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ABSTRACT

Collisions between Earth orbiting satellites and debris have been a topic of growing concern

among satellite operators and governments for many years. At the heart of preventing collisions,

which have been observed to have terrible consequences for the health of the space environment,

is the timely identification of potential collisions and the accurate quantification of the probabil-

ity of collision. This work will introduce novel methods for uncertainty propagation that take

into account the collision geometry and adaptively respond to nonlinearity measures taken along

the eigenvectors of the satellite state distributions in order to ensure proper conjunction algorithm

selection and enhance computational efficiency. Local linear probability density function approx-

imations are demonstrated to be appropriate for a wide class of collision scenarios and provide

immense computational advantages over traditional conjunction analysis.

Next, the effects of coordinate choice are explored. New formulations of the collision risk

measure in spherical coordinates and orbital elements are derived and shown to provide increased

accuracy over traditional conjunction analysis methods in Cartesian coordinates. These new for-

mulations are made possible through the novel use of relative orbital elements, which are also

instrumental in providing new insights into methods for identifying potential collisions and colli-

sion windows.

Finally, new avenues for collision probability are explored through investigation of the steady

state behavior of the collision risk measure. This analysis gives insight into the steady state dis-

tributions of orbiting objects and is used to develop upper bounds for the probability of collision

between two satellites. These developments are then brought together in a single software tool

called CRATER and compared against other contemporary approaches for conjunction analysis on

a number of test cases.
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1. INTRODUCTION AND LITERATURE REVIEW ∗

1.1 The Space Environment

The launch of the very first satellite Sputnik on October 4th 1957 marked the beginning of a

new era in world history, the space age. This great achievement of the Soviet Union sparked the

fears and imaginations of Americans everywhere. Soon the public mind was a buzz and consumed

in the great space race. While Sputnik reentered the Earth’s atmosphere after about three months,

it would soon be replaced by a myriad of other artificial satellites, payloads, rocket boosters, and

other mission related debris. Since the launch of Sputnik, the number of debris objects in orbit has

been greater than the number of operational satellites [1]. In these early days of both peaceful and

strategic space exploration it would have been hard to imagine the number of man made objects

that would be launched into orbit and how dependent the common person, and indeed, global

commerce would become on satellites and other space based capabilities.

The number of objects in orbit has been increasing steadily since 1957. These objects are

typically lumped into two categories. Identified objects are those which are of known origin and

purpose (usually), while unidentified objects cannot be traced back to their genesis. Identified

objects typically originate from either payloads or rockets. For identified objects the European

Space Agency (ESA) has created the following taxonomy [1].

• Payloads, space object designed to perform a specific function in space excluding launch

functionality. This includes operational satellites as well as calibration objects.

• Payload mission related objects, space objects released as space debris which served a pur-

pose for the functioning of a payload. Common examples include covers for optical instru-

ments or astronaut tools.

• Payload fragmentation debris, space objects fragmented or unintentionally released from a
∗Parts of this chapter are reprinted with permission from "ESA ’ s Annual Space Environment Report," Tech. Rep.

GEN-DB-LOG-00271-OPS-SD, European Space Operations Centre, Robert-Bosch-Strasse 5, D-64293 Darmstadt,
Germany, 2019. Revision 3.2, by ESA
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payload as space debris for which their genesis can be traced back to a unique event. This

class includes objects created when a payload explodes or when it collides with another

object.

• Payload debris, space objects fragmented or unintentionally released from a payload as space

debris for which the genesis is unclear but orbital or physical properties enable a correlation

with a source.

• Rocket body, space object designed to perform launch related functionality; this includes the

various orbital stages of launch vehicles, but not payloads which release smaller payloads

themselves.

• Rocket mission related objects, space objects intentionally released as space debris which

served a purpose for the function of a rocket body. Common examples include shrouds and

engines.

• Rocket fragmentation debris, space objects fragmented or unintentionally released from a

rocket body as space debris for which their genesis can be traced back to a unique event.

This class includes objects created when a launch vehicle explodes.

• Rocket debris, space objects fragmented or unintentionally released from a rocket body as

space debris for which the genesis is unclear but orbital or physical properties enable a

correlation with a source.

