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ABSTRACT

Arc faults have always been a concern for electrical systems as they can cause fires,
personnel shock hazard, and system failure. In photovoltaic (PV) systems, a large number
of electrical connectors and long wire runs are expected. Combined with the high DC
voltage, deterioration of the wire insulation due to aging or other circumstances such as
rodent bites and abrasion due to chaffing with trees, building walls, or conduit during
installation can cause electric arcs to occur. These dc arcs may result in shock hazards,
fires, and system failures or faults in the PV systems. NEC 2011 includes a requirement
for new rooftop arrays to include UL1699B listed arc fault current interrupters (AFCI).
NEC 2014 expands this requirement to include ground-mounted arrays as well.

Existing commercialized techniques that rely on pattern recognition in the time
domain, or frequency domain analysis using a Fourier Transform do not work well because
the signal to noise ratio is low, and the arc signal is not periodic. Instead, wavelet transform
provides a time-frequency approach to analyzing target signals with multiple resolutions.

In this work, a technique for arc fault detection photovoltaic systems by using
discrete wavelet transform (DWT) for feature extraction and support vector machines for
decision making is proposed.

The frequency characteristics of electric arcs in the PV systems are first studied.
The fundamental feasibility of applying wavelet theory to detect arc fault and arc flash in

solar PV power systems is then examined both in simulation using synthetic waveforms



generated in MATLAB / Simulink and experimentally using arc waveforms measured
from actual dc PV systems with/without operating inverters.

In the later chapter, a supervised learning method for arcing/non-arcing event
classification using support vector machines (SVMs) is introduced. SVMs are believed to
be one of the best “off-the-shelf” supervised learning algorithms. The main concept behind
SVM is to create a hyperplane with a maximum margin between the two adjacent classes
which helps bound the generalization error of the classification model. Different
combinations of mother wavelets, decomposition levels, and kernel functions are

examined in this work. Some of the strategies have shown very promising results.
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1. INTRODUCTION*

1.1  Arc Faultsin DC PV Systems

There are three major catastrophic types of failures in photovoltaic (PV) arrays:
ground faults, line-to-line faults, and arc faults [7]. In PV systems, a large number of
electrical connectors and long wire runs are expected. Combined with the high DC
voltage, deterioration of the wire insulation due to aging or other circumstances such as

rodent bites and abrasion due to chaffing with trees, building walls, or conduit during

Inverter
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Figure 1: Example of locations where arcing may occur in a PV array.

* Reprinted with permission from “Arc Fault and Flash Detection in DC Photovoltaic Arrays Using
Wavelets,” by Z. Wang and R.S. Balog, 2013, IEEE 39" Photovoltaic Specialists Conference (PVSC), pp.
1619-1624, © 2013 IEEE. Reprinted with permission from “Arc Fault Signal Detection — Fourier
Transformation vs. Wavelet Decomposition Techniques Using Synthesized Data,” by Z. Wang and R.S.
Balog, 2014, IEEE 40" Photovoltaic Specialists Conference (PVSC), pp. 3239-3244, © 2014 IEEE.

1



installation can cause electric arcs to occur. These DC arcs may result in shock hazards,
fires, and system failures or faults in the PV systems [8].

Electrical arcs in PV systems can arise from series or parallel faults, as illustrated
in Figure 1. Series arc faults often occur due to loose electrical connections while parallel
faults can be caused by abrasion of conductors from thermal cycling or vibration, puncture
of the insulation by rodents, or other failures within the PV system [9, 10].

Figure 2 illustrates possible sources of arc faults due to the way a utility-scale DC
PV power system is installed. Figure 3 [3] provides an example of aging cable connectors
which are very likely to cause loose connections in an operating PV system. As long as
this arc fault problem exists, PV systems face significant concerns about liability which
threaten the extensive use. Thus, arc fault detection is extremely important for reliable and
safe system operation [11, 12] and is a prerequisite for widespread adoption of DC PV

systems [13-16].

Figure 2: Example of DC wiring in a ground-mounted PV array (photo credit: Robert S. Balog).



Figure 3: An example of aging cable connectors which are very likely to cause loose connection

13].

Even more important is to detect arc flash, the pre-fault (before a sustained arc
forms) events of sparking and dielectric breakdown. Arc flash may only last for a short
duration (less than a second) but serves as an early indicator of incipient arc faults.
Detecting arc flash is a difficult problem because unlike a bolted “hard short” fault in
which high current flows through a metal-to-metal connection [17]. Arc flash involves
short-term current flowing through the ionized air or along an ion path and may not draw
sufficiently high RMS current, or have a high enough 1%t energy to trip a thermal circuit
breaker. This is particularly true in finite-energy systems, such as many of the dc
microgrids and systems energized by renewable energy sources. In these cases, an arc,

like the one shown in Figure 4, can be sustained for hours or even days because the



Figure 4: Arcing persists in the DC wiring even after a fire consumes a portion of the combiner
box [4].

overcurrent protection devices never activate [4]. Thus the fire and safety hazards are left
undetected and unmitigated.

Unlike an AC system in which power electronics are typically only found at the
point-of-load, a dc system requires the use of dc/dc converters throughout the distribution
systems [18] which adds distributed capacitance throughout the system providing
numerous coupling pathways for high-frequency signals. High-frequency noise from the
dc/dc converter switching and other electromagnetic interference could obfuscate the arc
signature, allowing an arc to establish and be sustained undetected [19].

In order to meet the goal of the SunShot Initiative launched by the U.S. Department
of Energy in 2011, arc fault protection must be provided within the context of $0.40/watt
balance of system and $0.10/watt power electronics costs. A highly integrated arc fault
detector and circuit interrupter is the best solution to address the safety needs of the

industry installations and retrofit applications [20].



1.2 Outlook for Photovoltaic Industry

The growth of photovoltaics (PV) has been increasing exponentially for more than
two decades around the world, as illustrated in Figure 5 [2]. During this period of time,
PV has evolved from a small market of applications by early adopters towards a
mainstream electricity source. Economic incentives, such as feed-in tariffs, were
implemented by a number of governments when PV systems were first recognized as a
promising renewable energy source. Consequently, the cost of PV installation declined
significantly due to the improvements in the technology and economies of the scale [2, 21,
22].

PV deployment has grown rapidly in the United States over the past several years.
As shown in Figure 6 [5], the compound annual growth rates (CAGR) for the U.S.
residential commercial and utility-scale PV sectors from 2010-2015 were 46%, 43%, and

101%, respectively. Wide adoption of solar energy has been acknowledged to strengthen

B The Americas
Asia Pacific

B Middle East & Africa

W Europe

0 -
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Figure 5: Cumulative regional PV installation [2].
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Figure 6: U.S. PV market growth, 2004-2015, in gigawatts of direct current (DC) capacity [5].

U.S. economic competitiveness in the renewable energy race, help cut carbon pollution to
combat climate change, and secure America’s energy future. The United States has
immense potential to power the country with solar energy: photovoltaic (PV) panels on
just 0.6% of the nation’s total land area could supply enough electricity to power the entire
United States [23]. PV can also be installed on rooftops without actually using any land.
Further, as a domestic energy source, solar supports broader national priorities, including
national security, economic growth, and job creation [23-25].

The SunShot Initiative was launched in 2011 by the U.S. Department of Energy
launched with the goal of making solar electricity cost-competitive with conventionally
generated electricity by 2020 [25, 26]. At the time, this meant reducing photovoltaic (PV)
and concentrating solar power (CSP) prices by approximately 75% - relative to 2010

prices — across the residential, commercial, and utility-scale sectors. The SunShot Vision



Study published by the Department of Energy’s Solar Energy Technologies Office
(SETO) in 2012 projected that achieving the SunShot price-reduction targets could result
in solar meeting roughly 14% of U.S. electricity demand by 2030 (11% PV, 3% CSP) and
27% (19% PV, 8% CSP) by 2050 — while reducing fossil fuel use, cutting emissions of
greenhouse gases and other pollutants, creating solar-related jobs, and lowering consumer
electricity cost [25, 26].

The SunShot initiative aims to reduce the total installed cost of solar energy
systems to $0.06 per kilowatt-hour (kWh) by 2020 [25, 26]. Over the past five years,
cumulative U.S. solar deployment has increased more than tenfold. The system price has
dropped by 54% for utility scale, 63% for commercial, and 55% for residential systems
(shown in Figure 7) and the levelized cost of energy (LCOE) has dropped by as much as
65% (shown in Figure 8) [6]. The recent report series “On the Path to SunShot” [6, 27-33]
shows that today, at the halfway mark of the SunShot Initiative’s 2020 target date, SunShot
is about 70% of its way toward achieving the program’s goal. Since SunShot’s launch in
2011, the average price per kWh of a utility-scale photovoltaic (PV) project has dropped
from about $0.21 to $0.11 [6].

Although the remarkable reduction in PV system prices and LCOE have been
archived since the launch of the SunShot Initiative, significant additional reductions are
needed to realize the 2020 SunShot Initiative. Among the various research to reach the
SunShot goal, intelligent power electronics devices that maximize the power output from
the PV arrays while ensuring overall system safety, reliability, and controllability are

indispensable. A smart inverter functionality of predicting faults and improve system
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reliability could effectively extend the lifetime of the PV
importantly, guarantees human safety around the systems.
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1.3  Arc Faults in AC Systems

AC arc faults have been well studied. The detection of AC arc faults has been well
developed [12, 34-38] with commercial products designed and UL listed [39] for safety
[40-42]. Comparatively, a much smaller body of work pertaining to arcs in dc electrical
systems and commercialization of sensing and protecting devices has only recently begun
[43]. A significant complication to their detection is that arcs in dc systems are not
periodic, and thus may not have easily recognizable amplitude or frequency signatures for
pattern recognition-based detection techniques. Spectral analysis using Fourier techniques
to decompose the frequencies of a sustained arc or bolted fault requires a linear system
and a stationary signal, and therefore Fourier techniques are not capable of reliably
detecting arc flash.

In AC systems, signal decomposition using wavelet transform and wavelet packet
have been proposed and worked well to detect the impulse-like effect of the discontinuous
arc due to periodic extinguishing and re-ignition associated with the main frequency zero-
crossing [11, 12, 34-36, 44]. Waveforms shown in Figure 9 are wavelet decomposition
result of an AC arcing event at a residential house in College Station, Texas. The arcing
was occurring within a 15A standard-duty single-pole light switch in a bathroom location.
It is worth noting that the UL listed arc-fault current interrupter installed upstream in the
circuit breaker box, in accordance with NEC and local code requirements, failed to detect
the arc and de-energize the branch circuit. The arcing had been occurring sporadically for
many weeks before this data being captured. The arc created enough energy to make the

switch warm to the touch and created audible “cracking” noise.
9



While the exact algorithm in the circuit breaker is unknown, referring to Figure 9,
the left is a healthy signal on the bottom, and above it shows a 3-level wavelet transform
result of this non-arcing signal. On the right is the 3-level wavelet transform on the arcing
signal with the same wavelet and the original time domain waveform of the arcing event.

It is worth noting that the comparison of the wavelet analysis results of these real-
world signals matches what was demonstrated in the aforementioned literature: under AC
conditions, the electric arc phenomenon can be described as “spark gap”. The spark gap
will not conduct until the applied voltage across the gap reaches the breakdown point. The
spark gap stops conducting once the voltage decreases to the breakdown point. This “re-
ignition and extinction” process occurs every time the line voltage waveform hits the zero
crossing. Since wavelet transform is particularly effective at discriminating discontinuous
transients in the signal, impulse-like signals show up in the wavelet transform whenever
the arc re-ignites or extinguishes. The pattern of this arcing event is periodic with two

times the frequency of the supplied voltage. Thus, it is fairly easy to be detected in practice.
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Figure 9: Electric arc in AC systems.

On the left is the 3-level wavelet decomposition and the original signal of a healthy 60Hz
voltage signal; on the right is the 3-level wavelet decomposition and the original signal of the
same system with arc happening.
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1.4 Motivation of This Work

While arc faults are rare in photovoltaic installations, more than a dozen
documented arc-faults have led to fires and resulted in significant damage to the PV
system and surrounding structures [45].

Arc faults can occur in PV systems for a variety of reasons. In the exposed wires,
there can be chaffing or abrasion to external conditions. For wires in a conduit, thermal
expansion may be sufficient to cause abrasion, particularly if wire insulation was damaged
during installation. Also, the modular nature of the string design means that there are a
large number of connectors in the wiring between modules. Each module connector is a
potential point of failure. In addition, modern grid-interactive PV system designs employ
voltages as high as 600V [46]. High-voltage DC arcs are difficult to extinguish while the
system is energized. Moreover, a traditional PV module has no means to disconnect the
power source from the DC conductors. Even when the system is shut down, the conductors
remain energized by the solar cells.

The PV electrical fire incidents caused by arc faults are the result of high-
temperature plasmas produced as current passes across separated and damaged
conductors. In response, the 2011 National Electrical Code Section 690.11 — requiring
listed PV arc-fault circuit interrupters on PV installations — was created to reduce the
likelihood of an electrical fire [46]. For PV inverter, smart combiner box, and original

equipment manufacturer (OEM) products to become listed, the device must undergo a

12



sequence of tests defined in UL 1699B to verify its safety, ability to detect arc faults, and
ensure a basic level of unwanted tripping [43].

From Sandia’s unwanted tripping survey with UL 1699B-listed products [47], it is
evident that there are limitations in algorithms of most of the listed products on the market.
The motivation of this work is to study the electrical characteristics of the arc, extract
salient features, and develop a more robust solution to avoid no-detection and false

detection in real-world applications.
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15 Dissertation Outline

This dissertation is organized as follows:
Chapter 1lI: Existing arc fault detection approach in PV

e An existing arc fault detection approach which is widely adopted on many

AFClIs on the market is studied.

e The intrinsic limitations of the tradition approach are explained.
Chapter I11: Arc signal analysis using wavelet transform

e The fundamental theory of discrete wavelet is introduced.

