and then the arcing portion 

(bottom) of the waveform. The strong presence of the inverter switching frequency and 

harmonics appears to overshadow the arc noise, making detection difficult.  

By contrast, the 7th decomposed signal (covers the frequency band of 3.9 kHz – 

7.8 kHz) from the wavelet transform is selected. Different decomposition results using 

db3, db9, and db19 are shown in Figure 27. The temporal waveforms for the selected 

frequency band clearly indicate the causality and timing synchronization of the initiation 

and extinction of the arc. 

3.5.4.B. Composite Signal with Downsampled Data (Fs=100 kHz) 

The composite signal from part A is downsampled by a factor of 10 to produce a 

composite signal with a sampling rate of 100 kHz and a total of 100k sample points for 

the one-second signal. The FFT and wavelet analysis results are shown in Figure 28 and 
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Figure 29 respectively. The decomposed signals cover the band of 3.125 kHz – 6.25 kHz 

are selected. 

3.5.4.C. Result Comparison 

From the FFT analysis results shown in Figure 26 and Figure 28, it is difficult to 

find any significant detectable arc fault features by comparing the FFT result of the non-

arcing part and the arcing part of the signal, especially when the sampling rate is decreased 

(Figure 28). Slight differences do exist between the two spectral analysis graphs, but the 

fault detection threshold can be very difficult to select, particularly if a detection technique 

using limit-lines is used. Detection threshold setting involves consideration of the signal-

to-noise ratio, which may change from application-to-application. Selecting a threshold 

without delicate calculation and thorough understanding of the system behavior would 

lead to not triggering or false triggering of the protection mechanism. 

However, from the wavelet analysis plots, not only arc features can be easily 

distinguished from the non-arcing signal, but the exact moments when the arc fault ignites 

and extinguishes can also be observed. This facilitates selection of a detection threshold 

for an embedded microcontroller for real-time arc fault detection. It also enables 

characterization of the arc event. 

By comparing the analysis result using three different Daubechies wavelets, we 

can conclude that decomposition results using db9 and db19 are significantly better than 

using db3. But db19 doesn’t provide much improvement to the result of db9. This is 

consistent with our frequency response analysis of the filter banks. By taking the DSP 
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computational load into consideration, db9 is a good compromise between calculation 

speed and decomposition quality. 

As shown in part A and part B, the sampling frequency has a significant impact on 

both Fourier and wavelet detection approaches. With the signal sampled at 100 kHz, it is 

almost impossible for the Fourier transform to capture any arc fault features. While the 

sustained presence of the arc is not as obvious as when the sampling frequency is 1MHz 

for wavelet decomposition, we should still be able to draw enough information to detect 

the arc fault. Thus, detection approaches based on wavelet can use a lower sampling rate 

than Fourier transform to accomplish accurate arc fault detection if indeed Fourier 

methods can accomplish it at all. 
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Figure 26: Composite signal (Fs = 1MHz); FFT analysis of the entire composite signal (red); 

FFT of the non-arcing part of the signal (red); FFT of the arcing part of the signal (green). 

 
Figure 27: Wavelet analysis (db3 – magenta, db9 – red, db19 - grey) of the composite signal 

(Fs = 1MHz). 
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Figure 28: Composite signal (Fs = 100kHz); FFT analysis of the entire composite signal 

(magenta); FFT of the non-arcing part of the signal (red); FFT of the arcing part of the signal 

(green). 

 
Figure 29: Wavelet analysis (db3 – magenta, db9 – red, db19 - grey) of the composite signal 

(Fs = 100kHz). 
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3.6 Revised Arc Generator 

The arc generator (AG) is a platform for producing arc faults for research, testing, 

and standardization for the PV industry. Previous drafts of the standard by the UL 1699b 

committee included a “steel wool” method to initiate the arc, which works for producing 

both series and parallel arc faults [43]. One problem with this approach is that the initial 

arc current must flow around the AG through a different path and then switch to the AG 

which could alter the system operation (such as maximum power point tracking) or 

introduce noise into the system that is not part of the arc itself. This can create a false 

detection or mask detection of the true arc. Another problem is that the steel wool was 

found to dominate the initial arc characteristics [43]. As such, the device under test (DUT) 

affectionately became known as a “steel wool detector”. 

Another approach to creating an arc is by using a pull-apart method in which two 

electrodes are initially in contact, establishing the current path, and then separated thereby 

creating an arc [43]. Although this method only works for series arc faults, it does not 

depend on an ignition medium. The test bed presented earlier in section 2 of this 

dissertation was the first attempt. It consisted of brass electrodes and a polycarbonate tube 

with one fixed and one moveable plate. While it produced good arc results, there were 

several design limitations including limited thermal dissipation and manual electrode 

separation that limited it from becoming a robust testbed. Repeated arcs gradually ablated 

the profile of the electrodes, which alters the electric field, and hence could change the 

signature of the arc [66]. Further, sustained arcs, or high repetition rate of arcs, generate 

high temperature which melted the AG as shown in the figure below. Thus a new AG was 
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needed with improved electrodes, capability to dissipate heat generated from the arc and 

to provide precise and automatic control of the electrode separation. 

In order to overcome the limitations encountered with the previous design and to 

add new features such as the ability to create a horizontal or vertical arc, a new AG was 

developed from the ground-up. The new AG allows for a variety of electrodes with varying 

geometries to be used. The electrodes are mounted on a linear actuator to precisely control 

their separation distance, velocity, and acceleration; the linear actuator is driven by a 

stepper motor which is controlled via a microcontroller and computer interface; and the 

entire assembly is contained within an enclosure for safety and to eliminate arc 

fluctuations from air movement. 

 

 

 

Figure 30: Melted mounting plate on the first generation AG. 
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3.6.1 Arc Generator Enclosure 

As previously mentioned, the first generation AG was limited by its ability to 

dissipate heat. The enclosed volume of the first generation AG was too small to reject heat 

into the ambient space, and there was not a sufficient heat sink to conduct heat from the 

electrodes. Thus the small volume, coupled with the low melting point of polycarbonate, 

resulted in a melted mounting plate during prolonged arc generation. 

The new AG was designed with a substantial increase in ambient space. The first 

generation AG had approximately 150 in3, and the new AG has approximately 3,500 in3. 

The figure below displays a picture of the new AG with the base and lid. The base is L-

shaped in order to allow the AG to be positioned in such a way that the electrodes are 

separating either horizontally or vertically 

 

 

Figure 31: The enclosure of the new AG. 
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3.6.2 Electrode Carrier 

The electrode carriers of the first generation AG were the major failures of the first 

generation AG. During arc generation testing where sustained arcs were repeated at a high 

rate or for prolonged periods, the electrodes increased to a temperature beyond the melting 

point and damaged the polycarbonate mounting plate. In order to prevent this type of 

damage occurring to the new AG, aluminum was chosen to mount the electrode carriers. 

An important safety feature of the electrode carriers is electrical isolation. If the 

electrode carriers are electrically isolated from the rest of the AG, then the AG becomes 

safer and more reliable by reducing shock hazard to humans and chances of component 

damage. An isolation voltage of 900V was specified to provide a 50% safety margin 

because typical grid-tie systems are rated at a maximum of 600V DC [46]. According to 

McMaster-Carr, the dielectric strength of the electrical insulator chosen (Garolite) is 350 

 

Figure 32: The electrode carriers. 
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V/.001”. The Garolite used in the new AG is 0.5 inches thick, thus resulting in insulation 

capabilities of up to 175 kV (see Figure 33). This is well above the specification however, 

a thicker slab of Garolite was needed to prevent damage to the slabs during fabrication 

A requirement for the new AG was electrode interchangeability and rotational 

adjustment. Since the new AG will (ideally) be used for UL standards development, it 

would provide robustness if the electrodes could be easily interchanged. The following 

figure displays an image of the ball-and-ring electrodes.  

3.6.3 Motor Control 

One of the issues encountered with the first generation AG was manual electrode 

separation. Although this method was easy to perform, it is not precise nor was it 

automated. This created inconsistencies in the resulting arc signatures because the 

separation speeds for each test was impossible to reproduce perfectly. To combat this 

 

Figure 33: Garolite voltage insulators. 
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issue, a stepper motor, controlled by a microcontroller-computer interface, was used to 

automate the process of electrode carrier separation. 

The Texas Instruments’ DRV8412 evaluation kit was used for this application. 

Relatively low-cost, this evaluation kit provides the user with plug-and-play capabilities 

that does not require much in-depth knowledge of stepper motor programming.   

The kit comes with a NEMA-23 stepper motor, two brushed DC motors (although 

included with the kit, they were not used in the presented AG setup), motor driver, C2000 

Piccolo F28035 MCU controlCARD, and motor control graphical user interface (GUI). 

More information about the DRV8412 evaluation kit may be found at 

http://www.ti.com/tool/DRV8412-C2-KIT.  

A picture of entire AG setup is shown in Figure 33.  

The full bill of materials (BOM) for the AG presented in this project is provided 

in Appendix B.  

3.6.4 Lessons Learned 

A number of issues were encountered with the AG during initial experimentation. 

