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ABSTRACT 

 

Remote-sensing classification in agriculture provides advanced techniques for expanding 

the capacity of high-throughput phenotyping in plant breeding and optimizing field management 

in precision agriculture. Methods applied in this study seek to advance remote sensing of plant 

breeding and precision agriculture through the classification of maize genotypes from unmanned 

aircraft system (UAS) images. Random forests (RF) and stochastic gradient boosting (SGB) 

algorithms were applied for classification of 12 maize genotypes at a row-scale analysis. 

Classification was achieved through the combined use of object-based image analysis (OBIA) and 

multi-temporal image analysis. The classification utilizes “object properties,” or variables (image 

layer statistics, object texture, object geometry, Structure from Motion (SfM) derived height 

measurements, and time-series measurements), to discriminate among genotypes. Object variables 

are evaluated for discriminative capacity in a maize-genotype context. Classification results with 

an accuracy of 81.25% supported the discrimination of 12 maize genotypes using only RGB 

images. This study further supports the use of SGB over RF in small class number classification, 

but RF in assessments of a larger number of classes. Multi-temporal dimensionality proved 

beneficial for classification; image and variable stack SGB classification produced results with an 

increase in accuracy of 30% and greater over single-date classification. Finally, study results 

identified the most discriminative object variables, such as mean canopy height model (Mean-

CHM) and FRAGSTATS Cohesion metric, for classification of maize genotypes with the objective 

that future research will make use of derived variables and their association with plant 

characteristics for selection of optimal varieties of maize.  
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CHAPTER 1 

 INTRODUCTION  

 

1.1 Background 

 Maize (Zea mays L.) is the highest produced cereal crop by production in the world 

and is a valuable staple crop for many countries. The United States is the leading global producer 

of maize with maize being the United States’ most widely produced crop (FAO 2009; 

NASS/USDA 2019). As world population is expected to increase to 8.3 billion people by 2050, 

agricultural production must rise to meet this demand. Estimates predict that crop production must 

increase by 20% to 75% to meet global demands (FAO 2009; Hunter et al. 2017). In addition, 

dependence on maize is remarkably high in many developing countries throughout Africa and the 

Americas, e.g. maize is estimated as ~36% of dietary energy for the country of Guatemala (Ray et 

al. 2013).  According to Hyman et al. (2008), “one-third of all malnourished children are found in 

systems where maize is among the top three crops.” Development of more productive maize 

varieties and farming practices is necessary to meet both current demand among developing 

countries and future population growth. 

Remote-sensing platforms are increasingly being integrated into plant breeding research to 

help scientist identify genotypes with valuable traits such as higher yield, drought tolerance, 

lodging resistance, etc. High-throughput phenotyping is being used as means to quickly select 

genotypes by identifying physiological features of plants associated with beneficial traits or plant 

characteristics. Development of unmanned aerial systems (UAS) are also providing new 

opportunities for plant breeders to collect measurements with increased spatial and temporal 

resolution than previous methods, e.g. manual in field measurements or satellite platforms. 
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Application of high-throughput phenotyping and UAS image analysis can theoretically increase 

the speed, precision, and capacity at which plant breeders can identify improved hybrid maize 

breeds, if analytical tools are available and reliable. Plant breeders are using phenotypic features 

such as plant height, leaf area index (LAI), and plant health linked to desired traits to help quickly 

select unique genotypes for further assessment (Haghighattalab et al. 2016; Anderson et al. 2019). 

In addition to measuring plant phenotypic properties, remote-sensing classification is also being 

used to identify unique genotypes (Tu et al. 2018). Classification uses machine-learning algorithms 

to provide plant breeders with a reduced list of most discriminative genotypes for further 

evaluation. Classification also provides information as to which image variables generated and 

used as inputs are most valuable for describing a genotype. Variables derived from image analysis 

can further be assessed for descriptive information of genotypes and correlation to valuable plant 

traits.  

1.2 Objectives 

This thesis presents methodology for multi-temporal object-based high-spatial-resolution 

remote-sensing classification of agriculture. Different from previous remote-sensing studies 

performed on agriculture, a concept for remote-sensing classification was proposed, which 

provided multi-temporal object properties for classification of image objects at a subplot-scale. 

This thesis also differs from previous studies as genotype classification was performed exclusively 

using RGB data and not hyperspectral. Object properties (e.g., spectral and canopy height model 

(CHM) statistics, texture, geometry, and wavelet analysis results) derived from 18 image-

acquisition dates and image stacking provided descriptive information as to the changing 

biophysical characteristics of a plant’s canopy throughout a growing season. This assisted 
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classification by providing a larger feature space on which each algorithm was trained while also 

providing variables and classification which took into consideration plant development. Temporal 

information along with innovative use of CHM, wavelet, and Yellow Index assisted in 

classification in the absence of higher spectral resolution data. Classification of crop genotypes 

and the application of a semi-automated object-based image analysis (OBIA) workflow developed 

by this study was proposed to increase plant breeding and precision-agriculture efficiency by 

introducing improved methods for monitoring and selecting optimal maize genotypes. In addition, 

measures identified through the proposed remote-sensing classification provide a target for further 

research. The following research objectives sought to provide additional information for plant 

breeding of maize by achieving the following goals: 

1. Identify which machine-learning algorithm provided the most accurate genotype 

classifications. 

 

2. Identify the earliest point in the growing season that accurate maize genotype classification 

was possible. 

 

3. Identify the most important variables for discriminating among maize genotypes. 
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CHAPTER 2 

 LITERATURE REVIEW  

 

Remote-sensing classification has been used on a variety of different applications within 

agriculture from the discrimination of crops and weeds to tea tree cultivars (Pérez-Ortiz et al. 2016; 

Tu et al. 2018). Assessment of phenotypes (physiological properties of plants) via remote-sensing 

techniques has been conducted without classification in a large number of studies and using a wide 

range of sensors including RGB, multi-and hyperspectral, thermal, and LiDAR (Jay et al. 2015; 

Zaman-Allah et al. 2015; Haghighattalab et al. 2016; Vergara-Díaz et al. 2016; Malambo et al. 

2018). However, studies focused specifically on the classification of crop cultivars are limited and 

methods applied very similar. Classification within such studies have primarily been limited to 

spectroradiometer data and to a lesser degree hyperspectral images with low to medium resolution 

derived from aerial or satellite platforms (Rao, Garg and Ghosh 2007; Shahi et al. 2007; Basso et 

al. 2010; Zhao et al. 2010; Das et al. 2018). Within studies using hyperspectral information for 

genotype classification, the number of classes between which discrimination occurred was limited 

to a range of 3 to 14 genotypes (Rao, Garg and Ghosh 2007; Das et al. 2018). Results with accuracy 

of 95-98% suggest classification of genotypes through hyperspectral analysis is possible and 

classification at the genotype level should be explored using alternative methods (Das et al. 2018; 

Tu et al. 2018). Similarly, spectroradiometer analysis and feature extraction of genotype 

characteristics was performed on sugarcane and wheat fields of 87 to 384 genotypes (a sample size 

better representing a full plant breeding scenario), but within these studies, classification was not 

performed which could have helped identify highly discriminative genotypes and the variables 

acting as the greatest contributor to distinguishing between genotypes (Zhao et al. 2012; Garriga 
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et al. 2017). Within the last year, only one study used a UAS platform for hyperspectral 

classification of cultivars; however, this study focused on tea tree cultivar (Camellia sinensis L.) 

discrimination as opposed to annual crops. Eight cultivars were classified using support vector 

machines (SVM) and achieved an overall accuracy of 96.2% (Tu et al. 2018). Also similar to 

research conducted at the genotype level, classification of mangrove species was studied using 

UAS derived hyperspectral and 3-demensional digital surface model (DSM) data. Within this 

study, object-based image analysis (OBIA) of UAS images was performed to extract additional 

measures from image regions beyond spectral and height information inferred from individual 

pixels (Cao et al. 2018).  

 Previous studies in the literature have been concentrated on genotypic classification using 

spectroradiometer and low spatial resolution hyperspectral images. A significant gap in the 

literature remains for the classification of genotypes using UAS remote-sensing, RGB images, and 

height information. Studies have assessed maize genotypes using UAS, variables extracted from 

RGB bands, and height information from Structure from Motion (SfM) point clouds as are 

proposed in this study; however, though genotypes were selected in these studies (often through 

quantitative phenotypes), classification was not used to discriminate between them (Geipel, Link, 

and Claupein 2014; Zaman-Allah et al. 2015; Li et al. 2016; Malambo et al. 2018). Furthermore, 

multi-temporal OBIA has yet to be used for classification of annual crops using UAS-derived 

images. Limited work has applied OBIA for analyzing crops in a plant-breeding assessment (Hall 

et al. 2018). Three gaps identified in this literature review include 1) classification of annual crops 

using multi-temporal OBIA variables derived from UAS images; 2) classification of genotypes 
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using  images with only common red, green and blue (RGB) reflectance bands, rather than 

hyperspectral; and 3) use of SfM derived 3D information for classification of annual crops.  

Object-based image analysis (OBIA), also referred to as geographic object-based image 

analysis (GEOBIA), works by grouping adjacent pixels within an image into meaningful image 

regions known as ‘image objects’ based on the homogeneity of pixel values in a multidimensional 

feature space (Liu et al. 2006; Blaschke 2010; Blaschke et al. 2014). OBIA is especially beneficial 

for very high-resolution image analysis as image objects provide the minimum unit for 

classification and are able to account for spectral variability and shadowing within plants (Torres-

Sánchez, López-Granados, and Peña 2015,). Image objects provide additional information such as 

texture, geometry, and spatial context for classification beyond pixel-based analysis which is 

needed for complex vegetation classes. OBIA operates as a workflow of operations with 

segmentation being a core but not the only step for creating meaningful image objects (Hussain et 

al. 2013). Segments or image regions created by segmentation are optimized by merging, labeling, 

and feature extraction to produce image objects that more comprehensively describe targets within 

an image (ex. rows of maize, plants, leaves, etc.) (Blaschke 2010; Benz et al. 2014; Blaschke et al. 

2014).  

The multidimensional feature space used to create image objects can be comprised of 

multiple images layers or bands for a single point in time or from multiple points in time; therefore, 

image objects can, but do not have to, describe homogeneous regions within a single image or 

point in time but can be multi-temporal in nature (Hussain et al. 2013; Song et al. 2019). This 

suggest that image objects can describe a multi-temporal phenomenon and OBIA feature 

extraction can produce multi-temporal variables and summary statistics from multiple layers, 
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images, and dates. After reviewing the literature, we were not able to identify any studies utilizing 

temporal object-based properties or variables for sub-field classification of agricultural UAS 

images. Multi-date assessment of maize has been conducted using UAS images, but inclusion of 

temporal information for classification was not used (Torres-Sánchez et al. 2014; Vega et al. 2015; 

Malambo et al. 2018). Multi-temporal classification up to this time has occurred almost entirely at 

the field and multi-field scales in agriculture due to the limited spatial resolution of satellite and 

aerial images (Petitjean et al. 2012; Moody et al. 2017; Peña, Liao, and Brenning 2017; Xiao et al. 

2018). Classification of satellite images has made use of image stack techniques, multi-temporal 

vegetation indices, and OBIA methods as were adapted in this study (Petitjean et al. 2012; 

Osmólska and Hawrylo 2018; Song et al. 2019). In the area of very high-resolution image analysis, 

much work has been conducted recently on crop species and crop-weed classification with UAS 

platforms, but a clear void remains in the multi-temporal classification of agriculture at the sub-

field scale (López-Granados 2011; Peña et al. 2013; Torres-Sánchez, López-Granados, and Peña 

2015; David, Ballado, and Ieee 2016; Lopez-Granados et al. 2016; Perez-Ortiz et al. 2016; de 

Castro et al. 2018).  

Most comparable to the methods proposed for this study is the object-based classification 

of crop and weeds using UAS images. A significant volume of literature has sought to address the 

classification of crop and weed species for site specific weed management (SSWM) (Peña et al. 

2013; Torres-Sánchez, López-Granados, and Peña 2015; Lopez-Granados et al. 2016; de Castro et 

al. 2018). Studies have performed OBIA classification on the limited information of RGB and 

multispectral images; such research has produced promising results for between specie 

discrimination, specifically in the context of crop and weeds (Pérez-Ortiz et al. 2016). Literature 
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on crop-weed classification have demonstrated the benefit of OBIA methods for high resolution 

and plant-level classification of agriculture with RGB images (Huang et al. 2018). Yet, some 

object-based methods which have proven very valuable for crop-weed classification, such as plant 

location in relation to crop-row objects, do not provide beneficial information for discrimination 

of genotypes. The location of an image object representing a plant within or outside of a crop row, 

a powerful variable used to identify weeds that occur between crop rows and highly contributing 

to classification accuracy in such studies, is not helpful in a genotype scenario as voluntary plant 

growth is purposefully eliminated (Perez-Ortiz et al. 2016). However, even within the broader field 

of crop-weed classification, no attempt has been made to use multi-temporal object properties for 

classification.  

In addition to crop-weed classification, OBIA classification of UAS images was applied 

for mangrove species discrimination (Cao et al. 2018); however, application of OBIA for 

phenotype and genotype classification in a non-multi-temporal context is still under explored. 

Finally, we acknowledge mathematical morphology and object-based classification have been 

applied to RGB images of potato and banana cultivars, however in such articles classification was 

not performed on images of the plant (Przybyl et al. 2015; Dittakan et al. 2017). Classification in 

these studies was performed on harvested fruit and within a laboratory setting.  

As of to date, no literature has been found on the classification of genotypes using solely 

optical or RGB UAS images. Multiple studies have used UAS to assess genotypes of cereal crops 

and derive phenotypic measurements such as plant height, leaf area index, and plant health from 

RGB images (Zaman-Allah et al. 2015, Haghighattalab et al. 2016; Vergara-Díaz et al. 2016; 

Anderson et al. 2019). Research as in Geipel et al. (2014) and Anderson et al. (2019) have assessed 
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the viability of UAS for collecting reliable information for use in deriving phenotypic parameters 

of maize genotypes and predicting individual genotype yield. Whereas these studies make use of 

UAS for remote sensing of maize genotypes, no classification for the discrimination of genotypes 

has been conducted using only RGB or even multispectral sensors.  

Remote-sensing classification of annual agriculture has largely been conducted using 

measurements of spectra, texture, and object geometry. Apart from work by Wu et al. (2017) and 

de Castro et al. (2018), the use of SfM and LiDAR derived 3D information for agricultural remote 

sensing has primarily been limited to plant analyses for annual crops with very little research 

devoted to classification. In a similar context, research has made use of SfM for classification of 

trees (Torres-Sánchez et al. 2015; Nevalainen et al. 2017; Cao et al. 2018). LiDAR has also been 

used extensively for the purpose of tree species and plant-foliage classification, and many 

techniques have been developed to assess the structure and characteristics of forests and individual 

trees (Hung, Bryson, and Sukkarieh 2006; Pipkins et al. 2014). Recent advancements in UAS 

technology have promoted increased use in LiDAR and stereotypic SfM for assessment and 

measuring of annual agriculture and crops with short height. Over approximately the past decade, 

multiple studies have assessed the use of SfM point clouds and digital surface models (DSMs) for 

predicting yield and identifying phenotypic traits of plants such as height and leaf area index (LAI) 

(Jay et al. 2015; Li et al. 2016). Though SfM measurements derived from passive sensors remain 

less robust than active remote sensing of LiDAR, research on LiDAR classification suggest 3D 

properties of agriculture may prove valuable information for classification. Research utilizing 

UASs for high-throughput phenotyping and plant monitoring further supports the use of 3D 
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measurements for plant scale agricultural classification as previous studies were able to capture 

10-40% increase in genetic variation (Aasen et al. 2015; Anderson et al. 2019).   

Studies have made use of UAS derived 3D information for classification, but within the 

setting of annual agriculture, work has been limited (Wu et al. 2017; de Castro et al. 2018). Within 

past studies, height information was gathered at the plot-level. Research still needs to be conducted 

on the integration and benefit of using height information derived from SfM point clouds for 

classification. One area still under explored is the creation 3D derived object properties of annual 

agriculture from UAS which describe a portion of an individual plant’s structure. Tree crown and 

height, for example, has been used for classification of tree species and to characterize plant 

structure (Hung, Bryson, and Sukkarieh 2006; Popescu and Zhou 2008). Future research using 

height information and spatial context could provide means for higher detailed feature extraction 

and characterization of plant architecture such as on stalks, tassels, or ears.  

Methods developed in this study will contribute to improving the efficiency of plant 

breeding through extraction of increased descriptive information for genotype selection. Need for 

faster, standardized assessment of genotypes to increase capacity and efficiency of plant breeding 

is a driving factor for this research. Future work will further utilize variables derived and evaluated 

by this study for yield predictions of maize. Multi-temporal OBIA classification of UAS images 

will further contribute to the broader application of remote-sensing in precision agriculture (e.g. 

crop-weed management, pest detection, etc.)  
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CHAPTER 3 

 RESEARCH CONCEPTS AND METHODOLOGIES  

 

3.1 Introduction 

 Methodologies conducted within this thesis are discussed in the following sections. A brief 

description is provided for the plant breeding study of hybrid maize genotypes on which analysis 

was performed. Preprocessing for creation of OBIA inputs and image quality corrections for multi-

temporal analysis are provided. OBIA was performed at the row scale for maize within this study; 

a discussion of object scale at the row versus the plant level is presented. A proposed workflow 

for OBIA of single and multi-temporal creation of maize row image objects is provided. In addition 

to the full list of variables used in this study, software specifications for feature extraction of RGB 

derived information are provided. Methods for multi-temporal grouping of variables for 

description of individual maize rows is presented. Along with feature selection and algorithms for 

classification of genotypes, Figure 1 provides an outline of methodologies discussed in this 

chapter.
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Figure 1:Outline of methods applied for multi-temporal object-based classification of 

maize. 

 

 

3.2 Study Site 

 The study site was located at Texas A&M University AgriLife Research Farm (30.55 N, 

96.43 W) south of College Station, Texas near the Brazos River. Field plots were designed and 

managed by the corn breeding program from the Department of Soil and Crop Sciences at Texas 

A&M University and used material from the national Genomes to Fields (G2F; 
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genomes2fields.org) program. Experimental hybrid maize varieties were planted in three field 

management conditions: field (G2FE) was irrigated/fertilized for optimal conditions, field (DG2F) 

was dryland (non-irrigated) and had reduced fertilizer to increase stress conditions, and field 

(G2LA) was late-planted but irrigated to increase heat and moisture stress. Analysis for this study 

is focused on the experimental condition G2FE (optimal). Within the G2FE field, 280 genotypes 

were planted. The field was organized as plots; each plot consisted of two paired rows for each 

genotype. With the exception of six (6) genotypes, all genotypes had a second replicate plot present 

in the field. Therefore, all genotypes with the exception of genotype pedigree GEMS-0264/3IIH6 

had a minimum of 4 rows located in the field. Refer to Appendix 1 for the list of genotypes with 

more than two plots. Plots were organized randomly within the field, within replications, and 

within field management conditions. In other words, a split-split-split plot design was used where 

the first split was field management, the second split was replication, and the third was genotypes 

randomized within the replications. The field condition G2FE and an example of a two-row plot 

can be seen in Figure 2 for the date May 12 (05/12). 
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Figure 2: Study area. a) inset of general study site shown in Google Maps®, b) image 

mosaic of 05/12 for field condition G2FE, c) inset of mosaicked image plot. 

 

3.3 Data Acquisition 

UAS images were collected by Dr. Dale Cope in the Department of Mechanical 

Engineering at Texas A&M University for the maize growing season of 2017 between the dates 

of March 21 and July 13. Over the 2017 growing season, images were collected on 18 separate 

b) Field layout 05/12 

a) General study location 

c) Individual plot 
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dates capturing a range of plant development from emergence to maturity. In Figure 3, three of the 

eighteen dates where image collection occurred are provided as an example of phenotypic change 

seen in maize canopy over the timeseries of this study. In an effort to maximize collected data 

during the flowering period, flights occurred biweekly, as weather permitted, between May 2 to 

June 16. Data was collected on the following dates: 03/21, 04/07, 04/20, 05/02, 05/05, 05/09, 

05/12, 05/15, 05/24, 05/30, 06/02, 06/06, 06/09, 06/12, 06/16, 06/23, 06/29, 07/13. Refer to 

Appendix 2 for a full list of image collection dates. Images were collected with a Tuffwing UAV 

Mapper (http://www.tuffwing.com), a fixed-wing UAS. The UAS was mounted with a Sony 

ILCE-6000 (16mm) camera. The camera has the following specifications: 6000 x 4000 resolution, 

16mm focal length, and 4 x 4 μm pixel size. Images were collected at an altitude of 120 meters 

and had a spatial resolution of 2.66-2.83cm. Spatial resolution varied slightly between images. 

Orthorectification and mosaicking performed in Agisoft PhotoScan Professional (Agisoft, St. 

Petersburg, Russia) combined overlapping photos into single images for each date; image overlap 

was 80%. In addition to orthomosaic images, point clouds for each date were also produced via 

Structure from Motion (SfM) photogrammetry using Agisoft PhotoScan Professional. This data 

was processed by the Texas A&M AgriLife Research Flight and Data Analysis Services 
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Figure 3: An example of phenological change in maize canopy over the 2017 

growing season as shown by the dates 04/07, 05/02, and 06/06 listed left to right. 

 

eCognition Developer 9.0 (Trimble Germany GmbH, Munich, Germany) provided the 

primary platform for object-based image analysis performed in this study (Benz et al. 2004). Image 

mosaics, SfM point clouds, and a vector layer defining plot boundaries were provided by Dr. 

Murray’s research group and the Texas A&M AgriLife Research Flight and Data Analysis 

Services and are available at CyVerse (Murray et al. 2019). Eight image layers and one thematic 

layer were produced for analysis in eCognition. Image layers included bands: Red, Green, and 

Blue; the vegetation indices: Excess Green (ExG), Vegetativen (VEG), Excess Red (ExR), and 

Yellow Index; and canopy height model (CHM). Image layers described above were created for 

all dates with the exception of a CHM layer for the date March 21 (03/21). The CHM layer for 

03/21 was omitted from this study as SfM point clouds had difficulty characterizing plant height 

at the juvenile stage of maize development present for this date. A single thematic layer composed 

of vectors defining row boundaries for each row of maize was also provided for analysis across all 

dates. Additional image layers derived from wavelet analysis were included as inputs for feature 

extraction and genotype classification. Wavelet image layers were provided by Dr. Bishop’s 

research team in the Department of Geography at Texas A&M University. A continuous wavelet 
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transform was used to measure the periodicity of a signal over multiple spatial scales. Wavelet 

image layers used in this study were created at a scale of 0.2 to 5.0 (0.35-8.87cm) at increments of 

0.2 in scale for the dates of May 2 through June 29. Wavelet analysis was included in this study to 

provide additional information as to spatial patterns in image reflectance such as break points, 

trends, self-similarity, and higher-derivative discontinuities (Bishop et al. 2018).  

3.4 Data Preprocessing 

Preprocessing of data through quality assessment and multi-temporal alignment were 

fundamental to the application of multi-temporal object-based methods performed in this study. 

Prior to image segmentation, spatial and spectral corrections were applied to point cloud and 

orthomosaic images. The following paragraphs provide information regarding data preparation 

such as: conversion of CHM to 2-diminsional image layers, creation and comparison of vegetation 

indices, evaluation of image quality and masking of blurry image regions, and geospatial 

correction of image layers. These steps included the preprocessing of row boundary delineation, 

mask image blur, geoshift, and the creation of VI layers shown in Figure 1 on page 12. 

