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ABSTRACT

Intensifying public concern about climate change risks has accelerated the push for more tan-

gible action in the transition toward low-carbon or carbon-neutral energy. Concurrently, the energy

industry is also undergoing a digital transformation with the explosion in available data and compu-

tational power. To address these challenges, systematic decision-making strategies are necessary to

analyze the vast array of technology options and information sources while navigating this energy

transition. In this work, mathematical optimization is utilized to answer some of the outstand-

ing issues around designing cleaner processes from resources such as natural gas and renewables,

operating the logistics of these energy systems, and statistical modeling from data.

First, exploiting natural gas to produce lower emission liquid transportation fuels is investigated

through an optimization-based process synthesis. This extends previous studies by incorporating

chemical looping as an alternative syngas production method for the first time. Second, a similar

process synthesis approach is implemented for the optimal design of a novel biomass-based process

that coproduces ammonia and methanol, improving their production flexibility and profit margins.

Next, operational difficulties with solar and wind energies due to their temporal intermittency

and uneven geographical distribution are tackled with a supply chain optimization model and a

clustering decomposition algorithm. The former describes power generation through energy car-

riers (hydrogen-rich chemicals) connecting resource-dense rural areas to resource-deficient urban

centers. Results show the potential of energy carriers for long-term storage. The latter is developed

to identify the appropriate number of representative time periods for approximating an optimiza-

tion problem with time series data, instead of using a full time horizon. This algorithm is applied

to the simultaneous design and scheduling of a renewable power system with battery storage.

Finally, building machine learning models from data is commonly performed through k-fold

cross-validation. From recasting this as a bilevel optimization, the exact solution to hyperparameter

optimization is obtainable through parametric programming for machine learning models that are

LP/QP. This extends previous results in statistics to a broader class of machine learning models.
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NOMENCLATURE

A Ammonia

AHC Agglomerative hierarchical clustering

AR Air reactor

ASU Air separation unit

ATR Autothermal reforming

BAM Biomass-based ammonia and methanol coproduction

BEOP Break-even oil price

BEP Break-even price

CAES Compressed air energy storage

CAPEX Capital expense

CART Classification and regression trees

CLC Chemical looping combustion

CLR Chemical looping reforming

DNI Direct normal solar irradiance

ECN Energy carrier network

FBBT Feasibility-based bounds tightening

FR Fuel reactor

GHG Greenhouse gas

GHGAE Greenhouse gas avoided from electricity

GHGAM Greenhouse gas avoided from methanol

GHGAN Greenhouse gas avoided from ammonia

GHGI Greenhouse gas emissions index
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GHI Global horizontal solar irradiance

GTL Natural gas to liquid transportation fuels

H Hydrogen

H2 eq. Hydrogen equivalent

HY-POP Hyperparameter optimization through parametric
programming

I Integrated

IoT Internet of Things

LASSO Least absolute shrinkage and selection operator

LAR Least angle regression

LB Lower bound

LCOE Levelized cost of electricity

LHV Lower heating value

LGHG Lifecycle greenhouse gas emissions

LP Linear programming

LPG Liquefied petroleum gas

kBPD Thousand barrels per day

M Methanol

MILP Mixed-integer linear programming

MINLP Mixed-integer nonlinear programming

MIQP Mixed-integer quadratic programming

MM Million

MPC Model predictive control

mp Multi-parametric

MSE Mean squared error

MSW Municipal solid waste
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NLP Nonlinear programming

NYC New York City

O&M Operation and maintenance

OBBT Optimality-based bounds tightening

OLS Ordinary lease squares regression

OPEX Operating expense

p Parametric

POP Parametric optimization

PSE Process systems engineering

PSH Pumped-storage hydroelectricity

PV Solar photovoltaic

QP Quadratic programming

RMSE Root mean squared error

RTN Resource task network

SMR Steam methane reforming

STS Shale gas-to-syngas

SVM Support vector machine

UB Upper bound

WCSS Within cluster sum of squares

WD Ward’s distance
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1. INTRODUCTION

1.1 The Energy Future: Business as Usual?

The world population is projected to surpass 10 billion people by 2055, approximately 30%

greater than that in 2017 [1]. At the same time, the global middle class will undergo an unprece-

dented expansion [2], increasing from around 3 billion in 2015 to about 5.4 billion by 2030, driven

largely by burgeoning economies in Asia. With more people, especially those who will adopt

a higher standard of living, global energy consumption is expected to greatly appreciate in the

coming decades, even when accounting for efficiency gains to offset the population and prosper-

ity increases. Major energy producers like ExxonMobil and Royal Dutch Shell expect the annual

global energy demand to reach around 700-800 exajoules by 2040 and 2050, respectively [3, 4].

This is roughly a 25% increase from the energy consumption amount in 2018 [5].

Moreover, the types of energy consumed will also change. Energy growth will not be uni-

formly experienced throughout all areas. Oil demand is expected to marginally grow (15% in-

crease through 2040) [6] to support rising transportation volume from commerce and leisure, but

this is significantly counteracted by vehicles with much greater fuel economy. On the other hand,

electricity is projected to increase its share of the total energy consumption from 19% to a quarter

or more by 2040, reflecting an absolute growth of approximately 60% from its current output [5].

This is due to the push toward electrification in vehicle transportation and new residential demand

as nearly 1 billion people gain access to electricity. Commodity chemicals is another fast growing

sector with an expected increase of about 40% from 2016 to 2040 [3] as individuals with rising

living standards, especially those in China and India, utilize more petrochemical products such as

plastics and consumer goods in their daily lives.

To supply this energy, today’s production systems are primarily driven by fossil fuels such as

oil, coal, and natural gas, comprising about 85% of the world’s energy consumption [7]. Depen-

dence on fossil fuels for affordable and reliable energy has powered the astronomical ascension

1



of developed countries like the United States through several industrial revolutions and created

enormous capital wealth. However, this remarkable progress over the last few hundred years and

improvement in the quality of human life have come at a dire environmental cost. In 2018, CO2

emissions reached a record 37.1 billion tons [8], which is unfortunately not surprising since emis-

sion levels have been increasing almost every year since the end of World War II [9]. In the coming

years, as emerging markets like China and India gear up to develop into advanced economies and

demand a greater energy share, continuing business as usual will almost certainly exacerbate envi-

ronmental damage and accelerate the risks of irreversible climate change.

Therefore, adjustments to current energy production systems are needed to adapt to the new

approaching energy landscape. Continuing to utilize fossil fuels at the same rate moving forward

would be an obsolete choice in terms of meeting increasingly diverse energy requirements in a

more eco-friendly and sustainable manner.

One option is to update and retrofit existing fossil fuel technologies to be more efficient and

cleaner. Carbon capture and process control automation are such examples. Because the capi-

tal cost of constructing new production systems are often very expensive and risky, this is a safe

option, but also a low-hanging fruit that does not directly address the underlying issue. Another

option is to develop and implement new fossil fuel technologies that are vastly superior to their

predecessors in terms of efficiency and carbon intensity. Examples include the on-purpose pro-

duction of ethylene and propylene from natural gas liquids as opposed to crude oil and chemical

looping with inherent carbon sequestration for power production. While these systems are costly

to build, they better address the problem of reducing CO2 emissions, but are still not sustainable

solutions. The final option is to completely revamp and rebuild energy infrastructures to run on

renewable energies such as biomass, hydropower, solar, and wind. An example is using solar or

wind powered electrolysis to produce hydrogen for vehicle transportation. This is certainly the

most costly and risky option, but also the only one that can provide a sustainable energy future.

Which of these paths should be taken? There is not a simple or single solution. Different

government leaders, corporate businessmen, influential economists, and outspoken scientists all
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have contrasting opinions and interests in the right direction moving forward. Ideally speaking,

producing all of the world’s energy solely from renewable resources right now would be highly

desirable, but this is not practical. Fossil fuel energy systems have evolved and matured over hun-

dreds of years to meet the world’s energy demands. It would be unreasonable to expect renewable

energy systems to do the same in a much shorter amount of time. Even though there are different

thoughts about what to do when and how to transform the energy network, almost everyone agrees

that continuing business as usual is not an option. Fossil fuels or renewable energies alone cannot

support the world’s energy needs. There is no silver bullet. Near-term future energy systems will

likely resemble a combination of all options, but the transition must begin sooner rather than later

if permanent climate change is to be avoided and decarbonization is to be realized.

1.2 An Energy Transition

Fossil fuels maintain an advantage over renewables because they are cheaper, more robustly

available, and denser in energy. Oil, coal, and natural gas exist as physical entities that result from

millions of years of geological formation. They are accessible energy forms and using already

advanced technologies can be drilled or mined for with relative ease. Whereas, solar irradiance

and wind speed are intangible assets that are dispersed and need to be purposely concentrated in

order to use. This process of collecting and densifying solar and wind into usable energy forms is

the reason why their maturing technologies have been prohibitively expensive until very recently.

Unlike solar or wind, biomass is a physical material that is directly usable and can be renewable

from CO2 photosynthesis. However, biomass has not been widely utilized because of concerns

regarding the resources required to harvest it, potential land competition with food agriculture,

feedstock variability & impurities, and carbon intensity associated with land preparation [10, 11].

An energy transition period is ultimately necessary because renewable technologies are not

ready to thoroughly supplant their fossil fuel predecessors just yet. Besides greater capital cost,

the performance efficiency of these technologies need to improve even further to compete with

fossil fuels. For example, the lower heating value (LHV) of gasoline is around 32 MJ/L, while

the LHV of compressed hydrogen gas at 700 bar is about 5.6 MJ/L [12]. Renewable energies
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like hydrogen need to compensate for what they lack in energy density with superior performance

efficiency in their production and end-usage. In terms of production, about 50 kWh of electricity

is required to produce 1 kg of hydrogen from electrolysis [13, 14], and roughly 5 kWh is needed

to refine 1 gallon of gasoline [15–17]. On an energy basis, 1 kg of hydrogen (⇠120 MJ/kg) has

the same energy content as 1 gallon of gasoline (⇠120 MJ/gal). Therefore, for the same equivalent

energy output, hydrogen requires ten times more electricity input than gasoline. On the other hand,

in terms of end-usage, a hydrogen fuel cell is approximately twice as efficient as a gasoline engine

in converting the energy to mobility [18]. As such, it appears that hydrogen production efficiency

is a major bottleneck that needs to be overcome for hydrogen fuel cars to become a bigger strategy

for decarbonizing transportation.

In addition to affordability, energy density, and efficiency, a final complicating issue with utiliz-

ing renewables is their intermittent availability. For example, solar irradiance and wind speeds vary

throughout the day and can fluctuate seasonally. Likewise, they are unevenly distributed geograph-

ically, and sometimes even stranded away from large urban centers. As a result, the temporal and

spatial variabilities of solar and wind are asynchronous with consumer energy demands, especially

for electricity purposes. Therefore, power from solar and wind is non-dispatchable, meaning that

their output cannot be adjusted on-demand by operators. This severely limits their ability to sat-

isfy demand load and introduces curtailment & overgeneration issues. Technologies like batteries,

pumped-storage hydroelectricity (PSH), and compressed air energy storage (CAES) [19] attempt

to solve these shortcomings by storing renewable energy during periods of excess supply to be

utilized during periods of excess demand. Currently, there is about 4.67 TWh of energy storage

worldwide for electricity, and PSH is by far the most dominant (96% of total capacity) [20]. Both

PSH and CAES are mature technologies with average levelized costs of electricity (LCOE) values

of $0.12/kWh and $0.16/kWh, respectively [21]. Batteries are still advancing, and current costs

are around $0.30/kWh [21], but expected to decrease as the technology matures and economies

of scale are realized [22]. As the amount of renewables entering the energy mix doubles, global

energy storage capacity is expected to double as well [20]. It is very clear that energy storage will
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play an important facilitating role in the energy transition as more renewables are integrated.

Despite these shortcomings, renewables are already transitioning into the energy picture. First,

power from renewables reached 25% of the total global electricity production in 2017 [23], with

solar and wind energy representing the fastest growing portion and comprising approximately 5%

of the total production [3]. By 2040, renewables are expected to reach over 40% penetration [5],

half of which will be made up by solar and wind [3], into global electricity production. In 2019,

64% of the planned new power capacity installation in the United States came from solar and

wind alone [24]. Dramatic cost reductions in solar photovoltaic (PV) panels and wind turbines are

responsible for the recent surge in renewable electricity. From 2009 to 2017, PV modules became

81% cheaper and turbine prices dropped by almost half [25]. This has caused LCOE values for

solar and wind ($0.05/kWh and $0.04/kWh, respectively) to become extremely competitive with

those from fossil fuels [26]. However, overgeneration and curtailment are outstanding challenges.

Ethanol production from biomass for use as an advanced biofuel is another area where renew-

ables have made an impact. Global production of ethanol reached over 27 million gallons in 2017,

with the United States and Brazil accounting for almost 85% of this amount [27]. Due to govern-

ment mandates for blending ethanol with gasoline, ethanol was 10% of the United States vehicle

fuel consumption [28] and made up 16.4% of the energy consumed for Brazilian transportation [29]

in 2017. Corn bushels are the main feedstock for ethanol in the United States, while sugarcane is

mostly used in Brazil. Depending on crop economics and other variable operating costs, opti-

mistic prices for ethanol production may be about $1.20/gal from corn [30] and $0.80/gal from

sugarcane [31]. On an equivalent energy basis, these values correspond to roughly $50-75/bbl of

crude oil, which is competitive with historical prices. Biofuels consumption is projected to grow

modestly (2.5% per year [3]) to satisfy about 10% of all ground transportation globally in 2040 [5].

The solar & wind power and cellulosic ethanol examples highlight the promising potential of

integrating renewables toward satisfying the growing energy demand and alleviating environmental

impact from CO2. The technical development progress and experience gained so far in these

areas position renewables to be well-aligned with the energy trends toward increased power and
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chemicals production. In fact, future energy systems need not to be so restrictive in their product

output and can instead exploit the synergies that exist in a coordinated production of electricity and

chemicals. For example, in lieu of storing energy in batteries, PSH, or CAES, renewable energy can

be used to power the production of chemicals. In this way, the energy is chemically stored, instead

of electrochemically or physically, in the bonds of the product. This setup not only allows for a

flexible production but also utilization because the product can later be consumed as is or converted

back to electricity depending on the consumer demand. Renewables are more appropriate for this

dual-purposed application because the round-trip process of producing electricity this way from

fossil fuels is nonsensical. Likewise, the round-trip efficiency to electricity is too low for fossil

fuels to be effective given their carbon intensity. Efficiencies matter less for solar and wind energies

because their resource availability is essentially unlimited, free, and carbon-neutral.

Finally, the energy transition is undoubtedly influenced by the shale gas revolution, technolog-

ical advances in hydraulic fracturing and horizontal drilling for extracting fossil resources from

shale formations, that has endowed the United States with an unexpected windfall of natural gas

and tight oil. The United States now has the ninth-most proven oil reserves (50 thousand million

barrels) and the fifth-largest proven natural gas reserves (308.5 trillion cubic feet) in the world [7].

Compared to values from the 1990s, when worries about peak oil arose during the Gulf War, the

United States has expanded its oil reserves by nearly 70%, and natural gas reserves have nearly

doubled [7]. The United States is also now the largest crude oil and natural gas producer in the

world [32]. This new abundance of cheap natural gas is especially attractive for electricity and

chemicals production to convert those processes previously ran on crude oil or coal to natural gas,

which is notably cleaner due to less CO2 emissions (50% less than coal, 20-30% less than oil [33]).

Therefore, natural gas is going to play a vital role in the energy transition. Moreover, fossil fuels

in general are not disappearing any time soon and are critical energy resources during the transi-

tion period, especially for processes that are not easily amended to utilizing renewables like heavy

industry. In their optimistic projections, Royal Dutch Shell expects fossil fuels to cover about 15-

25% of the global energy consumption in 2100 [4]. Hybrid energy systems that utilize both natural
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gas and renewables are likely in the transition period to bridge the gap between the former and

latter. While the length and ultimate path of an energy transition are unknown, the indefinite usage

of finite resources like fossil fossils is not a sustainable solution.

1.3 A New Digital Era for Energy

As the world prepares itself to confront an energy transition, a concurrent digital transforma-

tion is already underway. This digitalization promises to revolutionize the way businesses are

monetized through exploiting a vast trove of available data and increased computational power to

inform better decision-making [34]. In the energy sector, the advent of this digital era has materi-

alized as having smart sensors installed on production sites that transmit process information to the

cloud. Other remote devices such as a personal cellphone or supercomputer are then able to access

this data and perform necessary manipulations or computations. Facilitating automated decision-

making work flows, this connected network of shared devices is called the Internet of Things (IoT).

In process industries, the data from these sensors is utilized in models for real-time optimization,

advanced control, predictive maintenance, demand forecasting, production scheduling, and fault

detection & diagnosis applications [35–37].

As a real industrial example, ExxonMobil has an ongoing program to collect all operating data

from its refineries and chemical plants. This project is called the "ExxonMobil Manufacturing

Support Data Lake" [38]. The projected velocity of the incoming data to their high-performing

computing environment is up to 1 billion bits per minute. With this "big" data, the company aims

to discover new directions for its production sites to run more efficiently and with fewer CO2

emissions through applying advanced analytics.

However, exploiting "big" data is not restricted to just improving existing operations with IoT,

but also very relevant for planning future energy systems. For example, meteorological stations

positioned around the United States continuously gather measurements on solar irradiance and

wind speed at minute resolutions. This time series data is valuable for designing renewable power

systems with storage to ensure unit capacities are properly sized to meet demand load and handle

volatilities within a day or across several years. Geological measurements from oil and shale fields
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can also intelligently inform drillers how to plan their rig operations across an investment horizon

to maximize throughput. Nonetheless, this abundance of data may become a double-edge sword⇤.

On one hand, having more data gives greater possible insight into a phenomena that was poorly

understood before or lacks a first-principles explanation. On the other hand, an over-dependence

on data for enlightenment is prone to misleading conclusions when bad information is not clearly

distinguishable from good data or contaminates the dataset.

Therefore, a core basis of this digital era needs to focus on the development of appropriate

models that reliably make decisions or draw conclusions from the right data. There is an endless

number of model candidates to choose from within machine learning, artificial intelligence, and

statistics. It is often difficult to make an optimal choice. For each individual energy application,

a different model may be more advantageous than another. Unfortunately, this is not an one size

fits all approach, and there is little theory to a priori predict which model will work best. Tried-

and-tested model selection techniques and metrics are utilized to separate out the better performing

models, but are not guaranteed to work well. In addition, dimensionality reduction and clustering

methods are employed to sift out the important aspects of the data and filter out any noise.

Using "big" data to unlock solutions for existing energy assets is a near-term goal with poten-

tially huge upside for operational gains. Nevertheless, the long-term challenge for a digitalized

energy sector is figuring out the right modeling approaches for "big" data to help bring about the

energy transition goals. Without appropriate models, the data is meaningless. Correctly analyzing

the data will likely help accelerate the energy transition.

1.4 Process Systems Engineering’s Role in Addressing the Energy Challenges

The problem with no silver bullet for the energy transition is that there are numerous alterna-

tives to consider without any obvious best path or set of paths forward. Additionally, empirically

testing different choices and observing their effects on the global energy infrastructure is not prac-

tically possible. And even if this was a feasible option, the economic investment, human capital
⇤There are also cybersecurity issues with hosting large data centers and cloud computing, but these are not the

subject of this dissertation.
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cost, and potential repercussions of ill-informed decisions would be too risky to do so. This is the

challenge decision-makers involved in the energy transition face. Without a systematic and quan-

titative methodology (i.e. an in silico testing protocol) to navigate all possible options, using an ad

hoc trial and error approach toward implementing future energy systems is not an effective strat-

egy. There are too many energy system permutations to consider and too many requirements for

them to meet for anyone to simply stumble onto the right choices. Moreover, there is not enough

time to try everything out. Therefore, mathematical modeling & optimization are needed to inform

decision-makers of the more promising courses of action to take toward maneuvering the energy

transition and screen out unlikely answers. Similar optimization approaches are also necessary to

select the correct data-driven model from a list of other candidate ones.

Process systems engineering (PSE) is a research field within chemical engineering that evolved

during the 1960s to reform the heuristic and rule of thumb methods that existed for designing and

operating industrial chemical processes. This is not to say that these previous methods were unsuc-

cessful. For example, the industrial process for ammonia production was remarkably developed at

BASF in the 1910s without the use of modern computing [39]. Its success, especially as a highly

pressurized process for its time, set an important precedent for future chemical engineers to refer-

ence in their designs and operations. Instead, the motivation for PSE’s development was the desire

to unify the heuristics and rule of thumbs and translate them into mathematical language. With a

developed mathematical representation of the chemical process, the goal is to methodically identify

opportunities to improve the process design and/or production output during operation. Therefore,

the theoretical foundation of PSE has been rooted in the mathematical optimization of chemical

processes for optimal process design and operation. Examples of PSE’s success in optimizing and

upgrading the process industry are well-documented [40–44].

Given its strengths, PSE is aptly positioned to tackle the energy transition. First, chemicals

production is a sector very familiar to all chemical engineers. The expected growth in chemicals

production is likely best addressed by those who are specifically trained for this area. Second,

electricity production is also a closely related field since most power will still be generated from
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the combustion of fuels to produce thermal heat to drive turbines. These power cycles are typical

topics covered in thermodynamics courses in chemical engineering. Third, and most importantly,

the systematic consideration of all energy system possibilities and requirements is well-addressed

through mathematical optimization, the exact area that PSE specializes in. Likewise, model selec-

tion and clustering methods in deriving appropriate machine learning models from data are also

optimization problems in disguise. The challenges with energy transition and digitalization are the

same problems PSE has aimed to model and address in chemical engineering for many years. No

matter the energy system of interest, PSE methodologies can provide optimal answers to guide

decision-makers and data modelers without having to exhaustively enumerate all options.

The decisions made during the energy transition are important because they will influence the

direction of energy development for the next several decades. For example, many of today’s energy

systems are products of a bygone era when modern computing and digital technologies were in

their infancy. The average age for existing United States petrochemical and power plants is about

30 years [45, 46], while refineries average around 40 years old [47]. Older energy infrastructure is

overdue for an update, and new capacity installations are required to keep up with the increased

demand and supplant retired plants. The conventional strategy of simply retrofitting older facilities

is not sufficient or efficient enough to satisfy the projected energy consumption. Therefore, more

capital investment into rebuilding and revamping the energy infrastructure is needed. Moreover,

making renewables a priority now ensures that the requisite technology components and expertise

are in place for years ahead when we will require more from them. PSE can play a key role in

shaping the energy future, through providing non-intuitive insights into how to modernize existing

plants and which new projects to pursue, such that the most gain is made out of each investment.

1.5 Dissertation Objectives

Thereby, this dissertation aims to answer some of the outstanding questions regarding the en-

ergy transition and digitalization. In particular, the main focus areas here are twofold. First, the

optimal design and operation of future energy systems in the transition are unknown. Second, the

incorporation of data into the investigation and decision-making process for these systems and the
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optimal selection of models from data are underdeveloped. To address these two main objectives,

a mathematical optimization and systems approach from PSE is taken to provide insights.

For the first objective, detailed optimization models are built and solve for the following energy

systems: (1) natural gas to liquid transportation fuels, (2) coproduction of ammonia and methanol

from biomass, and (3) energy carriers supply chain network. These systems represent production

processes from natural gas and renewables that may become relevant and important during the

energy transition. For the former part of the second objective, a clustering algorithm is created to

reduce the complexity of solving a design and scheduling optimization problem with time series

data. This algorithm is applied to optimizing a renewable power system with storage to assess its

LCOE sensitivity with respect to the clustering. For the latter part of the second objective, a novel

bilevel optimization and parametric programming method for optimal model selection is developed

to give the exact solution without any approximation.

In next sections, a brief introduction and overview to each topic are given before going into

more details in later sections. My contribution to each study is highlighted.

1.5.1 Natural Gas to Liquid Transportation Fuels (GTL)

Although vehicle electrification and fuel economy are improving, the demand for liquid trans-

portation fuels is expected to increase in the near-term future due to growth in personal mobility

and commercial services. Therefore, fossil fuels are still needed in the transportation sector to

provide these dense fuels that renewables are not yet suited to produce. At the same time, rely-

ing on crude oil increases a nation’s dependence on other countries for supply, and most major

oil producing countries have unstable political environments that are difficult to predict. Develop-

ing an alternative to crude oil for transportation, especially for oil poor nations, is important for

diversifying a nation’s energy portfolio [48] and strengthening national energy security [49].

An attractive feedstock is natural gas because it is abundantly available [7] and inexpensive [50]

due to the shale gas revolution. Assuming the current consumption rate, the United States also

has enough natural gas to last almost a century [51]. For synthesizing liquid fuels, natural gas

is appealing because it has a high hydrogen to carbon ratio, and thus favors a greater yield of
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higher hydrocarbons. Several academic [52–54] and industrial [55–57] parties have focused on

developing GTL processes that convert natural gas to a syngas intermediate before upgrading to

liquid products. Large companies such as Royal Dutch Shell [58] and Sasol Limited [59] have

commercial GTL plants operating in Malaysia, Qatar, and South Africa, respectively.

My contribution here to investigate chemical looping as an alternative method for producing

syngas from natural gas, as opposed to the traditional steam reforming process, within a process

synthesis & global optimization framework. This is first time chemical looping has been studied

for use in a GTL process within such a framework, and it is shown to dramatically decrease the

cost of production.

1.5.2 Coproduction of Ammonia and Methanol from Biomass (BAM)

Ammonia and methanol are two essential chemicals for sustaining life and the lifestyle many

people enjoy. Over 85% of ammonia is utilized as synthetic fertilizer, a form of fixated nitrogen,

for agriculture. It is estimated that the world’s population would be about half the size it is to-

day without artificial fertilizers to promote crop growth because biological nitrogen fixation would

be too slow to feed everyone [39]. Methanol is an important feedstock for producing numerous

commodity chemicals such as olefins, aromatics, formaldehyde, and acetic acid that are utilized

to make plastics, fibers, solvents, cosmetics, pharmaceuticals, building materials, and other com-

monly used household products. Because they are vital precursors to other chemicals, demand for

ammonia and methanol is expected to increase faster than demand for products from the overall

chemicals sector.

At the same time, the productions of ammonia and methanol are both energy and carbon in-

tensive. About 2.9 tons of CO2 is emitted per ton of ammonia production, and this value is ap-

proximately 0.9 tons for methanol. Using the most advanced technologies, both utilize roughly

30 GJ of energy to produce one ton of product. In their synthesis, both require hydrogen which is

derived from the same downstream processes. Therefore, there is an opportunity to integrate their

production in an attempt to share costs for similar units and decrease the overall cost of production.

Likewise, to reduce their carbon footprint in a similar spirit as ethanol does in the transportation
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sector, biomass-based production of ammonia and methanol is a promising avenue .

My contribution here is to investigate the coproduction of ammonia and methanol from biomass

for the first time using a process synthesis & global optimization strategy. While most industrial

production is based on natural gas or coal, biomass is shown to be competitive, especially under

carbon-constrained scenarios.