The reason why wavelet transform might be a better fit for this application
than the traditional Fourier-based approaches is analyzed.
e Hardware implementation strategy of the wavelet transform is illustrated.
Its feasibility for sample-by-sample real-time analysis is explained.
e A mathematic model of the arc is simulated in MATLAB / Simulink.
e Real-world waveforms measured from photovoltaic modules and an
experimental arc generator are tested.
Chapter IV: Arc fault detection using wavelet transform and support vector
machines
e A few basic concepts of machine learning are introduced.
e Feature extraction using wavelet transform and Parseval’s theorem is
proposed.

e Theory and derivation of support vector machines are briefly described.

14



e A couple of feature rescaling strategies are evaluated using cross-
validation.
e An exhaustive search for the optimal feature extraction and feature
selection strategies is performed.
Chapter V: Contributions and future work
e The contributions of the work are summarized.

e Future research interests are presented.
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2. EXISTING ARC FAULT DETECTION APPROACH IN PV*

There are currently commercial products available and even required in some
applications for AC arc detection in residential AC systems. Known as arc fault circuit
interrupters (AFCIs), these products are required to detect both series and parallel arc
faults [39]. AFCls typically use current sensors and analog filters to acquire a filtered
analog current signal in a specific frequency band where the arc fault signal is assumed to
be most detectable. The filtered time-domain current signal is then processed, usually by
proprietary detection algorithms and carefully tuned threshold setting in a digital signal
processor (DSP) or microprocessor [40, 42]. Some research, however, has shown that
neither branch/feeder AFCI nor combination AFCI would accurately detect all series arc
faults [48]. This could be in part due to how the threshold of the detection algorithm was
tuned and the assumptions made in the filter as to the frequencies in which the arc
signature signal appears.

To give an example, a commercially available solution is designed to detect arc
fault in a dc PV system using fast Fourier transform (FFT) as the detection method. The
process, shown in Figure 10, uses a wide bandwidth coupled inductor circuit. An isolation
transformer is used to isolate the high DC voltage and current from the arc monitoring

circuit. The application in a PV string array is shown in Figure 11. The detection method

* Reprinted with permission from “Arc Fault and Flash Signal Analysis in DC Distribution Systems
Using Wavelet Transformation,” by Z. Wang and R.S. Balog, 2015, IEEE Transactions on Smart Grid, vol.
6, pp. 1955-1963. © 2015 IEEE
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assumes that the arc signature lies predominantly in the frequency band between 40 kHz
and 100 kHz and uses a pre-filter to condition the analog signal [49]. Nevertheless, other
non-arcing related signals, such as switching harmonics from inverters and DC/DC
optimizers may also generate signals in this frequency band which can lead to false
detection or non-detection by masking the arc signature. Obviously, non-detection is
detrimental since the hazard is undetected. False detection is also undesirable because the
response may unnecessarily shut down the system, causing loss of revenue or even the
potential for grid instability when the PV generation trips offline unexpectedly and
needlessly.

Although the conventional Fourier transform is deeply researched and widely
used, the fact that it works best for periodic signals is a significant limitation. The nature
of arc faults in power systems is not periodic [11]. Further, only frequency information is
given by traditional Fourier transform approaches; not enough time-domain information
is provided to find out exactly when the event occurs. Such temporal localization could
help correlate the electrical arc characteristics with other accompanying events such as
lighting or fast transients that couple from other devices in the system.

The short-time Fourier transform (STFT) is a Fourier-related transform used to
determine the sinusoidal frequency and phase content of local sections of a signal as it
changes over time. This transform still has a fundamental drawback in that the length of
the window used in the STFT is the same for all frequencies which leads to a fixed
resolution. The window length selection then becomes a tradeoff between frequency

resolution and time resolution. A large number of samples is required to obtain high

17



frequency resolution, which in turn causes low time resolution. A shorter window provides
better time resolution but inferior frequency resolution [50, 51].
It is also worth pointing out that in order to minimize the spectral leakage, window size
usually has to be chosen carefully to meet the coherent sampling requirement. However,
the arc fault signature is distributed in a wide frequency band [49, 52]. It is impossible to
choose a perfect window to accurately extract all the relevant information using Fourier
transform based methods.

In conclusion, discrete STFT might be suitable for time-frequency domain analysis
of harmonic related disturbances, but it is not ideal for capturing abrupt disturbances or
short transient signals.
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3. ARC SIGNAL ANALYSIS USING WAVELET TRANSFORM*

3.1 Discrete Wavelet Transform

The wavelet transform is a mathematical tool for signal analysis first introduced in
1909 and further developed gradually since the 1970s. Wavelet theory establishes that a
general transient signal can be constructed by the superposition of a set of special pieces
of signals that occur with different time scales and at distinct times. A few typical
continuous wavelet functions are given in Figure 12 [53]. For any signals that can be used
as wavelets, they must satisfy the admissibility criteria:
e The signal must have a zero mean;
e The signal must be oscillatory;
e The signal must decay to zero quickly.
The wavelet transform (WT) is a linear transformation like the Fourier transform.

Unlike FFT, it allows time localization of different frequency components of a given

* Reprinted with permission from “Arc Fault and Flash Detection in DC Photovoltaic Arrays Using
Wavelets,” by Z. Wang and R.S. Balog, 2013, IEEE 39" Photovoltaic Specialists Conference (PVSC), pp.
1619-1624, © 2013 IEEE. Reprinted with permission from “Arc Fault Signal Detection — Fourier
Transformation vs. Wavelet Decomposition Techniques Using Synthesized Data,” by Z. Wang and R.S.
Balog, 2014, IEEE 40™ Photovoltaic Specialists Conference (PVSC), pp. 3239-3244, © 2014 IEEE.
Reprinted with permission from “Arc Fault and Flash Signal Analysis in DC Distribution Systems Using
Wavelet Transformation,” by Z. Wang and R.S. Balog, 2015, IEEE Transactions on Smart Grid, vol. 6, pp.
1955-1963, © 2015 IEEE. Reprinted with permission from “High Fidelity Replay Arc Fault Detection
Testbed,” by H. Zhu, Z. Wang, S. McConnell, P.C. Hatton, R.S. Balog and J. Johnson, 2016, IEEE 43"
Photovoltaic Specialists Conference (PVSC), pp. 1767-1772, © 2016 IEEE. Reprinted with permission from
“Arc Generator for Photovoltaic Arc Fault Detector Testing,” by P.C. Hatton, M. Bathaniah, Z. Wang, and
R.S. Balog, 2016, IEEE 43 Photovoltaic Specialists Conference (PVSC), pp. 1702-1707, © 2016 IEEE.
Reprinted with permission from “Real Time Arc Fault Detection in PV Systems Using Wavelet
Decomposition,” by H. Zhu, Z. Wang, R.S. Balog, 2016, IEEE 43" Photovoltaic Specialists Conference
(PVSC), pp. 1767-1772, © 2016 IEEE.
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signal [54]. The wavelet transform cuts up data or functions or operators into different
frequency components, and then studies each component with a resolution matched to its
scale.
The wavelet analysis procedure is based on a wavelet prototype function called a "mother
wavelet" which provides a localized signal processing method to decompose the
differential signal into a series of wavelet components, each of which is a time-domain
signal that covers a specific frequency band [55, 56]. Wavelets are particularly effective
in approximating functions with discontinuities or sharp changes like power system fault
signals [57]. With proper choice of the mother wavelet, the wavelet transformation is a
good tool for signal analysis and fault feature extraction.
The wavelet transform is a powerful tool for statistical analysis in signal processing

which have been adopted in a broad range of applications, for example:

e Data and image compression

e Partial differential equation solving

e Pattern extraction and recognition

e Texture analysis

e Noise/trend reduction

e Signal de-noising

Due to the wide variety of signals and problems encountered in power

engineering, there are various suitable applications of the wavelet transform, such as fault
detection, load forecasting, and power system measurement. In addition, information

about power disturbance signals is often a combination of features that are well localized
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temporally or spatially such as power system transients. This requires the use of versatile
analysis methods to handle signals regarding their time-frequency localization, which is
an excellent area to apply the special property of wavelets [58].

The discrete wavelet transform is any wavelet transform for which the wavelets

are discretely sampled. The discrete wavelet transform (DWT) is defined as
C(j,k)= Znez s(n)goj'k(n) jeZkeZ

D(j. k) =2, , sy (n)

jeZkelZ
where C(j,k) and D(j,k) are the corresponding approximation and detail coefficients,
n is the sample number, s(n) is the signal to be analyzed, ¢(n) is the discrete scaling
function (also called the father wavelet), and w(n) is the mother wavelet. For dyadic-
orthonormal wavelet transform, a series of rescaled and shifted functions can be derived
by:

(/)j,k(n) = 2_j/2¢(2_j n-Kk)

Vix (n)= 27”2’//(27]. n-k)
where the set of y, , (n) s are called daughter wavelets

With this initial setting, the DWT can be easily implemented by the multi-
resolution analysis (MRA). Impulse responses of the low-pass and the high-pass filters
corresponding to the continuous wavelets in Figure 12 are listed in Figure 13. As shown

in Figure 14, at each level j, approximation signal A; (represented by linear combinations
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of father wavelets at the j™ level) and detail signal D; (represented by linear combinations
of mother wavelets at the j™ level) can be created:

s=A, + D,

j<3

The function above signifies that s is the sum of its J-th level approximation A;

improved by the fine details Djs[59].

Figure 14: Dyadic wavelet decomposition tree.
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3.2 Filter Banks and Selection of Mother Wavelet

Multi-resolution signal analysis using DWT can be implemented by filter banks,
where a wavelet and a scaling function are associated with a high-pass and a low-pass
filter respectively. As shown in Figure 15, on each level of decomposition, the input signal
is split into a lower frequency component and a higher frequency component. With dyadic
wavelet filters (wavelet transform), only the low-frequency part is further decomposed. In
comparison, binary-tree wavelet filters (wavelet packets), which split both low- and high-
frequency components on each level, lead to decomposed signals with an equal bandwidth

[50]. In this thesis, only dyadic wavelet filter implementation is discussed.
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Figure 15: Dyadic filter bank.

The criteria for selecting the mother wavelet adopted in this dissertation are
summarized in [60, 61]:
1) The wavelet function should have a sufficient number of vanishing moments to

represent the salient features of the disturbances.
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2) The wavelet should provide sharp cutoff frequencies to reduce the amount of
leakage energy into the adjacent resolution levels.

3) The wavelet basis should be orthonormal.

4) For applications where the information lasts for a very short instant, wavelets with
fewer numbers of coefficients are better choices; on the other hand, for signal signature
spread over a longer period, wavelets with larger numbers of coefficients tend to show
smoother results.

There are several well-known families of orthogonal wavelets named after their
inventors. An incomplete list includes Harr, Meyer family, Daubechies family, Coiflets
family, and Symmlets family [62]. Daubechies wavelets are chosen in this paper due to
their outstanding performance in detecting waveform discontinuities [60, 63].

The frequency response of filter banks of Daubechies 3 (db3), Daubechies 9 (db9),
and Daubechies 19 (db19) are shown in Figure 16. It can be seen that the frequency
response of db9 filters has a significantly sharper cutoff frequency in comparison with that
of db3 filters. But db19 does not provide an equally significant improvement over db9.
Considering the extra computational load brought on by wavelets with more coefficients,
db9 is a good compromise.

For a dyadic-orthonormal wavelet transform, the first level detail signal has a
frequency range of fi/4-fs/2, where fs is the sampling frequency of the time domain
disturbance signal. The second-, third-, fourth-, fifth-, and higher-level signals have

frequency ranges of fs/4-fs/8, fs/8-fs/16, fs/16-fs/32, fs/32-fs/64, respectively.
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By way of example, consider a DC system in which there is switching noise
introduced by the power electronic converters in the system. The original time domain
waveform and the spectrum of this signal are plotted in Figure 17(a). Wavelet analysis
using db3, db9, and db19 is performed on this signal. The 4" level detail component was
designed to span the frequency band 31.3 kHz — 62.5 kHz. The FFT in Figure 17(a) shows
that only one harmonic resides in this frequency band and has a magnitude of only about
0.002 Amps. As shown in Figure 17(b), it obvious by inspection that db9 and db19 provide
better approximations of the designated frequency band of the original signal than db3,
but db19 does not provide a substantial improvement in comparison with db9.

Since the goal of wavelet analysis is to separate the arc fault signal from electronic
converter noise (which resides in specific frequency bands) and other electrical
disturbances (which usually vary slowly), a narrower transition frequency region leads to
less information leaking into other decomposition levels and a more accurate signal
approximation. While the db9 and the db19 filter banks are better choices than the db3
filter bank, from a hardware implementation standpoint, db9 filters require less
mathematical operations than db19 wavelet. Thus we can tradeoff the accuracy of the
wavelet decomposition with processing overhead of the real-time wavelet filter banks

implemented in a microcontroller (MCU) or digital signal processor (DSP).

27



Frequency response of db3

12 T T T T T T T

08+ y
0BF
04t ’

02f

-
i

-I-IIHp

a 01 02 03 04 08 068 07
Radians/pi

() db3

Frequency response of db9

0.6

06}

04F

0.2+

-

'
|-|h|-|-\’ 1 1

1 ‘-I-l-l-

-I-Ial

D |
0 01 02 03 04 0585 0B 07

Radians/pi
(b) db9

Freguency response of db13

0.8

0.8

naf

06}

0.4

0.2F 4

yop |

-I-Ial

|
o 01 02 03 04 05 0B OF
Radians/pi

(c) db19

28

0.8

0.9

Figure 16: Frequency response of filter banks using db3, db9, and db19.




