
OPTIMUM SEARCH SCHEMES FOR

APPROXIMATE STRING MATCHING USING BIDIRECTIONAL FM-INDEX

A Dissertation

by

BAHMAN TORKAMANDI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Kiavash Kianfar
Committee Members, Sergiy Butenko

Alan Dabney
Alfredo Garcia

Head of Department, Lewis Ntaimo

May 2020

Major Subject: Industrial Engineering

Copyright 2020 Bahman Torkamandi

ABSTRACT

The objective of the research in this dissertation is to derive optimal search schemes for

approximate string matching using bidirectional FM-index, and utilize them in increasing the speed

of such searches. Such a problem arises in computer science with many applications. Approximate

string matching problem is also central in bioinformatics where biologists are interested in aligning

pieces of DNA back to genome. Given a text, the search for a given pattern can be accelerated by

preprocessing the text through constructing a hash table or indexing the text. Bidirectional indices

have opened new possibilities by allowing a search to start from anywhere within the pattern and

extend in both directions. In particular, use of search schemes (partitioning the pattern and searching

the pieces in certain orders with given bounds on errors) can yield significant speed-ups. However,

finding optimal search schemes is a difficult combinatorial optimization problem. Prior work tends

to use search heuristics but lacks the ability to find the best strategies for using an index to search

for a pattern. In this dissertation, we will find the optimal search scheme for approximate string

matching problem for a bidirectional index with the assumption of having the number of partitions.

Moreover, we will investigate the computational gain from applying these optimal search schemes

to search in a bidirectional FM-index.

Intellectual Merit. First, we propose an MIP formulation to find the optimal search scheme for

approximate string matching problem using a bidirectional index under Hamming distance error.

Second, we demonstrate that our MIP can solve the optimum search scheme problem to optimality

in a reasonable amount of time for input parameters of considerable size, and enjoys very quick

convergence to optimal or near-optimal solutions for input parameters of larger size. Third, we show

that approximate search in a bidirectional FM-index can be performed significantly faster if the

optimal schemes obtained from our MIP are used. This is demonstrated based on number of edges

in the search tries as well as actual running time of in-index search for Illumina DNA Sequencing

reads (up to 35 times faster than standard backtracking for 3 errors). Although our MIP solutions

are for Hamming distance, they perform equally well for edit distance. Fourth, we demonstrate

ii

that our optimal search schemes is superior to the best of in-index aligners for 2 and 3 errors. In an

attempt to acquire a glimpse of the potential of combining our optimal search schemes with in-text

verification, we combine optimal search scheme and in-text verification for Hamming distance. This

experiment halved the running time for reads of size 101 and 125. Furthermore, we showcase the

power of our optimal search schemes by demonstrating that for 1 to 3 errors, approximate string

matching of reads of size 40, 101, and 125 performed completely in index compete in running

time with the best full-fledged aligners, which benefit from combining search in index with in-text

verification for edit distance. Moreover, we will relax the assumption of having equal size partitions

in our MIP and address the more general form of approximate string matching problem where the

only assumption is the prespecified number of partitions. We will present an MIP formulation for

edit distance and provide an alternative formulation for Hamming distance.

Broader Impacts. The results of this research promise a significant increase in speed of finding

approximate occurrences of a pattern in a text. This is an important problem with many applications

in bioinformatics and computer science such as recovering text in signal processing and information

retrieval [23]. Approximate string matching plays an indisputable role in the realm of bioinformatics,

where any downstream analysis on the genomic data starts with aligning sequenced DNA or RNA

reads back to a reference genome. Technologies such as next generation sequencing has produced

considerable amount of data leading to increasing demand for fast read aligners to map DNA pieces

to genome. In order to solve this central problem, one could consider the genome of any species of

interest as the "text" and the sequenced pieces of DNA as the "patterns" and therefore search for

approximate occurrences of a pattern in a text using a full-text index. Some tolerance for errors is

required due to mutations in genome of each individual organism such as single nucleotide variants

(SNVs) as well as errors in sequencing technologies. This broad spectrum of applications indicates

the significant impact of this research on many areas of health and life sciences and practice, where

discovery, diagnosis, and treatment all depend on genome sequencing.

iii

DEDICATION

To my dear family

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Kiavash Kianfar. This dissertation would have been

impossible without his guidance. His critique of my work has developed me as an individual and as

a professional. Research discussions with him have been very intriguing and has molded me into

a better researcher, a critical thinker and helped me enjoy research. I would also like to thank my

committee members Dr. Butenko, Dr. Dabney Yu and Dr. Garcia for their invaluable comments

and suggestions. My appreciation goes to the Department of Industrial and Systems Engineering

for pro- viding me with funding throughout this Ph.D. study. This dissertation is dedicated to my

family. Finally, I would like to acknowledge Texas A&M University High Performance Research

Computing (HPRC) for providing resources to perform parts of computational experiments.

v

CONTRIBUTORS AND FUNDING SOURCES

Funding Sources

This work has been partially supported by Texas Engineering Experiment Station (TEES) and

department of Industrial and Systems Engineering, which are gratefully acknowledged.

vi

NOMENCLATURE

NGS Next Generation Sequencing

DNA Deoxyribonucleic Acid

RNA Ribonucleic Acid

mRNA messenger Ribonucleic Acid

A Adenine

C Cytosine

G Guanine

T Thymine

A-T Adenine-Thymine

G-C Guanine-Cytosine

TF Transcription Factor

SNP Single Nucleotide Polymorphism

InDels Insertion and Deletions

HTS High Throughput Sequencing

HGP Human Genome Project

ENCODE Encyclopedia of DNA Elements

SE Single End

PE Paired End

SAM Sequence Alignment Map

FM Ferragina-Manzini

bp base pair

nt Nucleotide

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

LIST OF TABLES. xi

1. INTRODUCTION. 1

1.1 Cellular Processes . 2
1.2 DNA Sequencing . 2
1.3 Read Mapping . 3
1.4 Optimal Search Scheme Problem . 4
1.5 Contributions . 6

2. NECESSARY BACKGROUND. 9

2.1 From DNA to Protein . 9
2.2 Next Generation Sequencing . 12
2.3 How Reads Are Aligned to a Genome . 14
2.4 FM Index . 15
2.5 Bidirectional FM Index . 17

3. SOLVING OPTIMAL SEARCH SCHEME PROBLEM USING MIP. 20

3.1 Preliminaries . 20
3.2 MIP Formulation of Optimal Search Scheme Problem . 23
3.3 Solving MIP . 26
3.4 Sensitivity Analysis for Parameters of The MIP. 28
3.5 Search-in-Index Computational Gains Achieved by Optimum Schemes. 31

viii

4. RELAXING ASSUMPTIONS OF EQUAL SIZE PARTITION MIP . 34

4.1 MIP Formulation for a Fixed General Partitioning . 34
4.2 Variable Partition . 42

4.2.1 Optimal search scheme for variable size partition . 47
4.3 Fixed General Edit Distance . 49

4.3.1 Tries . 49
4.3.2 Formulation . 53
4.3.3 Optimal Search Schemes . 57

4.4 Concluding Remarks . 58

5. TOWARDS A FULL-FLEDGED ALIGNER. 59

5.1 Computational Performance of OSS vs Full-Fledged In-Index Aligners. 59
5.2 Promising Combination of OSS and In-Text Verification . 61
5.3 OSS implemented in index vs full fledged aligners . 63

6. CONCLUSION AND FUTURE RESEARCH . 68

6.1 Conclusion. 68
6.2 Future Research . 69

REFERENCES . 70

APPENDIX A. FINDING OPTIMUM SEARCH SCHEMES FOR APPROXIMATE STRING
MATCHING USING MIXED INTEGER PROGRAMMING . 75

ix

LIST OF FIGURES

FIGURE Page

2.2 Flow of information from DNA to protein through transcription to translation [1]. . . . 10

2.3 The structure of DNA [2] . 11

2.4 Illumina genome sequencing process [3] . 13

2.5 (a) Burrows Wheeler Transform, (b) Recovering T from BWT(T), (c) Backward
search for pattern aac [4]. 17

2.6 Updating the range with respect to text T for forward search [5] . 18

3.1 (a) The search of Lam et al. [6] as described by Kucherov et al. [7] for K = 2
and P = 3, i.e., SLam = {sf = (123, 000, 022), sb = (321, 000, 012), sbi =
(231, 001, 012)}. (b) The unidirectional search scheme SUni = {sf = (123, 000, 222)}
for the same problem. (c) The optimal search scheme SOpt = {sf = (123, 002, 012),
sb = (321, 000, 022), sbi = (231, 011, 012)} for the same problem. 22

3.2 Sensitivity of optimal objective value to parameters R, K, S, and P . For some
cases due to memory overflow, there is no data point. 29

3.3 Rapid convergence of feasible solutions to the optimal solution. 30

4.1 A reference trie for K = 5 with one partition of size 100. Nodes with 2 and 3 errors
are presented in blue and red, respectively. Their ancestor nodes are depicted in
green. These nodes represent V5,2,3. VlL U will be used to count the number of
edges in search tries. The root node is excluded to prevent counting the nodes at
border of partitions twice. The rest of the trie has not been presented. 36

4.2 A search trie with three partitions of size 1, 5, and 1, respectively. Ls1 = 1, Us1 =
1, Ls2 = 3, Us2 = 4, Ls3 = 3, Us3 = 5. The structure of the trie at the second
iteration is exactly V5,2,3 for the decedents of a node with d = 1 located at the border
of the first and second iterations. 37

4.3 Extended characters of a read of size 3, accommodate for insertion and deletion errors. 50

4.4 Generalized trie accommodates indel and mismatch errors for a read of size 3 with
K = 1. The type of nodes are written next to them. 51

x

LIST OF TABLES

TABLE Page

3.1 Total number of edges in the optimal search schemes found by our MIP for K =
1, 2, 3 and P = K + 1, P = K + 2 and P = K + 3 compared to full backtracking.
The factor column shows the ratio of total number of edges in each scheme to that
in backtracking. The optimal search schemes are listed in Table 3.2. 31

3.2 Search schemes found by our MIP for K = 1, 2, 3 and P = K + 1, P = K + 2
and P = K + 3 used for experiments in Tables 1 and 2. The schemes for K = 1
and 2 in all cases are optimal schemes with S = 5, and the scheme for K = 3 and
P = K + 1 is the optimal scheme with S = 3. To control the running time of MIP,
the schemes for K = 3 and 4 are best solutions found by running the MIP for 2
hours with S = 3. These schemes are most probably optimal for S = 3. 32

3.3 Running time comparison of searching all approximate matches of 100, 000 Illumina
reads (R = 101) using optimal bidirectional scheme with P = K+1 and P = K+2
versus backtracking for Hamming and edit distance. The factor column is the speed-
up ratio versus backtracking in each category. 33

4.1 Comparison between the objective values from equal size partition MIP and variable
size partition MIP for S=3, R = 24, and different values of K and P 48

4.2 Search schemes found by variable size partition MIP for K = 1, 2, 3 and P =
3, 4, 5, 6. P denotes the upper bound on number of partitions. This searches are
used for experiments in Table 4.1. The schemes for K = 1 and P = 3, 4, 5 plus
K = 2, 3 and P = 3 are optimal schemes. To control the running time of the MIP,
the rest are best solutions found by running the MIP for 3 hours with S = 3 and
R = 24. These schemes are most probably optimal. 48

4.3 Search schemes found by our edit distance MIP for S = 4, K = 1, 2, 3 and
P = K + 1, P = K + 2 and P = K + 3 . To control the running time of MIP, the
schemes for K = 3 and 4 are best solutions found by running the MIP for 3 hours
with S = 4. The solution for K = 3 and P = 4 is optimal . The rest of the schemes
are most probably optimal for S = 4. 58

5.1 Running time comparison of searching all approximate matches of 100, 000 Illumina
reads (R = 101) using OSS, Bowtie1, and BWA-aln for K = 1, 2, 3 and Hamming
distance. The factor column is the speed-up ratio versus OSS in each category. 60

5.2 Running time of optimal search schemes with P = K + 1 pieces for one mismatch
and P = K + 2 pieces for two and three mismatches with in-text verification. 63

xi

5.3 Running time, all mapping. 66

5.4 Running time, strata mapping . 67

xii

1. INTRODUCTION

Approximate String Matching (ASM) problem, i.e., finding occurrences of a string called pattern

or read in a text allowing for some error tolerance, is a central problem in bioinformatics where

biologists are interested in aligning pieces of DNA back to genome.

The ASM problem for Hamming/edit distance is defined as follows: Given a number of mismatches

K, a read of length R, and a text of length T , composed of characters from an alphabet of size σ,

find a sub-string of the text whose Hamming/edit distance to the read is at most K.

ASM problem has become especially important in bioinformatics due to the advances in sequencing

technology during the last years. Bidirectional indices have opened new possibilities by allowing a

search to start from anywhere within the pattern and extend in both directions. The objective of the

research in this dissertation is to derive optimal search schemes for approximate string matching

using bidirectional FM-index.

Optimal Search Scheme (OSS) problem for Hamming distance (mismatch), considered in this

dissertation, is defined as follows: What is the search scheme that minimizes the number of sub-

strings searched in ASM with Bidirectional indexes (ASM-B) while ensuring all possible mismatch

patterns are covered?

While ASM-B for a single read is an easy problem, the OSS problem, which is the focus of this

reseach, is a difficult combinatorial optimization problem. There are a large number of attributes

that define a solution and a large number of possibilities for each attribute; the solution must

satisfy complex combinatorial constraints; and, calculating the objective function, i.e., number of

sub-strings in the ASM-B algorithm, for a given solution is complicated.

In order to understand the role of ASM in bioinformatics and the importance of optimal search

schemes, we provide a brief overview of DNA, sequencing technologies, and how biological

processes can be interpreted as an approximate string matching problem.

1

1.1 Cellular Processes

DNA (Deoxyribonucleic acid) is a molecule that holds the information required for cellular

processes and functions. The nucleus of a cell contains chromosomes, molecules that accounts for

the genetic material of a cell. Chromosome is a long thread of DNA. Most of the processes in a cell

are carried out by RNA (Ribonucleic acid) and proteins. DNA is a molecule that holds the set of

instructions for synthesis of proteins and RNA molecules.

DNA is a double helical structure containing two long polymer chains called DNA strands [2],

each of which is composed of four different molecules (bases) called Adenine (A), Thymine (T),

Cytosine (C) and Guanine (G). In fact, the information needed for metabolism in a cell is coded

into DNA by the arrangement of these four different bases. To understand the biology of a cell we

need to determine the composition of genes, portions of DNA that encode for proteins.

1.2 DNA Sequencing

Next generation sequencing technologies such as Illumina sequencing are capable of sequencing

fragments of DNA that play a role in protein synthesis. However, this technologies are not able to

sequence the whole gene. They can reliably sequence shorter fragments of DNA called reads. In

order to find the composition of genes, read mapping software packages align reads back to genome.

In 2003, the technology used to sequence the human genome was based on automated Sanger

sequencing (first generation sequensing). The sequencing of human genome revealed the need for

more advanced DNA sequencing technologies which led to the development of Next Generation

Sequencing (NGS) [8].

NGS is a DNA sequencing technology which has made DNA sequencing much cheaper and

faster. NGS is capable of sequencing millions of DNA fragments in a parallel fashion which in turn

has generated huge amount of genomics data [3].

The mainstream second generation sequencing techniques like Illumina produce reads of

length 150-250 with an error rate of about 1%, mostly substitutions caused by the sequencing

technology. Other sequencing technologies, e.g., Pacific Bioscience or Oxford Nanopore, produce

2

much longer reads but with a higher error rate (in the range of 15%) containing both substitutions

and insertions/deletions [9, 10, 11, 12].

1.3 Read Mapping

As mentioned earlier, read is a short sequence of A, C, G and T letters. A standard problem

is to map the reads back to a reference genome while taking into account the errors introduced by

the sequencing technology as well as those caused by biological variation, such as SNPs or small

structural variations. Such a problem is almost always modeled as the ASM problem. Read mappers

(aligners) align reads to a standard representative for the genome of a species, called reference

genome, within a tolerance range for errors (Hamming or Edit distance errors). There are two main

approaches adopted by various aligners:

1. Filtering: Filtering narrows down the search space by filtered out regions of reference genome.

In lossless methods, it is guaranteed that the read will not align to those regions [13]. Consequently,

aligners map reads to the remaining portion of the genome via Hashing and utilizing pigeonhole

principle [14].

2. Indexing: Indexing is an approach in which the reference genome (a text) is transformed into a

data structure such as a suffix tree or its variants. Since indices do not scan the entire DNA, the

lookup process is considerably fast. Common indices used in read aligners include suffix array [15],

enhanced suffix array [16] and FM-Index [17]. FM-index carries out the search in linear time with

respect to the size of the read [13] with a low memory overhead.

Lam et al. [6] introduced bidirectional FM indices to speed up ASM for Hamming distance. For

the cases K = 1 and 2, they partitioned the read into K+1 equal pieces, and argued that performing

approximate matching on a certain combination of these pieces in a bidirectional index amounts to

faster approximate matching of the whole read. This combination is such that all possible mismatch

patterns, i.e., all possible distributions of K mismatches among the pieces, are covered. The main

idea behind improved speed is that a bidirectional index not only can start the search from the

beginning (or end) of the read, but also from the beginning (or end) of any of the pieces. Therefore,

we can start the search from a middle piece and then expand it to the left or right into adjacent

3

pieces in any order we like. By choosing multiple appropriate orderings of pieces for this purpose,

we can perform a much faster ASM compared to a unidirectional search because we can enforce

exact or near-exact searches on the first pieces in the partition, significantly reducing the number of

backtrackings, while using different orderings of pieces to ensure all possible mismatch patterns are

still covered.