1.5.3 Energy Carrier Supply Chain Network (ECN)

While PSH and CAES are mature utility-scale technologies, they are geographically restrictive

in their suitable construction sites. On the other hand, batteries have smaller storage capacities and

are more fit for distributed applications. Additionally, at current costs, the scale-up of batteries

is prohibitively expensive, and they require rare earth metals that may become inaccessible in

the future. Present battery technologies are also not suitable for long-term energy storage. As

an alternative, energy can be stored in chemical compounds through renewable energy powered

water electrolysis to produce hydrogen, which can be further converted to ammonia and methanol.

Storing energy in chemicals is promising because their production is well-studied, easily scalable

to large volumes, and benefits from economies of scale. Moreover, chemicals have higher energy

density and are geographically flexible in terms of where they can be produced and consumed.

In this way, chemicals act as energy carriers, storing and transporting renewable energy from

regions of excess supply to resource-deficient demand areas. Energy carriers are then converted

back to electricity on-demand. However, there are trade-offs between which chemicals to choose.

Hydrogen is cheaper to produce, but has lower energy density and is more expensive to transport

than ammonia or methanol. On the other hand, ammonia and methanol are more expensive to

manufacture, but are more energy dense and have cheaper transportation costs. Hydrogen and

ammonia are carbon-neutral, while methanol is not. Over the years, there have many separate

discussions about a hydrogen, ammonia, or methanol economy [60–62]. Delineations like these

are limiting and do not consider the potential interactions that exist among the three.

My contribution here is to investigate the integrated supply chains of hydrogen, ammonia, and

methanol for the first time in the context of transporting renewable energy. A case study on Texas
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highlights that a supply chain network of energy carriers is competitive with other storage options,

especially for long-term applications.

1.5.4 Clustering in the Optimization of Renewable Power Systems

Intermittent solar and wind availabilities pose design and operational challenges for renewable

power systems because they are asynchronous with consumer demand. For renewable energies to

increase their penetration into the power grid and avoid curtailment & over-generation issues, such

as those currently observed in California [63,64], greater investment in energy storage technologies

is necessary. However, supply and demand uncertainties pose significant investment risks [65] for

renewable power systems with energy storage, which are large capital intensive projects. Likewise,

without considering the future operations of a renewable power system simultaneously with its de-

sign during the investment planning phase, undersizing or oversizing power and storage capacities

become costly miscalculations [66, 67].

To align this supply-demand mismatch, optimization-based design and scheduling models have

been developed to minimize the capital and operational costs associated with power production

and energy storage. However, hourly time discretization and large time horizons used to describe

short- and long-term solar and wind dynamics, demand fluctuations, & price changes significantly

increase the computational burden of solving these models. Time aggregation [68] or temporal

clustering [69] have been applied to reduce the complexity of these models. The main concept is

to decrease the number of unique hours that are modeled through finding patterns or clusters of

similar weather, load, and price behavior in the time series data.

My contribution here is the development of a decomposition algorithm based on agglomera-

tive hierarchical clustering (AHC) that separates decision decisions from operational ones, while

alleviating the computational burden of solving the design and scheduling optimization. The al-

gorithm is applied to investigate a renewable power system with battery storage in New York City

and its LCOE sensitivity to clustering.
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1.5.5 Hyperparameter Optimization Through Parametric Programming (HY-POP)

In a digital era of energy, the shift toward machine learning models to aid decision-makers

better understand their current operations and forecast the future is accelerating. Given all the

modeling choices, optimal model selection is vital to realizing this digitalized economy. Fitting a

machine learning model often requires presetting parameter values (hyperparameters) that control

how an algorithm learns from the data. Selecting an optimal model that minimizes error and

generalizes well to unseen data becomes a problem of tuning or optimizing these hyperparameters.

Typical hyperparameter optimization strategies involve discretizing the parameter space and

implementing an iterative search procedure to approximate the optimal hyperparameter and model

selection through k-fold cross-validation. Bayesian optimization is another common method to

tune hyperparameters. This approach still involves iteratively exploring the hyperparameter space.

A probabilistic model approximates the optimal hyperparameter by assigning probability values to

its location and selecting the one with the highest probability. These existing methods can suffer

from selecting suboptimal models because of the inexact parameter space discretization.

My contribution here is the development of an exact solution to the hyperparameter optimiza-

tion problem for machine learning algorithms that are formulated as linear or quadratic program-

ming (LP/QP) models. The optimal model selection is guaranteed and obtained through bilevel

optimization and parametric programming without any approximation. The method is then ap-

plied on example data for verification.
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2. ENHANCING GTL PROCESSES THROUGH CHEMICAL LOOPING FOR SYNGAS

PRODUCTION⇤

2.1 Motivation

Interest in GTL processes is growing due to the promise of transforming natural gas, a sud-

denly abundant and inexpensive feedstock due to the shale gas revolution, into valuable liquid

products like gasoline, diesel, and kerosene. Adoption of a GTL process in rich gas but oil poor

countries is one application. Another one is to monetize stranded natural gas that otherwise would

be left unused. However, the economics must be competitive with crude oil prices. GTL processes

first convert natural gas to a syngas intermediate before upgrading it to liquid products. Syngas

production remains the most expensive and energy intensive part of any GTL process. Chemical

looping is an alternative to traditional reforming methods for producing syngas that may lower the

economic and energy cost of the GTL process.

2.2 Background

A previous work proposed a comprehensive process superstructure of natural gas conversion

to liquid transportation fuels [54]. A top-down view of a GTL refinery is shown in Figure 2.1.

This work incorporates two chemical looping technologies, one based on a NiO and one based on

Fe2O3, into the previous superstructure as process alternatives for syngas generation to evaluate

their performance against traditional reforming. The GTL refinery consists of the following sec-

tions: (i) natural gas conversion, (ii) syngas cleaning, (iii) hydrocarbon production and upgrading,

(iv) light gas recycle, (v) hydrogen/oxygen production, and (vi) wastewater treatment. These sec-

tions, their units, and modeling equations are described in the paper’s supplementary material [70].

Emphasis is placed here on modeling chemical looping, the new component in this work. Some

background on chemical looping is provided before moving onto the mathematical modeling of
⇤Reprinted from "Enhancing natural gas-to-liquids (GTL) processes through chemical looping for syngas produc-

tion: Process synthesis and global optimization" by Tso, W.W. and Niziolek, A.M. and Onel, O. and Demirhan, C.D.
and Floudas, C.A. and Pistikopoulos, E.N., Computers & Chemical Engineering, 2018, Vol. 113, pp 222-239, with
permission from Elsevier and Copyright Clearance Center.
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Figure 2.1: An overview of the GTL refinery.

the reactors and global optimization to solve the GTL process synthesis problem.

Chemical looping has been predominantly studied as an advanced combustion system for elec-

tric power generation with in situ CO2 capture [71–74]. The overall combustion is carried out in

two interconnected reactors, an air reactor (AR) and a fuel reactor (FR), that separates the reaction

into oxidation and reduction parts (Figure 2.2). Circulating metal oxides between the two reactors

serve as oxygen carriers. In the FR, metal oxides react with a carbonaceous fuel, producing CO2 &

H2O and reducing the metal oxides to a lower oxidation state. In the AR, reduced metal oxides are

fully oxidized with air and then recycled back to the FR. By this loop construction, metal oxides

provide oxygen to the fuel without needing additional air separation. As a result, chemical looping

combustion (CLC) avoids directly contacting air with the fuel and facilitates CO2 capture since

CO2 & N2 are in separate streams.

Chemical looping is adjusted for syngas production by either decreasing the air-to-fuel ratio

or the metal oxides-to-fuel molar ratio to favor syngas conversion instead of combustion [75–78].

From lowering the amount of available oxygen, partial oxidation of the fuel occurs [79]. Energy

efficiency and exergy is greater for chemical looping compared to autothermal reforming (ATR)
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Figure 2.2: A simplified block diagram of the chemical looping process with natural gas as the
carbonaceous fuel.

and steam reforming (SMR), the traditional methods for syngas production [80, 81]. In reforming,

excess O2 and/or H2O are co-fed with natural gas to improve gas conversion, prevent coking,

and sustain catalyst activity. This creates extra CO2 and H2O in the effluent, reducing syngas

purity and process efficiency. Additional conditional units become necessary to adjust the syngas

composition before downstream processing. Chemical looping produces a higher concentration

of CO and H2, without requiring excess co-fed reactants [82, 83]. This reduces the capacities

of downstream process units and offers potential capital cost savings. Chemical looping is also

operable at lower pressures than reforming, which facilitates greater natural gas conversion due

to Le Châtelier’s principle. Lastly, chemical looping systems have smaller land impact [74]. For

example, autothermal reforming requires pure oxygen from a costly air separation unit (ASU),

which adds another unit and more cost to the process. Chemical looping has inherent oxygen

separation by design.

From a thermodynamics analysis, the modified Ellingham diagram shows that CeO2, NiO,

and Fe2O3 are more favorable metal oxides for syngas production from natural gas [74]. Stud-

ies have shown that severe carbon deposition and slow kinetics hindered the practical usage of

CeO2 [84, 85]. Results have been more promising for NiO and Fe2O3 with several independent
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research groups [75–78, 86] demonstrating experimental and pilot-scale operations. de Diego et

al. [83] and Ortiz et al. [87] reported that NiO/Al2O3 in chemical looping reforming (CLR) could

achieve methane conversions to syngas at near thermodynamic equilibrium under different oper-

ating temperatures, pressures, and oxygen carrier-to-fuel molar ratios. Luo et al. [82] developed

a shale gas-to-syngas (STS) process using Fe2O3/TiO2 that operates close to the thermodynamic

equilibrium for various process conditions. Deshpande et al. [88] also verified feasibility for higher

pressurized STS systems.

2.3 Mathematical Modeling of Chemical Looping Reactors

While there are very detailed models for chemical looping reactor designs, such as computa-

tional fluid dynamics with reaction kinetics information [89,90], they are impractical to implement

within a process synthesis & global optimization framework. This is because these models have

a large number of variables and nonlinear equations that require several hours to simulate and the

process synthesis model itself is a computationally expensive mixed-integer nonlinear program-

ming (MINLP) model that is solved many times within a branch-and-bound algorithm. Instead,

simplified input-output models of chemical looping reactors are developed here to closely approx-

imate the underlying phenomena with as little complexity as appropriate.

2.3.1 Fuel Reactor Model

In accordance with the experimental results, thermal equilibrium is assumed for the FR model.

The inlet streams to the FR are CH4, H2O, and an oxidized metal oxide (MeOx) coupled with a

support material. The incoming metal oxides are fully oxidized from the AR, and the oxygen-

containing support materials (SuO) are inert. The outlet vapor effluent is comprised of H2, H2O,

CO, CO2, and CH4. The leaving solids, reduced metal oxide (MeOy) and pure metal (Me), and

their support materials are recycled back to the AR. Carbon formation is assumed to be negligible

by constraining the inlet [O]
[C] � 1.

Let n represent the number of solid products leaving the FR. NiO is fully reduced to Ni or stays

unreacted, while Fe2O3 is reduced to either Fe, FeO, or Fe3O4. The support materials for NiO and
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Figure 2.3: The known and unknown streams entering and leaving the fuel reactor.

Fe2O3 are Al2O3 and TiO2, respectively. As such, n = 3 for NiO and n = 4 for Fe2O3. There

are n+11 unknown variables: n+5 molar species flows (Ns), 5 vapor species mole fractions (ys),

and 1 total molar vapor flow (NT ). To fully specify the system, n+11 equations are needed. The

described scenario for the FR model is shown in Figure 2.3. After writing down atom balances

for C, H, O, Me, and Su, mole fraction equations, total mole balance, and two thermodynamic

equilibrium equations for methane reforming (Eq. 2.1) and water-gas shift (Eq. 2.2), there are n-2

degrees of freedom left. The CLR process has one degree left, while for the STS process has two.

CH4 + H2O *) CO + 3H2 (2.1)

CO + H2O *) CO2 + H2 (2.2)

To close these last degrees of freedom, the conversion of MeOx into MeOy and Me is specified.

For the CLR process, NiO conversion to Ni is calculated using a parameter estimation; and for the

STS process, Fe2O3 conversion to Fe, FeO, or Fe3O4 is determined using disjunctive programming.

2.3.1.1 Parameter Estimation for NiO Conversion

To determine the NiO conversion, the vapor effluent compositions in Figure 6 from de Diego et

al. [83] are compared to the theoretical output from a parameter estimation model described below.
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Indices. The following indices are used:

a: Atom index

s: Species index

t: Experimental dataset

Sets. We define the set of all atoms, A, as follows:

a 2 A = {C, H, O, Ni, Al}

The set of all species, S, is defined as:

s 2 S = {CH4, H2, H2O, CO, CO2, NiO, Ni, Al2O3}

For convenience, the set of vapor species, Sv, is given as:

Sv = {CH4, H2, H2O, CO, CO2}

The set I is the total number of experimental datasets:

t 2 I = {1, 2, 3,...,21}

Parameters. The known model parameters are:

Es,a: number of atom(s) a in species s

N in
s,t: inlet molar flow of species s in experimental dataset t

youts,t : effluent mole fraction of vapor species s 2 Sv in experimental dataset t

Keq,SR: steam reforming equilibrium constant

Keq,WGS: water-gas shift equilibrium constant

Pf : pressure of the CLR fuel reactor

Variables. The model has the following variables:

Ns,t: predicted outlet molar flow of species s for experimental dataset t

NT,t: predicted effluent total molar flow of vapor species s 2 Sv for experimental dataset t

ys,t: predicted effluent mole fraction of vapor species s 2 Sv for experimental dataset t

EDt: Euclidean distance (error metric) for experimental dataset t

Avgerr: averaged Euclidean distance across all experimental datasets

XNiO: fitting variable for NiO conversion to Ni
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Constraints. Equations describing the model are shown below:

Atom balances:
X

s2S

N in
s,tEs,a =

X

s2S

Ns,tEs,a 8a 2 A , 8t 2 I (2.3)

Total mole balance for vapor species:

X

s2Sv

Ns,t = NT,t 8t 2 I (2.4)

Vapor mole fractions:

Ns,t = ys,tNT,t 8s 2 Sv , 8t 2 I (2.5)

Steam reforming:

Keq,SR =
yCO,t y3H2,t P

2
f

yCH4,t yH2O,t
8t 2 I (2.6)

Water-gas shift:

Keq,WGS =
yCO2,t yH2,t

yCO,t yH2O,t
8t 2 I (2.7)

Fit for NiO conversion:

NNi,t = XNiON
in
NiO,t 8t 2 I (2.8)

Error between experimental and predicted vapor mole fractions:

EDt =

sX

s2Sv

(ys,t � youts,t )2 8t 2 I (2.9)

Objective function. The objective of the parameter estimation model is to minimize the overall

averaged error between the experimental and model predicted values (Eq. 2.10).

Avgerr =

P
t2I EDt

|I| (2.10)
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Figure 2.4: Error distribution for the parameter estimation of NiO conversion in the CLR fuel
reactor. Experimental data gathered from de Diego et al. [83]

Thereby, the final model formulation becomes:

min Avgerr

s.t. Eqs. 2.3-2.9
(2.11)

The parameter estimation is essentially a linear regression model with nonlinear constraints, which

formulates as a nonlinear programming (NLP) problem. The model is solved to global optimality

using ANTIGONE in GAMS. The optimal XNiO is calculate as 0.923 with an overall averaged

error of 4.53% and standard deviation of 1.06%. A histogram of the individual errors is shown

in Figure 2.4 with the mean and one standard deviation above and below the mean. More than

85% of the datasets have an error less than 5.5%, and sixteen have an error that is within one

standard deviation of the mean. By specifying the value for XNiO, the last degree for the CLR FR

is satisfied.
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Figure 2.5: Distribution % of carbon products across different inlet [O]
[C] ratios for Fe2O3/TiO2 ox-

idizing CH4 at 900 �C and 1 bar. Data is from a RGIBBS simulation in Aspen Plus and is in
agreement with Figure 3 reported in Luo et al. [82]

2.3.1.2 Disjunctive Programming for Fe2O3 Conversion

A similar parameter estimation analysis is not applicable for Fe2O3 because there is a very

limited set of data points provided by Luo et al. [82]. Instead, we use the RGIBBS module in

Aspen Plus V8.8 to simulate the STS FR at thermodynamic equilibrium and generate input-output

values to model after. The incoming solids to the STS FR are assumed to have a Fe:Ti ratio of 2.

Depending on the inlet [O]
[C] ratio, Fe2O3/TiO2 reduces to different amounts of its reduction products.

There are five distinct zones of [O]
[C] ratios corresponding to different product compositions of carbon

species (Figure 2.5) and reduced metal oxides (Figure 2.6). Luo et al. [82] and Deshpande et.

al. [88] showed that Fe/TiO2, FeTiO3, and Fe2TiO4 are the reduced solid species that exist at

equilibrium. These oxides are composite analogues to Fe, FeO, and Fe3O4 with slightly different

thermodynamic behavior. Two degrees of freedom still remain for the STS reactor because the

composite iron oxides can be related to the original iron oxides through the following mathematical
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CH4 at 900 �C and 1 bar. Data is from a RGIBBS simulation in Aspen Plus.

relationships (these are not chemical reactions):

FeO + TiO2 = FeTiO3 (2.12)

Fe + Fe3O4 + 2TiO2 = 2Fe2TiO4 (2.13)

The disjunctive program models the linear conversion behavior within each zone instead of

capturing the overall nonlinearity in a single unified expression. The discretization of these zones

by their [O]
[C] values are used to formulate the disjunctive constraints, which determine the set of

active and inactive equations describing the iron oxide conversion in each zone. The Big-M for-

mulation, where an appropriately large M value relaxes constraints that are inactive for a given

zone, is utilized. The disjunctive constraints for each zone share the following characteristics:

N out
solid  ai,solidN

in
s + bi,solid + (1� �i)M1,i,solid 8i = 1, 2, . . . , 5 , s = Fe2O3 or TiO2, (2.14)

solid = Fe, FeTiO3, Fe2TiO4, or TiO2
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N out
solid � ai,solidN

in
s + bi,solid + (�i � 1)M2,i,solid 8i = 1, 2, . . . , 5 , s = Fe2O3 or TiO2, (2.15)

solid = Fe, FeTiO3, Fe2TiO4, or TiO2

�i =

8
>><

>>:

1, if LBi 
⇣

[O]
[C]

⌘

in
 UBi

0, otherwise
, 1  i  5 (2.16)

5X

i=1

�i = 1 (2.17)

where N in
s is the inlet molar flow of solid s, N out

solid is the outlet molar of the product solid, ai,solid

and bi,solid are specific constants defined according to the zone and product, M1,i,solid and M2,i,solid

are sufficiently large values relaxing the constraints to be redundant when �i = 0, and �i are binary

variables describing the disjunction logic according to the lower bound (LBi) and upper bound

(UBi) of each [O]
[C] zone.

Because there are two degrees of freedom remaining, the disjunctive constraints are written for

only two of the four solid products (Fe, FeTiO3, Fe2TiO4, TiO2). Therefore, Eqs. 2.14 and 2.15

are each written twice for a given zone i, once for each selected product solid. The disjunctive

constraints are based upon the inlet amounts of Fe2O3, TiO2, or both depending on which solid

products are selected for the disjunction. When �i = 1, N out
solid = ai,solidN in

s + bi,solid; when �i =

0, the bounds on N out
solid are relaxed. M1,i,solid and M2,i,solid are defined uniquely for each product

solid and are not necessarily the same value. Explicit formulations for Eqs. 2.14 and 2.15 are

found in the journal publication [70].

In addition, the [O]
[C] ratio is a nonlinear term that discretizes the STS operation into zones using

�i (Eq. 2.16) with only one zone allowed to be active (Eq. 2.17). Eq. 2.16 is rewritten as:

5X

i=1

LBiN
in
[C]�i  N in

[O] 
5X

i=1

UBiN
in
[C]�i (2.18)

where N in
[C] is the inlet molar flow of carbon species and N in

[O] is the inlet molar flow of active

oxygen species. Because of Eq. 2.17, only one LBi and UBi is active in Eq. 2.18, constraining
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N in
[O] to be between LBiN in

[C] and UBiN in
[C]. In this formulation, N in

[C]�i is a bilinear term comprised

of a continuous variable and binary variable. Eq. 2.18 is reformulated into the following linear

constraints:
5X

i=1

LBiHi  N in
[O] 

5X

i=1

UBiHi (2.19)

N in
[C] �N in,up

[C] (1� �i)  Hi  N in
[C] �N in,lo

[C] (1� �i) 8i = 1, 2, . . . , 5 (2.20)

N in,lo
[C] �i  Hi  N in,up

[C] �i 8i = 1, 2, . . . , 5 (2.21)

When �i = 1, Hi is constrained to equal N in
[C] with redundant lower and upper bounds (N in,lo

[C] and

N in,up
[C] ). Likewise, when �i = 0, Hi is constrained to equal zero with superfluous bounds from

Eq. 2.20. The disjunctive programming model for Fe2O3 conversion is fully described using Eqs.

2.14-2.15, 2.17 and 2.19-2.21.

The predicted values are compared to the experimental data described by Luo et al. [82] in

Table 2.1, and the error is calculated using Eq. 2.9. The error for sub-pilot condition # 1 is very

small (1.08%), but the other two cases have slightly greater errors. Due to the limited data, the

quality of the overall averaged error (4.70%) is unknown. More experimental datasets are needed

to compare with. However, the disjunctive programming model is sufficient enough to describe the

STS FR for subsequent use in the process synthesis. Both Luo et al. [82] and Deshpande et al. [88]

concluded that since Fe2O3/TiO2 has very fast kinetics, their experimental results were consistent

enough with the thermodynamic calculation to assume equilibrium in process simulations.

2.3.2 Air Reactor Model

The metal oxides (MeOx) leaving the AR for the CLR and STS processes are assumed to be

fully oxidized, since this is what is experimentally observed [82, 83, 87, 88]. Me, MeOy, SuO,

and air (primarily comprised of N2 and O2 with trace amounts of CO2 and Ar) are inlet streams to

the AR. Air oxidizes Me and MeOy to MeOx, which is recycled back to the FR, and the oxygen-

depleted air is vented back to the environment.

A degrees of freedom analysis is also used to build an input-output model for the AR (Fig-
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Table 2.1: Comparison between disjunctive model for Fe2O3/TiO2 conversion and experimental
results from Luo et al. [82] Experimental vapor compositions were not reported in their work, but
are derived here using the given information.

Data Bench Scale Model Eq. Sub-Pilot # 1 Model Eq. Sub-Pilot #2 Model Eq.

Temp. (�C) 960 975 900
Pressure (atm) 1 1 1

Inlet [O]
[C] 2.5 2.2 2.8

CH4 conversion (%) >99 99.93 >99.9 99.95 >99.9 99.76
H2 : CO 1.85 1.94 1.97 1.93 1.85 1.96

CO : CO2 9.9 13.3 11.8 13.6 9.1 12.5
Syngas selectivity (%) 86.3 91.0 91.3 90.9 85.6 91.5

Carbon deposition (mol C per mol CH4) <0.005 0 0.015 0 0.03 0
yCH4 0.003 ⇠ 0 ⇠ 0 ⇠ 0 ⇠ 0 0.001
yCO2 0.030 0.023 0.026 0.023 0.033 0.025
yCO 0.302 0.310 0.307 0.310 0.300 0.308
yH2O 0.106 0.067 0.061 0.068 0.111 0.061
yH2 0.558 0.600 0.605 0.599 0.555 0.605

ED 0.0584 0.0108 0.0718

ure 2.7). Though there are n solid reactants entering the AR, there are only two solid products

leaving due to full oxidation. All incoming nickel solids are oxidized to NiO, and all incoming

iron solids are oxidized to Fe2O3. Support materials are inert. In the AR, there are 6 unknown

molar species flows. To fully specify the system, 6 equations are needed. Conveniently, there are 6

equations from the atom balances for C, H, O, Ar, Me, and Su. Therefore, under the full oxidation

assumption, the AR is fully specified and no additional equations are required.

2.4 Chemical Looping Configurations in a GTL Process

Chemical looping is an alternative to reforming options for converting natural gas to syngas,

which is upgraded to liquid fuels in the GTL process. Detailed flowsheets of the CLR and STS

process are shown in Figures 2.8 & 2.9. Besides the shared commonalities in the FR and AR setup,

the CLR and STS process differ from each other as shown in Table 2.2. Pressure variations are

included for the chemical looping processes because of the natural gas expansion and syngas com-

pression immediately before and after the FR. Operating the chemical looping FRs at atmospheric

pressure for liquid fuels synthesis, the setup that has been suggested by much of the literature, may
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Figure 2.7: The known and unknown streams entering and leaving the air reactor.

Table 2.2: The operating conditions considered for the CLR and STS processes.

Operation CLR STS

Oxygen carrier NiO/Al2O3 Fe2O3/TiO2
FR Temps. (�C) 800 | 850 | 900 900 | 950 | 1000

FR Pressures (bar) 1 | 5 | 10 1 | 5 | 10
AR Temp. (�C) 950 1200

AR Pressure (bar) 1 | 5 | 10 1 | 5 | 10
Max inlet H2O : C ratio to FR 0.5 0.2

Max inlet MeOx : C ratio to FR 3.5 6

not be optimal.

Expanding the inlet natural gas all the way down to 1 bar (or atmospheric pressure) and later

compressing the outlet syngas back up to the higher pressures required for downstream process

units could be an ineffective use of energy. This sequence is referred to as a low pressure operation.

An intermediate (5 bar) or high pressure (10 bar) operation for the chemical looping process might

be more advantageous. However, higher pressures also have an adverse effect on the methane

reforming equilibrium (Eq. 2.1) due to Le Châtelier’s principle. Therefore, there are trade-offs

among these different operational modes that need to be investigated.
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Figure 2.8: Chemical looping reforming (NiO) process.
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2.5 GTL Case Studies

To study the effect of chemical looping for natural gas conversion to liquid fuels, the CLR and

STS processes are incorporated as alternatives into a previously developed GTL process super-

structure [54]. Information about cost estimations for the process units is found in the published

paper [70]. Detailed model equations for other units besides chemical looping are also found in the

publication [70]. The objective function of the GTL process (Eq. 2.22) is to minimize the overall

cost of liquid fuels production.

min
X

f2Feed

Costf + CostEl + CostSeq +
X

u2UInv

CostUu � SalesLPG (2.22)

Natural gas and fresh water are the considered feedstock costs (Costf ). Electricity cost (CostEl)

is negative if excess electricity is produced as a byproduct and positive elsewise. A cost (CostSeq)

may be paid to sequester CO2 to meet greenhouse gas (GHG) emission constraints. By summing

over the individual unit costs (CostUu ), the total investment cost of the GTL process is obtained.

Finally, the sales of LPG (SalesLPG) as a byproduct are also included. Each of these terms is

normalized with respect to the total energy of liquid fuels production ($/GJ).

2.5.1 Global Optimization Strategy

The complete mathematical model describing the GTL process synthesis is a large-scale non-

convex MINLP with >30,000 constraints >25,000 continuous variables, and >50 binary vari-

ables. Since commercial solvers struggle to find a feasible solution for a problem of this size,

a customized deterministic branch-and-bound algorithm (Figure 2.10) is implemented to solve the

MINLP to global optimality. The overall problem is decomposed into a lower bound problem and

an upper bound problem. The algorithm’s aim is to close the gap between the solutions to these

two subproblems and converge toward the global optimum.