3.4.1 Canopy Height Model Conversion 

 To reduce computational demand for object-based operations employed within eCognition, 

CHM data -digital terrain models specifically referring to measurements of crop height- were 

converted from point clouds to 2.5-diminsional raster images. Point clouds were converted to raster 

using the tool “LAS Dataset To Raster” in ESRI ArcMap. The interpolation type applied was 

Triangulation and the interpolation method was Linear. Selection method was set to Maximum 

and resolution was set to 0.06. Sampling type was Cell Size and set to a value of 0.1. Figure 4 

provides an illustration of 2.5-dimensional CHM used in this study. 
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Figure 4: CHM for the date 06/02. 

 

3.4.2 Optical Vegetation Indices 

 True color vegetation indices (VIs) provided a valuable component of our analysis as inputs 

for segmentation, thresholds for binary classification of maize and non-maize, and additional 

information for feature extraction. To emphasize different spectral or physiological characteristics 
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of plants and to maximize the discriminative capacity of RGB bands, a comparison of twenty true 

color vegetation indices was conducted. Only true color VI’s were generated as multispectral (red 

edge) band was at a different resolution and hyperspectral bands were not available. VI raster 

layers were generated using Raster Calculator in ESRI ArcMap and were evaluated through visual 

assessment for clarity and descriptive ability. The following indices were compared: CIVE, COM, 

COM(2),  ExG, ExGR, ExR, GLI, GR, GRRI, NDI, NGBDI, NGRDI, VARI, VDVI, VEG, VIg, 

RGB Yellow, WI, and YI (YI was a custom index designed for this study) Table 1 provides a list 

of VI names, formulas, citations and related information. (David, Ballado, and Ieee 2016). All VIs 

produced for this study were derived from the bands of single date; multi-temporal true color VIs 

were not integrated in this study. Normalization, as shown in Table 2, was applied to select VIs 

where normalization was included in the original study.
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Table 1: Vegetation indices tested for use in segmentation and genotype classification. 

Vegetation Index Abbreviation   Formula Citation 

Color index of vegetation extraction CIVE 0.441r − 0.881g + −0.385b + 18.78745 Kataoka et al. 2003 

Combination COM 

0.25ExG + 0.3ExGR + 0.33CIVE + 

0.12VEG Guijarro et al. 2011 

Combination 2 COM(2) 0.36ExG + 0.47CIVE + 0.17VEG Guerrero et al. 2012 

Excess Green ExG 2g−r−b Woebbecke et al. 1995 

Excess Green - Excess Red ExGR 3g-2.4r-b Meyer and Neto 2008 

Excess Red ExR 1.4r-g 

Meyer, Hindman, & Laksmi. 

1999 

Ground Level Image GLI (2g−b−r)/(2g+b+r) 

Louhaichi, Borman, and 

Johnson 2001 

Green Ratio GR Green / ( Red + Green + Blue) Ide and Oguma 2013 

Green-red Ratio Index GRRI g / r Gamon and Surfus 1999 

Normalized Difference Index NDI (g−r) / (g+r) Woebbecke et al. 1993 

Normalized Green-Blue Difference 

Index NGBDI (𝐺reen−𝑅ed ) / (𝐺reen + 𝐵lue ) Xue and Su 2017 

Normalized Green-Red Difference 

Index NGRDI (Green-Red) / (Green + Red) Xue and Su 2017 

Visible Atmospherically Resistant 

Indexgreen VARI (Green−Red) / (Green+Red−Blue) Gitelson et al. 2002 

Visible-Band Difference Vegetation 

Index VDVI (2 * g - r - b) / (2 * g + r + b) Xue and Su 2017 

Vegetativen VEG g / (rᵅ b⁽¹⁻ᵅ⁾) Hague, Tillett, & Wheeler. 2006 

Vegetation Indexgreen VIg (Green−Red) / (Green+Red) Gitelson et al. 2002 

RGB Yellow Yellow R + G Doi 2012 

Woebbecke Index WI (g−b) / (r−g) Woebbecke et al. 1995 

Yellow Index YI 3g-2r Original 
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Table 2: Normalization applied to some vegetation indices. 

Bands 

r = R / (R+G+B) 

g = G / (R+G+B) 

b = B / (R+G+B) 

 

After visual assessment, we chose the following VIs as we felt these provided valuable and 

unique information for our analysis: ExG, ExR, VEG, and YI. ExG is a well-known algorithm 

supported in the literature which provides information as to the greenness of vegetation and has 

been shown to perform better than other true color VIs in multiple studies (Woebbecke et al. 1995). 

Based on visual assessment, ExG provides noticeable contrast between green vegetation and 

background. In addition, ExG appeared less influenced by shadowing and glare effects or 

brightness within images as did other VIs tested such as the index VEG. ExG provided the primary 

threshold for our binary labeling of maize and non-maize image objects described in greater detail 

later in this study.  VEG was chosen to provide supplemental information as to the greenness of 

vegetation. In previous studies, VEG was used for vegetation assessment (Hague, Tillett, & 

Wheeler. 2006). VEG was chosen as a second descriptor of greenness which provided additional 

information during feature extraction. As VEG image layers appeared less pixelated than those of 

ExG, VEG was included to improve segmentation. The index ExR provided information as to the 

redness of plant canopy (Meyer, Hindman, & Laksmi. 1999). As plants matured, ExR was used to 

measure browning foliage and as additional threshold for labeling maize and non-maize image 

objects. In addition to ExR, we felt an index designed to highlight yellow regions within an image 

would be especially descriptive of maize as plants began to tassel and later dry out and brown. 

Two vegetation indices (RGB yellow and Green/Blue) were evaluated for the purpose of 

highlighting yellow image regions; however, in our evaluation both indices were unable to isolate 
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or provide meaning yellowness values for image regions solely using RGB bands (Doi. 2012). The 

vegetation index Yellow Index (YI) was a custom algorithm created to identify yellow image 

regions and provide measurements as to the yellowness of image objects. YI proved more effective 

at describing yellow image regions and distinguishing between yellow and other image colors than 

the indices RGB yellow and Green/Blue. YI was not included as an input for segmentation or as a 

threshold for binary labeling but was included as an additional input for classification. VIs chosen 

for this study are shown for the date 06/02 in Figure 5. As shown in Figure 5, results for ExR and 

YI are very similar; however, ExR appears to assign slightly higher intensity to non-vegetation 

than YI. This suggest, based on visual assessment, YI may be better suited to analyze yellow or 

dying vegetation than ExR. 

 

 

Figure 5: RGB image and Vegetation indices ExG, ExR, VEG, and YI for the date 06/02 as 

listed from left to right. 

 

3.4.3 Geospatial Correction 

During orthorectification, mosaic images were geospatially corrected using ground control 

points; however, further corrections were necessary for multi-temporal alignment of maize rows 

across all dates. Though photos were tied to ground control points during orthorectification and 

mosaicking, image distortion and spatial inaccuracy were noticeable in image mosaics. Geospatial 
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correction applied at this step did not correct images based on RMS error produced during 

mosaicking and orthorectification, but images were corrected by aligning rows of maize within a 

standard geospatial unit. An ESRI shapefile of row boundaries provided by Anderson et al. (2019) 

was used as a constant geospatial unit for which images were corrected to. Each date was visually 

evaluated as to how well maize rows were centered within row boundary vectors. Figure 6 provides 

an example of a row canopy being split by the row boundary vector. To correct dates, the minimum 

x and y value of image layers were adjusted so that vegetation for a genotype shifted to the center 

of row boundary vectors. This geolocation shift was applied in the software ENVI version 4.8 

(Exelis Visual Information Solutions, Boulder, Colorado). using the function “Edit ENVI Header”. 

Dates with geospatial corrections are provided in Table 3. Geospatial correction during this step 

was necessary to prevent segmentation from producing image objects from the spectra and height 

information of two different genotypes. This was especially important for image stack 

segmentation where image layers from multiple dates were stacked for a single segmentation. 

 

 

Figure 6: Geoshift applied to spatially align images of all dates to a row boundary polygon. 
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          Table 3: Image dates and corrections applied. 

Date Geoshift Mask Image Blur 

March 21   
April 07 x x 

April 20  x 

May 2  x 

May 5 x x 

May 9  x 

May 12 x  
May 15 x x 

May 24 x x 

May 30 x x 

June 02 x  
June 06 x x 

June 09 x x 

June 12  x 

June 16 x x 

June 23   
June 29 x x 

July 13  x 

 

3.4.4 Mask Image Blur 

 Blurring within images noted after mosaicking and orthorectification posed a potential 

inhibitor for genotype classification. Image blur or the smearing of portions of a mosaicked image 

was present in patches of varying levels of intensities across most dates. Image blur reduced the 

sharpness and clarity of image features creating spectrally and spatially distorted descriptive 

information for genotype classification. Boundaries in image clarity could be seen at right angles 

and along straight lines across orthomosaics. Figure 7 provides an illustration of image blur 

observed and the extensiveness of masking applied for the date 04/07. 
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     Figure 7: Example of extent and intensity of image blur for date 04/07. 

 

As the focus of our study was not to address the optimization of image clarity, we decided 

to take a qualitative approach to compensate for blur. Mosaics of each date were manually assessed 

for “significant image blur”. This method was subjective to user evaluation and should be 

automated as a quantitative detection in future research. Blur did occur at varying levels within 

mosaics and also varying levels between dates. Increased blur was noticed at later dates. Based on 

user discretion, regions of “significant image blur” were identified and masked. Masking of image 

blur was carried out along row boundary vectors. Rows with partially clear and blurred portions 

did occur throughout mosaics. Rows with vegetation having greater than ~80% image blur present 
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were masked. It should be noted that since smearing occurred at varying levels not all image blur 

was removed from a mosaic. It should also be noted that different levels of distortion were deemed 

appropriate to keep based on the date, overall quality of the mosaic or prevalence of blur over the 

entire mosaic. For example, since intensity of image blurring was high and very prevalent in later 

dates but clear spectral contrast was noticed between genotypes, regions with higher blur than was 

clipped in earlier dates was deemed acceptable and remained unmasked. For dates where the 

majority of the mosaic had image blur present, only regions with very high distortion were 

removed. Masking was applied to all dates within the time series except 03/21, 05/12, 06/02, and 

06/23. Table 3 on page 24 list all dates on which quality corrections were applied. 

3.5 Selecting Scale for Multi-Temporal OBIA 

3.5.1 Scale of Objects 

The first step in the application of object-based image analysis was to decide what level of 

maize architecture in a field image objects would represent. As noted previously, image objects 

rather than pixels provided the base unit for classification in OBIA; therefore, it was necessary to 

determine at what scale within a field image objects could or should be created. This was a critical 

point in our analysis as two scales of canopy architecture were considered: 1) plant or individual 

stalk-level image objects and 2) row-level image objects. Based on the scale of analysis chosen, 

segmentation parameters were adjusted accordingly to create image objects best representing 

individual plants of a genotype or individual rows of a genotype. Challenges to creating image 

objects representative of the canopy architecture proposed were 1)the overlapping of plant leaves 

between stalks within a row and 2)the overlap of leaves between rows.  

As leaves overlapped between plants, occlusion occurred making visual identification of 

individual plants difficult or not feasible at the current spatial resolution of 2.66-2.83cm. At the 
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same time, spectral differences were captured within individual stalks of maize; for example, 

spectral differences could be seen between portions of a plant such as leaves, tassels, etc. Apart 

from date 03/21, a few weeks after planting, overlap in leaf canopy was present for all dates. After 

performing preliminary segmentation analysis, it was noticed that spectral similarity was in fact 

greater between portions of different plants than within a single plant. Thus, when testing 

segmentation at a plant-level analysis, segmentation produced image objects describing plant 

center and outer overlapping leaves of more than one plant. Plant-level segmentation produced 

results where image objects for multiple plants, portions of a single plant (ex. plant core or tassel 

region), and combined portions of multiple plants (ex. overlapping leaves) but had difficulty 

separating each individual plant as a unique image object.  

Similar to plant-level analysis, row-level segmentation was also challenged by overlapping 

canopy between rows. Where overlap between row canopies occurred, greater spectral similarity 

was present between the outer leaves of two rows and within the center of rows than within an 

entire individual row. Testing demonstrated that segmentation at the row scale for image dates 

with canopy overlap present produced image objects covering portions of two rows or portions of 

only a single row but rarely a single full row. An inverse relationship was created when adjusting 

the scale parameter in segmentation. As the scale parameter was increased, image objects were 

more likely to cover portions of multiple rows. As the scale parameter was lowered, segmentation 

produces fewer results which covered two rows but was unable to capture an entire row. At the 

same time, segmentation preferred to create image objects for outer overlapping leaves along each 

row and for the darker or tasseled center of a row. Within row scale segmentation, results produced 

images objects encompassing an entire row, a portion of a row, portions of two rows, and multiple 

rows.  
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Results from preliminary analysis suggested that a single multi-resolution segmentation 

operation in eCognition was not adequate alone for creating representative image objects for entire 

and only one maize plant or row across an entire field regardless of the scale parameter chosen. 

The proposed OBIA workflow of this study provided a solution to the unrepresentative 

segmentation noticed in preliminary analysis of plant- and row-level analysis. The use of a row 

boundary vector is suggested for row-level object-based analysis. As this study is performed on a 

maize field designed for plant breeding with exact specification at planting, rows have precise 

spacing, length, and orientation. A tool recently developed by Anderson et al. (2019) was applied 

to delineate plot boundaries based on spacing, orientation, length and starting position of maize 

rows within a field. From plot boundary vectors, rectangular boundaries for each row can further 

be defined as seen in Figure 8. An identification number was assigned to each row boundary vector. 

The inclusion of a thematic layer of row boundary vectors as rectangles provided the necessary 

information needed to limit row-level segmentation to a single row. Row boundary vectors also 

provided a constant geospatial extent for which image objects of maize, varying in size and 

location over a growing season, could be connected for multi-temporal analysis. Because of the 

inclusion of row boundary vectors, we were able to create clear image objects for rows of maize 

across all dates. We therefore chose a row-level scale of analysis for this study. 
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Figure 8: Row boundary polygons for field condition G2FE. Subset shows row boundaries 

overlaying image 05/12. 

 

3.5.2 Scale Parameter for Multi-Temporal Segmentation 

A second challenge to implementing OBIA on a multi-temporal dataset was the selection 

of appropriate scale parameters for eCognition multiresolution segmentation. Scale parameter 

determined the level of spectral heterogeneity within image objects and thus directly influenced 

the size of image objects produced by segmentation (Benz et al. 2004; Drăguţ et al. 2014). The 

scale parameter established at what threshold pixels were no longer combined into a particle image 

object and at what point the next image object should be formed. In previous literature, the 

appropriate scale parameter was often determined based on user expertise through empirical trial 

and error analysis (Blaschke 2010). The necessary scale parameter was influenced not only by the 

size but spectral uniformity of a phenomena being captured in a given image. As canopy size and 
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architecture of maize changed during the growing season as plants matured, evolving size and 

spectral makeup of objects required the selection of a new scale parameter for each date when 

using conventional segmentation analysis. Manual selection of the scale parameter through “trial 

and error” experimentation did not provide a practical option for the segmentation of 18 individual 

dates and three image stacks conducted in this study. The multi-temporal nature of this study 

emphasized the need for a more automated way to select segmentation parameters than through 

repeated “trial and error” assessment. To counter the issue of selecting a unique scale parameter 

for each date in our timeseries, we proposed a new object-based workflow using row boundary 

vectors and constant segmentation scale parameters across all dates. This method functioned 

through a series of sub-plant multiresolution segmentation, Grow Region, and Merge Region 

operations (segmentation and segmentation reshaping algorithms provided in eCognition) within 

a thematic layer of row boundary polygons to create image objects characteristic of maize 

vegetation for a row (eCognition Developer 2014).. During this workflow, two scale parameters 

were used for all dates; a second set of scale parameters were chosen for image stack segmentation. 

Trial and error assessment was still applied to select the first and second scale parameters used; 

however, within our OBIA workflow, a single segmentation was not responsible for creating image 

objects describing an entire row but only portions of a row. Selection of a segmentation scale 

parameter using our proposed method was more flexible as less emphasis was placed on 

identifying the perfect scale for delineating row objects. The method proposed only required that 

the scale parameter be set to produce image objects smaller than the target object to be captured, 

in this case smaller than a full row of maize. Our method thus significantly reduced the tedious 

and subjective use of trial and error selection of the scale parameter within multiresolution 

segmentation. 
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3.6 Multi-Temporal Analysis 

 In this section, the multi-temporal components of analysis applied in this study is described 

in length. As previously referenced, a new OBIA workflow was applied to a timeseries of 18 

orthomosaic images expanding the length of the maize growing season. Multi-temporal analysis 

within this study occurred in three ways: as image stack segmentation which provided multi-

temporal variables for classification, as variable stack classification using variables extracted from 

OBIA results of individual dates, and a multi-temporal comparison of classification of single dates. 

This study extends beyond multi-temporal comparisons of separate classifications by applying 

techniques that captured temporal dimensionality in the growing season, which was then included 

as input for classification. A clear distinction between the application of variable stack 

classification and image stack segmentation are made in the following sections.  

3.6.1 Image Stack for Segmentation 

In our analysis, we wanted to perform a series of independent segmentations for each date 

of data acquisition. We also wanted to conduct three multi-temporal segmentations where image 

layers of multiple dates were grouped together for a single segmentation. To allow for independent 

segmentation of each date to be performed in eCognition, maps were created using the image 

layers of a single date. Three additional maps were created for image stack segmentation; all image 

layers from all dates were added to these maps for various levels of inclusion in segmentation and 

feature extraction. The first image stack map was created for a three-date segmentation. All images 

after the date 03/21 without image blur masking were selected for this segmentation. Image date 

03/21 was not used in this segmentation due to very limited canopy extent. Image layers used in 

segmentation of this three-date image stack map included 05/12, 06/02, and 06/23; these dates 

were selected as they were the only dates available without image blur masking. Within this map, 
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no portion of the field was influenced by void or null image regions created during image blur 

masking. The second image stack map was used for a six-date segmentation which included the 

six dates with least image blur masking applied. Dates used for six-date image stack segmentation 

were 05/02, 05/12, 05/15, 06/02, 06/16, and 06/23. A third image stack map was created for a full 

multi-temporal segmentation of the timeseries and used all image layers between the dates 04/07 

to 06/23; however, dates 03/21, 06/29, and 07/13 were still omitted from segmentation in this map 

due to large levels of masking (06/29, and 07/13) or limited canopy size (03/21). Dates used in 

each image stack segmentation are shown in Table 4. All image layers were added to image stack 

maps; however, only dates previously listed were used as inputs for image stack segmentation. 

Feature extraction applied to image stack segmentation results however made use of all image 

layers, both layers included in segmentation and additional layers from across the growing season 

which were not used to generate image stack objects. This provided the ability to extract valuable 

multi-temporal information from all dates from a multi-temporal image object. 

 

Table 4: Dates used as inputs in each image stack segmentation. 

Date 3-Date 6-Date 15-Date 

March 21       

April 07     x 

April 20     x 

May 2   x x 

May 5     x 

May 9     x 

May 12 x x x 

May 15   x x 

May 24     x 

May 30     x 

June 02 x x x 

June 06     x 

June 09     x 

June 12     x 
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Date 3-Date 6-Date 15-Date 

June 16   x x 

June 23 x x x 

June 29       

July 13       

 

Image stack segmentation, not to be confused with variable stack classification, creates a 

multi-temporal image object produced by the spectral homogeneity of pixels across all image 

layers included as inputs (Hussain et al. 2013; Osmólska and Hawrylo 2018; Song et al. 2019). In 

our case, image layers were provided from multiple dates. Image objects therefore produced by 

this operation did not describe the extent of maximum or minimum vegetative canopy for a row 

of maize but can better be defined as the core region of a maize row over a growing season given 

a set of dates. Figure 9 provides an example of the different segmentation results produced by three 

single date segmentations and a stack segmentation combining the same three dates. Stack 

segmentation produces new image objects with geometric information describing a multi-temporal 

phenomenon across a set of dates and image layers provided. Geometrical object properties 

described a new multi-temporal image object that was characteristic of not just one image, but all 

images included in segmentation. Spectral and textural properties were not extracted from new 

multi-temporal image layers but were summary statistics of original bands calculated within a new 

multi-temporal spatial extent or image object. Simply put, spectral and textural measurements were 

calculated from the same image layers as individual date feature extraction but over a different 

geospatial area.  
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Figure 9: Image objects produced from the image layers 05/12, 06/02, and 06/23 and the 

combination of all three images as a 3-date image stack segmentation overlaying the image 

05/12. 

 

3.6.2 Variable Stack for Classification 

Beyond performing classification on data produced by a single OBIA workflow or series 

of segmentations, we also joined separate segmentation results for a multi-temporal classification 

which we refer to as variable stack classification. Variables included in this analysis and how each 

was derived is provided in the following section Feature Extraction and in Table 7 on page 52. 

Variables extracted from multiple dates during feature extraction were combined for three multi-

temporal variable stack classifications. Variables from different dates were combined to form 

variable stack datasets. This multi-temporal component of our research, though not producing new 

multi-temporally descriptive variables, was used to train classification over a multi-temporal 

feature-space as it combines information from multiple, independent OBIA results for each date 

in the timeseries. Our approach is innovative as we propose a manner to stack segmentation results 

(image objects) verses pixels from multiple dates. This provided a solution to generating object 

properties descriptive of an entire and only one maize row in the complex scenario where 1) one 

or multiple image objects could comprise a single row of maize, 2) the number of image objects 

Image Stack 

Segmentation 
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changed between dates for the same maize row, and 3) the spatial extent and position of image 

objects changed between dates. Identifying corresponding image objects representative of a target 

unit or phenomenon (a single row of maize in our analysis) that are produced by separate 

segmentations has been cited in object-based change detection literature as a difficult challenge 

faced when conducting multi-temporal OBIA (Hussain et al. 2013). To perform variable stack 

classification, a dataset was generated based on the following criteria: 1) Image objects had to be 

constricted to only describe a single maize row. This allowed classification to be trained at the row 

object level. 2) Segmentation often produced multiple image objects for a single maize row. To 

produce variables descriptive of an entire maize row, summary statistics were generated from all 

separate image objects making up a row. 3) Unlike pixels which are consistent in spatial extent 

and location, a constant spatial entity between separate segmentations had to be generated to 

connect row image objects. Using a row boundary thematic layer as shown in Figure 10 and 

described previously in the section Selecting Scale for Multi-Temporal OBIA, we were able to 

group the object property information of all image objects comprising a single maize row at a 

single date while also connecting the image objects describing that same row from all dates/images 

in the timeseries for use in a single classification. This is different than work described by Petitjean 

et al. (2012) as vector derived features or properties in our analysis are not assigned to pixels but 

to a row boundary image object or thematic layer. To our knowledge, multi-temporal object-based 

variable stack classification of UAS images has not been performed according to our assessment 

of the literature. 
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Figure 10: Connecting image objects from multiple dates using row identification 

numbers from row boundary polygons. 

 

3.7 Proposed Object-based Image Analysis Methods  

3.7.1 eCognition Workspace  

Image layers (spectral bands, VI’s, & CHM) and the thematic layer of row boundary 

vectors were added as inputs to an eCognition workspace. Components of the eCognition 
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workspace included all the image layers to be used for segmentation and feature extraction, 

parameters defining null values within a project, and a process tree where a list of algorithms used 

to perform OBIA operations were defined. Within the workspace, individual maps were created 

for each date of image acquisition and image stack segmentation. eCognition operates in a 

hierarchy structure where multiple segmentations can be performed in a single map and at multiple 

image levels within a map. Segmentations performed on image levels within a map are not 

independent of one another. Image object boundaries produced by segmentation on levels higher 

in the image layer hierarchy influence and limit the spatial extent of image objects of subsequent 

levels. To create image objects characteristic of a maize row for a single date of image acquisition 

or image stack segmentation, operations for each date and image stack were conducted in separate 

maps. Use of separate eCognition maps has not been described in previous OBIA studies of UAS 

agriculture as this step is not necessary for segmentation focused on creating image objects for 

only one date or image stack. In our analysis, it was necessary to create image objects for each 

date and image stack where OBIA results were not influenced by the segmentation of another date. 