The most prominent issue was the rigidity of the electrode carriers. The right-angle 

brackets were not mounted firmly enough, thus causing the brackets to move upwards 

relative to their axis of movement. This created inconsistencies in the number of motor 

steps required to generate an arc. To fix this problem, additional fastening points were 

added to the right-angle brackets to counteract the issue. 

http://www.ti.com/tool/DRV8412-C2-KIT
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Another issue involved the electrical connections of the electrodes. The ball-and-

ring electrodes are electrically connected by wrapping wires around the screws used to 

mount the electrodes to the right-angle brackets. Although this method is capable of 

adequate current flow for low-power arc generation, it is rather crude and could be 

improved. The ring electrode severely limits the options for electrical connections because 

the mounting screws are so small. Different choice of electrodes could provide more 

flexibility for electrical connections. 

  

 

Figure 34: The revised arc generator. 
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3.7 “Replay” Arc Fault Detection Testbed 

As an investigation and verification practice, arc generation using arc generator 

connected to a PV system is a common method used to study the characteristics of an 

electric arc [20, 45, 66-71]. However, the amount of effort required for the arc generation 

practice and the uncontrollability of arc power impede researchers to develop accurate 

detection algorithms. Controllable recreation which can genuinely represent the arc signal 

is a prerequisite to a successful detection: accurate evaluation of a valid arc and minimized 

the chance of nuisance tripping. 

In this work, a testbed is developed for the recreation of prerecorded real arc 

signals. The input to the system is a prerecorded signal acquired at a sufficiently high 

sampling rate. The desired output should be an analog signal that carries the same 

voltage/current of the original arc signal, and therefore, can be viewed as a truthful 

representation. An ideal replay system could enable a highly automatable and reproducible 

system for validation and efficacy studies of the detection algorithms based upon database 

with arcing and non-arcing events from different realistic fault scenarios. 

3.7.1 System Configuration 

As shown in Figure 35, the testbed system created in this work is comprised of a 

computer, a digital-to-analog converter (DAC), a resistive load, and an oscilloscope. 

Considering the DAC device might not be able to provide sufficient output power to 

recreate the original signal, an extra power amplifier is added to the system. 

There are several concerns need to be addressed when selecting equipment.  
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1) The output rate of the DAC should be high enough to maintain the true 

frequency characteristics of the original signal. If the sampling rate of the 

DAC device is not high enough, the prerecorded signal will have to be 

down-sampled. Therefore, not only is the information in the higher 

frequency bands lost in the process, but also the lower frequency 

components can be contaminated because of the aliasing effect. 

2) The chosen DAC device would need to have a high enough bit resolution 

to truthfully (to some extent) represent the amplitude and the minor 

variations in the original signals. 

3) The power amplifier would need to have dc output capability with output 

power rating higher than the prerecorded signals. 

In this work, PCIe-6361 from National Instruments and AE 7224 from Techron 

are used as the DAC and the power amplifier respectively. The NI PCIe-6361 offers up to 

 

Figure 35: Structure of the testbed. 
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2.86 MS/s output sampling rate for 16-bit data. The output voltage range is ±10 V. The 

AE 7224 is capable of amplifying the voltage up to 140 V with its maximum output power 

at 1.2 kW. 

The input to the testbed is prerecorded current signal sequence acquired from non-

arcing and arcing events. The digital sequences are converted into analog signals in the 

DAC and then amplified by the power amplifier. A 5Ω wire-wound resistor is used in the 

testbed as the resistive load. By tuning the rotary knob on the power amplifier, the output 

voltage of the power amplifier can be modified in order to achieve a truthful representation 

of the original signal. The commercially available arc fault detector (AFD) RD-195 from 

Texas Instruments is used as a DUT example. Waveforms at each stage of the replaying 

process can be observed and recorded on the oscilloscope. The actual lab setup of the 

testbed is shown in Figure 36.  

3.7.2 System Validation 

Arc signals have a wide frequency spectrum. Both low and high frequency 

characteristics can be used for evaluation and detection of arcing events. Thus, the 

frequency response of the testbed is expected to be constant within the band of interest, 

which is considered to be dc to 100 kHz in this work. Therefore, an accurate replay system 

is needed to ensure minimum distortion is introduced into the reproduction. A frequency 

sweep from 10 kHz to 160 kHz with 10 kHz interval on the input side is conducted for 

frequency response measurement. The input signal of the frequency sweep is generated in 

MATLAB, and the output of the DAC and the power amplifier are observed on the 
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oscilloscope. To ensure the smoothness of the digitized sine waves, the sampling rate of 

the input signal is set at 2.5 MS/s, which is much higher than the upper bound of the 

frequency sweep. The sampling frequency of the oscilloscope is 1 MS/s. 

Figure 37 shows the frequency response of replay system. Each test is performed 

three times and the result shown here is the average of the three trials. It can be seen from 

that the magnitude ranges from 0.978 to 1.005. Taking into consideration the possible 

measurement error, the magnitude response of the testbed is considered invariant within 

the band of interest. In the meantime, a linear phase where the phase response of the 

system is a linear function of frequency. The result is that all frequency components of the 

input signal are shifted in time (usually delayed) by the same constant amount. And 

 

 
 

Figure 36: Picture of the testbed. 
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consequently, there is no phase distortion due to the time delay of frequencies relative to 

one another.  

Besides the desirable frequency response for the steady-state signals, the accurate 

and fast response is also required since arc signals exhibit abrupt changes and chaotic 

behavior. The transient response properties include rise time, overshoot, settling time, 

delay time, peak time, and steady-state error. 

 Considering the possible measurement error from the oscilloscope, the testbed is 

believed to have an invariant magnitude gain and constant time delay within the frequency 

band of interests. Therefore, the testbed should have high fidelity reproduction capability- 

fast response with minimum magnitude and phase distortion is introduced for signal replay. 

  

 
Figure 37: Frequency response test result for the replay system validation. 
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3.8 Real-Time Arc Fault Detection Using Wavelet Decomposition 

Prior theoretical studies have implemented the DWT algorithm on prerecorded and 

synthesized arc signals. The results have demonstrated the potential of DWT for arc fault 

detection in PV systems. However, the reduction to practice into cost-effective real-time 

arc fault detection hardware, and the challenges involved in doing so, remains an open 

issue along with a direct comparison of hardware-based DWT to DFT. This section 

presents the results of developing a real-time arc fault detector (AFD) which uses DWT 

to analyze the measured PV current and a detection algorithm based on the power of the 

decomposed signal. 

The proposed DWT method was tested using prerecorded signals acquired by 

Sandia National Laboratories from real direct-current photovoltaic (DCPV) systems with 

operating inverters. Subsequent testing compared the proposed DWT AFD to the TI RD-

195 evaluation module, which is a commercially available AFD which adopts an FFT 

approach. All test signals here were prerecorded. And they are relayed using the replay 

testbed introduced in the previous section. 

3.8.1 Hardware of the Arc Fault Detector 

The RD-195 dc arc detection evaluation board from Texas Instruments is a 

commercially available AFD built on a C2000 DSP platform which adopts an FFT-based 

detection method. In order to implement the FFT, the PV current is sampled and block-

processed on a frame-by-frame basis. The system is shown in Figure 38.  
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Sold as an evaluation kit, users are able to customize parameters such as sampling 

frequency, frame size, windowing technique, frequency band, and detection threshold 

value. Since this off-the-shelf hardware is specifically designed for acquisition of DC 

current and arc fault detection in dc systems, it is chosen in this project for rapid 

prototyping and verification of the proposed DWT-based arc fault analysis method. 

A slight modification was made to upgrade the DSP from the original 

TMS320F29033 to TMS320F28335 while remaining in the C2000 product family. This 

upgrade enables a faster CPU clock rate which leads to a sampling rate up to 200 kHz 

while executing DWT filter bank in real-time on a sample-by-sample basis. 

 
 

Figure 38: Picture of the testbed. 
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3.8.2 Threshold Setting Based on Power Ratio 

From the wavelet decomposition results in the previous sections, it was found that 

the signal power from the 1st-level high-pass filter, which represents the frequency 

components roughly between 50 kHz and 100 kHz, demonstrates a noticeable increase 

when arcing occurs. In order to avoid false detection caused by accidental spikes in the 

signal, the detection decision is based on the average power of 128 consecutive samples 

in the first decomposed detail signal (D1). The signal power computation flow is 

illustrated in Figure 39. By calculating and comparing the average power of the processing 

frame and the average of power of a non-arcing frame, the threshold ratio between the two 

is chosen to be 1.4. That means: 

R = Pprocessing/Preference 

If R > 1.4   the frame being processed is determined to contain a potential arcing 

event. 

3.8.3 Implementation of DWT-Based Algorithm 

On the RD-195 evaluation kit, the current signal is sampled using the external 

SM73201 ADC connected via SPI to the MCU. Figure 40 shows the overall signal flow 

of the wavelet detection process. The sampling frequency of the ADC is set to be 200 kHz 

by an interrupt routine triggered every 5 μs which initiates data conversation of the ADC. 