This list makes it obvious that there are intentional and unintentional means of generating

debris in space. The distribution of these objects in space is not uniform, but varies by region

and evolves over time. The space environment is typically broken into regions based on altitude,

inclination, and orbit eccentricity. There are many ways to subdivide space; The vast majority

of our space assets and debris reside in either Low Earth Orbits (LEO) or Geostationary Orbits

(GEO). LEO orbits are those with a maximum orbital altitude of less than 2000km, while GEO

orbits are those found between altitudes of 35, 586km and 35, 986km and inclinations of less than
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15◦. These regions of space are so important that they have been designated as protected under

international agreement [2] and are shown in Figure 1.1.

Figure 1.1: Inter-Agency Space Debris Coordination Committee Protected Orbital Regions.

The protection status of these regions is an agreement by space faring nations to respect the

unique nature and importance of these two regions when planning and conducting space operations,

to protect them from debris, and to ensure their safe and sustainable use in the future. The “safe and

sustainable use”, statement is a reference to the threat that debris poses to the health of the space

environment. The risks of operating in space are several fold, but one of the risk factors comes

from possible collisions with other objects. While these events are rare, the likelihood of a collision

increases with the number of resident space objects (RSO). The consequences of a collision event

far exceed the loss of one or two space assets. The collision itself generates a large amount of new

debris, which can increase the likelihood of subsequent collisions. This can be seen by looking at

the number of observable objects in Earth orbit over time shown in Figure 1.2 taken from ESA’s

2019 annual space environment report [1].

The growth in the number of objects is fairly linear (increasing by about 200 objects per year)

except for two notable jumps in the years 2007 and 2009. The first of these jumps is the result

of the intentional break up of the Fengyun 1c satellite which was destroyed in an anti-satellite
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Figure 1.2: Number of Observable Objects by Type in Earth Orbit Through Time. Reprinted with
permission from [1].

missile test. The sudden increase of debris from this event challenged existing methods for tasking

sensors and updating the space catalogue. The jump in 2009 was the result of an unintentional

collision between the Iridium 33 and Kosmos 2251 satellites. Both of these events occurred in the

LEO orbital region and had a large impact on the number of objects in this region as shown in

Figure 1.3 taken from ESA’s 2019 space environment report [1]. LEO is by far the most populated

orbital region around Earth and is particularly vulnerable to violent collisions because of the wide

variation in satellite inclinations and right ascensions used at LEO altitudes.

Collisions do not just increase the number of objects in orbit, but also their distribution. Due

to slight variations in orbital parameters between debris objects, each will have slightly different

orbital periods and precession rates. This causes the debris to spread out, primarily along the right

ascension of the ascending node and the orientation of the perigee vector, sweeping over a shell

of different orbits over time. This was seen in studies following both the Fengyun incident and

the Iridium Kosmos collision [3, 4]. This phenomenon, caused primarily by Earths non-spherical

gravity field, amplifies the impact of the collision upon the surrounding space environment making

future collisions in the shell swept out by the debris more likely. This effect was first studied by

Donald Kessler in 1978 [5]. He showed that under the right conditions, just like neutrons in a
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Figure 1.3: Number of Observable Objects by Orbital Regime Through Time. Reprinted with
permission from [1].

nuclear fission reaction, debris produced from a single collision event could cause a chain reaction

of additional collisions, conceivably rendering the space environment unusable for future missions.

The health of the space environment is largely a function of how responsible we are in its

use. This fact has been recognized by all major space faring nations and led to the formation of

the Inter-Agency Space Debris Coordination Committee in the early nineties and has also been a

regular topic for the United Nations’ Committee on the Peaceful Uses of Outer Space since 1994.

These international bodies have been key in the drafting and adoption agreements on liability due

to debris and debris mitigation standards [1].

Mitigation is one of the best courses of action for preventing future satellite collisions. How-

ever, despite all efforts to reduce irresponsible behavior, the space environment will likely continue

to become more crowded. In the absence of future large collisions of the 2007 and 2009 class, the

current orbit debris does not impose an immediate threat that inhibits most space operations. How-

ever, looking forward, with the evident long term secular growth of catalogued objects, the prob-

lem is and will become increasingly concerning. This dissertation is aimed at developing improved

tools to analyze this important class of problem. The current situation is evident when examining

the accelerated growth in the number of objects in orbit over the last five years in Figures 1.2 and
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1.3. During this time frame, the growth rate in number of objects is seen to accelerate steeply. This

trend is largely due to the advent of modern commercial utilization, constellations, and small satel-

lites. These revolutions in the industry have opened the doorway to cheaper space missions and

mega constellations [6, 7, 8]. As utilization increases it is anticipated that passive mitigation prac-

tices will not be enough to ensure the sustainable use of the space environment. This has led to a

large number of works studying active mitigation techniques such as debris removal [9, 10, 11, 12]

and collisions avoidance [13, 14].