This was maintained by performing separate, independent OBIA workflows in a unique map for 

each date or image stack. This step was a significant contribution of the analysis performed in this 

study as it allowed for two types of multi-temporal analysis or classification. 1) The first being 

image stack segmentation and classification where image layers (bands red, green, blue, CHM, 

etc.) were stacked for a single OBIA segmentation and then summary statistics extracted from 

multiple image layers from more than one date. 2) The second was a variable stack classification 

using object properties generated from feature extraction applied to multiple independently 

generated image object layers produced by separate OBIA workflows but describing a single 
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spatial entity across all images in a timeseries. Each image object layer was unique to the OBIA 

result of a single date and then combined for classification.  

3.7.2 Two-Part OBIA Workflow 

 In order to generate object properties for multi-temporal image stack and variable stack 

classification described previously, a new object-based workflow was proposed in order to create 

image objects descriptive of a single row of maize and also to reduce tedium and subjectivity in 

trial and error selection of appropriate scale parameter in segmentation. Like methods used by 

Pérez-Ortiz et al. (2016) and de Castro et al. (2018), our object-based analysis performed a 

sequential segmentation and object labeling operation for input in a vegetation versus vegetation 

classification. In this study, object labeling was a binary classification between maize and 

combined soil and weed image regions, and vegetation versus vegetation classification was the 

discrimination of maize genotypes. Our proposed two-part OBIA workflow was conducted as a 

series of segmentation and binary classifications aided by an additional spatial autocorrelation 

component. This workflow was used to derive object properties descriptive of only one maize row 

and for the entirety of a row. Our proposed methodology further differs from previous work in 

object-based agricultural remote-sensing by including a thematic layer of row boundary vectors as 

input for segmentation.  

Within the two-part workflow proposed, Part 1 identified binary classification thresholds 

through an initial simple, rough classification of maize and statistical assessment of the generated 

rough maize class. Statistical thresholds are then used for labeling of maize and non-maize in a 

series of second OBIA operations. Part 2 performed a series of segmentation, binary classification, 

and segmentation reshaping operations using classification thresholds derived in Part 1. In the 

following paragraphs (and Figure 11), we provide greater detail as to the steps conducted in the 
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proposed two-step object-based image analysis. The workflow presented here was repeated for 

each single date and image stack map. For an illustrated example of results produced by OBIA 

workflow described in the following sections, refer to Figure 12. 

 

 

Figure 11: A two-part OBIA workflow for generating row image objects of maize. 
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Figure 12: Illustrated OBIA methods performed to create maize row image objects. 

 

3.7.3 Two-Part OBIA Workflow: Part 1  

A chessboard segmentation using the thematic layer of row boundary vectors was 

conducted as the initial operation in Part 1 of the OBIA workflow. Chessboard segmentation was 

the initial process in the segmentation-classification series. This step was essentially used to 

convert row boundary information from an eCognition thematic layer (an ESRI shapefile) into 

image objects within a new map layer for use in segmentation of image objects in following steps. 

Row boundary image objects within the first layer of the image layer hierarchy provided the spatial 

extent of objects produced by following segmentation and merging operations. In other words, this 

step enforced that image objects produced in subsequent steps only describe one row. For 

chessboard segmentation, the eCognition setting of ‘Object Size’ was set to 999,999 and was 
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performed on a pixel level domain. Object Size of 999,999 was arbitrary number set very high to 

insure that a single image object was produced for each row boundary vector. Chessboard 

segmentation was chosen for this step due to algorithm speed and rectangular shape of row 

boundary polygons. 

 For the next step, a multiresolution segmentation was performed on an image object level 

domain produced by the initial chessboard segmentation. A segmentation scale of 5 was selected 

in order to create sub-plant image objects. Additional inputs included in multiresolution 

segmentation were the image layers red, green, blue, ExG, ExR, and VEG of a single date or 

selected dates defined by an image stack. All image layers were given a weight of 1. Default values 

for parameters of Shape and Compactness (0.1 and 0.5) were used. As this workflow was repeated 

for eighteen dates and three image stacks, trial and error selection of parameter weights were not 

practical to evaluate. Based on preliminary trials and supporting evidence by Drăguţ et al. (2014), 

parameters of shape and compactness had minimal impact on segmentation. CHM was not 

included as an input for segmentation as preliminary trials using CHM image layers did not 

produce improved results. Tests for further optimizations of weight, shape, and compactness 

parameters could be conducted in future research but was not included in this analysis.  

 Multiresolution segmentation in our workflow produced sub-plant scale image objects. The 

use of sub-plant image objects allowed for semi-pixel/object-based binary classification of maize 

and non-maize. This was possible as image objects produced at a scale of 5 were not representative 

of an entire plant or discrete portion of a plant’s architecture, suggesting a pure object-based 

approach, but were also not evenly distributed or equally proportional entities as might represent 

the nature of pixel-based analysis. One could think of our method as a semi-pixel/object-based 

binary classification of maize and non-maize, as image objects were not representative of an entire 
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plant or discrete portion of a plant’s architecture but where, at the same time, image objects were 

not evenly distributed or equally proportionate which might represent the nature of a pixel-based 

analysis. Sub-plant image objects provided the ability to select a constant scale parameter for all 

dates within a first and second segmentation. An additional scale parameter was selected for all 

image stack segmentation. Use of sub-plant image objects and a series of OBIA operations meant 

scale parameter did not have to be as refined an input as seen in OBIA methods where a single 

segmentation on a pixel-based domain is used. Since scale parameter was constant for all single 

date analysis after initial trial and error selection, selection of appropriate thresholds for binary 

classification became the crux or flexible component of our analysis. 

 A rough classification was then conducted on the sub-plant image objects produced by 

multiresolution segmentation at a scale of 5. A threshold of mean ExG or combination of mean 

ExG and mean ExR was chosen for each date. We refer to our initial threshold for maize as a rough 

maize classification, because the threshold was non-exhaustively chosen and intentionally set low 

so as to include all possible image objects which could describe maize canopy. This threshold was 

chosen to separate maize from background soil and weeds. ExG was used as the primary threshold 

for separating maize from non-maize within our study. The VI ExG has proven useful for labeling 

of vegetation image objects in previous studies of crop versus weed classification (Pérez-Ortiz et 

al. 2016). We also included ExR and CHM for classification of later dates where weeds and 

variation in maize leaf color occurred. A statistical assessment was then conducted on the extracted 

ExG and ExR value of each image object classified as the rough maize class. After calculating 

standard deviation at percentiles of 10, 16, 20 and 30 for each date, the 16th and 30th percentiles 

were chosen as binary classification thresholds for labeling of image objects in Part 2. The selected 

percentiles were not used for all dates due to complexity in maize canopy as plants yellowed with 
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tassels and other emergences and browned with maturity and senescence in later dates; however, 

selected percentile values were used for most dates and provided a baseline for manual threshold 

selection. Table 5 provides rough maize threshold values, percentiles, and selected thresholds for 

each date and image stack. Statistical assessment of rough binary classification was conducted to 

help reduce subjectivity in selection of thresholds and provide standardized percentiles for all dates 

for quick threshold selection.  

 



 

44 

 

 

 

 

Table 5: Thresholds used for labeling of maize and possible-maize image objects. 

Date Rough Threshold Maize Threshold Pos.-Maize Threshold Percentile Description 

March 21 ExG ≥ 4 ExG ≥ 4.22  2.64 ≤ ExG ≤ 4.22  10th, 16th   

April 07 ExG ≥ 13 ExG ≥ 34.66 and CHM ≥ -10 21.51 ≤ ExG ≤ 34.66 

and CHM ≥ -10 

30th, 16th Generic CHM threshold set low 

to remove non-vegetation. 

April 20 ExG ≥ 10 ExG ≥ 42.69 and CHM ≥ -10 26.61 ≤ ExG ≤ 42.69 

and CHM ≥ -10 

30th, 16th Generic CHM threshold set low 

to remove non-vegetation. 

May 2 ExG ≥ 15 ExG ≥ 38.58 and CHM ≥ -10 26.81 ≤ ExG ≤ 38.58 

and CHM ≥ -10 

30th, 16th Generic CHM threshold set low 

to remove non-vegetation. 

May 5 ExG ≥ 7 ExG ≥ 39.09 and CHM ≥ 0.3 21.28 ≤ ExG ≤ 39.09 

and CHM ≥ 0.3 

30th, 16th CHM used to remove soil image 

objects with high ExG 

May 9 ExG ≥ 10 ExG ≥ 35.18 and CHM ≥ -10 22.23 ≤ ExG ≤ 35.18 

and CHM ≥ -10 

30th, 16th Generic CHM threshold set low 

to remove non-vegetation. 

May 12 ExG ≥ 10 ExG ≥ 26.93 and CHM ≥ -10 17.03 ≤ ExG ≤ 26.93 

and CHM ≥ -10  

30th, 16th Generic CHM threshold set low 

to remove non-vegetation. 

May 15 ExG ≥ 8 ExG ≥ 25.78 and CHM ≥ 0.5 16.50 ≤ ExG ≤ 25.78 

and CHM ≥ 0.5 

30th, 16th CHM used to limit presence of 

weeds included in row image 

object  

May 24 ExG ≥ 8 ExG ≥ 26.88 and CHM ≥ 0.5 16.35 ≤ ExG ≤ 26.88 

and CHM ≥ 0.5 

30th, 16th CHM used to limit labeling weeds 

as maize 

May 30 Maize = ExG ≥ 10 and 

CHM ≥ 0.75 

ExG ≥ 60 and CHM ≥ 0.75 NULL Trial/Error CHM used to limit labeling weeds 

and glare on soil as maize. 

Possible-maize not generated as 

T/E labeling produced good 

results. 

  Removed = ExG ≤ 10 and 

ExR > 50 

ExG ≤ 60 and ExR ≥ 50 and 

CHM ≥ 0.75 

NULL Trial/Error CHM used to limit labeling weeds 

and glare on soil as maize. 

Possible-maize not generated as 

T/E labeling produced good 

results. 

June 02 ExG ≥ 10 ExG ≥ 30.54 and CHM ≥ 0.5 19.61 ≤ ExG ≤ 30.54 

and CHM 0.5 

30th, 16th Threshold set to capture green 

maize canopy. 

  

  ExG ≥ 5.03 and ExR ≥ 28.17 

and CHM ≥ 0.5 

NULL 5th and 30th Threshold set to capture yellow or 

white maize canopy. 

June 06 ExG ≥ 7 ExG ≥ 33.38 and CHM ≥ 0.8 20.24 ≤ ExG ≤ 33.38 

and CHM ≥ 0.8 

30th, 16th   
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Table 5 Continued 

Date Rough Threshold Maize Threshold Pos.-Maize Threshold Percentile Description 

June 09 ExG ≥ 5 ExG ≥ 36.17 and CHM ≥ 0.8 21.14 ≤ ExG ≤ 36.17 

and CHM ≥ 0.8 

30th, 16th   

June 12 Maize = ExG ≥ 10 ExG ≥ 45 and CHM ≥ 0.9 NULL Trial/Error Possible-maize not generated as 

T/E labeling produced good 

results. 

  Removed = ExG ≤ 45 and 

ExR ≥ 50 

10 ≤ ExG < 45 and ExR ≤ 50 

and CHM ≤ 0.9 

NULL Trial/Error Possible-maize not generated as 

T/E labeling produced good 

results. 

June 16 ExG ≥ 10 ExG ≥ 45.19 and CHM ≥ 0.8 25.73 ≤ ExG ≤ 45.19 

and CHM ≥ 0.8 

30th, 16th Threshold set to capture green 

maize canopy. 

  

  ExG ≥ 13.94 and ExR ≥ 100 

and CHM ≥ 1 

ExG ≥ -0.22 and ExR ≥ 

100 and CHM ≥ 1 

5th and 

Trial/Error 

Threshold set to capture browning 

maize canopy. 

June 23 ExG ≥ 20 and CHM ≥ 0.8 ExG ≥ 43.95 and CHM ≥ 0.8 ExG ≥ 32.42 and CHM 

≥ 0.8 

30th, 16th Threshold set to capture green 

maize canopy. 

  ExR ≥ 100 and CHM ≥ 1 

and ExG ≥ -6 and ExG ≤ 20  

0 ≤ ExG ≤ 20 and ExR ≥ 100 

and CHM ≥ 1 

NULL Trial/Error Threshold set to capture browning 

maize canopy. 

June 29 ExG ≥ 2 and CHM (05/15) 

≥ 1 and CHM (06/12) ≥ 1 

ExG ≥ 14.70 and CHM (05/15) 

≥ 0.8 and CHM (06/12) ≥ 0.8 

ExG ≥ 6.77 and CHM 

(05/15) ≥ 1 and CHM 

(06/12) ≥ 1 

30th, 16th Threshold set to capture green 

maize canopy. 

  ExR ≥ 50 and CHM (05/15) 

≥ 1 and CHM (06/12) ≥ 1 

ExR ≥ 62.96 and CHM (05/15) 

≥ 0.8 and CHM (06/12) ≥ 0.8 

ExR ≥ 51.14 and CHM 

(05/15) ≥ 0.8 and CHM 

(06/12) ≥ 0.8 

30th, 16th Threshold set to capture browning 

maize canopy. 

July 13 ExR ≥ 65 and CHM (05/15) 

≥ 1 and CHM (06/12) ≥ 1 

ExR ≥ 85.85 and CHM (05/15) 

≥ 0.8 and CHM (06/12) ≥ 0.8 

ExR ≥ 75.24 and CHM 

(05/15) ≥ 0.8 and CHM 

(06/12) ≥ 0.8 

30th, 16th 
 

3-Date ImStk NULL Sum Mean ExG ≥ 75 NULL Trial/Error Sum of ExG threshold from dates 

used in segmentation. 

6-Date ImStk NULL Sum Mean ExG ≥ 350 NULL Trial/Error Sum of ExG threshold from dates 

used in segmentation. 

15-Date ImStk NULL Sum Mean ExG ≥ 350 NULL Trial/Error Sum of ExG threshold from dates 

used in segmentation. 
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The 30th percentile was chosen as a threshold for the class maize. We felt confident that 

maize could be labeled by a threshold of ExG at the 30th percentile. The 16th percentile of ExG 

was used to label image objects as a possible-maize class. Possible-maize was not a fuzzy 

classification but a classification of maize with less confidence. This class provided information 

for the eCognition algorithm Grow Region which reclassifies objects based on principles of spatial 

autocorrelation. We discuss this operation in greater detail later in this paper. The class of possible-

maize included image objects we considered too low for inclusion in the maize class with 

confidence but had a high ExG value. In addition, a second threshold of CHM was included in 

maize and non-maize labeling of all dates except 03/21, CHM was not available for the date 03/21. 

The CHM threshold was constant for all dates where the statistical threshold selection was applied. 

It was chosen by a single trial and error analysis and set very low as to only remove soil and avoid 

removing any potential vegetation. 

Labeling maize image objects within multiple images across a growing season presented a 

complex situation for selecting appropriate classification thresholds. Multiple factors influenced 

the selection of appropriate thresholds for maize and possible-maize classes across a growing 

season. Image brightness, glare, shadowing, and presence of weeds varied between dates and 

influenced optimal thresholds. Physiological properties of maize, such as leaf color, changed 

across the growing season and varied within the same image for different genotypes. This added 

complexity in labeling image objects which differed from similar studies such as those in weed 

and maize classification. In maize-weed classification, maize was classified at a single stage of 

maturity and early in the growing season when it had very green phenotypic properties. Only one 

threshold had to be selected (Pérez-Ortiz et al. 2016). For select dates in our study (05/30, 06/12, 

06/16, 06/23 and image stack maps), statistically derived thresholds produced by the rough maize 
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class did not prove adequate for separating maize and non-maize image objects. To compensate 

for additional complexity in images due to presences of weeds, yellowing of tassels, and browning 

as plants matured, multiple thresholds were used to label maize for these dates. Thresholds of ExR 

and CHM played an important role here in labeling image objects. Refer to Table 5 for dates and 

thresholds chosen through trial and error selection. 

To classify objects produced by image stack segmentation as maize, a custom feature or 

property was created in eCognition to combine the mean ExG for each date included in an image 

stack segmentation. This custom feature was created by calculating the sum of mean ExG for all 

dates used in segmentation of an image stack map. Image objects with high summed ExG from 

observed dates were classified as core maize objects or image stack maize; however, this was 

challenging for rows where masking occurred. Some rows were masked in multiple images and 

thus had a lower combined value of mean ExG. Date 05/24 was removed from the combined 

property to create a more meaningful combined value for labeling the image stack maize class. 

Challenge in selecting a valuable image stack maize class prompted the creation of 3 image stack 

segmentations where different number of dates selected based on level of image masking were 

chosen.  

3.7.4 Two-Part OBIA Workflow: Part 2 

Sub-plant image objects produced by segmentation with a scale of 5 were classified as 

maize, possible maize, and non-maize using thresholds derived from 30th and 16th percentiles 

extracted in rough classification statistical assessment above. Image objects produced in Part 1 of 

the workflow were reclassified after performing the rough classification assessment. Using a 

threshold for ExG at the 16th percentile and greater, we classified image objects as possible-maize. 

Maize image objects were then classified using the 30th percentile and greater for ExG. All image 
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objects below the possible-maize class threshold were left unclassified or as non-maize. After 

labels were applied, all image objects of the maize class were merged within a row boundary. 

Since the row boundary image object was present in the image layer hierarchy above the image 

objects created by the multiresolution segmentation with a scale of 5, only maize image objects 

within a row boundary were able to be merged. This created separate objects for each row. At this 

stage, all image objects not labeled as maize were also merged. 

A third segmentation was then applied to image objects not labeled in the previous step. A 

multiresolution segmentation was conducted at a scale of 3 on the merged image objects. All 

segmentation parameters were the same as in the previous segmentation. This step was used to 

capture potentially isolated maize pixels such as outlying canopy, shadowed leaves, etc. that were 

missed in the previous segmentation and classification. We performed this step as an extra measure 

to capture any map regions that were missed. Only image objects not labeled as maize were 

segmented in this step. Labeling of maize, possible-maize, and non-maize were conducted on 

image objects created by this segmentation. 16th and 30th percentiles of ExG were again used as 

thresholds for labeling image objects in this step.  

The eCognition algorithm Grow Region was then used to label all image objects of the 

possible-maize class which were adjacent to the class maize as maize image objects (eCognition 

Developer 2014). The premise behind the combined process of possible-maize classification and 

then Grow Region was based on the concept of spatial-autocorrelation. Dense maize canopy, 

which we had high confidence in our ability to classify, was labeled first using a high threshold of 

ExG, 30th percentile of rough maize class. We then created the possible-maize class using the 16th 

percentile of rough maize. Considering the concept of spatial-autocorrelation, we felt image 

objects of the possible-maize class near or adjacent to the maize class were more likely apart of a 
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maize row than image objects that were isolated from the maize class. In this step, we hoped to 

eliminate image objects with higher ExG values but not maize (such as glare on soil) while also 

including maize canopy with lower ExG (shadowed leaves, mixed pixels, etc.). The number of 

Grow Region cycles was set to one. A second set of Merge Region operations was then applied to 

all maize image objects. After this, all possible-maize objects remaining were removed from the 

map and now considered non-maize. Figure 13 provides an example of Grow Region results. 

 

 

Figure 13: Illustration of the Grow Region operation adding spatially-autocorrelated 

image objects of the possible-maize class to the maize class. 

 

3.7.5 Feature Extraction 

The OBIA workflow described in previous sections provided the geospatial objects from 

which variables describing each individual row were created for training of remote-sensing 

classification of maize genotypes. Image objects produced by segmentation and binary 
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classification of each date and image stack described entire or portions of a single row of maize. 

Multiple image objects describing a single row of maize, as shown in Figure 13, were later 

combined to produce a single geospatial object or multipart polygon for each row. All image 

objects within the spatial extent of a row boundary vector were assigned a unique row 

identification number from that row boundary image object. The object properties generated in 

eCognition and derived from multiple image objects comprising a row were combined using this 

row identification number. eCognition feature extraction produces summary statistics of an image 

object’s spatial and spectral characteristics from the image layer values of each pixel within the 

spatial extent of an object. In this manner, we refer to object properties as the descriptive 

information created in eCognition that describes a single image object or “patch” as referred to in 

FRAGSTATS (McGarigal, Cushman, and Ene 2012). Similar terms also include metrics, 

descriptors, and variables; definitions for each are provided in Table 6. We use the term variable 

to refer to the descriptive information of combined image objects describing an entire row of 

maize. The use of the term object property therefore is only used to describe information derived 

from a single image object and not always an entire row. Variable is used to describe the 

information derived from all objects or a multipart polygon which comprised an entire row. The 

terms object property and variable can refer to the same data when a row is comprised of only one 

image object but when multiple image objects make up a row of maize their definitions differ. 

Prior to combining image objects into multipart polygons within row boundaries, object properties 

were created for each date and image stack through eCognition feature extraction. Types of object 

properties created in eCognition for this analysis included: texture and geometry. Refer to Table 7 

for a full list of variables created within this study both within and outside of the software 

eCognition.  
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Table 6: Definitions for image units and features derived during OBIA. 

Image Units 
Class 

(FRAGSTATS) 

FRAGSTATS term which refers to all the patches of a single type; all the 

image objects labeled as maize that comprise a single row of maize 

 

Image Object An image region or cluster of pixels defined during segmentation 

 

Landscape 

FRAGSTATS term which refers to all the patches and classes that make up a 

row boundary vector in our analysis; this includes both patches of the maize 

and non-maize classes 

 

Multipart 

Polygon 

ArcGIS term which refers to a polygon that has more than one parts or has a 

hole 

 

Patch 
FRAGSTATS term which refers to image objects or individual segmented 

regions of a map 

 

  

Image 

Features 
Descriptor Term used in classification algorithms to refer to variables 

 

Metric 
FRAGSTATS term which refers to the geometrical information describing a 

single image region at the patch, class, or landscape level 

 

Object Property 
Spatial, textural, and geometrical information derived from the pixels 

comprising a segmented single image object 

 

Variable 
Spatial, textural, and geometrical information derived from the pixels within 

image objects comprising an entire row of maize 
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Table 7: Variables derived from feature extraction and used for classification of maize 

genotypes. 