Kucherov et al. [7] formalized and generalized this idea by defining the concept of search

schemes. Assume a read can be partitioned into a given number of pieces, denoted by P (not

necessarily equal to K + 1). The pieces are indexed from left to right. A search scheme

S = {(πs, Ls, Us), s = 1, . . . , S} is a collection of S searches, where each search s is desig-

nated by a triplet (πs, Ls, Us). πs is a permutation of 1, . . . , P and denotes the order in which the

pieces of the partition are searched in search s. If πs,i = j, then piece j is searched at position i

in the order (shortly referred to as iteration i in this paper). Due to the way a bidirectional index

works, the permutation πs must satisfy the so-called connectivity condition, i.e, a piece j can appear

at iteration i > 1 in the permutation only if at least one of pieces j − 1 or j + 1 have appeared at an

iteration before i. Ls and Us each are strings of P numbers. Ls,i, is the lower bound on the cumula-

tive number of mismatches allowed at iteration i of search s, andUs,i is the upper bound on this value.

1.4 Optimal Search Scheme Problem

Since the development of NGS, the cost to perform DNA test has significantly decreased, which

translates into production of gigantic amount of raw data. These data needs to be processed by

performing read alignment.

The input of an aligner is millions of reads that need to be aligned along the genome. Although

the alignment for two strings is well studied, due to the shear number of reads, mismatch errors,

and the extraordinary size of human genome, known alignment algorithms are computationally

expensive. In order to address this issue, aligners use indexes and attempt to find the reads in

those indexes. In order to find occurrences of a read, we need to traverse search tries that cover all

the error patterns. An edge in a trie is correspondent to an step of ASM in FM index. Therefore,

4

minimizing the computational efforts in ASM-B is equivalent to finding the search scheme with the

minimum number of edges while covering all the error patterns. The answer to the Optimal Search

Scheme problem, can potentially have a great impact on improving the running time of ASM-B

resulting in considerably superior read aligners.

The optimal search scheme problem defined in section 1 can now more formally be defined as

follows:

Optimal Search Scheme Problem: Given the number of errors K, the size of reads R, the number

of partitions P , and the number of searches S, what is the search scheme that minimizes the number

of edges in search scheme tries while ensuring all possible mismatch patterns are covered?

OSS outputs search schemes or more precisely, the order that we search π, the minimum errors

for partitions Ls, and the maximum allowed number of errors Us. It is important to note that in OSS,

we are not solving the alignment problem, rather, we solve for optimal search schemes to use for

the alignment of all the reads.

It turns out that this is a very difficult combinatorial optimization problem due to several reasons:

There are a large number of attributes that define a solution (including S, P , size of each piece,

and (πs, Ls, Us) for each search) with a large number of possibilities for each attribute; the solution

must satisfy complex combinatorial constraints; and, calculating the objective function, i.e., number

of steps in the ASM-B algorithm, for a given solution is complicated.

Kucherov et al. [7] presented some interesting results contributing initial insight into this key

problem. More specifically, they assumed the number of steps in the ASM-B algorithm with a

given search scheme, is a constant factor of the (weighted) total number of substrings enumerated

by the algorithm in all searches. Assuming that a randomly generated read is to be matched to a

randomly generated text, they presented a method to calculate this objective function for a given

search scheme. They then showed that unequal pieces in the partition can potentially improve

the objective function compared to equal pieces, and presented a dynamic programming (DP)

algorithm that for a single prespecified search, with given P and (π, L, U), finds the optimal sizes

of pieces assuming that we only calculate the objective function as the total number of substrings

5

up to a limited length (justified by total randomness of the read and the text); see [7] for more

details. In fact, the superiority of this DP over explicit enumeration is only due to this assumption.

Nevertheless, this DP is very inefficient, and most importantly, it only finds the optimal piece sizes

for a prespecified search. In other words, it does not address the problem of finding an optimal

search scheme which calls for determining S and all attributes of each search in the search scheme,

and ensuring that they cover all mismatch patterns.

Kucherov et al. [7] also presented solutions for another limited problem, i.e., lexicographically

minimizing the lexicographically maximal U string (critical U string) in a search scheme, only for

P = K + 1 or K + 2 and assuming that the L strings for all searches contain only zeros. The

usefulness of these solutions is justified by the high probability that the search with the critical U

string has the largest share in the objective function; see [7] for details. Again from the perspective

of finding an optimal search scheme, this result has similar limitations. Only one of the attributes

(U) of one of the searches for two specific values of P are optimized by fixing all L strings, which

is far from designing a globally optimal search scheme as defined above. Consequently, in their

computational experiments, Kucherov et al. [7] use a greedy algorithm based on this limited result

to construct search schemes with unknown quality and only optimize the piece sizes for these

schemes using their DP.

1.5 Contributions

In this study, for the first time, we have proposed a method to solve the optimal search scheme

problem for ASM-B with Hamming distance, for any given P and equal-size pieces. Our method

is based on a novel and powerful mixed integer linear program (MIP) that gets K, R, P , and an

upper bound on S, denoted by S, as input, and provides, as its solution, all the attributes of the exact

optimal search scheme (MIP methodology for optimization has been addressed in many references

such as [18, 19]). To acquire insight on the properties of our MIP, we have presented the results of

our computational study on the characteristics of the optimal solution of the MIP and its running

time, for different values of its input parameters.

Furthermore, we have performed a search (for Hamming and edit distance) based on the optimal

6

search schemes obtained from our MIP. This bidirectional index search is implemented in SeqAn

[20] and uses a recent fast implementation of bidirectional indices [5] based on EPR dictionaries. We

have demonstrated that, for practical ranges of various input parameters, the number of substrings

for the optimal search schemes found by our MIP can reduce to as small as half the number of

substrings in the unidirectional complete backtracking. To further investigate the potential of

our optimal search schemes, we have conducted a search for all occurrences of Illumina reads in

the human genome using our optimal search schemes in bidirectional FM-index versus standard

backtracking search for K = 1, 2, and 3.

In our MIP, we had assumed that all the partitions are of the same size. Kucherov et al. [7]

showed that unequal pieces can potentially improve the objective function compared to equal pieces.

We have relaxed the assumption of having equal size partitions in our MIP and addressed the more

general form of approximate string matching problem where the only assumption is the prespecified

number of partitions. We have presented an MIP formulation for edit distance and provided an

alternative formulation for Hamming distance.

The drastic improvement over standard backtracking gained by using our optimal search schemes

for bidirectional search in index suggests that the performance of read mappers that utilize an index

can be significantly improved. To gauge this potential, we even challenged our optimal search

schemes by performing a pure index-based search using them and comparing the performance with

the full-fledged state-of-the-art aligners that benefit from using a combination of search in index

and verification in text using dynamic programming.

Due to the exponential complexity of ASM with respect to K, the state-of-the-art aligners do

not perform ASM completely in index but rather use a combination of search in the index and

verification in text. Pure index-based search using standard backtracking is very slow for larger

values of K. Locating the best point to stop verification in the index and start in-text verification is

of high interest. In fact, this can be individually decided for each pattern. In an attempt to acquire

a glimpse of the potential of combining our optimal search schemes with in-text verification for

edit distance, we test our OSS against full-fledged in-index aligners BWA-aln [21] and Bowtie1 [4].

7

This comparison shows that optimal search scheme is faster than Bowtie1 for K = 1, 2, and 3. In

addition, OSS outperforms BWA for all values of K but K = 1, for which BWA is slightly faster.

This is an indication that combing our OSS and in-text verification will outperform state-of-the-art

aligners by speeding up the in-index search. Next, we try to answer the following question: Can

in-text verification alone compensate for the speed up gained through optimal search schemes?

We observe that OSS, without in-text verification, is much faster than backtracking plus in-text

verification for all values of K = 1, 2, and 3 which shows the performance gained through OSS will

remain significant. We also combine optimal search scheme and in-text verification for Hamming

distance. This experiment halved the running time forK = 1, 2 and 3 for reads of sizeR = 101 and

125. We decided to even challenge our optimal search schemes by using them in a pure index-based

search and compare the results against the full-fledged state-of-the-art aligners for edit distance

error. For the two data sets from human genome and K = 1 and 2, OSS outperformed other aligners

with the exception of Bwolo for K = 2. For K = 3, the benefit of using in-text verification in

full-fledged aligners catches up and thus outperform OSS which carries out the search entirely in

index.

Specifically, Bwolo search tries produce long seeds which reduces the number of dynamic

programming performed for in-text verification. Its search tries are basically 01 ∗ 0 seeds that can be

efficiently searched in FM-index. Bwolo search schemes are not optimal in terms of total number of

edges but work better when combined with in-text verification. This implies that, in order to design

search schemes to be utilized in conjunction with in-text verification, the objective function of an

MIP should incorporate the in-index and in-text computational expenses.

This dissertation is organized as follows: after a brief review of the necessary background in

section 2, in section 3 we present our MIP for equal size partitions. In chapter 4, we present an

alternative MIP for Hamming distance. Then, we will relax the assupmtion of having eqaul size

partitions. Later in section 4, we present an MIP for edit distance. Finally in section 5, we present

the computational performance and the potential of the optimal search scheme in full-fledged

aligners.

8

2. NECESSARY BACKGROUND

To understand the scope of this research, a brief introduction on cell biology and its important

components, the structure of DNA, the sources of errors in DNA, sequencing technologies, and the

tools that process genomics data is necessary.

2.1 From DNA to Protein

In general, a human cell consists of a dense membrane-closed structure called the nucleus and

other distinct subunits called organelles (Fig. 2.1). The nucleus contains chromosomes, molecules

that accounts for a part or all of the genetic material of a cell. Chromosome is a long thread of

DNA (Deoxyribonucleic acid) plus other molecules that package DNA and support its structure.

Most of the processes in a cell are carried out by RNA (Ribonucleic acid) and proteins. DNA is a

molecule that holds the set of instructions for synthesis of proteins and RNA molecules that control

functioning and reproduction of cells.

Figure 2.1: Eukaryote cell [22]

The instructions for producing protein molecules are stored in DNA and carried out via tran-

9

scription and translation processes inside the nucleus and cytoplasm, respectively (Fig. 2.2). In

transcription, polymerase molecules make a copy of a piece of DNA (gene) which encodes for

a particular protein. The copy molecule is called mRNA (messenger RNA) which moves into

cytoplasm where ribosomes synthesize proteins from amino acids using the instructions written in

mRNA molecules in a process called translation.

Figure 2.2: Flow of information from DNA to protein through transcription to translation [1]

DNA is a double helical structure (Fig. 2.3) containing two long polymer chains called DNA

strands [2], each of which is made of four types of units called nucleotides which are composed of a

sugar-phosphate group and a nitrogenous base. The sugar- phosphate group acts as a scaffold to

hold the four different nitrogenous molecules called Adenine (A), Thymine (T), Cytosine (C) and

Guanine (G). The two strands of DNA are aligned in such way that constructs adenine-thymine (A-

T) and guanine-cytosine (G-C) complementary base pairs through hydrogen bonds. Adenine bonds

with Thymine because they both need to make two hydrogen bonds to become stable. Similarly,

Guanine bonds with Cytosine since they are able to make three stable hydrogen bonds (Fig. 2.3).

10

As a result one strand of DNA is exactly complementary to the other strand of DNA. In addition,

the polarity (direction) of one strand is oriented in the opposite direction to the polarity of the other

strand. The polarity (direction) in a DNA strand is shown by referring one end as 5’ and the other

as 3’ end [2]. In fact, the information needed for metabolism, growth, and division of a cell is coded

in each strand by the arrangement of the four different bases. This property lets us to consider the

genome of a species as a long text composed of four letters. For instance, human reference genome

contains 3,257,347,282 nitrogenous bases.

Figure 2.3: The structure of DNA [2]

To understand the biology of a cell and the origin of many diseases we need to determine

11

the composition of pieces of DNA that play a role in protein synthesis plus their locations in a

genome. In addition to finding the composition of important parts of DNA (via next generation

sequencing, NGS) we also need to find their locations on the genome. In fact, this resembles

the approximate string matching problem. Errors occur in DNA due to biological, chemical and

physical phenomena. Mutations occur due to imperfectness of biological complex nano machinery

involved in DNA repair or replication. Additionally, active oxidative molecules may bond to

DNA and alter its composition, and high energy particles and waves such as cosmic radiation and

ultraviolet light of the Sun can damage the bases of DNA. Surprisingly, in absence of external

factors, mutation happens spontaneously due to quantum tunneling of proteins engaged in hydrogen

bonds of DNA. This alteration may become permanent if they occur during replication of DNA

strands [23]. These mutations are the reasons that species and even individuals within species have

different characteristics. Single nucleotide polymorphism (SNP) is an important difference between

individuals’ DNA which needs to be accounted for in aligning DNA fragments back to a reference

genome.

2.2 Next Generation Sequencing

Next Generation Sequencing (NGS) is a DNA sequencing technology which has made DNA

sequencing much cheaper and faster. NGS technology is capable of sequencing millions of DNA

fragments in a parallel fashion (Fig. 2.4) which in turn has generated huge amount of genomics

data [24]. As a result, several commercial NGS platforms have been introduced such as Illumina

sequencing, Roche 454 sequencing, ION torrent sequencing, and SOLiD sequencing. NGS tech-

nology has been used to determine the composition of pieces of DNA in a variety of biological

applications including gene expression analysis, structural variation detection (insertion, deletion or

replacement in DNA molecule), protein-DNA interactions, de novo DNA sequence assembly and

so forth.

As one of the most common technologies, Illumina NGS uses a library of DNA fragments as

input. These libraries are DNA fragments produced in experiments that try to locate and determine

the composition of protein-DNA binding sites or the structure of the coding part of genes that

12

eventually will be translated into proteins. At first, libraries of DNA fragments are prepared by

fragmenting and denaturing a DNA sample and ligation of synthetic adapters onto both ends of

DNA fragments (Fig. 2.4). These fragments will anchor in a solid surface, called a flow cell, which

contains oligonucleotides (short DNA pieces) complementary to the adapter sequences attached to

the fragment ends. Then, fragments hybridized to the flow cell are amplified into clusters (through

bridge cluster amplification) in order to emit an adequately intense light signal for each DNA

sequencing reaction cycle. The color of emitted light is used to determine types of nucleotides

of fragments, this step is called base calling [10]. Depending on the NGS technology, there is a

limitation of 35-700 bases on how much a DNA fragment can be sequenced [9]. To put this in

perspective, recall that human DNA approximately consists of 3 billion bases. Hence, DNA is

broken into smaller pieces called fragments which only the ends of them will be sequenced [25].

Figure 2.4: Illumina genome sequencing process [3]

13

DNA sequencing reaction/cycle consists of three steps; a. Nucleotide addition step; in each se-

quencing cycle four fluorescently marked deoxy-ribonucleotide triphosphates (dNTPs), representing

four different nitrogenous bases, are added to the flow cell. dNTPs contain a nitrogenous base plus a

terminator group which allows for addition of just one nucleotide at a time in a sequencing reaction.

b. Signal detection step; following each addition step, an image of the flow cell is taken which will

be scanned later to determine what nucleotide was attached to the template DNA fragments. In

addition to the base call (detection of nucleotides) the quality of the base call is recorded. Quality ,

certainty of a base call, is calculated by Phred score which is Q = −10 log10 P where P represents

the probability of a wrong base call [26]. Instead of sequencing a single DNA fragment, NGS

massively extends this process across millions of fragments present on the flow cell in parallel. c.

Wash step; after each signal detection step, the terminator group of dNTPs is removed leaving only

the nitrogenous base on the fragment. Next, we perform another sequencing reaction followed by a

detection step. The number of times this cycle can be repeated is restricted by the signal quality of

each cycle which deteriorates and limits the length of the part of the fragment that can be sequenced

[27]. A section of a fragment which has been sequenced is called a read [28].

2.3 How Reads Are Aligned to a Genome

Techniques like Illumina produce reads of length 150-250 bases with an error rate of about 1%,

mostly substitutions caused by the sequencing technology. In order to find the location of genes or

DNA-protein binding sites, one needs to map the reads back to the reference genome taking into

account errors caused by sequencing and biological variations such as SNPs or small structural

variations (deletion and insertion). This problem is modeled as approximate string matching problem

for Hamming or edit distance.

There are two main algorithmic strategies to address the approximate string matching problem

for large input sizes (in number of reads and size of the text): filtering and indexing. Filtering

approaches quickly exclude large regions of the reference where no approximate match can be

found. This can, for example, be done by identifying short regions in the reference (also known

as k-mer) that share a short piece of the read without errors, often called a seed [13]. Regions that

14

do not share such a short region are filtered out. The simplest filtering algorithms are based on the

pigeonhole lemma. The pattern (read) is divided into number of errors plus one parts. Each and

every part is separately searched with zero error. Then, the locations on the genome that are found

using those parts are verified by checking the vicinity of potential matches to investigate whether

or not those locations can be extended to the full pattern within the range of tolerable error. The

second main idea is to preprocess or index the reference sequence, the set of reads, or both, in a

more intricate way. Such preprocessing into full-text string indices has the benefit that we usually

do not have to scan the whole reference, but can conduct queries much faster at the expense of

larger memory consumption. String indices that are currently used are suffix array [29], enhanced

suffix array [30], and affix arrays [31, 32], as well as FM-index [33], a data structure based on the

Burrows Wheeler Transform (BWT) [34] and some auxiliary tables. For an in-depth discussion

see [35]. Such indices are usually used to pinpoint exact or approximate matches between a query

and a text. For approximate string matching problem with Hamming or edit distance, the existing

algorithms all have exponential complexity in the number of allowed errors K (e.g. [36, 37]), and

therefore are only suited for small K.

2.4 FM Index

Burrows Wheeler Transform is a reversible cyclic permutation of the letters in a text. Indices

based on Burrows Wheeler Transform, like FM index (full-text index in minute space), make it

possible to inquiry substrings of a large text efficiently with a low memory usage. The Burrows

Wheeler Transform of a text T, BWT(T), can be constructed as follows: The character $ is appended

to end of the text T. $ does not exist in T and is lexicographically smaller than all characters in

T. The Burrows Wheeler matrix of T is a matrix whose rows consists all cyclic rotations of T$

sorted in a lexicographic order[4]. BWT(T) is defined as the sequence of characters in the rightmost

column of Burrows Wheeler matrix (Fig. 2.5a). BWT matrix possess an interesting property called

’last first (LF) mapping’ whereby the ith occurrence of character X in BWT(T) corresponds to the

ith occurrence of X in the first column. This property is the backbone of BWT-based indices that

search for a substring in a text. BWT is reversible and Fig. 2.5b illustrates how repeatedly applying

15

the last first mapping recreates the original text T given its BWT(T). Similarly, LF mapping is

capable of performing exact matching by applying a backward search. Since BWT matrix is sorted

lexicographically, rows beginning with a given sequence appear consecutively. As pictured at Fig.