It is clear that collisions have adverse and lasting effects on the space environment and that

these effects will only be exacerbated by increased utilization. Passive mitigation practices are

a necessary component of a healthy space environment, but are not sufficient on their own to

prevent future collisions. Collision avoidance, when necessary, is only effective if collisions can

be predicted ahead of time with some acceptable level of certainty and at least one of the space

craft is maneuverable. These constraints on predicting collisions are the driving forces behind

conjunction analysis, which will be discussed in greater detail in Section 1.5.

1.2 Space Situational Awareness

Since the beginning of the space age, there has been a need to update an maintain a catalogue

of Earth orbiting objects. This was done early on as a matter of practicality to keep track of space

assets as well as a matter of public safety, since, as seen by radar, a satellite reentering the atmo-

sphere can closely resemble a missile attack. Early efforts to maintain the space catalogue were

headed by the National Space Surveillance Control Center and have since been taken up by mul-

tiple national and international entities including NASA, NORAD, USSTRATCOM, USAFSPC,

NSC, ESA and other international partnering space agencies. A history detailing the evolution

from satellite tracking to SSA and the various agencies involved can be found in [15].

The space catalog today is the culmination of a massive international effort to identify, track

and update satellite orbits. These orbits and their uncertainty are updated using various models

until new observations are available [16, 17]. Even stillm, there is widespread concern about the

accuracy of orbit uncertainty in the catalogue. The effort to maintain a complete and accurate
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catalogue is further complicated by the presence of uncorrelated tracks, or observations that do not

correlate to a cataloged orbit [18]. As seen in the previous section, current technology has allowed

the catalog to grow to a size of over 20, 000 objects 10 cm in size or larger [1]. It is important

to remember that these only represent the observable and cataloged objects. It is estimated that

there are many more objects than are currently visible [19] and the number of cataloged objects

is expected to increase by nearly a factor of 10 within then next year as a result of new, higher

precision, radar observation sites being built as part of the United States space fence [20, 21]. This

increase in the number of cataloged objects is expected to strain current collision analysis efforts.

Processing this larger volume of tracking data will require additional investment in computing

resources or the development of more efficient conjunction algorithms.

Modern SSA goes beyond catalog maintenance. While the exact definition and scope of SSA

changes from country to country, at its heart it embodies the idea of knowing the time varying

population of objects in the space environment, the risks, and being able to dynamically respond.

Catalog maintenance is an important subcategory of this effort and is often associated with other

space surveillance and tracking efforts. Once satellites are cataloged, they can be checked against

other cataloged objects for possible conjunctions. The screening horizon is typically 7 days for

a LEO object and 10 days for GEO orbits. In the United states collision screening is typically

handled by the Combined Space Operations Center (CSpOC formerly JSpOC). Operators will

provide data to an intermediate agency such as NASA’s conjunction assessment and risk analysis

(CARA) group who will send the ephemeris to CSpOC to be screened against other objects for

close approaches in a higher accuracy catalog that is not available to the public. CARA will

then analyze possible close approaches to determine the probability of collision and then issue a

conjunction report to the operator [22]. This analysis can be done on a per maneuver basis for high

interest assets. Accurate quantification of the collision risk is an important part of this process, that

can be thwarted by untimely analysis, unknown maneuvers, or inaccurate results. This highlights

the importance of conjunction analysis as part of an overall SSA strategy.
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1.3 The Collision Problem

As discussed earlier, collision avoidance is an active measure taken to protect space assets, the

space environment, and is a realization of SSA by allowing satellites to actively respond to threats.

These discussions addressed the underlying motivation for considering the collision problem in the

first place. This problem was seen to have several constituent parts that begin with measurement

and orbit determination, then maintaining and updating the space catalogue, identifying potential

collision candidates from the catalogue, locating these collisions in time and space, and then fi-

nally, quantifying the risk of collision for these satellite pairs through accurate computation of the

probability of collision (Pc). The work of this dissertation will give focus to the last three parts of

this problem with heavy emphasis on computing Pc.