An SPI interrupt routine is triggered when the conversion is complete and is followed by 

DWT for the new sample. The MCU is programmed to calculate the DWT result of 128 

consecutive samples per frame.  
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The time needed for the entire detection process has to be managed less than the 

sampling period (5 μs) in order maintain the sampling rate at 200 kHz. Data transmission 

through SPI takes 3 μs, which leaves us 2 μs to run the decomposition and detection 

algorithm. According to the implementation strategy in Section 3.3, one level of high-pass 

filtering and low-pass filtering should be accomplished in 2 μs. Processing time and 

corresponding bandwidth for a list of Daubechies (Daubechies 3 to Daubechies 9) 

wavelets are shown in Table III. It can be observed that decreasing the length of the filter 
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Figure 39: Signal power computation for each detection frame. 
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does not boost the sampling frequency significantly. Thus, when it comes to the wavelet 

selection, the capability of extracting arc information would be our major consideration. 

Start

Arc
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System reference 

power computation

using the first 32 

frames
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Not
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Power of the 
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Figure 40: WT based arc detection program signal flow. 

Table III: Processing duration and visible bandwidth for coefficients db3-db9 

Selected Wavelet db3 db4 db5 db6 db7 db8 db9 

Time Needed for DWT (us) 0.6 0.72 0.84 1.02 1.16 1.32 1.46 

Bandwidth (kHz) 138.9 127.6 130.2 124.4 120.2 116.7 112.1 
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3.8.4 Implementation Result 

As illustrated in Figure 41, the high frequency feature of the inverter noise looks 

similar to the arc signal. Therefore, to demonstrate that the information extracted from the 

wavelet transform are effective, both inverter noise and inverter + arcing events are tested 

here. Five sets of inverter noise and inverter + arcing signals are used as the test signals. 

Each set of inverter noise and inverter + arcing signal are acquired from the same system.  

By using the inverter noise signal as a reference, oscilloscope screenshots in Figure 

42 verified that with a little bit of threshold tuning, the information extracted from DWT 

could be effective even by using a simple detection method. Although no false tripping is 

observed, the algorithm might still be not robust enough since some parts of the arcing 

events are not detected. 

 

Figure 41: An example of real PV arc data (inverter noise included) and inverter noise. 
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(a) Data1 

            

(b) Data 2 

       

(c) Data 3 

      

(d) Data 4 

 

Figure 42: DWT algorithm detection result for PV inverter noise. 
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3.9 Summary of the Chapter 

From the analysis shown so far, several conclusions can be drawn: 

 It is difficult to find any significantly detectable arc fault features by 

comparing the FFT results of the non-arcing part and the arcing part of the 

signals, especially when the sampling rate is decreased. 

 However, from the wavelet analysis plots, arc features can be easily 

distinguished from the non-arcing signal and selection of detection criteria 

potentially suitable for an embedded microcontroller for real-time arc fault 

detection. 

 Further, since the wavelet transform preserves the time-domain localization 

information, the precise time of the arc is available for cross-correlation with 

other events in the system and environment which may improve the 

confidence of arc fault detection rather than some other benign electrical 

events. 

 By comparing the analysis result of 3 different Daubechies wavelets, we 

conclude that decomposition results the decomposition results from db9 and 

db19 are significantly better than those from db3, which is expected according 

to the frequency responses of the wavelet filters being used. But db19 doesn’t 

provide much improvement over db9. This suggests that optimal selection is 

possible from the perspective of frequency response analysis of the filters. 

However, since  
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 The implementation process of DWT is ideal for real-time sample-by-sample 

implementation since the computation load is similar to a simple FIR filter. 

However, FFT is not suitable for sample-by-sample analysis in real-time. 

 The sampling frequency has a significant impact on both Fourier and wavelet 

detection approaches. 

o With the signal sampled at 100 kHz, it is almost impossible for the 

Fourier transform to capture any arc fault features. 

o While the sustained presence of the arc is not as obvious as when the 

sampling frequency is 1 MHz for wavelet decomposition, we should still 

be able to draw enough information to detect the arc fault when the 

sampling rate is at 100 kHz. 

o Thus, detection approaches based on wavelet can use a lower sampling 

rate than Fourier transform to accomplish accurate arc fault detection if 

indeed Fourier methods can accomplish it at all. 

 Real-time wavelet transform can be successfully implemented on a popular 

low-cost MCU on the market. This demonstrates that integrating wavelet-

based signal analysis algorithm would not add much extra cost to the BOS 

hardware cost. 
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4. ARC FAULT DETECTION USING SUPPORT VECTOR MACHINES 

 

4.1 A Few Fundamental Concepts of Machine Learning 

4.1.1 Supervised Learning and Unsupervised Learning 

The widely quoted, formal, modern definition of machine learning is provided by 

Tom Michell as: “A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E” [72]. By way of example, in chess games, E 

stands for the experience of playing many games of chess; T represents the task of playing 

chess games; and the probability that the program will win the next game serves as P.  

In general, any machine learning problem can be assigned to one of two broad 

classifications: 1) supervised learning, or 2) unsupervised learning [1, 73, 74].  

In supervised learning, an input data set is given, and the correct output 

corresponding to the input is already known. This gives the idea that there is a relationship 

between the input and the output. Supervised learning problems are further categorized 

into “regression” and “classification” problems. In a regression problem, we try to predict 

results within a continuous output, meaning that we try to map the input variables to some 

continuous function. While in a classification problem, we try to predict results in a 

                                                 

 Reprinted with permission from “Arc Fault and Flash Detection in Photovoltaic Systems Using 

Wavelet Transform and Support Vector Machines,” by Z. Wang and R.S. Balog, 2016, IEEE 43 rd 

Photovoltaic Specialists Conference (PVSC), pp. 3275-3280, © 2016 IEEE. 
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discrete output instead. In other words, we try to map the input variables into discrete 

categories [1, 73]. 

Unsupervised learning, on the other hand, allows us to approach problems with 

little or no idea what the results should look like. We can derive structure from data where 

we do not necessarily know the effect of the variables. The structure can be derived by 

clustering the data based on the relationships among the variables in the data. With 

unsupervised learning, there is no feedback based on the prediction results [1, 73]. 

 

Figure 43: Typical supervised learning example. 

 

Figure 44: Typical unsupervised learning example. 
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In this work, since all the raw data in the database, the correct label (category of 

non-arc event or arc event) of each data file is already provided, that makes this research 

problem a supervised learning problem. 

A typical supervised learning procedure is shown in Figure 45. The training set is 

first fed into the learning algorithm to get an output “hypothesis”. The new input data is 

then applied to the hypothesis to obtain an estimated output [73]. 

4.1.2 Underfitting and Overfitting 

The performance of a classifier depends on the interrelationship between sample 

sizes, number of features, and classifier complexity. A naive table-lookup technique 

(partitioning the feature space into cells and associating a class label with each cell) 

requires the number of training data points to be an exponential function of the feature 

 

 

Figure 45: Illustration of supervised learning procedure. 
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dimension. This phenomenon is called as “curse of dimensionality”, which leads to the 

“peaking phenomenon” in classifier design.  

It is well-known that the probability of misclassification of a decision rule does 

not increase as the number of features increases, as long as the number of training samples 

is arbitrarily large and representative of the underlying class-conditional densities. 

However, it has often been observed in practice that the added features may degrade the 

performance of a classifier if the number of training samples that are used to design the 

classifier is small relative to the number of features. This paradoxical behavior is referred 

to as the peaking phenomenon. A simple explanation for this phenomenon is as follows: 

The most commonly used parametric classifiers estimate the unknown parameters and 

plug them in for the true parameters in the class-conditional densities. For a fixed sample 

size, as the number of features is increased (with a corresponding increase in the number 

of unknown parameters), the reliability of the parameter estimates decreases. 

Consequently, the performance of the resulting plug-in classifiers, for a fixed sample size, 

may degrade with an increase in the number of features (dimensionality and sample size 

consideration in pattern recognition practice). 

 Once the classification model is selected to fit some set of data (training set), the 

error of the parameters as measured on the data (the training error) is likely to be lower 

than the actual generalization error. 

The generalization error can be decomposed as follows: 

eErrorIrreduciblVarianceBiasfVarfBaisfErr  222 ]ˆ[]ˆ[)ˆ(   
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where )()](ˆ[)](ˆ[ xfxfExfBias  , is the error from erroneous assumptions in the 

learning algorithm. High bias can cause an algorithm to miss the relevant relations 

between features and target outputs (underfitting); 22 )](ˆ[])(ˆ[)](ˆ[ xfExfExfVar 

represents error from sensitivity to small fluctuations in the training set. High variance 

makes the classifier model the random noise in the training data, rather than the intended 

outputs (overfitting). 

4.1.3 Error Metric and Analysis 

It is important to have specific error metrics that evaluate the performance of the 

classifier. Conventionally, classification accuracy or traditional Receiver Operator 

Characteristic (ROC) curves are commonly used as the evaluation metric for binary 

classification problems. However, when dealing with situations where the number of 

 

Figure 46: Model complexity vs. training error and validation error. 