Variable Group  Variable Variations Software Used 

CHM       

  Mean CHM ArcMap: Zonal Statistics 

  Standard Deviation CHM ArcMap: Zonal Statistics 

Spectral       

  Mean red, green, blue ArcMap: Zonal Statistics 

  Standard Deviation red, green, blue ArcMap: Zonal Statistics 

Vegetation 

Indices 

  

    

  Mean ExG, ExR, VEG, YI ArcMap: Zonal Statistics 

  Standard Deviation ExG, ExR, VEG, YI ArcMap: Zonal Statistics 

Wavelet 
  

    

  
Mean 

Scale 0.2-5 at 0.2 increments  ArcMap: Zonal Statistics 

  Standard Deviation Scale 0.2-5 at 0.2 increments  ArcMap: Zonal Statistics 

Texture       

  

GLCM Contrast (45˚) red, green, blue, ExG, ExR, VEG, 

YI, CHM, all eCognition 

  GLCM Contrast All Directions eCognition 

  

GLCM Entropy (45˚) red, green, blue, ExG, ExR, VEG, 

YI, CHM, all eCognition 

  GLCM Entropy  All Directions eCognition 

  

GLCM Mean (45˚) red, green, blue, ExG, ExR, VEG, 

YI, CHM, all eCognition 

  GLCM Mean All Directions eCognition 

Geometrical       

  Area / Number of objects   SQL  

  Asymmetry   eCognition 

  Border Index   eCognition 

  

Border Length - Length of 

longest edge   eCognition 

  CA - Total Class Area   FRAGSTATS 

  

Cohesion - Patch Cohesion 

Index 

mean, area-weighted mean, standard 

deviation FRAGSTATS 

  

CONTIG - Contig Index 

Distribution mean, area-weighted mean, range FRAGSTATS 

  

Curvature / Length (of 

main)   SQL 

  

Degree of skeleton 

branching   eCognition 

  ED - Edge Density   FRAGSTATS 

  

FRAC - Fractal Dimension 

Index 

mean, area-weighted mean, standard 

deviation FRAGSTATS 
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Table 7 Continued 

Variable Group  Variable Variations Software Used 

  Length   eCognition 

  Length / Width   SQL 

  Length of longest edge   eCognition 

  Length of main line   eCognition 

  

NDCA -Number of 

Disjunct Core Areas   FRAGSTATS 

  

Number of inner objects Number of image objects within an 

image objects eCognition 

  

Number of objects Number of image objects 

comprising the multi-part polygon 

of a row eCognition 

  

PARA - perimeter-area 

ratio mean, area-weighted mean, range FRAGSTATS 

  

PLAND - Percent of 

Landscape   FRAGSTATS 

  

SHAPE mean, area-weighted mean, standard 

deviation FRAGSTATS 

  TE - Total Edge   FRAGSTATS 

  Width   eCognition 

 

Unlike related studies, we did not create image layer (ex. mean CHM, mean red band, etc.) 

object properties within eCognition. Since multiple image objects were created for most rows, 

often rows having a main image object describing the body of the row and smaller image objects 

which captured smaller row components, image layer statistics were created outside of eCognition 

on a multipart polygon of combined image objects of a row to prevent producing summary 

statistics of summary statistics. Using ESRI shapefiles exported from eCognition, the zonal 

statistics tool in ArcMap (ESRI, Redlands California) was used on multipart polygons. Zonal 

statistics created image layer variables for each spectral band, vegetation index, CHM, and wavelet 

analysis scale. Object properties of texture and geometry were exported from eCognition as text 

files and combined using groupby and join queries in Sequel Query Language. Additional 
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variables, listed in Table 7, were also created outside of eCognition using SQL. Segmentation and 

binary classification results were further exported from eCognition as raster and ESRI shapefiles.  

Additional spatial properties were produced using patch and landscape analysis in the 

software FRAGSTATS (University of Massachusetts, Amherst). FRAGSTATS produces metrics 

that describe image objects, referred to as patches, and describe patch shape and relationship to 

other patches, classes, and the entire landscape. We chose to use class metrics as our goal was to 

create variables which described all the patches of the maize class within a row boundary polygon. 

Raster images displaying the binary classification of maize and non-maize were used as the input 

for FRAGSTATS analysis. FRAGSTATS produced metrics for both classes, maize and non-

maize. In order to create separate metrics for individual rows, a user provided tile was created from 

row boundary vectors and included as an algorithm parameter. Using the row boundary tile, each 

row was then able to be assessed as an individual landscape. Since only two classes were present, 

maize and non-maize, patch and landscape metrics were not included in our analysis; only class 

metrics were used. To create additional core metrics, the edge depth was set to 133.38. This was 

the equivalent of five pixels after adjusting raster images for FRAGSTATS analysis. Since 

FRAGSTATS was designed for landscape analysis over large areas, metrics are provided in the 

measurement unit of hectares. This was problematic to our study as image objects or patches could 

be as small as 3cm and FRAGSTATS only provides results in hectares and without a sufficient 

number of decimals. Raster images of binary classification were adjusted in the software ENVI 

prior to use in FRAGSTATS. Pixel size was multiplied by 100 for all dates, image stacks, and the 

row boundary raster.  

All variables generated for a date or image stack were joined using SQL. Additional 

groupings of variables were created by joining all the variables from multiple dates together: three 
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dates with no image blur masking, six dates with least amount of masking, and all dates regardless 

masking level. The three variable groups created in this step were used as datasets for variable 

stack classification. Variables produced by slight pixelization error when rasterizing shapefiles in 

eCognition were removed for masked rows by applying the query “delete PLAND < 1” and “delete 

PLAND is Null”. PLAND refers to percent of the landscape or in our case the percent of the row 

boundary area. This query removed all rows which had a row object area of less than 1% the size 

of the row boundary area. This step was applied to all dates with image blur masking. Additional 

cleanup of data included the removal of ‘gap rows’ or rows with significant gaps in canopy 

observed at planting. Rows were not removed for genotypes where gaps in canopy appeared during 

or later in the growing season. Rows with gaps appearing after early dates were included in our 

dataset as we felt the loss of canopy or lodging of plants could be a characteristic descriptive of 

some genotypes.  

3.8 Genotype Classification  

3.8.1 Classification Algorithms 

We performed classification of genotypes and evaluated the discriminative value of 

variables using two algorithms: random forests (RF) and stochastic gradient boosting (SGB). 

Random forests is a common classification algorithm which has demonstrated high accuracy when 

compared to other supervised classifiers in object-based studies (Breiman 2001; Ma et al. 2017). 

Stochastic gradient boosting was selected for its strength in working with small sample sizes and 

large variable dimensionality (Friedman 2002; Güneralp, Filippi, and Randall 2014). Unlike RF, 

SGB is not a common algorithm found in the literature on UAS agricultural image classification. 

RF was chosen as a standard algorithm for comparing genotype classification to related research 

in the literature and SGB provided a novel method for hyperspatial classification of agriculture. In 
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addition to classification, both algorithms provided ranked variable lists based on variable 

contribution to classification (Freeman et al. 2015). 

Classification was performed using a sample size of four rows per class as only four rows 

were present within the field experimental condition for each genotype.  Training and testing 

classifiers on a sample size of four points is not ideal for remote-sensing classification but was the 

data available for this study at the row-level image object classification. We recognize that the 

limited sample size of this study presents a difficult and non-ideal scenario for remote-sensing 

classification, as classification is typically performed with sample sizes of 10s or 100s of data 

points and on fewer number of classes. Classification of 12, 46, 125 and 249 classes using a sample 

size of 4 as was performed in this study is extreme. Algorithm parameters were therefore chosen 

to best compensate for the unconventional nature of this dataset; many parameters chosen for our 

analysis differed from default or selected values found in the literature (Güneralp, Filippi, and 

Randall 2014; Salford Systems Modeler 2018).  

To compensate for small sample size within the data, bootstrapping without replacement 

was chosen for RF (Güneralp, Filippi, and Randall 2014). Parameters for the number of trees was 

set to 800, and the number of variables was set to two times the square root of the total number of 

variables used in the classification (2*sqrt # of variables). Parent node minimum was set to 2. For 

SGB, a 4-fold cross-validation was used for training and testing classification (Güneralp, Filippi, 

and Randall 2014). Cross Entropy was selected as criterion determining number of trees optimal 

for logistic model. Results were recorded as classification accuracy with the default probability 

cutoff chosen, “assign class if probability exceeds 50%”. Subsample fraction was set to 1. Number 

of trees to build was set to 400 and learn rate to 0.1. We decided on 400 trees as classification 

accuracy began to plane off in preliminary trials around 300 trees; 200 trees are the default setting 
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and a suggested starting point in the literature (Salford Systems Modeler 2018). Max nodes per 

tree was left as the default of 6. Modification of the terminal node in trial and error tests did not 

improve classification results. Terminal node minimum was set to 1 to compensate for each class 

only being comprised of four samples. Influence trimming was set to zero. This prevented outliers 

from being removed from our dataset during classification, but we felt it was necessary to keep all 

data points due to the small sample size of 4 points which was available for each class in our study. 

“Vary tree sizes randomly (As Poisson)” was selected to add randomness to the model as partially 

performed in RF. Both RF and SGB parameters were selected empirically.  

3.8.2 Classification Experimental Trials 

Three classification experiments were conducted using both RF and SGB algorithms. 

Experiment 1 compared classification accuracy when the number of classes was reduced from 249 

to 12. Classification was assessed on four class sizes: 12, 46, 125, and 249. Experiment 2 was 

performed to evaluate accuracy and variable importance within variable groups or category. 

Experiment 3 assessed classification accuracy and variable importance between each single date, 

image stack, and variable stack. Feature selection was used in Experiments 1 and 3 to improve 

classification accuracy.  Prior to classification, a brief test was conducted to evaluate two feature 

selection methods. 

Prior to classification in Experiments 1-3, the benefit of using feature selection was tested 

in preliminary trials to evaluate whether classification accuracy improved when using a reduced 

number of variables. Feature selection methods were tested on a 3-date variable stack using both 

RF and SGB. Two in-house methods, variable group and in-trial feature selection, were developed 

and tested for this study. Variable group feature selection selected highest ranked variables from 

each variable group classified in Experiment 2. In-trial feature selection used the thirty to fifty (30-
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50) highest ranked variables selected from an initial all variable classification for each date, image 

stack, and variable stack. The variable group method was further modified by including an in-trial 

feature selection on variable groups with more than thirty (30) variables (landscape, texture, and 

wavelet). We refer to this modified variable group method as an optimized variable group feature 

selection. For this variable group feature selection, the number of variables from each category 

was determined by user expertise rather an automatic selection of top 10 variables in each group. 

In both variable group and in-trial methods, variables were selected based on a variable ranking 

derived during an initial classification trial. A list of variables ranked by a variable importance 

score was generated as a result for both RF and SGB algorithms. Variable ranking was influenced 

by which classes were present, the number of classes, and what algorithm was used for 

classification.  

For this study, we chose to use in-trial feature selection for feature selection in subsequent 

experiments.  Experiments 1 and 3 were conducted using this method. A reduced variable list was 

thus selected by evaluating relative variable importance scores in an initial classification of each 

trial and selecting thirty variables for that trial with the highest scores (Dube et al. 2014). 

Classification for each trial was then conducted a second time but only using the selected 30-50 

most valuable variables identified in the first classification. After trial and error assessment on the 

optimal number of variables to include in the reduced list of variables, the top thirty variables were 

chosen for all trials with less than 2,000 original variables. Fifty was selected as the ideal number 

of variables for the reduced variable list when classifying the variable stack trial all-dates in 

experiment 3 which had over 2,000 original variables. To ensure feature selection was optimal for 

each trial, this reduced variable list was generated separately for each date, image stack, and 

variable stack classification. 
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Experiment 1 evaluated classification accuracy based on the number of classes present 

within a trial. This step was conducted to see how classification performed on a smaller number 

of classes (a number of classes comparable to other remote-sensing studies), but also how 

classification performed on a full field or actual plant breeding scenario. We therefore conducted 

four trials for this experiment using the following number of classes: 12, 46, 125, and 249. A 

variable stack or combined group of variables from the three least masked mosaic dates was used 

as our test sample for trials comparing number of classes. Due to computational limitations of the 

stochastic gradient boosting software used, a single classification of 280 genotypes was not 

possible. The largest number of classes which could be handled was 249; therefore, 249 classes 

were chosen to represent a full field classification scenario. We did not feel this reduction in the 

number of genotypes was unrepresentative of a true plant breeding scenario as field conditions of 

non-irrigated and late-planted, also available for the year 2017 but not included in this study, only 

consisted of 250 genotypes rather than the 280 present in the field condition of an optimal irrigated 

trial from which we selected our sample data.  

 A reduced number of genotypes (12, 46, and 125) was produced by evaluating the sample 

size of each genotype over the growing season after masking of image blur was applied. Masking 

was applied to 14 of 18 image mosaic dates in this study. Masking lowered the number of rows of 

maize available in an image to train classification for individual date trials and created null variable 

information for rows in trials of combined dates. The number of rows for each genotype that were 

present for an image after masking were summed for all dates across the growing season. The sum 

of available rows for a genotype across the temporal timeline provided a manner in which to rank 

genotypes based on presence of sample data. We refer to this step as Mask Ranking. Appendix 3 

provides totals for available rows after masking for each date and the Mask Rank value of each 
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genotype. Genotypes were then selected based on natural breaks in the Mask Rank score. Natural 

breaks occurred at 12, 46, and 125; we also then selected the highest ranked or least masked 249 

genotypes. We acknowledge that selected genotypes are not necessarily the most optimal genotype 

list for all single date analysis as this method provided lower sample sizes for some dates rather 

than choosing the highest mask ranked genotypes for any particular date; however, multi-temporal 

mask ranking calculation did allow for the same and genotypes with the best sample data to be 

selected for comparison of classification for all dates. It also provided genotypes with the largest 

number of available variables for combined date classification included in experiment 3 trials. 

To prevent genotypes with significantly large sample size from creating bias in 

classification accuracy, five genotypes were removed from this analysis. Except for the genotypes 

2, 14, 45, 81, and 238 and genotype class number 59 which only had 1 plot, all other genotypes 

available for this study had two plots for a total of four rows present in field at planting. Preliminary 

classification trials tested weighted versus non-weighted sample classes. Balanced and unit were 

tested for the parameter class weight. Tests also assessed accuracy when genotypes with sample 

size greater than four rows were present or absent. Individual class and overall accuracy in 

classification were assessed in preliminary trials. When genotypes with large sample size were 

included, non-weighted training sample classification produced higher raw accuracy than 

weighted; however, results of raw accuracy did not reflect ability to classify all classes. Genotypes 

listed in Table 8 were removed prior to classification. 
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     Table 8: Genotypes removed from sample data prior to classification. 

Class Number Pedigree      # of Rows Mask Rank 

2 2396/LH123HT 60 928 

14 B73/PHZ51 8 114 

45 DKB 64-69 6 92 

81 LH195/PHZ51 8 126 

238 PHW52/PHN82 8 120 

 

The second experiment of our study performed classification using both RF and SGB on 

variable groupings. Variable group classification was conducted to evaluate the importance each 

variable type or category contributed toward classification. Variables were grouped into 6 

categories: CHM, Landscape/Geometric, Spectral, Texture, Vegetation Indices, and Wavelet. 

Table 7 on page 52 provides a list of the variables assigned to each category. Variable group 

classification was performed using the 3-date variable stack of dates 05/12, 06/02, and 06/23; this 

was the same sample data used in trials assessing class number. 3-date variable stack was chosen 

to test variable grouping and class number classifications as it provided variables from multiple 

dates and sample data without image mask reductions. Variable group classification trials in this 

experiment were conducted both with and without in-trial feature selection.   

Trials performed in Experiment 3 produced classification accuracy and variable 

importance for each individual date of the growing season, for three image stack segmentations, 

and for three variable stacks or date groupings. All classification was performed on datasets of 

twelve (12) genotypes. Each trial was conducted using the same list of genotypes for all dates, 

image stacks, and variable stacks. Classification was conducted on a reduced variable list of top 

30 most important variables (top 50 variables for the all-date variable stack trial) derived using our 

in-trial feature selection method. A reduced variable list was produced for all single date 

classification as described in previous sections; however, for image stack and variable stack trials 
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a 3-step classification was used to reduce most important variables from a full list to 75 highest 

ranked variables and then to a final 30 highest ranked variables.  On trials where a large variable 

list was present, this additional variable selection step produced better results.  Final classification 

in each trial produced classification accuracy and ranking of variable importance on the selected 

variable list.    
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CHAPTER 4 

 RESULTS AND DISCUSSION 

 

4.1 Feature Selection Results 

Preliminary trial and error experimentation demonstrated a reduced variable list 

consistently produced higher results than a full variable list. Table 9 shows the improved accuracy 

for the 3-date image stack classification using in-trial feature selection. Feature selection using the 

 

Table 9: Improved accuracy when performing a 12-genotype classification on a reduced 

variable list. 

3-Date Image Stack RF SGB 
Number of 

Variables 

Full Variable List 12.5% 22.9% 1020 

Reduced Variable list  50.0% 68.8% 30 

 

in-trial method produced higher accuracy than variable group feature selection where the top ten 

variables from each variable group classification trial were chosen. Though SGB accuracy was 

similar between both methods (in-trial accuracy being 2.1% higher than variable group method), 

RF classification produced results with the in-trail method at an 8.4% difference in accuracy. Table 

10 provides results for both in-trial and variable group feature selection methods. In-trial feature 

selection was also more efficient and automated than the variable group method. The in-trial 

method required a single dataset for both feature selection and final classification; whereas, 

variable group required seven datasets for input in classification: 6 variable group datasets and a 

full dataset with all variables for final classification. In-trial feature selection was conducted via 

two classification trials. The optimized variable group feature selection did improve variable group 
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accuracy over in-trial results. As depicted in Figure 14, optimized variable group feature selection 

produced results with higher accuracy for both algorithms; however, the optimized variable group 

method was more subjective and less automated than both in-trial and the original variable group 

feature selection methods. Due to improved automation and similar accuracy, in-trial feature 

selection was chosen for following experiments over variable and optimized variable group feature 

selection.  

 

Table 10: Feature selections methods tested using RF and SGB algorithms on the 3-date 

variable stack. 

Feature Selection Methods RF SGB 

Original Variable Group 33.3% 50.0% 

Optimized Variable Group 43.8% 54.2% 

In-Trial Method 41.7% 52.1% 

 

 

 

Figure 14: Feature selections methods tested using RF and SGB algorithms on the 3-date 

  variable stack. 
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4.2 Experiment 1: Class Number Comparison 

 As demonstrated in Table 11 and Figure 15, an inverse relationship occurs in the number 

of classes present in a trial and classification accuracy. As the number of classes was reduced from 

a moderate plant breeding scenario of 249 genotypes down to 12, percent classification accuracy 

dramatically increased for both algorithms. For both algorithms, classification accuracy was 

highest for 12 genotype trials and decreased in accuracy for trials of 46, 125, and 249 in that order 

as class number increased.  SGB classification of a 12-genotype trial produced the best accuracy 

at 52.1%. SGB accuracy diminished more rapidly than RF as class number increased. Accuracy 

for SGB decreased by 37.1% between 12-gentoype and 249-genotype trials. Whereas RF accuracy 

for a 12-genotype trial was lower than SGB at 41.7%, classification of 249 genotypes only saw a 

12% reduction in accuracy.  For all trials except 12-genotype, RF outperformed SGB; therefore, 

SGB produced both the highest and lowest accuracy within this experiment. Results suggest that 

RF can better handle classification with a greater number of classes than SGB, but when the 

number of classes is small, SGB noticeably outperforms RF. 

 

Table 11: RF and SGB algorithm performance on trials of different class size 

performed on the 3-date variable stack. 

Number of Genotypes RF SGB 

12 41.7% 52.1% 

46 35.9% 31% 

125 32.0% 16.2% 

249 29.7% 15% 
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Figure 15: RF and SGB algorithm performance on trials of different class size 

performed on the 3-date variable stack. 

 

 

4.3 Experiment 2: Variable Group Classification 

Classification using only variables within each variable category known as variable groups 

(V-Groups) produced lower accuracy than combined variables of all categories applied to a 12-

genotype trial in Experiment 1. See Table 12 for variable categories, variable counts per category, 

and SGB and RF results. The V-Group Spectral produced the highest results at 45.8% using SGB 

followed by Landscape in one trial (31.3%) and CHM (29.2%); however, accuracy for the Spectral 

category was 6.3% lower than SGB classification using all V-Groups as test in Experiments 1 and 

3. A full variable list of all groups combined performed with In-Trial feature selection had an 

accuracy of 52.1%. SGB produced higher results for all V-Groups over RF. Figure 16 provides an 

illustration of SGB and RF accuracy for all V-Groups and a V-Group classification. 
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Table 12: Variable group classification results and variable counts on the 3-date variable 

stack. 

 

  

Variable 

Groupings 

Number 

of Vars. 
RF 

RF  

(30 Vars.) 
SGB 

SGB  

(30 Vars.) 

RF 

Increase 

SGB 

Increase 

Feature 

Selection 

CHM 6 20.8% 20.8% 29.2% 29.2% 0.0% 0.0%   

Landscape 93 8.3% 12.5% 12.5% 31.3% 4.2% 18.8% x 

Spectral 18 20.8% 20.8% 45.8% 45.8% 0.0% 0.0%   

Texture 89 0.0% 8.3% 10.4% 16.7% 8.3% 6.3% x 

VI's 24 18.8% 18.8% 27.1% 27.1% 0.0% 0.0%   

Wavelet 150 6.3% 16.7% 22.9% 25.0% 10.4% 2.1% x 
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Figure 16: Variable Group and all variable classification results on the 3-date variable stack. 
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Within an initial classification using all variables within a V-Group, V-Groups with a large 

number of variables performed lower than smaller V-Groups. The V-Groups Landscape, Texture, 

and Wavelet had over three times the number of variables as did CHM, Spectral, and VI’s; see 

Figure 17. In-Trial feature selection was performed on V-Groups with over 30 variables 

(Landscape, Texture, and Wavelet). Figure 16 illustrates the improved accuracy of reducing the 

number of variables in each category. Increase in accuracy after feature selection suggest that 

variable importance of some V-Groups could be lost due to large variable numbers and potential 

variable correlation within categories. All V-Groups on which feature selection was applied 

improved in accuracy. Landscape jumped from the second lowest V-Group to the second highest 

after feature selection. This was possibly due to the Landscape group having the largest number of 

variables to begin with. The V-Group Texture, though improved by feature selection, produced 

the lowest results before and after feature selection was applied. 

 

 

      Figure 17: Variable counts for each variable group on a single date and 3-date variable 

stack trial. 
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Results from V-Group classification suggested that Spectral and CHM categories were 

significant contributors to classification in all variable trials as they produced higher accuracy than 

other V-Groups, but also did so on a smaller number of variables. Results from variable group 

classification suggested that texture was the smallest contributor to classifying genotypes at the 

row level. This is not to say that texture variables are not valuable for classification since variable 

ranking results in Experiment 3 suggest that individual texture variables score higher than variables 

of other categories in some trials and prove specifically beneficial in image stack classification. 

In 3-date variable stack used for V-Group classification, each variable was present three 

times as a descriptor for training classification, once for each date (e.g. Mean_CHM_05/12, 

Mean_CHM_06/02, Mean_CHM_06/23, etc.).  Variable rank results for V-Groups Landscape and 

CHM on a 3-date variable stack classification are provided in Tables 13 and 14 as an example 

indicate that variable importance changes based on algorithm. For example, the variable “Length 

by Width” had a very different ranking produced by SGB for each date (1st, 26th and 38th out of 

ninety-three (93) landscape variables). RF ranked the Landscape V-Group differently and ordered 

Length by Width as the 11th, 54th, and 84th most important variable contributing to classification.  

In both algorithms Length by Width for the date 06/23 ranked the highest; however, Length by 

Width for the date 05/12 was ranked as more important than 06/02 in SGB versus RF.  However 

in the case of the CHM V-Group shown in Table 15, mean CHM for all dates from a 3-date variable 

stack had a higher importance score than standard deviation of CHM using SGB. These results 

suggest that variable ranking is dependent on the date described and somewhat on algorithm when 

discriminative value is low. Reference to Appendix D for a full list of variable names and function. 
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Table 13: SGB variable rankings for landscape variable group. 