138

1 1 1 1
0 0005 001 0016 002 of °
Tirm 4
ur
0.05 . . — 57
£ 2
0.04 < 1 M
Lol
2 0.03 0 M
2 3.2 34 36 38 4
:% o2 Frequency (H P
0.01 l - ~‘
0 " L P T ) )
0 1 2 J e = ] B 7
4
Frequency (Hz) w10
(a)
Wavelet analysis using db3
008 T T T T
]
A8 | | | I | | | | |
i 0.005 001 0.015 0.02 0025 0.03 0.035 0.04 0.045 0.05
time (s)
Wavelet analysis using db9
nos T T T T
'
0% I I I 1 I I 1 I I
i 0.005 001 0.015 0.02 0025 0.03 0.03s 0.04 0.045 0.05
time (s)
Wavelet analysis using dh19
oo T T T T
U I
A8 | | | I | | | | |
i 0.005 001 0.015 0.02 0025 0.03 0.035 0.04 0.045 0.05

time (s)

(b)
Figure 17: (a) DC system with switching noise: Time trace of the signal (blue); FFT spectrums

of the signal (red).
(b)Frequency response of filter banks using db3, db9, and db19.

29



3.3 Hardware Implementation of DWT

The hardware implementation of a 3-level DWT filter bank is illustrated in Figure

18. In order to implement the process with optimal efficiency, the cascaded filtering

process can be reassigned into different sampling periods instead of completing the entire
decomposition in a single sampling period.

As shown in the figure above, the digital signal processing device only needs to

perform one or zero filtering process in one sampling period with the optimized

implementation strategy. Given the length of the filter M (number of filter coefficients)

and the total number of decompositions D, the average number of complex multiplications
in one sampling period is (1—2°)x2M , which asymptotically approaches 2L. The
memory space needed for the process is D xM samples.

In comparison, the total number of complex multiplications needed for radix-2
FFT over a sequence of N complex-valued numbers is(N /2)log, N, and the memory
space needed would be 2N. Considering the number of samples needed in STFT to achieve
a fine frequency resolution, N is a large number comparing with the filter length M, which

makes the FFT not ideal for sample-by-sample real-time implementations.
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3.4 Arc Signal Analysis Using DWT - Simulation

To simulate the arcing condition, black box modeling is commonly used to
describe the arc interaction with the electrical network. The black box models use voltage
and current traces from a circuit breaker test, together with a select differential equation,
to produce a mathematical model for the desired arc under study. Most published work
using black box models is based on the well-known Cassie and Mayr models. The
mathematical model is tuned to a set of measured data by means of a proper selection of
arc parameters including the time constant and the cooling power, which is normally taken
as a function of arc current and voltage [64].

An example circuit with series arcing is created in Simulink, as shown in Figure
19, which is based on the Cassie arc model blockset developed in [19]. The Cassie arc

model is written as a differential equation [65]:

1dg_ding _ 1(& _ j

gdt dt (U

g the conductance of the arc
u the voltage across the arc

i the current through the arc
Uc  the constant arc voltage

T the arc time constant

The system bus voltage source is comprised of a dominant 1,000V DC component

with small-amplitude AC components at 120Hz and 2,000Hz which represent single-
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Table I: Parameters used with the Cassie arc model
T 1.2e-65s Uc 100 V

g(0) le4 S Separation time 05s
phase double-frequency power ripple and power electronic switching noise respectively.
The sustained series arc starts at 0.5s.
The FFT results are shown in Figure 20. The DC voltage, without arc fault, is
shown on the left side of Figure 20 while the voltage with the arc is shown on the right-
hand side of the figure. There is no easily distinguishable change in the FFT spectrum

from before and after the onset of the arc.
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Figure 19: Simulink model.

DC array system with 120Hz double-frequency power line ripple (AC voltage 2), 2 kHz
switching ripple (AC voltage 1), and series arcing (Cassie arc model details listed in Table I).
The arc model initially behaves as an ideal conductance with the value 1e4 Siemens until the
arc “switches on” and then is governed by (4). This simulates the separation of the electrodes
that initiates the arc.
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Figure 20: FFT analysis of the synthetic DC voltage.
(a) Voltage FFT signal before onset of arcing (analysis window starts at 0.2s); (b) Voltage FFT
after onset of arcing
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Figure 21: Wavelet decomposition result of synthetic arcing waveform.
(At 0.5s, the switch across the arc generator opens and current begins to flow in the arc. Load
voltage signal is processed by wavelet transform by Daubechies 9 as above.)

By contrast, the result of the wavelet transform (Daubechies 9) shown in Figure
21 clearly demonstrates an obvious difference in the wavelet transform from before and
after the onset of the arc. This wavelet transform provides an easily observable signal. The

chaotic characteristic of arc should be easily detected by DSP/microprocessor programs.
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3.5  Arc Signal Analysis Using DWT — Real-World Signal

3.5.1 Experiment Setup and Test Procedure

The experiment performed demonstrates a series arc sustained for about half a
second. The arc fault generator (shown in Figure 22) is comprised of two brass electrodes
(a stationary electrode and a movable electrode) contained in a polycarbonate tube for
safety. The series arcing condition is created initially placing the electrodes in contact and
then gradually separating the two electrodes until a desired air gap, in this case 2mm, is
achieved. This is the so-called “pull-apart method” for generating a series arc. The system
is powered by two PV panels connected in series (details are in Table I1). A resistor serves
as the load in this experiment. The brass electrodes are polished before every experiment
trial to remove the oxidized and melted brass from the previous experiment. Figure 23(a)
shows the electrical circuit design; Figure 23(b) shows the experiment station; Figure

23(c) arcing event.

3.5.2 Load Voltage Signal Processing

According to some previous research study and arc fault signal analysis on DC
systems, the bandwidth for the FFT analysis is adjusted as 1.5 kHz — 45 kHz [52]. Since
the sampling frequency of the acquired data is 1 MHz, the frequency band of the 4™ — 6"
level of wavelet decomposition was selected to be approximately 7.8 kHz — 62.5 kHz.

Waveforms shown in Figure 24 are the sensed load voltage signal and the processed FFT
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Figure 22: The arc generator made for the arc signal acquisition experiment.
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Figure 23: Experiment setup for arc signal acquisition.
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Table 1l: Experimental conditions

Load type Fixed resistance: 10 Ohms

DC source type 2 PV panels connected in series
Panel type 1STH-245-WH

Radiance 815 W/m?

Panel temperature 39C

Ambient temperature 26T

Oscilloscope Tektronix MSO 4034
Sampling rate 1 MHz/S

Bandwidth 350MHz

Memory size 10M points

results for both arcing and non-arcing portions of the waveform as computed using
MATLAB. Figure 25 shows the 4" — 6'" level of wavelet decomposition using Daubechies

9 mother wavelet.

3.5.3 Result Discussion

From the result in the previous section, it can be seen that it is possible to detect
arc faults using FFT, but it is not as significant as using wavelet transform, especially
when it comes to the problem for a threshold setting for arc fault determination. Setting
the detection thresholds involves consideration of the signal-to-noise ratio, which may
change from application to application. However, when using wavelet transformation, the
arc signature is significantly distinguished from the non-arcing signal and is easy to be
detected when the detection method is embedded in a microcontroller for real-time arc
fault detection. Further, since the wavelet transform preserves the time-domain

localization information, the precise time of the arc is available for cross-correlation with
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Figure 25: Wavelet transform result.
Top: 31.3 ~ 62.5 kHz; Middle: 15.6 ~ 31.3 kHz; Bottom: 7.81 ~ 15.6 kHz

other system events to improve the confidence of arc fault detection rather than some other

benign electrical events.
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3.5.4 Signal Analysis Using Composite Signal

To better approximate real-world input for arc fault detectors in PV systems, the
arcing information needs to be combined with the real-world background noise. Rather
than combining the inverter noise data and synthetic arc signal using simple amplitude
superposition, we can combine the signals at specific relative power magnitudes. Knowing
the relative strength of one signal versus the other allows one to explore the limits and
therefore the range of detectability. We define a metric called the arc-signal-to-noise ratio
(ASNR) which determines the proportion of power from each source in the composite

signal.

ASNR = e

noise

Adjusting this user-specified parameter in the synthesizing process enables the
synthesis of a family of test signals for validation, sensitivity, and efficacy studies of the
detection algorithm based on real-world signals and scenarios. The composite signal is

synthesized by using the function:

ASNR, ..
= Inv + Arc x ASNRGesire

ArCcomposite
ASNR

original
The performance of the FFT arc detection method compared to the wavelet
decomposition method are further studied using the synthetic waveforms.
In this work, a test signal is synthesized using time-domain inverter noise signal
data measured from a PV array and time-domain arc signals obtained from an arc
generator. Once these synthetic signals are created with specified ASNR levels, discrete
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Fourier transform and discrete wavelet transform are comparatively studied. The influence
of sampling frequency on the two analysis approaches is examined. The wavelet transform
analysis with distinct types of wavelets are also evaluated and compared. Some analysis

results are shown below.
3.5.4.A. Composite Signal with High-Rate Data (Fs=1MHz)

A composite signal with a duration of one second is synthesized by combining
inverter noise and arc fault signals at a sampling rate of 1LMHz to achieve an ASNR of 0.1.
FFT analysis, shown in Figure 26, is first performed on the entire one-second sample
(second from top), the non-arcing portion (third from top) and then the arcing portion
(bottom) of the waveform. The strong presence of the inverter switching frequency and
harmonics appears to overshadow the arc noise, making detection difficult.

By contrast, the 7" decomposed signal (covers the frequency band of 3.9 kHz —
7.8 kHz) from the wavelet transform is selected. Different decomposition results using
db3, db9, and db19 are shown in Figure 27. The temporal waveforms for the selected
frequency band clearly indicate the causality and timing synchronization of the initiation

and extinction of the arc.
3.5.4.B. Composite Signal with Downsampled Data (Fs=100 kHz)

The composite signal from part A is downsampled by a factor of 10 to produce a
composite signal with a sampling rate of 100 kHz and a total of 100k sample points for

the one-second signal. The FFT and wavelet analysis results are shown in Figure 28 and
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Figure 29 respectively. The decomposed signals cover the band of 3.125 kHz — 6.25 kHz

are selected.
3.5.4.C. Result Comparison

From the FFT analysis results shown in Figure 26 and Figure 28, it is difficult to
find any significant detectable arc fault features by comparing the FFT result of the non-
arcing part and the arcing part of the signal, especially when the sampling rate is decreased
(Figure 28). Slight differences do exist between the two spectral analysis graphs, but the
fault detection threshold can be very difficult to select, particularly if a detection technique
using limit-lines is used. Detection threshold setting involves consideration of the signal-
to-noise ratio, which may change from application-to-application. Selecting a threshold
without delicate calculation and thorough understanding of the system behavior would
lead to not triggering or false triggering of the protection mechanism.

However, from the wavelet analysis plots, not only arc features can be easily
distinguished from the non-arcing signal, but the exact moments when the arc fault ignites
and extinguishes can also be observed. This facilitates selection of a detection threshold
for an embedded microcontroller for real-time arc fault detection. It also enables
characterization of the arc event.

By comparing the analysis result using three different Daubechies wavelets, we
can conclude that decomposition results using db9 and db19 are significantly better than
using db3. But db19 doesn’t provide much improvement to the result of db9. This is

consistent with our frequency response analysis of the filter banks. By taking the DSP
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computational load into consideration, db9 is a good compromise between calculation
speed and decomposition quality.

As shown in part A and part B, the sampling frequency has a significant impact on
both Fourier and wavelet detection approaches. With the signal sampled at 100 kHz, it is
almost impossible for the Fourier transform to capture any arc fault features. While the
sustained presence of the arc is not as obvious as when the sampling frequency is 1IMHz
for wavelet decomposition, we should still be able to draw enough information to detect
the arc fault. Thus, detection approaches based on wavelet can use a lower sampling rate
than Fourier transform to accomplish accurate arc fault detection if indeed Fourier

methods can accomplish it at all.
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Figure 26: Composite signal (Fs = 1IMHz); FFT analysis of the entire composite signal (red);
FFT of the non-arcing part of the signal (red); FFT of the arcing part of the signal (green).

Fs = 1MHz, CompoundSignal ASNR = 0.1

0.1 0.2 23 0.4 0.5 0.6 0.7 0.8 038 1
Wavelet analysis using db3

T e o P Ty i

-0.02

0.04 1 1 1 1 I L" |

o 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
Wavelet analysis using db9

0.04 T T T T T T T T T

0.02

-0.02

-0.04 1 1 | Il 1 | 1 1 |
o 0.1 0.2 0.3 0.4 05 06 0.7 0.8 09 1

Wavelet analysis using db19
T

0.04 T T T T T T T T
0.02
o
-0.02
-0.04 ! .
o 0.1 0.2 03 0.4 05 0B 0.7 08 03 1
time (s)
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(Fs = 1MHz).
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Figure 28: Composite signal (Fs = 100kHz); FFT analysis of the entire composite signal
(magenta); FFT of the non-arcing part of the signal (red); FFT of the arcing part of the signal

(green).
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(Fs = 100kHz).
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3.6 Revised Arc Generator

The arc generator (AG) is a platform for producing arc faults for research, testing,
and standardization for the PV industry. Previous drafts of the standard by the UL 1699b
committee included a “steel wool” method to initiate the arc, which works for producing
both series and parallel arc faults [43]. One problem with this approach is that the initial
arc current must flow around the AG through a different path and then switch to the AG
which could alter the system operation (such as maximum power point tracking) or
introduce noise into the system that is not part of the arc itself. This can create a false
detection or mask detection of the true arc. Another problem is that the steel wool was
found to dominate the initial arc characteristics [43]. As such, the device under test (DUT)
affectionately became known as a “steel wool detector”.