This decidedly probabilistic approach to satellite collision avoidance is contrasted by other

more deterministic approaches to collision avoidance employed in other applications such as ellip-

soidal threat volumes or keep out zones. This probabilistic strategy is used primarily in response

to the strong desire not to maneuver the satellites more than necessary for collision avoidance

purposes.

The satellite probability of collision problem, as it has been treated in the literature, is as

follows. Two satellites S1 and S2 are considered with known initial state uncertainty distributions.

At some future time, we consider the case that these satellites will experience a close approach

(see Figure 1.4). The question then is what is the Pc between S1 and S2 during this close approach.

To address this problem, we will break it down into two parts: The propagation stage will deal

with the problem of taking the initial probability density function and propagating it through the

nonlinear equations of motion so that it will be available for use when it comes time to compute

the Pc. The next part will be the actual computation of Pc during the collision event. To define the

collision event, we begin by defining a closed level set on the initial distribution, for each satellite,

such that only negligible probability mass exists outside of each of the level sets. For an initial

Gaussian distribution this level set might be the 6σ ellipsoid. The collision event begins when
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Figure 1.4: Computing the Probability of Collision.

these level sets first begin to intersect and ends when they have completely passed through each

other. Both parts of this problem have already received extensive attention. To better understand

the context and significance of the developments in later chapters, the next two sections will discuss

the bodies of literature that address uncertainty propagation in orbital mechanics and computation

of the probability of collision.

1.4 Uncertainty Propagation

The first part of the problem deals with uncertainty propagation in a nonlinear system. The un-

certainty in the collision problem is a direct result of our inability to perfectly observe the position

and velocity vectors of a given satellite or debris object. Some objects, such as low earth orbiting

(LEO) satellites equipped with global positioning systems (GPS), will have much smaller state

uncertainty compared to other objects such passive debris and especially objects with a high area

to mass ratio [23, 24, 25]. This initial uncertainty is usually reported in terms of its first two sta-

tistical moments (mean and covariance), leading to the widely used approximation that the initial

uncertainty in the satellites’ states will be distributed according to a Gaussian probability density

function (PDF).

In addition to initial state uncertainty, there is also likely uncertainty in the dynamics of the

system. This type of uncertainty is typically classified as either parametric or unstructured. In

a spring mass damper system, parametric uncertainty might manifest itself as uncertainty in the
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spring constant and damping constant of the system, while the unstructured uncertainty is typically

modelled as a random stochastic process that imparts random accelerations to the mass at any given

time. In the orbital mechanics, satellite drag parameters are the most significant source of model

uncertainty for LEO satellites, because of the large uncertainties in atmospheric density at these

orbital altitudes as well as attitude dependent drag parameters [26, 27, 28]. This uncertainty can be

modelled as either parametric or unstructured or as a combination of the two. The choice of how

to model uncertainty has a significant effect on the problem in that it determines the appropriate

governing equations.

The time evolution of the PDF of an object state in a system with both parametric and un-

structured uncertainty is governed by the Fokker-Planck equation also known as the Kolmogorov

forward equation [29, 30]. When propagating uncertainty using this governing equation, the state

and parametric uncertainty serve as an initial condition while unstructured uncertainty is a source

term driving a diffusion process. In many large physical systems, such as orbiting satellites, it is

often permissible to consider only structured model uncertainty for some applications. When only

structured uncertainty is considered, the generalized Fokker Planck Kolmogorov (FPK) equation

reduces to the Liouville equation [31] which then describes the time evolution of the PDF. The Li-

ouville equation is simply a statement on the conservation of mass, stating that probability mass is

constant along a given trajectory. This is an important principle since it allows states to be mapped

onto the PDF at t0 to evaluate their probability density.

Whether the FPK equation is used, or the Liouville equation depends on the presence of a

stochastic forcing term. In general either equation is difficult to solve exactly, particularly as the

dimension of the system under consideration increases. In the collision problem, the dimension

of the state space is at least 12 and can be higher when uncertain force model parameters are

appended to the state vector. In response to this so called curse of dimensionality, a number of

different techniques have been developed to find approximate solutions [32]. The accuracy of

some of these approximate solutions can be unacceptably low while others can approach the exact

solution to within an arbitrary degree.