Tight linear underestimators are used to relax nonlinear expressions (piecewise linearization for

concave terms and McCormick envelopes for bilinear & higher terms), forming a mixed-integer
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Figure 2.10: Branch-and-bound algorithm to solve MINLP.

linear program (MILP) as the lower bound problem. The MILP is solved using CPLEX, and this

solution is a lower bound on the original MINLP. From the lower bound solution, a pool of initial

starting points is also generated. A nonlinear program (NLP) is created as the upper bound problem

from fixing binary variables at these starting points. The NLP is solved using CONOPT, and this

solution is an upper bound on the original MINLP.

Optimality-based bounds tightening (OBBT) and feasibility-based bounds tightening (FBBT)

routines are also performed to tighten the bounds on continuous variables. In constructing the

branch-and-bound tree, the heuristic is to branch on the continuous variable involved in a nonlinear

term with the largest relaxation error. When iterating through the tree, the upper bound to the

MINLP is updated if the NLP solution at a given node is lower than the current best. Nodes with

a lower bound solution that is ✏-greater than the upper bound are fathomed. The algorithm is run

until the time limit has expired or all the nodes in the tree have been explored, whatever occurs

first. The final solution to the MINLP is the best upper bound that is found. For a more detailed

discussion about global optimization theory and algorithms, several textbooks are referred [91,92].
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2.5.2 Description of Case Studies

Sixteen case studies are investigated to compare chemical looping technologies against reform-

ing for natural gas conversion and their effects on overall GTL process economics. Four different

plant sizes (1, 10, 50, and 100 thousand barrels per day) are studied, and four set of case studies

are performed at each plant size: (i) ATR is used for natural gas conversion, (ii) SMR is used

for natural gas conversion, (iii) CLR is used for natural gas conversion, and (iv) STS is used for

natural gas conversion. The case studies are represented as [T ][SC], where T is the technology

restriction (A: ATR, S: SMR, N: CLR, and F: STS) and SC is the plant scale in thousand barrels

per day (kBPD). For example, A10 represents a 10 kBPD GTL plant that uses ATR for natural gas

conversion.

The liquid fuels output is constrained to match the U.S. demand (66.6% gasoline, 21.5% diesel,

and 11.9% kerosene by volume [93]). The GTL process is also constrained not to produce more

GHG emissions than typical petroleum refining based upon a well-to-wheel lifecycle analysis from

the GREET model [94]. If electricity is a required input, greenhouse (GHG) emissions from elec-

tricity are added to the GTL process emissions; if electricity is a produced output, GHG emissions

are discounted from the total. Only the key economic results are discussed here. For further de-

tailed results, please refer to the published paper [70].

2.5.3 Overall Cost Breakdown

A lower overall production cost corresponds to a more profitable plant. Break-even oil prices

(BEOP), measured in dollars per barrel, translate the production cost into an estimate of when the

GTL process becomes competitive with petroleum refining. The overall cost breakdown of each

case study is shown in Table 2.3. Across all the plant sizes, ATR is the best performing reforming

process and CLR is the worst performing chemical looping process. In the worst case, CLR offers

about 25% cost savings over ATR. In the best case, STS offers about 30-40% cost savings over

SMR. By switching to chemical looping from reforming, cost savings of 25-40% are observed.

This suggests that the GTL process economics could be greatly enhanced from utilizing chemical
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Table 2.3: Overall cost ($/GJ) of the GTL refinery with lower bound and optimality gap reported
for each case study.

Case Study A1 S1 N1 F1 A10 S10 N10 F10

Natural Gas 7.93 8.11 7.35 7.91 8.15 8.11 8.97 9.27
Water 0.02 0.06 0.01 0.01 0.02 0.03 0.02 0.02

Investment 14.45 14.44 10.42 10.30 6.15 6.93 5.26 5.12
CO2 TS&M 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00

O&M 3.81 3.81 2.75 2.72 1.62 1.83 1.39 1.35
Electricity -0.84 -0.44 -0.57 -1.93 -1.14 -0.48 -3.22 -3.98

LPG -0.84 -0.84 -0.84 -0.84 -0.84 -0.84 -0.84 -0.84
Total ($/GJ) 24.53 25.16 19.11 18.17 13.97 15.58 11.57 10.93

Lower Bound ($/GJ) 24.25 23.85 18.22 17.20 13.30 14.43 11.17 10.52
Optimality Gap (%) 1.12 5.47 4.90 5.64 5.05 7.96 3.60 3.86

BEOP ($/bbl) 122.22 125.71 92.41 87.25 64.11 72.98 50.91 47.37

Case Study A50 S50 N50 F50 A100 S100 N100 F100

Natural Gas 8.15 8.11 8.97 9.27 8.17 8.11 8.97 9.27
Water 0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.01

Investment 4.11 4.84 3.34 3.33 3.75 4.35 3.02 2.92
CO2 TS&M 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00

O&M 1.09 1.28 0.88 0.88 0.99 1.15 0.80 0.77
Electricity -1.13 -0.48 -3.22 -3.98 -1.17 -0.48 -3.22 -3.98

LPG -0.84 -0.84 -0.84 -0.84 -0.84 -0.84 -0.84 -0.84
Total ($/GJ) 11.39 12.94 9.15 8.67 10.90 12.32 8.74 8.16

Lower Bound ($/GJ) 11.22 11.87 9.13 8.32 10.22 11.90 8.44 8.09
Optimality Gap (%) 1.49 9.01 0.19 4.15 6.59 3.54 3.60 0.87

BEOP ($/bbl) 49.88 58.46 37.55 34.91 47.20 55.04 35.32 32.10
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looping. It is interesting to note that the BEOP values of the N10 & A50 case studies and F10

& A100 case studies are very similar, suggesting that the GTL refinery with chemical looping is

cost competitive with 5-10x larger GTL refineries with reforming. This is significant because an

economy-of-scale effect is experienced in using chemical looping without having to increase the

plant size.

Overall, lowered investment costs and increased electricity sales outweigh higher natural gas

costs in making chemical looping more profitable than reforming. Unit sizes are smaller for chemi-

cal looping because there is less material that flows through them due to having no light gas recycle

and greater per pass natural gas conversion. The higher syngas product from chemical looping also

reduces the size of downstream units, decreasing their investment costs as well. Because of the lack

of a light gas recycle, chemical looping generally intakes more natural gas than reforming. This

causes the natural gas cost contribution to be higher for chemical looping. However, this is com-

pensated through using the light gases that are not recycled for fuel combustion to generate process

heat and electricity instead. By having more available fuel gas, the electricity production in all the

chemical looping cases is greater. The expanded electricity production ultimately gives CLR &

STS a major cost advantage over ATR & SMR.

2.5.4 Investment Cost Breakdown

Investment costs broken down for each section in the GTL process are displayed in Table 2.4.

Oxygen generation cost for the ATR is included in the H2/O2 production section and not in the

syngas generation section. This is because the ASU may provide oxygen to other units that are not

associated with syngas generation.

In the ATR cases, >99% of the H2/O2 production cost is contributed by the ASU, and the

produced oxygen is all sent to the ATR. Adding the ASU cost to the ATR syngas generation cost,

it is clear that the chemical looping processes are less expensive than reforming after considering

all process units associated with syngas generation (1 kPBD: 52-57% less than ATR, 21-30% less

than SMR; 10 kBPD: 37-47% less than ATR, 33-44% less than SMR; 50 kBPD: 42-49% less

than ATR, 47-53% less than SMR; 100 kBPD: 42-50% less than ATR, 47-54% less than SMR).
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Table 2.4: Investment costs ($MM) of the major sections of the GTL refinery in each case study.

Case Study A1 S1 N1 F1 A10 S10 N10 F10

Syngas Generation 20.48 41.20 32.41 28.80 108.96 247.04 164.86 138.87
Syngas Cleanup 0.01 1.86 0.00 0.01 0.05 7.16 0.02 0.03
HC Production 16.86 18.40 12.26 12.65 70.58 81.69 60.69 58.77
HC Upgrading 55.32 58.91 55.31 54.76 247.17 262.49 245.27 244.65

H2/O2 Production 46.69 0.21 0.00 0.20 152.71 0.93 0.91 4.61
H&P Integration 22.04 37.96 16.27 17.48 106.39 166.68 109.61 116.59

Wastewater Treatment 8.94 11.76 6.58 7.55 39.35 50.82 38.30 39.56
Total ($MM) 170.34 170.29 122.83 121.45 725.21 816.80 619.66 603.08
Total ($/BPD) 170341 170289 122827 121454 72521 81680 61966 60308

Case Study A50 S50 N50 F50 A100 S100 N100 F100

Syngas Generation 463.79 1051.43 559.59 492.24 862.76 1962.06 1042.45 899.53
Syngas Cleanup 0.16 20.03 0.08 0.08 1.89 31.90 0.12 0.12
HC Production 285.91 335.45 225.60 220.54 527.19 625.89 421.11 410.05
HC Upgrading 770.94 826.15 764.63 761.92 1364.59 1483.01 1351.10 1345.42

H2/O2 Production 502.71 2.66 2.61 13.16 939.04 4.17 4.10 20.67
H&P Integration 288.59 479.54 308.82 360.33 545.87 805.84 573.57 594.55

Wastewater Treatment 111.86 139.86 109.34 112.38 174.75 216.89 171.01 175.82
Total ($MM) 2423.95 2855.11 1970.67 1960.65 4416.10 5129.77 3563.46 3446.16
Total ($/BPD) 48479 57102 39413 39213 44161 51298 35635 34462
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Downstream processing units in the hydrocarbon production and upgrading sections also have

reduced investment costs due to higher syngas purity coming from chemical looping.

Generating syngas from CLR is slightly more expensive than STS. NiO has one active oxygen

atom, while Fe2O3 has three active oxygen atoms. In other words, around 9% of the total mass of

NiO/Al2O3 is active oxygen, while about 20% of the total mass of Fe2O3/TiO2 is active oxygen.

More NiO/Al2O3 needs to be circulated between the FR and AR to achieve the same catalytic

outcome as a given amount of Fe2O3/TiO2, increasing the reactor sizes in CLR and leading to the

higher costs in syngas generation.

Overall, by decreasing the capital expenses associated with syngas generation (including the O2

production cost for ATR) and hydrocarbon production and upgrading, the two most costly sections

in the GTL refinery, CLR and STS lead to improved GTL economics.

2.6 Conclusion

The prospective benefits of chemical looping for syngas production in GTL processes are

shown through a process synthesis and global optimization approach. By switching to chemi-

cal looping from conventional reforming for natural gas conversion, cost savings of approximately

25-40% are potentially achievable. Even though chemical looping utilizes more natural gas, it is

ultimately more profitable due to greater electricity sales and reduced investment costs. This is

highlighted by the economic performance of small-scale chemical looping processes rivaling those

of conventional reforming at 5-10x greater size. Integrating chemical looping into GTL processes

is an enormous opportunity to enhance their capabilities.
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3. BIOMASS-BASED COPRODUCTION OF AMMONIA AND METHANOL⇤

3.1 Motivation

Interest in ammonia and methanol coproduction initiated from companies wanting to hedge

their product output with fluctuating selling prices. The first operating coproduction plant in the

United States started in 1994 in Westward, OK when Haldor-Topsøe was commissioned to retrofit

an ammonia facility with methanol capability to take advantage of the widening price margin

between the two products [95]. Similar market conditions will likely exist sometime in the future

because their supply and consumption are not always in sync. Therefore, the flexibility afforded

by an intensified process is highly advantageous. Likewise, the sharing of common process units

and utilities reduces the capital investment required compared to separate operations. As in the

ethanol case, biomass is an attractive feedstock for reducing the carbon intensity of ammonia and

methanol production in meeting their growing demand.

3.2 Background

While there are several patents and company brochures describing coproduction [96,97], there

is a dearth of scholarly work concretely quantifying the benefits [98]. Moreover, a biomass-based

ammonia and methanol process has never been investigated before. Previous works proposed sepa-

rate process superstructures for ammonia and methanol production [99–101]. This work integrates

these two superstructures together, forming a MINLP process synthesis problem, and solves for

the optimal coproduction using global optimization. A plant overview of ammonia and methanol

coproduction from biomass is shown in Figure 3.1. The process contains four main components.

First, biomass is converted to syngas through gasification. The syngas is then cleaned and purified

to the inlet specifications required for ammonia and methanol synthesis. Finally, synthesis loops

with compression, reaction, and separation steps produce the final product. Some background on
⇤Part of this section is reprinted from "Toward Optimal Synthesis of Renewable Ammonia and Methanol Processes

(RAMP)" by Tso, W.W. and Demirhan, C.D. and Powell, J.B. and Pistikopoulos, E.N., Computer Aided Chemical
Engineering, 2018, Vol. 44, pp 1705-1710, with permission from Elsevier and Copyright Clearance Center.
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Figure 3.1: An overview of the BAM plant.

integration options between ammonia and methanol is provided before moving onto mathematical

modeling of the synthesis reactors and results from the global optimization solution.

The overall reactions for ammonia (Eq. 3.1) and methanol synthesis (Eq. 3.2) are shown below.

Hydrogen is a key ingredient in both reactions and is obtained from syngas production. Upstream

units for producing hydrogen are the main components shared by ammonia and methanol. Because

syngas production is typically the most expensive section, a joint utilization mitigates this cost.

Given thermodynamic and kinetic limitations, not all the hydrogen sent to the synthesis reactors

will be consumed in a single pass. Therefore, one obvious way to integrate ammonia and methanol

production is to exchange hydrogen-rich off gases from the reactors with each other. Inherent

recycling of off gases to the same reactor is already performed to increase yield and improve
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efficiency. A combined recycling scheme can enhance productivity even further.

N2 + 3H2 ! 2NH3 (3.1)

CO + 2H2 ! CH3OH (3.2)

Another integration design is to use methanol synthesis as a carbon oxide purifying step for

ammonia synthesis. Syngas is compromised of mostly H2, CO, and CO2, but these carbon oxides

contaminate and poison the catalyst promoting ammonia synthesis. As such, syngas has to be

completely removed of CO and CO2 before being sent to the ammonia synthesis reactor. This

is typically carried out in two steps. First, CO2 is separated out in bulk quantity, and then the

remaining carbon oxides are hydrogenated to methane, consuming some of the valuable hydrogen,

or washed out with liquid nitrogen. Instead of treating the carbon oxides as waste contaminants,

they could be utilized for methanol production. Methanol synthesis is broken down to two reaction

steps (Eqs. 3.3 & 3.4), where CO2 is the actual main reactant. Therefore, producing methanol

monetizes the value of CO2, an otherwise wasted stream from ammonia synthesis, and reduces the

raw material needed as input.

CO2 + 3H2 ! CH3OH + H2O (3.3)

CO + H2O ! CO2 + H2 (3.4)

Figure 3.2 summarizes these two main integration methods. The sharing of utilities such as

heat, electricity, and cooling water is another way of cooperative operation to reduce costs. The

optimization of utility use is performed through a simultaneous heat, power, and water integration

with the process synthesis. This methodology followed is similar to the one described in previous

process synthesis works [99–101].
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Figure 3.3: Methanol synthesis reactor.

3.3 Mathematical Modeling of Synthesis Reactors

Simplified models of ammonia and methanol synthesis are assumed to be adequate enough to

describe their reactors. Like previously described in Section 2.3, more complex models would be

too complicated and ill-suited for the MINLP process synthesis and global optimization.

3.3.1 Methanol Synthesis Model

An equilibrium-based model, assuming Eqs. 3.3 & 3.4 are at equilibrium, is developed for

methanol synthesis. In the reactor (Figure 3.3) , there are five unknown molar species flows and

five unknown mole fractions. After writing down atom balances for C, H, and O, five mole fraction

equations, and the two thermodynamic equilibrium equations (Eqs. 3.5 & 3.6), there are zero

degrees of freedom left. Therefore, under an equilibrium assumption, methanol synthesis is fully

specified. Industrial methanol synthesis reactors do often reach equilibrium, so this is a sufficient

approximation.
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Keq,MS =
yH2O yCH3OH

y3H2
yCO2 P

2
(3.5)

Keq,WGS =
yCO2 yH2

yCO yH2O
(3.6)

3.3.2 Ammonia Synthesis Model

An equilibrium model for the ammonia synthesis reactor is not assumed because the reaction

does not reach the equilibrium value due to slow kinetics. Instead, the reactor is modeled through

a data-driven approach using a dataset of 25 industrial (Imperial Chemical Industries, Kellogg

Brown & Root, Haldor Topsøe, Uhde GmbH, Casale) and experimental values. There are three

unknown molar species flows coming out of the reactor (Figure 3.4). Inerts and ammonia, due

to recycling, are also inlets to the reactor, but they are not shown for clarity. Two degrees of

freedom are specified from atom balances for N and H. The final degree of freedom is closed by

determining the conversion of either N2 or H2, depending on which is the limiting reactant, to

NH3. For simplicity, the conversion Xr is assumed to be linearly dependent on inlet composition,

temperature, and pressure (Eq. 3.7).

Xr(T, P, yi) = A · T +B · P + C · yH2 +D · yN2 + E · yNH3 + F · yInert +G (3.7)

Fitted parameters A-G are determined from the data-driven approach. The dataset is separated

into training, validation, and testing subsets. 5-fold cross-validation with the training and validation

sets is performed. Then, the fitted parameters are used to predict the testing data not included in
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Table 3.1: Fitted parameters from 5-fold cross-validation for each model (different training and
validation sets). Error is reported for each model.

Terms Model 1 Model 2 Model 3 Model 4 Model 5
A -0.888 -0.547 -0.680 -0.718 -0.659
B 0.099 0.086 0.094 0.093 0.093
C 0.367 2.141 8.678 8.550 5.838
D 0.229 0.389 1.012 1.053 0.764
E 0.025 0.146 0.857 0.856 0.554
F 0.099 0.292 0.933 0.920 0.646
G -0.361 -2.222 -8.654 -8.630 -5.892

Train RMSE 0.127 0.143 0.151 0.144 0.158
Validation RMSE 0.228 0.186 0.204 0.180 0.101

Table 3.2: Model predictions of testing data using the fitted parameters from cross-validation.
Error is reported for each prediction.

Testing Set Model 1 Model 2 Model 3 Model 4 Model 5 Actual
Test 1 0.327 0.329 0.332 0.324 0.327 0.338
Test 2 0.303 0.299 0.300 0.297 0.301 0.305
Test 3 0.315 0.316 0.284 0.329 0.318 0.331
Test 4 0.213 0.209 0.209 0.211 0.209 0.224
Test 5 0.209 0.238 0.220 0.214 0.220 0.214

Test RMSE 0.061 0.089 0.130 0.056 0.062 -

training and validation. These results are shown below in Tables 3.1 & 3.2.

The fitted parameters from all models are observed to closely approximate the actual conversion

values. Parameters from Model 4 are used to model ammonia synthesis in the process optimization

because it has the smallest average absolute error of 0.007 and the smallest root mean squared error

(RMSE). It is important to note that the reported RMSE figures are measures of the spread of error

between the actual value and predicted value. They do not quantify the absolute error. Finally, with

the calculated Xr, the production of ammonia is determined through stoichiometric relationships.

For example, if N2 is the limiting reactant, the following equations are used:

N out
2 = N in

2 (1�Xr) (3.8)
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Figure 3.5: Ammonia synthesis loop.

Hout
2 = H in

2 � 3(N in
2 �N out

2 ) (3.9)

NHout
3 = NH in

3 + 2(N in
2 �N out

2 ) (3.10)

3.4 Synthesis Loop Configurations for Coproduction

Detailed flowsheets of the ammonia and methanol synthesis loops are shown in Figures 3.5

& 3.6. Syngas containing carbon oxide species can be sent to an once-through reactor to pro-

duce methanol and purify the syngas stream for ammonia synthesis. Flash vessels and distillation

processes separate out the ammonia and methanol as final products. Each synthesis loop has an

inherent recycle where unreacted syngas is sent back to the reactor to increase product yield. Like-

wise, the loops are connected through the collective recycling of unreacted gases. The published

paper explains in further detail the process descriptions for each section of the BAM process [102].

3.5 BAM Case Studies

Ammonia and methanol coproduction is studied for the first time within a process synthesis

& global optimization approach. Moreover, biomass is utilized as a feedstock to reduce carbon
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Figure 3.6: Methanol synthesis loop.

intensity. Information about cost estimations for the process units is found in previous publications

[99–101]. Detailed model equations for other units are also found in these publications [99–101].

The objective function of the BAM process (Eq. 3.11) is to minimize the overall cost of the

coproduction. To weigh the production of ammonia and methanol on an equal basis, each cost

contribution is levelized with respect to the total hydrogen content in the product ($/kg H2 eq.).

Ammonia has 17.6 wt.% of hydrogen, and methanol has 12.6 wt.% of hydrogen.

min
X

f2Feed

Costf + CostEl + CostSeq +
X

u2UInv

Costu (3.11)

The cost contribution terms have the same meaning as those in Section 2.5, except the feedstock

costs here include biomass and not natural gas.

3.5.1 Global Optimization Strategy

The complete mathematical model describing the BAM process synthesis is a large-scale non-

convex MINLP with >25,000 constraints >20,000 continuous variables, and >50 binary variables.
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A similar global optimization strategy as that described in Section 2.5.1 is adopted.

3.5.2 Description of Case Studies

Two sets of case studies are explored to quantify the cost savings from integration and the

reduction in CO2 emissions from using biomass. The first case study compares producing 250

kg H2 eq./day of ammonia and methanol separately or together. As an example of grasping the

weight basis of hydrogen content, a 250 kg H2 capacity corresponds to about 1400 MT/day for

ammonia and 2000 MT/day for methanol. Figure 3.7 outlines this case study. The second case

study examines the effect of different product ratios of ammonia and methanol. The product output

is 500 kg H2 eq./day, and product ratios explored are 1:0, 1:3, 1:1, 3:1, and 0:1. Figure 3.9 outlines

the second case study.

The case studies are labeled as [%A]/[%M ] � [C], where %A is percentage of the product

output by hydrogen content that is ammonia, %M is percentage of the product output by hydrogen

content that is methanol, and C is the plant scale in kg H2 eq./day. For example, 75A/25M-

500 represents a 500 kg H2 eq./day BAM plant that produces 75% ammonia and 25% methanol.

All case studies assume hardwood (forest residue) as the biomass feedstock at a purchase price

of $70/MT. The BAM process is also constrained not to produce more than 50% of the GHG

emissions typically emitted from producing ammonia and methanol from natural gas (1.7 tons of

CO2 per ton of NH3 and 0.8 tons of CO2 per ton of CH3OH). Only economic and GHG emissions

results are shown in the following sections. For additional results on the optimal topology, refer to

the publication [102].

3.5.3 Case Study I: Single vs. Coproduction

3.5.3.1 Overall Cost Breakdown

A break-even price (BEP), measured in $/kg or $/MT, estimates the minimum ammonia or

methanol selling price for the BAM plant to turn a profit. The hydrogen BEP is converted to

ammonia and methanol BEPs through their hydrogen weight percentages. Lower BEP values

represent plants with more promising profit margins. The overall cost breakdown by contribution
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Figure 3.7: Description of first case study.

is shown in Table 3.3.

For the separate productions, methanol is about 25% cheaper to produce than ammonia, which

is expected because there are fewer unit operations required in methanol production, lowering its

capital investment cost. Methanol has more electricity production because it is less energy in-

tensive to produce, and therefore more fuel gas is available for power. All other costs are similar

between the two. From 2000-2009, ammonia prices averaged about $500/MT [103] and the current

methanol price is $432/MT [104]. The calculated ammonia and methanol BEPs are very compet-

itive with recent historical prices, suggesting the economic viability of biomass-based ammonia

and methanol production.

From integrating the production, the BEP value moves somewhere between that of ammonia

and methanol. The ammonia BEP decreases by approximately 20%, while the methanol BEP

increases by about 8%. For every $1 increase in the methanol BEP, there is a $4.63 decrease in

the ammonia BEP. Therefore, for a small sacrifice in methanol’s selling price, the economics of

ammonia have greatly improved. This is reflected in the cost contributions, where the coproduction

plant utilizes less biomass and has an investment cost comparable to the methanol plant.
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Table 3.3: Overall cost of the BAM plant in Case Study I.

Cost Contribution
($/kg of H2 eq.) 100A-250 100M-250 50A/50M-500

Hardwood Biomass 1.013 1.036 0.996
Water 0.009 0.006 0.007

Investment 1.093 0.840 0.855
O&M 0.288 0.222 0.226

Electricity -0.343 -0.584 -0.439
BEP ($/kg H2 eq.) 2.060 1.520 1.644
BEP ($/MT NH3) 366 - 292

BEP ($/MT CH3OH) - 191 207

3.5.3.2 Investment Cost Breakdown

Investment costs broken down for each section in the BAM plant are displayed in Table 3.4.

The syngas generation section costs around the same for separate ammonia and methanol produc-

Table 3.4: Investment costs ($MM) of the major sections of the BAM plant in Case Study I.

Investment Costs ($MM) 100A-250 100M-250 50A/50M-500

Syngas Generation 255.68 232.18 417.37
Syngas Cleanup 69.88 87.62 162.36

Ammonia Synthesis Loop 130.52 0.00 130.52
Methanol Synthesis Loop 0.00 33.05 31.06

H&P Integration 91.10 71.51 126.68
Wastewater Treatment 37.69 25.48 46.98

Total 584.87 449.83 914.98

tion. About 40% of ammonia’s total cost is from syngas generation, while this is approximately

50% for methanol. The largest investment difference comes from the synthesis loops, where am-

monia is about four times more expensive. Costs of the same sections of ammonia and methanol
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production are added together to compare with the coproduction result. Figure 3.8 highlights the

total investment cost reduction from coproduction and the percentage of each section’s contribu-

tion to this reduction. The overall investment decreases by about 12% for coproduction. Syngas

generation is responsible for more than half of the savings, while the sharing of heat and power

utilities reduces investment cost by nearly 30%.

Syngas 
Generation

56%

Methanol 
Synthesis Loop

2%

H&P 
Integration

29%

Wastewater 
Treatment

13%

Investment Cost Reduction

$124.6 MM

Figure 3.8: Investment cost reduction from coproduction.

3.5.3.3 Greenhouse Gas Emissions

The GHG emissions are determined through considering emissions accrued during: (i) feed-

stock acquisition and transportation [94], (ii) delivery and end usage of chemicals, and (iii) venting

or sequestration of CO2. Three metrics, the GHG emissions avoided from ammonia (GHGAN),

methanol (GHGAM), and electricity (GHGAE) production, are defined to compare the GHG emis-

sions from the BAM plant to fossil fuel based production. GHGAN and GHGAM are reported val-

ues for the carbon intensity of ammonia and methanol production from natural gas (1.7 kg CO2/kg

NH3 and 0.8 kg CO2/kg CH3OH). GHGAE is calculated using a typical natural gas based power
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plant emissions level (101.3 kg CO2eq./GJ). The sum of GHGAN, GHGAM, and GHGAE repre-

sents the total GHG emissions avoided by a BAM plant. An emissions index (GHGI), defined as

the ratio of GHG to the previous sum, indicates the relative GHG emissions of the BAM plant. The

BAM plant is constrained to emit no more than 50% of that a typical fossil fuel process (Eq. 3.12).