Another approach to creating an arc is by using a pull-apart method in which two
electrodes are initially in contact, establishing the current path, and then separated thereby
creating an arc [43]. Although this method only works for series arc faults, it does not
depend on an ignition medium. The test bed presented earlier in section 2 of this
dissertation was the first attempt. It consisted of brass electrodes and a polycarbonate tube
with one fixed and one moveable plate. While it produced good arc results, there were
several design limitations including limited thermal dissipation and manual electrode
separation that limited it from becoming a robust testbed. Repeated arcs gradually ablated
the profile of the electrodes, which alters the electric field, and hence could change the
signature of the arc [66]. Further, sustained arcs, or high repetition rate of arcs, generate

high temperature which melted the AG as shown in the figure below. Thus a new AG was
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needed with improved electrodes, capability to dissipate heat generated from the arc and
to provide precise and automatic control of the electrode separation.

In order to overcome the limitations encountered with the previous design and to
add new features such as the ability to create a horizontal or vertical arc, a new AG was
developed from the ground-up. The new AG allows for a variety of electrodes with varying
geometries to be used. The electrodes are mounted on a linear actuator to precisely control
their separation distance, velocity, and acceleration; the linear actuator is driven by a
stepper motor which is controlled via a microcontroller and computer interface; and the
entire assembly is contained within an enclosure for safety and to eliminate arc

fluctuations from air movement.

Figure 30: Melted mounting plate on the first generation AG.
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3.6.1 Arc Generator Enclosure

As previously mentioned, the first generation AG was limited by its ability to
dissipate heat. The enclosed volume of the first generation AG was too small to reject heat
into the ambient space, and there was not a sufficient heat sink to conduct heat from the
electrodes. Thus the small volume, coupled with the low melting point of polycarbonate,
resulted in a melted mounting plate during prolonged arc generation.

The new AG was designed with a substantial increase in ambient space. The first
generation AG had approximately 150 in3, and the new AG has approximately 3,500 in3.
The figure below displays a picture of the new AG with the base and lid. The base is L-
shaped in order to allow the AG to be positioned in such a way that the electrodes are

separating either horizontally or vertically

izlectrode '\

AG Lid

L aimicts

‘\\ Lincar

Actuntos

Figure 31: The enclosure of the new AG.
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3.6.2 Electrode Carrier

The electrode carriers of the first generation AG were the major failures of the first
generation AG. During arc generation testing where sustained arcs were repeated at a high
rate or for prolonged periods, the electrodes increased to a temperature beyond the melting
point and damaged the polycarbonate mounting plate. In order to prevent this type of
damage occurring to the new AG, aluminum was chosen to mount the electrode carriers.

An important safety feature of the electrode carriers is electrical isolation. If the
electrode carriers are electrically isolated from the rest of the AG, then the AG becomes
safer and more reliable by reducing shock hazard to humans and chances of component
damage. An isolation voltage of 900V was specified to provide a 50% safety margin
because typical grid-tie systems are rated at a maximum of 600V DC [46]. According to

McMaster-Carr, the dielectric strength of the electrical insulator chosen (Garolite) is 350

Right- Angle
Brackets

Figure 32: The electrode carriers.
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V/.001”. The Garolite used in the new AG is 0.5 inches thick, thus resulting in insulation
capabilities of up to 175 kV (see Figure 33). This is well above the specification however,
a thicker slab of Garolite was needed to prevent damage to the slabs during fabrication
A requirement for the new AG was electrode interchangeability and rotational
adjustment. Since the new AG will (ideally) be used for UL standards development, it
would provide robustness if the electrodes could be easily interchanged. The following

figure displays an image of the ball-and-ring electrodes.

Garolite

Figure 33: Garolite voltage insulators.

3.6.3 Motor Control

One of the issues encountered with the first generation AG was manual electrode
separation. Although this method was easy to perform, it is not precise nor was it
automated. This created inconsistencies in the resulting arc signatures because the

separation speeds for each test was impossible to reproduce perfectly. To combat this
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issue, a stepper motor, controlled by a microcontroller-computer interface, was used to
automate the process of electrode carrier separation.

The Texas Instruments” DRV8412 evaluation kit was used for this application.
Relatively low-cost, this evaluation kit provides the user with plug-and-play capabilities
that does not require much in-depth knowledge of stepper motor programming.

The kit comes with a NEMA-23 stepper motor, two brushed DC motors (although
included with the kit, they were not used in the presented AG setup), motor driver, C2000
Piccolo F28035 MCU controlCARD, and motor control graphical user interface (GUI).
More information about the DRV8412 evaluation kit may be found at

http://www.ti.com/tool/DRV8412-C2-KIT.

A picture of entire AG setup is shown in Figure 33.
The full bill of materials (BOM) for the AG presented in this project is provided

in Appendix B.

3.6.4 Lessons Learned

A number of issues were encountered with the AG during initial experimentation.
The most prominent issue was the rigidity of the electrode carriers. The right-angle
brackets were not mounted firmly enough, thus causing the brackets to move upwards
relative to their axis of movement. This created inconsistencies in the number of motor
steps required to generate an arc. To fix this problem, additional fastening points were

added to the right-angle brackets to counteract the issue.
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Figure 34: The revised arc generator.

Another issue involved the electrical connections of the electrodes. The ball-and-
ring electrodes are electrically connected by wrapping wires around the screws used to
mount the electrodes to the right-angle brackets. Although this method is capable of
adequate current flow for low-power arc generation, it is rather crude and could be
improved. The ring electrode severely limits the options for electrical connections because
the mounting screws are so small. Different choice of electrodes could provide more

flexibility for electrical connections.
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3.7 “Replay” Arc Fault Detection Testbed

As an investigation and verification practice, arc generation using arc generator
connected to a PV system is a common method used to study the characteristics of an
electric arc [20, 45, 66-71]. However, the amount of effort required for the arc generation
practice and the uncontrollability of arc power impede researchers to develop accurate
detection algorithms. Controllable recreation which can genuinely represent the arc signal
IS a prerequisite to a successful detection: accurate evaluation of a valid arc and minimized
the chance of nuisance tripping.

In this work, a testbed is developed for the recreation of prerecorded real arc
signals. The input to the system is a prerecorded signal acquired at a sufficiently high
sampling rate. The desired output should be an analog signal that carries the same
voltage/current of the original arc signal, and therefore, can be viewed as a truthful
representation. An ideal replay system could enable a highly automatable and reproducible
system for validation and efficacy studies of the detection algorithms based upon database

with arcing and non-arcing events from different realistic fault scenarios.

3.7.1 System Configuration

As shown in Figure 35, the testbed system created in this work is comprised of a
computer, a digital-to-analog converter (DAC), a resistive load, and an oscilloscope.
Considering the DAC device might not be able to provide sufficient output power to
recreate the original signal, an extra power amplifier is added to the system.

There are several concerns need to be addressed when selecting equipment.
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Figure 35: Structure of the testbed.

1) The output rate of the DAC should be high enough to maintain the true
frequency characteristics of the original signal. If the sampling rate of the
DAC device is not high enough, the prerecorded signal will have to be
down-sampled. Therefore, not only is the information in the higher
frequency bands lost in the process, but also the lower frequency
components can be contaminated because of the aliasing effect.

2) The chosen DAC device would need to have a high enough bit resolution
to truthfully (to some extent) represent the amplitude and the minor
variations in the original signals.

3) The power amplifier would need to have dc output capability with output
power rating higher than the prerecorded signals.

In this work, PCle-6361 from National Instruments and AE 7224 from Techron

are used as the DAC and the power amplifier respectively. The NI PCle-6361 offers up to
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2.86 MS/s output sampling rate for 16-bit data. The output voltage range is #10 V. The
AE 7224 is capable of amplifying the voltage up to 140 V with its maximum output power
at 1.2 kw.

The input to the testbed is prerecorded current signal sequence acquired from non-
arcing and arcing events. The digital sequences are converted into analog signals in the
DAC and then amplified by the power amplifier. A 5Q wire-wound resistor is used in the
testbed as the resistive load. By tuning the rotary knob on the power amplifier, the output
voltage of the power amplifier can be modified in order to achieve a truthful representation
of the original signal. The commercially available arc fault detector (AFD) RD-195 from
Texas Instruments is used as a DUT example. Waveforms at each stage of the replaying
process can be observed and recorded on the oscilloscope. The actual lab setup of the

testbed is shown in Figure 36.

3.7.2 System Validation

Arc signals have a wide frequency spectrum. Both low and high frequency
characteristics can be used for evaluation and detection of arcing events. Thus, the
frequency response of the testbed is expected to be constant within the band of interest,
which is considered to be dc to 100 kHz in this work. Therefore, an accurate replay system
is needed to ensure minimum distortion is introduced into the reproduction. A frequency
sweep from 10 kHz to 160 kHz with 10 kHz interval on the input side is conducted for
frequency response measurement. The input signal of the frequency sweep is generated in

MATLAB, and the output of the DAC and the power amplifier are observed on the
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Figure 36: Picture of the testbed.

oscilloscope. To ensure the smoothness of the digitized sine waves, the sampling rate of
the input signal is set at 2.5 MS/s, which is much higher than the upper bound of the
frequency sweep. The sampling frequency of the oscilloscope is 1 MS/s.

Figure 37 shows the frequency response of replay system. Each test is performed
three times and the result shown here is the average of the three trials. It can be seen from
that the magnitude ranges from 0.978 to 1.005. Taking into consideration the possible
measurement error, the magnitude response of the testbed is considered invariant within
the band of interest. In the meantime, a linear phase where the phase response of the
system is a linear function of frequency. The result is that all frequency components of the

input signal are shifted in time (usually delayed) by the same constant amount. And
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consequently, there is no phase distortion due to the time delay of frequencies relative to
one another.

Besides the desirable frequency response for the steady-state signals, the accurate
and fast response is also required since arc signals exhibit abrupt changes and chaotic
behavior. The transient response properties include rise time, overshoot, settling time,
delay time, peak time, and steady-state error.

Considering the possible measurement error from the oscilloscope, the testbed is
believed to have an invariant magnitude gain and constant time delay within the frequency
band of interests. Therefore, the testbed should have high fidelity reproduction capability-

fast response with minimum magnitude and phase distortion is introduced for signal replay.
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Figure 37: Frequency response test result for the replay system validation.
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3.8 Real-Time Arc Fault Detection Using Wavelet Decomposition

Prior theoretical studies have implemented the DWT algorithm on prerecorded and
synthesized arc signals. The results have demonstrated the potential of DWT for arc fault
detection in PV systems. However, the reduction to practice into cost-effective real-time
arc fault detection hardware, and the challenges involved in doing so, remains an open
issue along with a direct comparison of hardware-based DWT to DFT. This section
presents the results of developing a real-time arc fault detector (AFD) which uses DWT
to analyze the measured PV current and a detection algorithm based on the power of the
decomposed signal.

The proposed DWT method was tested using prerecorded signals acquired by
Sandia National Laboratories from real direct-current photovoltaic (DCPV) systems with
operating inverters. Subsequent testing compared the proposed DWT AFD to the Tl RD-
195 evaluation module, which is a commercially available AFD which adopts an FFT
approach. All test signals here were prerecorded. And they are relayed using the replay

testbed introduced in the previous section.

3.8.1 Hardware of the Arc Fault Detector

The RD-195 dc arc detection evaluation board from Texas Instruments is a
commercially available AFD built on a C2000 DSP platform which adopts an FFT-based
detection method. In order to implement the FFT, the PV current is sampled and block-

processed on a frame-by-frame basis. The system is shown in Figure 38.
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Figure 38: Picture of the testbed.

Sold as an evaluation Kit, users are able to customize parameters such as sampling
frequency, frame size, windowing technique, frequency band, and detection threshold
value. Since this off-the-shelf hardware is specifically designed for acquisition of DC
current and arc fault detection in dc systems, it is chosen in this project for rapid
prototyping and verification of the proposed DWT-based arc fault analysis method.

A slight modification was made to upgrade the DSP from the original
TMS320F29033 to TMS320F28335 while remaining in the C2000 product family. This
upgrade enables a faster CPU clock rate which leads to a sampling rate up to 200 kHz
while executing DWT filter bank in real-time on a sample-by-sample basis.
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3.8.2 Threshold Setting Based on Power Ratio

From the wavelet decomposition results in the previous sections, it was found that
the signal power from the 1%-level high-pass filter, which represents the frequency
components roughly between 50 kHz and 100 kHz, demonstrates a noticeable increase
when arcing occurs. In order to avoid false detection caused by accidental spikes in the
signal, the detection decision is based on the average power of 128 consecutive samples
in the first decomposed detail signal (D1). The signal power computation flow is
illustrated in Figure 39. By calculating and comparing the average power of the processing
frame and the average of power of a non-arcing frame, the threshold ratio between the two
IS chosen to be 1.4. That means:

R = Pprocessing/ Preference

If R > 1.4 =>» the frame being processed is determined to contain a potential arcing

event.

3.8.3 Implementation of DWT-Based Algorithm

On the RD-195 evaluation kit, the current signal is sampled using the external
SM73201 ADC connected via SPI to the MCU. Figure 40 shows the overall signal flow
of the wavelet detection process. The sampling frequency of the ADC is set to be 200 kHz
by an interrupt routine triggered every 5 us which initiates data conversation of the ADC.
An SPI interrupt routine is triggered when the conversion is complete and is followed by
DWT for the new sample. The MCU is programmed to calculate the DWT result of 128

consecutive samples per frame.

60



Start, i=0

A 4
CPU interrupt:
Input[i] sampling
through SPI
module at 200kHz

! -

SPI interrupt:
wavelet decomposition
to derive Output(i]

No

Outpui0] +...+ Outpuiil27]
128

Power=

Figure 39: Signal power computation for each detection frame.