2.5c, at each step of the search the rightmost character of the pattern, which has not been searched,

is selected. The search calculates the range of matrix rows successively starting with that character

leading to longer suffixes of the pattern as the search continues. In other words at each step, the

search picks another character and finds the ranges for that character. During the search, the size of

the range shrinks. When the backward search terminates, rows beginning with the entire pattern

correspond to exact occurrences of the pattern in the text and their locations can be calculated using

a suffix array (SA) which is the starting positions of lexicographically sorted suffixes of the text. If

the text does not contain the pattern, then the search returns a null range [4].

FM Index is an index consisted of BWT plus a few small auxiliary data structures. In fact, it is

composed of first and last column of BWT matrix where the first column , F, can be represented in

an extremely compact data structure and the last column , L, could also be compressed to create a

very space efficient data structure. Carrying out LF mapping with scanning characters of L could

takeO(|T |). By adding some auxiliary data structures one can much faster determine what character

precedes the first character of the current range of BWT matrix. The solution is to tally the number of

characters in L up to some rows, e.g. every 1024 rows such that at most by scanning 1024 characters

of L we can return the number of occurrences of a character in L . More formally, Let C[c] be a

table containing the number of occurrences of characters lexicographically smaller than c in the

text. C[c] + 1 is the first occurrence of c in F . Let Occ(c, k) returns the number of occurrences of

character c in the prefix L[1..k]. The LF mapping can be defined as LF (i) = C[L[i]] +Occ(L[i], i)

which maps element i of L into element LF (i) of F. FM index is defined as the collection of C,

Occ, and L [33, 38].

16

Figure 2.5: (a) Burrows Wheeler Transform, (b) Recovering T from BWT(T), (c) Backward search
for pattern aac [4]

2.5 Bidirectional FM Index

Without loss of generality we will introduce bidirectional FM index only by focusing on BWT

rather than its auxiliary data structures. Although BWT is very effective to search for an exact

pattern, but backward search is not suitable to efficiently perform approximate string matching.

Employing a combination of backward and forward search seems to be necessary and a naive

solution would be to utilize two BWTs and perform the forward and backward search on T and

its reverse T rev. That is, one BWT is constructed for T , and another one is built for T rev. Denote

these BWTs as I and Irev , respectively. Given any pattern P , to perform forward search, we could

perform backward search on P rev (the reversal of P) using Irev. However, conversion of the range

based on T rev to the range with respect to T is not trivial [6].

To address this problem, bidirectional BWT stores I and Irev while it is able to maintain

the ranges with respect to T even when a forward search is performed. Consider performing

forward search for one more character, i.e. finding the range for Pcj given the range for P . We

search for cjP rev using Irev to calculate the range [a′rev, b
′
rev]. The new range with respect to T is

17

[a′, b′] = [a+ smaller, a+ smaller + (b′rev − a′rev)] where [a, b] is the range for P and smaller is

the number of all suffixes Pci in T where ci is lexicographically smaller than cj . smaller can be

calculated by searching for ciP rev and summing the ranges for all i < j [5, 6]. Figure 2.6 illustrates

this relationship. This novel method for updating the range allows us to start the search within a

pattern and move to right or left as long as we maintain the connectivity of traversing the pattern.

Figure 2.6: Updating the range with respect to text T for forward search [5]

As mentioned earlier FM-index is a combination of BWT and some auxiliary data structures

such as an implementation of the occurrence table that holds the number of different alphabet letters

in prefixes of BWT. Lam et al [6] used a bit vector to hold the occurrence table with the time and

space complexity of O(σ) and O(σ × |T |), respectively. In order to reduce the space consumption

of occurrence table, Grossi et al. introduced the use of binary wavelet tree for string BWT [39, 40].

Schnattinger [41] utilized the binary wavelet tree to develop bidirectional wavelet index for string

BWT with the motivation to search for microRNA. MicroRNA has a secondary structure that

requires to search for regions of DNA that match the structure. This makes bidirectional search

an obvious method of choice for microRNA (miRNA) analysis [41]. Schnattinger realized the

smaller value can be computed in O(log σ) asymptotic time which is a straight forward task in

bidirectional FM index [40]. Bidirectional wavelet index has a time complexity of O(log σ) and a

18

space complexity of O(|T | × log σ). Furthermore, Ferragina et al. introduced m− ary wavelet tree

to speed up the search process. In m− ary wavelet tree, nodes can have m children. Belazzougui

et al. proposed a compact representation of bidirectional BWT of a string T that allowed to extend

to right or left in a constant time with O(|T | × log σ) space consumption [42]. Pockrandt et al.

introduced Enhanced Prefixsum Rank dictionary (EPR-dictionaries) , implemented in SeqAn C++

libraries, that performs the bidirectional search in FM-index with O(1) time complexity and requires

O(|T | × log σ) bits per character [40].

19

3. SOLVING OPTIMAL SEARCH SCHEME PROBLEM USING MIP

In this section, we provide our MIP-based methodology for finding optimal search schemes after

presenting some preliminaries. As defined before, in Optimal Search Scheme Problem we seek the

search scheme that minimizes the number of steps in ASM-B while ensuring all possible mismatch

patterns are covered. We will then follow with a brief computational report on solving our MIP in

order to find the optimal search schemes, including its optimal objective value as a function of its

input parameters, its solution running time, and its convergence rate to optimal solution.

Our MIP is for Hamming distance, but as mentioned before, based on our computational experi-

ments (Section 5), its optimal schemes for Hamming distance are very good (but not necessarily

optimal) search schemes for the edit distance as well.

3.1 Preliminaries

Our MIP presented in Section 3.2 will solve the optimal search scheme problem assuming P is

given as an input (is not a decision variable in optimization) and all P pieces of the partition are

equal in length, i.e., R = mP , wherem denotes the length of any piece. Note that these assumptions

pose no practical restrictions. Given the upper bound on Hamming distance K (maximum number

of mismatches) as an input, a mismatch pattern is a particular distribution of h mismatches among

the P pieces, for any h ≤ K. Specifically, the mismatch pattern q is a string of P integers

aq,1 . . . aq,P such that aq,j ∈ {0, . . . ,min{m,K}} for j = 1, . . . , P , and
∑P

j=1 aq,j = h. For given

K and P , we denote the set of all possible mismatch patterns byM. Note that if K ≤ m then

|M| =
∑K

h=0

(
h+P−1

h

)
. Given a search s = (πs, Ls, Us), a mismatch pattern q is said to be covered

by s if at every iteration i = 1, . . . , P of s, Ls,i ≤
∑i

t=1 aq,πs,t ≤ Us,i, i.e., the cumulative number

of mismatches up to iteration i is between the allowed lower and upper bounds of search s. A search

scheme S is feasible if and only if every mismatch pattern inM is covered by at least one search in

S.

A search scheme can be visualized by representing each of its searches as a trie that captures

20

all substrings enumerated by the search. Each edge at a level of the trie corresponds to a character

of the alphabet at that level of search. A vertical edge represents a match, and a diagonal edge

represents a mismatch. Fig. 3.1(a) shows the tries associated with the search scheme presented by

[6] for K = 2 and P = 3, SLam, applied on the six-character read “abbaaa” from alphabet {a, b}

(note that the tries are slightly different from the ones given in [7], which contained a small error).

Fig. 3.1(b) shows a search scheme with a single unidirectional search (complete backtracking),

SUni, for the same problem, and Fig. 3.1(c) shows the optimal search scheme, SOpt, found by

our MIP, for the same problem. Each one of the three schemes in Fig. 3.1 covers all 10 mis-

match patterns, namely {000, 001, 010, 100, 011, 101, 110, 002, 020, 200}. Interestingly, the three

searches sf , sb, sbi in SOpt cover the mismatch patterns {002, 011}, {000, 010, 100, 110, 020, 200},

and {001, 101}, respectively, which is indeed a partition of all mismatch patterns (see open problems

in Section 6.1), whereas in SLam, the searches sf and sb both cover 000 and 010 redundantly.

Following the method in [7], we define the performance of a search scheme as the number of

forward and backward steps taken by the ASM-B algorithm, which is equal to the total number

of substrings enumerated by all searches in the scheme. We assume a single step of forward or

backward search in the bidirectional index takes the same amount of time. The tries of any search

scheme in Fig. 3.1 contain all possible substrings of length R. The number of substrings in each

trie is equal to the number of edges (or total number of non-root nodes). If the text contains all

substrings of length R, the search enumerates all substrings in the tries; hence, the performance of

the search scheme can be measured by the total number of edges in the search scheme. Otherwise,

only a subset of the substrings in the tries will be enumerated depending on whether they occur

in the text or not. To address the performance measure in this latter case, Kucherov et al. [7]

assumed the read and the text are randomly and independently drawn from the alphabet according

to a uniform distribution, and hence, calculated the expected number of substrings enumerated by

the scheme as the sum, over all non-root nodes of the tries, of the probability that the corresponding

substring appears in the text. As a result, they presented a weighted sum of number of edges as the

measure of performance. Due to the assumption of complete randomness and independence of the

21

sf=(123,000,022) sb=(321,000,012) sbi=(231,001,012)

P1

P3

P2

P2

P2

P1 P1

P3

P3

b

a

a

a

a

a

a

b

b

b

bb

b a

a aa

b

b

b

b a

a

a

a

a

(a)

sf =(123,000,222)

P2

P3

P1

(b)

sf=(123,002,012) sb=(321,000,022) sbi=(231,011,012)

P1

P3

P2

P2

P2

P1 P1

P3

P3

(c)

Figure 3.1: (a) The search of Lam et al. [6] as described by Kucherov et al. [7] for K = 2 and
P = 3, i.e., SLam = {sf = (123, 000, 022), sb = (321, 000, 012), sbi = (231, 001, 012)}, shown
for the read “abbaaa” from the alphabet {a,b}, i.e., R = 6 and σ = 2. The read is partitioned
into P1 =ab, P2 =ba, and P3 =aa. Partition borders are shown by horizontal lines. A vertical
and a diagonal edge represent a match and a mismatch, respectively. Edge labels are only shown
for sf for a cleaner picture. The search corresponding to each trie is designated underneath it
by its (π, L, U). The number of edges in SLam tries is 71. (b) The unidirectional search scheme
SUni = {sf = (123, 000, 222)} for the same problem. The number of edges in SUni is 62, i.e.,
for this particular problem, in which R is very small, SLam enumerates even more substrings than
SUni (if all possible substrings are present in the text). Of course, if R gets larger, the situation is
reversed, making SLam more efficient than SUni as reported in [6]. (c) The optimal search scheme
SOpt = {sf = (123, 002, 012), sb = (321, 000, 022), sbi = (231, 011, 012)} for the same problem,
found by our MIP. The total number of edges in SOpt (optimal number of edges) is 59, which is
less than that of SUni, and significantly less than that of SLam. As shown in Section 5, for bigger
problems, the reduction in the total number of edges of the optimal search scheme found by our
MIP compared to the unidirectional search is much more significant (up to 50%).

read and the text, they show that the weights of the edges at levels lower than dlogσT e+ cσ of the

tries, where cσ is that ((σ − 1)/σ)cσ is sufficiently small, are almost zero meaning that they can be

dropped from the weighted summation.

For the main application of our interest, i.e. ASM of DNA sequence reads to reference genomes,

the assumption of randomness and independence of the read and the text is far from reality.

Calculating the expected number of substrings enumerated by a scheme calls for significant more

study on determining probabilities that DNA sequence reads of particular length from a sample

occur in the reference genomes. As currently there is no trivial answer to this problem, in this

paper, we use the same performance measure of total number of edges in the tries of the search

scheme even for the case where not all substrings occur in the text. Of course, our MIP can be easily

22

modified to incorporate any other weighting scenario which might be proposed in the future.

Adapting the method in [7], the total number of edges in the search scheme is calculated by

∑S

s=1

∑R

l=1

∑K

d=0
ns,l,d, (3.1)

where ns,l,d is defined as the number of edges at level l of the trie of search s that end at nodes

corresponding to substrings with d cumulative mismatches up to that level. The value of ns,l,d can

be calculated using the following recursive equation, which is an adaptation of the formula in [7]:

ns,l,d = ns,l−1,d + (σ − 1)ns,l−1,d−1 for l ≥ 1 and Ls,l ≤ d ≤ Us,l, (3.2)

where, by definition, ns,0,0 = 1, ns,0,−1 = 0 and ns,0,d = 0, for d ≥ 1, s = 1, . . . , S, and Ls,l and

Us,l denote the smallest and largest cumulative number of mismatches that can occur at level l

of the trie of search s, respectively, calculated as Ls,l = max{Ls,dl/me−1, Ls,dl/me −mdl/me+ l}

and Us,l = min{Us,dl/me,Us,l−1 + 1}. Here dl/me, the smallest integer greater than or equal to

l/m, would be the index of the iteration in which level l falls, and by definition, Ls,0 = Us,0 = 0,

for s = 1, . . . , S. For example, for search sbi of SOpt, we have Lsbi = (0, 0, 0, 1, 1, 1) and Usbi =

(0, 0, 1, 1, 2, 2).

3.2 MIP Formulation of Optimal Search Scheme Problem

Our MIP formulation, presented below, solves the optimal search scheme problem assuming P

is given as an input and pieces are all equal in length. More specifically, for given K, R, P , and S,

this MIP finds the search scheme with minimum total number of edges among all feasible search

schemes that have at most S searches. The optimal solution to the MIP provides the (π, L, U) of all

searches in the optimal search scheme. The objective value of this optimal solution provides the

minimum total number of edges (substrings) achievable among all feasible search schemes.

min
∑S

s=1

∑R

l=1

∑K

d=0
ns,l,d (3.3)

subject to

∑P

i=1
xs,i,j = 1 for all s and j (3.4a)

23

∑P

j=1
xs,i,j = 1 for all s and i (3.4b)

∑i

h=1
xs,h,j −

∑i

h=1
xs,h,j−1 = t+s,i,j − t−s,i,j for all s, i = 2, . . . , P − 1,

j = 1, . . . , P + 1

(3.5a)

∑P+1

j=1
(t+s,i,j + t−s,i,j) = 2 for all s, i = 2, . . . , P − 1 (3.5b)

d− (Ls,dl/me −mdl/me+ l) + 1 ≤ (K +m)zs,l,d for all s, l, and d (3.6a)

Us,dl/me + 1− d ≤ (K + 1)zs,l,d for all s, l, and d (3.6b)(
l
d

)
(σ − 1)d(zs,l,d + zs,l,d − 2) ≤ ns,l,d − ns,l−1,d − (σ − 1)ns,l−1,d−1 for all s, l, and d (3.6c)

Ls,i ≤ Ls,i+1 for all s, and i = 1, . . . , P − 1 (3.7a)

Us,i ≤ Us,i+1 for all s, and i = 1, . . . , P − 1 (3.7b)

Ls,i +K(λq,s − 1) ≤
∑i

h=1

∑P

j=1
aq,jxs,h,j ≤ Us,i +K(1− λq,s) for all q, s, and i (3.8a)∑S

s=1
λq,s ≥ 1 for all q (3.8b)

ns,l,d ≥ 0 for all s, l, and d (3.9a)

Ls,i, Us,i ≥ 0 Integer for all s and i (3.9b)

xs,i,j, λq,s, zs,l,d, zs,l,d, t
+
s,i,j, t

−
s,i,j ∈ {0, 1} for all q, s, i, j, l, and d (3.9c)

The objective function (3.3) minimizes the total number of edges as calculated by (3.1) with

ns,l,d as defined before. The binary variables xs,i,j capture the assignment of pieces to iterations,

i.e., xs,i,j = 1 if piece j is searched at iteration i of search s, and xs,i,j = 0 otherwise. We define

xs,i,0 = xs,i,P+1 = 0 to simplify presentation of constraints. At optimality, these variables determine

the πs values for the optimal search scheme. Constraints (3.4a) and (3.4b) make sure that for any

search s, only one piece is assigned to an iteration and only one iteration is assigned to a piece.

Constraints (3.5a)-(3.5b) ensure the connectivity of the pieces and are in fact linearization of

24

the following constraint using auxiliary binary variables t+s,i,j and t−s,i,j:

∑P

j=1

∣∣∣∑i

h=1
xs,h,j −

∑i

h=1
xs,h,j−1

∣∣∣ = 2 for all s and i = 2, . . . , P − 1, (3.10)

which is one way to enforce connectivity of pieces. The term
∑i

h=1 xs,h,j will have a binary value

which denotes whether or not piece j has been searched at any of iterations 1 to i of search s. The

term
∑i

h=1 xs,h,j−1 captures the same notion for piece j − 1. If at any iteration all searched pieces

form a connected block on the read, the value of
∑i

h=1 xs,h,j −
∑i

h=1 xs,h,j−1 will be equal to 1

only for one j, −1 for another j, and 0 for all other j’s, which is ensured by (3.10), and hence its

linearization.

Constraints (3.6a)-(3.6c) enforce calculation of ns,l,d based on the recursive equation (3.2) with

the help of binary variables zs,l,d and zs,l,d. Due to (3.6a), if d ≥ Ls,dl/me − mdl/me + l, then

zs,l,d = 1, and due to (3.6b), if d ≤ Us,dl/me, then zs,l,d = 1. Calculation of equation (3.2) is then

enforced by (3.6c). When zs,l,d = zs,l,d = 1, (3.6c) reduces to ns,l,d−ns,l−1,d−(σ−1)ns,l−1,d−1 ≥ 0,

which implies ns,l,d−ns,l−1,d−(σ−1)ns,l−1,d−1 = 0 since the objective function is to be minimized.