GHGI =
GHG

GHGAN +GHGAM +GHGAE
 0.5 (3.12)

Table 3.5 highlights the GHG emissions from the single and coproduction. All biomass-based

processes have a GHGI significantly lower than 0.5. The BAM plant is over 80% less carbon

intensive than typical ammonia and methanol production from fossil fuels, while still remaining

economically competitive. Satisfying some of the growing ammonia and methanol demand with

biomass to mitigate CO2 emissions is a feasible alternative.

Table 3.5: GHG emissions of the BAM plant in Case Study I.

GHG Emissions
(kg CO2 eq./s) 100A-250 100M-250 50A/50M-500

Biomass -68.25 -69.81 -134.25
Vented CO2 77.07 47.34 120.14

LGHG 8.82 9.11 17.48
GHGAE 5.17 8.80 13.24
GHGAN 27.61 0.00 27.61
GHGAM 0.00 49.29 49.29

GHGI 0.27 0.16 0.19

3.5.4 Case Study II: Different Product Ratios

3.5.4.1 Overall Cost Breakdown

The overall cost breakdown is shown in Table 3.6 for BAM plants from high ammonia per-

centage to low. The cost contribution of biomass is lowest for the 75A/25M plant, suggesting that
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Figure 3.9: Description of second case study.

coproduction plants producing more ammonia utilize less biomass. Methanol contains carbon in

its structure and likely needs more biomass than ammonia, which does not have carbon. Invest-

ment costs for coproduction plants are more expensive than methanol, but cheaper than ammonia.

With increasing methanol percentage, the BEP values of ammonia and methanol decrease, again

reiterating that methanol production is less costly than ammonia. However, all the BEP values are

competitive with historical ammonia and methanol prices. The optimal output of the BAM plant

will depend on actual market conditions and needs to be adjusted accordingly to meet demand.

3.5.4.2 Investment Cost Breakdown

Figure 3.10 shows the investment cost breakdown for the BAM plants when varying the product

ratios. Syngas generation dominates the majority of the investment cost (44-54%). This percentage

increases as more methanol is produced, but the absolute value stays fairly constant. The ammonia

synthesis loop is more costly than methanol synthesis loop. Coproduction leads to dramatically

reduced costs for the former at the expense of increasing the latter by a lesser amount. Investment

cost decreases with more methanol production. One takeaway is that adding methanol production

capability to an existing ammonia plant is a cheaper option than adding ammonia production capa-
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Table 3.6: Overall cost of the BAM plant in Case Study II.

Cost Contribution
($/kg of H2 eq.) 100A 75A/25M 50A/50M 25A/75M 100M

Hardwood Biomass 1.021 0.924 0.996 1.002 1.04
Water 0.009 0.007 0.007 0.006 0.006

Investment 0.948 0.873 0.855 0.788 0.713
O&M 0.250 0.230 0.226 0.208 0.188

Electricity -0.405 -0.262 -0.439 -0.497 -0.58
BEP ($/kg H2 eq.) 1.824 1.772 1.644 1.507 1.369
BEP ($/MT NH3) 324 315 292 267 -

BEP ($/MT CH3OH) - 223 207 190 172

bility to an existing methanol plant. Therefore, in terms of retrofitting existing facilities, it is more

advantageous to add methanol into the ammonia picture than vice versa. Moreover, constructing

a new coproduction plant is marginally more expensive than building a solely ammonia plant, but

the former is much more flexible in adjusting to market demand.

3.5.4.3 Greenhouse Gas Emissions

The GHG emissions for each BAM plant in Table 3.7. As expected, methanol production is less

carbon intensive than ammonia production because the former stores some carbon in the chemical

structure of methanol. All BAM plants show a significant reduction in GHG emissions compared

to fossil fuels and remain economically competitive. Coproduction allows the carbon intensity of

ammonia to decrease (about 25% lower with 50% methanol).

3.5.4.4 Sensitivity Analysis

Purchase price of biomass is a key parameter because it has the greatest cost contribution to

the BEP value. In Table 3.6, biomass contributes between 52-76% to the final cost. Considering a

low price of $40/ton and a high price of $100/ton [105], Figure 3.11 displays the BEP values for

the various product ratios. Even with higher biomass costs, the BAM plants remain profitable with

respect to historical prices for ammonia and methanol. Therefore, BAM plants are not only flexible
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Figure 3.10: Investment costs ($MM) of the major sections of the BAM plant in Case Study II.

in navigating market conditions and less carbon intensive, but also highly resilient to changing

biomass economics.

3.6 Conclusion

Promising results for BAM plants are shown through a process synthesis and global optimiza-

tion approach. By switching from fossil fuels to biomass, an estimated 80% reduction in GHG

emissions is possible, without any additional CO2 capture units, is achievable. Through integrating

ammonia and methanol production, the investment cost decreases over 10% compared to separate

plants. Ammonia BEP decreases faster than the increase in methanol BEP for coproduction of all

product ratios, which improves the plant economics and flexibility. Ultimately, there is enormous

potential in producing ammonia and methanol from biomass, and this is a possible extension of

biomass utilization beyond ethanol.
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Table 3.7: GHG emissions of the BAM plant in Case Study II.

GHG Emissions
(kg CO2 eq./s) 100A 75A/25M 50A/50M 25A/75M 100M

Biomass -137.66 -124.52 -134.25 -135.02 -140.21
Vented CO2 155.45 124.91 120.14 105.13 95.26

LGHG 17.79 16.17 17.48 17.49 18.21
GHGAE 12.21 7.89 13.24 14.98 17.47
GHGAN 55.21 41.42 27.61 13.80 0.00
GHGAM 0.00 24.63 49.29 73.94 98.58

GHGI 0.26 0.22 0.19 0.17 0.16
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Figure 3.11: Biomass price sensitivity of the BAM plant in Case Study II.
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4. SUPPLY CHAIN OPTIMIZATION OF AN ENERGY CARRIER NETWORK⇤

4.1 Motivation

Increased penetration of renewable energy will require energy storage solutions to align power

generation with consumer demand. Energy storage in chemicals have advantages over PSH, CAES,

and batteries as mentioned in Section 1.5.3, giving them flexibility as energy carriers, but which

chemical to choose is not an obvious decision. Moreover, the additional complexity of chemical

storage (more intermediary steps) is capital intensive and efficient strategies are needed for it to

be competitive with other storage options. Process synthesis approaches mentioned in Sections

2 & 3 can determine the optimal process to produce the energy carriers, but give no guideline of

how to design an infrastructural network connecting supplier to consumer. Instead, a supply chain

optimization model can elucidate the optimal network topology.

4.2 Background

Hydrogen, ammonia, and methanol are compared as energy carriers in Table 4.1. While hy-

drogen has the most attractive mass energy density, volumetric capacity is a key design criterion

for energy storage applications. In this respect, gaseous and liquid hydrogen suffer. As described

in Section 3.2, ammonia and methanol are synthesized from hydrogen. They have respective vol-

umetric energy densities that are about twice that of liquid hydrogen and four times greater than

hydrogen gas. In fact, ammonia and methanol have even greater H2 volume density than hydrogen

itself. Ammonia and methanol also possess favorable storage properties compared to the extreme

cryogenic or pressurized conditions required for hydrogen. However, these benefits for ammonia

and methanol come at higher production costs, which need to be weighed against the extra storage

costs for hydrogen.

Previous works have studied hydrogen, ammonia, and methanol as separate economies [60–
⇤Reprinted from "Energy Carrier Supply Chain Optimization: A Texas Case Study" by Tso, W.W. and Demirhan,

C.D. and and Lee, S. and Song, H. and Powell, J.B. and Pistikopoulos, E.N., Computer Aided Chemical Engineering,
2019, Vol. 47, pp 1-6, with permission from Elsevier and Copyright Clearance Center.
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Table 4.1: Comparison of hydrogen, ammonia, and methanol as energy carriers.

Attribute H2 (Liquid) H2 (Gas) NH3 CH3OH

Mass Energy Density (kWh/kg) ⇡ 33.3 ⇡ 33.3 ⇡ 5.1 ⇡ 6.4
Volumetric Energy Density (kWh/L) ⇡ 2.5 ⇡ 1.0 ⇡ 4.3 ⇡ 4.6

H2 Weight % 100 100 17.8 12.6
H2 Volume Density (kg/m3) 71.2 24-40 105 99.8

Storage Temperature (�C) -253 20 a. -33.3
b. 20 20

Storage Pressure (atm) 1 350-700 a. 1
b. 10-20 1

62]. This division is limiting and does not investigate the potential interactions among the three.

A more holistic perspective could exploit the energy carriers together in a hybrid economy. In

addition, quantitative studies analyzing energy carriers and their infrastructural design are few in

number and have primarily focused on hydrogen [106–108]. Toward addressing these gaps and

designing an optimal network of energy carriers, a MILP model is developed that considers the

trade-offs and coordinates logistical decisions within the supply chain. The MILP model is then

applied to investigate energy carrier scenarios in Texas.

Utilizing energy carriers in Texas is an interesting application because nearly half of its res-

idents live in the five largest metropolitan areas, but high solar irradiance and wind speeds are

concentrated away from this urban population (Figure 4.1). In terms of currently installed renew-

able capacity, Texas leads the United States in wind power (⇠22 GW) [109] and is fifth in solar

power (⇠2.9 GW) [110]. In 2017, solar and wind energies generated about 18% of the electricity

in Texas [109]. Therefore, Texas is well-suited as a case study for the ECN. In the next section, the

MILP is described before results are shown.

4.3 Energy Carrier Supply Chain

Inputs to the energy supply chain model are shown in Figure 4.2. Annual average global

horizontal solar irradiance (GHI) and wind speeds are obtained from NREL NSRDB [111] and
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WIND Toolkit [112], respectively. Land available for solar PV and wind turbine development are

derived from a NREL study [113]. Water supplies are taken from USGS [114], and CO2 point

sources are determined from NETL ATLAS. Candidate facilities for energy carrier production

are located at the centroids of each county, and the demand locations are Houston, Dallas, Ft.

Worth, San Antonio, and Austin. Truck and rail are transportation options from a facility location

to a demand city. CO2 and water are transported through pipeline from resource areas to facility

location. Optimal parameters for energy carrier production facilities are determined from a process

synthesis approach similar to that in Sections 2 & 3, but only considering air, water, CO2, solar,

and wind as process inputs. Fuel cell and gas turbines convert energy carriers back to power at the

demand location site.

Binary variables in the MILP model are assigned to model the selection of facility location,

type, & size and conversion technologies for each energy carrier. Continuous variables account for

material flows in the network and power capacities. Constraints are specified for flow balances,

resource availability, land restrictions, facility requirements, and electricity demand. The overall

objective function is to minimize the LCOE of the supply chain network, Full detailed equations

of the MILP model are described below. The set, parameter, and variable definitions are found in
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Figure 4.2: Energy carrier supply chain model overview.

the Appendix 7.3.4. Parameter values are also given in Appendix 7.3.4.

4.3.1 MILP Mathematical Model

4.3.1.1 Logistics Constraints

Eq. 4.1 restricts the existence of at most one energy carrier production facility at each candidate

location, and Eq. 4.2 restricts the usage of at most one conversion technology for each energy

carrier at each demand location.

X

(t,q)

yl,t,q  1 8l 2 LF (4.1)

X

k

yDp,d,k  1 8p 2 P, 8d 2 LD (4.2)

4.3.1.2 Facility Location Flows

Eqs. 4.3 to 4.5 deal with network flows around the candidate facility locations. Eq. 4.3

specifies the feedstocks utilized at a facility location (Feedf,l) to be the feedstock requirement of
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a candidate production facility (FRf,t,q) calculated by an earlier process synthesis. Eq. 4.4 limits

the total feedstock flow to facility locations from a resource area to be less than the feedstock

availability at the given area (FAf,s). Eq. 4.5 sets the total feedstock flow to a facility location to

be equal to the amount of feedstock required there.

X

(t,q)

yl,t,qFRf,t,q = Feedf,l 8f 2 F, 8l 2 LF (4.3)

X

(l,m)

xf,s,l,m  FAf,s 8f 2 F, 8s 2 S (4.4)

X

(s,m)

xf,s,l,m = Feedf,l 8f 2 F, 8l 2 LF (4.5)

4.3.1.3 Utility Requirements

X

(t,q)

yl,t,qERt,q = Elecl 8l 2 LF (4.6)

PVl + Turbl = Elecl 8l 2 LF (4.7)

PVl 
3.6⇥ 106

86400
PVCFPVEffGHIlSLl 8l 2 LF (4.8)

Turbl 
TCF (1� TEff )WPlWLl

TLand
8l 2 LF (4.9)

WPl =
10�6Cp⇡⇢D2v3l

8⇥ 106
8l 2 LF (4.10)

Eqs. 4.6 to 4.10 are related to the electricity requirements of the facilities and restrictions on the

electricity producible from the renewable farms. Eq. 4.6 specifies the electricity needed at a facility

location (Elecl) to be the electricity requirement of a candidate production facility (ERt,q), and Eq.

4.7 divides this electricity generation between solar PV (PVl) and wind turbines (Turbl). Eqs. 4.8

and 4.9 restrain the amount of electricity producible from solar PV and wind turbines, respectively,

by taking into consideration their capacity factors (CF ), conversion efficiencies (Eff ), resource

availabilities (GHIl & vl), and land usages (SLl & WLl). Eq. 4.10 relates wind speed (vl) to wind
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power (WPl).

4.3.1.4 Demand Location Flows

Eqs. 4.11 to 4.13 are concerned with network flows around the demand locations. Eq. 4.11

specifies the total product flow from a facility location to demand locations is equal to the pro-

duction output of the candidate facility (PRp,t,q). Eq. 4.12 represents the total product flow of an

energy carrier to each demand location (Prodp,d). Conversion from energy carrier back to power

(Capp,d,k) is calculated using each carrier’s lower heating value (LHVp) and conversion efficien-

cies (Effp,k) in Eq. 4.13.

X

(t,q)

yl,t,qPRp,t,q =
X

(d,m)

zp,l,d,m 8p 2 P, 8l 2 LF (4.11)

X

(l,m)

zp,l,d,m = Prodp,d 8p 2 P, 8d 2 LD (4.12)

yDp,d,kProdp,dLHVpEffp,k
86400

= Capp,d,k 8p 2 P, 8d 2 LD, 8k 2 K (4.13)

hp,d,kLHVpEffp,k
86400

= Capp,d,k 8p 2 P, 8d 2 LD, 8k 2 K (4.14)

Prodp,d �M(1� yDp,d,k)  hp,d,k 8p 2 P, 8d 2 LD, 8k 2 K (4.15)

hp,d,k  Prodp,d 8p 2 P, 8d 2 LD, 8k 2 K (4.16)

hp,d,k  MyDp,d,k 8p 2 P, 8d 2 LD, 8k 2 K (4.17)

Notice that Eq. 4.13 contains a bilinear term (yDp,d,kProdp,d) between a binary variable and a

continuous variable. Through substituting for this nonlinear term with a positive variable hp,d,k, the

exact replacement of Eq. 4.13 is performed with the linear Eqs. 4.14 to 4.17, where M represents

a value large enough to relax the constraint.
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4.3.1.5 Total Power Demand

The total power demand output from the entire supply chain network (Total) is set in Eq.

4.18, assuming an amount of storage time (StoreT ime) passes between when the energy carrier is

produced at the facility locations and consumed at the demand sites. Eq. 4.19 limits the capacity

contributions (Demandd) of a demand site’s conversion technologies toward satisfying the overall

power demand.
X

(p,d,k)

Capp,d,k ⇥ 86400StoreT ime = Total (4.18)

Capp,d,k 
yDp,d,kDemandd
86400StoreT ime

8p 2 P, 8d 2 LD, 8k 2 K (4.19)

4.3.1.6 Cost Contributions

Finally, Eqs. 4.20 to 4.29 explain the cost contributions from production facilities, renewable

farms, conversion technologies, storage, feedstock purchases, transportation, land leases, operation

& maintenance, and oxygen sales.

CostFac = StoreT ime

X

(p,l,t,q)

yt,l,qICt,qPRp,t,qHCp (4.20)

CostRenew = StoreT ime
CCR

OPT

X

l

PVl

PVCF
CostPV +

Turbl
TCF

CostTurb (4.21)

CostConv = StoreT ime
CCR

OPT

X

(p,d,k)

Costk
CFk

Capp,d,k (4.22)

CostStore = StoreT ime

X

(p,d)

Prodp,dHCpCostp (4.23)

CostFP = StoreT ime

X

(f,p,t,l,q)

yt,l,qFCf,t,qPRp,t,qHCp (4.24)

CostFT = StoreT ime

X

(f,s,l,m)

xf,s,l,mCostf,s,l,m (4.25)
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CostPT = StoreT ime

X

(p,l,d,m)

zp,l,d,mCostp,l,d,m (4.26)

CostLand =
X

l

LFl

✓
PVlPVLease

PVCF
+

TurblTLease

TCF

◆
(4.27)

CostO&M = StoreT ime

0

@
X

(p,l,t,q)

yt,l,qOMt,qPRp,t,qHCp +
OMR

365
(CostRenew + CostConv)

1

A

(4.28)

SalesOxy = StoreT ime

X

(p,l,t,q)

yt,l,qOxyt,qPRp,t,qHCp (4.29)

4.3.1.7 Objective Function

The overall aim is to minimize the LCOE of the energy carrier supply chain. Each of the cost

contributions is levelized with respect to the total electricity output from the network ($/MWh).

The final MILP model consists of Eq. 4.30 as the objective function and all the equations above,

except for Eq. 4.13, as constraints.

min (CostFac+CostRenew + CostConv + CostStore

+ CostFP + CostFT + CostPT (4.30)

+ CostLand + CostO&M � SalesOxy)/Total

4.4 Texas Case Studies

Eight case studies are chosen to show the effect of storage time and the integration of energy

carriers. The first set of case studies deal with separate hydrogen (H), ammonia (A), and methanol

(M) networks, assuming 1-month and 3-month storage times to examine their effect. The second

set of case studies consider integrated (I) supply chains. H-1 is an example of how case studies are

labeled, and this represents the 1-month hydrogen network. In the first seven case studies, energy

carriers fulfill 100% of the electricity demand at the five cities. The final study looks at a simpler

scenario, which location’s demand to satisfy to achieve 10% replacement of the total demand,

assuming 50% reduction in renewable energy investment cost. The average monthly demand is
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assumed to be 16320 GWh. The total demand is assumed to be the monthly demand multiplied by

the storage time. The MILP model is solved using CPLEX in GAMS.

4.4.1 Separated Economies

4.4.1.1 1-Month Storage Time

From Figures 4.3 to 4.5, the H-1 network has a much lower LCOE than that of A-1 and M-

1. This demonstrates that the additional production costs for ammonia and methanol production

outweigh hydrogen’s increased storage costs for an assumed 1-month storage time. Taking a closer

look, the storage costs are 35% of the LCOE for hydrogen ($0.17/kWh), while it is only 4.2%

for ammonia ($0.03/kWh) and <1% for methanol ($0.004/kWh). However, the investment cost

contributions (including the production facility, renewable farm, and conversion technologies) for

ammonia and methanol total $0.49/kWh and $0.29/kWh, respectively, which is greater than the

$0.21/kWh of hydrogen. Likewise, captured CO2 costs is the most significant factor in the LCOE

for methanol, contributing $0.24/kWh by itself.

Hydrogen facilities are concentrated in northern and central Texas, where wind is abundant,

while more ammonia and methanol facilities are needed and expanded elsewhere because extra

energy is required for their production. The H-1 network requires 64.7 GW of renewable energy

(95% wind, 5% solar), while the A-1 network consumes 144.4 GW (70% wind, 30% solar) and

the M-1 network utilizes 80.4 GW (91% wind, 9% solar).

4.4.1.2 3-Month Storage Time

When the storage time is extended to 3 months, the LCOE starts to slightly favor ammonia over

hydrogen and methanol. A similar LCOE breakdown is observed for the A-3 and M-3 networks

(Figure 4.7 & 4.8) compared to their 1-month cases; however, the hydrogen picture (Figure 4.6)

is vastly different. Storage cost now covers nearly 2/3 of the hydrogen LCOE or $0.50/kWh.

Therefore, energy storage in hydrogen appears more suitable for shorter time periods, and it is

more advantageous to utilize other chemicals like ammonia if a longer storage period is expected.

In both 1-month and 3-month cases, transportation costs, land lease, and conversion technologies
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Figure 4.3: H-1 network.
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Figure 4.4: A-1 network.
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Figure 4.5: M-1 network.

are much smaller portions of the overall LCOE, indicating that they are not limiting factors toward

realizing an energy carrier supply chain. The main costs are capital investment associated with

energy carrier production, storage in the case of hydrogen, and feedstock in the case of methanol.

Although not explicitly shown in Figure 4.8, methanol facilities have moved closer to CO2

point sources to mitigate feedstock costs. The hydrogen and ammonia network looks similar to

before. The H-1 network requires 62.8 GW of renewable energy (99% wind, 1% solar), while

the A-1 network consumes 148.4 GW (60% wind, 40% solar) and the M-1 network utilizes 102

GW (35% wind, 65% solar). Due to increased energy requirements for ammonia and methanol

production comprising 3 month storage, their solar energy utilization is now a major factor.

4.4.2 Integrated Economies

4.4.2.1 3-Month Storage Time

The integration of hydrogen, ammonia, and methanol networks is examined for an assumed

3-month storage period. In Figure 4.9, about a 25% reduction in the LCOE is observed (about

$0.20/kWh) from the best value obtained for ammonia in Section 4.4.1.2. All three energy carriers

are utilized with ammonia holding the largest share (55.5%), followed by methanol (44.3%), and

hydrogen (0.2%). The percentage of demand each energy carrier satisfies at each city is shown in
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Figure 4.6: H-3 network.
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Figure 4.7: A-3 network.
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Figure 4.8: M-3 network.

Table 4.2: Energy carrier composition at each demand city.

City H2 NH3 CH3OH

Houston 2.2% 97.8% 0%
Dallas 0% 33.6% 66.4%

Ft. Worth 0.4% 67.4% 32.2%
San Antonio 0% 62.7% 37.3%

Austin 0% 40.8% 59.2%

Table 4.2. Ammonia and methanol mitigate the hefty storage costs of hydrogen, while hydrogen

and methanol alleviate the extra energy burden and capital cost of producing ammonia. Investment

costs total $0.32/kWh, while CO2 capture costs add $0.14/kWh and storage contribute $0.02/kWh.

Facilities are concentrated mostly in northern and central Texas, reflecting the high utilization of

wind resources. The integrated network requires 97.2 GW of renewable energy (92% wind, 8%

solar).
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Figure 4.9: I-3 network.

4.4.2.2 10% Demand and 50% Decrease in Renewable Investment Cost

For this case study, it is assumed that 10% of the total demand is met, renewable farm costs

have decreased by half, and the storage period is 1 month. Figure 4.10 highlights the results. For

these assumptions, the LCOE becomes very competitive with those reported for batteries, but those

values usually do not consider the construction of renewable farms as part of their cost evaluation.

If the renewable farm cost is subtracted from the network’s LCOE, this value becomes $0.24/kWh,

which is extremely competitive with PSH, CAES, and batteries. This modified LCOE would be

the additional cost for building an energy carrier network with facilities located next to currently

operating solar and wind farms. Also comparing this value to the hydrogen LCOE in Section

4.4.1.1 with the renewable farm cost removed, the integration of networks leads to a $0.09/kWh

decrease or 27% reduction.

Only ammonia (74%) and hydrogen (26%) are utilized to satisfy electricity requirements in

Austin, Dallas, and San Antonio. All of the ammonia is sent to San Antonio, and hydrogen is

divided between the other two. Investment costs contribute $0.20/kWh to the LCOE or 57%, and

storage costs add $0.06/kWh. Rail is chosen for the long-distance transportation of hydrogen to
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Figure 4.10: I-1 network.

Austin and Dallas, while rail and truck are utilized to ship ammonia to San Antonio depending on

the distance. The facilities are spread out between northern, western, and central Texas, exploiting

mostly the wind speeds that are concentrated in these areas. The renewable energy required is 10.6

GW (98% wind, 2% solar).

4.5 Remarks on MILP Model

There are two shortcoming of this MILP, which are addressed in Demirhan et al. [115] and

Section 5. Time is not explicitly modeled, and storage time is assumed as a parameter. By ex-

tending the model to a multi-period form, storage time and inventory levels of each energy carrier

can be explicitly accounted for as variables to optimize. Similarly, while geographical availability

of solar and wind is captured, their temporal intermittency is not. An annual average is assumed

for solving the MILP in one instance. This assumption is made because the goal of this work was

to achieve a basic understanding of the economic feasibility of designing an ECN to meet power

demand. Incorporating temporal intermittency into the model is important for achieving feasible

operation.
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4.6 Conclusion

Energy carriers are shown to be competitive with other storage alternatives, especially if ge-

ographical flexibility is desired. LCOE values for energy carriers are calculated to be as low as

$0.24/kWh, if solar PV and wind turbines are already constructed. For short storage periods, the

extra production costs of ammonia and methanol outweigh hydrogen’s storage cost. As the stor-

age time increases, hydrogen becomes less desirable and ammonia grows more attractive. CO2

capture costs cause methanol to be less preferred than ammonia. Integration of energy carriers

leads to about 25% cost savings compared to separate networks, highlighting the importance of

not being shortsighted in choosing which chemical to choose. Ultimately, energy carriers are a

very promising option to increase the penetration of renewable energy.
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5. CLUSTERING DECOMPOSITION ALGORITHM FOR OPTIMIZING RENEWABLE

POWER SYSTEMS WITH STORAGE

5.1 Motivation

To tackle curtailment, overgeneration, and capacity sizing issues of renewable power systems

with storage, integrated design and scheduling models in the form of mixed-integer optimization

problems [116, 117] are useful for minimizing capital and operational costs. Such methods are

also called capacity expansion [118] and unit commitment [119] models, where investments into

new power and storage capacities (expansion) are concurrently decided with how the units are

operated to meet the demand (commitment). The results from these models give the decision-

maker important information about the optimal sizing of solar photovoltaic (PV) modules, wind

turbines, and energy storage options such as batteries. In addition, key operational choices like

optimal battery charging and discharging are elucidated.

The disadvantage is that the models grow very large from the hourly time discretization and

long time horizons that are needed to describe weather, load, and price dynamics. This makes

them very computationally demanding to solve. As the discretized granularity and time horizon

increases, the models become even more complicated. Fig. 5.1 shows the similarity between solar

and wind availabilities for two independent days in College Station, TX. Instead of optimizing over

the entire time horizon, it is assumed that optimizing over an aggregated number of these clusters

offers a good enough approximate solution to the problem [120]. A systematic procedure is needed

to address how good of an assumption this is.