The time needed for the entire detection process has to be managed less than the
sampling period (5 ps) in order maintain the sampling rate at 200 kHz. Data transmission
through SPI takes 3 ps, which leaves us 2 ps to run the decomposition and detection
algorithm. According to the implementation strategy in Section 3.3, one level of high-pass
filtering and low-pass filtering should be accomplished in 2 ps. Processing time and
corresponding bandwidth for a list of Daubechies (Daubechies 3 to Daubechies 9)

wavelets are shown in Table Il1. It can be observed that decreasing the length of the filter
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Figure 40: WT based arc detection program signal flow.

Table 111: Processing duration and visible bandwidth for coefficients db3-db9
Selected Wavelet db3 db4 db5 db6 db7 db8 db9
Time Needed for DWT (us) 0.6 0.72 | 0.84 | 1.02 116 | 132 1.46

Bandwidth (kHz) 1389 | 127.6 130.2 | 1244 120.2 | 116.7 112.1

does not boost the sampling frequency significantly. Thus, when it comes to the wavelet

selection, the capability of extracting arc information would be our major consideration.
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3.8.4 Implementation Result

As illustrated in Figure 41, the high frequency feature of the inverter noise looks
similar to the arc signal. Therefore, to demonstrate that the information extracted from the
wavelet transform are effective, both inverter noise and inverter + arcing events are tested
here. Five sets of inverter noise and inverter + arcing signals are used as the test signals.
Each set of inverter noise and inverter + arcing signal are acquired from the same system.

By using the inverter noise signal as a reference, oscilloscope screenshots in Figure
42 verified that with a little bit of threshold tuning, the information extracted from DWT
could be effective even by using a simple detection method. Although no false tripping is
observed, the algorithm might still be not robust enough since some parts of the arcing

events are not detected.
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Figure 41: An example of real PV arc data (inverter noise included) and inverter noise.
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3.9  Summary of the Chapter

From the analysis shown so far, several conclusions can be drawn:

e It is difficult to find any significantly detectable arc fault features by
comparing the FFT results of the non-arcing part and the arcing part of the
signals, especially when the sampling rate is decreased.

e However, from the wavelet analysis plots, arc features can be easily
distinguished from the non-arcing signal and selection of detection criteria
potentially suitable for an embedded microcontroller for real-time arc fault
detection.

e  Further, since the wavelet transform preserves the time-domain localization
information, the precise time of the arc is available for cross-correlation with
other events in the system and environment which may improve the
confidence of arc fault detection rather than some other benign electrical
events.

e By comparing the analysis result of 3 different Daubechies wavelets, we
conclude that decomposition results the decomposition results from db9 and
db19 are significantly better than those from db3, which is expected according
to the frequency responses of the wavelet filters being used. But db19 doesn’t
provide much improvement over db9. This suggests that optimal selection is
possible from the perspective of frequency response analysis of the filters.

However, since
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The implementation process of DWT is ideal for real-time sample-by-sample
implementation since the computation load is similar to a simple FIR filter.
However, FFT is not suitable for sample-by-sample analysis in real-time.
The sampling frequency has a significant impact on both Fourier and wavelet
detection approaches.

o  With the signal sampled at 100 kHz, it is almost impossible for the
Fourier transform to capture any arc fault features.

o  While the sustained presence of the arc is not as obvious as when the
sampling frequency is 1 MHz for wavelet decomposition, we should still
be able to draw enough information to detect the arc fault when the
sampling rate is at 100 kHz.

o Thus, detection approaches based on wavelet can use a lower sampling
rate than Fourier transform to accomplish accurate arc fault detection if
indeed Fourier methods can accomplish it at all.

Real-time wavelet transform can be successfully implemented on a popular

low-cost MCU on the market. This demonstrates that integrating wavelet-

based signal analysis algorithm would not add much extra cost to the BOS

hardware cost.
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4. ARC FAULT DETECTION USING SUPPORT VECTOR MACHINES*

4.1 A Few Fundamental Concepts of Machine Learning

4.1.1 Supervised Learning and Unsupervised Learning

The widely quoted, formal, modern definition of machine learning is provided by
Tom Michell as: “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E” [72]. By way of example, in chess games, E
stands for the experience of playing many games of chess; T represents the task of playing
chess games; and the probability that the program will win the next game serves as P.

In general, any machine learning problem can be assigned to one of two broad
classifications: 1) supervised learning, or 2) unsupervised learning [1, 73, 74].

In supervised learning, an input data set is given, and the correct output
corresponding to the input is already known. This gives the idea that there is a relationship
between the input and the output. Supervised learning problems are further categorized
into “regression” and “classification” problems. In a regression problem, we try to predict
results within a continuous output, meaning that we try to map the input variables to some

continuous function. While in a classification problem, we try to predict results in a

* Reprinted with permission from “Arc Fault and Flash Detection in Photovoltaic Systems Using
Wavelet Transform and Support Vector Machines,” by Z. Wang and R.S. Balog, 2016, IEEE 43"
Photovoltaic Specialists Conference (PVSC), pp. 3275-3280, © 2016 IEEE.
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discrete output instead. In other words, we try to map the input variables into discrete

categories [1, 73].
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Figure 43: Typical supervised learning example.

A A
) o @ | O
\
O O O ORN} \O O
0 ) ), ©
@) N O
O O O O O R O
O Clusterin L NO
o 5 g O O\\ N
1) " T

Figure 44: Typical unsupervised learning example.

Unsupervised learning, on the other hand, allows us to approach problems with
little or no idea what the results should look like. We can derive structure from data where
we do not necessarily know the effect of the variables. The structure can be derived by
clustering the data based on the relationships among the variables in the data. With

unsupervised learning, there is no feedback based on the prediction results [1, 73].
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In this work, since all the raw data in the database, the correct label (category of
non-arc event or arc event) of each data file is already provided, that makes this research
problem a supervised learning problem.

A typical supervised learning procedure is shown in Figure 45. The training set is
first fed into the learning algorithm to get an output “hypothesis”. The new input data is

then applied to the hypothesis to obtain an estimated output [73].

Training
Set

Learning Algorithm

l

Hypothesis Prediction

New Input
Data

Figure 45: Illustration of supervised learning procedure.

4.1.2 Underfitting and Overfitting

The performance of a classifier depends on the interrelationship between sample
sizes, number of features, and classifier complexity. A naive table-lookup technique
(partitioning the feature space into cells and associating a class label with each cell)

requires the number of training data points to be an exponential function of the feature
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dimension. This phenomenon is called as “curse of dimensionality”, which leads to the
“peaking phenomenon” in classifier design.

It is well-known that the probability of misclassification of a decision rule does
not increase as the number of features increases, as long as the number of training samples
is arbitrarily large and representative of the underlying class-conditional densities.
However, it has often been observed in practice that the added features may degrade the
performance of a classifier if the number of training samples that are used to design the
classifier is small relative to the number of features. This paradoxical behavior is referred
to as the peaking phenomenon. A simple explanation for this phenomenon is as follows:
The most commonly used parametric classifiers estimate the unknown parameters and
plug them in for the true parameters in the class-conditional densities. For a fixed sample
size, as the number of features is increased (with a corresponding increase in the number
of unknown parameters), the reliability of the parameter estimates decreases.
Consequently, the performance of the resulting plug-in classifiers, for a fixed sample size,
may degrade with an increase in the number of features (dimensionality and sample size
consideration in pattern recognition practice).

Once the classification model is selected to fit some set of data (training set), the
error of the parameters as measured on the data (the training error) is likely to be lower
than the actual generalization error.

The generalization error can be decomposed as follows:

Err(f) = Bais[f]? +Var[f]+ o = Bias? +Variance + IrreducibleError
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where Bias[ f (x)] = E[ f (x)]- f(x), is the error from erroneous assumptions in the
learning algorithm. High bias can cause an algorithm to miss the relevant relations

between features and target outputs (underfitting); Var[f(x)]= E[f (x)?]- E[f (X)]?

>
Model Complexity

Figure 46: Model complexity vs. training error and validation error.

represents error from sensitivity to small fluctuations in the training set. High variance
makes the classifier model the random noise in the training data, rather than the intended

outputs (overfitting).

4.1.3 Error Metric and Analysis

It is important to have specific error metrics that evaluate the performance of the
classifier. Conventionally, classification accuracy or traditional Receiver Operator
Characteristic (ROC) curves are commonly used as the evaluation metric for binary

classification problems. However, when dealing with situations where the number of
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negative examples greatly exceeds the number of positive examples (the dataset is thus
called highly skewed), the metrics pair Precision-Recall (PR) would give a more
informative picture of the performance of an algorithm. A detailed comparison of the ROC
and PR metrics is provided in [75].

The definition of precision and recall can be represented with the help of a
confusion matrix as shown in the table below. TP stands for number of true positive
samples, which are examples correctly labeled as positive; FP corresponds to false
positive samples (negative examples incorrectly labeled as positive); TN (true negative)
refers to the number negative samples which are correctly labeled as negative; and FN
(false negative) equals to the number of actual positive samples incorrectly labeled as

negative. Now we have:

precision = ——
TP+ FP
TP
recall = ——
TP+ FEN
Table IV: Confusion matrix
Actual Positive Actual Negative
Predicted Positive TP FP
Predicted Negative FN TN

In the application of arc fault detection, not only precision and recall suits the

classification of the skewed dataset (meaning there are a lot more data samples labeled as
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non-arcing events than the ones labeled as arcing signals), but the pair also represents the
kind of accuracies we are most concerned about when it comes to fault identification.
UL1699B requires that the arc fault detectors should be designed to ensure basic
arc-fault detection capabilities with resistance to unwanted tripping [43]. As shown in
Figure 47, in this project, precision gives us the proportion of samples classified as arc

faults are actual arcing events, while recall presents the proportion of actual arcing events
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Figure 47: lllustration of precision and recall.
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are correctly identified. In other words, higher precision value means lower unwanted

tripping rate and higher recall value indicates lower no-detection rates.

4.1.4 Evaluating a Learning Algorithm

In practice, the error rate of a classification model must be evaluated from all the
available samples which are partitioned into training and test sets. The classifier is first
designed using training samples, and then it is evaluated based on its classification
performance on the test samples.

Cross-validation is probably the most widely used method for estimating
generalization error and evaluating a classification model.

Workflow of K-fold cross-validation is as follows (also illustrated in Figure 48):

1. Randomly split the entire training set into k disjoint subsets of m/k training

examples each: S, ..., Sk.

2. For each model M, we evaluate it as follows:

Forj=1, ..k
1) Train the model Mj on Si+... +Sj.1+Sj+1+... +Sk (i.e., train on all the
data except S;j) to get some hypothesis hi;
2) Test the hypothesis hij on Sj, to get validation error &
3) The estimated generalization error of model M; is then calculated

as the average of the &ij ’s (averaged over )
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3. Pick the model M; with the lowest estimated generalization error, and retrain
that model on the entire training set S. The resulting hypothesis is then output

as our final answer.

Round1l Round2 Round3 Roundi10

10-Fold
Cross-
Validation

Validation
Accuracy P1 P2 P3 P10

Figure 48: 10-fold cross-validation.
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4.2  Feature Extraction Using DWT Results

Although wavelet analysis has been demonstrated to be effective with arc fault
signal analysis, practical implementation needs a way to distinguish arc/non-arc events
and provide annunciation that can be included in a DSP or microcontroller. A more robust
way is to classify the feature vectors acquired by the wavelet transform.

The flowchart in Figure 49 [1] illustrates the workflow of the detection process
which involves data acquisition, feature extraction (including data preprocessing and
rescaling), classification model learning, and classification model evaluation. The output
of this process will be the classification model which includes both the model structure
and specified values of the coefficients.

The feature extraction process involves reducing the amount of resources required
to describe a large set of data. Analysis of a large number of variables generally requires
a large amount of memory and computation power [76], and it may also cause a
classification algorithm to overfit the training samples and generalize poorly to new
samples. An ideal feature extraction would make the job of the classifier trivial, and thus,

makes the real-time classification much easier.

Test Attribute _ | Extract Selected

= Classification [————»
Data Measurement Features

A

Classification/Prediction A

Training
Training Attributes from Featu're :
——> > Extraction/ > Learning
Data the Database ; =2
Selection

Figure 49: Training and test procedure for classification problems [1].
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Typical features of arc fault signals include conductor temperature, voltage/current
signals, dc voltage/current level, energy, frequency spectrum, etc. In this chapter, only
current signals are used as the input attribute.

Two practical problems must be overcome in the implementation of wavelets for
fault detection in power systems:

e Adopting the DWT coefficients directly for fault detection requires large memory
space and computing time. Thus, a feature vector with reduced quantities and without
losing the property of the original signal needs to be chosen.

e The wavelet function, as well as the decomposition level, must be properly chosen to
meet the tradeoff between the accuracy of detecting the fault type and the computing
efficiency.

The extracted feature of the proposed arc fault detection is based upon Parseval’s
theorem, states that if the used wavelets form an orthonormal basis and satisfy the
admissibility condition, then the energy of the original signal is equal to the energy in each

of the expansion coefficients, that is [51, 76]:

JIff = Sletof + > a0

The original signal is decomposed into J levels by the wavelet transform. The
energy is partitioned in time by k and in scale by j in the wavelet domain. C is the
approximated coefficients from the jth level of the wavelet transform, d is for the detail
coefficients from the jth level of wavelet transform. The energy variation of the fault signal

at different resolution levels is adopted as feature vectors. By employing the Parseval’s
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theorem, the information is condensed, thus reducing the data size and yielding a
manageable feature vector. Thus, the extracted feature of the proposed detection method
is based on the average signal power in different resolutions. Since the frame size is
customizable without trading off between the frequency and time resolution, transient
behaviors in the signal can still be captured at the desired frequency resolution.