If any of zs,l,d or zs,l,d is equal to 0, (3.6c) does not enforce anything as −
(
l
d

)
(σ − 1)d is a lower

bound on the right-hand side of (3.6c). Constraints (3.7a)-(3.7b) ensure Ls,i and Us,i are non-

decreasing as they are cumulative values. Constraints (3.8a)-(3.8b) ensure feasibility of the search

scheme. λq,s is a binary variable designating whether or not mismatch pattern q is covered by search

s. Constraint (3.8a) forces λq,s = 0 if search s does not cover mismatch pattern q and constraint

(3.8b) ensures every mismatch pattern q is covered by at least one search, for q = 1, . . . , |M|.

Constraints (3.4a)-(3.9c) are enough to formulate the MIP; however, we have noticed that

imposing the additional constraints

x1PP = 1 (3.11a)∑S

t=s

∑j−1

k=1
xt,1,k ≤ (S − s+ 1)(1− xs,1,j) for all s and j = 2, . . . , P (3.11b)

25

∑P−i+1

j=1
xsij +

∑P

j=i
xsij = 1 for all s and i ≥ dP/2e+ 1 (3.12)

strengthens the formulation while preserving at least one optimal solution, resulting in faster

solution time for the MIP. Constraints (3.11a) and (3.11b) eliminate some symmetry in the solution

space. For every search scheme, there is an equivalent search scheme obtained by reversing all

πs, s = 1, . . . , S. Constraint (3.11a) eliminates one of these two equivalent solutions in each pair

by forcing piece P to be assigned to iteration P in the first search, eliminating the solutions in

which piece 1 is assigned to iteration P . For any search scheme, another equivalent search scheme

can be obtained by permuting the indices of searches within the scheme. Existence of only one of

the search schemes obtained by this index permutation in the feasible solution set is enough. This

can be achieved by sorting (in ascending order) the searches based on the piece assigned to their

first iteration. This is done by constraint (3.11b), which does not allow pieces 1, . . . , j − 1 to be

assigned to the first iteration of searches s, . . . , S if piece j is assigned to the first iteration of search

s. In addition to symmetry elimination, notice that the connectivity condition of pieces implies that

the piece assigned to iteration P is either piece 1 or piece P , and in general, the piece assigned to

iteration i ≥ dP/2e+ 1 is one of pieces 1, . . . , P − i+ 1, i, . . . , P . Constraint (3.12) enforces this

property, which strengthens the formulation, and according to our computational tests, reduces the

running time of the MIP.

3.3 Solving MIP

We used CPLEX 12.7.1 solver1 to solve our MIP by implementing the code2 in C++ using

CPLEX Callable Library. All instances were run over four 28-core nodes (2.4 GHz Intel Broadwell)

with 64GB of memory per node. We ran our MIP solver for instances generated for a broad

range of parameters K, R, S, and P and gave each instance a 3-hour time limit. Fig.3.2 is a

1https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/
topics/COS_home.html

2Our MIP Code along with instructions to use it is available at https://github.com/kianfar77/OptimumSearchSchemes.
The code accepts any arbitrary set of input parameters. The particular set of parameters used to prepare the data for
Figure 3.2, 3.3, and Table 3.2 are provided at the aforementioned address as well.

26

small representative of our results. It shows the optimal objective value (total number of edges)

for R = 15, 25, 35, 50, 75, 100, K = 1, . . . , 4, P = 5, 6, and S = 1, . . . , 5. If the problem is

not solved to optimality in 3 hours, the best solution found within this time limit is shown. The

optimal objective value does not show a consistent change pattern in terms of change in P ; however,

as expected, it increases as K increases, as R increases (not shown), and as S decreases. In all

instances, the optimal objective value shows a sharp drop from S = 1 to S = 2, then a modest

drop to S = 3, and negligible change beyond S = 3, generating empty searches in many cases.

Therefore, as long as S = 5, it is advisable to use S = 3 instead if we would like to reduce the MIP

running time and still find an optimal or near-optimal solution for S = 5. We also noticed that the

optimal search scheme obtained by our MIP is not sensitive to the value of R (see open problems

in Section 6.1). Therefore, when R is large, it is advisable to solve the MIP for a much smaller

reasonable value of R, e.g., R = KP , in order to get a solution that is most probably optimal for

the large R in a much shorter amount of time.

Using the MIP formulation, we were able to solve considerable size problems to optimality. For

instance, we were able to solve a problem with K = 4, R = 100, P = 3, and S = 3 to optimality in

5802 seconds. However, more complicated cases reached the time limit of 3 hours without proving

solution optimality. Consequently, it is important to investigate the rate of convergence of the

solutions found during execution of MIP to the optimal solution. Fig. 3.3 illustrates the ratio of

the best solutions found by MIP during its execution to the final optimal objective value plotted

against running time for some instances which reached optimality. We observe that in all cases,

within 0.1% to 1% of the total running time, the MIP finds a solution which is finally proved to

be optimal or very close to the optimal after MIP execution is complete. In other words, the MIP

solver finds optimal or near optimal solutions very early on and spends the rest of its time ensuring

that no better solution exists. This can be partly due to the remaining symmetry in the solution

space. Nevertheless, from practical perspective, this is an attractive property because, when the

input parameters are much larger, we can run the MIP for a short time and find solutions which are

most probably optimal or near-optimal.

27

3.4 Sensitivity Analysis for Parameters of The MIP

Since ASM is exponential in terms of the number of errors, the behavior of the MIP for different

values of parameters such as read length, number of partitions, number of errors, and number of

searches is of high interest. In addition, the overall convergence behavior of the MIP plays an

important role in answering how big a problem can be solved using the MIP. Therefore, we will be

examining the effects of aforementioned parameters in this section.

We used CPLEX 12.7.1 solver [43] to solve our MIP by implementing the code in C++ using

CPLEX Callable Library. All instances were run over four 28-core nodes (2.4 GHz Intel Broadwell)

with 64GB of memory per node. We ran our MIP solver for instances generated for a broad range of

parameters K, R, S, and P and gave each instance a 3-hour time limit. Fig. 3.2 shows the optimal

objective value (total number of edges) for R = 15, 25, 35, 50, 75, 100, K = 1, . . . , 4, P = 5, 6,

and S = 1, . . . , 5. If the problem is not solved to optimality in 3 hours, the best solution found

within this time limit is shown. The optimal objective value does not show a consistent pattern in

terms of change in P ; however, as expected, it increases as K increases, as R increases, and as S

decreases. In all instances, the optimal objective value shows a sharp drop from S = 1 to S = 2,

then a modest drop to S = 3, and negligible change beyond S = 3, generating empty searches

in many cases. Therefore, as long as S = 5, it is advisable to use S = 3 instead if we would like

to reduce the MIP running time and still find an optimal or near-optimal solution for S = 5. We

also noticed that the optimal search scheme obtained by our MIP is not sensitive to the value of R.

Therefore, when R is large, it is advisable to solve the MIP for a much smaller reasonable value of

R, e.g., R = KP , in order to get a solution that is most probably optimal for the large R in a much

shorter amount of time.

28

R= 15

●

● ● ● ●

●

● ● ● ●2.5
3.0
3.5
4.0

1 2 3 4 5
S

ob
j

K= 1

R= 25

●

● ● ● ●

●

●
● ● ●4

5
6

1 2 3 4 5
S

ob
j

K= 2

R= 35

●

● ● ● ●

●

●
● ● ●4

5
6
7

1 2 3 4 5
S

ob
j

K= 3

R= 50

●

● ● ● ●

●

●
● ●

●

3
5
7
9

1 2 3 4 5
S

ob
j

K= 4

R= 75

●

● ● ● ●

●

● ● ● ●

5
6
7
8
9

1 2 3 4 5
S

ob
j

R= 100

●

● ● ● ●

●

●

● ● ●1.25
1.50
1.75
2.00

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ● ●2.5

3.0
3.5
4.0

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ● ●3

4
5

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

● ● ● ●1.25
1.50
1.75
2.00

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ● ●4

5
6
7

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ● ●1.00

1.25
1.50
1.75

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ●

2.0
2.5
3.0
3.5

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

● ● ● ●2.0
2.5
3.0
3.5

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ● ●

1.1
1.3
1.5
1.7

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ● ●4

5
6
7

1 2 3 4 5
S

ob
j

●

●
● ● ●

●

●
● ●1.00

1.25
1.50
1.75
2.00

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

● ● ● ●

4
5
6
7
8

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ● ●3

4
5
6

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ● ●2.0

2.5
3.0
3.5

1 2 3 4 5
S

ob
j

●

●
● ● ●

●

●
● ●0.8

1.0
1.2
1.4

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

● ● ● ●

0.8
1.0
1.2
1.4
1.6

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●
● ● ●0.8

1.0
1.2
1.4
1.6

1 2 3 4 5
S

ob
j

●

● ● ● ●

●

●

● ● ●0.6
0.7
0.8
0.9
1.0
1.1

1 2 3 4 5
S

ob
j

●

●
● ● ●

●

●
● ●4

5
6
7

1 2 3 4 5
S

ob
j

P
5
6

× 10 3× 10× 10 2× 10 × 10× 10 × 10 4× 10 × 10 5× 10

× 10 2× 10 2 × 104× 10 × 10 5× 10 × 10 6× 10

× 10 3× 10 × 10 4× 10 × 10 6× 10 × 10 7× 10

× 10 3× 10 × 10 5× 10 × 10 6× 10 × 10 8× 10

× 10 3× 10 × 10 5× 10 × 10 7× 10 × 109× 10

× 10 4× 10 × 10 6× 10 × 10 8× 10 × 10 9× 10

Figure 3.2: Sensitivity of optimal objective value to parameters R, K, S, and P . For some cases
due to memory overflow, there is no data point.

Using the MIP formulation, we were able to solve considerable size problems to optimality. For

instance, we were able to solve a problem with K = 4, R = 100, P = 3, and S = 3 to optimality in

5802 seconds. However, more complicated cases reached the time limit of 3 hours without proving

solution optimality. Consequently, it is important to investigate the rate of convergence of the

solutions found during execution of MIP to the optimal solution. Fig. 3.3 illustrates the ratio of

the best solutions found by MIP during its execution to the final optimal objective value plotted

against running time for some instances which reached optimality. We observe that in all cases,

within 0.1% to 1% of the total running time, the MIP finds a solution which is finally proved to

be optimal or very close to the optimal after MIP execution is complete. In other words, the MIP

29

solver finds optimal or near optimal solutions very early on and spends the rest of its time ensuring

that no better solution exists. This can be partly due to the remaining symmetry in the solution

space. Nevertheless, from practical perspective, this is an attractive property because, when the

input parameters are much larger, we can run the MIP for a short time and find solutions which are

most probably optimal or near-optimal.

●

● ●

●

●

●● ● ● ●

●

●

● ● ●●●●● ●

●

●
●● ●●● ●

2

4

6

8

 0.1 10.0 1000.0
time(sec)

ob
j/o

pt

R= 15
●

● ●
● ●

●

●
● ●●●●●● ●

● ●

● ●● ●●●● ●

●

● ●●● ● ●

2

4

6

8

 0.1 10.0 1000.0
time(sec)

ob
j/o

pt

R= 25

●

●
● ●

● ●

● ● ● ●● ●● ●

●
●

●

● ●● ● ●● ●

●

● ●●
● ●● ●● ●

2

4

6

8

 0.1 10.0 1000.0
time(sec)

ob
j/o

pt

k
1
2
3
4

R= 35
●

● ●

●

● ● ● ●

●
●

●

● ●● ●●● ●

●

● ●

● ●● ●

2

4

6

8

 1 100 10000
time(sec)

ob
j/o

pt
R= 50

●

●
● ●

●
●

●
●●●●●● ●

●

● ●● ● ● ● ●● ●

●

●

●●●●● ●●

●

2.5

5.0

7.5

 1 100
time(sec)

ob
j/o

pt

R= 75
●

●
● ●

● ●

●

● ●●● ●

●

●
●

● ●● ●● ● ●

●

● ●

● ●

2.5

5.0

7.5

 1 100 10000
time(sec)

ob
j/o

pt

R= 100

Figure 3.3: Rapid convergence of feasible solutions to the optimal solution.

30

3.5 Search-in-Index Computational Gains Achieved by Optimum Schemes

In this section, we present the computational advantages3 our optimal search schemes achieved

by using our optimal search schemes in ASM-B (ASM performed completely in bidirectional

FM-index).

While our optimal search schemes can be found for any alphabet size and read length, we chose

to concentrate on parameter values relevant to standard sequencing reads, e.g., Illumina reads. In

Table 3.1, for a number of relevant parameter values, we have shown how the total number of edges

using the optimal search schemes found by our MIP is reduced compared to the unidirectional

backtracking scheme for reads of length R = 101. It can be seen that the reduction is between

41% and 49%. For K = 1, 2, 3, and 4, the optimal search scheme with P = K + 3 has the fewest

number of edges. The corresponding optimal search schemes are presented in Table 3.2.

Table 3.1: Total number of edges in the optimal search schemes found by our MIP for K = 1, 2, 3
and P = K + 1, P = K + 2 and P = K + 3 compared to full backtracking. The factor column
shows the ratio of total number of edges in each scheme to that in backtracking. The optimal search
schemes are listed in Table 3.2.

Distance Search Scheme
K = 1 K = 2 K = 3 K = 4

Edges Factor Edges Factor Edges Factor Edges Factor

Hamming

Backtracking 15,554 1.00 1,560,854 1.00 116,299,379 1.00 6,862,924,649 1.00
Optimal (P = K + 1) 8,004 0.51 892,769 0.57 67,888,328 0.58 4,064,852,156 0.59
Optimal (P = K + 2) 8,922 0.57 854,303 0.55 65,116,676 0.56 3,916,700,994 0.57
Optimal (P = K + 3) 8,004 0.51 835,213 0.54 64,060,718 0.55 3,887,857,820 0.57

Edit

Backtracking 41,208 1.00 11,154,036 1.00 2,264,515,748 1.00 367,846,294,116 1.00
Optimal (P = K + 1) 20,908 0.51 6,315,779 0.57 1,299,709,022 0.57 213,296,122,595 0.58
Optimal (P = K + 2) 23,356 0.57 6,025,907 0.54 1,246,126,103 0.55 205,509,484,572 0.56
Optimal (P = K + 3) 20,908 0.51 5,892,667 0.53 1,226,903,544 0.54 203,270,363,390 0.55

3The code and input data files for the benchmarking experiments in this section along with instructions to use it is
available at https://github.com/kianfar77/OptimumSearchSchemes. This code can be used to generate the results in
Tables 3.1 to 5.4. It can also be used to do user-customized benchmarking.

31

Table 3.2: Search schemes found by our MIP for K = 1, 2, 3 and P = K + 1, P = K + 2 and
P = K + 3 used for experiments in Tables 1 and 2. The schemes for K = 1 and 2 in all cases are
optimal schemes with S = 5, and the scheme for K = 3 and P = K+ 1 is the optimal scheme with
S = 3. To control the running time of MIP, the schemes for K = 3 and 4 are best solutions found
by running the MIP for 2 hours with S = 3. These schemes are most probably optimal for S = 3.

K = 1 K = 2 K = 3 K = 4

Optimal (P = K + 1)
(12, 00, 01)

(21, 01, 01)

(123, 002, 012)

(321, 000, 022)

(231, 011, 012)

(1234, 0003, 0233)

(2341, 0000, 1223)

(3421, 0022, 0033)

(12345, 00004, 03344)

(23451, 00000, 22334)

(54321, 00033, 00444)

Optimal (P = K + 2)
(123, 001, 001)

(321, 000, 011)

(2134, 0011, 0022)

(3214, 0000, 0112)

(4321, 0002, 0122)

(12345, 00022, 00333)

(43215, 00000, 11223)

(54321, 00003, 02233)

(123456, 000004, 033344)

(234561, 000000, 222334)

(654321, 000033, 004444)

Optimal (P = K + 3)
(1234, 0000, 0011)

(4321, 0001, 0011)

(21345, 00011, 00222)

(43215, 00000, 00112)

(54321, 00002, 01122)

(123456, 000003, 022233)

(234561, 000000, 111223)

(654321, 000022, 003333)

(1234567, 0111111, 3333334)

(1234567, 0000000, 0044444)

(7654321, 0000004, 0333344)

Although the reduction factors in total number of edges obtained by our optimal search schemes

in Table 3.1 are very significant in themselves, due to the stochastic nature of occurrence of errors

in sequencing reads and occurrence of approximate matches in the reference genome, the real-case

ASM speed-up factors achieved by these optimal search schemes compared to backtracking can

be yet much more significant. To gain insight into this speed-up, we performed an experiment

searching for all approximate matches (for K = 1, 2, and 3) of 100, 000 real Illumina reads of

length R = 101 4 in the human genome hg38 and compared the running time of ASM-B performed

with optimal search schemes obtained by our MIP for P = K + 1 and P = K + 2 to that of

unidirectional backtracking for Hamming and edit distance. Throughout this article, we use OSS to

refer to an implementation of in-index bidirectional search using optimal search schemes found

by our MIP. All tests were conducted on one Linux-based computing cluster node with an Intel

14-core 2.4GHz Broadwell processor and 112GB of memory. All data was stored on tmpfs, a virtual

4Taken from SRA accession number ERX1959065 and available at https://github.com/kianfar77/
OptimumSearchSchemes

32

file system in main memory to prevent loading data just on demand during the search and thus

affecting the speed of the search by I/O operations. All tools were run with a single thread to make

the results comparable. The results are shown in Table 3.3. We can see that for both Hamming and

edit distance, employing our optimal search schemes, is much faster than backtracking, verifying

our expectation. The respective largest speed-up factors for K = 1, 2, and 3 are 4.53, 14.67, and

47.17 for Hamming distance, and 4.04, 10.26, and 19.38 for edit distance, respectively, much more

significant than reduction in the total number of edges reported in Table 3.1.

Table 3.3: Running time comparison of searching all approximate matches of 100, 000 Illumina
reads (R = 101) using optimal bidirectional scheme with P = K + 1 and P = K + 2 versus
backtracking for Hamming and edit distance. The factor column is the speed-up ratio versus
backtracking in each category.

D
is

t.