Rank  Rank  Rank  Rank  

1 LG_BY_WD_0623 13 ED_0512 25 WIDTH_0512 37 PARA_AM_0602 

2 CURV_BY_LGT_0623 14 LENGTH_LONG_EDGE_0512 26 LG_BY_WD_0512 38 LG_BY_WD_0602 

3 SHAPE_AM_0602 15 #_INNER_OBJS_0602 27 PARA_AM_0512 39 CONTIG_MN_0602 

4 SHAPE_SD_0512 16 PARA_MN_0512 28 LGT_MAIN_0623 40 SHAPE_MN_0512 

5 LENGTH_LONG_EDGE_0623 17 CURV_BY_LGT_0602 29 LGT_MAIN_0602 41 #_OF_OBJS_0602 

6 ASYMMETRY_0512 18 CONTIG_AM_0602 30 FRAC_SD_0512 42 FRAC_MN_0623 

7 AREA_BY#_OBJ_0623 19 LENGTH_LONG_EDGE_0602 31 PARA_MN_0602 43 TE_0512 

8 #_OF_OBJS_0623 20 NDCA_0623 32 AREA_BY#_OBJ_0602 44 SHAPE_MN_0602 

9 BORDER_INDEX_0602 21 NDCA_0512 33 FRAC_AM_0602 45 WIDTH_0623 

10 BORDER_INDEX_0512 22 BL_SUB_LLED_0512 34 BL_SUB_LLED_0602 46 CONTIG_AM_0512 

11 FRAC_MN_0512 23 ASYMMETRY_0602 35 COHESION_0602 47 FRAC_MN_0602 

12 PARA_RA_0623 24 LENGTH_0623 36 LGT_MAIN_0512 48 PARA_AM_0623 
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Table 13 Continued 

Rank  Rank  Rank  Rank  

49 LENGTH_0602 61 CONTIG_AM_0623 73 #_INNER_OBJS_0623 85 PARA_RA_0512 

50 #_INNER_OBJS_0512 62 DEG_SKL_BRCH_0602 74 WIDTH_0602 86 CA_0602 

51 BL_SUB_LLED_0623 63 LENGTH_0512 75 FRAC_AM_0623 87 TE_0623 

52 SHAPE_AM_0623 64 NDCA_0602 76 CONTIG_MN_0512 88 COHESION_0623 

53 ED_0602 65 FRAC_SD_0623 77 CA_0623 89 CONTIG_RA_0602 

54 SHAPE_AM_0512 66 FRAC_AM_0512 78 ED_0623 90 PLAND_0512 

55 BORDER_INDEX_0623 67 #_OF_OBJS_0512 79 CONTIG_RA_0512 
  

56 CONTIG_RA_0623 68 TE_0602 80 SHAPE_SD_0602 
  

57 SHAPE_MN_0623 69 AREA_BY#_OBJ_0512 81 PARA_RA_0602 
  

58 SHAPE_SD_0623 70 FRAC_SD_0602 82 CONTIG_MN_0623 
  

59 COHESION_0512 71 PLAND_0623 83 PLAND_0602 
  

60 ASYMMETRY_0623 72 CURV_BY_LGT_0512 84 PARA_MN_0623 
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Table 14: RF variable rankings for landscape variable group. 

Rank  Rank  Rank  Rank  

1 SHAPE_AM_0602 13 #_OF_OBJS_0623 25 TE_0623 37 CONTIG_AM_0623 

2 FRAC_AM_0602 14 PARA_RA_0623 26 PARA_MN_0623 38 CONTIG_MN_0602 

3 ASYMMETRY_0512 15 BL_SUB_LLED_0623 27 SHAPE_MN_0623 39 ASYMMETRY_0602 

4 FRAC_MN_0512 16 SHAPE_SD_0512 28 BL_SUB_LLED_0602 40 AREA_BY#_OBJ_0602 

5 CURV_BY_LGT_0623 17 #_INNER_OBJS_0602 29 #_OF_OBJS_0602 41 BL_SUB_LLED_0512 

6 ED_0623 18 ED_0602 30 CONTIG_MN_0623 42 SHAPE_AM_0623 

7 AREA_BY#_OBJ_0623 19 TE_0602 31 FRAC_MN_0602 43 FRAC_AM_0623 

8 LGT_MAIN_0602 20 LGT_MAIN_0512 32 PARA_AM_0623 44 PARA_AM_0512 

9 LENGTH_0623 21 CONTIG_RA_0623 33 
BORDER_INDEX_06

23 
45 PARA_RA_0602 

10 
LENGTH_LONG_EDGE_06

23 
22 

LENGTH_LONG_EDGE_05

12 
34 CONTIG_AM_0602 46 SHAPE_SD_0602 

11 LG_BY_WD_0623 23 COHESION_0623 35 FRAC_SD_0623 47 ED_0512 

12 BORDER_INDEX_0602 24 SHAPE_SD_0623 36 COHESION_0602 48 
LENGTH_LONG_EDGE_06

02 
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Table 14 Continued 

Rank  Rank  Rank  Rank  

49 LGT_MAIN_0623 61 LENGTH_0602 73 FRAC_AM_0512 85 WIDTH_0512 

50 SHAPE_MN_0512 62 ASYMMETRY_0623 74 CA_0623 86 PLAND_0512 

51 FRAC_SD_0512 63 AREA_BY#_OBJ_0512 75 WIDTH_0623 87 WIDTH_0602 

52 CONTIG_RA_0602 64 NDCA_0623 76 #_OF_OBJS_0512 88 PARA_RA_0512 

53 PARA_MN_0602 65 PLAND_0602 77 
CURV_BY_LGT_051

2 
89 #_INNER_OBJS_0512 

54 LG_BY_WD_0602 66 NDCA_0512 78 PLAND_0623 90 COHESION_0512 

55 FRAC_MN_0623 67 TE_0512 79 CA_0512 91 DEG_SKL_BRCH_0623 

56 PARA_MN_0512 68 SHAPE_MN_0602 80 CA_0602 92 DEG_SKL_BRCH_0512 

57 PARA_AM_0602 69 NDCA_0602 81 SHAPE_AM_0512 93 DEG_SKL_BRCH_0602 

58 CONTIG_AM_0512 70 #_INNER_OBJS_0623 82 FRAC_SD_0602 
  

59 BORDER_INDEX_0512 71 CONTIG_RA_0512 83 LENGTH_0512 
  

60 CURV_BY_LGT_0602 72 CONTIG_MN_0512 84 LG_BY_WD_0512 
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Table 15: SGB and RF variable ranking for CHM variable group. 

Rank SGB - CHM Variable Group   Rank RF - CHM Variable Group 

1 MEAN_CHM_0623 
  

1 MEAN_CHM_0623 

2 MEAN_CHM_0512 
  

2 MEAN_CHM_0602 

3 MEAN_CHM_0602 
  

3 STD_CHM_0512 

4 STD_CHM_0512 
  

4 MEAN_CHM_0512 

5 STD_CHM_0602 
  

5 STD_CHM_0623 

6 STD_CHM_0623 
  

6 STD_CHM_0602 
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4.4 Experiment 3: Single Date, Image Stack, and Variable Stack Classification 

SGB yielded better performance over RF in all single date, image stack, and variable stack 

classifications with the exception of one single date trial, 06/06, as shown in Table 16. SGB had 

an average 13.5% improvement in accuracy over RF across all trials. In the single occasion where 

RF outperformed SGB, RF demonstrated less than 2% advantage in accuracy. The best results for 

RF were produced on the trial all-date variable stack with an accuracy of 60.4%, 6.3% lower than 

SGB classification of the same trial.  SGB classification of 6-date image stack produced the highest 

accuracy of all trials at 79.2%. This trial was further modified to include model randomization to 

improve accuracy to 81.3% (parameters predictors per node and predictors per tree were both set 

to 15). This allowed for only 15 variables of the 30 available variables of the reduced feature list 

to be available for training each decision tree and each node in a decision tree. Model 

randomization parameters of predictors per node and predictors per tree were not used in any other 

trial as preliminary analysis did not demonstrate consistent benefits in results across multiple 

classifications. Results with and without model randomization are provided for 6-date stack 

classification as this trial demonstrated highest accuracy. When comparing variable importance, 

results are assessed for 6-date image stack with model randomization included. 
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Table 16: Correct Classification of 12 maize genotypes over a growing season using RF and SGB on single date, image stack, 

and variable stack datasets. Highest accuracy for each algorithm are shown in bold. 

Variable Groups RF SGB 
Initial Num. 

of Variables 
Final Num. 

of Variables 
Wavelet Present 

Single Dates       x = present 
03/21 8.3% 22.9% 72 30  
04/07 12.5% 22.9% 77 30  
04/20 18.8% 18.8% 77 30  
05/02 18.8 % 27.1% 127 30 x 
05/05 20.8% 33.3% 127 30 x 
05/09 25.0% 31.3% 127 30 x 
05/12 20.8% 41.7% 127 30 x 
05/15 16.7% 29.2% 127 30 x 
05/24 18.8% 33.3% 127 30 x 
05/30 10.4% 31.3% 127 30 x 
06/02 20.8% 43.8% 127 30 x 
06/06 39.3% 37.5% 127 30 x 
06/09 34.2% 50.0% 127 30 x 
06/12 12.5% 35.4% 127 30 x 
06/16 20.8% 29.2% 127 30 x 
06/23 14.6% 29.2% 127 30 x 
06/29 15.9% 20.8% 127 30 x 
07/13 23.1% 50.0% 77 30  

Image Stack         
3 Date Image Stack 50.0% 68.8% 1480 30 x 
6 Date Image Stack 56.3% 79.2% 1480 30 x 

6 Date Image Stack (MR) N/A 81.3% 1480 30 X - Model Randomization 

15 Date Image Stack 50.0% 66.7% 1480 30 x 

Variable Stack         
3 Date Variable Stack 41.7% 52.1% 381 30 x 
6 Date Variable Stack 35.4% 50.0% 762 30 x 

All Date Variable Stack 60.4% 66.7% 2081 50 x 
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SGB classification of all-date variable stack yielded similar accuracy of 66.7 and 68.8% to 

3-date image stack and 15-date image stack trials. Higher accuracy in image stack over variable 

stack trials suggested that a smaller number of multi-temporal descriptive landscape variables are 

more beneficial for classification than landscape variables derived from each single date 

segmentation, but landscape variables in image stack trials were ranked significantly lower than 

those in variable stack trials. Within image stack trials of both RF and SGB, texture variables 

ranked much higher than in variable stack or single date trials. Variables in image stack trials can 

describe regions of maize canopy, core regions of a maize canopy, and possible non-maize areas 

for a given date. Description of core canopy regions of maize and non-maize regions in some 

images may be a contributor of improved accuracy. 

 Results clearly revealed multi-temporal dimensionality significantly contributed to higher 

accuracy as depicted in Figure 18.  Improved or equal accuracy in 10 out of 12 image stack and 

variable stack trials support the use of multi-temporal dimensionality for classification of maize 

genotypes. For multi-temporal trials of SGB, average accuracy was 64.2%, 14% higher than the 

highest single date trial of either algorithm. The 6-date variable stack produced the lowest result 

for multi-temporal SGB trials but was equal to 06/09 and 07/13 which yielded the highest accuracy 

at 50% of any single date trials. Average accuracy for multi-temporal SGB trials was more than 

30% higher than average single date accuracy at 32.6%. Multi-temporal RF trials also yielded 

results with an average accuracy of 30% greater than single date RF. Performance in multi-

temporal RF trials 3-date variable stack and 6-date variable stack were lower than three single date 

SGB trials (06/02, 06/09, and 07/13); however, only the RF trial 06/06 outperformed the RF multi-

temporal trial of 6-date variable stack. Mean accuracy across all single date trials was 19.6% for 
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RF and 32.6% SGB. Single date classification did not achieve accuracy above 50%. Whereas 

accuracy of 60% and greater was achieved for five multi-temporal trials, one RF and three SGB.  

 

 

Figure 18: Classification accuracy shown for single date, image stack, and variable stack 

classification of 12 genotype trials. 

 

When assessing both algorithms, single date accuracy was lower early in the growing 

season. The earliest date with accuracy above 40% was achieved on May 12. Results for single 

date trials at the given spatial resolution between 2.66-2.83cm and temporal resolution of this study 

suggest accurate classification of genotypes using RGB images of a single date is not yet possible. 
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A general bell-shaped curve in accuracy shown in Figure 18 suggest that mid to later season images 

provide the most beneficial information for classification. This is due to substantially more 

differentiation between mature plants that can be visually observed in the field, potentially due to 

differences accumulating in plants growth and response cumulatively up to that point and likely 

also due to more structure in the plant that can be used to discriminate in adult plants (more nodes, 

more leaves, tassels) than in juvenile plants. Accuracy within single date trials of 40-50% 

suggested variables from single date classification can provide valuable information for future 

plant breeding analysis and should be assessed further. 

4.4 Variable Evaluation of Experiment 3 

In this section, variables were evaluated in two ways: 1) by importance ranking and 2) 

variable occurrence within and across trials. Variable rank was evaluated based on relative score 

for each single date, image stack, and variable stack, specifically within the most accurate multi-

temporal trials (6-date image stack and all-date variable stack). Variable occurrence was measured 

by 1) calculating the sum of each variable’s presence within the top 10 variables of all trials by 

algorithm, 2) variable occurrence within the combined reduced variable lists of both RF and SGB 

algorithms for the all-date variable stack, and 3) examining the top 10 variables of SGB and RF 

on all-date variable stack. 

 When assessing variable importance by variable ranking and relative score, individual 

variable and variable group contribution to classification differed noticeably between datasets and 

algorithms. The order of variables ranked in RF trials differed from SGB. Variable rank results for 

the top ten (10) variables from each date and multi-temporal classification shown in Tables 17 and 

19 indicated that variable importance changed based on date and algorithm. Some variables 

received a high score in both trials and in some cases the same rank such as in trials 05/05, 05/30, 
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and 06/02 where mean CHM was ranked as the most important descriptor. In fact, CHM variables 

(mean and standard deviation) were consistently ranked high across all trials and for both 

algorithms. Mean CHM was the highest ranked variable in 21 out of 48 trials between RF and 

SGB algorithms. Within single date trials, the spectral variable ‘mean blue band’ also showed high 

ranking in several trials. Overall however, importance of individual variables varied widely 

between trials. Though variables of the landscape category occurred among the highest ranked 

variables in multiple trials, the same variable or variables did not show up as a consistently 

important contributor as noticed in variables mean CHM and mean blue. Variable ranking of both 

RF and SGB suggest that all variable categories provided valuable information for classification. 

As a trend, texture variables were ranked lower than all other variable groups except in image stack 

trials. Wavelet variables were generally ranked high in most trials where available. The wavelet 

variables ‘mean - scale of 1.4’ and ‘standard deviation - scale of 1.2’ showed repeated use across 

several trials. Though wavelet variables showed importance across many trials, highest ranked 

variables of this category differed between multiple scales. The number of wavelet scales included 

in a feature list should be reduced in future work to evaluate the importance of individual wavelet 

scales. This could also further improve classification by reducing the number of correlated 

variables being used in a trial. VI’s provided valuable information in all trials with ExG variables 

showing prominence over ExR, VEG, and YI. In single date trials where ExR and YI were high, 

ExG tended to have a lower score than trials where these variables were less important. Reference 

to Appendix D for a full list of variable names and function.  
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Table 17: Top 10 variables from each SGB classification of 12 genotype trial. 

Var. Groups 03/21 04/07 04/20 05/02 05/05 05/09 

CHM BORDER_INDEX MEAN_BLUE MEAN_BLUE ASYMMETRY MEAN_CHM MEAN_CHM 

Landscape 
PARA_RA STD_EXG LENGTH_LONG_EDGE WV_SCALE__5STD BORDER_INDEX 

WV_SCALE__1_6ME

AN 

Spectral SHAPE_AM SHAPE_SD MEAN_RED STD_BLUE GLCM_MEAN_ALL_DIR WV_SCALE__2_2STD 

Texture DEG_SKL_BRCH GLCM_MEAN_B_45˚ CA WV_SCALE__0_6STD MEAN_RED ASYMMETRY 

VI's 
MEAN_EXR LENGTH NDCA 

GLCM_CONTRAST_45

˚ 

GLCM_CONTRAST_ALL_

DIR 
MEAN_BLUE 

Wavelength MEAN_EXG STD_CHM MEAN_CHM BORDER_INDEX WV_SCALE__3_2STD TE 

 
LGT_MAIN 

GLCM_CONTRAST_EX

R_45˚ 
STD_EXR MEAN_EXG MEAN_BLUE MEAN_GREEN 

 

GLCM_CONTRAST_A

LL_DIR 
BL_SUB_LLED MEAN_EXG AREA_BY_#OBJ WV_SCALE__3_4STD CURV_BY_LGT 

 
FRAC_AM MEAN_CHM LENGTH 

WV_SCALE__4_6MEA
N 

WV_SCALE__1_6STD SHAPE_AM 

 
CURV_BY_LGT 

GLCM_MEAN_CHM_45

˚ 
GLCM_MEAN_B_45˚ MEAN_CHM WV_SCALE__1_4STD PARA_RA 

        

 05/12 05/15 05/24 05/30 06/02 06/06 

 
FRAC_MN MEAN_CHM MEAN_BLUE MEAN_CHM MEAN_CHM STD_CHM 

 
STD_GREEN MEAN_YEL MEAN_CHM 

WV_SCALE__3_4MEA

N 
MEAN_BLUE MEAN_CHM 

 
MEAN_GREEN SHAPE_SD SHAPE_SD WV_SCALE__0_8STD WV_SCALE__1_4MEAN STD_BLUE 

 
MEAN_CHM GLCM_MEAN_G_45˚ MEAN_RED MEAN_GREEN MEAN_EXG WV_SCALE__1_8STD 

 
MEAN_RED MEAN_RED WV_SCALE__1_2STD 

GLCM_CONTRAST_E

XG_45˚ 
WV_SCALE__0_2STD MEAN_GREEN 

 
STD_BLUE MEAN_EXR COHESION LGT_MAIN LGT_MAIN WV_SCALE__5STD 

 
MEAN_EXG FRAC_SD STD_GREEN WV_SCALE__1STD SHAPE_AM 

GLCM_MEAN_EXG_

45˚ 

 

WV_SCALE__0_2ME

AN 
WV_SCALE__1_2STD LENGTH_LONG_EDGE FRAC_MN WV_SCALE__1_2STD 

GLCM_MEAN_YEL_4

5˚ 

 
STD_RED STD_CHM CA WIDTH WV_SCALE__3_4STD 

WV_SCALE__1_2ME
AN 

 

GLCM_CONTRAST_E

XG_45˚ 

GLCM_CONTRAST_AL

L_DIR 
NDCA WV_SCALE__1_4STD LENGTH_LONG_EDGE 

WV_SCALE__2_4ME

AN 
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Table 17 Continued 

Var. Groups 06/09 06/12 06/16 06/23 06/29 07/13 

CHM MEAN_BLUE MEAN_CHM STD_EXR MEAN_CHM PARA_AM STD_EXG 

Landscape MEAN_CHM ASYMMETRY MEAN_CHM SHAPE_AM STD_CHM PARA_AM 

Spectral STD_EXG MEAN_EXG LGT_MAIN MEAN_BLUE ASYMMETRY STD_GREEN 

Texture 
WV_SCALE__2_8STD 

GLCM_MEAN_CHM_45

˚ 
MEAN_VEG LG_BY_WD WV_SCALE__1_2STD CURV_BY_LGT 

VI's 

LENGTH_LONG_EDG

E 
SHAPE_SD GLCM_MEAN_YEL_45˚ 

GLCM_CONTRAST_E

XR_45˚ 
MEAN_CHM LGT_MAIN 

Wavelength COHESION GLCM_MEAN_B_45˚ STD_YEL AREA_BY_#OBJ LENGTH FRAC_MN 

 
WV_SCALE__4_8STD PARA_RA WV_SCALE__4_8STD PARA_RA GLCM_CONTRAST_45˚ MEAN_CHM 

 
PARA_AM NDCA WV_SCALE__2_2STD #_of_Objs CA PARA_RA 

 
CURV_BY_LGT WV_SCALE__0_6STD WV_SCALE__0_2MEAN CURV_BY_LGT AREA_BY_#OBJ LG_BY_WD 

 
MEAN_GREEN MEAN_EXR STD_RED WV_SCALE__5MEAN FRAC_SD SHAPE_MN 

        

 

3-Date  

Image Stack 

6-Date  

Image Stack 

15-Date  

Image Stack 

3-Date  

Variable Stack 

6-Date 

Variable Stack 

All-Date  

Variable Stack 

 
MEAN_EXR_0524 MEAN_CHM_0515 

GLCM_CONTRAST_B_06

23_45˚ 
MEAN_CHM_0623 FRAC_MN_0602 COHESION_0524 

 
STDEV_EXR_0407 MEAN_EXR_0524 

GLCM_ENTROPY_B_050

5_45˚ 

WV0602_SCALE__1_4

MEAN 

WV0602_SCALE__1_4ME

AN 
STD_BLUE_0505 

 
MEAN_CHM_0515 WV0509SC1_4_MEAN 

GLCM_ENTROPY_YEL_0
505_45˚ 

LG_BY_WD_0623 STD_YEL_0616 
WV0602_SCALE__1_2
STD 

 

GLCM_MEAN_CHM_

0623_45˚ 
STDEV_YEL_0616 STDEV_CHM_0512 MEAN_RED_0512 MEAN_YEL_0515 

BORDER_INDEX_032

1 

 

GLCM_MEAN_EXR_0

321_45˚ 
WV0524SC1_4_STD 

GLCM_MEAN_CHM_071

3_45˚ 
LGT_MAIN_0602 WV0616_SCALE__2_2STD MEAN_GREEN_0713 

 

WV0502SC0_2_3D_ST
D 

MEAN_CHM_0616 
GLCM_ENTROPY_EXR_
0509_45˚ 

WV0602_SCALE__0_2S
TD 

WV0602_SCALE__0_2STD 
GLCM_MEAN_CHM_
0612_45˚ 

 
MEAN_CHM_0713 

GLCM_CONTRAST_45˚

_IMSTK_6D 
WV0515SC1_8_MJ_STD MEAN_BLUE_0602 GLCM_MEAN_G_0515_45˚ 

WV0509_SCALE__4_4

STD 

 
MEAN_EXG_0515 

GLCM_CONTRAST_B_

0629_45˚ 
MEAN_EXR_0524 SHAPE_AM_0602 WV0602_SCALE__1_2STD MEAN_CHM_0606 

 
MEAN_CHM_0609 WV0515SC1_8_STD MEAN_CHM_0609 

WV0602_SCALE__1_8
MEAN 

GLCM_CONTRAST_EXR_
0616_45˚ 

MEAN_EXG_0713 

 

GLCM_ENTROPY_B_

0713_45˚ 
MEAN_G_0509 MEAN_CHM_0612 

GLCM_MEAN_ALL_DI

R_0602 
MEAN_CHM_0515 MEAN_RED_0616 
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Table 18: Top 10 variables from each RF classification of 12 genotype trial. 