The literature suggests that the arc signature is most prevalent from 40 kHz to 100
kHz [66]. Thus, with the sampling frequency of 1 MHz, the 3" level (62.5 kHz ~ 125 kHz)
and the 4™ level (31.25 kHz ~ 62.5 kHz) of the decomposition is selected as extracted

attributes.
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4.3  Learning Algorithm — Support Vector Machines

Although previous studies have demonstrated that wavelet transform has

significantly superior processing results with arc fault signal analysis than Fourier-based

methods, when it comes to practical implementation, classification is still needed to set up

a boundary that enables the DSP or the microcontroller to determine if an arc fault has

occurred.

A classifier can be designed using a number of possible approaches. In practice,

the choice of a classifier is a difficult problem and it is often based on which classifier(s)

happen to be available, or best know, to the user.

Three different fundamental approaches to designing a classifier are identified in:

Classifier design based on the concept of similarity. This is the simplest
and the most intuitive approach to classifier design: patterns that are similar
to the particular training samples are assigned to the corresponding class of
the training sample. Once a good metric has been established to define
similarity, patterns can be classified by template matching or the minimum
distance classifier using a few prototypes per class. The most typical
classification algorithm is 1-nearest neighbor (1-NN) classifier. There is no
training needed. It also provides robust performance when sufficient
training patterns are provided. However, in real-time hardware
implementation, this type of classifier would need a significant memory
space and the real-time classification would be slow since patterns would

be assigned to the class of the nearest neighbor. 1-NN rule can be
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conveniently used as a benchmark for all the other classifiers since it
appears to provide a reasonable classification performance in most
applications. Further, assuming Euclidean distance is used to find the
nearest neighbor since the 1-NN rule does not require any user-specified
parameters, its classification results are implementation independent.
Classifier design based on the probabilistic approach.

o The optimal Bayes decision rule assigns a pattern to the class with
the maximum posterior probability. This rule can be modified to
take into account costs associated with different types of
misclassifications. For known class conditional densities, the Bayes
decision rule gives the optimum classifier. However, it is not
realistic to have the prior probabilities and the class-conditional
densities at hand since the photovoltaic systems in the field operate
differently due to the variation of insolation, the ambient and the
panel temperature, etc. Also, components supplied by different
companies may respond to the same environment change in diverse
ways, and thus, give different performance.

o Logistic regression, which is based on the maximum likelihood
approach, treats the output of a sigmoid function at the probability
that the label is equal to 1 for a new input. In logistic regression,
every training sample has a certain influence on the resulting

classifier. However, as shown in the later sections of this chapter,
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the training samples distribute in a very broad range of the sample
space. A huge of amount of them sit very far away from the other
the samples of the other class. Intuitively, we do not wish these
“obvious” samples to be as influential as the “not-as-obvious”
samples.

Two well-known nonparametric decision rules, the k-nearest
neighbor (k-NN) rule, and the Parzen classifier also fall into this
category. Same as 1-NN, both these classifiers require the
computation of the distances between a test sample and all the
patterns in the training set, which not only need memory space to
save all the training, but massive computation power is demanded
every new test sample. The large memory space and the excessive

computation are not desirable for any real-time hardware

implementation that aims to keep the setup under a limited budget.

Classifier design based on constructing geometric decision boundaries.
While this approach depends on the chosen metric, sometimes classifiers
of this type may approximate the Bayes classifier asymptotically. The
driving force of the training procedure is the minimization of a criterion
such as the classification error or the mean squared error (MSE) between
the classifier output and the label of the original pattern. The famous
perceptron, feed-forward neural networks (multilayer perceptrons), and

support vector machines all belong to this genre.
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A few popular supervised learning algorithms are listed in Table V [1].

Support vector classifiers were first introduced by Vapnik [74]. Primarily, it is a
two-class classifier. Nowadays, support vector machines (SVMs) are believed to be one
of the best “off-the-shelf” supervised learning algorithms. The main concept behind SVM
is to find a hyperplane as shown in Figure 50 with a maximum margin between the two
adjacent classes which helps bound the generalization error of the classification model.
Figure 50 illustrates a two class problem where a linear separation is achieved using a
straight line. The margin refers to the blank space around the decision boundary defined
by the geometric distance to the nearest training patterns. These patterns are called the
support vectors, which eventually define the classification function. The number of
support vectors is minimized by maximizing the margin. In cases where data points are
clustered so that linear separation is not possible, the data points can be mapped into
feature space (higher dimensional space) where a linear separation is possible. This
hyperplane which is linear in the mapped feature space will not be linear in its original
input space [1].

The derivation of an SVM classifier is as follows:

Let n-dimensional inputs x; (i = 1, 2, ..., m, where m is the number of samples)
belong to class-1 or class-2 and associated to labels yi =1 for class-1 and y; = -1 for class-
2, respectively. For linearly separable data, a hyperplane f(x) = 0 which separates the data

can be determined

f(X)=w'x+b=0
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Table V: Supervised learning algorithms [1]

Method Property
Nearest Mean  Assigns patterns to the nearest
Classifier class mean
Assigns patterns to the majority
K-Nearest class among K nearest neighbor
Neighbor Rule using a performance optimized
value K
Assigns patterns to the class
Bayes which has the maximum
Plug-In estimated posterior probability
Maximum likelihood rule for
Logistic logistic (sigmoidal) posterior
Regression probability
. Finds a set of thresholds for a
glnary pattern-dependent sequence of
ree

features

Iterative MSE optimization of
two or more layers of

Heed Forward perceptron (neurons, iterative

Wzl optimization of linear
BT classifiers) using sigmoid
transfer functions
Maximizes the margin between
Support Vector the classes by selecting a
Machines minimum number of support

vectors

Real-time Implementation

Almost no training needed; fast
testing; scale (metric) dependent

No training needed; robust
performance; slow testing; scale
(metric) dependent

Yields simple classifiers (linear
or quadratic) for Gaussian
distributions; sensitive to density

Linear classifier; optimal for a
family of different distributions
(Gaussian); suitable for mixed
data types

Overtraining sensitive; needs
pruning; fast testing

Sensitive to training parameters;
slow training; nonlinear
classification function;
overtraining sensitive; needs
regularization

Scale (metric) dependent; slow
training; nonlinear; overtraining
insensitive; good generalization
performance

where w is an n-dimensional vector and b is the intercept term. The two vectors determine
the position of the separating hyperplane. This separating hyperplane satisfies the
constraints f (xij) > 0 if y; = 1and f (xi) < -1 if yi = -1 and this results in the functional margin:

Yy, f(x)=y (@ x, +b)>1,fori=1,2,...,m
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The separating hyperplane that creates the maximum distance between the plane
and the nearest data is called the optimal separating hyperplane as shown in Figure 50.
The geometric margin is found to be 1/]|w||?. Considering noise with the slack variable &
and error penalty Ci, the optimal hyperplane can be found by solving the following convex

quadratic optimization problem:
. 1, 2 i
min , , §||a)|| +CY &
i=1

sty (@' x, +b)>1-¢&,i=1,...,m

Examples are now permitted to have functional margin in (3) less than 1, and if
an example has functional margin 1 - & (with &> 0), the extra cost of the objective function
would be C¢&. The parameter C controls the relative weighting between the twin goals of
making the ||o||* small and of ensuring that most examples have a functional margin at
least 1.

Now, the Lagrangian can now be formed:
d 1
mxaw(a):;ai _Ezyiyjaiaj<xiixj>
.. 0<e, <C,i=1,...,m
zaiyi =0
i=1

«; s are found by solving the Lagrangian duality problem. Now the decision

boundary for a two-class problem derived from the support vector machines can be written

84



as follows using a kernel function K(X®,X)of a new pattern X (to be classified) and a

training pattern X :

D(x) = Zm:ai yOK(X®, %) +b

i=1
where «; s are all zero except for the support vectors [1, 73, 74].

Comparing with the also widely adopted feed-forward neural networks, SVMs do
not suffer from problems like local minima and overtraining. On the other hand, since
SV Ms with simpler kernels are proposed in this project, the developed SVM classifier can
be parametric and easy to implement (in contrast to the non-parametric SVM classifiers
constructed from more advanced kernel functions which consist a set of support vectors).

Detailed theoretical comparison between different supervised learning algorithms

and optimal learning algorithm selection are beyond the scope of this dissertation.
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Figure 50: An SVM trained with samples from two classes. Samples on the margin are called the
support vectors.
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4.4  Hardware Implementation Strategy

Following the procedures mentioned above, the developed SVM will be
implemented by dedicated hardware. A flowchart of the proposed implementation
strategy is shown in Figure 51. On the left of the figure, it shows that the high-level
procedure is divided into three steps: signal acquisition, feature extraction, and prediction
& classification. In the middle, the figure reveals which hardware component each
procedure is carried out. The specific implementations of each process are shown on the
right.

An appropriate kernel function K need to be selected before applying the SVM

algorithm. In its simplest form, we have K(X;, X) =< X;, X >, resulting in a linear classifier.

For a 2-dimensional feature set:

D(X) =Y yOK (X, X)) +b =D a;yO (x"x, + x"%,) + b=, X, + @,X, +b
i=1 i=1

m m i .
where @, =Y o, yx? @, =Y o yOxY
i=1 i=1

As we can see here, the resulting decision boundary can be parametric without
saving all the support vectors for kernel function calculation. For other kernels such as
low-order polynomial kernels, the decision boundary function can also be straightforward
with a few parameters. These parameters can be directly applied to the test data in real-
time applications.

Despite high-quality models constructed by kernel SVMs, the use of kernel SVM
in real-world application remains limited due to the high prediction cost. Linear SVM has

87



Procedure

Hardware

Implementation

Signal Acquisition

Anti-Aliasing
Filter

A

A 4

ADC

Feature
Extraction

\ 4

Prediction &
Classification

Y

Microcontroller

s

Prefiltering

v

Wavelet Decomposition

v

Calculate DC Power in Each

|
|
|
|
|
| Signal Sampling
|
|
|
|
| Decomposition Level

-+

|( Rescale with DC Signal Power

—v

Rescale with Reference Power
of Each Decomposition Level

:if

C )

| Apply the Classification Model to
the Extracted Feature Set

v

Determine if the Processed
Signal is Arc Signal

2-stage
Rescale

I 1-stage
escale
* With Inverter
Reference

.
|
|
|
|
;

Figure 51: Work flow of the proposed hardware implementation strategy.

computer, linear SVM is first considered in this application.
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prediction complexity of O(n) with n as the number of input dimensions. Prediction
complexity of kernel SVM depends on the choice of kernel and is typically proportional
to the number of support vectors. Since the prediction is going to be implemented in real-
time at a very high frequency on an embedded system (a DSP or a microcontroller), which

has very limited memory space and computation speed compared with a powerful personal



The parameters of the developed classification boundary will be directly applied
to the extracted feature vector without any further learning process in the embedded
systems.

Now, let’s take another look at the hardware implementation strategy of the DWT
and classification. As illustrated in Figure 52, since the 3" decomposition level only gives
one output every eight samples and the discriminant function normally takes even less
computation than 1 level of decomposition, the real-time classification using the DWT

result does not require extra computation power from the DSP.

3" Level Decomposition

2 Level Decomposition  [[[|] M 11 T

1* Level Decomposition IV/% V A V% VA
Sampling Periods [ THEEEY FEHEE HEHEE SEBEEE BHEHE EHEHE SN 5 | HHE SHEHEE BEHHH ITBHEH SHEHEE BEUHE I Rt |

3™ Level Decomposition m m

2% Level Decomposition :I:I:DII :I:I:D:[I ]:I:D:I]

1¥ Level Decomposition V V% V VA V 1 V /I{ V A
Sampling Periods [ CHORIE R ORI SR KRR (KRR TS 5 1 { O HOIO OO | ROOn T | IS | ICoon 3

Rl 777 I 77/ N\ 77 % ZIMMZZ\\ 771117
Sampling Periods o G RS SHSHERS (G S E SIS (S S OEE

Classification

Data acquisition m 24wl decomposition
m 1%-lvl decomposition N 3™l decomposition ?11222\1\;?51::;?:;1;:;“

Figure 52: Hardware implementation of a 3-level DWT and classification.
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45  Rescaling, and Cross-Validation with Linear Kernel

Since the range of values of raw data varies widely, in some machine learning
algorithms, the learning process will not work properly without rescaling. Also, some
optimization algorithms, such as gradient descent, converge much faster with properly
rescaled feature set than the extracted raw feature.
The workflow of the entire feature extraction process is shown in Figure 53 and
Figure 54. Figure 55 demonstrates the distribution of the extracted feature without
normalization over the extracted attributes (average power of the 3" and the 4" detail
wavelet coefficients), with 1-stage rescaling, and with 2-stage rescaling.
Four different rescaling strategies are adopted in this paper:
1) No rescaling = Figure 55(a);
2) Rescale by the power of the DC component in the current for each frame of
signal =» Figure 55(b);

3) Use an inverter noise signal as the reference for the corresponding system
setup. Rescale element-wise by the extracted attributes in each decomposition
level of the reference signal =» Figure 55(c);

4) Rescale by both 1) and 2) =» Figure 55(d).

As shown in Figure 55(d), although some of the extracted feature samples of the
positive class (inverter noise + arc fault) and the negative class (inverter noise) are
clustered in similar areas, we should still be able to find a boundary between the two
clusters to separate the two classes. However, samples of the two classes are clustered

together for no rescaling and the two 1-stage rescaling feature sets. There is no obvious
91
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separation between them. Thus, the extracted features with 2-stage rescaling should be
ideal for the application of a linear SVM classifier.