Search Tool
K = 1 K = 2 K = 3

Time Factor Time Factor Time Factor

H
am

m
. Backtracking 25.61s 1.00 215.55s 1.00 1931.16s 1.00

Optimal-scheme bidirect. (P = K + 1) 10.89s 2.35 17.30s 12.46 61.78s 31.26

Optimal-scheme bidirect. (P = K + 2) 5.65s 4.53 14.69s 14.67 40.94s 47.17

E
di

t

Backtracking 34.60s 1.00 975.71s 1.00 21321.08s 1.00

Optimal-scheme bidirect. (P = K + 1) 8.62s 4.01 101.19s 9.64 1158.31s 18.41

Optimal-scheme bidirect. (P = K + 2) 8.56s 4.04 95.13s 10.26 1100.37s 19.38

33

4. RELAXING ASSUMPTIONS OF EQUAL SIZE PARTITION MIP

The formulation in section 3.2 solves OSS problem with two restrictions: First, it assumes

the partitions are of the same size. Second, it solves the problem for Hamming distance. In this

section, we provide an alternative formulation to equal size partition MIP of section 3.2, called

Fixed General Partitioning. We will relax the assumption of having equal size partitions but still

assume that the partition sizes are given. In addition, this formulation has significantly less variables.

In the next step we relax the assumption of having the sizes of partitions and introduce Variable

Partition MIP. We let this MIP to produce the sizes of the partitions. Finally, we introduce Fixed

General Edit Distance MIP which assumes that the sizes of partitions are arbitrary and given. This

MIP solves the OSS problem for edit distance.

Solving Variable Partition MIP for real world read sizes needs huge amount of computational

resources. Also, the optimal solutions from edit distance MIP is very close to those of the MIP

from section 3.2. Therefore, we will use the results of equal size partition MIP for computational

purposes throughout chapter 5.

4.1 MIP Formulation for a Fixed General Partitioning

The formulation for pre-determined general partitioning is different than the MIP presented in

section 3.2 in two ways. First, it relaxes the assumption of having equal size partitions which could

improve the runtime for mapping short reads [7]. Second, it uses a recursive approach for iterations

rather than the levels of the trie which leads to a formulation with significantly fewer number of

variables.

The MIP formulation for a fixed general partitioning, solves the optimal search scheme problem

assuming P is given as an input and pieces vary in size. More specifically, for given K,R, P, S, and

sizes of all partitions Φ, this MIP finds the search scheme with minimum number of edges among

all feasible search schemes that have at most S searches. The optimal solution to the MIP provides

the (π, L, U) of all searches in the optimal search scheme.

34

The idea is to build a reference trie with a considerable number of mismatches and only one large

partition. We utilize the reference trie to compile a table for counting the number of edges in search

tries with the help of the recursive approch for iterations. The reference trie will be constructed

by using Kucherov’s recursive function assuming there is one partition. We count its number of

vertices only once and compile a table containing the number of nodes with d mismatches at depth l

of the reference trie, Nld.

Although the MIP uses a recursive approach for iterations rather than the levels of search tries,

we need to count all of the edges of a search trie and therefore we need to know the number of nodes

not only at borderlines of iterations but also for all levels of a search trie. Therefore, we tabulate the

cumulative number of vertices from the root of the reference trie to any level l with mismatches

between a lower bound L and an upper bound U plus their ancestor nodes which are necessary to

maintain a tree structure. We denote the cumulative number of nodes with VlL U and define it as

VlL U = (
U∑
d=L

l∑
h=0

Nhd +
L−1∑
d=0

l−(L−d)∑
h=0

Nhd)− 1 (4.1)

where the first term counts the number of nodes with an error between L and U mismatches, the

second term counts their ancestor nodes, and subtracting 1 ensures that we do not count nodes at

the borders twice when we calculate the total number of edges in a search trie. We conform to the

convention whereby VlL U = 0 for all L < 0.

Figure 4.1 shows a reference trie allowing K = 5 mismatches with one partition of size 100

which would be large enough for most applications. As mentioned earlier, we need to calculate

VlL U for different values of l,L , and U . For instance, we calculate V5,2,3 by adding blue nodes (2

mismatches), red nodes (3 mismatches), and their ancestor nodes needed to preserve a tree structure

(green nodes).

Having the table, we can introduce a new recursive function for iterations (borders of partitions).

If we know the number of nodes with certain cumulative mismatches at a borderline and the length

of the following iteration, we can use our table to generate the number of nodes with various number

35

Figure 4.1: A reference trie for K = 5 with one partition of size 100. Nodes with 2 and 3 errors are
presented in blue and red, respectively. Their ancestor nodes are depicted in green. These nodes
represent V5,2,3. VlL U will be used to count the number of edges in search tries. The root node is
excluded to prevent counting the nodes at border of partitions twice. The rest of the trie has not
been presented.

of mismatches at the next borderline. Let nsid denote the number of nodes with d cumulative

mismatches at iteration i, borderline of i and i+ 1 iterations, of search s. We establish the following

recursive formula for the number of nodes at the end of iterations using Nld, from the reference trie,

with li denoting the length of partition i. We also define ns,0,0 = 1 and ns,0,d = 0 for d 6= 0.

nsid =
d∑

h=0

ns,i−1,h Nli,d−h (4.2)

Furthermore, we count the total number of edges by adding the number of nodes for all iterations.

Total edges =
P∑
i=1

Us,i−1∑
d=0

ns,i−1,d Vli,Lsi−d,Usi−d (4.3)

where li represents the length of iteration i, Lsi denotes minimum cumulative number of errors at

iteration i, and Usi represents maximum cumulative number of errors at iteration i. We define Us0

36

as 0.

Figure 4.2 demonstrates how to use V5,2,3 to count the number of nodes in the second iteration

of a search trie for a read of length 7 with 3 partitions of sizes 1, 5, and 1, respectively. We have

assumed the alphabet is consisted of only two characters. The lower bound and upper bound for

errors are Ls2 = 3, and Us2 = 4. Since the node at the borderline of iteration one and two has one

cumulative error, d = 1, its decedents acquire another extra 2 or 3 errors. Therefore, the structure of

nodes in the second iteration of the search would be identical to V5,2,3 of the reference trie.

Figure 4.2: A search trie with three partitions of size 1, 5, and 1, respectively. Ls1 = 1, Us1 =
1, Ls2 = 3, Us2 = 4, Ls3 = 3, Us3 = 5. The structure of the trie at the second iteration is exactly
V5,2,3 for the decedents of a node with d = 1 located at the border of the first and second iterations.

37

Our MIP formulation for a fixed general partitioning, presented below, solves the optimal search

scheme problem assuming P is given as an input and pieces vary in size. More specifically, for given

K,R, P, S, and sizes of all partitions Φ, this MIP finds the search scheme with minimum number

of edges among all feasible search schemes that have at most S searches. The optimal solution to

the MIP provides the (π, L, U) of all searches in the optimal search scheme. The objective value of

this optimal solution provides the minimum number of edges achievable among all feasible search

schemes.

min
∑S

s=1

∑P

i=1
ηsi (4.4)

subject to

∑P

i=1
xsij = 1 for all s and j

(4.5a)∑P

j=1
xsij = 1 for all s and i

(4.5b)∑i

h=1
xshj −

∑i

h=1
xsh,j−1 = t+sij − t−sij for all s, i = 2, . . . , P − 1,

j = 1, . . . , P + 1

(4.5c)∑P+1

j=1
(t+sij + t−sij) = 2 for all s, i = 2, . . . , P − 1

(4.5d)

ysil l ≤
∑P

j=1
mj xsij for all s, i and l ∈ Φ

(4.6a)

38

R (1− ysil) + l ≥
∑P

j=1
mj xsij for all s, i and l ∈ Φ

(4.6b)∑
l∈Φ

ysil = 1 for all s and i

(4.6c)

d− Lsi + 1 ≤ (K + 1)zsid for all s, i, and d

(4.7a)

− d+ Usi + 1 ≤ (K + 1)zsid for all s, i, and d

(4.7b)(
R

d

)
(σ − 1)d(3− ysil − zsid − zsid) + nsid ≥

d∑
h=0

ns,i−1,h Nl,d−h for all s, i, d, and l ∈ Φ

(4.7c)

R

K∑
d=0

(
R

d

)
(σ − 1)d(3− ysil − zsiL − zsiU + ηsi ≥

K∑
d=0

ns,i−1,d Vl,L−d,U −d for all s, i, l ∈ Φ L ,U ∈ {0, ..., K}

(4.8a)

Lsi ≤ Ls,i+1 for all s, and i = 1, . . . , P − 1

(4.9a)

Usi ≤ Us,i+1 for all s, and i = 1, . . . , P − 1

(4.9b)

x1PP = 1 (4.10a)

39

(S − s+ 1) xs,1,j +
∑S

t=s

∑j−1

k=1
xt,1,k ≤ S − s+ 1 for all s and j = 2, . . . , P

(4.10b)

Aqsi =
∑i

h=1

∑P

j=1
aqjxshj for all q, s, and i

(4.11a)

Lsi +K(λqs − 1) ≤ Aqsi ≤ Usi +K(1− λqs) for all q, s, and i

(4.11b)∑S

s=1
λqs ≥ 1 for all q

(4.11c)

∑P−i+1

k=1
xsik +

∑P

k=i
xsik = 1 for all s and i ≥ bP/2c+ 2

(4.12a)

nsid, Aqsi ≥ 0 for all q, s, i, and d

(4.13a)

Lsi, Usi ≥ 0 and integer for all s and i

(4.13b)

xsij, λqs, ysil, zsid, zsid, t
+
sij, t

−
sij ∈ {0, 1} for all q, s, i, j, and d

(4.13c)

The objective function (4.4) minimizes the total number of edges as calculated in (4.3) with the

help of (4.7c) and (4.8a). ηsi is defined as
∑K

d=0 ns,i−1,d Vl,L−d,U −d where Vl,L−d,U −d is defined

by (4.1) .

The binary variable xs,i,j captures the assignment of pieces to iterations. Constraints (4.5a) and

(4.5b) make sure that for any search s, only one piece is assigned to an iteration and vice versa.

Constraints (4.5c) and (4.5d) ensure the connectivity of the pieces and are in fact linearization

40

of (3.10) which is one way to enforce connectivity of pieces.

Constraints (4.6a), (4.6b), and (4.6c) assign a proper size to iteration i. mj is the size of

partition j and ysil is a binary variable. When ysil = 1, constraints (4.6a) and (4.6b) reduce to∑P
j=1 mj xsij = l which is true only if l , the size of iteration i, equals the size of partition j for

whom xs,i,j = 1. Constraint (4.6c) makes sure that only one size is assigned to an iteration.

Constraints (4.7a) - (4.7c) enforce the recursive equation (4.2) to calculate the number of

nodes at the iteration borderlines of a search trie. With the help of binary variables zsld and zsld

in constraints (4.7a) and (4.7b), if Lsi ≤ d ≤ Usi and ysil = 1 the recursive formula nsid =∑d
h=0 ns,i−1,h Nl,d−h is enforced via constraint (4.7c). When ysil = zs,l,d = zs,l,d = 1, (4.7c)

reduces to nsid ≥
∑d

h=0 ns,i−1,h Nl,d−h, which implies nsid =
∑d

h=0 ns,i−1,h Nl,d−h because the

objective function is to be minimized. Otherwise, (4.7c) becomes a trivial inequality.

Constraints (4.7a) - (4.7c) and (4.8a) count the number of nodes within iteration i of search

s. With the help of constraints (4.7a) and (4.7b), zsiL becomes one for L = Lsi. Similarly,

zsiU is one if U equals the upper bound Usi. These two force (4.7c) to generate the nodes.

Although for L > Lsi and U < Usi, zsiL = zsiU = 1, but this only enforces ηsi to be greater

than some values smaller than
∑K

d=0 nsid Vl,Lsi−d,Usi−d which will not impose any problem since

ηsi ≥
∑K

d=0 nsid Vl,Lsi−d,Usi−d.

When ysil = zsiL = zsiU = 1, (4.8a) reduces to ηsi ≥
∑K

d=0 nsid Vl,L−d,U −d, which in turn

reduces to ηsi =
∑K

d=0 nsid Vl,L−d,U −d because the MIP is a minimization problem. Otherwise,

(4.8a) becomes a trivial inequality.

As in prior MIP formulation, constraints (4.9a)-(4.9b) enforce the non-decreasing property of

lower bounds and upper bounds Lsi and Usi. Constraints (4.10a)-(4.10b) eliminate some symmetry

in the feasible region of the problem.

Constraints (4.11a)-(4.11c) make sure that every mismatch pattern over P partitions of the read

is covered by at least one search. Constraint (4.11a) calculates Aqsi which is the cumulative number

of mismatches up to and including iteration i of search s. If λqs = 1 in constraint (4.11b), Aqsi is

forced to be between lower bound Lsi and upper bound Usi at every iteration i which means the

41

mismatch pattern q is covered by s. Constraint (4.11c) ensures each pattern is covered at least by

one search. Constraints (4.12a) is not necessary however it speeds up the MIP.

4.2 Variable Partition

All the formulations described in prior sections answer the optimal search scheme problem

assuming the size of the partitions are given. We will present a formulation based on the MIP

discussed in section 3.2 which is capable of answering the optimal search scheme problem without

knowing the size of partitions. In fact, by setting an upper bound on the number of partitions, The

MIP is not only able to find the optimal size of partitions but also determines the optimal number of

partitions. The number of partitions with a none zero size, equals the optimal number of partitions.

Our MIP formulation for variable partitioning, presented below, solves the optimal search

scheme problem assuming P is an upper bound on the number of partitions. For given K,R, P , and

S this MIP finds the search scheme with minimum number of edges that have at most S searches.

The optimal solution to the MIP provides the (π, L, U), the number of non empty searches, and the

number, and sizes of the partitions in the optimal search scheme.

42

min
∑S

s=1

∑B

l=1

∑K

d=0
nsld (4.14)

subject to

∑P

i=1
xsij = 1 for all s and j

(4.15a)∑P

j=1
xsij = 1 for all s and i

(4.15b)∑i

h=1
xshj −

∑i

h=1
xsh,j−1 = t+sij − t−sij for all s, i = 2, . . . , P − 1,

j = 1, . . . , P + 1

(4.15c)∑P+1

j=1
(t+sij + t−sij) = 2 for all s, i = 2, . . . , P − 1

(4.15d)

∑i

h=1

∑P

j=1
m′shj = µsi for all s and i

(4.16a)∑P

j=1
mj = R (4.16b)

m′sij ≤ Rxsij for all s, i, and j

(4.16c)∑P

i=1
m′sij = mj for all s and j

(4.16d)

l − µs,i−1 ≤ lysil for all s, i, and l

(4.17a)

43

R∑
l=1

ysil = R− µs,i−1 for all s and i

(4.17b)

Lsl − Lsi+(µsi − l) ≤ (K +R)(1− ysil + ys,i−1,l) for all s, i, and l

(4.17c)

K(−1 + ysil − ys,i−1,l) ≤ Usl − Usi for all s, i, and l

(4.17d)

d−Lsl + 1 ≤ (R + 1)zsld for all s, l, and d

(4.18a)

Usl + 1− d ≤ (K + 1)zsld for all s, l, and d

(4.18b)

(
l
d

)
(σ − 1)d(zsld + zsld − 2) ≤ nsld − ns,l−1,d − (σ − 1)ns,l−1,d−1 for all s, l, and d

(4.18c)

Lsi ≤ Ls,i+1 for all s, and i = 1, . . . , P − 1

(4.19a)

Usi ≤ Us,i+1 for all s, and i = 1, . . . , P − 1

(4.19b)

x1PP = 1 (4.20a)

(S − s+ 1) xs,1,j +
∑S

t=s

∑j−1

k=1
xt,1,k ≤ S − s+ 1 for all s and j = 2, . . . , P

(4.20b)

44

(R + 1)wqj ≥ aqj −mj − 0.1 for all q and j

(4.21a)

(R + 1)wqj ≥ −(aqj −mj − 0.1) for all q and j

(4.21b)

wqj + wqj = 1 for all q and j

(4.21c)

Aqsi =
∑i

h=1

∑P

j=1
aqjxshj for all q, s, and i

(4.21d)

Lsi +K(λqs − 1) ≤ Aqsi ≤ Usi +K(1− λqs) for all q, s, and i

(4.21e)∑S

s=1
λqs +

∑P

j=1
wqj ≥ 1 for all q

(4.21f)

∑P−i+1

k=1
xsik +

∑P

k=i
xsik = 1 for all s and i ≥ bP/2c+ 2

(4.22a)

nsld,Usl, µsi, Aqsi,m
′
sij ≥ 0, Lsl ≥ −R for all q, s, i, j, l, and d

(4.23a)

Lsi, Usi,mj ≥ 0 Integer for all s, i, and j

(4.23b)

xsij, λqs, ysil, ysil, zsld, zsld, t
+
sij, t

−
sij, wqj, wqj ∈ {0, 1} for all q, s, i, j, l, and d

(4.23c)

45

Similar to the MIP from section (3.2), we are minimizing the number of edges to find the

optimal search scheme. Here, we have no restriction on the size of partitions and we only set an

upper bound for the number of partitions, P . The optimal solution would provide us with searches,

the size of partitions, and the optimal number of partitions. The number of partitions, in optimal

solution, equals the number of partitions with non-zero sizes.

Constraints (4.15a)-(4.15d) set the order of partitions in search s and ensure their connectivity.

Constraints (4.15a) and (4.15b) make sure for search s, there is a one to one assignment between

partitions and iterations. These constraints together determine the order of partitions in the search.

Constraints (4.15c) and (4.15d) ensure the connectivity of the partitions for search s throughout all

iterations, for a detailed discussion refer to section 3.2.

Constraint (4.16a) calculates the cumulative length of the partitions searched at iteration i. Let

µsi represent the cumulative length at iteration i for search s and define µs0 as 0. mj denotes the

length of partition j and m′sij is an integer that equals mj if partition j is assigned to iteration i,

otherwise m′sij is zero. Equation (4.16b) ensures that the sum of partition sizes add up to the length

of the read. Inequality (4.16c) forces m′sij to be zero except for one pair of i and j. Since only one

m′sij is nonzero, (4.16d) assigns mj to that variable.