Var. Groups 03/21 04/07 04/20 05/02 05/05 05/09 

CHM DEG_SKL_BRCH STD_CHM MEAN_BLUE MEAN_CHM MEAN_CHM LENGTH 

Landscape 
BORDER_INDEX STD_EXG MEAN_CHM 

GLCM_CONTRAST_E

XR_45˚ 
MEAN_RED MEAN_CHM 

Spectral SHAPE_AM MEAN_CHM STD_EXG ASYMMETRY MEAN_BLUE WV_SCALE__1STD 

Texture FRAC_AM MEAN_EXR LENGTH_LONG_EDGE WV_SCALE__0_6STD GLCM_MEAN_ALL_DIR MEAN_GREEN 

VI's 

LENGTH_LONG_ED

GE 

GLCM_CONTRAST_EX

R_45˚ 
FRAC_SD AREA_BY_#OBJ GLCM_CONTRAST_B_45˚ ED 

Wavelength 
PARA_RA MEAN_BLUE MEAN_EXG SHAPE_MN WV_SCALE__0_2MEAN 

WV_SCALE__1_6MEA
N 

 
MEAN_EXG FRAC_AM STD_GREEN WV_SCALE__0_8STD GLCM_CONTRAST_45˚ PLAND 

 
SHAPE_MN FRAC_SD MEAN_RED WV_SCALE__1_4STD MEAN_VEG CONTIG_RA 

 
SHAPE_SD CA LENGTH WV_SCALE__1STD GLCM_CONTRAST_R_45˚ MEAN_EXG 

 
CURV_BY_LGT 

GLCM_CONTRAST_YE

L_45˚ 
STD_VEG 

GLCM_MEAN_CHM_4

5˚ 
MEAN_GREEN MEAN_BLUE 

   
  

  

 05/12 05/15 05/24 05/30 06/02 06/06 

 
MEAN_CHM MEAN_EXR MEAN_RED MEAN_CHM MEAN_CHM STD_CHM 

 
MEAN_GREEN MEAN_YEL MEAN_CHM LGT_MAIN MEAN_BLUE MEAN_CHM 

 
MEAN_VEG MEAN_CHM MEAN_EXR WV_SCALE__1STD SHAPE_AM MEAN_BLUE 

 
STD_VEG MEAN_BLUE MEAN_YEL MEAN_RED STD_BLUE LENGTH_LONG_EDGE 

 
STD_GREEN FRAC_SD MEAN_BLUE 

GLCM_CONTRAST_E
XG_45˚ 

WV_SCALE__1_4MEAN 
GLCM_MEAN_EXG_45
˚ 

 
FRAC_MN CURV_BY_LGT LENGTH_LONG_EDGE MEAN_VEG WV_SCALE__1_6MEAN WV_SCALE__1_8STD 

 
STD_CHM WV_SCALE__5MEAN WV_SCALE__1_2STD MEAN_GREEN GLCM_MEAN_R_45˚ MEAN_GREEN 

 
MEAN_RED MEAN_RED COHESION MEAN_EXG WV_SCALE__2MEAN STD_RED 

 
STD_RED GLCM_MEAN_G_45˚ LENGTH STD_CHM WV_SCALE__1_8MEAN 

GLCM_MEAN_YEL_45

˚ 

 
ASYMMETRY WV_SCALE__4_8MEAN STD_CHM SHAPE_SD WV_SCALE__0_2STD MEAN_VEG 
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Table 18 Continued 

Var. Groups 06/09 06/12 06/16 06/23 06/29 07/13 

CHM MEAN_CHM MEAN_CHM MEAN_CHM MEAN_CHM MEAN_YEL STD_EXG 

Landscape MEAN_BLUE ASYMMETRY STD_YEL STD_EXG CA CONTIG_AM 

Spectral 

GLCM_ENTROPY_C

HM_45˚ 
LENGTH_LONG_EDGE STD_EXR MEAN_VEG PLAND CURV_BY_LGT 

Texture 
MEAN_GREEN MEAN_EXG 

GLCM_CONTRAST_EX
G_45˚ 

STD_BLUE MEAN_EXR STD_GREEN 

VI's MEAN_VEG SHAPE_SD LGT_MAIN STD_GREEN STD_CHM PLAND 

Wavelength 
WV_SCALE__1_8ME
AN 

WV_SCALE__2_2STD 
GLCM_CONTRAST_YEL
_45˚ 

LENGTH_LONG_EDGE MEAN_CHM 
GLCM_MEAN_EXG_45
˚ 

 

WV_SCALE__1_4ME

AN 
STD_CHM GLCM_MEAN_YEL_45˚ CURV_BY_LGT ASYMMETRY MEAN_CHM 

 

WV_SCALE__2_4ME

AN 
ED MEAN_VEG MEAN_GREEN MEAN_EXG LGT_MAIN 

 
STD_EXG WV_SCALE__2STD STD_RED LENGTH LENGTH PARA_AM 

 

GLCM_MEAN_CHM

_45˚ 
WV_SCALE__2_4STD 

GLCM_CONTRAST_B_4

5˚ 
AREA_BY_#OBJ NDCA CA 

   
  

  

 

3-Date 

Image Stack 

6-Date 

Image Stack 

15-Date 

Image Stack 

3-Date 

Variable Stack 

6-Date 

Variable Stack 

All-Date 

Variable Stack 

 
MEAN_EXG_0509 

GLCM_CONTRAST_B_0

629_45˚ 
MEAN_CHM_0609 MEAN_CHM_0623 MEAN_CHM_0616 STD_GREEN_0524 

 
MEAN_EXR_0524 MEAN_CHM_0616 

GLCM_CONTRAST_B_0

629_45˚ 

WV0602_SCALE__1_6

MEAN 
STD_YEL_0616 MEAN_CHM_0606 

 
MEAN_CHM_0609 MEAN_CHM_0515 

GLCM_CONTRAST_B_0

623_45˚ 
SHAPE_AM_0602 MEAN_EXR_0515 

GLCM_MEAN_CHM_0

612_45˚ 

 
MEAN_YEL_0524 MEAN_R_0524 

GLCM_ENTROPY_EXG_
0602_45˚ 

WV0602_SCALE__1_4
MEAN 

STD_EXR_0616 MEAN_EXG_0713 

 
MEAN_EXG_0530 STDEV_YEL_0616 

GLCM_CONTRAST_R_0

623_45˚ 
FRAC_AM_0602 SHAPE_AM_0602 

WV0602_SCALE__1_2S

TD 

 
STDEV_EXR_0407 MEAN_CHM_0609 MEAN_CHM_0505 MEAN_CHM_0602 MEAN_YEL_0515 STD_BLUE_0616 

 
MEAN_CHM_0515 MEAN_B_0524 STDEV_YEL_0616 

WV0602_SCALE__1_8

MEAN 

WV0602_SCALE__1_8MEA

N 
BL_SUB_LLED_0629 

 
MEAN_CHM_0616 MEAN_YEL_0524 

GLCM_CONTRAST_EXR

_0509_45˚ 
STD_BLUE_0602 MEAN_CHM_0623 

WV0602_SCALE__1_4S

TD 

 

GLCM_MEAN_VEG

_0602_45˚ 

GLCM_ENTROPY_EXG

_0509_45˚ 
MEAN_YEL_0524 MEAN_VEG_0512 

WV0602_SCALE__1_4MEA

N 
SHAPE_MN_0602 

 
STDEV_YEL_0616 MEAN_EXR_0524 

GLCM_MEAN_B_0515_4
5˚ 

STD_VEG_0512 STD_BLUE_0602 COHESION_0524 
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Variables were also evaluated based on repeated occurrence in the reduced variable list of 

each trial. Tables 19 provides a sum of the number times each variable by algorithm occurred 

within the top 10 highest ranked variable list of each date. For both RF and SGB, mean CHM, 

mean blue, and mean ExG were the top three most commonly occurring variables within the two 

summary lists of top ten variable rankings. Mean CHM occurred 30 times in the top ten ranking 

of RF trials and 27 times in SGB trials. Mean blue occurred 10 times in RF trials and 9 times in 

SGB. ExG shared a similar occurrence as mean blue. As can be seen, variable occurrence 

decreased sharply after mean CHM and varied for following variables between trials. For the 

spectral category of variables, mean demonstrated greater importance over standard deviation 

based on occurrence. Variable types mean and contrast for the Texture V-Group occurred more 

often and with a higher rank than the variable type entropy. Tables 20 and 21 provide further 

summary statistics as to the number variables present in each V-Group. 

 

      Table 19:  Occurrence of variable by algorithm within the top 10 ranked variables of all 

dates, image stack and variable stack trials. 
SGB – Variables Count V-Groups RF - Variables Count 

MEAN_CHM 27 CHM MEAN_CHM 30 

MEAN_BLUE 9 Landscape MEAN_BLUE 10 

MEAN_EXG 7 Spectral MEAN_EXG 9 

MEAN_RED 7 Texture MEAN_GREEN 8 

MEAN_GREEN 7 VI's MEAN_VEG 8 

LGT_MAIN 6 Wavelength STD_GREEN 8 

MEAN_EXR 6  MEAN_EXR 7 

WV_SCALE__1_2STD 6  MEAN_YEL 7 

GLCM_MEAN_CHM_45˚ 5  STD_CHM 7 

SHAPE_AM 5  STD_EXG 7 

STD_CHM 5  LENGTH_LONG_EDGE 6 

CURV_BY_LGT 5  MEAN_RED 6 

PARA_RA 5  GLCM_CONTRAST_B_45˚ 5 

ASYMMETRY 4  LENGTH 5 

BORDER_INDEX 4  STD_BLUE 5 

FRAC_MN 4  STD_YEL 5 

LENGTH_LONG_EDGE 4  ASYMMETRY 4 
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      Table 19 Continued 

SGB – Variables Count V-Groups RF - Variables Count 

SHAPE_SD 4 CHM CURV_BY_LGT 4 

STD_BLUE 4 Landscape FRAC_AM 4 

WV_SCALE__0_2STD 4 Spectral SHAPE_AM 4 

WV_SCALE__1_4MEAN 4 Texture WV_SCALE__1_4MEAN 4 

NDCA 3 VI's WV_SCALE__1_8MEAN 4 

STD_EXG 3 Wavelength CA 3 

AREA_BY_#OBJ 3  FRAC_SD 3 

CA 3  GLCM_CONTRAST_EXR_45˚ 3 

COHESION 3  PLAND 3 

GLCM_CONTRAST_ALL_DIR 3  SHAPE_MN 3 

GLCM_MEAN_B_45˚ 3  SHAPE_SD 3 

LENGTH 3  STD_VEG 3 

LG_BY_WD 3  WV_SCALE__1_6MEAN 3 

PARA_AM 3  WV_SCALE__1STD 3 

STD_GREEN 3  AREA_BY_#OBJ 2 

WV_SCALE__2_2STD 3  COHESION 2 

GLCM_CONTRAST_45˚ 3  ED 2 

STD_EXR 3  GLCM_CONTRAST_EXG_45˚ 2 

STD_YEL 3  GLCM_CONTRAST_R_45˚ 2 

WV_SCALE__1_4STD 3  GLCM_CONTRAST_YEL_45˚ 2 

WV_SCALE__1_8STD 3  GLCM_ENTROPY_EXG_45˚ 2 

STD_RED 2  GLCM_MEAN_CHM_45˚ 2 

GLCM_CONTRAST_EXR_45˚ 2  GLCM_MEAN_EXG_45˚ 2 

GLCM_MEAN_G_45˚ 2  GLCM_MEAN_YEL_45˚ 2 

FRAC_SD 2  LGT_MAIN 2 

GLCM_CONTRAST_B_45˚ 2  WV_SCALE__1_4STD 2 

GLCM_CONTRAST_EXG_45˚ 2  BL_SUB_LLED_0629 1 

GLCM_ENTROPY_B_45˚ 2  BORDER_INDEX 1 

GLCM_MEAN_ALL_DIR 2  CONTIG_AM 1 

GLCM_MEAN_EXR_45˚ 2  CONTIG_RA 1 

GLCM_MEAN_YEL_45˚ 2  DEG_SKL_BRCH 1 

MEAN_YEL 2  GLCM_CONTRAST_45˚ 1 

WV_SCALE__0_2MEAN 2  GLCM_ENTROPY_CHM_45˚ 1 

WV_SCALE__0_6STD 2  GLCM_MEAN_ALL_DIR 1 

WV_SCALE__3_4STD 2  GLCM_MEAN_B_45˚ 1 

WV_SCALE__4_8STD 2  GLCM_MEAN_CHM_0612_45˚ 1 

#_of_OBJS 1  GLCM_MEAN_G_45˚ 1 

BL_SUB_LLED 1  GLCM_MEAN_R_45˚ 1 

DEG_SKL_BRCH 1  GLCM_MEAN_VEG_45˚ 1 

FRAC_AM 1  NDCA 1 

GLCM_ENTROPY_EXR_45˚ 1  PARA_AM 1 

GLCM_ENTROPY_YEL_45˚ 1  PARA_RA 1 

GLCM_MEAN_EXG_45˚ 1  STDEV_EXR_0407 1 

MEAN_VEG 1  WV_SCALE__0_2MEAN 1 

TE 1  WV_SCALE__0_2STD 1 
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      Table 19 Continued 

SGB – Variables…continued Count V-Groups RF - Variables…continued Count 

WIDTH 1 CHM WV_SCALE__0_6STD 1 

WV_SCALE__0_8STD 1 Landscape WV_SCALE__0_8STD 1 

WV_SCALE__1_2MEAN 1 Spectral WV_SCALE__1_2STD 1 

WV_SCALE__1_6MEAN 1 Texture WV_SCALE__1_8STD 1 

WV_SCALE__1_6STD 1 VI's WV_SCALE__2_2STD 1 

WV_SCALE__1_8MEAN 1 Wavelength WV_SCALE__2_4MEAN 1 

WV_SCALE__1STD 1  WV_SCALE__2_4STD 1 

WV_SCALE__2_4MEAN 1  WV_SCALE__2MEAN 1 

WV_SCALE__2_8STD 1  WV_SCALE__2STD 1 

WV_SCALE__3_2STD 1  WV_SCALE__4_8MEAN 1 

WV_SCALE__3_4MEAN 1  WV_SCALE__5MEAN 1 

WV_SCALE__4_4STD 1    
WV_SCALE__4_6MEAN 1    
WV_SCALE__5MEAN 1    
WV_SCALE__5STD 1    
SHAPE_MN 1    

 

Table 20: Variables of each variable group present in the Top 10 ranked variables from 

each SGB trial. 

Variable Group 

Sum top 10  

variables (all trials) 

Sum all  

variables (all trials) 

Percent of Top 10  

out of all variables 

CHM 32 116 27.59% 

Landscape 71 2975 2.39% 

Spectral 32 576 5.56% 

Texture 33 2340 1.41% 

VI's 25 624 4.01% 

Wavelet 45 3100 1.45% 

 

Table 21: Variables of each variable group present in the Top 10 ranked variables from 

each RF trial. 

Variable Group 

Sum top 10 

variables (all trials) 

Sum all 

variables (all trials) 

Percent of Top 10 

out of all variables 

CHM 37 116 31.90% 

Landscape 58 2975 1.95% 

Spectral 29 576 5.03% 

Texture 30 2340 1.28% 

VI's 47 624 7.53% 

Wavelet 29 3100 0.94% 
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One issue with assessing most commonly occurring variables from an all trial comparison 

is that trials with low accuracy have potential to skew variable importance. Within early dates 

where classification produced very low accuracy, such low classification accuracy suggests none 

or few of the variables of this trial are very significant for classification regardless of ranking. This 

could prove problematic when identifying the most valuable variables based on occurrence across 

and between all trials. The assessment of variables within trials yielding more accurate results 

could provide more valuable information regarding variable importance. A combined RF and SGB 

variable assessment on the trial all-date variable stack was chosen to shed more light as to the most 

important variables based on occurrence and ranked order.  All-date variable stack produced the 

highest accuracy when looking at both RF and SGB trials and did so on a reduced list of 50 rather 

than 30 variables.  This trial was ideal for assessing variable importance based on variable 

occurrence as this trial took into consideration all variables from all dates. Within each trial (RF 

and SGB), multiple instances of the same variable but from a different date could occur in the 

variable ranking.  Image stack trials, though demonstrating higher accuracy for SGB than the all-

date variable stack, were not ideal for assessing variable importance across our timeseries as image 

stack trials work with a reduced number of landscape variables. This is due to image stack trials 

having only one OBIA result from which variables are extracted while variable stack trials extract 

variables from multiple image object layers. Using a variable stack trial allows for multiple 

occurrences of landscape variables that image stack trials cannot provide; therefore, when 

assessing variables in a variable stack trial, landscape variables are not underrepresented when 

compared to other V-Groups. Assessment of image stack variables would have been problematic 

as classification in these trials was performed with a smaller list of multi-temporal landscape 
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variables. Variable importance was also considered in this assessment by comparing variable rank 

based on date. A particular date could therefore stand out as a greater contributor to classification.   

 

Table 22: Occurrence of variables in combined SGB and RF reduced variable list of all-

date variable stack trials. 

Variables Count  continued…Variables Count 

STD_BLUE 10  AREA_BY_#OBJ 1 

BORDER_INDEX 5  ASYMMETRY 1 

COHESION 5  BL_SUB_LLED 1 

MEAN_CHM 5  CA 1 

MEAN_EXG 4  CONTIG_MN 1 

MEAN_GREEN 4  CONTIG_RA 1 

WV_SCALE__5STD 4  CURV_BY_LGT 1 

MEAN_RED 3  ED 1 

MEAN_YEL 3  FRAC_MN 1 

SHAPE_AM 3  GLCM_CONTRAST_B_45˚ 1 

DEG_SKL_BRCH 2  GLCM_ENTROPY_CHM_45˚ 1 

GLCM_MEAN_CHM_45˚ 2  GLCM_ENTROPY_YEL_45˚ 1 

GLCM_MEAN_VEG_45˚ 2  GLCM_MEAN_B_45˚ 1 

MEAN_EXR 2  LENGTH_LONG_EDGE 1 

MEAN_VEG 2  NDCA 1 

PARA_MN 2  SHAPE_SD 1 

SHAPE_MN 2  STD_RED 1 

STD_EXG 2  STD_VEG 1 

STD_EXR 2  WV_SCALE__0_2MEAN 1 

STD_GREEN 2  WV_SCALE__0_8STD 1 

WV_SCALE__1_2STD 2  WV_SCALE__1_2MEAN 1 

WV_SCALE__1_4STD 2  WV_SCALE__2_2MEAN 1 

WV_SCALE__1_6STD 2  WV_SCALE__2_2STD 1 

WV_SCALE__3_4MEAN 2  WV_SCALE__3_6STD 1 

#_of_OBJS 1  WV_SCALE__4_4STD 1 
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When assessing variable importance based on variable occurrence in 100 combined 

variables of 50 RF and 50 SGB all-date variable stack rankings, mean CHM and mean ExG were 

in the top 5 most common variables as shown in Table 22.  Unlike the sum of top 10 variables 

from all trials, mean CHM and mean ExG however were not the highest occurring variables. The 

highest ranked variables by occurrence in these combined trials were standard deviation of the 

blue band at a frequency of 10, border index at 5, cohesion at 5, and mean CHM at 5 followed by 

mean ExG at 4. The only variable group not represented within the top 10 most occurring variables 

was texture; however, the texture variable ‘GLCM mean CHM 06/12’ did occur twice within the 

top highest ranked variables by relative importance score in both RF and SGB all-date variable 

stack trials; see Table 23. There were also eight occurrences of texture variables within the 100 

variable occurrence assessment of the combined RF and SGB all-date variable stacks; refer to 

Tables 22 and 24. The repeated occurrence of the landscape variable ‘cohesion’ and its rank based 

on relative score (1 in SGB and 10 in RF out of 2081 variables available prior to feature selection) 

suggest future research should investigate use of the variable cohesion for high-throughput plant 

breeding. The cohesion variable is a measure of how connected image objects labeled as maize are 

to one another in a row boundary. This variable could help provide plant breeders with information 

as to how clumped maize canopy is across a row. The custom VI of Yellow Index was present in 

the top 10 of 100 variables of the combined RF and SGB variable occurrence assessment. Yellow 

Index for date 06/16 was ranked 20th by relative importance in the SGB all-date variable stack 

trial. When comparing the top 10 variables in all-date variable stack trials of RF and SGB as shown 

in Table 23, 5 variables are correlated between trials (cohesion, standard deviation of wavelet scale 

1.2, GLCM mean CHM, mean CHM, and mean ExG). Results from variable assessment support 

that all variable groups provided beneficial information for classification. One interesting thing to 
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note is that variable importance in all-date variable stack trials did not always correlate to variable 

ranking in single date trials. For example, the highest ranked variable for the SGB all-date variable 

stack trial cohesion extracted from date 05/24 was ranked 6th in the single date trial of 05/24. The 

variable standard deviation of the blue band from date 05/05 was ranked second in all-date variable 

stack but twenty-first in single date trial 05/05. Assessing variable importance based on rank and 

presence in RF and SGB all-date variable stack reduced variable list is meaningful as these trials 

consider all variables from all dates. If a particular variable is considerably more valuable for 

classification, it should occur more often in a reduced feature list of selected variables.  In addition, 

variables in these trials must compete against all other variables for relative importance.  Greater 

competition in multi-temporal trials supports the use of identified variables in this assessment. 

 

Table 23: Top 10 variables by importance for both SGB and RF all-date variable stack 

trials. 

SGB: Top 10 Variables RF: Top 10 Variables 

COHESION_0524 STD_GREEN_0524 

STD_BLUE_0505 MEAN_CHM_0606 

WV0602_SCALE__1_2STD GLCM_MEAN_CHM_0612_45˚ 

BORDER_INDEX_0321 MEAN_EXG_0713 

MEAN_GREEN_0713 WV0602_SCALE__1_2STD 

GLCM_MEAN_CHM_0612_45˚ STD_BLUE_0616 

WV0509_SCALE__4_4STD BL_SUB_LLED_0629 

MEAN_CHM_0606 WV0602_SCALE__1_4STD 

MEAN_EXG_0713 SHAPE_MN_0602 

MEAN_RED_0616 COHESION_0524 
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Table 24: Number of variables by V-Group for combined top 50 SGB and RF reduced 

feature lists. 

Variable Group 
Total out of 100 Number of Variables Percent of 

(50SGB + 50RF) in V-Group Variable Group 

CHM 5 34 14.71% 

Landscape 32 1116 2.87% 

Spectral 18 216 8.33% 

Texture 8 1080 0.74% 

VI's 16 288 5.56% 

Wavelet 19 1500 1.27% 

Total all available 

Variables (SGB + RF trials) 
100 4234   

 

4.5 Discussion of Potential Error 

 Prior to concluding the discussion of results provided in this chapter, we acknowledge 

potential sources of error and limitations of this study such as small sample of data available for 

training and running classification algorithms and variation in image properties or quality due to 

multi-temporal acquisition and mosaicking. Within this study, classification was performed on a 

sample size of four rows or multipart polygons per genotype. Conventional remote-sensing 

classification is performed using training samples ranging from 10s to 1000s of sample points. 

To compensate for the limited data available for this study, RF classification was trained using 

bootstrapping without replacement, and SGB was performed using a 4-fold cross validation. We 

acknowledge that classification accuracy may be influenced by overfitting due to the limited 

pool of training data available for classification. As training data was not separate from the 

dataset classified because bootstrapping and cross validation sampling methods were used, this 

could also introduce error. It is, however, our assessment based on this study that genotype 
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classification is possible using only RGB-derived data and that methods proposed in this study 

present valuable information which should be applied for future genotype classification. 

 Potential error could also be introduced due to varying spatial resolution of images 

collected across the timeseries of this study. Pixel resolution ranging between 2.66-2.83cm could 

affect accuracy of segmentation and value of object properties used in classification. In addition, 

no radiometric corrections were applied as all data was provided as RGB images with digital 

numbers. Contrast in pixel brightness and image blur were also noticed after mosaicking and 

orthorectification. Large areas of significant image blur were manually removed prior analysis; 

however, blur did occur at lesser intensity in various portions of many images. Finally, we 

acknowledge that potential error could also have been introduced by changing solar geometry 

during data acquisition as time of day and month changed. 
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CHAPTER 5 

CONCLUSION 

 

 In this study, a multi-temporal object-based image analysis assessment of UAS images for 

classification of maize genotypes was introduced. A semi-automated OBIA workflow was 

designed for separate segmentation and labeling of 18 images and 3 multi-temporal image stacks. 

In addition, this study presents methodology for image object variable stacking, a complex 

phenomenon as changing maize canopy produces varying number and located image objects over 

the multi-temporal scenario of a maize growing season. Machine-learning-algorithms random 

forests (RF) and stochastic gradient boosting (SGB) were tested for classification of maize 

genotypes on a dataset of very small sample size, four row-scale image objects per class. Viability 

of methods and algorithms employed by this study were tested on three classification experiments: 

four trials with different number of classes, variable group trials, and 12 genotype classification of 

each individual date, image stack, and variable stack. 