Four linear SVMs are derived using the training samples from the four rescaling
strategies. The 10-fold validation accuracy is shown in Table V1. For the first two rescaling
strategies, we get NaN for precision and O for recall. That is because the feature data set
is significantly “skewed” (70 arc events and 475 non-arc events) and there is no clear
boundary or grouping between the feature samples from the two distinct classes, in order
to maximize the classification accuracy, the linear models predict that all new of the new
samples as inverter noise (no sample is predicted as “positive”) to maximize the accuracy
of the prediction. Thus, while the general accuracy stays at about 0.87, the measurements
of precision and recall truthfully reflect the derived model to be ineffective and unreliable.
With precision and recall values taken into consideration, it is obvious that the
combination of wavelet transform and 2-stage rescaling produces a very satisfying result.
The hyperplane trained from the entire training feature set using linear SVM is plotted in
Figure 56. The training accuracy is 99.63% with precision/recall rate at 0.9857/0.9857. It
means the training data is linearly separable which also demonstrates the effectiveness of

the feature extraction process.

Table VI: 10-fold cross validation result using SVM with linear kernel

Rescaling Strategy Accuracy Precision Recall
1-Stage Mean Squared 0.8704 NaN 0.0000
1-Stage Inverter Noise 0.9101 0.8000 0.4000
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Figure 55: Simulated real-time implementation result.
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An example of real-time implementation is simulated and demonstrated in Figure
57. The predicted “1” indicates that an arc fault is detected, and the predicted “0” suggests
no arc fault has arisen in the system. The prediction result in Figure 57(a) shows there is
no false tripping when the acquired signal only contains inverter noise. In the meantime,
when an arc fault occurs with the presence of inverter noise at about 0.1s in Figure 57(b),

the classifier detects the arc fault with high accuracy and fast response.

Training data set and the classifier
BO T

+  Inverter noise

Inverter noise + arc fault
The developed classifier
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Figure 56: SVM trained with the entire training feature set.
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Time domain signal (inverter noise)
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Prediction result
T T T
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Time (seconds)

(a) Prediction result of an inverter noise signal — no false tripping

Time domain signal (inverter noise + arc fault)
: = T ¢ T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Prediction result
T T T T T T T T T
1k
0] i
1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
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(b) Prediction result of an inverter noise + arc fault signal
— fast and accurate detection

Figure 57: Simulated real-time implementation result.
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4.6 Performance of SVM with Customized Feature Set

By observing the distribution of the feature samples on the D3-D4 plane (as shown

in Figure 58 and Figure 59), it seems like a boundary function in the form of quadratic
function, D(x) = @, X" + w,X, + w;X, + b, might fit the 2-stage rescaled data model better

than the performance of the original feature set with the linear kernel.

Figure 59 shows the result of the boundary of a quadratic function derived by
SVM. It can be easily seen that the quadratic function creates a discriminant boundary
with larger margin and thus clearer separation between the two classes.

The triple criteria confirm the superiority of the quadratic function boundary over
the linear boundary: accuracy = 100%, precision = 1, recall = 1. Further, there are only
three support vectors for the quadratic boundary model, comparing with 14 support
vectors for the linear model. It again verifies that the quadratic classifier fits the data model

better and provides a more convincing classification.
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Figure 58: SVM trained with the entire training feature set using linear kernel.

98



Training data set and the classifier

80 -
+  Inverter noise
O Inverter noise + arc fault
The developed classifier
70
+ +
+ o
"
"
+ +
80 - 4+ +
+
o4+ +
o T N + .
[ o
L o
=0 + o+
= %
o >
T & +
3 @
‘E a0 o + +
]
g [o}
il B
j°)
[s]
o
W o
a
o
eemssnEnsEnEEEER
L / L]
o .
o o n
L L]
L | L] %;_
o o .
‘IIJ:* O%§} / :
L $ + I .
o .
AR
{ T ﬁ
- A
J.ﬁhﬂh.........‘. _— L L | L L J
*0 10 20 ..Slf'll...‘ﬂl.. 50 60 70 80
: Decomposed IGVe B n u u 5 .
0 LR T P,

Training data set and the classifier

. .
20 .
+  Inverter noise "
O Inverter noise + arc fault =
The developed classifier :
18 .
L]
L]
"
.
L]
e o "
"
.
L]
L]
14 -
.
L]
L]
"
.
< 12 "
[a} o u
B "
.
I+
= L]
ERUIS o © o -
. & + + .
= 32 .
s E .
[ E © +|F+++ﬁ’+ u
" /
s O 5} o o . oy . H
[ [ 4+ []
u @y ° / +# +++ + + L
. o
. © g B .
S ®Bo S + + .
" 0 o ’ + "
. o5& A N + :
. (] / W#: + .
. g t .
. - . .
. 4 - + ey + oH o .
L] L]
L] L]
" "
. # T
M 2r #"’H’# :
L] W L]
. ﬁ’a—n—w RTITTTR .
" .
L]
u 0 I L 1 I 1 L 1 L I Il :
. 0 2 4 5 8 10 12 14 16 18 20 =
.

Decomposed level: D3

Figure 59: SVM trained with the entire semi-quadratic training feature set using linear kernel.
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4.7  Exhaustive Search for the Optimal Feature Selection

Despite the curse of dimensionality mentioned in the first section of this chapter,
a reduction in the number of features may lead to a loss in the discrimination power and
thereby lower the accuracy of the resulting recognition system. Watanabe’s famous ugly
duckling theorem states that there is an unquantifiable number of shared properties
between all objects, making any classification biased. It means that features have to be
chosen carefully since it is possible to make two arbitrary patterns similar by encoding
them with a sufficiently large number of redundant features.

Feature selection is about selecting (hopefully) the best subset of input feature set
which leads to the smallest classification error or the optimum of the other criterion
function of the classification (in this project, the paired value of precision and recall). The
use of the classification criterion function makes feature selection procedures dependent
on the sizes of the training, the method of feature extraction, and the specific classifier
being used.

The most straightforward approach to the feature selection problem in this work
: . d . : :
would require 1) examining all m possible subsets of size m from feature sets acquired

from wavelet transform with different choice of mother wavelets, 2) deriving SVM model
with different kinds of kernel selections, and 3) selecting the subset with the optimum
value of the classification criterion. It has been shown that no nonexhaustive sequential
feature selection procedure can be guaranteed to produce the optimal subset. The number

of possible subsets grows combinatorially, making this exhaustive search impractical in
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most problems. However, since our feature sets only have five dimensions from the 5-
level wavelet decomposition, an exhaustive search is adopted in this project.

In our exhaustive search, feature sets with a list of mother wavelets (19 different
wavelets) and different choice of dimensionalities (5-D, 4-D, 3-D, and 2-D), and SVM
with a selection of kernel functions are tested. Linear, 2"%-order polynomial, 3'-order
polynomial, 4"-order polynomial, and Gaussian kernel are used with feature sets of all
listed dimensionalities. Quadratic feature sets are used with only 2-D feature sets with the
linear kernel.

Catalogs containing the best result of their respective dimensionalities are listed
below. The original name of the wavelets and the full result of the entire exhaustive search

can be found in Appendix A.
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4.7.1 Linear Kernel

D1, D2, D3, D4, and D5 D1, D2, D4, and D5
- Accuracy  Precision  Recall - Accuracy  Precision  Recall
BB 09963 0.9857 09857 OB  0.9963 0.9857 0.9857
fdb2  0.9982 0.9859 1 a2 1 1 1
A3 0.9963 0.9857 09857 BB  0.9982 1 0.9857
fab5S N  0.9982 0.9859 1 [dbs 1 1 1
RABON  0.9982 0.9859 1 [dbom 1 1 1
db13 1 1 1 [dbis™ 1 1 1
BRI  0.9982 0.9859 1 [dbionm 1 1 1
[GoIflY  0.9982 0.9859 1 [Goift"  0.9982 1 0.9857
BEoii2l 09982 0.9859 1 [JEoif2 09982 1 0.9857
IGoif3  0.9982 0.9859 1 [Goif3"N  0.9982 0.9859 1
GO 09982 0.9859 1 [coifam 1 1 1
[Coif5™  0.9982 0.9859 1 [eoifs™ 1 1 1
Bym2l 09982 0.9859 1 Sz 1 1 1
Syma 09927 0.9714 09714  [Sym8™  0.9982 1 0.9857
ISUMSM  0.9982 0.9859 1 ISymSIN  0.9982 0.9859 1
Syma™ 09982 0.9859 1 [symons 1 1 1
symi3 1 1 1 symi3 1 1 1
symi19 1 1 1 symi9 1 1 1
dmey 1 1 1 dmey 1 1 1
D1, D2, and D4 D2, and D4
- Accuracy  Precision  Recall - Accuracy  Precision  Recall
BB 0.9963 0.9857 09857 BT  0.9963 0.9857 0.9857
db2 1 1 1 fde2 1 1 1
db3 1 1 1 B3N 1 1 1
db5 1 1 1 [JAB5IN  0.9982 0.9859 1
db9 1 1 1 A6 09982 0.9859 1
db13 1 1 1 [ABI3TN  0.9982 0.9859 1
db19 1 1 1 [dbI9TN 1 1 1
coifl 1 1 1 [eoift s 1 1 1
coif2 1 1 1 [JEGii2lN  0.9982 0.9859 1
coif3 1 1 1 [Goif3"N  0.9982 0.9859 1
coifd 1 1 1 GO  0.9982 0.9859 1
coifs 1 1 1 [Goif5"N  0.9982 0.9859 1
sym2 1 1 1 [Sym2is 1 1 1
sym3 1 1 1 sym3 1 1 1
sym5 1 1 1 [SymSIN  0.9982 0.9859 1
fsym9™ 09982 0.9859 1 [sym9™ 09982 0.9859 1
symi3 1 1 1 JSymIsN  0.9982 0.9859 1
sym19 1 1 1 syml9 1 1 1
BAmEy 09945 0.9718 09857 [Amey  0.9927 0.9714 0.9714
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Discussion from observing the classification result of SVM using linear kernel:

Since the feature extraction process (which includes 5-level wavelet decomposition,
the average power calculation, and the 2-stage rescaling) as made the work of classifier
fairly “ecasy”, for any number of dimensionality more than 1-D. At least, one of the
combinations gives satisfying accuracy, precision and recall numbers.

e Combinations containing D4 seem to be consistently promising.

e 3-D combinations seem to perform the best throughout all selected wavelets.

e No obvious overfitting or underfitting.
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4.7.2 Linear Kernel with Quadratic Feature Sets

O
N
o

S

o
O
=

Accuracy Precision  Recall

0.9982 0.9857

PR PR RPRPRRPRPREPRPREPRRERRERER
PR R RPRPRPRRPRPRPRPRPEPRPRPRRERREREREPR
PR R RPRPRPRPRPRPRPEPRRERRERPRE

0.9982 0.9859
Discussion from observing the classification result of SVM using linear kernel with

[EEN

quadratic feature sets:

It seems like the selected features, and the classifier fit the data model almost perfectly,

which make the classification very easy and accurate.
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4.7.3 2"-Order Polynomial Kernel

D1, D2, D3, D4, and D5 D1, D2, D3, and D4
- Accuracy  Precision  Recall - Accuracy Precision  Recall
MBI o0.2018 0.1174 08 [JEBIN 09963 0.9857 0.9857
db2 1 1 1 [db2N  0.9982 0.9859 1
W  0.7963 0.0816 00571 BB  0.9982 0.9859 1
fab5 Y  0.8844 1 01 [JABS  0.9982 0.9859 1
A  o0.8972 1 02 [JABON  0.9982 0.9859 1
fabI3™  0.9853 1 0.8857 [dBIZNN 09982 0.9859 1
BABIONN  0.9853 1 08857 [JABIONN  0.9982 0.9859 1
[GGifl  0.8606 0.4766 08714 GOl  0.9982 0.9859 1
coif2 08 0.1020 00714 [COIf2IN 09982 0.9859 1
feoifd™  0.8110 0.2203 0.1857 [Coif@™  0.9982 0.9859 1
BEOifA  0.8844 1 01 [COIfA  0.9982 0.9859 1
[coif5™  0.9872 1 09 [eoifs 09982 0.9859 1
sym2 1 1 1 [Bym2 09982 0.9859 1
Syma™  0.8037 0.1064 00714 [Sym8™ 09982 0.9859 1
Bymsl 038972 1 02 [BymEM 09982 0.9859 1
[Syma™  0.8844 1 01 [Sym9™  0.9982 0.9859 1
Syma8)  0.9009 0.5755 08714 [SymMI8N  0.9982 0.9859 1
[Symag9y  0.9835 0.9841 0.8857 [SyMI9N  0.9982 0.9859 1
JOmey  0.8936 0.5556 08571  [JAmey  0.9982 0.9859 1
D1, D2, and D4 D2, and D4

- Accuracy  Precision  Recall - Accuracy  Precision  Recall
BABI 099633 0985714 0985714 JABI  0.9963 0.9857 0.9857
db2 1 1 1 fde2 1 1 1
db3 1 1 1 [dBSE 1 1 1
db5 1 1 1 [JAB5IN  0.9982 0.9859 1
db9 1 1 1 A6 09982 0.9859 1
db13 1 1 1 [ABI3TN  0.9982 0.9859 1
(dbl9 1 1 1 [dBIOTN 1 1 1
~coifl 1 1 1 [eeifi™ 1 1 1
coif2 1 1 1 [JEGii2lN  0.9982 0.9859 1
coif3 1 1 1 [Goif3"N  0.9982 0.9859 1
coifd 1 1 1 GO  0.9982 0.9859 1
coifs 1 1 1 [Goif5"N  0.9982 0.9859 1
sym2 1 1 1 [Sym2is 1 1 1
sym3 1 1 1 sym3 1 1 1
sym5 1 1 1 [SymSIN  0.9982 0.9859 1
sym9 1 1 1 [sym9™ 09982 0.9859 1
symi3 1 1 1 JSymIsN  0.9982 0.9859 1
PSsymi9Y 0.998165 0.985915 1 syml9 1 1 1
POMEY 099633 0985714  0.985714  [dmey 1 1 1

105



Discussion from observing the classification result of SVM using 2"-order polynomial
kernel:

e Combinations containing D4 seem to be consistently promising.