Since the size of partitions are unknown, we cannot establish a straightforward connection

between level l of a trie and its corresponding iteration. Therefore, there is no direct relation between

the lower bound and upper bound for the number of errors in the iterations, and the nodes located at

a level l of the search trie. Constraints (4.17a)-(4.17b) detect the iteration that contains level l by

setting the values of ysil such that ysil − ys,i−1,l becomes 1 if and only if iteration i contains level l.

Constraints (4.17c) and (4.17d) set the lower bound and upper bound for the number of errors

for levels of the search tries. Let Lsl represent the lower bound for cumulative mismatches of nodes,

substrings, at level l of the search s. With the help of binary variable ysil in constraints (4.17a)-

(4.17b), when µs,i−1 < l ≤ µsi, constraint (4.17c) sets the lower bound Lsl to Lsi− (µsi− l) which

reaches to Lsi at the end of iteration i. Let Usl denote the upper bound for cumulative mismatches

for nodes at level l of the search s. Constraint (4.17d) sets Usl to Usi when iteration i contains level

46

l.

Constraints (4.18a)-(4.18c) enforce the recursive equation in Kucherov et al [7] for calculating

the number of nodes in a search trie. With the help of binary variables zsld and zsld in constraints

(4.18a) and (4.18b), when Lsl ≤ d ≤ Usl the recursive formula

nsld = ns,l−1,d + (σ − 1)ns,l−1,d−1

is enforced by constraint (4.18c). Otherwise, (4.18c) becomes a trivial inequality.

Similar to the discussion for the MIP from section 3.2, constraints (4.19a)-(4.19b) enforce the

non-decreasing property of cumulative Lsi and Usi and constraints (4.20a)-(4.20b) are to eliminate

symmetry.

Constraints (4.21a)-(4.21c) make sure that the number of mismatches in a partition is less than

the size of the partition. Binary variable wqj is 1 if and only if the number of mismatches for an

error pattern q, aqj , is greater than the length of at least one partition. wqj would be 1 if in partition

j of error pattern q, aqj was not greater than mj .

Constraints (4.21d)-(4.21f) make sure that every mismatch pattern is covered by at least one

search. Constraint (4.21d) calculates Aqsi which is the cumulative number of mismatches up to and

including iteration i of search s. If λqs = 1 in constraint (4.21e), then Aqsi is forced to be between

lower bound Lsi and upper bound Usi at every iteration i which means mismatch pattern q is covered

by s. Constraint (4.21f) makes sure all applicable error patterns are covered. When the length of

partition is smaller than errors in the partition, (4.21f) will not enforce (4.21e).This enables the MIP

to produce solutions with partition sizes of zero which can be interpreted as determining the optimal

number of partitions.

4.2.1 Optimal search scheme for variable size partition

In this section we present the result of the variable size partition MIP and the computational

advantages achieved by implementing the variable size partition versus equal size partition MIP

from section 3.2.

47

Table 4.1, for a number of relevant parameter values, S = 3 and R = 24, shows the optimal

number of edges found by the variable size MIP from section 4.2 in comparison to the equal size

partition formulation from section 3.2. The highest reduction occurred for P = 3 which was

between 5% and 10%. The corresponding optimal search schemes are presented in Table 4.2.

Column partition size demonstrates the size of partitions in the optimal search scheme. Partitions

with a size of zero should be treated as they do not exist.

Table 4.1: Comparison between the objective values from equal size partition MIP and variable size
partition MIP for S=3, R = 24, and different values of K and P .

K = 1 K = 2 K = 3

variable-size obj equal-size obj variable-size obj equal-size obj variable-size obj equal-size obj

P = 3 515 563 12592 13189 222552 236887

P = 4 515 515 12592 12834 222552 233956

P = 6 515 515 12592 12731 222552 222552

Table 4.2: Search schemes found by variable size partition MIP for K = 1, 2, 3 and P = 3, 4, 5,
6. P denotes the upper bound on number of partitions. This searches are used for experiments in
Table 4.1. The schemes for K = 1 and P = 3, 4, 5 plus K = 2, 3 and P = 3 are optimal schemes.
To control the running time of the MIP, the rest are best solutions found by running the MIP for 3
hours with S = 3 and R = 24. These schemes are most probably optimal.

K = 1 K = 2 K = 3

search scheme partition size search scheme partition size search scheme partition size

P = 3
(213, 001, 001)
(321, 000, 011)

(6, 6, 12)
(123, 002, 012)
(231, 000, 012)
(321, 011, 022)

(5, 9, 10)
(123, 003, 023)
(231, 000, 123)
(321, 022, 033)

(4, 12, 8)

P = 4
(1234, 0000, 0011)
(4321, 0001, 0011)

(6, 6, 11, 1)
(1234, 0011, 0222)
(3214, 0000, 0012)
(4321, 0002, 0112)

(10, 7, 2, 5)
(1234, 0003, 0223)
(3241, 00000, 1123)
(4321, 0022, 0333)

(4, 7, 5, 8)

P = 5
(12345, 00001, 01111)
(54321, 00000, 00001)

(12, 1, 5, 5, 1)
(12345, 00002, 01222)
(23451, 00000, 01112)
(54321, 00011, 00022)

(5, 10, 2, 5, 2)
(12345, 00033, 02233)
(23415, 00000, 11233)
(43521, 00022, 03333)

(4, 3, 9, 8, 0)

P = 6
(321456, 000001, 000011)
(654321, 000000, 001111)

(1, 0, 0, 11, 11, 1)
(231456, 000000, 000222)
(453216, 000011, 001112)
(654321, 000002, 011222)

(7, 0, 3, 3, 6, 5)
(321456, 000222, 000333)
(432156, 000000, 122233)
(543216, 000033, 023333)

(5, 2, 1, 12, 4, 0)

48

4.3 Fixed General Edit Distance

In addition to mismatches, deletion and insertion are two important types of errors in DNA

sequencing. Few million small insertion and deletion errors have been discovered in human genomes

and the genetic variation caused by those indels is significant [44]. In this section we will introduce

an MIP formulation to solve the optimal search scheme problem under edit distance assuming the

size of the partitions are arbitrary and given.

For given K,R, P , S, and sizes of partitions ,mj , this MIP finds the search scheme with

minimum number of sub-strings that have at most S searches. The optimal solution to the MIP

provides the (π, L, U) and the number of nonempty searches in the optimal search scheme for edit

distance.

4.3.1 Tries

To accommodate for edit distance error, we expand a read into another string and write the

formulation for the extended read. First, we add K dummy placeholders prior to a real character

for insertion. Second, we add another dummy placeholder after the real character to represent the

deletion of that character. Figure 4.3 shows how to expand a read into an extended read. A solid line

represents a real character, "I, M, and D" mark levels associated to the occurrence of an insertion,

mismatch, or deletion, respectively. The set of K placeholders of type "I", an "M", and a "D" is

called an extended character.

49

Figure 4.3: Extended characters of a read of size 3, accommodate for insertion and deletion errors.

Furthermore, we generalize the concept of a search trie to accommodate for edit distance by

using extended characters and a new concept called node’s group type. Wherever an error occurs

we draw a diagonal edge. The position where an error occurs, determines the type of the error. If an

error occurs at levels dedicated to insertion, deletion, or real character (the level for mismatch) the

type of error will be designated as insertion, deletion, and mismatch, respectively.

Let g denote the group type for a node. g = −K, . . . ,K and represents the net number of

insertions. For instance, a node associated to a sub-string with 3 mismatches, 2 insertions, and 1

deletion would have a g = 2− 1 = 1. Let l denote the depth of a node in a trie, we define ngsld as the

number of nodes with exactly d cumulative errors with g net insertions (negative values represent

net deletion) at the lth level of the trie of search s. Moreover, n0
s00 = 1, ngs00 = 0 g 6= 0, ngs0d = 0

50

for d ≥ 1, ngsld = 0 for d < |g|, and ngsl,−1 = 0 for all values of g.

In order to determine of the type of an error designated to a level l, we define r = l mod (K+2).

r = 0 denotes deletion, r = 1 to K represent insertion, and r = K + 1 denotes mismatch. After

an insertion, a parent node of ngsld type generates a child node of ng+1
s,l+1,d+1 type. Similarly, when a

deletion occurs a node of ngsld type generates a node of ng−1
s,l+1,d+1 type. In order to have a unique

way to represent m < K number of insertions at an extended character, we establish a convention

whereby for an error pattern with m insertions, the errors occur only at the very last m levels

dedicated to insertion (the last m levels denoted by I in an extended characters).

Figure 4.4 represents the trie for a string of length 3 with maximum error K = 1 and σ = 2.

The type of each node is written next to it. Also, the nodes in blue represent sub-strings of length 2.

The number of those nodes times c2 will be used in the objective function. c2 denotes the probability

of occurrence of a sub-string in the text (we will use 1 for computational experiments).

I

I

I

I

I

I

M

D

n0

n0

n0

n0

n0

n0

n
0

n0

n0

n0

n0

n0

n0

n0

n0

n0

n0

n0

n0

n0

n0

n1

n1

n1

n1

n1

n1

n1

n1

n1

n1

M

D

M

D

n0

n0

n0

n0

n0

n0

n0

n0

n0

n0

n-1

n-1

n-1

n-1

n-1

Figure 4.4: Generalized trie accommodates indel and mismatch errors for a read of size 3 with
K = 1. The type of nodes are written next to them.

51

Due to occurrence of insertion and deletion, an error pattern can be produced in different ways

through various combinations of insertion, deletion, and mismatch errors. We need to eliminate

those strings in a trie that lead to the same pattern but with more errors. For instance, pattern

"AAACA" after adding "T" right before "C" and then dropping "C" is the same as occurrence

of only one mismatch at C’s position where "C" would alter to "T". The following cases can be

represented by their counterpart mismatch-only strings with fewer errors:

• Deletion at ith extended character and insertion at ith extended character.

• Deletion at ith extended character and insertion at (i+ 1)th extended character.

• Deletion at ith extended character and insertion at (i− 1)th extended character.

• Deletion at ith extended character and insertion at (i+ 2)th extended character.

• In addition to the cases mentioned above, we cannot delete a character and allow a mismatch

to occur.

52

4.3.2 Formulation

The MIP formulation for edit distance, presented below, solves the optimal search scheme

problem assuming P is given and pieces have arbitrary but given sizes. More specifically, for given

maximum edit distance error K, R, P , and S, this MIP finds the search scheme with minimum

number of sub-strings with at most S searches.

min
∑S

s=1

∑R

h=1
ch (

∑K

d=0
n0
s,h(K+2),d +

∑K

g=1

∑K

d=g
ngs,h(K+2)−g(K+2)+K,d

+
∑R

v=h+1

∑K

d=v−h
nh−vs,v(K+2),d)

(4.24)

subject to

∑P

i=1
xsij = 1 for all s and j

(4.25a)∑P

j=1
xsij = 1 for all s and i

(4.25b)∑i

h=1
xshj −

∑i

h=1
xsh,j−1 = t+sij − t−sij for all s, i = 2, . . . , P − 1,

j = 1, . . . , P + 1

(4.25c)∑P+1

j=1
(t+sij + t−sij) = 2 for all s, i = 2, . . . , P − 1

(4.25d)

∑i

h=1

∑P

j=1
(K + 1)mjxshj = µsi for all s and i

(4.26a)

53

l − µs,i−1 ≤ lysil for all s, i, and l

(4.26b)

R(K+2)∑
l=1

ysil = R(K + 2)− µs,i−1 for all s and i

(4.26c)

Lsl − Lsi+(µsi − l) ≤ (K +R(K + 2))(1− ysil + ys,i+1,l) for all s, i, and l

(4.26d)

K(−1 + ysil − ys,i+1,l) ≤ Usl − Usi for all s, i, and l

(4.26e)

d−Lsl + 1 ≤ (R(K + 2) + 1)zsld for all s, l, and d

(4.27a)

Usl + 1− d ≤ (K + 1)zsld for all s, l, and d

(4.27b)

(
l
d

)
(σ)d(zsld + zsld − 2) ≤ ngsld − n

g
s,l−r,d − σn

g−1
s,l−1,d−1

+ σngs,l−(r+K+2),d−2 + σngs,l−(r+2(K+2)),d−2

+ σ(σ − 1)ngs,l−(r+2(K+2)),d−3 for all s , g, r = 1, ...,K, d ≤ r

(4.27c)

(
l
d

)
(σ)d(zsld + zsld − 2) ≤ ngsld − n

g
s,l−r,d for all s , g, r = 1, ...,K − 1, d ≥ r + 1

(4.27d)

(
l
d

)
(σ)d(zsld + zsld − 2) ≤ ngsld − n

g
s,l−1,d − (σ − 1)ngs,l−1,d−1 for all s, r = K + 1

(4.27e)

(
l
d

)
(σ)d(zsld + zsld − 2) ≤ ngsld − n

g
s,l−1,d − n

g+1
s,l−2(K+2),d−1

− (σ − 1) ng+1
s,l−2(K+2),d−2 − n

g+2
s,l−2(K+2),d−2 for all s , g, r = 0

(4.27f)

54

Lsi ≤ Ls,i+1 for all s, and i = 1, . . . , P − 1

(4.28a)

Usi ≤ Us,i+1 for all s, and i = 1, . . . , P − 1

(4.28b)

Lsi +K(λqs − 1) ≤
∑i

h=1

∑P

j=1
aqjxshj ≤ Usi +K(1− λqs) for all q, s, and i

(4.29a)∑S

s=1
λqs ≥ 1 for all q

(4.29b)

x1PP = 1 (4.30a)

(S − s+ 1) xs,1,j +
∑S

t=s

∑j−1

k=1
xt,1,k ≤ S − s+ 1 for all s and j = 2, . . . , P

(4.30b)

ngsld,Usl, µsi, Aqsi ≥ 0, Lsl ≥ −R for all q, s, i, j, l, d, and g

(4.31a)

Lsi, Usi ≥ 0 Integer for all s and i

(4.31b)

xsij, λqs, ysil, zsld, zsld, t
+
sij, t

−
sij ∈ {0, 1} for all q, s, i, j, l, and d

(4.31c)

The objective function minimizes the expected number of sub-strings to be searched. The terms

in the parenthesis count only the edges associated to sub-strings and of same length (as discussed for

Figure 4.4). The first term counts sub-strings associated with mismatch and insertion. The second

term counts the sub-strings associated to deletion.

55

xsij in constraints (4.25a) and (4.25b) capture the assignment of pieces to iterations. In other

words, at optimality, these variables determine πs for the optimal search scheme. Constraints (4.25c)

and (4.25d) ensure the connectivity of the pieces. More specifically, together these two constraints

are essentially the linearization of the following constraint

∑P

j=1

∣∣∣∑i

h=1
xshj −

∑i

h=1
xsh,j−1

∣∣∣ = 2 for all s and i (4.32)

The term
∑i

h=1 xshj will have a binary value which denotes whether in search s partition j has

been searched at any of iterations 1 to i of search s. The term
∑i

h=1 xsh,j−1 captures the same

notion for partition j − 1. If all partitions form a connected block on the read at any iteration i,∑i
h=1 xshj −

∑i
h=1 xsh,j−1 equals 1 only for one j, equals −1 only for one j, and 0 for all others.

This is ensured by equation 4.32 and therefore for its linearization.

(4.26a)-(4.26e) determine the relationship between the levels of the trie and their corresponding

iterations. Constraint (4.26a) calculates µsi, the cumulative length of the pieces traversed in search

s up to and including iteration i. With the help of binary variable ysil in constraints (4.26b)-(4.26c),

if µs,i−1 < l ≤ µsi, the lower and upper bounds Lsl and Usl are set to Lsi and Usi by constraints

(4.26d) and (4.26e), respectively.

Constraints (4.27a)-(4.27f) enforce the recursive equation needed to calculate the number of

sub-strings. With the help of binary variables zsld and zsld in constraints (4.27a) and (4.27b), if

Lsl ≤ d ≤ Usl the recursive formula is enforced by constraints (4.27c) to (4.27f). Otherwise,

(4.27c) to (4.27f) become trivial inequalities.

More precisely, constraints (4.27c) to (4.27d) construct the trie for levels associated to insertion.

The recursive function for these levels (r = 1, ..., K) resembles the recursive function in [7].

By convention, when the number of insertions m is less than K, we only consider the sub-string

for which the insertions happen only at the last m places assigned to insertion. We add d ≤ r to

guarantee this in (4.27c).

Furthermore, we eliminate the strings associated to error patterns that can be represented in

56

different ways through various occurrences of insertion, deletion, and mismatch errors. To exclude

deletion at extended character i and insertion at i+ 1 we subtract σngs,l−(r+k+2),d−2 from the number

of nodes in constraint (4.27c). To exclude deletion at extended character i and insertion at i+ 2, we

subtract ngs,l−(r+2(k+2)),d−2 and (σ − 1)ngs,l−(r+2(k+2)),d−3 from the number of nodes in constraints

(4.27c). Constraint (4.27e)is associated to mismatch and it is basically the recursive function in [7].

Constraint (4.27f) generates the nodes at levels that deletion is allowed. We do not allow deletion

and insertion/mismatch to happen at an extended character. Also, to prevent deletion at extended

character i and insertion at i− 1, we use ng+1
s,l−2(K+2),d−1 + (σ− 1) ng+1

s,l−2(K+2),d−2 + ng+2
s,l−2(K+2),d−2

instead of ng+1
s,l−1,d−1. The first three terms calculate the number of nodes at level l − (K + 2) which

do not have insertion at extended character i− 1 (basically nodes at level l − 2(K + 2) plus their

children generated via either only mismatch or deletion).

Constraints (4.28a)-(4.28b) ensure Lsi and Usi are non-decreasing as they are cumulative values.

Constraints (4.29a)-(4.29b) ensure that every mismatch pattern is covered by at least one search.

λqs is a binary variable that determines whether error pattern q is covered by search s. Constraint

(4.29a) forces λ = 0 if search s does not cover error pattern q and constraint (4.29b) ensures every

error pattern is at least covered by one search. Constraints (4.30a)-(4.30b) are not necessary for the

formulation , however, they eliminate some symmetries from the feasible region.