10



One of the first and mostly widely used techniques is linear uncertainty propagation. This ap-

proximate technique is computationally attractive in that it only requires integration of the gradient

of the system dynamics along a nominal trajectory to obtain what is known as the state transition

matrix (STM) [33]. Implicitly this approach requires that the dynamics be differentiable, as is the

cases with the classical dynamical models for orbital mechanics. The computational efficiency was

an especially important factor in early spaceflight because computers were still in the early stages

of development. Perhaps the most important factor influencing the popularity of this technique

was the advent of the Kalman and Bucy linear filter [34, 35]. While these filters were derived

for linear systems, they were quickly extended to nonlinear systems through local linearization

of departure motion about the current best estimate of the trajectory, and adopted by the National

Aeronautics and Space Administration (NASA) to tackle spacecraft estimation problems [36, 37].

The practical consequences of these techniques proved to be revolutionary and played an important

role in the guidance, navigation, and control algorithms for the Apollo missions [38, 39]. Linear

covariance techniques are still widely used today [40, 41] and are considered the industry standard

for on-board uncertainty propagation and estimation.

Despite its overwhelming popularity, linear uncertainty propagation does have one major fail-

ing. The resulting approximation errors are unsuitable for long propagation arcs in nonlinear sys-

tems. For linear dynamical systems the STM is a globally valid model for state dispersion and

can be used to obtain an analytical solution to the corresponding Liouville equation. In nonlinear

systems however, the STM is only locally valid. The domain of validity is tied strongly to the

nonlinearity of the mapping, which has led researchers to quantify nonlinear and non Gaussian

developments in the state mappings and PDF respectively for nonlinear systems [42, 43]. One im-

portant insight gained from investigating the linearity of mappings was to discover the importance

of coordinate choice when propagating uncertainty.

For a given nonlinear dynamical system, an infinity of coordinate choices are possible. The

nonlinearty of the differential equations are highly dependent on the coordinates chosen. Some co-

ordinate systems produce highly nonlinear mappings such that the equations of motion, as derived
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in that system have high variability both temporally and spatially, while other coordinate choices

can exhibit large domains of quasi linear behavior. Thoughtful choice of coordinates can dramati-

cally enlarge the domain over which the departure dynamics are approximately linear as shown in

[44, 45, 46, 47].

This idea of local linearity is an important concept when using linear uncertainty propagation in

nonlinear systems. If one knows the location of the posterior mean one can use local linearization

to improve the accuracy of linear covariance mappings as will be demonstrated in Chapter 3. Even

when the best linearization point is not known, it can be estimated iteratively until it converges as

is done in the iterated Kalman Filter [48].

There are many instances however, when linear uncertainty propagation will simply be inade-

quate to describe a propagated PDF, regardless of coordinate choice or reference trajectory. If the

dynamics are differentiable, this challenge can sometimes be remedied by the use of higher order

state transition tensors (STT). The STM represents a first order Taylor series approximation of a

dynamic system. Obviously for a linear system this is sufficient, but in nonlinear systems one can

consider the higher order terms of the series to capture the nonlinear behavior of the system. This

approach can be used to obtain a better approximation of the solution of the Liouville equation as

demonstrated in [49, 50] and has been used to improve accuracy in the related estimation prob-

lem [51]. The STT approach is more computationally expensive than the STM approach but, can

used to obtain high fidelity solutions to many uncertainty propagation problems. One drawback

is its reliance on higher order analytical derivatives, which in many cases are tedious and time

consuming to derive, program, and compute. Similar results can be obtained with out needing to

compute the analytical derivatives by using differential algebra techniques[52]. The differential

algebra techniques automate the derivation and coding of the higher order derivatives and, while

computationally expensive, it greatly reduces the derivation and programming effort. This provides

a numerical implementation of the STT and has been used in both orbital mechanics uncertainty

propagation [53] and for analyzing close approaches [54].