 Results show that classification of maize genotypes on a study size of 12 classes can 

achieve accurate results as high as 81% using SGB; however, an inverse relationship between the 

number of classes and classification accuracy was demonstrated as the number of genotypes 

included in a trial increased. This suggests that object-based multi-temporal classification of RGB 

UAS images can be applied for accurate SGB classification of maize genotypes on studies with 

small number of classes. Results from this study did not achieve high accuracy for classification 

of 46, 125, and 249 genotypes, which better represent a full plant breeding scenario, but high 

accuracy in 12 genotype classification using only RGB-derived data, improved accuracy when 

applying feature selection, and demonstrated benefit in multi-temporal dimensionality suggest 
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analysis performed in this study have potential for future research on a larger number of classes. 

Whereas SGB consistently outperformed RF on trials of 12 genotypes, results indicate RF 

classification performs better than SGB as the number of classes included in a trial increase. SGB 

machine learning performed better than RF in all 12-genotype trials but one for each single date, 

image stack, and variable stack assessments. This study supports the use of SGB over RF for small 

class number classification of maize genotypes. 

Multi-temporal dimensionality of image stack and variable stack classification in this study 

demonstrate multi-temporal analysis improves classification. Results for multi-temporal trials 

demonstrated an average accuracy of 30% greater than single date classification. Accurate single 

date classification was not achieved by this study. The earliest point classification was achieved in 

this study with 40% and greater accuracy was on the date May 12th. Accuracy increased up to 50% 

by the date June 9th. Highest accuracy for both single date and multi-temporal trials was achieved 

using SGB. Classification of image objects produced through image stack segmentation provided 

the highest results at 81.8% followed by all-date variable stack classification. Low accuracy in 

single date classification and significantly higher accuracy in multi-temporal classification 

demonstrates that temporal information can be extracted and is valuable for describing genotypes. 

Results demonstrate classification using a reduced variable list provide superior 

performance over trials conducted with all available variables. This reduces the variable 

dimensionality provided to classification algorithms, and thus greater dependence is place on the 

most valuable variables. In-trial feature selection of ranked variables from an initial classification 

provided a more automated method and equivalent accuracy to variable group feature selection 

tested in this study. Variables were assessed by variable group, relative importance ranking, and 

occurrence within top ten variables of each date and top 50 variables of all-date variable stack. 
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Through variable group classification, spectral and landscape categories closely followed by CHM 

demonstrated the greatest value for classification. Variable ranking and occurrence assessments 

support the use of CHM for assessing maize genotypes as CHM was consistently ranked high 

across single date and multi-temporal variable rankings and was the most frequently occurring 

variable across top 10 ranked variables in the timeseries. The vegetation index mean-ExG and 

landscape variable Cohesion also demonstrated value for classification and should be further 

assessed for benefit in genotype discrimination and high-throughput phenotyping. All variable 

types demonstrated value for discriminating between genotypes. Both wavelet and Yellow Index 

variables, newly tested variables, showed promise for classification. Future classification should 

seek to better identify appropriate wavelet scale/s to reduce correlation between wavelet variables. 

Texture and landscape variables also demonstrated value for classification in this study but should 

be further refined to maximize variable type contribution. 

Future work should most importantly validate these variables on other datasets, such as 

different genotypes and environments to determine they are robust. If validated, further exploration 

as to what theses variable do or mean biologically should be undertaken with other tools. Future 

work should assess automated ways to detect and correct for image blur in UAS images. Potential 

use of target detection, Hough Transform as conducted in Perez-Ortiz et al. (2016), or other 

methods for defining a row centroid could provide a more robust alternative to Anderson’s plot 

boundary delineation tool which provided row boundaries in this study (Anderson et al. 2019). 

Development of such tools could provide broader application for methods derived in this study 

beyond the setting of plant breeding where row width, length, and orientation are fixed. Future 

research should apply remote-sensing classification of maize on a more refined variable list. In 

this study, algorithms were trained on a feature space of 72-127 variables for single date 
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classification and as many as 2081 variables for the multi-temporal trial all-date variable stack. 

Better selection of variables prior to feature selection could improve results by reducing the 

number of correlated variables and feature space size. Classification should also be tested in future 

studies on a larger sample size and dataset. This could help prevent errors caused overfitting and 

testing on training dataset. In addition, conducting SGB classification on a dataset with larger 

sample size would allow inputs of subsample fraction and model randomization to be applied, 

components beneficial to random forests. The limited sample size of data used in this study 

prevented the use of these but inclusion of such parameters in future research could potentially 

lead to increased SGB performance. 
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APPENDIX A 

 

Class Number Pedigree      # of Rows Mask Rank 

2 2396/LH123HT 60 928 

14 B73/PHZ51 8 114 

45 DKB 64-69 6 92 

81 LH195/PHZ51 8 126 

238 PHW52/PHN82 8 120 

 

Genotypes with more than 4 rows (2 plots) in field condition G2FE. 

 

 

Date Mask Image Blur Geoshift 

March 21   
April 07 x x 

April 20 x  
May 2 x  
May 5 x x 

May 9 x  
May 12  x 

May 15 x x 

May 24 x x 

May 30 x x 

June 02  x 

June 06 x x 

June 09 x x 

June 12 x  
June 16 x x 

June 23   
June 29 x x 

July 13 x  
 

Image dates and corrections applied. 
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APPENDIX B 

 

 

RGB mosaic for date 03/21 after quality corrections were applied. 
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RGB mosaic for date 04/07 after quality corrections were applied. 
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RGB mosaic for date 04/20 after quality corrections were applied. 
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RGB mosaic for date 05/02 after quality corrections were applied. 

 



 

112 

 

 

 

RGB mosaic for date 05/05 after quality corrections were applied. 
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RGB mosaic for date 05/09 after quality corrections were applied. 
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RGB mosaic for date 05/12 after quality corrections were applied. 
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RGB mosaic for date 05/15 after quality corrections were applied. 
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RGB mosaic for date 05/24 after quality corrections were applied. 
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RGB mosaic for date 05/30 after quality corrections were applied. 
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RGB mosaic for date 06/02 after quality corrections were applied. 

 



 

119 

 

 

 

RGB mosaic for date 06/06 after quality corrections were applied. 
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RGB mosaic for date 06/09 after quality corrections were applied. 
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RGB mosaic for date 06/12 after quality corrections were applied. 
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RGB mosaic for date 06/16 after quality corrections were applied. 
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RGB mosaic for date 06/23 after quality corrections were applied. 
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RGB mosaic for date 06/29 after quality corrections were applied. 
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RGB mosaic for date 07/13 after quality corrections were applied. 
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APPENDIX C 

 

Mask Ranking based on the number of rows available for each genotype after image blur 

masking. 

Genotyp

e Class 

03/

21 

04/

07 

04/

20 

05/

02 

05/

05 

05/

09 

05/

12 

05/

15 

05/

24 

05/

30 

06/

02 

06/

06 

06/

09 

06/

12 

06/

16 

06/

23 

06/

29 

07/

13 

All 

Date 

Sum 

2 60 60 46 56 48 56 60 48 56 58 60 50 52 53 48 60 21 36 928 

81 8 6 6 8 6 8 8 8 4 6 8 8 6 6 8 8 6 8 126 

238 8 4 8 8 8 6 8 8 4 8 8 8 8 4 8 8 2 4 120 

14 8 6 6 8 8 6 8 8 2 4 8 8 4 6 8 8 4 4 114 

45 6 6 4 6 4 6 6 6 6 6 6 6 6 6 4 6  2 92 

89 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 70 

90 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 70 

149 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 70 

91 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 2 68 

96 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 2 68 

97 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 2 68 

100 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 2 68 

148 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 2 4 68 

151 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 4 68 

152 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 4 68 

159 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 4 68 

99 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 2 3 67 

64 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

65 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

69 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

75 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

77 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

92 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 2 2 66 

94 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 2 2 66 

98 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 2 2 66 

135 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 2 2 66 

153 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 2 66 

158 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 2 66 

180 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

182 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

185 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

201 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

216 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

225 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 
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Genotyp

e Class 

03/

21 

04/

07 

04/

20 

05/

02 

05/

05 

05/

09 

05/

12 

05/

15 

05/

24 

05/

30 

06/

02 

06/

06 

06/

09 

06/

12 

06/

16 

06/

23 

06/

29 

07/

13 

All 

Date 

Sum 

234 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

236 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

243 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 66 

101 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 1 3 66 

104 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4  4 66 

105 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4  4 66 

107 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4  4 66 

108 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4  4 66 

110 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4  4 66 

111 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4  4 66 

172 4 4 4 4 4 4 4 4 4 4 4 3 4 2 4 4 4  65 

156 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 1 65 

50 4 4 4 4 4 2 4 4 3 4 4 4 4 2 4 4 4 2 65 

124 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 1 2 65 

109 3 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4  4 65 

154 4 4 4 3 4 4 4 4 4 4 4 2 2 2 4 4 4 4 65 

179 4 4 4 4 4 4 4 4 3 4 4 4 4 2 4 4  4 65 

1 4 4 4 4 4 4 4 4 4 4 4 2 4 2 4 4 4  64 

51 4 4 4 4 4 4 4 4 4 4 4 2 4 2 4 4 4  64 

95 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 2  64 

106 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 2  64 

157 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4  64 

174 4 4 4 4 4 4 4 4 4 4 4 2 4 2 4 4 4  64 

40 4 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 2 2 64 

66 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

68 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

70 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

103 4 4 4 4 4 4 4 2 4 4 4 2 4 4 4 4 2 2 64 

165 4 4 3 4 4 4 4 4 4 4 4 4 2 4 4 4 1 2 64 

191 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

203 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

214 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

223 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

232 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

233 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

242 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 64 

268 4 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 2 2 64 

102 4 4 4 4 4 4 4 2 4 4 4 4 4 4 2 4  4 64 

150 4 4 4 2 4 4 4 4 4 4 4 4 2 2 4 4 2 4 64 
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Genotyp

e Class 

03/

21 

04/

07 

04/

20 

05/

02 

05/

05 

05/

09 

05/

12 

05/

15 

05/

24 

05/

30 

06/

02 

06/

06 

06/

09 

06/

12 

06/

16 

06/

23 

06/

29 

07/

13 

All 

Date 

Sum 

187 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4 2 4 64 

189 4 2 4 4 4 2 4 4 2 4 4 4 4 4 4 4 2 4 64 

193 4 2 4 4 4 4 4 4 4 4 4 4 4 2 4 4  4 64 

194 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4 2 4 64 

211 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4 2 4 64 

221 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4 2 4 64 

228 4 2 4 4 4 2 4 4 2 4 4 4 4 4 4 4 2 4 64 

164 4 4 4 4 4 4 4 4 4 4 4 4 2 3 4 4 2  63 

169 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 2 1 63 

168 4 4 2 4 3 4 4 4 4 4 4 4 4 4 4 4  2 63 

237 4 3 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 63 

269 4 4 4 3 4 4 4 4 4 4 4 4 2 2 4 4 2 2 63 

155 4 4 4 2 4 4 4 4 4 4 4 2 2 2 4 4 4 3 63 

230 4 2 4 4 4 4 4 4 4 4 4 4 4 2 4 4  3 63 

39 4 4 2 4 3 4 4 4 2 2 4 4 4 4 4 4 2 4 63 

197 4 2 4 4 4 2 4 4 2 2 4 4 4 4 4 4 3 4 63 

206 3 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4 2 4 63 

208 4 2 4 4 4 4 4 4 2 4 4 4 4 3 4 4  4 63 

226 4 2 4 4 4 4 4 4 2 4 4 4 4 3 4 4  4 63 

52 4 4 4 4 4 4 4 4 4 2 4 2 4 2 4 4 4  62 

162 4 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 2  62 

163 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 2  62 

171 4 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 2  62 

204 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4   62 

3 4 4 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2 2 62 

33 4 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4  2 62 

130 4 4 4 4 4 2 4 4 4 4 4 4 2 4 4 4  2 62 

133 4 4 4 4 4 2 4 4 4 4 4 4 2 4 4 4  2 62 

167 4 4 4 2 4 4 4 4 4 4 4 4 2 2 4 4 2 2 62 

227 4 2 4 4 4 4 4 4 4 4 4 4 4 2 4 4  2 62 

245 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4 2 2 62 

260 4 4 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2 2 62 

264 4 4 4 4 4 4 4 4 2 2 4 4 2 4 4 4 2 2 62 

4 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 4 62 

15 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 4 62 

16 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 4 62 

62 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 4 62 

74 4 2 4 4 4 4 4 4 2 4 4 4 2 2 4 4 2 4 62 

76 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  4 62 
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Genotyp

e Class 

03/

21 

04/

07 

04/

20 

05/

02 

05/

05 

05/

09 

05/

12 

05/

15 

05/

24 

05/

30 

06/

02 

06/

06 

06/

09 

06/

12 

06/

16 

06/

23 

06/

29 

07/

13 

All 

Date 

Sum 

78 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  4 62 

192 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  4 62 

205 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  4 62 

218 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  4 62 

241 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  4 62 

252 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 4 62 

255 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 4 62 

256 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 4 62 

47 4 4 2 4 4 4 4 4 2 2 4 4 2 4 4 4 3 2 61 

71 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4 1 2 61 

160 4 4 2 4 4 4 4 4 4 4 4 2 3 4 4 4  2 61 

166 4 4 4 2 4 4 4 4 4 4 4 4 2 2 3 4 2 2 61 

267 4 4 2 4 4 4 4 4 2 2 4 4 3 4 4 4 2 2 61 

257 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 3 61 

265 4 4 2 4 2 4 4 4 2 2 4 4 4 4 4 4 2 3 61 

57 4 4 2 4 4 4 4 4 1 2 4 4 2 4 4 4 2 4 61 

82 3 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2 4 61 

85 4 3 2 4 4 2 4 4 2 2 4 4 4 4 4 4 2 4 61 

67 4 4 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2  60 

72 4 4 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2  60 

73 4 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4   60 

112 4 4 4 4 4 4 4 2 2 4 4 2 4 4 4 4 2  60 

176 4 4 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2  60 

195 4 4 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2  60 

196 4 4 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2  60 

235 4 4 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2  60 

277 4 4 4 4 4 4 4 4 4 2 4 4 2 2 4 4 2  60 

161 4 4 4 3 4 4 4 4 4 4 4 2 2 2 4 4 2 1 60 

7 4 4 2 4 4 4 4 4 2 2 4 2 2 4 4 4 4 2 60 

8 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2 2 60 

9 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2 2 60 

12 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2 2 60 

13 4 2 4 4 4 2 4 4 2 2 4 4 4 4 4 4 2 2 60 

17 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 2 60 

34 4 2 4 4 4 4 4 4 2 4 4 4 2 2 4 4 2 2 60 

61 4 2 4 4 4 4 4 4 2 4 4 4 2 2 4 4 2 2 60 

63 4 4 2 4 4 4 4 4 2 2 4 2 2 4 4 4 4 2 60 

79 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  2 60 

84 4 4 2 4 4 4 4 4 2 2 4 2 2 4 4 4 4 2 60 
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113 4 4 2 4 2 4 4 4 4 4 4 4 4 4 2 4  2 60 

117 4 4 2 4 2 4 4 4 4 4 4 4 4 4 2 4  2 60 

121 4 4 2 4 2 4 4 4 4 4 4 4 4 4 2 4  2 60 

123 4 4 2 4 2 4 4 4 4 4 4 4 4 4 2 4  2 60 

136 4 4 4 4 4 4 4 2 2 4 4 4 4 4 2 4  2 60 

137 4 4 4 4 4 4 4 2 2 4 4 4 4 4 2 4  2 60 

138 4 4 4 4 4 4 4 2 2 4 4 4 4 4 2 4  2 60 

144 4 4 4 4 4 4 4 2 2 4 4 4 4 4 2 4  2 60 

170 4 4 2 4 2 4 4 4 4 4 4 2 4 4 4 4  2 60 

173 4 4 4 4 4 2 4 4 2 2 4 4 4 2 4 4 2 2 60 

183 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  2 60 

188 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  2 60 

198 4 4 2 4 4 4 4 4 2 2 4 2 2 4 4 4 4 2 60 

219 4 2 4 4 4 4 4 4 2 4 4 4 4 2 4 4  2 60 

248 4 4 2 4 4 4 4 4 2 2 4 2 2 4 4 4 4 2 60 

249 4 4 2 4 2 4 4 4 2 2 4 4 2 4 4 4 4 2 60 

251 4 4 2 4 4 4 4 4 4 2 4 2 2 2 4 4 4 2 60 

261 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2 2 60 

270 4 2 4 4 4 4 4 4 2 4 4 4 2 2 4 4 2 2 60 

5 4 4 2 4 4 4 4 4 2 2 4 4 2 2 4 4 2 4 60 

10 4 4 2 4 4 4 4 4  2 4 4 2 4 4 4 2 4 60 

19 4 4 2 4 4 4 4 4  2 4 4 2 4 4 4 2 4 60 

186 4 4 2 4 4 4 4 4 2 2 4 4 2 4 4 4  4 60 

202 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4  4 60 

215 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4  4 60 

240 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4  4 60 

244 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4  4 60 

246 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4  4 60 

247 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4  4 60 

253 3 4 2 4 2 4 4 4 2 2 4 4 2 3 4 4 4 4 60 

11 4 4 4 4 4 2 4 4 2 2 4 4 4 3 4 4 2  59 

217 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4 1 2 59 

28 4 4 4 4 4 4 4 4 2 2 4 4 2 2 4 4 2  58 

30 4 2 4 4 4 4 4 4 2 4 4 4 2 2 4 4 2  58 

38 4 2 4 4 4 4 4 4 2 4 4 4 2 2 4 4 2  58 

56 4 2 4 4 4 4 4 4 2 4 4 4 2 2 4 4 2  58 

114 4 4 2 4 2 4 4 4 4 4 4 4 4 4 2 4   58 

116 4 4 2 4 2 4 4 4 4 4 4 4 4 4 2 4   58 

279 4 4 4 4 4 4 4 2 2 4 4 4 2 2 4 4 2  58 
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281 4 2 4 3 4 4 4 4 2 4 4 4 2 2 4 4 2 1 58 

18 4 4 2 4 2 4 4 4 2 2 4 4 2 2 4 4 4 2 58 

120 4 4 2 4 2 4 4 4 4 4 4 4 4 2 2 4  2 58 

122 4 4 2 4 2 4 4 4 4 4 4 4 4 2 2 4  2 58 

125 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4  2 58 

127 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4  2 58 

128 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4  2 58 

129 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4  2 58 

131 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4  2 58 

132 3 4 2 4 3 2 4 2 4 4 4 4 4 4 4 4  2 58 

134 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4  2 58 

139 4 4 2 4 2 4 4 2 4 4 4 4 4 4 2 4  2 58 

147 4 4 2 4 2 4 4 2 4 4 4 4 4 4 2 4  2 58 

177 4 4 2 4 4 4 4 4 2 2 4 2 2 2 4 4 4 2 58 

178 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 4  2 58 

184 4 4 2 4 4 4 4 4 2 2 4 4 2 4 4 4  2 58 

207 4 4 2 4 4 4 4 4 2 2 4 4 2 4 4 4  2 58 

220 4 4 2 4 4 4 4 4 2 2 4 4 2 4 4 4  2 58 

231 4 4 2 4 4 4 4 4 2 2 4 4 2 4 4 4  2 58 

250 4 4 2 4 2 4 4 4  2 4 4 2 4 4 4 4 2 58 

258 4 2 4 4 4 2 4 4 2 2 4 4 4 2 4 4 2 2 58 

263 4 2 4 4 4 2 4 4  2 4 4 4 4 4 4 2 2 58 

22 4 2 2 4 2 4 4 4  2 4 4 4 4 4 4 2 4 58 

32 4 4 2 4 2 4 4 2  2 4 4 4 4 4 4 2 4 58 

37 4 2 2 4 4 4 4 4  2 4 4 2 4 4 4 2 4 58 

42 4 2 2 4 4 2 4 4  2 4 4 2 4 4 4 4 4 58 

49 4 4 2 4 4 2 4 4  2 4 4 2 4 4 4 2 4 58 

199 4 2 2 4 4 2 4 4  2 4 4 2 4 4 4 4 4 58 

262 4 2 2 4 4 2 4 4  2 4 4 2 4 4 4 4 4 58 

271 4 2 2 4 4 4 4 4  2 4 4 2 4 4 4 2 4 58 

119 4 4 2 4 2 4 4 4 4 4 4 4 4 3 2 4   57 

41 4 2 4 4 4 4 4 2 2 4 4 4 2 2 4 4 2 1 57 

145 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4  1 57 

273 4 2 4 2 4 4 4 4 2 4 4 4 2 2 4 4 2 1 57 

115 3 4 2 4 2 4 4 4 4 4 4 4 4 2 2 4  2 57 

259 4 4 2 4 4 2 4 4  2 4 4 3 4 4 4 2 2 57 

266 4 2 4 2 4 4 4 2 3 4 4 4 2 2 4 4 2 2 57 

6 4 4 2 4 4 3 4 4  2 4 4 2 4 4 4  4 57 

26 3 4 2 4 2 4 4 2  2 4 4 4 4 4 4 2 4 57 
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54 4 3 2 4 2 4 4 2  2 4 4 4 4 4 4 2 4 57 

222 4 2 2 4 4 4 4 4 1 2 4 4 2 4 4 4  4 57 

278 4 2 2 4 3 4 4 4  2 4 4 2 4 4 4 2 4 57 

29 4 4 4 2 4 4 4 2 2 4 4 4 2 2 4 4 2  56 

31 4 4 4 2 4 4 4 2 2 4 4 4 2 2 4 4 2  56 

53 4 2 4 2 4 4 4 4 2 4 4 4 2 2 4 4 2  56 

118 4 4 2 4 2 4 4 4 4 4 4 4 4 2 2 4   56 

140 4 4 2 4 2 4 4 2 4 4 4 4 4 4 2 4   56 

141 4 4 2 4 2 4 4 2 4 4 4 4 4 4 2 4   56 

142 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4   56 

143 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4   56 

146 4 4 2 4 2 2 4 2 4 4 4 4 4 4 4 4   56 

209 4 4 2 4 4 4 4 4 4 2 4 4 2 2 4 4   56 

213 4 4 2 4 4 4 4 4 4 2 4 4 2 2 4 4   56 

25 4 2 4 4 4 4 4 2 2 2 4 4 2 2 4 4 2 2 56 

60 4 2 2 4 2 4 4 4  2 4 4 4 4 4 4 2 2 56 

88 4 4 2 4 2 4 4 2 2 2 4 4 4 4 4 4  2 56 

175 4 4 2 4 4 2 4 4  2 4 4 2 4 4 4 2 2 56 

254 4 4 2 4 2 4 4 4  2 4 4 2 4 4 4 2 2 56 

272 4 2 2 4 2 4 4 4  2 4 4 4 4 4 4 2 2 56 

274 4 2 2 4 4 4 4 4  2 4 4 2 4 4 4 2 2 56 

276 4 2 2 4 4 4 4 4  2 4 4 2 4 4 4 2 2 56 

280 4 2 2 4 2 4 4 4  2 4 4 4 4 4 4 2 2 56 

58 4 2 2 4 2 4 4 2  2 4 4 4 4 4 4 2 4 56 

83 4 2 2 4 4 2 4 4  2 4 4 2 4 4 4 2 4 56 

210 4 2 2 4 4 4 4 4  2 4 4 2 4 4 4  4 56 

229 4 2 2 4 4 4 4 4  2 4 4 2 4 4 4  4 56 

212 4 4 2 4 4 4 4 4 3 2 4 4 2 2 4 4   55 

23 4 3 2 4 2 4 4 2  2 4 4 4 4 4 4 2 2 55 

24 3 2 2 4 2 4 4 4  2 4 4 4 4 4 4 2 2 55 

35 3 2 4 2 4 4 4 2 2 4 4 4 2 2 4 4 2 2 55 

36 4 2 2 4 2 4 4 2 1 2 4 4 4 4 4 4 2 2 55 

55 3 2 2 4 2 4 4 4  2 4 4 4 4 4 4 2 2 55 

46 3 2 2 4 4 2 4 4  2 4 4 2 4 4 4 2 4 55 

86 4 2 2 4 2 2 4 4 1 2 4 4 4 2 4 4 2 4 55 

224 4 2 4 4 4 2 4 4 2 4 4 4 2 2 4 4   54 

20 4 2 2 4 2 4 4 2  2 4 4 4 4 4 4 2 2 54 

21 4 2 2 4 2 4 4 2 2 2 4 4 4 4 4 4  2 54 

48 4 4 2 4 4 2 4 4  2 4 4 2 4 4 4  2 54 



 