4.3.3 Optimal Search Schemes

In this section we present the result of the fixed size partition MIP for the edit distance. The

optimal search schemes are presented in Table 4.3 for a variety of relevant parameter values K and

P . The optimal solutions are identical to those of Hamming distance except for K = 2, P = 3 and

K = 3, P = 4 plus all the cases with K = 4. Even for those cases the optimal Hamming distance

produces an objective function very close to the optimal solutions for edit distance. Consequently,

using Hamming distance optimal search schemes for edit distance is justifiable (see section 3.5).

57

Table 4.3: Search schemes found by our edit distance MIP for S = 4, K = 1, 2, 3 and P = K + 1,
P = K + 2 and P = K + 3 . To control the running time of MIP, the schemes for K = 3 and 4
are best solutions found by running the MIP for 3 hours with S = 4. The solution for K = 3 and
P = 4 is optimal . The rest of the schemes are most probably optimal for S = 4.

K = 1 K = 2 K = 3 K = 4

Optimal (P = K + 1)
(12, 00, 01)

(21, 01, 01)

(321, 002, 022)

(213, 000, 012)

(123, 011, 012)

(1234, 0111, 1223)

(1234, 0000, 0033)

(2341, 0002, 0013)

(4321, 0003, 0233)

(12345, 01111, 33334)

(12345, 00000, 00444)

(54321, 00004, 03344)

Optimal (P = K + 2)
(123, 001, 001)

(321, 000, 011)

(2134, 0011, 0022)

(3214, 0000, 0112)

(4321, 0002, 0122)

(12345, 00022, 00333)

(43215, 00000, 11223)

(54321, 00003, 02233)

(123456, 000002, 033344)

(234561, 000000, 222334)

(564321, 000034, 004444)

Optimal (P = K + 3)
(1234, 0000, 0011)

(4321, 0001, 0011)

(21345, 00011, 00222)

(43215, 00000, 00112)

(54321, 00002, 01122)

(123456, 000003, 022233)

(234561, 000000, 111223)

(654321, 000022, 003333)

(1234567, 0000004, 0334444)

(6754321, 0000000, 3333334)

(6574321, 0000044, 0000444)

4.4 Concluding Remarks

The formulation in section 3.2 solves OSS problem with the assumption of having equal size

partitions for Hamming distance. In this chapter, we provided three formulations to relax those

assumptions. These formulations also answered the open ended questions in [7]. However, either

due to substantial computational resources needed for real world reads or the slight improvement of

the solutions of these formulations over equal size partition formulation, we chose to use the results

of equal size partition MIP for computational purposes throughout chapter 5.

58

5. TOWARDS A FULL-FLEDGED ALIGNER

Pure in-index search using standard backtracking is very slow for larger values of K. However,

the drastic improvement over standard backtracking, gained by using our optimal search schemes in

a bidirectional index, as observed in Section 3.5, demonstrate that there is a potential for significant

improvement in the performance of any read mapper that utilizes in-index search. Some well-known

full-fledged aligners, such as BWA-aln [21] and Bowtie1 [4], perform the search entirely in FM-

index. Since Bowtie1 only performs the search for Hamming distance, in section 5.1 we compare

OSS, BWA-aln, plus Bowtie1 and demonstrate that our optimal search schemes are superior to

those aligners for Hamming distance.

Due to the exponential complexity of ASM using FM-index in terms of K, many state-of-the-art

aligners do not perform ASM completely in index but rather use a combination of search in the

index and verification in text using dynamic programming (DP).

Although OSS performs the search entirely in index, because of its tremendous performance

in mapping Illumina reads to human genome, as demonstrated in Table 3.3, we will challenge it

against full-fledged aligners benefiting from in-text verification. In order to cast a glance at the

potential of combining OSS and in-text verification and its usage in full-fledged aligners, in section

5.2, we will gauge the performance of an implementation of OSS combined with in-text verification

for Hamming distance versus OSS purely performed in index, also against backtracking plus in-text

verification. Furthermore in section 5.3, we compare the performance of OSS, carrying out the

search solely in index, against full-fledged aligners benefiting from combing in-index and in-text

verification.

5.1 Computational Performance of OSS vs Full-Fledged In-Index Aligners

State-of-the-art aligners such as BWA-aln and Bowtie1, carry out the approximate string

matching solely in FM-index. In this section, we observe that our optimal search schemes, OSS,

outperforms those aligners. To get a better sense of the potential of OSS, we have compared our

59

optimal search schemes with Bowtie1 and BWA (bwa-aln) under Hamming distance. Since Bowtie1

is only capable of performing the search in Hamming distance, this comparison has been carried

out for Hamming distance.

Bowtie1 has been set up to search for all alignments with at most K mismatches (-v <K>

-y -a). We have also compared optimal search schemes against BWA in all-mapping mode (bwa

aln -N -O 0 -l<R> -n <K>). The results shown in Table 5.1 demonstrate that our optimal

search scheme is faster than Bowtie1 for K = 1, 2, and 3. In addition, OSS outperforms BWA for

all values of K but K = 1, for which BWA is slightly faster.

An auxiliary data structure called array D, is the reason why BWA performs better than OSS for

K = 1. Let us assume that we are mapping read R of size |R|, we define array D of size |R| such

that D[i] represents a lower bound of the number of differences between string R[0, i], first i+ 1

characters of R, and the reference genome. Array D makes BWA faster by avoiding descending into

some branches of the search trie. Imagine D[0] = 0, D[1] = 1 and we are performing depth first

search, for the first character we go down the search trie but for the second character we will not

go down because D[1] = 1. We ignore that branch and its child nodes and instead go into another

branch of the search trie [21]. This makes the search space smaller and BWA faster. However,

for K = 1 compared to K ≥ 2 the number of edges avoided because of D, is a great number

compared to the entire search trie. As K increases, the number of edges avoided during depth first

search becomes significantly smaller in comparison to the number of edges in the search trie which

deteriorate the effect of D.

Table 5.1: Running time comparison of searching all approximate matches of 100, 000 Illumina
reads (R = 101) using OSS, Bowtie1, and BWA-aln for K = 1, 2, 3 and Hamming distance. The
factor column is the speed-up ratio versus OSS in each category.

D
is

t.

Search Tool K = 1 K = 2 K = 3
Time Factor Time Factor Time Factor

H
am

m
. OSS 5.23s 1 13.98s 1 50.33s 1

Bowtie1 24.00s 4.58 92.00s 6.58 243.00s 4.82
BWA 4.24s 0.81 14.93s 1.07 118.86s 2.36

60

5.2 Promising Combination of OSS and In-Text Verification

Approximate string matching using FM-index has exponential complexity in terms of K.

Therefore, full-fledged aligners do not carry out the search completely in index. They employ a

combination of in-index search and in-text verification. In order to take a glance at the possible

improvement gained by combining OSS and in-text verification, we have implemented OSS and

in-text verification for Hamming distance. In general, OSS combined with in-text verification

accelerated the search by a factor of two. We also observed that OSS preserved its computational

advantages compared to backtracking even in the presence of in-text verification. This indicated

that apart from in-text verification, we gained performance solely through OSS.

In our execution of OSS and in-text verification, we traverse the search trie in a depth first

manner, in index, till the number of occurrences for a sub-string in the search trie is small enough.

We then switch into text verification simply by comparing genome and the read for all candidate

locations corresponding to the sub-string. Moreover, in another strategy we perform the in-text

verification only at the last iteration of the search. Table 5.2 shows the running time of optimal

search schemes and in-text verification switching strategies whereby the criterion is set to having 25

and 50 occurrences of the sub-string as well as a switch criterion where the last block of each search

is verified in the text. Using two different data sets for human genome, we observed that switching

to in-text verification speeds up the mapping for all values of K = 1, 2, and 3. Although switching

at the last block speeds up the search for many full fledged aligners, when used along OSS, it is

inferior to the other two criteria. Table 5.2 shows that switching to in-text verification wherever

a node in the trie represents a sub-string with at most 25 or 50 occurrences, leads to a promising

bi-fold speed up for the search.

Although we have shown that combining OSS and in-text verification leads to a superior

performance in comparison to OSS alone, but we need to investigate whether the improvement

gained only from in-text verification casts a shadow on OSS. In other words, can in-text verification

alone compensate for the speed up gained through optimal search schemes? In order to answer

this question, we have combined backtracking with in-text verification and compared it against

61

OSS plus in-text verification. Table 5.2 shows that OSS, without in-text verification, is much

faster than backtracking plus in-text verification for both data sets and for all values of K = 1, 2,

and 3. This is a clear sign of the effectiveness of OSS for all sorts of aligner software packages.

Surprisingly, Table 5.2 shows that adding in text verification slows down the backtrack search. This

is due to the numerous candidate locations which need to be verified in text, therefore performing

the search in index is a better choice. On average, a read of size 20 and 30 occurs about 50, and

25 times in human genome, respectively. In such a depth of a backtracking search tree, there are

countless nodes which result in numerous candidate locations for in-text verification, making in-text

verification significantly expensive. As a result of these observations, we infer that combing OSS

and in-text verification is a viable proposition. Our observations in this section suggest that a

full-fledged aligner that employs an intelligent combination of search in bidirectional FM-index

using our optimal search schemes and in-text verification can outperform today’s best approximate

read mappers.

62

Table 5.2: Running time of optimal search schemes with P = K + 1 pieces for one mismatch and
P = K + 2 pieces for two and three mismatches with in-text verification.

K = 1 K = 2 K = 3

Strategy Time
Total in-text

Verifications
Time

Total in-text

Verifications
Time

Total in-text

Verifications

ERX1959065 (100K reads, 101 bps, hg38)

OSS 5.87s 0 15.7s 0 55.96s 0

OSS-ITVocc25 3.38s 0.3 ×106 7.74s 5.0 ×106 33.77s 24.8 ×106

OSS-ITVocc50 3.37s 0.4 ×106 7.58s 6.2 ×106 35.2s 34.5 ×106

OSS-ITVblock 4.62s 9.3 ×106 13s 9.7 ×106 50.67s 16.0 ×106

Backtrack 19.1s 0 226.83s 0 2032.14s 0

Backtrack-ITVocc25 18.64s 2.6 ×106 293.02s 125.4 ×106 3450.76s 2396.0 ×106

Backtrack-ITVocc50 20.36s 5.2 ×106 342.63s 244.8 ×106 4348.43s 4509.2 ×106

SRR5365378 (1M reads, 125 bps, hg38)

OSS 59.12s 0 126.82s 0 429.85s 0

OSS-ITVocc25 29.26s 2.4 ×106 54.47s 22.7 ×106 258.39s 127.8 ×106

OSS-ITVocc50 28.99s 2.9 ×106 53.34s 27.9 ×106 274.78s 181.2 ×106

OSS-ITVblock 33.38s 39.5 ×106 105.45s 39.5 ×106 382.89s 68.1 ×106

Backtrack 169.47s 0 2019.67s 0 19917.23s 0

Backtrack-ITVocc25 163.88s 25.7 ×106 2776.03s 1228.9 ×106 36889.54s 23827.3 ×106

Backtrack-ITVocc50 184.05s 52.2 ×106 3457.74s 2405.5 ×106 51580.86s 45040.1 ×106

5.3 OSS implemented in index vs full fledged aligners

Although we witnessed performance gain from combining OSS and in-text verification in

previous section, the combination was developed for Hamming distance. Therefore, to acquire a

sense of the effectiveness of optimal search schemes, we decided to even challenge our optimal

63

search schemes by using them in a pure index-based search and compare the results against the

full-fledged state-of-the-art aligners, that have the advantage of using a combination of in-index

search and in-text verification for edit distance. We executed two sets of comparisons, all and strata

mapping. We used 3 different data sets, two from human genome (100K reads of length 101 bps

from ERX1959065 and another 1M reads of length 125 bps from SRR5365378) plus a data set for

house mouse (500K reads of length 40 bps from SRR1270201).

For the first set of comparison, we compare OSS with BWA, Yara [45], as well as an available

implementation of the 01∗0-filter scheme combined with dynamic programming (named Bwolo)

[37] in all-mapping mode. We did these comparisons for edit distance only as all these tools work

for edit distance. BWA was run with options bwa aln -N -O <K> -l<R> -n <K> -i

0 (we did not use bwa mem because there is no way to impose maximum <K> edit distance error).

Yara was run with options -e <K> -s <K> -y full -t 1. We note that Bowtie2 [46] is

not designed with all-mapping in mind (for our data set, it did not terminate in 3 hours with default

configuration and -a option). Moreover, imposing an all-mapping with maximum K errors in

Bowtie2 in a way that its results are comparable to other tools is difficult. Bowtie2 settings used in

[37] do not enforce this, and nonetheless, led to a very long running time. Consequently, we did not

use Bowtie2 in this study.

For the first set of comparisons, we compared OSS with BWA, Yara, and Bwolo in all mapping

mode. For the two data sets from human genome andK = 1 and 2, OSS outperformed other aligners

with the exception of Bwolo for K = 2. This demonstrates that our optimal schemes are so effective

that although the search is performed completely in index, the running times are comparable to full-

fledged state-of-the-art aligners, which use a combination of in-index search and in-text verification.

For K = 3, the benefit of using in-text verification in full-fledged aligners catches up and thus

outperform OSS which carries out the search entirely in index. Specifically, Bwolo takes advantage

of DP in an efficient way. Its search tries produce long seeds with considerably low number of

leaves which reduces the number of DP performed. Furthermore, its search tries are basically 01 ∗ 0

seeds that can be searched in FM-index without suffering from function calls overheads caused via

64

a recursive implementation.

Bwolo search schemes are not optimal in terms of total number of edges but work better when

combined with in-text verification. This implies that, in order to design search schemes to be utilized

in conjunction with in-text verification, the objective function of an MIP should incorporate the

in-index and in-text computational expenses. Consequently, a new optimization problem needs to

be solved.

For the reads of length 40 from mouse genume and K = 1, BWA and Yara outperformed OSS

while for K = 2, only BWA outperformed OSS. According to Table 5.3, for K = 3 BWA and Yara

lost their edge over OSS and only Bwolo, benefiting from dynamic programming, outperformed

OSS by a factor of 2. Since mouse genome is smaller than human genome, for K = 1 and 2, there

are fewer candidate locations to be verified using dynamic programming saving considerable time

for BWA and Yara. This edge diminishes when K increases which in turn, increases the number of

verifications in the text. For K = 3, OSS is faster than other aligners and with incorporating text

verification it can outperforms Bwolo. For this data set and K = 3, Yara was not able to conduct

the task due to consuming more than 112 GB of memory.

We find these results for our optimal search schemes very impressive. To our knowledge, this

is the first time that, for K = 1 and K = 2, ASM of reads of these sizes performed completely in

index has been reported to compete in running time with the best full-fledged aligners, which use

combination of index search and in-text DP verification. This implies the power of our optimal

search schemes. We note that the results are even better for strata mode in Table 5.4. We performed

a second set of comparisons with BWA and Yara in strata mode. The 0-strata search means we first

search the reads with 0 errors, then search all the reads with no exact match, with 1 error, and so

on, until K is reached. This strategy can be generalized to s-strata, where s ≤ K. This means that,

for b = 0 to K − s, for all reads with a b-error best match, we compute all occurrences with up to

b + s errors. We ran Yara in 1-strata mode using -e <K> -s 1 -y full -t 1 and BWA

with bwa aln -O <K> -l<R> -n <K> -i 0 arguments and compared the running times

with OSS. BWA approximately mimics 1-strata mode because it disregards reads with too many

65

Table 5.3: Running time, all mapping.

D
is

t.

Search Tool
K = 1 K = 2 K = 3

Time Factor Time Factor Time Factor
ERX1959065 (100K reads, 101 bps, hg38)

E
di

t.
OSS 7.8s 1.00 90.09s 1.00 1064.42s 1.00
BWA 11.19s 1.43 225.71s 2.51 5101.78s 4.79
Yara 910.31s 116.71 1013.18s 11.25 1073.68s 1.01
Bwolo 14.79s 1.90 47.52s 0.53 153.71s 0.14

SRR5365378 (1M reads, 125 bps, hg38)
OSS 66.55s 1.00 693.59s 1.00 9467.15s 1.00
BWA 79.63s 1.20 1651.04s 2.38 43321.95s 4.58
Yara 848.74s 12.75 1294.09s 1.87 1538.84s 0.16
Bwolo 115.50s 1.74 300.21s 0.43 834.71s 0.09

SRR1270201 (500K reads, 40 bps, mm10)
OSS 153.81s 1.00 2706.32s 1.00 25898.90s 1.00
BWA 40.96s 0.27 1211.58s 0.45 36923.71s 1.43
Yara 47.07s 0.31 9268.10s 3.42 * *
Bwolo 690.55s 4.49 3023.83s 1.12 12498.60s 0.48

? represents an incomplete run due to memory overflow.

possible alignments on the genome which in return makes it faster. For both data sets from human

genome and for all values of K OSS outperformed Yara. In contrast, for the same data sets and

K = 1, 2, and 3 BWA , benefiting from disregarding repetitive reads, outperformed OSS.

Although Yara benefits from in-text verification, for 500K reads of size 40bps from mouse

genome, OSS was multiple times faster for K = 1, 2, and 3. For K = 1 and 2 BWA performs better

than OSS. This superior performance happens because of two reasons: 1) shorter reads align to

many places and BWA ignores reads mapping to numerous location on genome 2) the use of array

D (for a detailed discussion see section 5.1). For K = 3 the effectiveness of array D diminishes

and therefore OSS outperformed BWA by a factor of 1.85.

Of course, we did not expect to be able to outperform full-fledged aligners for larger values

of K, because for larger K and these read lengths, verification in index is too costly, especially

if the number of successful verifications is low. Although Vroland et al.[37] raised the option of

using a bidirectional index for verification, they only used in-text DP verification for the last pieces

as they had only a unidirectional index at hand. Nevertheless, for their data set (40bp, exactly 3

66

Table 5.4: Running time, strata mapping .

D
is

t.