In problems where one does not wish to compute the analytical derivatives associated with
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STT’s, or in cases where the dynamics are not differentiable, uncertainty can still be propagated

using moment matching techniques. These approaches minimize the number of sample trajec-

tories that must be propagated from the initial PDF and require a much less extensive analytical

and programming effort. They have been popularized into the mainstream of orbital mechanics

research through the development of the the unscented Kalman Filter (UKF) and related devel-

opments [55, 56, 57]. The central idea behind this technique is to map the moments of the PDF

using a discreet set of points chosen from the state space (called sigma point) such that they satisfy

expectation integrals with respect to the PDF up to some order. For the unscented transform, these

satisfy expectation integrals up to third order, and have been recently extended to satisfy up to

eighth order constraints [58]. Unscented transforms provide an excellent way to map the mean and

covariance of a PDF in nonlinear systems and has even been used, to limited extent, to improve Pc

estimates in the collision probability problem [59].

The final set of relevant uncertainty propagation techniques that will be discussed here involve

projecting uncertainty onto a set of either orthogonal functions or radial basis functions. Here, the

propagated PDF is projected onto the basis functions such that the weighted sum of the functions

satisfies the governing stochastic partial differential equation. In terms of orthogonal basis func-

tions, the concept was introduced by Norbert Wiener [60] who used Hermite polynomials which

are orthogonal with respect to the normal distribution. Wiener or Polynomial chaos expansions are

used for uncertainty propagation in many fields [61, 62] and have been applied recently to orbit

uncertainty propagation with some limited applications to the collision problem [63, 64]. Polyno-

mial expansions can be carried out, in principle, to any order to satisfy the governing stochastic

differential equations, but become computationally expensive in higher dimensions. Projection

onto radial basis functions is usually done using a Gaussian mixture model (GMM). The GMM

represents a given PDF as a weighted sum of Gaussian PDFs and has long been popular in the

machine learning and pattern recognition communities [65, 66].

Radial basis functions using local Gaussians is widely used in input/ output approximation and

has been given various names such as support vector machines [67, 68, 69]. This approach has been
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demonstrated to be particularly important for uncertainty propagation in orbital mechanics [70],

since it allows one to exploit all of the properties of local Gaussian distributions while being able

to model non-Gaussian PDFs to high fidelity. Its use is straight-forward, if not too computationally

expensive for the particular application.

Uncertainty propagation using GMMs begins by resolving the initial Gaussian distribution into

mixture components with a unique mean, covariance and importance weighting. Each of these

components are then in turn propagated, using any appropriate technique from above, to obtain

the propagated means and covariances of the mixture components. These are then used to form

weighted normal distributions whose sum gives a high fidelity approximation of the PDF. One

problem is in knowing how many mixture components will be necessary to model the PDF. This

has been solved by developing entropy-based splitting techniques to adaptively resolve mixture

components into sub-components [71]. This technique has been used to great success in a number

of Pc algorithms [72, 73, 74].

For a more comprehensive discussion of these techniques and their application to the broader

range of topics within orbital mechanics please see [75]. One noticeable omission from this dis-

cussion of uncertainty propagation techniques is the Monte Carlo (MC). This frequently applied

technique is covered in Chapter 2.

One important concept concerning uncertainty propagation is that it is not independent of the

end use of the PDF. In other words, it is important to remember that the uncertainty, in the prob-

lem under consideration, is being propagated so that it may be used to compute the Pc at some

future time. In general the computation of Pc requires numerical integration over 12+ dimensions.

Numerical integration can be reduced down to just 2 dimensions if certain approximation assump-

tions hold and the right uncertainty propagation techniques are used. In particular, due to the many

desirable analytical properties of normal distributions, propagation techniques that make use of

Gaussians or sums of Gaussians can lead to a significant reduction in the complexity of the Pc

integral. That is why they are at the base of the foremost Pc algorithms in use today.

One concept that has been overlooked in uncertainty propagation for collision analysis is the
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importance of local PDF approximations. Collisions are an inherently local event and under the

right conditions are amenable to local linear approximations. The importance of considering the

collision geometry and its coupling with coordinate choice and local approximation techniques

will be demonstrated in the coming chapters along with the significant effect this can have on

algorithm performance.

1.5 Probability of Collision Computation

This section presents the current literature on computing probability of collision (Pc) in a top-

ical format. For a more chronological discussion please see the introduction section in Chapter

3. As with the discussion on uncertainty propagation, Pc computations involving Monte Carlo

techniques will be reserved for Chapter 2. This section considers mainly semi-analytical methods

for computing Pc. Within this subset of methods are two predominant paradigms underlying the

computation of Pc. These are the short encounter paradigm and the long encounter paradigm.