133 

 

 

Genotyp

e Class 

03/

21 

04/

07 

04/

20 

05/

02 

05/

05 

05/

09 

05/

12 

05/

15 

05/

24 

05/

30 

06/

02 

06/

06 

06/

09 

06/

12 

06/

16 

06/

23 

06/

29 

07/

13 

All 

Date 

Sum 

87 4 4 2 4 4 2 4 4  2 4 4 2 2 4 4 2 2 54 

275 4 2 2 4 2 4 4 2  2 4 4 4 4 4 4 2 2 54 

43 4 2 2 4 2 2 4 4  2 4 4 4 2 4 4 2 4 54 

44 4 2 2 4 4 2 4 4  2 4 4 2 4 4 4  4 54 

27 2 4 3 4 4 4 4 2  2 4 4 2 3 4 4 2 1 53 

181 4 2 2 4 4 2 4 4 2 2 4 4 2 2 4 4 1 2 53 

200 4 2 2 4 4 2 4 4  2 4 4 2 4 4 4  2 52 

80 4 2 2 4 4 2 4 4  2 4 4 2 2 4 4  2 50 

93 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2  49 

190 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3  1 48 

126 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3  2 48 

59 2 2 2 2 2 2 2 2   2 2   2 2 2  26 
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APPENDIX D 

 

Variable Abbreviation Definition 

Image Layer Summary Statistics   

Mean-Blue MEAN_BLUE Combined mean of the blue image layer for all image objects over a row 

Mean-CHM MEAN_CHM Combined mean of the CHM image layer for all image objects over a row 

Mean-Green MEAN_GREEN Combined mean of the green image layer for all image objects over a row 

Mean-ExG MEAN_EXG Combined mean of the ExG image layer for all image objects over a row 

Mean-ExR MEAN_EXR Combined mean of the ExR image layer for all image objects over a row 

Mean-Red MEAN_RED Combined mean of the RED image layer for all image objects over a row 

Mean-VEG MEAN_VEG Combined mean of the VEG image layer for all image objects over a row 

Mean-YI MEAN_YI Combined mean of the YI image layer for all image objects over a row 

Mean-Wavelet Scale 0.2 WV_SCALE_0_2MEAN 
Combined mean of the wavelet image layer at a scale of 0.2 for all image 

objects over a row 

Mean-Wavelet Scale 0.4 WV_SCALE_0_4MEAN 
Combined mean of the wavelet image layer at a scale of 0.4 for all image 

objects over a row 

Mean-Wavelet Scale 0.6 WV_SCALE_0_6MEAN 
Combined mean of the wavelet image layer at a scale of 0.6 for all image 

objects over a row 

Mean-Wavelet Scale 0.8 WV_SCALE_0_8MEAN 
Combined mean of the wavelet image layer at a scale of 0.8 for all image 

objects over a row 
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Mean-Wavelet Scale 1 WV_SCALE_1MEAN 
Combined mean of the wavelet image layer at a scale of 1 for all image 

objects over a row 

Mean-Wavelet Scale 1.2 WV_SCALE_1_2MEAN 
Combined mean of the wavelet image layer at a scale of 1.2 for all image 

objects over a row 

Mean-Wavelet Scale 1.4 WV_SCALE_1_4MEAN 
Combined mean of the wavelet image layer at a scale of 1.4 for all image 

objects over a row 

Mean-Wavelet Scale 1.6 WV_SCALE_1_6MEAN 
Combined mean of the wavelet image layer at a scale of 1.6 for all image 

objects over a row 

Mean-Wavelet Scale 1.8 WV_SCALE_1_8MEAN 
Combined mean of the wavelet image layer at a scale of 1.8 for all image 

objects over a row 

Mean-Wavelet Scale 2 WV_SCALE_2MEAN 
Combined mean of the wavelet image layer at a scale of 2 for all image 

objects over a row 

Mean-Wavelet Scale 2.2 WV_SCALE_2_2MEAN 
Combined mean of the wavelet image layer at a scale of 2.2 for all image 

objects over a row 

Mean-Wavelet Scale 2.4 WV_SCALE_2_4MEAN 
Combined mean of the wavelet image layer at a scale of 2.4 for all image 

objects over a row 

Mean-Wavelet Scale 2.6 WV_SCALE_2_6MEAN 
Combined mean of the wavelet image layer at a scale of 2.6 for all image 

objects over a row 

Mean-Wavelet Scale 2.8 WV_SCALE_2_8MEAN 
Combined mean of the wavelet image layer at a scale of 2.8 for all image 

objects over a row 

Mean-Wavelet Scale 3 WV_SCALE_3MEAN 
Combined mean of the wavelet image layer at a scale of 3 for all image 

objects over a row 

Mean-Wavelet Scale 3.2 WV_SCALE_3_2MEAN 
Combined mean of the wavelet image layer at a scale of 3.2 for all image 

objects over a row 
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Mean-Wavelet Scale 3.4 WV_SCALE_3_4MEAN 
Combined mean of the wavelet image layer at a scale of 3.4 for all image 

objects over a row 

Mean-Wavelet Scale 3.6 WV_SCALE_3_6MEAN 
Combined mean of the wavelet image layer at a scale of 3.6 for all image 

objects over a row 

Mean-Wavelet Scale 3.8 WV_SCALE_3_8MEAN 
Combined mean of the wavelet image layer at a scale of 3.8 for all image 

objects over a row 

Mean-Wavelet Scale 4 WV_SCALE_4MEAN 
Combined mean of the wavelet image layer at a scale of 4 for all image 

objects over a row 

Mean-Wavelet Scale 4.2 WV_SCALE_4_2MEAN 
Combined mean of the wavelet image layer at a scale of 4.2 for all image 

objects over a row 

Mean-Wavelet Scale 4.4 WV_SCALE_4_4MEAN 
Combined mean of the wavelet image layer at a scale of 4.4 for all image 

objects over a row 

Mean-Wavelet Scale 4.6 WV_SCALE_4_6MEAN 
Combined mean of the wavelet image layer at a scale of 4.6 for all image 

objects over a row 

Mean-Wavelet Scale 4.8 WV_SCALE_4_8MEAN 
Combined mean of the wavelet image layer at a scale of 4.8 for all image 

objects over a row 

Mean-Wavelet Scale 5 WV_SCALE_5MEAN 
Combined mean of the wavelet image layer at a scale of 5 for all image 

objects over a row 
   

Standard Deviation-

Blue 
STD_BLUE 

Combined standard deviation of the blue image layer for all image objects 

over a row 

Standard Deviation-

CHM 
STD_CHM 

Combined standard deviation of the CHM image layer for all image 

objects over a row 

Standard Deviation-

Green 
STD_GREEN 

Combined standard deviation of the green image layer for all image 

objects over a row 
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Standard Deviation-ExG STD_ExG 
Combined standard deviation of the ExG image layer for all image objects 

over a row 

Standard Deviation-ExR STD_ExR 
Combined standard deviation of the ExR image layer for all image objects 

over a row 

Standard Deviation-Red STD_Red 
Combined standard deviation of the RED image layer for all image 

objects over a row 

Standard Deviation-

VEG 
STD_VEG 

Combined standard deviation of the VEG image layer for all image 

objects over a row 

Standard Deviation-YI STD_YI 
Combined standard deviation of the YI image layer for all image objects 

over a row 

Standard Deviation-

Wavelet Scale 0.2 
WV_SCALE_0_2STD 

Combined standard deviation of the wavelet image layer at a scale of 0.2 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 0.4 
WV_SCALE_0_4STD 

Combined standard deviation of the wavelet image layer at a scale of 0.4 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 0.6 
WV_SCALE_0_6STD 

Combined standard deviation of the wavelet image layer at a scale of 0.6 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 0.8 
WV_SCALE_0_8STD 

Combined standard deviation of the wavelet image layer at a scale of 0.8 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 1 
WV_SCALE_1STD 

Combined standard deviation of the wavelet image layer at a scale of 1 for 

all image objects over a row 

Standard Deviation-

Wavelet Scale 1.2 
WV_SCALE_1_2STD 

Combined standard deviation of the wavelet image layer at a scale of 1.2 

for all image objects over a row 
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Standard Deviation-

Wavelet Scale 1.4 
WV_SCALE_1_4STD 

Combined standard deviation of the wavelet image layer at a scale of 1.4 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 1.6 
WV_SCALE_1_6STD 

Combined standard deviation of the wavelet image layer at a scale of 1.6 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 1.8 
WV_SCALE_1_8STD 

Combined standard deviation of the wavelet image layer at a scale of 1.8 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 2 
WV_SCALE_2STD 

Combined standard deviation of the wavelet image layer at a scale of 2 for 

all image objects over a row 

Standard Deviation-

Wavelet Scale 2.2 
WV_SCALE_2_2STD 

Combined standard deviation of the wavelet image layer at a scale of 2.2 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 2.4 
WV_SCALE_2_4STD 

Combined standard deviation of the wavelet image layer at a scale of 2.4 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 2.6 
WV_SCALE_2_6STD 

Combined standard deviation of the wavelet image layer at a scale of 2.6 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 2.8 
WV_SCALE_2_8STD 

Combined standard deviation of the wavelet image layer at a scale of 2.8 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 3 
WV_SCALE_3STD 

Combined standard deviation of the wavelet image layer at a scale of 3 for 

all image objects over a row 

Standard Deviation-

Wavelet Scale 3.2 
WV_SCALE_3_2STD 

Combined standard deviation of the wavelet image layer at a scale of 3.2 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 3.4 
WV_SCALE_3_4STD 

Combined standard deviation of the wavelet image layer at a scale of 3.4 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 3.6 
WV_SCALE_3_6STD 

Combined standard deviation of the wavelet image layer at a scale of 3.6 

for all image objects over a row 
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Standard Deviation-

Wavelet Scale 3.8 
WV_SCALE_3_8STD 

Combined standard deviation of the wavelet image layer at a scale of 3.8 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 4 
WV_SCALE_4STD 

Combined standard deviation of the wavelet image layer at a scale of 4 for 

all image objects over a row 

Standard Deviation-

Wavelet Scale 4.2 
WV_SCALE_4_2STD 

Combined standard deviation of the wavelet image layer at a scale of 4.2 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 4.4 
WV_SCALE_4_4STD 

Combined standard deviation of the wavelet image layer at a scale of 4.4 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 4.6 
WV_SCALE_4_6STD 

Combined standard deviation of the wavelet image layer at a scale of 4.6 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 4.8 
WV_SCALE_4_8STD 

Combined standard deviation of the wavelet image layer at a scale of 4.8 

for all image objects over a row 

Standard Deviation-

Wavelet Scale 5 
WV_SCALE_5STD 

Combined standard deviation of the wavelet image layer at a scale of 5 for 

all image objects over a row 
   

Texture  Gray-level co-occurrence matrices (GLCM) is a tabulation of how often 

different combinations of pixel gray levels occur in a scene. 

GLCM Contrast (45˚) GLCM_CONTRAST_45˚ 
The amount of local variation in gray-level co-occurrence matrices in an 

image for all image layers at a 45˚ direction 

GLCM Contrast (45˚)-

CHM 

GLCM_CONTRAST_CHM

_45˚ 

The amount of local variation in gray-level co-occurrence matrices in an 

image for CHM image layer at a 45˚ direction 

GLCM Contrast (45˚)-

Blue 

GLCM_CONTRAST_BLUE

_45˚ 

The amount of local variation in gray-level co-occurrence matrices in an 

image for blue image layer at a 45˚ direction 

GLCM Contrast (45˚)-

Green 

GLCM_CONTRAST_GREE

N_45˚ 

The amount of local variation in gray-level co-occurrence matrices in an 

image for green image layer at a 45˚ direction 
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GLCM Contrast (45˚)-

Red 

GLCM_CONTRAST_RED_

45˚ 

The amount of local variation in gray-level co-occurrence matrices in an 

image for red image layer at a 45˚ direction 

GLCM Contrast (45˚)-

ExG 

GLCM_CONTRAST_EXG_

45˚ 

The amount of local variation in gray-level co-occurrence matrices in an 

image for ExG image layer at a 45˚ direction 

GLCM Contrast (45˚)-

ExR 

GLCM_CONTRAST_EXR_

45˚ 

The amount of local variation in gray-level co-occurrence matrices in an 

image for ExR image layer at a 45˚ direction 

GLCM Contrast (45˚)-

VEG 

GLCM_CONTRAST_VEG_

45˚ 

The amount of local variation in gray-level co-occurrence matrices in an 

image for VEG image layer at a 45˚ direction 

GLCM Contrast (45˚)-

YI 

GLCM_CONTRAST_YEL_

45˚ 

The amount of local variation in gray-level co-occurrence matrices in an 

image for YI image layer at a 45˚ direction 

GLCM Contrast All 

Directions 

GLCM_CONTRAST_All_D

IR 

The amount of local variation in gray-level co-occurrence matrices of all 

image layers at 45˚, 90˚, 135˚, and 180˚ directions 
   

GLCM Entropy (45˚) GLCM_ENTROPY_45˚ 
A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in an image for all image layers at a 45˚ direction 

GLCM Entropy (45˚)-

CHM 

GLCM_ENTROPY_CHM_4

5˚ 

A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in an image for CHM image layer at a 45˚ 

direction 

GLCM Entropy (45˚)-

Blue 

GLCM_ENTROPY_BLUE_

45˚ 

A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in an image for blue image layer at a 45˚ direction 

GLCM Entropy (45˚)-

Green 

GLCM_ENTROPY_GREEN

_45˚ 

A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in an image for green image layer at a 45˚ 

direction 

GLCM Entropy (45˚)-

Red 

GLCM_ENTROPY_RED_4

5˚ 

A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in an image for red image layer at a 45˚ direction 
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GLCM Entropy (45˚)-

ExG 

GLCM_ENTROPY_EXG_4

5˚ 

A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in an image for ExG image layer at a 45˚ 

direction 

GLCM Entropy (45˚)-

ExR 

GLCM_ENTROPY_EXR_4

5˚ 

A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in an image for ExR image layer at a 45˚ direction 

GLCM Entropy (45˚)-

VEG 

GLCM_ENTROPY_VEG_4

5˚ 

A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in an image for VEG image layer at a 45˚ 

direction 

GLCM Entropy (45˚)-

YI 

GLCM_ENTROPY_YEL_4

5˚ 

A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in an image for YI image layer at a 45˚ direction 

GLCM Entropy All 

Directions 

GLCM_ENTROPY_All_DI

R 

A measurement of how equally distributed elements of the grey-level co-

occurrence matrices are in all image layers at 45˚, 90˚, 135˚, and 180˚ 

directions 
   

GLCM Mean (45˚) GLCM_MEAN_45˚ 
The average of the grey-level co-occurrence matrices in an image for all 

image layers at a 45˚ direction 

GLCM Mean (45˚)-

CHM 
GLCM_MEAN_CHM_45˚ 

The average of the grey-level co-occurrence matrices in an image for 

CHM image layer at a 45˚ direction 

GLCM Mean (45˚)-Blue GLCM_MEAN_BLUE_45˚ 
The average of the grey-level co-occurrence matrices in an image for blue 

image layer at a 45˚ direction 

GLCM Mean (45˚)-

Green 

GLCM_MEAN_GREEN_45

˚ 

The average of the grey-level co-occurrence matrices in an image for 

green image layer at a 45˚ direction 
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GLCM Mean (45˚)-Red GLCM_MEAN_RED_45˚ 
The average of the grey-level co-occurrence matrices in an image for red 

image layer at a 45˚ direction 

GLCM Mean (45˚)-ExG GLCM_MEAN_EXG_45˚ 
The average of the grey-level co-occurrence matrices in an image for ExG 

image layer at a 45˚ direction 

GLCM Mean (45˚)-ExR GLCM_MEAN_EXR_45˚ 
The average of the grey-level co-occurrence matrices in an image for ExR 

image layer at a 45˚ direction 

GLCM Mean (45˚)-

VEG 
GLCM_MEAN_VEG_45˚ 

The average of the grey-level co-occurrence matrices in an image for 

VEG image layer at a 45˚ direction 

GLCM Mean (45˚)-YI GLCM_MEAN_YEL_45˚ 
The average of the grey-level co-occurrence matrices in an image for YI 

image layer at a 45˚ direction 

GLCM Mean  All 

Directions 
GLCM_MEAN_All_DIR 

The average of the grey-level co-occurrence matrices in all image layers 

at 45˚, 90˚, 135˚, and 180˚ directions 
   

Geometric   

Area / Number of 

objects 
AREA_BY#_OBJ 

summed area of all image objects comprising a row multipart polygon 

divided by the number of images 

Asymmetry ASYMMETRY 

compares an image object with an approximated ellipse around the given 

image object. The calculation is based on the variance in x-direction and 

y-direction, which results in a feature value that increases with an 

increasing image object asymmetry 

Border Index BORDER_INDEX 

uses a rectangular approximation to measure how jagged an image object 

is. It is calculated as the ratio between the length and width of the image 

object and the smallest rectangle enclosing rectangle. 

Border Length - Length 

of longest edge 
BL_SUB_LLED sum of all image objects's edges minus the length of the longest edge 



 

143 

 

 

 

Contig Index 

Distribution mean 
CONTIG_MN 

 mean of spatial connectedness, or contiguity, of cells within a grid-cell 

patch to provide an index on patch boundary configuration and thus patch 

shape for all patches of a class.  

Contig Index 

Distribution area 

weighted mean 

CONTIG_AM 

area weighted mean of spatial connectedness, or contiguity, of cells within 

a grid-cell patch to provide an index on patch boundary configuration and 

thus patch shape for all patches of a class.  

Contig Index 

Distribution range 
CONTIG_RA 

range of spatial connectedness, or contiguity, of cells within a grid-cell 

patch to provide an index on patch boundary configuration and thus patch 

shape for all patches of a class.  

Curvature / Length (of 

main) 
CURV_BY_LGT 

length-to-curvature ratio of the main line of an object. The curvature is the 

sum of all changes in direction of the mainline. Changes in direction are 

expressed by the acute angle a in which sections of the mainline, built by 

the connection between the nodes, cross each other 

Degree of skeleton 

branching 
DEG_SKL_BRCH The highest order of branching in an object. 

Edge Density ED 

the sum of the lengths of all edge segments involving the corresponding 

patch type, divided by the total landscape area, multiplied by 2 10,000 (to 

convert to hectares). 

Fractal Dimension Index 

mean 
FRAC_MN 

mean of 2 times the logarithm of patch perimeter divided by the logarithm 

of patch area for all patches of a class; the perimeter is adjusted to correct 

for the raster bias 2 in perimeter.  

Fractal Dimension Index 

area weighted mean 
FRAC_AM 

area weighted mean of 2 times the logarithm of patch perimeter divided 

by the logarithm of patch area for all patches of a class; the perimeter is 

adjusted to correct for the raster bias 2 in perimeter.  
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Fractal Dimension Index 

standard deviation 
FRAC_SD 

standard deviation of 2 times the logarithm of patch perimeter divided by 

the logarithm of patch area for all patches of a class; the perimeter is 

adjusted to correct for the raster bias 2 in perimeter.  

Length LENGTH 
length of the smallest enclosing rectangle able to fit around an image 

object 

Length / Width LG_BY_WD 

length of the smallest enclosing rectangle able to fit around an image 

object divided by the width of the smallest enclosing rectangle able to fit 

around an image object 

Length of longest edge LENGTH-LONG-EDGE length of longest image object edge or border 

Length of main line LGT_MAIN The sum of all distances between the nodes of the main line of an object 

Number of Disjunct 

Core Areas 
NDCA 

The sum of the number of disjunct core areas contained within each patch 

of the corresponding patch type; that is, the number of disjunct core areas 

contained within the landscape 

Number of inner objects #_INNER_OBJS 
The number of inner polygons that are completely surrounded by a 

selected outer polygon. 

Number of objects #_OF_OBJS Number of image objects within the row boundary polygon 

Patch Cohesion Index 

mean 
COHESION_MN 

this value is the mean of all patches of a class and is created as 1 minus 

the sum of patch perimeter (in terms of number of cell surfaces) divided 

by the sum of patch perimeter times the square root of patch area (in terms 

of number of cells) for patches of the corresponding patch type, divided 

by 1 minus 1 over the square root of the total number of cells in the 

landscape, multiplied by 100 to convert to a percentage. 
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Patch Cohesion Index 

area weighted mean 
COHESION_AM 

this value is the area weighted mean of all patches of a class and is created 

as 1 minus the sum of patch perimeter (in terms of number of cell 

surfaces) divided by the sum of patch perimeter times the square root of 

patch area (in terms of number of cells) for patches of the corresponding 

patch type, divided by 1 minus 1 over the square root of the total number 

of cells in the landscape, multiplied by 100 to convert to a percentage. 

Patch Cohesion Index 

standard deviation 
COHESION_SD 

this value is the standard deviation of all patches of a class and is created 

as 1 minus the sum of patch perimeter (in terms of number of cell 

surfaces) divided by the sum of patch perimeter times the square root of 

patch area (in terms of number of cells) for patches of the corresponding 

patch type, divided by 1 minus 1 over the square root of the total number 

of cells in the landscape, multiplied by 100 to convert to a percentage. 

Perimeter-area ratio 

mean 
PARA_MN mean of the ratio of the patch perimeter to area for all patches of a class 

Perimeter-area ratio area 

weighted mean 
PARA_AM 

area weighted mean of the ratio of the patch perimeter to area for all 

patches of a class 

Perimeter-area ratio 

standard deviation 
PARA_SD 

standard deviation of the ratio of the patch perimeter to area for all 

patches of a class 

Percent of Landscape PLAND 

the sum of the areas of all patches of the corresponding 2 patch type, 

divided by total landscape area, multiplied by 100 (to convert to a 2 

percentage); in other words, PLAND equals the percentage the landscape 

comprised of the corresponding patch type. 

Shape Index mean SHAPE_MN 
mean of the patch perimeter divided by the square root of patch area for 

all patches of a designated class, adjusted by a constant to adjust for a 

square standard 
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Shape Index area 

weighted mean 
SHAPE_AM 

area weighted mean of the patch perimeter divided by the square root of 

patch area for all patches of a designated class, adjusted by a constant to 

adjust for a square standard 

Shape Index standard 

deviation 
SHAPE_SD 

the standard deviation patch perimeter divided by the square root of patch 

area for all patches of a designated class, adjusted by a constant to adjust 

for a square standard 

Total Class Area CA 
equals the sum of the areas of all patches of the corresponding patch 2 

type, divided by 10,000 (to convert to hectares) 

Total Edge TE 
the sum of the lengths of all edge segments involving the corresponding 

patch type 

Width WIDTH 
width of the smallest enclosing rectangle able to fit around an image 

object 

  
(McGarigal 2015) (Trimble 2019) 

 

 

 

 