Error

Model Complexity
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negative examples greatly exceeds the number of positive examples (the dataset is thus 

called highly skewed), the metrics pair Precision-Recall (PR) would give a more 

informative picture of the performance of an algorithm. A detailed comparison of the ROC 

and PR metrics is provided in [75]. 

The definition of precision and recall can be represented with the help of a 

confusion matrix as shown in the table below. TP stands for number of true positive 

samples, which are examples correctly labeled as positive; FP corresponds to false 

positive samples (negative examples incorrectly labeled as positive); TN (true negative) 

refers to the number negative samples which are correctly labeled as negative; and FN 

(false negative) equals to the number of actual positive samples incorrectly labeled as 

negative. Now we have: 

FPTP

TP
precision




FNTP

TP
recall




In the application of arc fault detection, not only precision and recall suits the 

classification of the skewed dataset (meaning there are a lot more data samples labeled as 

Table IV: Confusion matrix 

Actual Positive Actual Negative 

Predicted Positive TP FP 

Predicted Negative FN TN 
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non-arcing events than the ones labeled as arcing signals), but the pair also represents the 

kind of accuracies we are most concerned about when it comes to fault identification. 

UL1699B requires that the arc fault detectors should be designed to ensure basic 

arc-fault detection capabilities with resistance to unwanted tripping [43]. As shown in 

Figure 47, in this project, precision gives us the proportion of samples classified as arc 

faults are actual arcing events, while recall presents the proportion of actual arcing events 

Figure 47: Illustration of precision and recall. 
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are correctly identified. In other words, higher precision value means lower unwanted 

tripping rate and higher recall value indicates lower no-detection rates.  

4.1.4 Evaluating a Learning Algorithm 

In practice, the error rate of a classification model must be evaluated from all the 

available samples which are partitioned into training and test sets. The classifier is first 

designed using training samples, and then it is evaluated based on its classification 

performance on the test samples. 

Cross-validation is probably the most widely used method for estimating 

generalization error and evaluating a classification model. 

Workflow of K-fold cross-validation is as follows (also illustrated in Figure 48): 

1. Randomly split the entire training set into k disjoint subsets of m/k training

examples each: S1, …, Sk. 

2. For each model Mi, we evaluate it as follows:

For j = 1, …, kj 

1) Train the model Mi on S1+…+Sj-1+Sj+1+…+Sk (i.e., train on all the

data except Sj) to get some hypothesis hij 

2) Test the hypothesis hij on Sj, to get validation error εij

3) The estimated generalization error of model Mi is then calculated

as the average of the εij ’s (averaged over j) 
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3. Pick the model Mi with the lowest estimated generalization error, and retrain

that model on the entire training set S. The resulting hypothesis is then output 

as our final answer. 

Figure 48: 10-fold cross-validation. 
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4.2 Feature Extraction Using DWT Results 

Although wavelet analysis has been demonstrated to be effective with arc fault 

signal analysis, practical implementation needs a way to distinguish arc/non-arc events 

and provide annunciation that can be included in a DSP or microcontroller. A more robust 

way is to classify the feature vectors acquired by the wavelet transform. 

The flowchart in Figure 49 [1] illustrates the workflow of the detection process 

which involves data acquisition, feature extraction (including data preprocessing and 

rescaling), classification model learning, and classification model evaluation. The output 

of this process will be the classification model which includes both the model structure 

and specified values of the coefficients. 

The feature extraction process involves reducing the amount of resources required 

to describe a large set of data. Analysis of a large number of variables generally requires 

a large amount of memory and computation power [76], and it may also cause a 

classification algorithm to overfit the training samples and generalize poorly to new 

samples. An ideal feature extraction would make the job of the classifier trivial, and thus, 

makes the real-time classification much easier. 

 

 

Figure 49: Training and test procedure for classification problems [1]. 
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Typical features of arc fault signals include conductor temperature, voltage/current 

signals, dc voltage/current level, energy, frequency spectrum, etc. In this chapter, only 

current signals are used as the input attribute. 

Two practical problems must be overcome in the implementation of wavelets for 

fault detection in power systems: 

 Adopting the DWT coefficients directly for fault detection requires large memory 

space and computing time. Thus, a feature vector with reduced quantities and without 

losing the property of the original signal needs to be chosen. 

 The wavelet function, as well as the decomposition level,  must be properly chosen to 

meet the tradeoff between the accuracy of detecting the fault type and the computing 

efficiency. 

The extracted feature of the proposed arc fault detection is based upon Parseval’s 

theorem, states that if the used wavelets form an orthonormal basis and satisfy the 

admissibility condition, then the energy of the original signal is equal to the energy in each 

of the expansion coefficients, that is [51, 76]:  

 


 






k

J

j k

j kdkctf
0

222

)()()(

 

The original signal is decomposed into J levels by the wavelet transform. The 

energy is partitioned in time by k and in scale by j in the wavelet domain. C is the 

approximated coefficients from the jth level of the wavelet transform, d is for the detail 

coefficients from the jth level of wavelet transform. The energy variation of the fault signal 

at different resolution levels is adopted as feature vectors. By employing the Parseval’s 
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theorem, the information is condensed, thus reducing the data size and yielding a 

manageable feature vector. Thus, the extracted feature of the proposed detection method 

is based on the average signal power in different resolutions. Since the frame size is 

customizable without trading off between the frequency and time resolution, transient 

behaviors in the signal can still be captured at the desired frequency resolution. 

The literature suggests that the arc signature is most prevalent from 40 kHz to 100 

kHz [66]. Thus, with the sampling frequency of 1 MHz, the 3rd level (62.5 kHz ~ 125 kHz) 

and the 4th level (31.25 kHz ~ 62.5 kHz) of the decomposition is selected as extracted 

attributes. 

  



 

79 

 

4.3 Learning Algorithm – Support Vector Machines 

Although previous studies have demonstrated that wavelet transform has 

significantly superior processing results with arc fault signal analysis than Fourier-based 

methods, when it comes to practical implementation, classification is still needed to set up 

a boundary that enables the DSP or the microcontroller to determine if an arc fault has 

occurred.   

A classifier can be designed using a number of possible approaches. In practice, 

the choice of a classifier is a difficult problem and it is often based on which classifier(s) 

happen to be available, or best know, to the user. 

Three different fundamental approaches to designing a classifier are identified in: 

 Classifier design based on the concept of similarity. This is the simplest 

and the most intuitive approach to classifier design: patterns that are similar 

to the particular training samples are assigned to the corresponding class of 

the training sample. Once a good metric has been established to define 

similarity, patterns can be classified by template matching or the minimum 

distance classifier using a few prototypes per class. The most typical 

classification algorithm is 1-nearest neighbor (1-NN) classifier. There is no 

training needed. It also provides robust performance when sufficient 

training patterns are provided. However, in real-time hardware 

implementation, this type of classifier would need a significant memory 

space and the real-time classification would be slow since patterns would 

be assigned to the class of the nearest neighbor. 1-NN rule can be 
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conveniently used as a benchmark for all the other classifiers since it 

appears to provide a reasonable classification performance in most 

applications. Further, assuming Euclidean distance is used to find the 

nearest neighbor since the 1-NN rule does not require any user-specified 

parameters, its classification results are implementation independent. 

 Classifier design based on the probabilistic approach.  

o The optimal Bayes decision rule assigns a pattern to the class with 

the maximum posterior probability. This rule can be modified to 

take into account costs associated with different types of 

misclassifications. For known class conditional densities, the Bayes 

decision rule gives the optimum classifier. However, it is not 

realistic to have the prior probabilities and the class-conditional 

densities at hand since the photovoltaic systems in the field operate 

differently due to the variation of insolation, the ambient and the 

panel temperature, etc. Also, components supplied by different 

companies may respond to the same environment change in diverse 

ways, and thus, give different performance. 

o Logistic regression, which is based on the maximum likelihood 

approach, treats the output of a sigmoid function at the probability 

that the label is equal to 1 for a new input. In logistic regression, 

every training sample has a certain influence on the resulting 

classifier. However, as shown in the later sections of this chapter, 
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the training samples distribute in a very broad range of the sample 

space. A huge of amount of them sit very far away from the other 

the samples of the other class. Intuitively, we do not wish these 

“obvious” samples to be as influential as the “not-as-obvious” 

samples. 

o Two well-known nonparametric decision rules, the k-nearest 

neighbor (k-NN) rule, and the Parzen classifier also fall into this 

category. Same as 1-NN, both these classifiers require the 

computation of the distances between a test sample and all the 

patterns in the training set, which not only need memory space to 

save all the training, but massive computation power is demanded 

every new test sample. The large memory space and the excessive 

computation are not desirable for any real-time hardware 

implementation that aims to keep the setup under a limited budget. 

 Classifier design based on constructing geometric decision boundaries. 

While this approach depends on the chosen metric, sometimes classifiers 

of this type may approximate the Bayes classifier asymptotically. The 

driving force of the training procedure is the minimization of a criterion 

such as the classification error or the mean squared error (MSE) between 

the classifier output and the label of the original pattern. The famous 

perceptron, feed-forward neural networks (multilayer perceptrons), and 

support vector machines all belong to this genre. 
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A few popular supervised learning algorithms are listed in Table V [1]. 