5.2 Background

Several authors have employed clustering in mixed-integer optimization models for renewable

energy systems. Gabrielli et al. [121] used k-means clustering to optimize multi-energy systems

with seasonal storage through developing designs off of clustered time periods and operating them

for the full time horizon. Lara et al. [122] utilized k-means clustering to group together gener-
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Figure 5.1: Similar solar and wind profiles for April 14 and May 27 in College Station, TX

ators in a multi-scale electric power infrastructure planning model. Heuberger et al. [123] em-

ployed k-means clustering in analyzing the system value of energy storage. Peng et al. [124]

optimized a concentrated solar power design across scenarios identified through k-means cluster-

ing. Pineda and Morales [125] compared different representative hour, day, and week profiles from

agglomerative hierarchical clustering (AHC) for capacity expansion planning. Teichgraeber and

Brandt [126] used k-shape clustering to optimally schedule a battery storage operation. Tejada-

Arango et al. [127] compared different short- and long-term battery storage models through k-

medoids clustering. Domínguez et al. [128] selected typical days using k-medoids clustering to

optimize the configuration and operation of a residential heat & power system.

In most studies, an underlying assumption is that when the clusters, which are calculated

through minimizing the within cluster variance during data processing, are incorporated into an

optimization problem, the resulting optimal objective value will also have the least error differ-

ence from the true optimal solved using the full time horizon. This is not true; the optimal time

aggregation based on clustering error does not necessarily give the best approximation to the true

optimal solution. Teichgraeber and Brandt [126] and Bahl et al. [129] have also noticed this error

in optimal objective values between the aggregated and full time horizons.

Likewise, while k-means clustering and its variants are common techniques for time aggrega-

tion, they do not preserve the time chronology of the input data. Information from non-sequential
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time points are grouped together into the same cluster. Because time chronology is not kept, clever

techniques are then applied to reconstruct the right timeline [120, 121, 130], increasing the model

complexity. Instead, an AHC approach as utilized by Pineda and Morales [125] maintains time

chronology in its cluster assignments through a connectivity matrix, enforcing the consecutive or-

dering of clusters. Having a correctly sequenced time aggregation is important for energy storage

studies because inventory levels carry over between adjacent time periods.

This work attempts to address the aforementioned issues. A decomposition algorithm that se-

lects the proper number of representative periods to aggregate a time horizon based on objective

value error is developed from elements of previous works [121, 129]. The main aim of this algo-

rithm is to quantify how adequate of an approximation is a specific aggregated time horizon, with

respect to the objective value. The algorithmic concept is irrespective of clustering method, but

AHC is chosen over k-means clustering because it is a more appropriate choice for energy stor-

age [125]. The decomposition algorithm is then applied to a renewable power system with battery

storage in New York City (NYC) to demonstrate how sensitive the levelized cost of electricity

(LCOE) is to the number of clusters in time aggregation.

5.3 Decomposition Algorithm Through AHC

An overview of AHC is first provided, and the decomposition algorithm is described next. In

general, a similar approach is applicable to any optimization problem with time discretization.

5.3.1 Agglomerative Hierarchical Clustering (AHC)

Let X be a matrix of various time series data, where each column Xj is a different feature (i.e.

solar irradiance, wind speed, load demand, electricity price) and each row represents a particular

time period (i.e. hour, day, week). A data point, xi, is then all feature values that occur during

the ith time period. The AHC method is a bottom-up approach, where the data points start off

in their own cluster and are successively merged together to create new clusters as one moves up

the hierarchy. A linkage criterion (similarity metric between clusters) determines how clusters are

combined together.
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Figure 5.2: An agglomerative hierarchical clustering example with 24 data points

As an example, in Fig. 5.2 , each circle represents a separate data point. At the bottom,

each data point is its own cluster. Moving up the hierarchy, the clusters are joined in a step-wise

fashion using a linkage criterion, where only neighboring clusters are candidates for merging. Solid

lines show clusters that have joined together, and the dashed line represents the next two cluster

candidates to be merged if the AHC method is continued. The final clusters in this example are

(x1, x2, x3), (x4, x5), (x23, x24), and each of the remaining data points as its own individual cluster.

Notice how x1 and x2 are linked together before x3 is allowed to join them later. Also, (x4, x5) is

not permitted to merge with (x1, x2) until x3 offers a bridges between the two clusters. Through

these connectivity restrictions, AHC preserves time chronology. The number of clusters decreases

as one moves up the hierarchy.

For each of the final clusters, the mean of its data points, the medoid of its data points, or a

single data point nearest to the mean/medoid is chosen to represent the entire cluster. This selected

data value becomes the representative time period. The size of a cluster is the weight factor applied

to the representative period to capture the same total eclipsed time as all members in the cluster.

For an example, if x2 is selected to represent (x1, x2, x3), it receives a weight factor of 3. In the

aggregated time horizon, x2 is cycled 3 times in lieu of x1, x2, and x3 in the full time horizon.

This cycling with a weight factor is performed for each cluster such that all the represented periods

connected together comprise the aggregated time horizon (Fig. 5.3). In this way, the complexity

of an optimization problem with time series data is decreased.
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Figure 5.3: Each representative period h is cycled by a weight factor nh to form the aggregated
time horizon that simulates the full time horizon

A commonly used linkage criterion is Ward’s distance (WD), the difference in the within cluster

variance (WCSS) before and after joining two clusters together (Eq. 5.1). WCSS is defined as the

squared sum of deviations from the cluster mean of all members in the cluster.

WD(Cj, Ck) =
X

xi2Cjk

(xi � µjk)
2 �

X

xi2Cj

(xi � µj)
2 �

X

xi2Ck

(xi � µk)
2 (5.1)

WD between two clusters Cj and Ck is calculated by comparing the WCSS of having their respec-

tive data points separately in Cj and Ck versus having them together in one cluster Cjk. µj , µk,

and µjk are the respective cluster means for Cj , Ck, and Cjk. WD is always non-negative for any

pair of clusters because some information is lost when agglomerating two clusters together, and

this increases the WCSS. Therefore, at each step, AHC merges together the two candidate clusters

with the smallest WD, minimizing the increase in total WCSS for all clusters.

Fig. 5.4 shows an example scree plot that visualizes the total WCSS as a function of the number

of clusters. At the right end, having 365 clusters means that every day is its own cluster, leading

to a total WCSS value of 0. At the left end, having 1 cluster means that all days are in the same

cluster, leading to WCSS being equal to the total variance in the data set. As a result, the more

clusters there are, the lower the WCSS becomes. However, there is a trade-off between increasing

the cluster complexity and the amount of new information added (measured as the decrease in

WCSS). One way to select the optimal number of clusters is to implement a cut-off threshold ✏
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Figure 5.4: An example scree plot of the total WCSS as a function of the number of clusters

measuring the percentage of slope decrease in WCSS (Eq. 5.2).

�WCCS% =
WCSSn �WCCSn�1

WCSSn�1
 ✏ (5.2)

The cut-off threshold aims to approximate the point at which the curve in Fig. 5.4 begins to

bend, indicating that the decrease in variance is slowing with respect to the number of clusters

added. Algorithm 1 summarizes the steps to the AHC method.

Algorithm 1 AHC for finding representative periods
1: Set each data point as its own cluster
2: Calculate the cluster mean
3: Compute WD between each cluster pair
4: Agglomerate two clusters with the smallest WD

5: Repeat Steps 2-4 until desired number of clusters N is reached
6: Determine representative periods as the cluster mean, medoid, or the cluster member closest

to mean/medoid
7: Cluster size is the weight factor of each representative period in the aggregated time horizon
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Figure 5.5: Decomposition algorithm through AHC

5.3.2 Decomposition Algorithm

In mixed-integer optimization models for simultaneous design and scheduling, there are sepa-

rate binary variables associated with capacity expansion and unit commitment. The design binaries

decide how to size the capacity of an unit (i.e. solar PV, wind turbine, battery) if it is selected, and

the scheduling binaries express which time periods the unit operates in. The motivation for a

decomposition algorithm is to decouple the design and scheduling decisions and solve for their

optimum separately. Fig. 5.5 depicts an overview of the decomposition algorithm through AHC

for the design and scheduling of a renewable energy system. Gabrielli et al. [121] and Bahl et

al. [129] also discussed similar concepts.

At the initialization step, the full time horizon and data is grouped into a single cluster through

AHC. Using this aggregated time horizon, the design and scheduling model is solved, minimizing

the total capital and operational cost of the renewable energy system. From this optimal solution,

the binaries and capacity variables associated with the design are then fixed. These together with

the full time horizon are inputted into a second version of the same design and scheduling model,
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but with a new objective of minimizing the purchase of backup electricity to ensure feasible opera-

tion. An auxiliary variable is introduced to capture this because the design based on the aggregated

time horizon may not be feasible for operating on the full time horizon. Note the purchase of

backup electricity is not allowed for the first model.

The optimal solution for the first model becomes a lower bound (LB) to the overall problem,

and the optimal solution to the second model is an upper bound (UB). The gap between LB and

UB is calculated as the percentage of total energy provided by a backup source in the UB solution

( PurchUB
TotalEnergy ). If this gap is within an acceptable threshold ✏, the decomposition algorithm termi-

nates. If not, the algorithm continues by increasing the resolution of the aggregated time horizon

(a step up in the number of clusters). When the algorithm exits, the optimal solution to overall

system are the design variables from LB and the operating variables from the UB.

The decomposition algorithm through AHC for an optimization-based design and scheduling

model of a renewable energy system is summarized in Algorithm 2. In general, a similar approach

is possible with any optimization problem that involves time discretization. In the following sec-

tion, Algorithm 2 is applied to investigating a MILP design and scheduling model for a renewable

power system with battery storage in NYC.

Algorithm 2 Decomposition algorithm through AHC
1: Determine the N clusters using Algorithm 1; N = 1 if this is initial step
2: Solve the design and scheduling optimization, minimizing total cost
3: Fix the design-related variables from Step 2 and incorporate back the full time horizon
4: Solve the design and scheduling optimization, minimizing auxiliary variable for backup grid

electricity cost
5: Calculate gap between the solutions in Step 2 and Step 4
6: Terminate if gap  ✏; otherwise, increase N by a step size and continue back to Step 1

5.4 Renewable Power System with Battery Storage in NYC

The setup for a renewable power system with battery storage in NYC is described below.
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5.4.1 Problem Definition

Given:

• time series data of local solar & wind availabilities, demand loads, and electricity prices

• land, capital, and operating costs for solar PV, wind turbine, battery, and DC-AC inverter

• process performance coefficients for the above units

Solve for:

• minimal levelized cost to meet electricity demand (LCOE)

• optimal capacity sizing for all units

• optimal operating schedule for all units

5.4.2 Process Description & Model

A resource-task network (RTN) portrayal for the renewable power system with battery storage

in NYC is shown in Fig. 5.6. Resources are represented by circles, and the process tasks are

shown with rectangles. Solar radiation, wind, battery charge, AC power, and DC power are re-

sources. Process tasks are the units (solar PV, wind turbine, DC-AC inverter, and battery) utilized

to transform one resource into another. Only the battery charge is a storable resource, and this is

highlighted by its darker color. AC power is the demand load that needs to be satisfied. When

allowed, grid purchase of electricity is fed directly to AC power.

Demirhan et al. [115] describes a general MILP model for a RTN representing the simultane-

ous design and scheduling of a renewable power system with storage. In their study, the usage

of dense energy carriers storing and transporting renewable energy from Amarillo, TX to NYC

is investigated. Similar equations are adapted here for a design and scheduling model for the lo-

cal production of electricity in NYC from solar PV and wind turbine with battery storage. The

complete MILP model and its information are included in the Appendix A.2.
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Figure 5.6: RTN representation of a renewable power system with battery storage in NYC

5.4.3 Data Input

Solar DNI and wind speed data are retrieved from NREL NSRDB [111] and Wind Prospec-

tor [112], respectively. Demand load and grid electricity prices are taken from the NYISO [131].

Available land for solar and wind development is assumed to be located in Suffolk County, NY.

From a GIS analysis [113], these values are 839 km2 and 164 km2, respectively. All other assump-

tions remain the same as in Demirhan et al. [115].

The X matrix for the system depicted in Fig. 5.6 comprises daily solar, wind, demand load,

and electricity price data. X is a 365 ⇥ 96 matrix, where the rows are days and the columns are

feature values for a particular hour during the day. The AHC method (Algorithm 1) is implemented

in Python using packages from the scikit-learn library. Setting a threshold of ✏ = 0.01 in Eq. 5.2,

the scree plot of �WCSS% versus number of clusters in Fig. 5.7 is produced. From a clustering

error perspective, it appears that 15 clusters (representative days) are good enough to describe the

variance in X .

5.5 Case Studies

While the 15 representative days selected in Section 5.4.3 minimized �WCSS%, they might

not necessarily comprise the best time aggregation to approximate the true optimal LCOE from

an objective error perspective. Moreover, how sensitive the optimal solution is to the number of

clusters is unknown, and what is the least number of representative days needed to adequately
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Figure 5.7: Scree plot of the �WCSS% as a function of the number of clusters for the NYC time
series data

approximate the true optimal LCOE is unanswered.

To address these issues, the 15 representative days are used as a baseline to compare the result-

ing solutions from implementing Algorithm 2. The different objective functions in the decompo-

sition algorithm (Fig. 5.5) for the LB and UB are found in Appendix A.2. The two types of case

studies vary in terms of the demand profile that is met in NYC. Base load (Fig. 5.8a) refers to a

flat profile that constitutes 5% of the annual power consumption in NYC. Peak shaving (Fig. 5.8b)

tracks the demand fluctuations above a minimum load, and 25% of this total variation is met. The

total power demand for both demand profiles is about 2,700 GWh/yr.

The case studies are labeled as [DP ]-[RE]-[C], where DP is the demand profile followed

(BL: base load, PS: peak shaving), RE is the renewable energy resources utilized (S: solar, SW:

solar & wind), and C is the number of representative days in the aggregated time horizon. For

example, BL-S-10 corresponds to a solar PV supplying the base load in NYC, modeled using 10

representative days. Battery storage is present in all case studies. In following subsections, the

15 representative days from Section 5.4.3 and Algorithm 2 are utilized to investigate the opti-

mal LCOE for the renewable power systems with battery storage for base load and peak-shaving.
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(a) Base load (b) Peak-shaving

Figure 5.8: Blue line is the an example of the daily demand load in NYC; demand profiles to meet
with renewable power are shown in red (not drawn to scale)

Unless otherwise stated, cluster sizes (N=1, N=5 to N=20 by 5, N=30 to N=60 by 10, N=80 to

N=200 by 20, N=225 to N=325 by 25, & N=365) and ✏ ⇡ 5% are assumed for the decomposition

algorithm. All MILP models are coded in GAMS and solved using CPLEX.

5.5.1 Base Load

BL-S case study results are shown in Table 5.1. BL-S-5 is the first solution that terminates

Algorithm 2. BL-S-15 is the baseline solution with clusters determined from �WCSS%, and

BL-S-40 is the first solution that leads to ✏ = 0 (100% of power is generated without backup).

Subsequent tables follow this logic as well.

The first important observation is that BL-S-5 and BL-S-15 both calculate similar LCOE and

✏ values. This suggests that 5 representative days captures enough of the input data variance to

give as good of an approximation to the optimal LCOE as 15 representative days does. In terms

of ✏, there is no extra information gained from adding an additional 10 clusters to the aggregated

time horizon. This reiterates previous results that minimizing clustering error is not the same as

approximating the objective value better.

The second important observation is that the optimal LCOE with ✏ = 0 for BL-S-40 is much

higher compared to the other two case studies. This dramatic difference is largely due to the
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Figure 5.9: RTN for BL-S-5

Table 5.1: BL-S case study results

Case ID# LB LCOE
($/kWh)

UB LCOE
($/kWh)

CAPEX
($MM)

OPEX
($MM/yr)

Total Cost
($MM/yr)

✏
(% Backup)

BL-S-5 0.221 0.223 7057 30.27 594.86 4.93
BL-S-15 0.220 0.222 7032 30.29 592.86 4.96
BL-S-40 0.704 0.704 23136 26.99 1877.92 0

increased capital investment cost involved in battery oversizing to account for bad weather days

and completely meet the demand. In BL-S-40, the capacities for solar PV and battery are 2.7 GW

and 57.9 GWh, respectively. This is compared to a 3.3 GW solar PV and 8.6 GWh battery in

BL-S-5 and BL-S-15. Fig. 5.9 shows the network representation of BL-S-5.

Therefore, it becomes economically unfavorable to enforce complete demand satisfaction (✏ =

0) from solar PV and battery for 5% base load in NYC. ✏ is viewed as an auxiliary variable rep-

resenting how much demand is negotiable to be met by a backup source instead of the main re-

newable power system. Here, with about 5% of the demand coming from backup, the LCOE for

BL-S-5 is about 30% that of BL-S-40. While the backup source considered in this study is grid

power, Demirhan et al. [115] noted that this source could be an energy carrier such as hydrogen

coming from another geographical location with dense renewable resources.

Another possible source of extra energy is utilizing the local wind in addition to solar. BL-SW

case study results are shown in Table 5.2. The optimal LCOE for BL-SW-15 is about half that
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Figure 5.10: RTN for BL-SW-10

of BL-S-15. Wind complements solar in making up for when it is not available. The additional

power from wind (0.4 GW) reduces the capacity sizes of the solar PV and battery to 0.6 GW

and 4.2 GWh, respectively. This decreases the capital investment cost of BL-SW-15 by over 50%

compared to BL-S-15, with a modest increase in operational cost because wind turbines are more

expensive to operate. The reduction in solar PV and battery sizes reiterates the earlier point that

having an additional energy source can avoid oversizing to handle bad weather days. Fig. 5.10

shows the network representation of BL-SW-10.

For the BL-SW cases, there is also little information gained from using 15 representative days

over 10 days in the aggregated time horizon. BL-SW-10 has nearly the same results as BL-SW-15.

This again highlights that maximizing the amount of variance covered from the input data is not

equivalent to better approximating the objective value. Even though wind energy is now utilized,

a similar escalation in the LCOE value is observed when ✏ = 0 for BL-SW-225. In this case, the

solar PV, wind turbine, and battery capacities are 1.2 GW, 0.3 GW, and 34.4 GWh, respectively.

Capital costs associated with oversizing again becomes an issue in enforcing every bit of the

demand to be satisfied by the renewable power system. BL-SW-10 has a LCOE value that is about

25% that of BL-SW-225. Therefore, even with added wind power, some backup energy source

is still required to completely meet the demand with renewable energies in an economic manner.
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Table 5.2: BL-SW case study results

Case ID# LB LCOE
($/kWh)

UB LCOE
($/kWh)

CAPEX
($MM)

OPEX
($MM/yr)

Total Cost
($MM/yr)

✏
(% Backup)

BL-SW-10 0.106 0.109 3195 34.21 289.86 4.13
BL-SW-15 0.107 0.110 3237 34.22 293.19 4.08

BL-SW-225 0.429 0.430 13971 31.97 1149.63 0

This reinforces the motivation and support for energy carriers that are produced with renewable

energies in a different geographical location [132].

Finally, it appears that many more clusters are required in the BL-SW case studies to capture

the wind variability and drive ✏ to 0 than in the BL-S case studies. In general, needing more

representative days in the aggregated time horizon for ✏ to approach 0 is a common trend observed

in the BL-S and BL-SW case studies. As more representative days are included in the aggregated

time horizon, the complexity to solve the MILP model approaches the original full time horizon.

5.5.2 Peak Shaving

Peak-shaving results for PS-S and PS-SW case studies are shown in Tables 5.3 and 5.4. Figs.

5.11 and 5.12 display the network descriptions of PS-S-10 and PS-SW-10, respectively. Similar

conclusions as those in the base load studies are also observed for these peak-shaving results.

Table 5.3: PS-S case study results

Case ID# LB LCOE
($/kWh)

UB LCOE
($/kWh)

CAPEX
($MM)

OPEX
($MM/yr)

Total Cost
($MM/yr)

✏
(% Backup)

PS-S-10 0.188 0.214 7035 31.38 594.17 5.28
PS-S-15 0.205 0.213 7030 31.38 593.79 5.29
PS-S-30 0.849 0.850 32079 24.15 2590.47 0

First, a fewer number of representative days than 15 is needed to adequately capture the LCOE

objective value. In both PS-S and PS-SW cases, 10 representative days give similar results as their
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Figure 5.11: RTN for PS-S-10

Table 5.4: PS-SW case study results

Case ID# LB LCOE
($/kWh)

UB LCOE
($/kWh)

CAPEX
($MM)

OPEX
($MM/yr)

Total Cost
($MM/yr)

✏
(% Backup)

PS-SW-10 0.102 0.117 3646 35.48 327.17 5.03
PS-SW-15 0.111 0.117 3645 35.47 327.11 5.04

PS-SW-225 0.325 0.325 10951 30.12 906.17 0

15 day counterparts. This shows further empirical proof that minimizing clustering error does not

necessarily lead to a better approximation of the the objective value. Second, for the demand to

be completely satisfied by a renewable power system (✏ = 0), several more representative days

comprise the aggregated time horizon, and the LCOE values grow prohibitively expensive. Again,

this suggests the necessity for some sort of energy backup to avoid oversizing the battery capacity.

The battery sizes in PS-S-30 and PS-SW-225 are 72.9 GWh and 22.9 GWh, respectively. More-

over, solving the MILP model with an aggregated time horizon comprising a very large number of

representative days is almost as difficult as solving the original model with the full time horizon.

Third, adding in wind energy into the mix makes the power economics more attractive than using

solar on its own, but does not solve the backup issue.

There is one interesting observation from the peak-shaving studies. Despite outputting the

same amount of energy (2,700 GWh/yr) during base load or peak-shaving operation, the renewable

power system has a slightly lower LCOE for peak-shaving than base load. For solar-only cases
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Figure 5.12: RTN for PS-SW-10

(BL-S-5 vs. PS-S-10), there is about a $0.03/kWh difference, and for the added-in wind cases (BL-

SW-10 vs. PS-SW-10), there is <0.01/kWh. This suggests that the demand profile has a bigger

effect on solar-only power systems. By itself, solar appears cheaper for tracking the demand load

peaks and struggles a bit more to satisfy base load operations. Though, once wind is added into

the picture, this effect of different demand profiles is mitigated.

5.5.3 Time Aggregation Effect

The effect of time aggregation on ✏ and the optimal LCOE is depicted in Fig. 5.13 for the base

load and peak-shaving studies. In general, there is a decreasing trend for ✏ and an increasing trend

for LCOE as the number of clusters in the aggregated time horizon grows.

It is clear that the 15 clusters from minimizing �WCSS% do not give the best approximation of

the optimal LCOE with least error difference. The solar only case studies closed the ✏ gap to 0 with

a reasonable number of clusters, while the BL-SW and PS-SW studies struggled to do so. This

is due to the increased variability in the wind data compared to solar data. Finding representative

hours instead of days [125] may be more advantageous for studying wind power systems.

Moreover, depending on the decision-maker’s specified tolerance on ✏, 15 clusters may be an

overestimation or underestimation on the suitable number of clusters to approximate the optimal

LCOE. Therefore, selecting an appropriate number of periods in the time aggregation should be
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Figure 5.13: ✏ and LCOE vs. cluster size N in time aggregation

evaluated in the objective function space during the optimization solution and not through com-

paring statistical error metrics like WCSS during data processing. The ability to assess clustering

performance in the objective value domain is the major benefit from a decomposition algorithm.

5.5.4 Breakdown Summary

Capital cost breakdowns for select base load and peak-shaving case studies (BL-S-5, BL-SW-

10, PS-S-10, PS-SW-10) are shown in Fig. 5.14. Increased costs from oversizing solar PV and

battery in BL-S-5 and PS-S-10 are clearly reduced from the introduction of wind turbines into the

mix in BL-SW-10 and PS-SW-10. Wind has a complementary effect in making up for the poor

solar days. There is no substantial difference in capital investment cost for a renewable power

system following base load or peak-shaving demand profiles, assuming some backup is available.

Operational cost breakdowns for these select base load and peak-shaving studies are shown

in Fig. 5.15. It is observed that introducing wind turbines into the system slightly increases the

overall operational cost. Moreover, the majority of the cost is associated with renewable power
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Figure 5.14: Capital cost breakdown for select case studies

Figure 5.15: Operational cost breakdown for select case studies

generation. Solar PV comprise about half of the operational cost in BL-S-5 and PS-S-10, while

solar PV and wind turbine comprise about three-fourths of the operational cost in BL-SW-10 and

PS-SW-10. Grid backup is never more than 30% of the total operating cost, and batteries are at

most about a quarter of the total operating cost.

The share of power demand satisfied through solar, wind, battery, or grid backup for these

select base load and peak-shaving studies is displayed in Fig. 5.16. The inclusion of wind turbines

shifts some load burden away from the battery. This is the main driver for the decreased investment
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Figure 5.16: Power demand share for select case studies

costs observed in BL-SW-10 and PS-SW-10 compared to BL-S-5 and PS-S-10. Power from solar

is about 40% in the base load studies and about 50% in the peak-shaving studies, suggesting that

it is may be more appropriate for the latter application.

5.6 Conclusion

Time aggregation through clustering is one method to solve capacity expansion and unit com-

mitment optimization models for renewable power systems with storage. In this work, a decom-

position algorithm through agglomerative hierarchical clustering (AHC) is developed and applied

to investigating a solar PV and wind turbine system with battery storage in NYC. The renewable

power system is described using a previously developed MILP design and scheduling model.

Results showed that selecting clusters in the aggregated time horizon based off of minimizing

�WCSS% overestimated the number of representative periods necessary to capture the LCOE

within a reasonable tolerance. Nevertheless, a general trend of increasing the number of clusters

and decreasing ✏ is observed. If strict demand satisfaction (✏ = 0) is enforced, LCOE values for

the renewable power system grow unreasonably large as the number of representative days greatly

increase, approaching the full time horizon. Therefore, the decomposition algorithm (with a ✏

threshold) quantifies for the decision-maker how much energy backup is required to maintain the
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LCOE within a reasonable value and keeps the optimization problem manageable to be solved.

This motivates the design and scheduling of renewable power systems meeting a flexible de-

mand, allowing some violation within a tolerance level (✏  tol.), instead of a fixed demand profile

to avoid oversizing issues. Further investigation is also needed to compare and quantify different

clustering strategies within the decomposition algorithm. Finally, the renewable power system in

NYC is a relatively small problem. Additional refinements to the decomposition algorithm may be

necessary as the problem size grows larger.
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6. PARAMETRIC PROGRAMMING FOR HYPERPARAMETER OPTIMIZATION OF

MACHINE LEARNING MODELS

6.1 Motivation

Let X be a i ⇥ j data matrix, and Y be a i ⇥ 1 response vector, where i is the sample size and

j is the number of predictors. In supervised learning (regression or classification) problems, it is

assumed that there exists a function f that maps the relationship between a set of input predictors

X = (X1, X2, . . . , Xj), where Xj is the jth column vector of X, and output responses Y.

Y = f(X) + ✏ (6.1)

f represents the learnable information that X provides about Y, while ✏ is a random error term con-

taining information that is unmeasured or unavailable in the data for the learning process. Because

f is not exactly known, machine learning algorithms are needed to estimate f and predict Y.

Ŷ = f̂(X) (6.2)

f̂ represents the estimate for f, and Ŷ is the resulting prediction. ✏ is not included in the prediction

because it averages out to be zero.