e 3-D feature set seems to perform the best throughout all selected wavelets.

e Some of the 5-D feature sets with 2"%-order polynomial clearly overfit the data model.
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4.7.4 3"9-Order Polynomial Kernel

D1, D2, D3, D4, and D5 D1, D2, D3, and D4
- Accuracy  Precision  Recall - Accuracy Precision  Recall
BB 0.9945 0.9855 09714 B  0.9927 0.9583 0.9857
P2 0.7945 0.3765 09143  [db2 1 1 1
W63 05064 0.1759 07714 [JABSI  0.9229 0.6346 0.9429
pab5ST 09945 0.9718 0.9857 [ABSN  0.9651 0.8312 0.9143
A9  0.9963 0.9857 0.9857 BB  0.9009 0.5769 0.8571
fabI3™  0.9963 0.9857 0.9857 [dBIZNN  0.8844 1 0.1
BABIOMN  0.9945 0.9718 09857 JABIOMN  0.9505 0.8209 0.7857
[GGifl  o0.8257 0.4194 09286 [coifll 0.996 0.9857 0.9857
Eoif2 09945 0.9855 09714 GO 09725 0.8313 0.9857
feoifd™  0.9927 0.9853 09571  [eoifd@™ 09523 0.8235 0.8
GO 09963 0.9857 0.9857 [COIAM  0.8844 1 0.1
[Coif5™  0.9963 0.9857 0.9857 [eoifsi  0.8844 1 0.1
Bym2  0.7523 0.3367 09571  [SYM2B  0.9982 0.9859 1
Symsi  o5321 0.1886 08 [Sym3™ 09156 0.6132 0.9286
YRSl 09927 0.9714 09714 [SYMSM  0.8807 0.5203 0.9143
Syma 09963 0.9857 0.9857 [SyM9™  0.9706 0.9821 0.7857
Symag8l 09963 0.9857 0.9857 [Syma8N  0.8954 1 0.1857
Symi9Y  0.9963 0.9857 0.9857 [SymI9N  0.9615 0.9153 0.7714
Jamey  0.9908 0.9452 09857 [AmeyM  0.9688 0.9492 08
D1, D2, and D3 D2, and D4

- Accuracy  Precision  Recall - Accuracy  Precision  Recall
BB 09945 0.9718 09857 BT  0.9963 0.9857 0.9857
fdb2  0.9982 0.9859 1 b2 0.9982 0.9859 1
db3 1 1 1 A8 09963 0.9722 1
db5 0.996 0.9722 1 [JABSIN  0.9872 0.9846 0.9143
A9 09872 0.92 0.9857 BN 09963 0.9857 0.9857
JabI3™  0.9908 0.9452 09857 [JABIZNN  0.9927 0.9459 1
PEBI9M  0.9908 0.9452 0.9857 B9  0.9945 0.9718 0.9857
[Eoifl™ 09945 0.9589 1 [eoift™  0.9963 0.9857 0.9857
JGGil2 09982 0.9859 1 [JEGiiZ2 09853 0.9844 0.9
feoifd™ 09945 0.9589 1 [eoifd™  0.9853 0.9844 0.9
BEGiA  0.9908 0.9452 09857 [EOIfAM  0.9963 0.9857 0.9857
feoifs™  0.9890 0.9444 09714 [Eoif5iN  0.9927 0.9583 0.9857
BSym2i 09982 0.9859 1 [Sym2i 09982 0.9859 1
sym3 0.996 0.9722 1 [Sym3™ 09835 0.9692 0.9
Byms 09982 0.9859 1 [SymS 09872 0.9846 0.9143
fsym9™ 09908 0.9577 09714 [sym9™  0.9963 0.9857 0.9857
Bymigl 09927 0.9714 09714 [SYME8N  0.9945 0.9718 0.9857
fsymi9" 09872 0.9315 09714 [Symi9" 09817 0.9688 0.8857
JAmey 09780 0.8918 09429 [AmMEY 06147 0.2348 0.8857
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Discussion from observing the classification result of SVM using 3"-order polynomial

kernel:

e 4-D, 5-D feature sets from DWT with most of the selected wavelets obviously overfit
the model with the 3rd order polynomial kernel.

e Combination of D2 and D4 still performs fairly well

e SVM with 3"-order polynomial kernel does not perform as well as that with 2"%-order

polynomial kernel.
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4.7.5 4"-Order Polynomial Kernel

D1, D2, D3, D4, and D5 D1, D2, D3, and D4
- Accuracy  Precision  Recall - Accuracy Precision  Recall
MBI 0.9963 1 09714 [JABI 09725 0.839506 0.9714
fab2 05376 0.1604 06143 [dB2 09945 0.971831 0.9857
W63 0.7468 0.25 04857 B 09890  0.944444 0.9714
Pab5S ™  0.9560 0.75 0.9857  [dB5N 0.996  0.985714 0.9857
A9  0.95% 0.7667 09857 BB 09853  0.907895 0.9857
PEbI3™  0.9780 0.8625 09857 [ABI8N 09615 0.775281 0.9857
BABIOMN  0.9780 0.8625 09857 [JABIONN 09321 0657143 0.9857
[GGifl 05541 0.1554 05571 QGO 09963  0.985714 0.9857
BEoif2l  0.9486 0.7386 09285 [EOIf2ZIN 09908  0.945205 0.9857
feoifd™ 09541 0.7419 0.9857 [COIf8" 09890  0.932432 0.9857
GO  0.9651 0.7931 09857 [GOIfAM 09853  0.907895 0.9857
[eoif5™  o0.9761 0.8519 0.9857 [eoifsi  0.9413 0.69 0.9857
BSym2l 05431 0.1518 05571  [SYM2Bl 09963  0.985714 0.9857
sym3 0.739 0.26 05571  [Sym8™ 09890  0.944444 0.9714
Bymsl 09578 0.7582 09857  [ISymsl 0.996  0.985714 0.9857
Bymo 09615 0.7753 0.9857 [SYMOM 09743  0.841463 0.9857
Symi8) o.9761 0.8608 09714 [SymMaI8N 09137 0.6 0.9857
[Syma9y  0.9780 0.8625 09857 [SYMI9N 09541  0.741935 0.9857
Jmey  0.9780 0.8625 09857 [AMEYM  0.8550 0.451613 06
D1, D2, and D3 D2, and D4

- Accuracy  Precision  Recall - Accuracy  Precision  Recall
MO 0625688 024812 0942857 OB  0.9982 1 0.9857
PAb2  0.994495  0.958904 1 B2 0.9963 0.9857 0.9857
P63 0.998165  0.985915 1 [JEB8N 09982 1 0.9857
PABST  0.994495  0.958904 1 [JAB5N  0.9963 0.9857 0.9857
PABO 0992661 0971429 0971429 OGO  0.9798 0.8734 0.9857
PABI3N 0990826  0.945205 0.985714  FABESEN  0.9890 0.9324 0.9857
PEABIOMN 0.990826  0.957746 0971429 JABIOMN  0.9945 0.9718 0.9857
PCOIfIN 099633  0.972222 1 [eoift™  0.9963 0.9857 0.9857
BGGII2IN 099633  0.972222 1 JEGilZI  0.98%0 0.9324 0.9857
[COIf3 0988991 0932432 0985714  [EOINY  0.9908 0.9452 0.9857
BEGIA 0992661 0958333 0.985714  [COIAME  0.9798 0.8734 0.9857
FCOIf5TY 0988991 0944444 0971429 [EoIfSY  0.9761 0.8519 0.9857
BSym28 099633  0.972222 1 [Sym2 09963 0.9857 0.9857
ISym3™ 099633  0.972222 1 [Sym3™  0.9963 0.9857 0.9857
ISYMSIN 0.998165  0.985915 1 PSymSI  0.9963 0.9857 0.9857
PSym9™| 0988991  0.944444 0971429 [sym9|  0.9780 0.8625 0.9857
ISYMI8Y 0981651 0.894737 0971429 JSYMISN  0.9780 0.8625 0.9857
PSsymi9Y 0987156 0.931507 0971429  [Symi9Y  0.9908 0.9452 0.9857
POMEYM 0985321  0.942857 0942857  NOMeEyM  0.6330 0.2538 0.9571
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Discussion from observing the classification result of SVM using 3"-order polynomial

kernel:

e 4-D, 5-D feature sets from DWT with most of the selected wavelets obviously overfit
the model with 4"-order polynomial kernel.

e Combination of D2 and D4 still performs fairly well

e SVM with 4™M-order polynomial kernel does not perform as well as that with 2"3-order

and 3™-polynomial kernel.
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4.7.6 Discussion of the Exhaustive Search

Since 4"-order polynomial does not perform as well as the polynomial kernels with
lower order, kernels which map the attributes onto an even higher dimensions are no
longer considered because of 1) the higher risk of overfitting, 2) the computation
complexity of the prediction process, and 3) the memory space needed to save a large
number of support vectors.

In the appendix, SVMs with Gaussian kernel do not provide any improvement over
the simpler low-order polynomial kernels.

In general, the 2-dimension and 3-dimension feature sets perform better than the
feature sets with higher dimensions. And the best performance of the exhaustive search

comes from the SVM with the linear kernel using the quadratic feature set of D2 and D4.
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4.8  Summary of the Chapter

This chapter proposes a classification strategy for arc fault detection in
photovoltaic systems by using discrete wavelet transform for feature extraction and
support vector machines for classification. Since the developed classifier is designed for
real-time DSP/MCU applications, the computation load involved in the classification and
the memory space used for support vector storage are two major concerns. Thus, linear
SVM was considered first to find linearly separable 2-dimensional feature sets.

It has been shown that the rescaling strategy of the feature extraction plays a
significant role in the entire classifier development. In this work, a 2-stage rescaling
strategy is found to be efficient to provide linear separation between the two classes for
the extracted feature set to be close to linearly separable. The cross-validation results show
that the proposed combination of DWT with db9, 2-stage rescaling, and SVM with linear
kernel provides a very good classification performance in practice. The simulation of real-
time implementation validates that the developed classifier is capable of detecting arc fault
reliably in a real-time application with fast response and high accuracy.

By observing the distribution of the 2-D feature set, by mapping the feature set of
D3 and D4 onto D3, D4, and D3"2 gives us a perfect classification accuracy. It is also
proven that SVM with the linear kernel using 2-D semi-quadratic feature sets performs
the best in the exhaustive search for the best combination of feature extraction, feature

selection, and classifier model.
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5. CONCLUSIONS

51 Contributions

The research presented in this dissertation has reviewed the existing PV arc fault
detection approaches and their limitations. Investigated the frequency characteristics of
the DC arc, proposed and developed a PV arc detection procedure by using wavelet
transform for feature extraction and support vector machines for classification

In sections, a new approach for arc analysis in DC PV systems has been proposed
based on wavelet transform. The fundamental feasibility of applying wavelet transform
has been presented. A comparison between the Fourier transform method and the proposed
wavelet transform method has been studied with both simulation analysis and
experimental results.

The presence of switching harmonics and ambient electrical noise can mask the
arc signal, making detection of an arc difficult. Fourier analysis is usually not able to
discover transient signals and abrupt changes like sudden arc faults and arc flashes. If the
duration of the arc flash lasts for a very short period of time in comparison with the
sampling window of FFT, it is likely that the arc flashes will not be observable. However,
the wavelet transform is extraordinarily effective in detecting the exact instant the signal
changes. The results suggest that the wavelet transform approach is not only capable of
analyzing arc fault in DC systems but that it also provides a more readily detectable signal

and better performance than the FFT method.
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In subsequent work, arc fault signals in the presence of inverter noise have been
further studied by using waveforms synthesized from real-world PV system voltages and
currents. These waveforms are comprised of superimposed arcing and inverter electrical
noise at a user-specified arc-signal-to-noise ratio. The test results using the synthesized
test signals coincide with preceding theoretical analysis.

Section 4 proposes a technique for arc fault detection in photovoltaic systems by
using discrete wavelet transform for feature extraction and support vector machine for
decision making. Since the developed classifier is designed for real-time DSP/MCU
applications, the computation load involved in the classification and the memory space
used for support vector storage are two major concerns. Thus, linear SVM was first
considered in this paper.

It was shown that the rescaling strategy of the feature extraction plays a significant
role in the entire classifier development. In this work, a 2-stage rescaling strategy is found
to be efficient to provide linear separation between the two classes for the extracted feature
set to be linearly separable. The cross-validation results show that the proposed
combination of DWT, 2-stage rescaling, and linear SVM provides accurate prediction
performance in practice. The simulation of real-time implementation validates that the
developed classifier is capable of detecting arc fault reliably in a real-time application with
fast response and high accuracy.

By observing the distribution of the 2-D feature set, by mapping the feature set of
D3 and D4 onto D3, D4, and D32 gives us a perfect classification accuracy. It is also

proven that SVM with the linear kernel using 2-D semi-quadratic feature sets performs
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the best in the exhaustive search for the best combination of feature extraction, feature
selection, and classifier model.

With the exhaustive feature selection search, it has been demonstrated that the
optimal feature extraction and feature selection method is possible by evaluating the

metrics pair: precision and recall.
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5.2 Future Work
The major obstacle from carrying this work further is to collect noise signatures from
different arc-faults and inverters in all possible working conditions in order to build a
universal database which truthfully represents the underlying distribution of real-
world arcing and non-arcing events.
Except for current measurement, other possible measurements (such as voltage,
temperature, irradiance, etc.) can be incorporated and develop a more comprehensive
feature set with a wide variety of features.
The algorithm can be further developed into a multiclass classification algorithm
which is capable of detecting and distinguishing all kinds of hazardous faults using the
same methodology, such that the system would only need one versatile monitoring
device that guarantees the robust operation of the system.
Although the application system used in this work was a PV DC collection grid, the
results of the arc fault analysis algorithm can generally be applied to any DC electricity

distribution systems and DC microgrids.
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