Support vector classifiers were first introduced by Vapnik [74]. Primarily, it is a 

two-class classifier. Nowadays, support vector machines (SVMs) are believed to be one 

of the best “off-the-shelf” supervised learning algorithms. The main concept behind SVM 

is to find a hyperplane as shown in Figure 50 with a maximum margin between the two 

adjacent classes which helps bound the generalization error of the classification model. 

Figure 50 illustrates a two class problem where a linear separation is achieved using a 

straight line. The margin refers to the blank space around the decision boundary defined 

by the geometric distance to the nearest training patterns. These patterns are called the 

support vectors, which eventually define the classification function. The number of 

support vectors is minimized by maximizing the margin.  In cases where data points are 

clustered so that linear separation is not possible, the data points can be mapped into 

feature space (higher dimensional space) where a linear separation is possible. This 

hyperplane which is linear in the mapped feature space will not be linear in its original 

input space [1]. 

The derivation of an SVM classifier is as follows: 

Let n-dimensional inputs xi (i = 1, 2, …, m, where m is the number of samples) 

belong to class-1 or class-2 and associated to labels yi = 1 for class-1 and yi = -1 for class-

2, respectively. For linearly separable data, a hyperplane f(x) = 0 which separates the data 

can be determined 

0)(  bxxf T  



 

83 

 

where ω is an n-dimensional vector and b is the intercept term. The two vectors determine 

the position of the separating hyperplane. This separating hyperplane satisfies the 

constraints f (xi) ≥ 0 if yi = 1and f (xi) ≤ -1 if yi = -1 and this results in the functional margin: 

1)()(  bxyxfy i

T

iii  , for i = 1, 2, …, m 

Table V: Supervised learning algorithms [1] 

Method Property Real-time Implementation 

Nearest Mean 

Classifier 

Assigns patterns to the nearest 

class mean 

 

Almost no training needed; fast 

testing; scale (metric) dependent 

 

K-Nearest  

Neighbor Rule 

Assigns patterns to the majority 

class among K nearest neighbor 

using a performance optimized 

value K 

 

No training needed; robust 

performance; slow testing; scale 

(metric) dependent 

 

Bayes 

Plug-In 

Assigns patterns to the class 

which has the maximum 

estimated posterior probability 

 

Yields simple classifiers (linear 

or quadratic) for Gaussian 

distributions; sensitive to density 

estimation errors 

 
Logistic 

Regression 

Maximum likelihood rule for 

logistic (sigmoidal) posterior 

probability 

 

Linear classifier; optimal for a 

family of different distributions 

(Gaussian); suitable for mixed 

data types 

 
Binary 

Tree 

Finds a set of thresholds for a 

pattern-dependent sequence of 

features 

 

Overtraining sensitive; needs 

pruning; fast testing 

 

Feed-Forward  

Neural 

Network 

Iterative MSE optimization of 

two or more layers of 

perceptron (neurons, iterative 

optimization of linear 

classifiers) using sigmoid 

transfer functions 

 

Sensitive to training parameters; 

slow training; nonlinear 

classification function; 

overtraining sensitive; needs 

regularization 

 

Support Vector 

Machines 

Maximizes the margin between 

the classes by selecting a 

minimum number of support 

vectors 

 

Scale (metric) dependent; slow 

training; nonlinear; overtraining 

insensitive; good generalization 

performance 
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The separating hyperplane that creates the maximum distance between the plane 

and the nearest data is called the optimal separating hyperplane as shown in Figure 50. 

The geometric margin is found to be 1/||ω||2. Considering noise with the slack variable ξi 

and error penalty Ci, the optimal hyperplane can be found by solving the following convex 

quadratic optimization problem: 





m

i

ib C
1

2

,
2

1
min   

s.t. ii

T

i bxy   1)( , i = 1, …, m 

      0i , i = 1, …, m 

 Examples are now permitted to have functional margin in (3) less than 1, and if 

an example has functional margin 1 - ξi (with ξ > 0), the extra cost of the objective function 

would be Cξi. The parameter C controls the relative weighting between the twin goals of 

making the ||ω||2 small and of ensuring that most examples have a functional margin at 

least 1. 

Now, the Lagrangian can now be formed: 
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i s are found by solving the Lagrangian duality problem. Now the decision 

boundary for a two-class problem derived from the support vector machines can be written 
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as follows using a kernel function ),( )( xxK i 
of a new pattern x


 (to be classified) and a 

training pattern )(ix


: 

bxxKyxD
m

i

ii

i 
1

)()( ),()(



 

where 
i s are all zero except for the support vectors [1, 73, 74]. 

Comparing with the also widely adopted feed-forward neural networks, SVMs do 

not suffer from problems like local minima and overtraining. On the other hand, since 

SVMs with simpler kernels are proposed in this project, the developed SVM classifier can 

be parametric and easy to implement (in contrast to the non-parametric SVM classifiers 

constructed from more advanced kernel functions which consist a set of support vectors).  

Detailed theoretical comparison between different supervised learning algorithms 

and optimal learning algorithm selection are beyond the scope of this dissertation. 
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Figure 50: An SVM trained with samples from two classes. Samples on the margin are called the 

support vectors. 
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4.4 Hardware Implementation Strategy 

Following the procedures mentioned above, the developed SVM will be 

implemented by dedicated hardware.  A flowchart of the proposed implementation 

strategy is shown in Figure 51. On the left of the figure, it shows that the high-level 

procedure is divided into three steps: signal acquisition, feature extraction, and prediction 

& classification. In the middle, the figure reveals which hardware component each 

procedure is carried out. The specific implementations of each process are shown on the 

right. 

An appropriate kernel function K need to be selected before applying the SVM 

algorithm. In its simplest form, we have  xxxxK ii


,),( , resulting in a linear classifier. 

For a 2-dimensional feature set: 

bxxbxxxxybxxKyxD
m

i

iii

i

m

i

i

i

i  


2211

1

2

)(

21

)(

1

)(

1

)( )(),()( 


 

where 



m

i

ii

i xy
1

)(

1

)(

1  , 



m

i

ii

i xy
1

)(

2

)(

2 

As we can see here, the resulting decision boundary can be parametric without 

saving all the support vectors for kernel function calculation. For other kernels such as 

low-order polynomial kernels, the decision boundary function can also be straightforward 

with a few parameters. These parameters can be directly applied to the test data in real-

time applications. 

Despite high-quality models constructed by kernel SVMs, the use of kernel SVM 

in real-world application remains limited due to the high prediction cost. Linear SVM has 
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prediction complexity of O(n) with n as the number of input dimensions. Prediction 

complexity of kernel SVM depends on the choice of kernel and is typically proportional 

to the number of support vectors. Since the prediction is going to be implemented in real-

time at a very high frequency on an embedded system (a DSP or a microcontroller), which 

has very limited memory space and computation speed compared with a powerful personal 

computer, linear SVM is first considered in this application. 

Prefiltering
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Wavelet Decomposition
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Figure 51: Work flow of the proposed hardware implementation strategy. 
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The parameters of the developed classification boundary will be directly applied 

to the extracted feature vector without any further learning process in the embedded 

systems.  

Now, let’s take another look at the hardware implementation strategy of the DWT 

and classification. As illustrated in Figure 52, since the 3rd decomposition level only gives 

one output every eight samples and the discriminant function normally takes even less 

computation than 1 level of decomposition, the real-time classification using the DWT 

result does not require extra computation power from the DSP. 

  

 

Figure 52: Hardware implementation of a 3-level DWT and classification. 
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Figure 53: Offline model development vs. online detection. 
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4.5 Rescaling, and Cross-Validation with Linear Kernel 

Since the range of values of raw data varies widely, in some machine learning 

algorithms, the learning process will not work properly without rescaling. Also, some 

optimization algorithms, such as gradient descent, converge much faster with properly 

rescaled feature set than the extracted raw feature.  

The workflow of the entire feature extraction process is shown in Figure 53 and 

Figure 54. Figure 55 demonstrates the distribution of the extracted feature without 

normalization over the extracted attributes (average power of the 3rd and the 4th detail 

wavelet coefficients), with 1-stage rescaling, and with 2-stage rescaling.  

Four different rescaling strategies are adopted in this paper: 

1) No rescaling  Figure 55(a); 

2) Rescale by the power of the DC component in the current for each frame of 

signal  Figure 55(b); 

3) Use an inverter noise signal as the reference for the corresponding system 

setup. Rescale element-wise by the extracted attributes in each decomposition 

level of the reference signal  Figure 55(c); 

4) Rescale by both 1) and 2)  Figure 55(d). 

As shown in Figure 55(d), although some of the extracted feature samples of the 

positive class (inverter noise + arc fault) and the negative class (inverter noise) are 

clustered in similar areas, we should still be able to find a boundary between the two 

clusters to separate the two classes. However, samples of the two classes are clustered 

together for no rescaling and the two 1-stage rescaling feature sets. There is no obvious  
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Figure 54: Work flow of the proposed hardware implementation strategy. 
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separation between them. Thus, the extracted features with 2-stage rescaling should be 

ideal for the application of a linear SVM classifier.  