Search Tool
K = 1 K = 2 K = 3

Time Factor Time Factor Time Factor
ERX1959065 (100K reads, 101 bps, hg38)

E
di

t.
OSS 7.97s 1.00 12.14s 1.00 26.57s 1.00
BWA 4.05s 0.51 9.90s 0.82 18.15s 0.68
Yara 706.44s 88.64 982.03s 80.89 1033.51s 38.90

SRR5365378 (1M reads, 125 bps, hg38)
OSS 65.73s 1.00 142.83s 1.00 569.99s 1.00
BWA 30.78s 0.47 74.95s 0.52 264.21s 0.46
Yara 817.53s 12.44 926.18s 6.48 1322.64s 2.32

SRR1270201 (500K reads, 40 bps, mm10)
OSS 149.95s 1.00 187.27s 1.00 414.82s 1.00
BWA 9.51s 0.06 62.72s 0.33 768.59s 1.85
Yara 843.50s 5.63 1765.60s 9.43 15500.00s 37.37

errors), pure index-based search using our optimal search schemes outperforms Bwolo by a factor

of almost 1.5 (data not shown), so the read length matters. Although the optimal scheme found

by our MIP is superior to the 01∗0 scheme in [37] for search in the index, for a larger K, one has

to take into account the number of remaining verifications versus the number of edges in the trie

for the remaining pieces. If that ratio is low, it does not pay off to verify in the index instead of

verification in the text as our comparisons showed.

67

6. CONCLUSION AND FUTURE RESEARCH

In this chapter, we highlight the main achievements of this research and suggest intresting

research topics for the future.

6.1 Conclusion

In this research, we contributed to the approximate string matching research as follows:

1. We proposed, for the first time, a method to solve the optimal search scheme problem for

ASM-B for Hamming distance (using a MIP formulation).

2. We demonstrated that our MIP approach can solve the optimum search scheme problem to

optimality in a reasonable amount of time for input parameters of considerable size, and

enjoys very quick convergence to optimal or near-optimal solutions for input parameters of

larger size.

3. We showed that approximate search in a bidirectional FM-index can be performed significantly

faster if the optimal schemes obtained from our MIP are used. This was demonstrated based

on number of edges in the search tries as well as actual running time of in-index search on

real Illumina reads (up to 35 times faster than standard backtracking for 3 errors). We also

showed that although our MIP solutions are for Hamming distance they perform equally well

for edit distance.

4. We showcased the power of our optimal search schemes by demonstrating that for K = 1

and 2 errors, approximate string matching of reads of size R = 101 performed completely

in index compete in running time with the best full-fledged aligners, which benefit from

combining search in index with in-text dynamic programming verification. This suggests

that a full-fledged aligner that intelligently combines search in bidirectional index using

our optimal search schemes with in-text verification using DP can outperform today’s best

approximate aligners.

68

6.2 Future Research

Moreover, our approach in this research has raised some interesting open problems:

1. Our computational experiments in Section 3.4 showed that our current MIP has two attractive

properties: the early solutions it finds are optimal or near-optimal, and its optimal search

scheme is insensitive to the value of R (we ask: “is this insensitivity to R a theoretically

provable fact?”). This makes our current MIP quite powerful in practice because, even if

all input parameters K, R, P , S are quite large, we can run the MIP for a short time with

a much smaller R to get a solution that is most probably optimal or near-optimal for the

original problem. Nevertheless, solving the MIP completely to ascertain optimality is of great

interest and currently consumes considerable computational resources for large instances,

especially when S > 5, K > 4, P > 6, R > 100. We ask “can the solution time be improved

by introducing other MIP formulations, or strengthening the current formulation using strong

cutting planes or further elimination of symmetric solutions?”

2. We demonstrated that the verification of few occurrences with high errors in the index is

worse than in-text DP verification. We ask “what is the best point to stop verification in the

index and start verifying in the text instead?.” This can be individually decided for each

pattern.

3. We have provided the MIP that solves OSS for Hamming distance. Those search schemes

might not be optimal when in-index search is combined with in-text verification. In order to

design search schemes to be utilized in conjunction with in-text verification, the objective

function of an MIP should incorporate the in-index and in-text computational expenses. We

ask “what is the MIP formulation that produces the optimal searches when in-index search is

combined with in-text verification?.”

69

REFERENCES

[1] https://www.news-medical.net/life-sciences/What-is-Transcription.aspx. (Accessed on Nov.

18, 2018).

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “The structure and

function of dna,” in Molecular Biology of the Cell. 4th edition, Garland Science, 2002.

[3] Y. Lu, Y. Shen, W. Warren, and R. Walter, “Next generation sequencing in aquatic models,”

Next Generation Sequencing-Advances, Applications and Challenges, pp. 61–79, 2016.

[4] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient

alignment of short dna sequences to the human genome,” Genome biology, vol. 10, no. 3,

p. R25, 2009.

[5] C. Pockrandt, M. Ehrhardt, and K. Reinert, “EPR-Dictionaries: A Practical and Fast Data

Structure for Constant Time Searches in Unidirectional and Bidirectional FM Indices,” in

RECOMB ’17, pp. 190–206, 2017.

[6] T. W. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S. M. Yiu, “High throughput short read

alignment via bi-directional bwt,” in IEEE BIBM ’09, pp. 31–36, 2009.

[7] G. Kucherov, K. Salikhov, and D. Tsur, “Approximate string matching using a bidirectional

index,” Theoretical Computer Science, vol. 638, pp. 145–158, 2016.

[8] K. A. Wetterstrand, “Dna sequencing costs: data from the nhgri genome sequencing program

(gsp),” 2013.

[9] S. Goodwin, J. D. McPherson, and W. R. McCombie, “Coming of age: ten years of next-

generation sequencing technologies,” Nature Reviews Genetics, vol. 17, no. 6, p. 333, 2016.

[10] E. R. Mardis, “Next-generation sequencing platforms,” Annual review of analytical chemistry,

vol. 6, pp. 287–303, 2013.

70

[11] H. Buermans and J. Den Dunnen, “Next generation sequencing technology: advances and

applications,” Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1842,

no. 10, pp. 1932–1941, 2014.

[12] M. L. Metzker, “Sequencing technologies—the next generation,” Nature reviews genetics,

vol. 11, no. 1, p. 31, 2010.

[13] K. Reinert, B. Langmead, D. Weese, and D. J. Evers, “Alignment of next-generation sequencing

reads,” Annual review of genomics and human genetics, vol. 16, pp. 133–151, 2015.

[14] R. Baeza-Yates and G. Navarro, “Fast approximate string matching in a dictionary,” in Pro-

ceedings. String Processing and Information Retrieval: A South American Symposium (Cat.

No. 98EX207), pp. 14–22, IEEE, 1998.

[15] U. Manber and G. Myers, “Suffix arrays: a new method for on-line string searches,” siam

Journal on Computing, vol. 22, no. 5, pp. 935–948, 1993.

[16] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees with enhanced suffix

arrays,” Journal of discrete algorithms, vol. 2, no. 1, pp. 53–86, 2004.

[17] P. Ferragina and G. Manzini, “Opportunistic data structures with applications,” in Proceedings

41st Annual Symposium on Foundations of Computer Science, pp. 390–398, IEEE, 2000.

[18] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization. New York: Wiley,

1988.

[19] L. A. Wolsey, Integer programming. New York: Wiley, 1998.

[20] K. Reinert, T. H. Dadi, M. Ehrhardt, H. Hauswedell, S. Mehringer, R. Rahn, J. Kim, C. Pock-

randt, J. Winkler, E. Siragusa, G. Urgese, and D. Weese, “The SeqAn C++ template library for

efficient sequence analysis: A resource for programmers,” Journal of Biotechnology, vol. 261,

pp. 157–168, 2017.

[21] H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows-Wheeler transform,”

Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

71

[22] https://www.acegamsat.com/gamsat-biology-the-cell. (Accessed on Nov. 18, 2018).

[23] L.-Y. Fu, G.-Z. Wang, B.-G. Ma, and H.-Y. Zhang, “Exploring the common molecular basis

for the universal dna mutation bias: Revival of löwdin mutation model,” Biochemical and

biophysical research communications, vol. 409, no. 3, pp. 367–371, 2011.

[24] https://www.genome.gov/27541954/dna-sequencing-costs-data/. (Accessed on Nov. 18, 2018).

[25] J. Zhang, R. Chiodini, A. Badr, and G. Zhang, “The impact of next-generation sequencing on

genomics,” Journal of genetics and genomics, vol. 38, no. 3, pp. 95–109, 2011.

[26] C. Meldrum, M. A. Doyle, and R. W. Tothill, “Next-generation sequencing for cancer di-

agnostics: a practical perspective,” The Clinical Biochemist Reviews, vol. 32, no. 4, p. 177,

2011.

[27] K. Frese, H. Katus, and B. Meder, “Next-generation sequencing: from understanding biology

to personalized medicine,” Biology, vol. 2, no. 1, pp. 378–398, 2013.

[28] https://www.illumina.com/documents/products/illumina_sequencing_introduction.pdf. (Ac-

cessed on Nov. 18, 2018).

[29] U. Manber and E. W. Myers, “Suffix arrays: a new method for on-line string searches,” in

SODA ’90, pp. 319–327, 1990.

[30] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees with enhanced suffix

arrays,” Journal of Discrete Algorithms, vol. 2, no. 1, pp. 53–86, 2004.

[31] M. G. Maaß, “Linear bidirectional on-line construction of affix trees,” Algorithmica, vol. 37,

no. 1, pp. 43–74, 2003.

[32] D. Strothmann, “The affix array data structure and its applications to rna secondary structure

analysis,” Theoretical Computer Science, vol. 389, no. 1-2, pp. 278–294, 2007.

[33] P. Ferragina and G. Manzini, “Opportunistic data structures with applications,” in FOCS ’00,

pp. 390–398, 2000.

72

[34] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,” Tech.

Rep. 124, Digital SRC Research Report, 1994.

[35] K. Reinert, B. Langmead, D. Weese, and D. J. Evers, “Alignment of Next-Generation Se-

quencing Reads.,” Annual review of genomics and human genetics, vol. 16, pp. 133–151,

2015.

[36] J. Karkkainen and J. C. Na, “Faster filters for approximate string matching,” in ALENEX ’07,

pp. 84–90, 2007.

[37] C. Vroland, M. Salson, S. Bini, and H. Touzet, “Approximate search of short patterns with

high error rates using the 01*0 lossless seeds,” Journal of Discrete Algorithms, pp. 3–16, 2016.

[38] https://www.cs.jhu.edu/ langmea/resources/lecture_notes/bwt_and_fm_index.pdf. (Accessed

on Nov. 18, 2018).

[39] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed text indexes,” in

Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 841–

850, Society for Industrial and Applied Mathematics, 2003.

[40] C. Pockrandt, M. Ehrhardt, and K. Reinert, “Epr-dictionaries: A practical and fast data structure

for constant time searches in unidirectional and bidirectional fm indices,” in International

Conference on Research in Computational Molecular Biology, pp. 190–206, Springer, 2017.

[41] T. Schnattinger, E. Ohlebusch, and S. Gog, “Bidirectional search in a string with wavelet trees,”

in Annual Symposium on Combinatorial Pattern Matching, pp. 40–50, Springer, 2010.

[42] D. Belazzougui, F. Cunial, J. Kärkkäinen, and V. Mäkinen, “Versatile succinct representations

of the bidirectional burrows-wheeler transform,” in European Symposium on Algorithms,

pp. 133–144, Springer, 2013.

[43] IBM-ILOG, “Cplex 12.7.1, https://www.ibm.com/support/knowledgecenter/en/sssa5p_12.7.1/

ilog.odms.studio.help/ optimization_studio/topics/cos_home.html.” (Accessed on Nov. 2,

2017).

73

[44] J. M. Mullaney, R. E. Mills, W. S. Pittard, and S. E. Devine, “Small insertions and deletions

(indels) in human genomes,” Human molecular genetics, vol. 19, no. R2, pp. R131–R136,

2010.

[45] E. Siragusa, Approximate string matching for high-throughput sequencing. PhD thesis, Freie

Universität Berlin, 2015.

[46] B. Langmead and S. Salzberg, “Fast gapped-read alignment with Bowtie 2,” Nature Methods,

vol. 9, no. 4, pp. 357–359, 2012.

74

APPENDIX A

FINDING OPTIMUM SEARCH SCHEMES FOR APPROXIMATE STRING MATCHING

USING MIXED INTEGER PROGRAMMING

This program/code finds the optimum search schemes for approximate string matching using

bidirectional FM-index using the approach described in the paper Kianfar, K., Pockrandt, C.,

Torkamandi, B., Luo, H., Reinert, K., Optimum Search Schemes for Approximate String Matching

Using Bidirectional FM-Index, 2018. Any commercial use is prohibited.

The MIP can have different solutions with the same objective values. It is also possible that

multiple runs of one problem, which do not reach optimality (i.e., run time equals run time limit),

result in slightly different solutions and objective values.

There are two options to run the program in Linux: run the executive file or build from

source code.

For both options first execute the following:

$ git clone https://github.com/kianfar77/OptimumSearchSchemes.git

$ cd OptimumSearchSchemes/MIPCode/ && ls

Run the executive file

• The executable has been generated using CPLEX 12.7.1.

• Before running the program, make sure there is a folder named "output" in application

directory.

• Do not delete or modify parameters.txt

• In application directory, type the following commands in terminal

$ chmod +x EqualFix

$./EqualFix -s <upperbound on number of searches> -p <number of

75

parts> -k <maximum error> -r <read length> [-t <time limit>]

[-lowerK= <minimum number of errors>][-lp][-verbose][-sigma]

[-h|-help]

Build from source code

• Make sure you have the following files in "libs" folder (you can acquire the latest version on

IBM download page for students/faculties, see the section "required libraries" below)

1. cplex.h

2. cpxconst.h

3. libcplex.a

4. libilocplex.a

5. libcplexdistmip.a

• Before running the program, make sure there is a folder named "output" in source directory.

• In source files’ directory, type the following commands in terminal

$ make

$./EqualFix -s <upperbound on number of searches> -p <number of

parts> -k <maximum error> -r <read length> [-t <time limit>]

[-lowerK= <minimum number of errors>][-lp][-verbose][-sigma]

[-h|-help]

Required libraries

• CPLEX 12.7.1 is used for the paper. If not available, the latest academic version, i.e., CPLEX

12.8, available at IBM download page for students/faculties, can be used with no significant

difference in run times.

76

• Install CPLEX under super user

$ chmod +x cplex_file_you_have_downloaded.bin

$./cplex_file_you_have_downloaded.bin

• After installations, say, in the path /opt/ibm/ILOG/CPLEX_Studio1271,

– cplex.h and cpxconst.h would be located at

/opt/ibm/ILOG/CPLEX_Studio1271/cplex/include/ilcplex

– libcplex.a, libilocplex.a, and libcplexdistmip.a would be located at

/opt/ibm/ILOG/CPLEX_Studio1271/cplex/lib/x86-64_linux/static_pic/

Arguments of the program

-s: Upperbound on the number of searches. [required]

-p: Number of parts (partitions). [required]

-k: Number of maximum errors. [required]

-r: Length of read. [required]

-t: Upperbound on run time. [optional, defualt= 3.0 hours]

–lowerK: Number of minimum errors. [optional, defualt= 0]

–lp: Prints out the MIP formulation. [optional]

–verbose:
Prints out the progress of objective value, rows starting with * correspond to

feasible solutions. [optional]

–sigma: Alphabet size. [optional, defualt= 4]

-h, –help: Displays help.

Usage

$./EqualFix -help

$./EqualFix -s 3 -p 3 -k 2 -r 12

$./EqualFix -s 3 -p 3 -k 2 -r 12 -t 0.5

77

$./EqualFix -s 3 -p 3 -k 2 -r 12 -t 0.5 -verbose -lowerK=1 -sigma=2

$./EqualFix -s 3 -p 3 -k 2 -r 12 -t 0.5 -verbose -lp > ./output/verbose.txt

Output

• The objective value and execution time (only for solver) will be printed on the screen.

• The program generates "output.txt" in "output" folder.

• "output.txt" contains sigma (alphabet size), S (upper bound on number of searches), P (number

of parts), lowerK (minimum number of errors), K (maximum number of errors), R (read

length), run time (sec), and Objective (number of edges in all tries). Also for each search,

there are U’s (upper bounds on errors in different parts), x’s (the order in which a search

processes the parts), and L’s (lower bounds on errors in different read’s parts). There would

be P elements in x’s , L’s and U’s. First element of x shows the partition (part) being searched

at iteration 1, second element of x shows the partition covered at iteration 2, and so forth.

Similarly for L and U, the ith elements represent the number of errors in the ith element of x,

the part of the read, processed at ith iteration. In other words, the ith elements of x, L, and U

are associated with iteration i.

• The program generates "LP.lp" in "output" folder if –lp is recieved. "LP.lp" contains the

mixed integer program.

• If detailed verbose is requested, The progress of feasible solutions toward the optimal solution

will be printed on the screen (results in a longer run time). In order to save detailed verbose

messages you may run the program by typing ./EqualFix -s -p -k -r > ./output/verbose.txt.

In detailed verbose setting, rows starting with "*" represent a feasible integer solution. By

looking at those rows one can observe how fast the program converges to the optimal solution

(see verboseExample.png).

78

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Cellular Processes
	DNA Sequencing
	Read Mapping
	Optimal Search Scheme Problem
	Contributions

	Necessary Background
	From DNA to Protein
	Next Generation Sequencing
	How Reads Are Aligned to a Genome
	FM Index
	Bidirectional FM Index

	Solving Optimal Search Scheme Problem using MIP
	Preliminaries
	MIP Formulation of Optimal Search Scheme Problem
	Solving MIP
	Sensitivity Analysis for Parameters of The MIP
	Search-in-Index Computational Gains Achieved by Optimum Schemes

	Relaxing Assumptions of Equal Size Partition MIP
	MIP Formulation for a Fixed General Partitioning
	Variable Partition
	Optimal search scheme for variable size partition

	Fixed General Edit Distance
	Tries
	Formulation
	Optimal Search Schemes

	Concluding Remarks

	Towards a full-fledged aligner
	Computational Performance of OSS vs Full-Fledged In-Index Aligners
	Promising Combination of OSS and In-Text Verification
	OSS implemented in index vs full fledged aligners

	Conclusion and Future Research
	Conclusion
	Future Research

	REFERENCES
	APPENDIX Finding optimum search schemes for approximate string matching using mixed integer programming