The accuracy of this estimation and prediction is the squared error between Y and Ŷ . Assuming

f̂ is fixed, the expected error of a single predicted point ŷ0 from one observation x0, a given row

vector of X, is decomposed into reducible and irreducible quantities [133].

E[y0 � ŷ0]
2 = E[y0 � f̂(x0)]

2

= [f(x0) + ✏� f̂(x0)]
2

= [f(x0)� f̂(x0)]
2

| {z }
reducible

+V ar(✏)| {z }
irreducible

(6.3)
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Because f̂ is not a perfect estimate for f, this inaccuracy introduces some error. This error is

reducible because it is possible to improve the fit of f̂ by using a better performing algorithm.

Even if f̂ were to exactly match f, the prediction of Y still has some error associated with it due

to ✏. This error is irreducible because a model cannot account for information that is not contained

in the data while the algorithm is learning. This provides an upper bound [134] on the accuracy of

any estimated f̂ .

As such, the goal of any machine learning method is to minimize the reducible error in order

to maximize the accuracy of f̂ to be closer to its upper bound. The reducible error is made up of

two components: bias & variance [133].

[f(x0)� f̂(x0)]
2

| {z }
reducible

= V ar[f̂(x0)]| {z }
variance

+Bias[f̂(x0)]
2

| {z }
bias

(6.4)

Bias is the error introduced by approximating a real-world phenomena, which is often complex,

with a simpler model that has less fidelity. Variance measures the sensitivity of f̂ to the training

data set and how much its fit would change if estimated using different data. In general, as a model

becomes more complicated or flexible (including more parameters to estimate), bias decreases and

variance increases [133,134]. A flexible f̂ fits closer to given training data set (lowering bias), but

is more sensitive to training data variability (raising variance). The reverse of this bias & variance

trade-off for f̂ is also generally true for a simpler model. Fig. 6.1 illustrates the bias & variance

trade-off with respect to model complexity.

Therefore, selecting an optimal f̂ from a set of various candidate ones, ranging in complexity

from simple linear to highly nonlinear, involves balancing the bias & variance trade-off. The ideal

machine learning method is one that simultaneously achieves low bias and low variance [135].

Possessing these characteristics gives the learned model a higher probability of generalizing well

to new data unseen during model training and predict more accurately [134]. Too much variance

leads to f̂ overfitting the data, and too much bias leads to f̂ underfitting the data (Fig. 6.2).
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Figure 6.1: More complex models generally have lower bias and higher variance, while less flexible
models generally have higher bias and lower variance

Figure 6.2: Finding a good f̂ fit requires balancing bias and variance
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6.2 Background

The most utilized approach for finding an optimal f̂ is to incorporate an additional regulariza-

tion term in a machine learning algorithm’s loss function formulation [136]. Typically, the basic

loss function for a supervised learning problem is the minimization of the mean squared error

(MSE) between Y and Ŷ , where N is the sample size.

min
1

N
kY � Ŷ k22 =

1

N
kY � f̂(X)k22 (6.5)

A regularization term is an exogenous penalty parameter (hyperparameter) whose value is set prior

to training the model. This hyperparameter � controls the importance and weight of the regular-

ization term, which affects the resulting optimization solution of a machine learning algorithm. A

common regularization term [136] is � penalizing the q-norm of w, the model weights of f̂ (an

example is f̂(X) = Xw), raised to the power p.

min
w

1

N
kY � f̂(X)k22 + �kwkpq (6.6)

In general, machine learning algorithms may have multiple hyperparameters that are prespecified

[137, 138], such as a �j for each wj .

In Eq. 6.6, the aim of regularization is to control the complexity of f̂ that is fitted. As the value

of � varies from 0 to 1, the resulting estimated f̂ will have different reducible error realizations.

Likewise, the bias and variance values for each f̂ are different. By including a regularization term,

the reducible errors for several f̂ candidates are comparable and are an implicit function of the

hyperparameter. Finding an optimal f̂ with low bias and low variance amounts to correctly tuning

�. However, what is the best value for � is not known a priori. Therefore, the selection of an

optimal machine learning model is really a hyperparameter optimization problem (Fig. 6.3).
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Figure 6.3: Optimal model selection amounts to determining the optimal hyperparameter

6.2.1 Hyperparameter Optimization

Common strategies for hyperparameter optimization [139–142] involve dividing the parameter

space into D evenly or randomly discretized points and performing an iterative optimization pro-

cedure through k-fold cross-validation (Fig. 6.4). First, the data is split into K subsets. Within

each subset, the data is further separated into training and testing sets. Next, for each discretized

� value, a separate optimization problem for the machine learning model (Eq. 6.6) is constructed

on the training data in each fold and solved to estimate f̂ . The validation error 1
N kY � Ŷ k22 is then

computed using the estimated f̂ and testing data in the same fold to predict Y . Finally, after iterat-

ing through all the � values, the validation errors for each � across all folds are averaged together.

The optimal f̂ is the one with the � value that gives the smallest mean validation error.

K-fold cross-validation with grid [143] or random search [144] for hyperparameter optimiza-

tion is a generalizable way to approximate optimal model selection. The advantages of k-fold

cross-validation are that, in most cases, it captures the actual test error as an implicit function of

� well-enough and calculates a f̂ that balances bias & variance [133, 134]. The disadvantages

are that sometimes KxD optimization problems may become a computational burden to solve and

possibly lead to inexact solutions that are troublesome due to poor discretization.
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Figure 6.4: An overview of k-fold cross-validation for hyperparameter optimization

6.3 A Parametric Programming Perspective

Instead, the developments in this work translate the k-fold cross-validation for hyperparameter

optimization into a bilevel optimization problem that is exactly solvable through parametric pro-

gramming without any approximation or probabilistic modeling. This applies for hyperparameter

optimization problems that have a machine learning algorithm that is formulated as a linear or

quadratic programming (LP/QP) model.

Parametric programming is an optimization strategy, popularized by explicit model predictive

control (MPC) [145], that determines the optimal solution as a function of a varying parameter ✓,

without exhaustively traversing the entire parameter space. The general form is seen in Eq. 6.7.

The objective (loss) function F, inequality constraints g, and equality constraints h are all functions

of the decision variables u and parameter ✓. The optimal solution comprises a set of finite areas

(critical regions in Fig. 6.5), where a particular solution is valid for a given realization of ✓, along

with explicit expressions relating the decision variables u to the ✓ parameter (u = A✓ + b). Using
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Figure 6.5: An example of critical regions comprising the optimal solution to a parametric pro-
gramming problem (Eq. 6.7)

this, the objective (loss) function is also solely expressed as a function J(✓).

J(✓) = min
u

F (u, ✓)

s.t. g(u, ✓)  0

h(u, ✓) = 0

(6.7)

In the classic explicit MPC problem [145], decision variables u are the control inputs and

parameters ✓ are the system states. For the hyperparameter optimization setup, decision variables

u are the model weights w to f̂ and parameters ✓ are the hyperparameters �. In this work, f̂ is

assumed to be linear with respect to w.

f̂(X,w) = �(X)w (6.8)

w is a j⇥1 vector of model weights and � is a vector of basis functions transforming each predictor

of X such that �(X) = [�1(X1),�2(X2), . . . ,�j(Xj)]. f̂ is a function of w because the model

weights are learned from training the machine learning model.

By viewing Eq. 6.6 as an optimization problem in the form of Eq. 6.7, a new understanding of

the hyperparameter optimization problem is reached. From this parametric programming perspec-
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tive, a different affine expression w = Ar�+ br governs each critical region r of � and the learned

model is redefined as f̂(X,�) = �(X)Ar� + �(X)br. Having f̂ as an explicit function of � has

important ramifications for the bilevel optimization approach to k-fold cross-validation discussed

later in Section 6.4.

The algorithmic procedure (graph, geometrical, combinatorial) for computing the critical re-

gions and affine expressions for Eq. 6.7 depends on the optimization problem structure (linear,

nonlinear, convex, differentiable) and the nature of the variables & parameters (continuous or bi-

nary). In general, parametric programming is also extendable to the case of multiple varying

parameters (multi-parametric programming). The reader is referred to several review papers and

books for further discussion on multi-parametric programming theory [146–150] and its applica-

tions [151–156].

6.4 Bilevel Optimization of k-fold Cross-Validation

Within each kth fold of cross-validation for hyperparameter optimization, there are two dif-

ferent objectives. On the training set level, the goal is to minimize the training error in Eq. 6.6,

where Y is the output response from the training data. On the testing set level, the validation error

1
N kY � Ŷ k22 is evaluated using the learned f̂ from model training to predict the output response Y

from the testing data. After model training and recording the validation errors across all � values

for every fold, the goal is to select the optimal f̂ that minimizes the mean validation error across

all folds. Overall, k-fold cross-validation seeks � such that when the optimal training is solved for

each training set, the validation error over the test errors is also minimized.

In this setup, the dual objectives are captured using a bilevel optimization [157, 158] formula-

tion (Eq. 6.9). Note this is an example formulation, and modifications may be necessary depending

on the particular machine learning algorithm, as seen later in Section 6.6. However, the general

concepts described in this section remain valid. In the inner level, the objective is to minimize each

kth fold’s training error with a regularization penalty, the decision variables are the model weights

wk, and the parameter is �. In the outer level, the objective is to minimize the mean squared
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validation error across |K| folds, the decision variable is �, and the parameters are wk.

min
�

1

|K|

|K|X

k=1

1

N tst
k

kytstk � ŷkk22

s.t. min
wk

1

N trn
k

kytrnk � f̂kk22 + �kŵkkpq 8k 2 K

(6.9)

K is the set of all data folds. For each kth fold, N trn
k is the training set size, N tst

k is testing set size,

ytrnk is a N trn
k ⇥ 1 vector of output responses in the training set, ytstk is a N tst

k ⇥ 1 vector of output

responses in the testing set, f̂k is the trained machine learning model of form f̂k(X,wk) = �(X)wk,

and ŷk is a N tst
k ⇥ 1 vector of predicted responses from f̂k using the testing set. Again, �(X) is

vector of basis functions transforming the columns of X and wk is a j ⇥ 1 vector. Note that f̂k is

estimated using X from the training set, f̂k(X trn
k , wk) = �(X trn

k )wk, and then X from the testing

set is inputted with wk fixed to predict the output response, ŷk = f̂k(X tst
k , wk) = �(X tst

k )wk.

This observation of k-fold cross-validation as a bilevel optimization problem has also been

noted by earlier works [159–163]. Some of these authors [159, 160] attempted to solve the bilevel

optimization by replacing the inner level optimization problem with its Karush-Kuhn-Tucker (KKT)

conditions. The KKT conditions are Lagrangian and complementarity constraints, reducing the

bilevel optimization into a single level constrained mixed-integer optimization problem after refor-

mulation. However, nonlinear terms containing Lagrange multipliers and decision variables arise

with the complementarity constraints from reformulating the bilevel optimization using the KKT

approach. This renders the single level optimization to be a MINLP, a very difficult problem to

solve to global optimality.

If the original machine learning algorithm with regularization penalty in the inner level of Eq.

6.9 is well-posed as a LP (p = 1 & q = 1) or QP (p = 2 & q = 2), parametric programming is

another viable strategy for reformulating the bilevel optimization into a single level optimization

that is a mixed-integer quadratic (MIQP) problem. Although both methods will give the same

optimal �, the advantage of parametric programming is that it preserves useful information about

the optimal solution profile that the KKT approach does not. The KKT approach only provides a
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single optimal solution, and a MINLP is more difficult to solve than a MIQP. Through parametric

programming, the model weights are derived as explicit affine functions of the hyperparameter

(wk = Akr� + bkr) for each kth fold and critical region r of �. As such, f̂k is expressible as

a function of �, and the machine learning model becomes f̂k(X,�) = �(X)Akr� + �(X)bkr.

Note that exactly one critical region is active (one corresponding pair of Akr and bkr coefficients

are nonzero) for each kth fold. This is because � is the single decision variable in the outer

optimization in Eq. 6.9.

This new form of f̂ is important because the training error (inner level objective in Eq. 6.9)

and the mean validation error (outer level objective in Eq. 6.9) are both now explicit functions

of just �. This is easily seen through substituting the affine function of wk(�) into the inner and

outer objectives. For the training error, f̂k(X trn
k , wk) = f̂k(X trn

k ,�), and for the validation error,

ŷk = f̂k(X tst
k , wk) = f̂k(X tst

k ,�). The affine function of wk(�), capturing the optimal solution in

the inner optimization, passes information between the two levels of Eq. 6.9 to reduce the bilevel

optimization into a single level.

By utilizing parametric programming, the implicit function of error versus � discussed in Sec-

tion 6.2 is no longer unknown and now has a closed-form expression. This is a huge advantage for

parametric programming over using KKT conditions for hyperparameter optimization because, in

addition to the optimal �, the complete training & validation error versus � profiles are given. Hav-

ing these profiles makes it easier to understand the trained machine learning model and visualize

the prediction results.

The model formulation of the HY-POP approach for the hyperparameter optimization example

in Eq. 6.9 is formally described below. Bilevel optimization through parametric programming (B-

POP) [164] for other applications have also been demonstrated in previous works [165–169]. Fig.

6.6 shows an overview of the HY-POP strategy for hyperparameter optimization. Multi-parametric

quadratic programming models (mpQP) is the general form of machine learning models that are

allowed for the inner level optimization problem.

The first step is to replace the inner level optimization in Eq. 6.9 with constraints that define the
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optimal solution profile from the critical regions. Since there are |K| folds, there are |K| training

optimization problems to replace with parametric programming. The critical regions for each kth

training optimization are separately calculated, and then they are all combined together into the

appropriate constraint set. These constraints control the affine expressions of wk(�) and restrict

only one critical region to be active for each fold to represent the optimal training. This is conveyed

through introducing Big-M constraints (Eq. 6.10), critical region bound constraints (Eq. 6.11), and

a SOS1 constraint (Eq. 6.12).

wk  Akr�+ bkr +M(1� yCR
kr ) 8k 2 K, 8r 2 Rk

wk � Akr�+ bkr +M(yCR
kr � 1) 8k 2 K, 8r 2 Rk

(6.10)

M is an appropriately large-enough constant value. For each kth fold, Rk is the set of all critical

regions that comprise the optimal training solution, wk is a j ⇥ 1 vector of model weights to the

trained machine learning model, Akr and bkr are j ⇥ 1 coefficient vectors in the affine expression

for wk from a critical region r, and yCR
kr are binary variables fixing/relaxing wk for active/inactive

critical regions. The Big-M constraints determine which critical region r in each fold k defines wk

for the machine learning model f̂k.

|Rk|X

r=1

LBCR
kr yCR

kr  � 
|Rk|X

r=1

UBCR
kr yCR

kr 8k 2 K (6.11)

|Rk|X

r=1

yCR
kr = 1 8k 2 K (6.12)

To ensure that only one critical region is active for each fold, Eq. 6.12 enforces this discrete

decision. The lower (LBCR
kr ) and upper (UBCR

kr ) bounds to � in a critical region r from fold k

define the range of values for � such that a particular affine expression for wk and an resulting

optimal solution apply. To enforce that the same � value is utilized across all folds, when selecting

an active critical region in each fold to represent the optimal training, Eq. 6.11 defines that the

lower and upper bounds of � from these |K| critical regions must overlap each other. Together,
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Eqs. 6.10, 6.11, & 6.12 replace the inner optimization in Eq. 6.9.

The second step is to substitute ŷk = �(X tst
k )wk into the objective (loss) function of the outer

level in Eq. 6.9. Since the inner level decision variable wk is a function of the outer level decision

variable � from parametric programming, the bilevel optimization is converted into a single level

optimization. Eq. 6.13 constitutes the HY-POP reformulation of the hyperparameter optimization

example in Eq. 6.9, assuming the machine learning algorithm is a LP (p = 1 & q = 1) or QP

(p = 2 & q = 2) and f̂k is linear with respect to its model weights wk. Because the outer validation

error objective is in MSE form and binary variables yCR
kr are added for the critical regions, this

single level optimization is also a MIQP.

min
�,wk,yCR

kr

1

|K|

|K|X

k=1

1

N tst
k

kytstk � �(X tst
k )wkk22

s.t. wk  Akr�+ bkr +M(1� yCR
kr ) 8k 2 K, 8r 2 Rk

wk � Akr�+ bkr +M(yCR
kr � 1) 8k 2 K, 8r 2 Rk

|Rk|X

r=1

LBCR
kr yCR

kr  � 
|Rk|X

r=1

UBCR
kr yCR

kr 8k 2 K

|Rk|X

r=1

yCR
kr = 1 8k 2 K

(6.13)

Depending on the actual machine learning algorithm, the example formulations of Eqs. 6.9 and

6.13 may need some modifications. One instance of this is the LP L1-norm SVM in Section 6.6.

However, the general concept shown here of using parametric programming to connect the two

levels of a bilevel optimization problem (assuming LP or QP) through affine expressions relating

model weights to the hyperparameter remains valid. In Section 6.6, similar steps, as performed for

Eqs. 6.9 and 6.13, are taken to formulate the k-fold cross-validation for LP L1-norm SVM hyper-

parameter optimization through a HY-POP approach. Nevertheless, the example formulations of

Eqs. 6.9 and 6.13 are useful for LASSO regression in the next section.
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6.5 LASSO Regression

LASSO [170] is a popular regression technique that performs model selection through regular-

ization. It introduces a L1-norm penalty on �, a vector of regression coefficients (model weights),

to the ordinary least squares (OLS) model. This attempts to improve the regression fit by reduc-

ing the variance observed in the OLS estimation for � and better balance the bias & trade-off.

LASSO regression is one useful method to build sparse surrogate models for data-driven optimiza-

tion [171, 172]. The LASSO regression form is shown in Eq. 6.14.

min
�

1

2N
kY � �(X)�k22 + �k�̂k1 (6.14)

Eq. 6.14 is a parametric programming problem in the form of Eq. 6.7 and fits the problem

structure shown in the inner level of Eq. 6.9. Because the L1-norm regularization term is nonlinear,

k�k1 =
P

j |�j|, Eq. 6.14 is first reformulated before it is solved through parametric programming.

It is observed that �j is piecewise linear. After substituting ↵j = |�j| and adding two constraints to

describe the piecewise behavior, the parametric quadratic programming (pQP) model for LASSO

regression is the following.

min
�,↵

1

2N
kY � �(X)�k22 + �

X

j

↵j

s.t. ↵j � �j 8j 2 J

↵j � ��j 8j 2 J

(6.15)

To optimize � in Eq. 6.15 and select an optimal LASSO model, the bilevel optimization de-

piction of k-fold cross-validation from Eq. 6.9 is implemented. Eq. 6.15 is the inner optimization

problem, and the outer level objective still is to minimize the validation MSE across all folds. The

critical regions representing the optimal solution profile to Eq. 6.15 for each kth fold are the simi-

lar to those in Eqs. 6.10, 6.11, & 6.12, with the only difference being the parametric programming

solution now accounts for the two added constraints for the reformulation of |�j|. The final HY-
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POP formulation (MIQP) of the LASSO hyperparameter optimization is in Eq. 6.16. �k is a j ⇥ 1

vector of regression coefficients.

min
�,�k,yCR

kr

1

|K|

|K|X

k=1

1

N tst
k

kytstk � �(X tst
k )�kk22

s.t. �k  Akr�+ bkr +M(1� yCR
kr ) 8k 2 K, 8r 2 Rk

�k � Akr�+ bkr +M(yCR
kr � 1) 8k 2 K, 8r 2 Rk

|Rk|X

r=1

LBCR
kr yCR

kr  � 
|Rk|X

r=1

UBCR
kr yCR

kr 8k 2 K

|Rk|X

r=1

yCR
kr = 1 8k 2 K

(6.16)

Eq. 6.16 is a new form for the hyperparameter optimization of LASSO regression through k-fold

cross-validation. Next, this HY-POP formulation is validated on an ammonia reactor data example

and against a coordinate descent algorithm (with grid search) from the glmnet package in R.

6.5.1 Ammonia Reactor Data Example

A dataset of 29 samples are collected from different sources on the performance of an industrial

ammonia synthesis reactor [99, 102]. The exact data values are included in the Appendix B.3.

These values are normalized and centered before training. Reactor temperature T & pressure P ,

inlet molar concentration of hydrogen xH2 , nitrogen xN2 , ammonia xNH3 & inert species xInert,

and the molar ratio between hydrogen & nitrogen xH2
xN2

are 7 predictors for the reactor conversion

yX . It is assumed that the predictors are linear, �(X) = X . Therefore, the proposed LASSO model

that is trained has the following form in Eq. 6.17. An intercept term is not included because the

data is centered, and therefore, the intercept has been zeroed out.

yX = �1T + �2P + �3xH2 + �4xN2 + �5xNH3 + �6xInert + �7
xH2

xN2

(6.17)

While this is a small dataset, the goal is not a comprehensive computation study, but to validate
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Figure 6.7: LASSO regularization path for the ammonia reactor data in fold #2 from the training
pQP (Eq. 6.15) solved using POP

that the HY-POP approach correctly identifies the optimal � & �, comparing to an established co-

ordinate descent algorithm. The data is randomly divided into 5 folds for cross-validation. The fold

identification of the data points is also provided in the Appendix B.3. Each training optimization

problem (Eq. 6.15) is formulated in MATLAB 2019b. An in-house developed and state-of-the-art

software, the Parametric Optimization (POP) toolbox [173], is then used to solve for the critical

regions, using the built-in QP solver from MATLAB and the geometrical algorithm. An example

result of the critical regions for fold #2 is shown in Fig. 6.7.

The piecewise linear relationship between � & � is referred to as the LASSO regularization

path [136]. We expected this behavior from the affine expressions �(�) provided by the parametric

programming solution to Eq. 6.15. Each line segment piece represents a critical region, where a

unique �(�) function is valid for the values of �. Having the � change in a piecewise linear fashion

has also been previously observed in least angle regression (LAR) [174] and coordinate descent

[175], the first efficient algorithms developed to solve LASSO regression. While these methods

were specifically tailored for LASSO regression [174,175], parametric programming is the general

theory of solving problems in the form presented in Eq. 6.7. Therefore, both LAR and coordinate
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Figure 6.8: LASSO regularization path for the ammonia reactor data in fold #2 solved using a
coordinate descent algorithm from glmnet in R

descent algorithms can actually be viewed as specialized parametric programming approaches. In

Fig. 6.8, it observed that the coordinate descent algorithm (with 103 evenly discretized points for

� 2 [10�3, 1]) gives exactly same regularization path as Fig. 6.7. This verifies that the critical

regions for each fold exactly represent the optimal solution profile for the pQP (Eq. 6.15).

With �(�) given from parametric programming, calculating the training and validation errors

for each fold, the objectives in Eqs. 6.15 & 6.16, respectively, are simple function evaluations.

Likewise, these errors are also piecewise functions with respect to �, but they are not linear due to

the squaring of the error term. Fig. 6.9 is an example of this nonlinear piecewise behavior for the

testing error in fold #2. With error as a function of �, finding the optimal � is an easy calculation,

pinpointing the minimum of these validation error profiles aggregated across all folds.

To find this minimum mean validation error, after computing the critical regions, the MIQP

for hyperparameter optimization (Eq. 6.16) is formulated in MATLAB 2019b and solved using

CPLEX. The MIQP solution is compared to result given from using cv.glmnet, the cross-validation

function included in glmnet, with a grid of 103 evenly discretized points for � 2 [10�3, 1]. Fig.
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Figure 6.9: Validation error for the ammonia reactor data in fold #2 from the training pQP (Eq.
6.15) solved using POP

6.10 highlights that the resulting mean validation error profiles calculated from these two methods.

Shaded blue and gray areas represent one standard error above and below the mean validation error.

The validation error profiles appear exactly the same, confirming that the HY-POP approach

leads to the same solution as the established coordinate descent algorithm in glmnet. Table 6.1

depicts some computational results. The HY-POP approach calculates an optimal � of 0.140,

while cv.glmnet calculates an optimal � of 0.1365. This slight difference in value is attributed to

numerical sensitivity in the algorithmic computations and how the � space is the discretized. Not

controlling for programming environment, the coordinate descent algorithm appears faster that the

HY-POP approach. This is expected because the former is a tailored algorithm with warm starts

for solving the pQP of LASSO regression, while the former uses a generic algorithm applicable

to any pQP with no specializations for LASSO regression. Moreover, the MATLAB code has not

been optimized for speed.

However, depending on the size of X , the number of folds, and the granularity of how � is dis-

cretized, these computational conclusions may change. There may be corner cases where a much

finer discretization of � is needed for a good approximation. These are subjects for further study.
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(a)

(b)

Figure 6.10: Mean validation error for the hyperparameter optimization of LASSO regression on
the ammonia reactor data through 5-fold cross-validation. (a) Error profile solved using the MIQP
(Eq. 6.16). (b) Error profile solved using cv.glmnet

.
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Table 6.1: CPU times for 5-fold cross-validation on ammonia reactor data

Method Optimal MSE Optimal � CPU Time1(s)
pQP + MIQP 0.0479 0.0140 1.44 ± 0.06

cv.glmnet2 0.0478 0.0137 0.19 ± 0.01
1 Averaged over 10 runs
2 Grid of 103 points

Albeit for a small example, it is promising that the generic POP solver is only a order of magni-

tude slower. For the HY-POP approach here, about 84% of the CPU time is spent determining the

critical regions for the folds. Time spent constructing the model is included in the CPU time.

6.6 LP L1-Norm Support Vector Machine (SVM)

SVM [176] is a common classification technique that identifies a maximal margin hyperplane

separating different classes of labeled responses and utilizes it as a decision boundary. It has

been applied for fault detection and process monitoring in chemical engineering [177, 178]. The

standard general form is the C-parameterized SVM, where a hyperparameter C penalizes the slack

variables "i controlling how much margin violation to tolerate for each misclassified observation i.

min
w,b,"

1

m
kwkpq + C

X

i

"di

yi(�(xi)w + b) � 1� "i 8i 2 I

"i � 0 8i 2 I

(6.18)

I is the set of all training observations, w is a j ⇥ 1 vector of model weights, b is a constant bias,

and m is a constant value. For the ith observation, xi is a 1⇥ j vector of predictors, yi is the given

class label, and "i is the slack variable. Binary classification is assumed, where the yi is either +1

or �1.

The power d to which "i is raised in the objective (loss) function dictates whether Eq. 6.18 is

the L1-norm (d = 1) or the L2-norm (d = 2) SVM. When p = 1 & q = 1, Eq. 6.18 is the LP

SVM, and when p = 2 & q = 2, it is the QP SVM. Typically, m = 1 for the LP and m = 2 for the
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QP. Since LASSO regression in previous section is an example of the HY-POP approach applied

to a QP, in this section, LP L1-norm SVM [179] is used as an example of the HY-POP approach

implemented on a LP. The LP L1-norm SVM [179] is shown below.

min
w,b,"

X

j

|wj|+ C
X

i

"i

yi(�(xi)w + b) � 1� "i 8i 2 I

"i � 0 8i 2 I

(6.19)

Eq. 6.19 is a parametric programming problem in the form of Eq. 6.7, but does not have a

squared error loss as LASSO regression (Eq. 6.14) did. Instead, the objective is to minimize the

sum of margin violations, while selecting which predictors are more important to construct the

hyperplane. The C hyperparameter is associated with the slack variables "i accounting for this

margin violation sum, instead of the model weights w for LASSO regression. An absolute value

reformulation of
P

j = |wj| is performed for Eq. 6.19, where |wj| = pj + qj and wj = pj � qj .