Four linear SVMs are derived using the training samples from the four rescaling 

strategies. The 10-fold validation accuracy is shown in Table VI. For the first two rescaling 

strategies, we get NaN for precision and 0 for recall. That is because the feature data set 

is significantly “skewed” (70 arc events and 475 non-arc events) and there is no clear 

boundary or grouping between the feature samples from the two distinct classes, in order 

to maximize the classification accuracy, the linear models predict that all new of the new 

samples as inverter noise (no sample is predicted as “positive”) to maximize the accuracy 

of the prediction. Thus, while the general accuracy stays at about 0.87, the measurements 

of precision and recall truthfully reflect the derived model to be ineffective and unreliable. 

With precision and recall values taken into consideration, it is obvious that the 

combination of wavelet transform and 2-stage rescaling produces a very satisfying result. 

The hyperplane trained from the entire training feature set using linear SVM is plotted in 

Figure 56. The training accuracy is 99.63% with precision/recall rate at 0.9857/0.9857. It 

means the training data is linearly separable which also demonstrates the effectiveness of 

the feature extraction process.  

 

Table VI: 10-fold cross validation result using SVM with linear kernel 

Rescaling Strategy Accuracy Precision Recall 

0-Stage 0.8704 NaN 0.0000 

1-Stage Mean Squared 

 

 

 

0.8704 NaN 0.0000 

1-Stage Inverter Noise 0.9101 0.8000 0.4000 

2-Stage 

 

0.9963 0.9857 0.9857 
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Figure 55: Simulated real-time implementation result. 
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An example of real-time implementation is simulated and demonstrated in Figure 

57. The predicted “1” indicates that an arc fault is detected, and the predicted “0” suggests 

no arc fault has arisen in the system. The prediction result in Figure 57(a) shows there is 

no false tripping when the acquired signal only contains inverter noise. In the meantime, 

when an arc fault occurs with the presence of inverter noise at about 0.1s in Figure 57(b), 

the classifier detects the arc fault with high accuracy and fast response.   

 

Figure 56: SVM trained with the entire training feature set. 
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(a) Prediction result of an inverter noise signal – no false tripping 

 

(b) Prediction result of an inverter noise + arc fault signal 

– fast and accurate detection 
 

Figure 57: Simulated real-time implementation result. 
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4.6 Performance of SVM with Customized Feature Set 

By observing the distribution of the feature samples on the D3-D4 plane (as shown 

in Figure 58 and Figure 59), it seems like a boundary function in the form of quadratic 

function, bxxxxD  2312

2

11)(  , might fit the 2-stage rescaled data model better 

than the performance of the original feature set with the linear kernel. 

Figure 59 shows the result of the boundary of a quadratic function derived by 

SVM. It can be easily seen that the quadratic function creates a discriminant boundary 

with larger margin and thus clearer separation between the two classes. 

The triple criteria confirm the superiority of the quadratic function boundary over 

the linear boundary: accuracy = 100%, precision = 1, recall = 1. Further, there are only 

three support vectors for the quadratic boundary model, comparing with 14 support 

vectors for the linear model. It again verifies that the quadratic classifier fits the data model 

better and provides a more convincing classification.  
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Figure 58: SVM trained with the entire training feature set using linear kernel. 
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Figure 59: SVM trained with the entire semi-quadratic training feature set using linear kernel. 
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4.7 Exhaustive Search for the Optimal Feature Selection 

Despite the curse of dimensionality mentioned in the first section of this chapter, 

a reduction in the number of features may lead to a loss in the discrimination power and 

thereby lower the accuracy of the resulting recognition system. Watanabe’s famous ugly 

duckling theorem states that there is an unquantifiable number of shared properties 

between all objects, making any classification biased. It means that features have to be 

chosen carefully since it is possible to make two arbitrary patterns similar by encoding 

them with a sufficiently large number of redundant features. 

Feature selection is about selecting (hopefully) the best subset of input feature set 

which leads to the smallest classification error or the optimum of the other criterion 

function of the classification (in this project, the paired value of precision and recall). The 

use of the classification criterion function makes feature selection procedures dependent 

on the sizes of the training, the method of feature extraction, and the specific classifier 

being used. 

The most straightforward approach to the feature selection problem in this work 

would require 1) examining all 








m

d
possible subsets of size m from feature sets acquired 

from wavelet transform with different choice of mother wavelets, 2) deriving SVM model 

with different kinds of kernel selections, and 3) selecting the subset with the optimum 

value of the classification criterion. It has been shown that no nonexhaustive sequential 

feature selection procedure can be guaranteed to produce the optimal subset. The number 

of possible subsets grows combinatorially, making this exhaustive search impractical in 



 

101 

 

most problems. However, since our feature sets only have five dimensions from the 5-

level wavelet decomposition, an exhaustive search is adopted in this project. 

In our exhaustive search, feature sets with a list of mother wavelets (19 different 

wavelets) and different choice of dimensionalities (5-D, 4-D, 3-D, and 2-D), and SVM 

with a selection of kernel functions are tested. Linear, 2nd-order polynomial, 3rd-order 

polynomial, 4th-order polynomial, and Gaussian kernel are used with feature sets of all 

listed dimensionalities. Quadratic feature sets are used with only 2-D feature sets with the 

linear kernel. 

Catalogs containing the best result of their respective dimensionalities are listed 

below. The original name of the wavelets and the full result of the entire exhaustive search 

can be found in Appendix A. 
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4.7.1 Linear Kernel 

D1, D2, D3, D4, and D5  
Accuracy Precision Recall 

db1 0.9963 0.9857 0.9857 

db2 0.9982 0.9859 1 

db3 0.9963 0.9857 0.9857 

db5 0.9982 0.9859 1 

db9 0.9982 0.9859 1 

db13 1 1 1 

db19 0.9982 0.9859 1 

coif1 0.9982 0.9859 1 

coif2 0.9982 0.9859 1 

coif3 0.9982 0.9859 1 

coif4 0.9982 0.9859 1 

coif5 0.9982 0.9859 1 

sym2 0.9982 0.9859 1 

sym3 0.9927 0.9714 0.9714 

sym5 0.9982 0.9859 1 

sym9 0.9982 0.9859 1 

sym13 1 1 1 

sym19 1 1 1 

dmey 1 1 1 

 

D1, D2, D4, and D5  
Accuracy Precision Recall 

db1 0.9963 0.9857 0.9857 

db2 1 1 1 

db3 0.9982 1 0.9857 

db5 1 1 1 

db9 1 1 1 

db13 1 1 1 

db19 1 1 1 

coif1 0.9982 1 0.9857 

coif2 0.9982 1 0.9857 

coif3 0.9982 0.9859 1 

coif4 1 1 1 

coif5 1 1 1 

sym2 1 1 1 

sym3 0.9982 1 0.9857 

sym5 0.9982 0.9859 1 

sym9 1 1 1 

sym13 1 1 1 

sym19 1 1 1 

dmey 1 1 1 

 
D1, D2, and D4  

Accuracy Precision Recall 

db1 0.9963 0.9857 0.9857 

db2 1 1 1 

db3 1 1 1 

db5 1 1 1 

db9 1 1 1 

db13 1 1 1 

db19 1 1 1 

coif1 1 1 1 

coif2 1 1 1 

coif3 1 1 1 

coif4 1 1 1 

coif5 1 1 1 

sym2 1 1 1 

sym3 1 1 1 

sym5 1 1 1 

sym9 0.9982 0.9859 1 

sym13 1 1 1 

sym19 1 1 1 

dmey 0.9945 0.9718 0.9857 

 

D2, and D4  
Accuracy Precision Recall 

db1 0.9963 0.9857 0.9857 

db2 1 1 1 

db3 1 1 1 

db5 0.9982 0.9859 1 

db9 0.9982 0.9859 1 

db13 0.9982 0.9859 1 

db19 1 1 1 

coif1 1 1 1 

coif2 0.9982 0.9859 1 

coif3 0.9982 0.9859 1 

coif4 0.9982 0.9859 1 

coif5 0.9982 0.9859 1 

sym2 1 1 1 

sym3 1 1 1 

sym5 0.9982 0.9859 1 

sym9 0.9982 0.9859 1 

sym13 0.9982 0.9859 1 

sym19 1 1 1 

dmey 0.9927 0.9714 0.9714 
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Discussion from observing the classification result of SVM using linear kernel: 

 Since the feature extraction process (which includes 5-level wavelet decomposition, 

the average power calculation, and the 2-stage rescaling) as made the work of classifier 

fairly “easy”, for any number of dimensionality more than 1-D. At least, one of the 

combinations gives satisfying accuracy, precision and recall numbers. 

 Combinations containing D4 seem to be consistently promising. 

 3-D combinations seem to perform the best throughout all selected wavelets. 

 No obvious overfitting or underfitting. 
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4.7.2 Linear Kernel with Quadratic Feature Sets  

Discussion from observing the classification result of SVM using linear kernel with 

quadratic feature sets: 

 It seems like the selected features, and the classifier fit the data model almost perfectly, 

which make the classification very easy and accurate. 