The short encounter family of Pc solutions began in 1992 with the work of James Foster [76].

Remember from our previous discussion that this was around the time that space debris was begin-

ning to receive serious attention from members of the international space community. In any case,

this family of solutions is characterized by its emphasis on making approximations centered on

the time of closest approach (TCA). The time of close approach was an important concept in early

conjunction analysis and was used to determine close approach miss distances [77]. The time of

close approach and the associated miss distance continue to be important quantities today and are

often used for collision prefiltering [78, 79, 80, 81, 82, 63, 54, 83]. The time of closest approach

for a distribution, however, is not deterministic, so short encounter methods compute this quantity

for the means of the two satellite distributions under consideration. At TCA a plane is defined

whose normal (n) is the relative velocity vector between the two mean or nominal trajectories

such that n = (v̄1 − v̄2). Short encounter methods make the assumption that the duration of this

close approach is so short that rectilinear relative motion along n can be assumed. In other words,

the direction of n remains constant for times near TCA. This means that the distributions approach

each other along the constant relative velocity vector and can therefore be projected onto the plane
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with normal n. This process is visualized in Figure 1.5.

Figure 1.5: Short Encounter Projection onto the Collision Plane.

To facilitate computation, the PDFs that are projected onto the collision plane are often assumed

to be Gaussian in Cartesian space. Furthermore, the colliding satellites are usually assumed to be

spheres, such that if they come within a certain distance of each other, called the radius of collisions

(Rc), the satellites are said to be colliding. Under these assumptions, the Pc integral reduces to a

two dimensional integral over the PDF of the relative distance projected onto the plane of collision.

Slight variations in the approach and effort to establish the best method for computing this integral

on the plane of collision have led to numerous works which make up the short encounter subset of

the probability of collision literature [76, 84, 85, 86, 87, 88, 89, 90].

In order to amend some of the errors introduced into the Pc computations by these meth-

ods, several researchers have looked into ways to account for nonlinear motion [91, 92, 89], non-

spherical space craft [93, 94], and non-Gaussian distributions [95]. These additions help extend
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short term collision analysis to a wider array of collision scenarios.

The next subset of literature for computing Pc follows the long term encounter paradigm and

are all derivatives or extensions of [96]. Following this much more general viewpoint, the evolution

of the PDF during the collision event is significant and must be accounted for. The effects of the

true nonlinear motion of the system also become significant on these time scales and are included

in the formulation. Formulating the Pc integral in this fashion addresses many of the difficulties

and approximation errors created by the rectilinear motion assumptions used in the derivation of

the short encounter formulation. The long encounter method for computing Pc is derived by con-

sidering the probability mass flux into the sphere defined by Rc. Thus, unlike the short encounter

method, no planar projection takes place, so one must evaluate the Pc integral over a sphere. This

results in a more complex formulation of the Pc integral that is not as readily computed as the short

encounter formulations.

In general, the Pc integral in this technique would require numerical integration over all 12 di-

mensions of the joint PDF. This was addressed in the original derivation by making the assumption

that again the PDFs in Cartesian space are Gaussian. Under this assumption the Pc integral reduces

to 4 dimensions, an analytical integral over relative velocities entering the sphere of collision, inte-

grating these densities over the surface of the sphere and then integrating over all times for which

a collision may occur. Inherent in this formulation is the assumption that probability mass only

enters the sphere once, which may be problematic if the satellites undergo oscillatory motion with

respect to one another or have multiple close approaches in the same window of analysis. To ex-

tend the method to allow for non-Gaussian behavior the basic formulation has been cast in terms

of Gaussian mixture models, which have been used to great success to achieve both accurate and

computationally attractive results [72, 74, 97, 73, 98].

1.6 Scope and Contributions

The scope of the present work is to build upon and contribute to the existing 28+ years of

literature on conjunction analysis in novel and meaningful ways. This requires developing new

algorithms that go beyond the current state of the art, as well as making new theoretical contri-
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butions that expand our understanding of collisions in space. I propose to achieve this goal by

accomplishing the following major tasks.