The parametric linear programming (pLP) for LP L1-norm SVM is the following.

min
p,q,b,"

X

j

pj + qj + C
X

i

"i

yi(�(xi)p� �(xi)q + b) � 1� "i 8i 2 I

"i � 0 8i 2 I

pj � 0 8j 2 J

qj � 0 8j 2 J

(6.20)

Eq. 6.20 is the inner training optimization to the bilevel problem to optimize C. For each kth

fold, the critical regions describing the optimal solution profile to Eq. 6.20 are in the same form as

those in Eqs. 6.10, 6.11, & 6.12, taking into account the reformulation of |wj|. The only difference

here are the two sets of Big-M constraints (Eq. 6.10) to account for w and b. The critical regions
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for Eq. 6.20 for all folds are defined by the following constraints, where w is evaluated from p� q.

wk  AkrC + bkr +M(1� yCR
kr ) 8k 2 K, 8r 2 Rk

wk � AkrC + bkr +M(yCR
kr � 1) 8k 2 K, 8r 2 Rk

bk  GkrC + hkr +M(1� yCR
kr ) 8k 2 K, 8r 2 Rk

bk � GkrC + hkr +M(yCR
kr � 1) 8k 2 K, 8r 2 Rk

|Rk|X

r=1

LBCR
kr yCR

kr  C 
|Rk|X

r=1

UBCR
kr yCR

kr 8k 2 K

|Rk|X

r=1

yCR
kr = 1 8k 2 K

(6.21)

For critical region r in the kth fold, the affine expressions for the model weights are wk = Akr+bkr

and the constant bias is bk = Gkr + hkr. These define the decision boundary wk�(xik) + bk that

classifies each observation into either +1 or �1 class, depending on the sign of its evaluated value

(positive is +1 and negative is �1).

The outer level objective in the bilevel optimization is to minimize the misclassification rate

across all folds. For the kth fold with N tst
k sample points in the testing set, the misclassification

rate is defined below.
1

N tst
k

Ntst
kX

i=1

F (yik, ŷik) (6.22)

Here, ŷik is the predicted class label for the ith observation in the testing set for the kth fold, and

yik is the given class label. F is an indicator function that equals 1 if yik 6= ŷik and 0 if yik = ŷik.

If F (yik, ŷik) = 0, then the ith observation is correctly classified. Otherwise, it is misclassified.

To capture this discrete decision and identify a function form for F , ŷik is redefined as a binary

variable equal to 1 for a prediction belonging to the +1 class and equal to 0 for a prediction

belonging to the �1 class. During testing validation in the outer level, the +1 and �1 class labels

yik are also redefined as 1 and 0, respectively, to accommodate the binary variable ŷik. However,

during training (Eq. 6.20) and to compute the critical regions (Eq. 6.21), the class labels yik remain
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+1 and �1. In this way, the misclassification rate is rewritten as a quadratic loss function.

1

N tst
k

Ntst
kX

i=1

(yik � ŷik)
2 (6.23)

(yik � ŷik)2 equals 1 for a misclassified observation, when yik = 1 & ŷik = 0 or yik = 0 & ŷik = 1.

(yik � ŷik)2 equals 0 for a correctly classified observation, when yik = 1 & ŷik = 1 or yik = 0 &

ŷik = 0. The reason for a redefinition of the class labels during testing validation is clear from this

form of Eq. 6.23.

To connect the critical regions in the inner level describing the trained decision boundaries

(wk�(xik)+bk) to the misclassification rate in the outer level, two additional Big-M constraints are

needed to handle the redefinition of class labels made between the training and testing validation.

wk�(xik) + bk � M(ŷik � 1) 8k 2 K, 8i 2 Ik

wk�(xik) + bk  Mŷik 8k 2 K, 8i 2 Ik
(6.24)

Ik is the set of all observations in the testing set in the kth fold. xik are the predictors for the ith

observation in the kth fold. When the decision boundary is positive (+1 class), ŷik = 1. When

the decision boundary is negative (�1 class), ŷik = 0. Therefore, Eq. 6.24 captures the binary

decision of predicting a class label and connects the learned wk & bk from the critical regions (Eq.

6.21) to the misclassification rate in Eq. 6.23.

The final HY-POP formulation (MIQP) of LP L1-norm SVM hyperparameter optimization

comprises of Eqs. 6.21, 6.23, and 6.24 and is shown below. Eq. 6.25 represents a new construction

for the hyperparameter optimization of LP L1-norm SVM through k-fold cross-validation. This

HY-POP formulation is next demonstrated on a breast cancer data example.
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min
C,wk,bk,ŷik,yCR

kr

1

|K|

|K|X

k=1

1

N tst
k

Ntst
kX

i=1

(yik � ŷik)
2

s.t. wk�(xik) + bk � M(ŷik � 1) 8k 2 K, 8i 2 Ik

wk�(xik) + bk  Mŷik 8k 2 K, 8i 2 Ik

wk  AkrC + bkr +M(1� yCR
kr ) 8k 2 K, 8r 2 Rk

wk � AkrC + bkr +M(yCR
kr � 1) 8k 2 K, 8r 2 Rk

bk  GkrC + hkr +M(1� yCR
kr ) 8k 2 K, 8r 2 Rk

bk � GkrC + hkr +M(yCR
kr � 1) 8k 2 K, 8r 2 Rk

|Rk|X

r=1

LBCR
kr yCR

kr  C 
|Rk|X

r=1

UBCR
kr yCR

kr 8k 2 K

|Rk|X

r=1

yCR
kr = 1 8k 2 K

(6.25)

6.6.1 Breast Cancer Data Example

A dataset of 116 samples with 9 predictors for breast cancer [180] is downloaded from the

UCI Machine Learning Repository. The data values are normalized and randomly divided into 5

folds. The fold identification of the data points is provided in the Appendix B.3. Healthy patients

are labeled +1, and cancer patients are labeled �1. The predictors are age, BMI, and levels of

glucose, insulin, HOMA, leptin, adiponectin, resistin, & MCP-1. It is assumed that the predictors

are linear, �(X) = X . Therefore, the proposed LP L1-norm SVM that is trained is the following.

ycancer = w1xage + w2xBMI + w3xglu + w4xinsu + w5xHOMA

+ w6xlep + w7xadi + w8xres + w9xMCP1 + b
(6.26)

Each training LP L1-norm SVM (Eq. 6.20) for each fold is formulated in MATLAB 2019b.

The critical regions are solved using the POP toolbox [173] with the CPLEX LP solver and the

geometrical algorithm. An example result of the critical regions for fold #3 is shown in Fig. 6.11.
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Figure 6.11: SVM regularization path for the breast cancer data in fold #3 from the training pLP
(Eq. 6.20) solved using POP

Like the LASSO regression, a piecewise relationship between the model weights w & b with

the hyperparameter C is also observed here. This piecewise relationship is referred to as the SVM

regularization path [136]. We expected this behavior from the affine expressions, w(C) & b(C),

determined from the parametric programming solution to Eq. 6.20. Earlier extensions of LAR and

coordinate descent to investigating SVM also discovered the SVM regularization path [181, 182],

noticing similarities between the algorithms used to solve SVM and LASSO regression. In general,

this is expected because all these solution methods fall under the general theory of parametric

programming (Eq. 6.7).

Unlike the LASSO regression, there are many more individual line segments (critical regions)

that are stitched together to represent the optimal solution profile in Fig. 6.11. This creates a very

non-smooth behavior in w(C) & b(C) and the resulting misclassification error profile (Fig. 6.12).

The non-smoothness is expected because the objective (loss) function in Eq. 6.25 is quadratic with

respect to a binary variable ŷik and not a continuous variable. The shaded blue area in Fig. 6.12b

represent one standard error above and below the average misclassification rate.

Because of this non-smooth behavior in the misclassification error profile, characteristic of

116

http://parametric.tamu.edu/POP/


(a)

(b)

Figure 6.12: (a) Misclassification error in fold #3 (b) Misclassification error averaged across all
the folds

.
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Table 6.2: CPU times for 5-fold cross-validation on breast cancer data

Method Optimal Error Optimal C CPU Time1(s)
pLP + MIQP 0.2681 1.4869 50.49 ± 0.61

1 Averaged over 10 runs

classification problems in machine learning, it is inherently more difficult to find an accurate ap-

proximation to an optimal C from a discretized grid search. The optimal C is more sensitive to the

granularity of the discretization. This is one advantage of having the optimal solution in explicit

form through a HY-POP approach. For the breast cancer example, the optimal C value is 1.4869

with an average misclassification error of 0.2681. Table 6.2 shows the computational results. Even

though Eq. 6.20 is a pLP, a longer CPU time for this breast cancer example is observed than for the

LASSO regression because there are many more critical regions to compute in this instance. Eq.

6.25 has more constraints in its problem than Eq. 6.16, which causes more active set explorations

for the parametric programming algorithm to solve the former. About 87% of the CPU time is

spent solving for the critical regions in the folds.

6.7 Conclusion

The novelty in this work is constructing hyperparameter optimization through k-fold cross-

validation as a bilevel optimization problem that is solvable as a single level optimization through

parametric programming. We refer to this as the bilevel & parametric optimization approach to

hyperparameter optimization (HY-POP).

This parametric programming perspective ties together previous studies that first recognized

the regularization paths of LASSO regression and SVM as piecewise linear functions and extends

these results to optimize hyperparameters in k-fold cross-validation. The HY-POP approach to

hyperparameter optimization is demonstrated on ammonia reactor data, a QP example, and breast

cancer data, a LP example.

Advantages of recognizing hyperparameter optimization as a parametric programming prob-

lem are threefold. First, the HY-POP approach to hyperparameter optimization is applicable to
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any general machine learning algorithm that is a LP/QP model. In fact, mixed-integer linear or

quadratic (MILP/MIQP) models can also be used because parametric programming theory exists

for these problem types. Second, when there multiple hyperparameters in a machine learning

model (a common occurrence), there is theory to solve these problems exactly through multi-

parametric programming. Third, and most importantly, no discretization of the hyperparameter

space is required for HY-POP.

Finally, the aims of this work are to lay the introductory foundation and present an unified

view to hyperparameter optimization of machine learning models from a parametric programming

perspective. The multi-parametric programming, mixed-integer, and computational aspects of a

HY-POP approach to hyperparameter optimization are subjects of further investigation.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, imminent challenges society faces in the energy transition and digitaliza-

tion are discussed. While there are many outstanding issues, the focus here is to present a few

ideas that address some of the challenges. For the energy transition, the optimal design and oper-

ation of select natural gas & renewable energy systems for producing fuels, chemicals, and power

are investigated. For a digital energy sector, an algorithm for incorporating time series data into

optimizing a renewable power system with storage and a novel method for the optimal selection of

machine learning models are developed.

In all these studies, mathematical optimization and a systems approach from PSE show their

utility in elucidating insights into problems that have a plethora of different options. This ultimately

is invaluable for decision-makers to make well-informed choices on what future energy systems to

pursue and which models to monetize data with. Some insights into future energy systems are the

following. In Section 2, a MINLP process synthesis highlighted the potential benefits of chemical

looping in reducing the syngas production costs over traditional autothermal or steam reforming in

GTL plants. Small-scale chemical looping processes are equivalent in performance to conventional

reforming ones that are 5-10 times larger. In Section 3, a MINLP process synthesis showcased the

synergies in integrating ammonia and methanol production from biomass together to decrease CO2

emissions and costs. Ammonia BEP declines faster than the increase in methanol BEP, suggesting a

potential to hedge production based on varying economic situations. The MILP supply chain model

in Section 4 described the long-term energy storage values of hydrogen, ammonia, & methanol and

how storage times affect the trade-off between choices. Hydrogen is more suitable at shorter times,

and ammonia becomes attractive as the storage time increases.

Some advances on utilizing data for energy system analysis and model-building are the follow-

ing. A clustering decomposition algorithm for a design and scheduling MILP model in Section 5
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concluded that renewable power systems with storage are cost-competitive with power production

from fossil fuels, and LCOE values remain reasonable if demand satisfaction is flexible. Battery

storage is necessary to match renewable supply with consumer demand, but may not be sufficient.

Backup options like energy carriers (hydrogen-rich chemicals) may be required to provide the last

portions of demand for a completely renewable power system to avoid costly oversizing capacity

issues. Section 6 introduced the exact solution for optimal model selection of machine learning

LP/QPs through bilevel optimization and parametric programming. This extends available explicit

solutions beyond those of LASSO- & SVM-type models and avoids suboptimal data fitting. As

more data is utilized to influence operational decisions in energy systems, optimal machine learn-

ing models become even more important.

Overall, mathematical optimization is a common theme throughout this dissertation. Options

for which energy systems to design and models to build from data will only continue to multiply

over time in an increasingly digital and globalized world. Mathematical optimization and other

fundamental PSE strategies such as process synthesis, scheduling, supply chain optimization, and

data-driven modeling will become even more essential tools than they are today. This dissertation

has demonstrated the power of these optimization-based strategies for providing some insights into

understanding the complex issues surrounding the design and operation of energy systems. As

shown, they are especially attractive strategies for studying chemicals and electricity production,

the two areas with rapid growth in the coming decades. Optimization is also a crucial component

for advancing machine learning. Utilizing bilevel optimzation and parametric programming theory,

the exact solutions of LP/QP machine learning models is possible.

7.2 Key Contributions

The key contributions of the dissertation are summarized below.

1. Chemical looping has predominantly been studied as a post-combustion CO2 capture system.

There is little previous work into the techno-economic analysis and optimization of chemical

looping as a syngas production method. The MINLP process synthesis of a GTL system with
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chemical looping is a first effort at understanding this.

2. Coproduction of ammonia and methanol has been hypothesized before, but there is very little

work on its techno-economics and optimization. The MINLP process synthesis of a biomass-

based ammonia and methanol coproduction system is an initial attempt at investigating this.

3. A MILP supply chain optimization model is developed to better understand the trade-offs

and synergies between hydrogen, ammonia, and methanol for chemical energy storage. This

is first effort at understanding the hydrogen, ammonia, and methanol "economies" together.

4. An improved decomposition algorithm based on agglomerative hierarchical clustering is de-

veloped for unit commitment and capacity expansion optimization problems with time series

data. Evaluating the accuracy of an aggregated time horizon in approximating the true opti-

mal solution is possible with this algorithm.

5. A novel method for the hyperparameter optimization of machine learning models is devel-

oped through bilevel optimization and parametric programming theory. This extends previ-

ous results from the statistics community in algorithms for regularization path solutions.

7.3 Future Work

There are many challenges in the energy transition and digitalization that are not coverable in a

single dissertation. A non-exhaustive list of future research directions is presented below. Similar

MILP/MINLP modeling approaches such as the ones utilized in this dissertation are appropriate

for investigating any one of these directions.

7.3.1 Process Synthesis for a Circular Economy

Sections 2 and 3 discussed a MINLP process synthesis model for producing fuels and chemicals

from natural gas and biomass. These proposed processes represent the traditional way of viewing

production systems. A feedstock is first transformed into a product. After product consumption,

the waste is disposed of and fresh feedstock is required to manufacture a new product all over

again. Motivated by sustainability and climate change, there is a growing interest expressed by
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industrial companies in shifting to a different paradigm where the waste is recycled to manufacture

more product. This has been termed the "circular economy" where reusable products are favored

over single-use products [183, 184].

The concept of recycling waste streams to increase product yield is not new for chemical engi-

neering. This is a common setup seen in many equilibrium-constrained reactors. However, there

has been very little work done on investigating entire energy systems where the overall exiting

waste is utilized as feedstock to manufacture new product [185]. For example, the world currently

creates about amount 2 billion metric tons of municipal solid waste (MSW) per year, and this is

expected to increase 70% by 2050 as the world population grows [186]. Previous process syn-

thesis works have investigated MSW to fuels, olefins, and aromatics [187, 188] processes. This

concept could be extended to include other products such as plastics, textiles, cosmetics, and fertil-

izers/urea. Other circular economy energy systems could include CO2 utilization and wastewater

purification. Again, the possible options for a circular economy are numerous, and PSE tools are

suitable to tackle the challenge.

7.3.2 Strategic Planning of Renewable Energy Systems

In Sections 4 and 5, the optimization models for these renewable energy systems were all for-

mulated as here-and-now decisions, assuming that these systems were already built and operating

today. This is a myopic assumption because capital costs and process efficiencies are fixed to

current day values, whereas there may be a learning curve over time associated with them. For

example, as economies of scale and manufacturing know-how are developed, there will be a decel-

eration in capital costs and an increase in process efficiencies. Moreover, the growing penetration

of renewable energies into the world energy mix and installation of renewable technologies are

multi-year phenomena and not something that will happen over night.

Therefore, a more realistic portrayal would be a strategic planning of renewable energy systems

over a long time horizon, where investment and operational decisions are both time-dependent and

made across different points in the horizon. Elia et al. [189] describes an optimization model for

the strategic planning of GTL systems and solves it using a rolling horizon strategy. A similar

123



approach can be adopted for analyzing the roll-out of renewable energy systems between different

geographical locations with varying resource densities of solar and wind. Optimal renewable en-

ergy systems calculated from either a process synthesis (Sections 2 and 3) or design & scheduling

model (Section 5) can be used as candidate facilities to be built in the strategic planning optimiza-

tion problem.

7.3.3 Data Variability in the Optimization of Renewable Energy Systems

The time series data of solar DNI, wind speed, demand load, and electricity prices used for

the optimization of a renewable power system with storage in Section 5 is taken from a single

year. An assumption was made that this data adequately captures enough of the input variability

for designing and scheduling the power system. However, there are yearly fluctuations that are not

considered here, and a renewable energy system designed off of a single year’s data may become

suboptimal or infeasible when operating in another year. Moreover, the lifetime of any renewable

energy system spans multiple decades. The system design needs to take into account the potential

weather changes in the future.

Therefore, additional modeling techniques are required to quantitatively assess the impact of

data variability in the optimization of renewable energy systems. Uncertainties in the realization

of solar DNI, wind speed, demand load, and electricity prices can be addressed with either robust

optimization [190–192] or stochastic programming [193, 194]. The integration of a clustering

algorithm like the one presented in Section 5 with robust optimization or stochastic programming

has not yet been investigated. Results from these modeling approaches will quantify the sensitivity

of optimal energy system designs to varying weather and economic situations.

7.3.4 HY-POP for Selecting Optimal MILP/MIQP Machine Learning Models

LASSO regression and L1-norm SVM classification in Section 6 are examples of QP and LP

machine learning models, respectively. There exists multi-parametric programming theory to ex-

actly solve MILP/MIQP optimization problems as well. Moreover, several recent works have

shown that nonparametric machine learning algorithms such as neural networks with rectified lin-
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ear unit (ReLU) activation functions [195] and classification & regression (CART) trees [196,197]

are solvable as mixed-integer optimization problems. However, the hyperparameter optimization

of neural networks and CART trees remains an outstanding challenge because they involve tuning

multiple hyperparameters. Likewise, feature selection [198] to improve machine learning models

such as SVM can also be casted as a mixed-integer optimization problem.

Therefore, a similar bilevel optimization and parametric programming (HY-POP) method as

the one derived in Section 6 is applicable to help tackle the hyperparameter optimization of neu-

ral networks and CART trees or the feature selection problem in other machine learning models.

Results for the former would be extremely useful because neural networks and CART trees have

been empirically demonstrated to be the most reliable and accurate off-the-shelf machine learning

models for predicting from data, if their hyperparameters are properly tuned. Moreover, sparsity in

machine learning models from feature selection is highly desirable and multi-parametric program-

ming can lend itself to help develop a greater understanding of these sparse models.
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APPENDIX A

ECN MODEL SUPPLEMENTARY INFORMATION

A.1 Nomenclature Definitions

Indices

f Feedstock index

p Product (energy carrier) index

l Facility location index

t Capacity index (50, 100, 200, 500, 750 MT H2 eq./day)

q Facility type index (H2, NH3, CH3OH)

d Demand location index

k Conversion technology index

m Transportation mode index (rail, truck, pipe)

s Resource location index

Sets

F Feedstocks (CO2, H2O)

P Energy carriers (H2, NH3, CH3OH)

LF Candidate facility locations (county centers)

LD Demand locations (five cities)

S Resource areas

K Conversion technologies (fuel cell, gas turbine)

Parameters

FRf,t,q Feedstock f needed for a facility type q of capacity t

FAf,s Availability of feedstock f at area s

ERt,q Electricity required for facility type q of capacity t

PVCF Capacity factor for solar PV modules

PVEff Solar to electricity conversion efficiency

GHIl Global horizontal irradiance at location l

SLl Available land for solar PV at location l

TCF Capacity factor for wind turbines

TEff Wind to electricity conversion efficiency

WPl Wind power at location l

WLl Available land for turbines at location l
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TLand Land usage per wind turbine

vl Wind speed at location l

Cp Turbine power coefficient

⇢ Air density

D Turbine rotator diameter

PRp,t,q Product p from facility q of capacity t

LHVp Lower heating value of product p

Effp,k Power efficiency using conversion technology k for product p

Storetime Time period between production and consumption

Total Total power demand from the network

Demandd Power demand limit at location d

ICt,q Investment cost for facility q of capacity t

HCp Hydrogen weight density of product p

CCR Capital cost discount percentage rate

OPT Number of days facility is in operation

CostPV Solar PV capital cost per MW

CostTurb Wind turbine cost per MW

CFk Capacity factor for conversion technology k

Costk Capital cost per MW for conversion technology k

Costp Product storage cost ($/kg H2 eq./day)

FCf,t,q Feedstock f costs for facility type q of capacity t

Costf,s,l,m Transportation costs for feedstock f from area s to location l using mode m

Costp,l,d,m Transportation costs for product p from location l to location d using mode m

PVLease Land leasing costs for solar PV

TLease Land leasing costs for wind turbine

LFl Cost factor for land leasing

OMt,q O&M costs for facility type q of capacity t

OMR Annual O&M cost rate percentage

Oxyt,q Oxygen sales for facility type q of capacity t

Binary Variables

yl,t,q Select facility of type q and capacity t at location l

yDp,d,k Select conversion technology k for product p at location d

Continuous Variables

Feedf,l Total feedstock f required at location l

xf,s,l,m Feedstock f flow from area s to location l using transportation mode m

Elecl Total electricity utilized at location l

PVl Solar PV electricity at location l

Turbl Wind turbine electricity at location l
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zp,l,d,m Product p flow from location l to location d using transportation mode m

Prodp,d Total product p sent to location d

Capp,d,k Required capacity of conversion technology k for product p at location d

CostFac Total production facilities capital cost

CostRenew Total renewable farms capital cost

CostConv Total conversion technologies capital cost

CostStore Total storage cost

CostFP Total feedstock purchases cost

CostFT Total feedstock transportation cost

CostPT Total product transportation cost

CostLand Total land leasing cost

CostO&M Total operation & maintenance cost

SalesOxy Total sales from oxygen

A.2 Parameter Values

In the model, equations for material flows are in kg/day, and power units are in MW or MWh.

The parameter values for the model are described below. Solar PV capacity factor (PVCF ) is

24%, and solar to electricity efficiency (PVEff ) is 22.5%. Solar PV capital cost (CostPV ) is

$985,093/MW, and the leasing cost (PVLease) is $6177/MW. Wind turbine capacity factor (TCF ) is

40%, and wind to power efficiency loss (TEff ) is 15%. The land utilized per wind turbine (TLand) is

0.69 km2/MW. Cp is 0.47, ⇢ is 1.163 kg/m3, and D is 108 m. Wind turbine capital cost (CostTurb)

is $1,159,000/MW, and leasing cost (TLease) is $4000/MW. The capital cost discount rate (CCR)

is 15.41%/yr., and the facilities are assumed to operate 330 days/yr. (OPT ). O&M rates for the

conversion technologies, solar PV, and wind turbines are 4%/yr., 1.8%/yr., 2.7%/yr., respectively.

Transportation costs for feedstocks (Costf,s,l,m) and products (Costp,l,d,m) are calculated off

the distance between two locations using the Haversine formula. DFC is the distance fixed cost,

DV C is the distance variable cost, and DM is a distance multiplier. DFC for water and CO2 by

pipeline are $0.0003/kg and $0.4886/kg, respectively. DFC for water and CO2 are $5e-6/kg/mi

and $1.61e-4/kg/mi, respectively. Table A.1 shows the DFC and DV C for the energy carriers.

DM accounts for path curvatures and is assumed to be 1.1 for truck & pipeline and 1.05 for rail.

TransportCost = DFC +DV C ⇥ distance⇥DM (A.1)
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Table A.1: Transportation Costs

Mode Cost H2 NH3 CH3OH

Truck DFC ($/kg) 0.117891 0.007538 0.004290
Truck DV C ($/kg/mi) 0.002724 0.000224 0.000176

Rail DFC ($/kg) 0.593454 0.010674 0.014353
Rail DV C ($/kg/mi) 0.000101 0.000035 0.000037

The storage cost (Costp), lower heating values (LHVp), and hydrogen densities (HCp) are

listed in Table A.2. StoreT ime has unit of days.

Table A.2: Product Information

Product Costp
($/kg H2 eq./day)

LHVp

(MJ/kg)
HCp

(%)

H2 0.106738 119.96 100
NH3 0.003484 18.60 17.76

CH3OH 0.003022 20.09 12.58

The capacity factors for the conversion technologies (CFk) are 55% for a gas turbine and 80%

for a fuel cell, respectively. The capital costs (Costk) are $1,024,00/MW and $1,600,000/MW for

the turbine and fuel cell, respectively. It is assumed that capacity factor and costs are independent

of energy carrier. The conversion efficiencies (Effp,k) are dependent on the product and are shown

in Table A.3.

Table A.3: Conversion Technology Efficiencies

Effp,k H2 NH3 CH3OH

Gas turbine 0.40 0.25 0.40
Fuel Cell 0.60 0.45 0.35
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Feedstock availability (FAf,s) for water and CO2 are taken from USGS and NETL ATLAS,

respectively. Solar irradiance (GHIl) in kWh/m2/day and wind speed (vl) in m/s are extracted from

NREL NSRDB and WIND Toolkit. Land availabilities (km2) for solar PV (SLl) and wind farm

(WLl) are derived from a NREL study [113]. The cost factor for land leasing is taken from the

Texas A&M Real Estate center database [199]. The average land cost is used a normalizing basis.

Information for optimal hydrogen, ammonia, and methanol plants are shown in Tables A.4 to

A.9. These values are determined from an earlier process synthesis similar to the ones presented

in Sections 2 and 3.

Table A.4: Hydrogen Plant Input/Output Information

Capacity FRH2O

(kBPD)
FRCO2

(MT/day)
ER

(MW)
PR

(MT/day)

50 MT H2 eq./day 6.86255 0 111.9012 50
100 MT H2 eq./day 13.72510 0 223.8023 100
200 MT H2 eq./day 27.45020 0 447.6047 200
500 MT H2 eq./day 68.62549 0 1119.012 500
750 MT H2 eq./day 102.9382 0 1678.518 750

Table A.5: Hydrogen Plant Cost Information

Capacity IC
($/kg H2 eq.)