  

D2, and D4  
Accuracy Precision Recall 

db1 0.9982 1 0.9857 

db2 1 1 1 

db3 1 1 1 

db5 1 1 1 

db9 1 1 1 

db13 1 1 1 

db19 1 1 1 

coif1 1 1 1 

coif2 1 1 1 

coif3 1 1 1 

coif4 1 1 1 

coif5 1 1 1 

sym2 1 1 1 

sym3 1 1 1 

sym5 1 1 1 

sym9 1 1 1 

sym13 1 1 1 

sym19 1 1 1 

dmey 0.9982 0.9859 1 
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4.7.3 2nd-Order Polynomial Kernel 

 

D1, D2, D3, D4, and D5  
Accuracy Precision Recall 

db1 0.2018 0.1174 0.8 

db2 1 1 1 

db3 0.7963 0.0816 0.0571 

db5 0.8844 1 0.1 

db9 0.8972 1 0.2 

db13 0.9853 1 0.8857 

db19 0.9853 1 0.8857 

coif1 0.8606 0.4766 0.8714 

coif2 0.8 0.1020 0.0714 

coif3 0.8110 0.2203 0.1857 

coif4 0.8844 1 0.1 

coif5 0.9872 1 0.9 

sym2 1 1 1 

sym3 0.8037 0.1064 0.0714 

sym5 0.8972 1 0.2 

sym9 0.8844 1 0.1 

sym13 0.9009 0.5755 0.8714 

sym19 0.9835 0.9841 0.8857 

dmey 0.8936 0.5556 0.8571 

 

D1, D2, D3, and D4  
Accuracy Precision Recall 

db1 0.9963 0.9857 0.9857 

db2 0.9982 0.9859 1 

db3 0.9982 0.9859 1 

db5 0.9982 0.9859 1 

db9 0.9982 0.9859 1 

db13 0.9982 0.9859 1 

db19 0.9982 0.9859 1 

coif1 0.9982 0.9859 1 

coif2 0.9982 0.9859 1 

coif3 0.9982 0.9859 1 

coif4 0.9982 0.9859 1 

coif5 0.9982 0.9859 1 

sym2 0.9982 0.9859 1 

sym3 0.9982 0.9859 1 

sym5 0.9982 0.9859 1 

sym9 0.9982 0.9859 1 

sym13 0.9982 0.9859 1 

sym19 0.9982 0.9859 1 

dmey 0.9982 0.9859 1 

 

D1, D2, and D4  
Accuracy Precision Recall 

db1 0.99633 0.985714 0.985714 

db2 1 1 1 

db3 1 1 1 

db5 1 1 1 

db9 1 1 1 

db13 1 1 1 

db19 1 1 1 

coif1 1 1 1 

coif2 1 1 1 

coif3 1 1 1 

coif4 1 1 1 

coif5 1 1 1 

sym2 1 1 1 

sym3 1 1 1 

sym5 1 1 1 

sym9 1 1 1 

sym13 1 1 1 

sym19 0.998165 0.985915 1 

dmey 0.99633 0.985714 0.985714 

 

D2, and D4  
Accuracy Precision Recall 

db1 0.9963 0.9857 0.9857 

db2 1 1 1 

db3 1 1 1 

db5 0.9982 0.9859 1 

db9 0.9982 0.9859 1 

db13 0.9982 0.9859 1 

db19 1 1 1 

coif1 1 1 1 

coif2 0.9982 0.9859 1 

coif3 0.9982 0.9859 1 

coif4 0.9982 0.9859 1 

coif5 0.9982 0.9859 1 

sym2 1 1 1 

sym3 1 1 1 

sym5 0.9982 0.9859 1 

sym9 0.9982 0.9859 1 

sym13 0.9982 0.9859 1 

sym19 1 1 1 

dmey 1 1 1 
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Discussion from observing the classification result of SVM using 2nd-order polynomial 

kernel: 

 Combinations containing D4 seem to be consistently promising. 

 3-D feature set seems to perform the best throughout all selected wavelets. 

 Some of the 5-D feature sets with 2nd-order polynomial clearly overfit the data model. 
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4.7.4 3rd-Order Polynomial Kernel 

 

D1, D2, D3, D4, and D5  
Accuracy Precision Recall 

db1 0.9945 0.9855 0.9714 

db2 0.7945 0.3765 0.9143 

db3 0.5064 0.1759 0.7714 

db5 0.9945 0.9718 0.9857 

db9 0.9963 0.9857 0.9857 

db13 0.9963 0.9857 0.9857 

db19 0.9945 0.9718 0.9857 

coif1 0.8257 0.4194 0.9286 

coif2 0.9945 0.9855 0.9714 

coif3 0.9927 0.9853 0.9571 

coif4 0.9963 0.9857 0.9857 

coif5 0.9963 0.9857 0.9857 

sym2 0.7523 0.3367 0.9571 

sym3 0.5321 0.1886 0.8 

sym5 0.9927 0.9714 0.9714 

sym9 0.9963 0.9857 0.9857 

sym13 0.9963 0.9857 0.9857 

sym19 0.9963 0.9857 0.9857 

dmey 0.9908 0.9452 0.9857 

 

D1, D2, D3, and D4  
Accuracy Precision Recall 

db1 0.9927 0.9583 0.9857 

db2 1 1 1 

db3 0.9229 0.6346 0.9429 

db5 0.9651 0.8312 0.9143 

db9 0.9009 0.5769 0.8571 

db13 0.8844 1 0.1 

db19 0.9505 0.8209 0.7857 

coif1 0.996 0.9857 0.9857 

coif2 0.9725 0.8313 0.9857 

coif3 0.9523 0.8235 0.8 

coif4 0.8844 1 0.1 

coif5 0.8844 1 0.1 

sym2 0.9982 0.9859 1 

sym3 0.9156 0.6132 0.9286 

sym5 0.8807 0.5203 0.9143 

sym9 0.9706 0.9821 0.7857 

sym13 0.8954 1 0.1857 

sym19 0.9615 0.9153 0.7714 

dmey 0.9688 0.9492 0.8 

 

D1, D2, and D3  
Accuracy Precision Recall 

db1 0.9945 0.9718 0.9857 

db2 0.9982 0.9859 1 

db3 1 1 1 

db5 0.996 0.9722 1 

db9 0.9872 0.92 0.9857 

db13 0.9908 0.9452 0.9857 

db19 0.9908 0.9452 0.9857 

coif1 0.9945 0.9589 1 

coif2 0.9982 0.9859 1 

coif3 0.9945 0.9589 1 

coif4 0.9908 0.9452 0.9857 

coif5 0.9890 0.9444 0.9714 

sym2 0.9982 0.9859 1 

sym3 0.996 0.9722 1 

sym5 0.9982 0.9859 1 

sym9 0.9908 0.9577 0.9714 

sym13 0.9927 0.9714 0.9714 

sym19 0.9872 0.9315 0.9714 

dmey 0.9780 0.8918 0.9429 

 

D2, and D4  
Accuracy Precision Recall 

db1 0.9963 0.9857 0.9857 

db2 0.9982 0.9859 1 

db3 0.9963 0.9722 1 

db5 0.9872 0.9846 0.9143 

db9 0.9963 0.9857 0.9857 

db13 0.9927 0.9459 1 

db19 0.9945 0.9718 0.9857 

coif1 0.9963 0.9857 0.9857 

coif2 0.9853 0.9844 0.9 

coif3 0.9853 0.9844 0.9 

coif4 0.9963 0.9857 0.9857 

coif5 0.9927 0.9583 0.9857 

sym2 0.9982 0.9859 1 

sym3 0.9835 0.9692 0.9 

sym5 0.9872 0.9846 0.9143 

sym9 0.9963 0.9857 0.9857 

sym13 0.9945 0.9718 0.9857 

sym19 0.9817 0.9688 0.8857 

dmey 0.6147 0.2348 0.8857 
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Discussion from observing the classification result of SVM using 3rd-order polynomial 

kernel: 

 4-D, 5-D feature sets from DWT with most of the selected wavelets obviously overfit 

the model with the 3rd order polynomial kernel. 

 Combination of D2 and D4 still performs fairly well 

 SVM with 3rd-order polynomial kernel does not perform as well as that with 2nd-order 

polynomial kernel. 
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4.7.5 4th-Order Polynomial Kernel 

 

D1, D2, D3, D4, and D5  
Accuracy Precision Recall 

db1 0.9963 1 0.9714 

db2 0.5376 0.1604 0.6143 

db3 0.7468 0.25 0.4857 

db5 0.9560 0.75 0.9857 

db9 0.9596 0.7667 0.9857 

db13 0.9780 0.8625 0.9857 

db19 0.9780 0.8625 0.9857 

coif1 0.5541 0.1554 0.5571 

coif2 0.9486 0.7386 0.9285 

coif3 0.9541 0.7419 0.9857 

coif4 0.9651 0.7931 0.9857 

coif5 0.9761 0.8519 0.9857 

sym2 0.5431 0.1518 0.5571 

sym3 0.739 0.26 0.5571 

sym5 0.9578 0.7582 0.9857 

sym9 0.9615 0.7753 0.9857 

sym13 0.9761 0.8608 0.9714 

sym19 0.9780 0.8625 0.9857 

dmey 0.9780 0.8625 0.9857 

 

D1, D2, D3, and D4  
Accuracy Precision Recall 

db1 0.9725 0.839506 0.9714 

db2 0.9945 0.971831 0.9857 

db3 0.9890 0.944444 0.9714 

db5 0.996 0.985714 0.9857 

db9 0.9853 0.907895 0.9857 

db13 0.9615 0.775281 0.9857 

db19 0.9321 0.657143 0.9857 

coif1 0.9963 0.985714 0.9857 

coif2 0.9908 0.945205 0.9857 

coif3 0.9890 0.932432 0.9857 

coif4 0.9853 0.907895 0.9857 

coif5 0.9413 0.69 0.9857 

sym2 0.9963 0.985714 0.9857 

sym3 0.9890 0.944444 0.9714 

sym5 0.996 0.985714 0.9857 

sym9 0.9743 0.841463 0.9857 

sym13 0.9137 0.6 0.9857 

sym19 0.9541 0.741935 0.9857 

dmey 0.8550 0.451613 0.6 

 

D1, D2, and D3  
Accuracy Precision Recall 

db1 0.625688 0.24812 0.942857 

db2 0.994495 0.958904 1 

db3 0.998165 0.985915 1 

db5 0.994495 0.958904 1 

db9 0.992661 0.971429 0.971429 

db13 0.990826 0.945205 0.985714 

db19 0.990826 0.957746 0.971429 

coif1 0.99633 0.972222 1 

coif2 0.99633 0.972222 1 

coif3 0.988991 0.932432 0.985714 

coif4 0.992661 0.958333 0.985714 

coif5 0.988991 0.944444 0.971429 

sym2 0.99633 0.972222 1 

sym3 0.99633 0.972222 1 

sym5 0.998165 0.985915 1 

sym9 0.988991 0.944444 0.971429 

sym13 0.981651 0.894737 0.971429 

sym19 0.987156 0.931507 0.971429 

dmey 0.985321 0.942857 0.942857 

 

D2, and D4  
Accuracy Precision Recall 

db1 0.9982 1 0.9857 

db2 0.9963 0.9857 0.9857 

db3 0.9982 1 0.9857 

db5 0.9963 0.9857 0.9857 

db9 0.9798 0.8734 0.9857 

db13 0.9890 0.9324 0.9857 

db19 0.9945 0.9718 0.9857 

coif1 0.9963 0.9857 0.9857 

coif2 0.9890 0.9324 0.9857 

coif3 0.9908 0.9452 0.9857 

coif4 0.9798 0.8734 0.9857 

coif5 0.9761 0.8519 0.9857 

sym2 0.9963 0.9857 0.9857 

sym3 0.9963 0.9857 0.9857 

sym5 0.9963 0.9857 0.9857 

sym9 0.9780 0.8625 0.9857 

sym13 0.9780 0.8625 0.9857 

sym19 0.9908 0.9452 0.9857 

dmey 0.6330 0.2538 0.9571 
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Discussion from observing the classification result of SVM using 3rd-order polynomial 

kernel: 

 4-D, 5-D feature sets from DWT with most of the selected wavelets obviously overfit 

the model with 4th-order polynomial kernel. 

 Combination of D2 and D4 still performs fairly well 

 SVM with 4th-order polynomial kernel does not perform as well as that with 2nd-order 

and 3rd-polynomial kernel. 
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4.7.6 Discussion of the Exhaustive Search 

Since 4th-order polynomial does not perform as well as the polynomial kernels with 

lower order, kernels which map the attributes onto an even higher dimensions are no 

longer considered because of 1) the higher risk of overfitting, 2) the computation 

complexity of the prediction process, and 3) the memory space needed to save a large 

number of support vectors. 

In the appendix, SVMs with Gaussian kernel do not provide any improvement over 

the simpler low-order polynomial kernels. 

In general, the 2-dimension and 3-dimension feature sets perform better than the 

feature sets with higher dimensions. And the best performance of the exhaustive search 

comes from the SVM with the linear kernel using the quadratic feature set of D2 and D4. 
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4.8 Summary of the Chapter 

This chapter proposes a classification strategy for arc fault detection in 

photovoltaic systems by using discrete wavelet transform for feature extraction and 

support vector machines for classification. Since the developed classifier is designed for 

real-time DSP/MCU applications, the computation load involved in the classification and 

the memory space used for support vector storage are two major concerns. Thus, linear 

SVM was considered first to find linearly separable 2-dimensional feature sets. 

It has been shown that the rescaling strategy of the feature extraction plays a 

significant role in the entire classifier development. In this work, a 2-stage rescaling 

strategy is found to be efficient to provide linear separation between the two classes for 

the extracted feature set to be close to linearly separable. The cross-validation results show 

that the proposed combination of DWT with db9, 2-stage rescaling, and SVM with linear 

kernel provides a very good classification performance in practice. The simulation of real-

time implementation validates that the developed classifier is capable of detecting arc fault 

reliably in a real-time application with fast response and high accuracy.  

By observing the distribution of the 2-D feature set, by mapping the feature set of 

D3 and D4 onto D3, D4, and D3^2 gives us a perfect classification accuracy. It is also 

proven that SVM with the linear kernel using 2-D semi-quadratic feature sets performs 

the best in the exhaustive search for the best combination of feature extraction, feature 

selection, and classifier model. 
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5. CONCLUSIONS 

 

5.1 Contributions 

The research presented in this dissertation has reviewed the existing PV arc fault 

detection approaches and their limitations. Investigated the frequency characteristics of 

the DC arc, proposed and developed a PV arc detection procedure by using wavelet 

transform for feature extraction and support vector machines for classification 

In sections, a new approach for arc analysis in DC PV systems has been proposed 

based on wavelet transform. The fundamental feasibility of applying wavelet transform 

has been presented. A comparison between the Fourier transform method and the proposed 

wavelet transform method has been studied with both simulation analysis and 

experimental results.  

The presence of switching harmonics and ambient electrical noise can mask the 

arc signal, making detection of an arc difficult. Fourier analysis is usually not able to 

discover transient signals and abrupt changes like sudden arc faults and arc flashes. If the 

duration of the arc flash lasts for a very short period of time in comparison with the 

sampling window of FFT, it is likely that the arc flashes will not be observable. However, 

the wavelet transform is extraordinarily effective in detecting the exact instant the signal 

changes. The results suggest that the wavelet transform approach is not only capable of 

analyzing arc fault in DC systems but that it also provides a more readily detectable signal 

and better performance than the FFT method.  
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In subsequent work, arc fault signals in the presence of inverter noise have been 

further studied by using waveforms synthesized from real-world PV system voltages and 

currents. These waveforms are comprised of superimposed arcing and inverter electrical 

noise at a user-specified arc-signal-to-noise ratio. The test results using the synthesized 

test signals coincide with preceding theoretical analysis. 

Section 4 proposes a technique for arc fault detection in photovoltaic systems by 

using discrete wavelet transform for feature extraction and support vector machine for 

decision making. Since the developed classifier is designed for real-time DSP/MCU 

applications, the computation load involved in the classification and the memory space 

used for support vector storage are two major concerns. Thus, linear SVM was first 

considered in this paper. 

It was shown that the rescaling strategy of the feature extraction plays a significant 

role in the entire classifier development. In this work, a 2-stage rescaling strategy is found 

to be efficient to provide linear separation between the two classes for the extracted feature 

set to be linearly separable. The cross-validation results show that the proposed 

combination of DWT, 2-stage rescaling, and linear SVM provides accurate prediction 

performance in practice.  The simulation of real-time implementation validates that the 

developed classifier is capable of detecting arc fault reliably in a real-time application with 

fast response and high accuracy. 

By observing the distribution of the 2-D feature set, by mapping the feature set of 

D3 and D4 onto D3, D4, and D3^2 gives us a perfect classification accuracy. It is also 

proven that SVM with the linear kernel using 2-D semi-quadratic feature sets performs 
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the best in the exhaustive search for the best combination of feature extraction, feature 

selection, and classifier model. 

With the exhaustive feature selection search, it has been demonstrated that the 

optimal feature extraction and feature selection method is possible by evaluating the 

metrics pair: precision and recall. 
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5.2 Future Work 

 The major obstacle from carrying this work further is to collect noise signatures from 

different arc-faults and inverters in all possible working conditions in order to build a 

universal database which truthfully represents the underlying distribution of real-

world arcing and non-arcing events. 

 Except for current measurement, other possible measurements (such as voltage, 

temperature, irradiance, etc.) can be incorporated and develop a more comprehensive 

feature set with a wide variety of features. 

 The algorithm can be further developed into a multiclass classification algorithm 

which is capable of detecting and distinguishing all kinds of hazardous faults using the 

same methodology, such that the system would only need one versatile monitoring 

device that guarantees the robust operation of the system. 

 Although the application system used in this work was a PV DC collection grid, the 

results of the arc fault analysis algorithm can generally be applied to any DC electricity 

distribution systems and DC microgrids. 
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