OM
($/kg H2 eq.)

FCH2O

($/kg H2 eq.)
FCCO2

($/kg H2 eq.)
OxySales

($/kg H2 eq.)

50 MT H2 eq./day 0.7301 0.1714 0.0273 0 0.3968
100 MT H2 eq./day 0.6435 0.1510 0.0273 0 0.3968
200 MT H2 eq./day 0.5722 0.1343 0.0273 0 0.3968
500 MT H2 eq./day 0.5014 0.1177 0.0273 0 0.3968
750 MT H2 eq./day 0.4766 0.1118 0.0273 0 0.3968
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Table A.6: Ammonia Plant Input/Output Information

Capacity FRH2O

(kBPD)
FRCO2

(MT/day)
ER

(MW)
PR

(MT/day)

50 MT H2 eq./day 8.75818 0 145.4584 281.6
100 MT H2 eq./day 17.26955 0 286.7563 563.2
200 MT H2 eq./day 34.5391 0 573.5127 1126.5
500 MT H2 eq./day 86.52437 0 1434.426 2816.1
750 MT H2 eq./day 129.5477 0 2151.228 4224.2

Table A.7: Ammonia Plant Cost Information

Capacity IC
($/kg H2 eq.)

OM
($/kg H2 eq.)

FCH2O

($/kg H2 eq.)
FCCO2

($/kg H2 eq.)
OxySales

($/kg H2 eq.)

50 MT H2 eq./day 1.5565 0.3572 0.0348 0 0.4713
100 MT H2 eq./day 1.3511 0.3171 0.0343 0 0.4713
200 MT H2 eq./day 1.1600 0.2723 0.0343 0 0.4713
500 MT H2 eq./day 1.0024 0.2353 0.0344 0 0.4719
750 MT H2 eq./day 0.9306 0.2184 0.0343 0 0.4713

Table A.8: Methanol Plant Input/Output Information

Capacity FRH2O

(kBPD)
FRCO2

(MT/day)
ER

(MW)
PR

(MT/day)

50 MT H2 eq./day 12.92597 545.8 174.0552 397.3
100 MT H2 eq./day 25.78618 1091.6 348.0658 794.7
200 MT H2 eq./day 51.45858 2183.2 693.8080 1589.4
500 MT H2 eq./day 113.5816 5458.0 1740.668 3973.5
750 MT H2 eq./day 192.9694 8187.9 2601.775 5960.2

Table A.9: Methanol Plant Cost Information

Capacity IC
($/kg H2 eq.)

OM
($/kg H2 eq.)

FCH2O

($/kg H2 eq.)
FCCO2

($/kg H2 eq.)
OxySales

($/kg H2 eq.)

50 MT H2 eq./day 1.6391 0.3846 0.0514 0.2406 0.5979
100 MT H2 eq./day 1.4324 0.3362 0.0512 0.2406 0.5979
200 MT H2 eq./day 1.2869 0.3020 0.0511 0.2406 0.6261
500 MT H2 eq./day 1.0802 0.2535 0.0451 0.2406 0.5979
750 MT H2 eq./day 1.0375 0.2435 0.0511 0.2406 0.6261
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APPENDIX B

RENEWABLE POWER SYSTEM WITH STORAGE SUPPLEMENTARY INFORMATION

The information here is extracted from Demirhan et al. [115].

B.1 Nomenclature Definitions

Sets

t Time discretization in hours

h Representative periods

a Location

i Processes

j Resources

m Operating modes

l Piecewise cost function segments

Subsets

T imeh,t Hour t in period h

Periodh Set of periods considered

Modesi,m Operating modes m in process i

T ransModesi,m,m0 Possible mode transitions from m to m0 in process i

Seqi,m,m0,m00 Predefined sequences of mode transitions for process i

Demandj Resources j for which demand exists

PLSegmentsi,l Segments l in piecewise linear approximations for process i

Variables

TotalCost Total annualized cost

Invexcessa,j,h Excess inventory for resource j in period h at location a

Positive Variables

Ba,j,h,t Amount of resource j purchased in time t of period h at location a

CapPa,i Production capacity for process i at location a based on reference resource

CapSa,j Storage capacity for resource j at location a

Capexa,i Overnight capital cost for process i at location a

Capextotal
a Total overnight capital expenses at location a
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Inva,j,h,t Inventory level of resource j in time t of period h at location a

�a,i,l Coefficient for segment l in piecewise linear approximation for process i at location a

Opexa Total annual operation cost at location a

Pa,i,h,t Amount of reference resource consumed or produced by process i in time t of period h at location a

Pm
a,i,m,h,t Amount of reference resource consumed or produced by process i in mode m in time t of period h

at location a

Sa,j,h,t Amount of resource j sold in time t of period h at location a

Binary Variables

wa,i,l Equals 1 if the capacity for process i at location a is in the range of line segment l

xP
a,i Equals 1 if process i at location a is built

xS
a,j Equals 1 if storage facility for resource j is built at location a

ya,i,m,h,t Equals 1 if process i at location a operates in mode m in time t of period h

za,i,m,m0,h,t Equals 1 if process i at location a in mode m changes to mode m0 in time t of period h

Parameters

Bmax
a,j,h,t Maximum amount of resource j that can be consumed in time t of period h at location a

BigM Big-M parameter

CAPP�max
i Maximum production capacity for process i

CAPS�max
j Maximum storage capacity for resource j

CAP segment
i,l Capacity of process i at the right end point of segment l

CAPutil�min
i,m Minimum capacity utilization fraction for mode m of process i

CAPutil�max
i,m Maximum capacity utilization fraction for mode m of process i

CAPmode�min
i,m Minimum production capacity for mode m of process i

CAPmode�max
i,m Maximum production capacity for mode m of process i

CAP�rate
i,m Maximum rate of change of production for mode m of process i

CAPEXsegment
i,l Capital cost for process i at the right hand side of segment l

Costdischargea,j,h,t Cost of discharging resource j in time t of period h at location a

Costlanda,i Land cost for process i at location a

CostP�fix
i,m,h Fixed operational cost for process i operating in mode m of period h

CostP�var
i,m,h Variable operational cost for process i operating in mode m of period h

Costpurchasea,j,h,t Cost of purchasing resource j in time t of period h at location a

CostS�fix
j Fixed capital cost for storage of resource j

CostS�var
j Variable capital cost for storage of resource j

Da,j,h,t Demand for resource j in time t of period h at location a

Dperiod
a,j,h Demand for resource j for period h at location a

Dtotal
a,j Aggregated demand for resource j of the annual operation

Landmax
a,j Maximum land availability for resource j at location a

LossSa,j Fractional loss from storing resource j in period h

157



nh The weight of the representative period h in annual operation

⇢j Density parameter to convert standard material flow unit (kg/h) of resource j to a different unit

B.2 Parameter Information

Resource Data

Table B.1: Set of resources and the design and operational parameters for their storage

Resource Description CAP S�max
j CostS�fix

j CostS�var
j

Solar Direct normal irradiation (DNI) potential in W/m2 - - -
Wind Wind power potential in m/s - - -
DC Power Electrical power - - -
AC Power Local electrical power demand - - -
Grid Backup Power provided by the local electricity grid - - -
Battery Charge Power stored in battery 1e8 0 340,000

Solar and wind resource potentials given in W/m2 and m/s, respectively are converted to their

MW-equivalent resource availabilities using Eqs. B.1 and B.2:

Bmax
a,Solar,h,t = (Solar DNI)(Landmax

a,Solar) (B.1)

Bmax
a,Wind,h,t =

1

2
⇢air⇡(SA)

2(Wind Speed)3(Landmax
a,Wind)(10

�6) (B.2)

Where Bmax
a,Solar,h,t and Bmax

a,Solar,h,t are solar and wind resource availability in MW, ⇢air is the density

of air given in kg/m3, SA is the swept area by the rotor blades (where rotor blade diameter is 108

m), and Landmax
a,Solar & Landmax

a,Wind are the maximum land available for solar and wind energy,

respectively. The reference resource for each process is shown in bold in Table B.3.
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Process Data

Table B.2: Set of processes

Process Description
Wind Farm Turbines that generate DC Power from Wind
Solar PV Photovoltaic (PV) cells that produce DC Power from Solar
DC-AC Inverter Inverter to convert DC Power to AC Power
Battery-Store NaS battery to store DC Power as Battery Charge
Battery-PCS NaS battery to produce DC Power from Battery Charge

Table B.3: Conversion and capacity parameters for the processes

Process Basis CAP P�max
i Inputs Outputs

Wind Farm [200] MW 200,000 Wind = -2.5 DC Power = 1
Solar PV [201] MW 200,000 Solar = -4.44 DC Power = 1
DC-AC Inverter MW 10,000 DC Power = -1.053 AC Power = 1
Battery-Store [21] MW 100,000 DC Power = -1 Battery Charge = 1
Battery-PCS [21] MW 100,000 Battery Charge = -1.176 DC Power = 1

Table B.4: Operational cost and rate change parameters for the processes

Process Basis1 CAP�rate
i,m CAP util�min

i,m CAP util�max
i,m CostP�fix

i,m,h CostP�var
i,m,h

Wind Farm [200] MW 1 0 1 0 14.6
Solar PV [201] MW 1 0 1 0 5.3
DC-AC Inverter MW 1 0 1 0 0
Battery-Storage [21] MW 1 0 1 0 2.2
Battery-PCS [21] MW 1 0 1 0 2.2
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Table B.5: Capital investments cost parameters for the processes

CAP segment
i,l CAPEXsegment

i,l ($ MM)
Basis1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Wind Farm [200] MW 100 200,000 - - - - - - 169 388,000 - - - - - -
Solar PV [201] MW 100 200,000 - - - - - - 111 222,000 - - - - - -
DC-AC Inverter MW 1 10,000 - - - - - - 0.75 7,500 - - - - - -
Battery-Storage [21] MW - - - - - - - - - - - - - - - -
Battery-PCS [21] MW 1 100,000 - - - - - - 0.65 65,000 - - - - - -

B.3 Simultaneous Design and Scheduling MILP Model

Here, we present the modeling constraints for the simultaneous design and operation model.

Please see the Section B.1 for the full list of sets, variables, and parameters. The mixed-integer

linear programming (MILP) model consists of: (i) network design constraints for production and

storage facilities, (ii) operating mode selection with ramp up/down constraints, (iii) resource bal-

ance constraints, (iv) continuity constraints, (v) investment and operational cost functions, and (vi)

objective function.

Network Design Constraints

Constraints for network design, that allow for processes i and storage vessels for resources j to

be selected or not, are shown in Eqs. B.3 and B.4:

CAP P
a,i  CAP P�max

i xP
a,i 8a, i (B.3)

CAP S
a,j  CAP S�max

j xS
a,j 8a, j (B.4)

Operating Mode Selection and Ramp Up/Down Constraints

Each process i can have multiple modes m, among which only one can be selected at a time t.

Constraints for mode selection are shown in Eqs. B.5 to B.10:

X

m2Modesi,m

ya,i,m,h,t = xP
a,i 8a, i, h 2 Periodh, t 2 T imeh,t (B.5)
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Pa,i,h,t =
X

m2Modesi,m

Pm
a,i,m,h,t 8a, i, h 2 Periodh, t 2 T imeh,t (B.6)

Pm
a,i,m,h,t � CAP P�min

i,m CapPa,i 8i,m 2 Modesi,m, h, t 2 T imeh,t (B.7)

Pm
a,i,m,h,t  CAP P�max

i,m CapPa,i 8a, i,m 2 Modesi,m, h, t 2 T imeh,t (B.8)

Pm
a,i,m,h,t � CAPmode�min

i,m ya,i,m,h,t 8a, i,m 2 Modesi,m, h, t 2 T imeh,t (B.9)

Pm
a,i,m,h,t  CAPmode�max

i,m ya,i,m,h,t 8a, i,m 2 Modesi,m, h, t 2 T imeh,t (B.10)

Eqs. B.7 and B.8 set the lower and upper bounds of the production range of mode m for process i.

During dynamic operation, a processing unit might change its throughput in the same fixed mode

or switch to a different operating mode. Below are the equations used to represent mode switch.

Eqs. B.11 and B.12 restrict the up-ramping and down-ramping rates of throughput from an unit by

using a Big-M parameter to bound the change of Pm
i,m,h,t between consecutive time periods t � 1

and t.

Pm
a,i,m,h,t � Pm

a,i,m,h,t�1 � ��Ratemax
i,m �M(2� ya,i,m,h,t � ya,i,m,h,t�1)

8a, i,m 2 Modesi,m, h, t 2 T imeh,t

(B.11)

Pm
a,i,m,h,t � Pm

a,i,m,h,t�1  �Ratemax
i,m +M(2� ya,i,m,h,t � ya,i,m,h,t�1)

8a, i,m 2 Modesi,m, h, t 2 T imeh,t

(B.12)

Eq. B.13 is used to designate mode switch. The binary variable zi,m0,m,h,t�1 is equal to 1 if process

i switches from mode m to m0 at time t of period h:

X

m02Transi,m,m0

za,i,m0,m,h,t�1 �
X

m2Transi,m0,m

za,i,m,m0,h,t�1 = ya,i,m,h,t � ya,i,m,h,t�1

8a, i,m 2 Modesi,m, h, t 2 T imeh,t

(B.13)
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Eqs. B.14 and B.15 put restrictions on the minimum time required to switch between modes and

the sequence of changes that needs to be followed if there is a mode switch, respectively.

ya,i,m0,h,t �
✓i,m,m0X

k=1

za,i,m,m0,h,t�k 8i, (m,m0) 2 TransModesi,m,m0 , a, h, t 2 T imeh,t (B.14)

za,i,m,m0,h,t�✓i,m,m0,m00 = za,i,m0,m00,h,t 8a, i, (m,m0,m00) 2 Seqi,m,m0,m00 , h, t 2 T imeh,t (B.15)

Resource Balance Constraints

The mass balance is written in terms of accounting for the inventory level for each resource in

the network. Eq. B.16 is a total mass balance for resource j at any time t in period h.

Inva,j,h,t = (1� Lossj,h)Inva,j,h,t�1 +
X

i

X

m2Modesi,m

Conversioni,m,j,tP
m
a,i,m,h,t

+Ba,j,h,t � Sa,j,h,t

8a, j, h, t 2 T imeh,t

(B.16)

Conversioni,m,j,t is a parameter that sets the input-output relationship for each process and is

written with respect to the reference resource j for each mode m of process i. The full list of

inputs and outputs to processes are given in Section B.2.

Eqs. B.17 and B.18 set upper bounds for the nameplate process and inventory storage capaci-

ties, respectively:

Pa,i,h,t  CapPa,i 8a, i, h, t 2 T imeh,t (B.17)

Inva,j,h,t  CapSa,j 8a, j, h, t 2 T imeh,t (B.18)

Supply and demand constraints are written for each resource j in forms of Eqs. B.19 to B.21:

Ba,j,h,t  Bmax
a,j,h,t 8a, j, h, t 2 T imeh,t (B.19)
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Sa,j,h,t  Da,j,h,t 8a, j 2 Demandj, h, t 2 T imeh,t (B.20)

Sa,j,h,t = 0 8a, j 2 NoDischargej, h, t 2 T imeh,t (B.21)

Continuity Constraints

Eqs. B.22 to B.28 show the connection between subsequent periods, where nh is the number

of times a representative time period is cycled. The continuity condition represents that inventory

needs to be accumulated over the course of a period and carried over to the next one. These

constraints are adapted from Zhang et. al. [202].

ya,i,m,h,0 = ya,i,m,h,|T imeh,t|

8a, i,m 2 Modesi,m, h
(B.22)

za,i,m,m0,h,t = za,i,m,m0,h,t+|T imeh,t|

8a, i, (m,m0) 2 TransModesi,m,m0 , h,�✓max
i � 1  t  �1

(B.23)

ya,i,m,h,|T imeh,t| = ya,i,m,h+1,0

8a, i,m 2 Modesi,m, h 2 Periodh \ |Periodh|
(B.24)

za,i,m,m0,h,t+|T imeh,t| = za,i,m,m0,h+1,t

8a, i, (m,m0) 2 TransModesi,m,m0 , h 2 Periodh \ |Periodh|,�✓max
i � 1  t  �1

(B.25)

Invexcessa,j,h = Inva,j,h,|T imeh,t| � Inva,j,h,0

8a, j, h
(B.26)

Inva,j,h,0 + nhInv
excess
a,j,h = Inva,j,h+1,0

8a, j, h 2 Periodh \ |Periodh|
(B.27)

Inva,j,|Periodh|,0 + n|Periodh|Inv
excess
a,j,|Periodh| = Inva,j,1,0 8a, j (B.28)
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Investment and Operational Cost Functions

Capital investment costs are approximated by piecewise linear functions of the processing plant

capacities as shown in Eqs. B.29 to B.32:

CapPa,i =
X

l2PLi,l

⇥
�a,i,j(CAP segment

i,l�1 � CAP segment
i,l ) + CAP segment

i,l wa,i,l

⇤
8a, i (B.29)

Capexa,i =
X

l2PLi,l

⇥
�a,i,j(CAPEXsegment

i,l�1 � CAPEXsegment
i,l ) + CAPEXsegment

i,l wa,i,l

⇤
8a, i

(B.30)

�a,i,l  wa,i,l 8a, (i, l) 2 PLi,l (B.31)

X

l2PLi,l

wa,i,l = xP
a,i 8i (B.32)

Total capital expense is the sum of unit investment costs, storage costs, and land purchase costs as

given in Eq. B.33:

Capextotal
a =

X

i

⇥
Capexa,i + Costlanda,i CapPa,i

⇤

+
X

j

⇥
CostS�fixed

j xS
a,j + CostS�var

j CapSa,j
⇤ (B.33)

Total operational expense as shown in Eq. B.34 is the sum of unit processing costs, resource

purchase, and discharge costs:

Opexa =
X

h

X

t2T imeh,t

nh

X

i

X

m2Modesi,m

(CostP�fixed
i,m,h ya,i,m,h,t + CostP�var

i,m,h Pm
a,i,m,h,t)

+
X

j

CostPurchase
a,j,h,t Ba,j,h,t/⇢j + CostDischarge

a,j,h,t Sa,j,h,t/⇢j

� (B.34)
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Objective Function

The model is solved to minimize the annualized production cost of meeting the power demand.

This is also called the levelized cost of electricity (LCOE). For this purpose, total capital investment

is annualized using 8% annual discount rate. Adding the annualized capital cost and operational

cost together gives the objective function value TotalCost as shown in Eq. B.35:

TotalCost =
X

a


(0.08)Capextotal

a +Opexa

�
(B.35)

The resulting optimization problem is:

min TotalCost

s.t. Eqs. B.3� B.34
(B.36)

Eq. B.36 is the LB problem in the decomposition algorithm.

For the UB problem, the representative periods are replaced by the original time horizon, and

the design variables (wa,i,l, xP
a,i, xS

a,j ,CapPa,i, CapSa,j , Capexa,i �a,i,l) are fixed. The original time

horizon is now represented by using only one "representative period" with 8760 hours. Grid backup

(Ba,GridBackup,h,t � 0) is allowed for the UB problem to maintain feasibility, and the objective is

to minimize the amount of this backup purchased. The resulting optimization problem is:

min
X

(a,h,t)

Ba,GridBackup,h,t

s.t. Eqs. B.3� B.34

(B.37)

Eq. B.37 is the UB problem in the decomposition algorithm.
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APPENDIX C

DATASETS UTILIZED FOR HYPERPARAMETER OPTIMIZATION

C.1 Ammonia Reactor Data

Table C.1: Collected dataset of ammonia reactor information from various sources

Fold # Temp. Pres. xH2 xN2 xNH3 xInert
xH2
xN2

yX Ref.

1 438 93.0 0.620 0.280 0.050 0.050 2.21 0.197 [203]
1 402 85.5 0.605 0.275 0.038 0.082 2.20 0.143 [204]
1 455 229.0 0.670 0.222 0.028 0.081 3.02 0.305 [205]
1 438 283.0 0.650 0.219 0.052 0.079 2.97 0.287 [205]
1 448 240.0 0.658 0.219 0.018 0.105 3.00 0.338 [206]
1 455 229.0 0.670 0.222 0.028 0.080 3.02 0.305 [207]
2 395 85.6 0.660 0.220 0.040 0.080 3.00 0.201 [203]
2 370 199.0 0.653 0.217 0.010 0.120 3.01 0.287 [208]
2 440 210.0 0.621 0.206 0.032 0.141 3.01 0.311 [205]
2 460 272.0 0.658 0.212 0.030 0.100 3.10 0.317 [205]
2 460 177.0 0.682 0.227 0.043 0.048 3.00 0.246 [209]
2 459.5 146.0 0.672 0.224 0.020 0.085 3.00 0.246 [210]
3 432 104.0 0.650 0.216 0.037 0.097 3.01 0.219 [211]
3 450 127.0 0.667 0.230 0.022 0.081 2.90 0.207 [212]
3 469 185.0 0.612 0.235 0.042 0.111 2.60 0.269 [213]
3 472 265.8 0.634 0.211 0.035 0.120 3.00 0.338 [214]
3 419 105.0 0.656 0.222 0.038 0.084 2.96 0.224 [215]
3 445 223.0 0.628 0.209 0.035 0.128 3.00 0.333 [216]
4 401 171.0 0.650 0.240 0.020 0.090 2.71 0.368 [217]
4 473 128.0 0.625 0.215 0.023 0.137 2.91 0.214 [218]
4 480 200.0 0.639 0.213 0.013 0.135 3.00 0.212 [212]
4 443 362.0 0.595 0.188 0.030 0.187 3.16 0.370 [205]
4 460.3 144.0 0.672 0.224 0.020 0.085 3.00 0.210 [210]
4 350 134.0 0.736 0.254 0.000 0.010 2.90 0.430 [219]
5 354 171.0 0.659 0.210 0.018 0.113 3.14 0.313 [217]
5 440 179.0 0.651 0.196 0.032 0.121 3.32 0.295 [205]
5 377 100.0 0.643 0.228 0.015 0.115 2.83 0.278 Haldor-Topsøe
5 453 88.6 0.622 0.309 0.020 0.050 2.01 0.331 [220]
5 455 88.6 0.627 0.309 0.019 0.045 2.03 0.332 [220]
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C.2 Breast Cancer Data

Table C.2: Fold identification of breast cancer data [180]

Fold # Patients

1 3, 10, 13, 22, 24, 42, 46, 54, 60, 65, 66, 68,
71, 72, 73, 74, 79, 83, 86, 91, 92, 99, 110, 114

2 5, 8, 11, 16, 20, 31, 32, 37, 38, 44, 48, 50,
53, 62, 63, 67, 75, 89, 96, 97, 104, 109, 112

3 1, 6, 17, 23, 27, 33, 35, 36, 45, 52, 55, 59,
61, 64, 69, 70, 77, 93, 102, 105, 106, 113, 116

4 2, 4, 7, 9, 14, 15, 18, 21, 25, 26, 28, 47,
56, 76, 78, 80, 82, 85, 88, 95, 101, 111, 115

5 12, 19, 29, 30, 34, 39, 40, 41, 43, 49, 51, 57,
58, 81, 84, 87, 90, 94, 98, 100, 103, 107, 108
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APPENDIX D

LIST OF PUBLICATIONS AND PRESENTATIONS

At the time of writing, the publications, conference proceedings, and presentations produced

from my graduate studies are listed below.

D.1 Journal Publications

• Tso, WW; Niziolek, AM.; Onel, O; Demirhan, CD; Floudas, CA.; Pistikopoulos, EN. En-

hancing Natural Gas-to-Liquids (GTL) Processes Through Chemical Looping: Process Syn-

thesis & Global Optimization. Computers & Chemical Engineering, 113 (2018): 222-239.

• Tso, WW; Demirhan, CD; Floudas, CA; Pistikopoulos, EN. Multi-Scale Energy Systems

Engineering for Optimal Natural Gas Conversion. Catalysis Today. In press.

• Tso, WW; Demirhan, CD; Heuberger, CF; Powell, JB; Pistikopoulos, EN. A Hierarchical

Clustering Decomposition Algorithm for Optimizing Renewable Power Systems with Stor-

age. Applied Energy. In review.

• Tso, WW; Burnak, B; Pistikopoulos, EN. HY-POP: Hyperparameter Optimization of Ma-

chine Learning Models Through Parametric Programming. Computers & Chemical Engi-

neering. In revision.

• Demirhan, CD; Tso, WW; Powell, JB; Pistikopoulos, EN. Sustainable Ammonia Production

Through Process Synthesis & Global Optimization. AIChE Journal, 65.7 (2019): e16498.

• Demirhan, CD; Tso, WW; Ogumerem, GS; Pistikopoulos, EN. Energy Systems Engineering

- A Guided Tour. BMC Chemical Engineering, 1.1 (2019): 1-19.
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• Demirhan, CD; Tso, WW; Powell, JB; Heuberger, CF; Pistikopoulos, EN. A Multi-scale

Energy Systems Engineering Approach for Renewable Power Generation and Storage Opti-

mization. Industrial & Engineering Chemistry Research. Accepted.

• Demirhan, CD.; Boukouvala, F.; Kim, K.; Song, H.; Tso, WW; Floudas, CA.; Pistikopoulos,

EN. An Integrated Data-Driven Modeling & Global Optimization Approach for Multi-Period

Nonlinear Production Planning Problems. Computers & Chemical Engineering. In review.

D.2 Conference Proceedings

• Tso, WW; Demirhan, CD; Powell, JB.; Pistikopoulos, EN. Toward Optimal Synthesis of

Renewable Ammonia and Methanol Production (RAMP). Computer Aided Chemical Engi-

neering, 44 (2018): 1705-1710.

• Tso, WW; Demirhan, CD; Lee, S; Song, H; Powell, JB; Pistikopoulos, EN. Energy Carrier

Supply Chain Optimization: A Texas Case Study. Computer Aided Chemical Engineering,

47 (2019): 1-6.

• Ogumerem, GS; Tso, WW; Demirhan, CD; Lee, S; Song, H; Pistikopoulos, EN. Toward

Optimization of Hydrogen, Ammonia, and Methanol Supply Chains. IFAC-PapersOnLine,

52.1 (2019): 844-849.

D.3 Conference Presentations

• Natural Gas to Liquid Transportation Fuels Utilizing Chemical Looping for Syngas Genera-

tion: Process Synthesis & Global Optimization

– TAMU Energy Conference ’16, AIChE Meeting ’16, TAMU ChESGA Symposium ’17

• Advancing the Production of Olefins and Aromatics from Natural Gas via Methanol: Chem-

ical Looping for Syngas Generation

– TAMU Energy Conference ’17, AIChE Meeting ’17, TAMU ChESGA Symposium ’18
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• Toward the Optimal Synthesis of Renewable Ammonia and Methanol Processes (RAMP)

– PSE Conference ’18

• Toward Supply Chain Optimization of Renewable Energy Carriers

– TAMU Energy Conference ’18, AIChE Meeting ’18,

TAMU ChESGA Symposium ’19, FOCAPD ’19

• A Clustering Decomposition Algorithm for Energy Storage Design & Operation

– AIChE Meeting ’19

• Machine Learning Through a Parametric Programming Lens

– AIChE Meeting ’19
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