1. Identify and exploit quasi linear sub-spaces in algebraic and differential equation mappings

of the probability density function associated with the orbital state uncertainty to improve

algorithm performance

2. Take into account collision geometry and demonstrate its importance

3. Use the eigenvectors of the distribution in orbital element space to build efficient PDF ap-

proximations in Cartesian space

4. Allow for parametric model uncertainty

5. Use the Liouville equation to quantify the error in approximations

6. Combine these techniques and insights into single software tool

7. Explore the consequences of coordinate choice

8. Explore collisions in the orbital element space

9. Develop new formulations for computing the probability of collision that can be evaluated

in orbital element space

10. Explore the validity, accuracy, and computational merit of the algorithms and compare to the

best available pre-existing approaches

In the course of pursuing these first ten goals certain pleasant surprises and new insights of

broader significance resulted, these will be discussed broadly and in the context of the above ten

tasks.
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2. VALIDATION

2.1 Introduction

Accurately and efficiently quantifying the probability of collision Pc between orbiting objects is

a problem of fundamental and great practical interest to the space situational awareness community.

Methods for addressing this problem fall primarily into two categories: Monte Carlo (MC) methods

[99, 100, 101, 102], and semi-analytical methods [76, 88, 87, 84, 85, 96]. In general semi-analytical

techniques are orders of magnitude faster than a Monte Carlo analysis when computing the Pc

on a given problem. However, these semi-analytical methods often rely heavily on linearizing

assumptions and local Gaussian distributions. Several newer approaches and algorithms have used

adaptive algorithm selection and tuning of Gaussian mixture methods to minimize dependence on

these assumptions, but still often require Gaussian initial conditions or that the propagated PDF be

Gaussian in orbital element space [72, 74, 98, 103]. For many collision scenarios these assumptions

are justified, but it can be hard to quantify the error induced by these assumptions in the Pc estimate

without additional MC analysis.

While Monte Carlo is often vilified for its slow convergence, its ease of implementation, phys-

ical model independence, and lack of assumptions cannot be denied as important and distinguish-

ing strengths. As such, nearly every study ever conducted on the probability of collision between

satellites, the current work included, uses Monte Carlo simulations to validate or check solutions

computed by more efficient semi analytical methods. This allows researchers to compare their

methods against a pseudo model which is mathematically guaranteed to approach the truth as the

number of Monte Carlo samples becomes sufficiently large. What qualifies as sufficiently large is

dependent on the probability of the event being analyzed and the desired confidence in the com-

puted solution. As such, one never computes an exact solution using a Monte Carlo method, but

one that is within ±ε, (ε > 0) of the reported value with a confidence of (1 − α), α ∈ [0, 1].

However, the number of samples needed to achieve a given ε, α is an area still being researched
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and has led to the development of several methods for bounding the number of samples required

[104, 105, 106]. The uncertainty in the computed MC result can make it extremely difficult to

validate semi-analytical results beyond one or possibly two significant figures using Monte Carlo

techniques. However, this may be instructive too in that the pursuit of more accuracy than this is

often of little pragmatic value, since engineers and algorithms usually only need the exponent and

the first one or two digits of a probability to make an informed decision. Additionally, since the

Monte Carlo is a discrete method, it can sometimes prove difficult to use exactly the same defini-

tion of a collision event as the semi analytical method does. This issue can be significant when one

wants to isolate errors due to assumptions made in defining the collision event from other errors

such as local Gaussian assumptions.

Monte Carlo analysis is easily performed using parallel computation and can benefit from mod-

ern CPU and GPU architectures. There are numerous studies quantifying this benefit [107, 108,

100]. In the satellite Pc problem, there is another benefit that can be achieved using the modified

Chebyshev Picard iteration orbit propagation (MCPI) technique [109, 110, 111, 112, 113, 114].

MCPI works by projecting an initial estimate of the trajectory onto a set of orthogonal Chebyshev

polynomials [115, 116] and then iteratively integrating and updating this trajectory through Picard

fixed point iteration [117]. The Picard iteration technique allows all local force model evalua-

tions to be done simultaneously on each iteration, allowing for highly efficient implementation in

parallel algorithms (this is part of an ongoing study being conducted by Ahmed Ismail and John

Junkins). The MCPI method has been shown to offer tremendous computational advantages (over

one order of magnitude) when propagating a single trajectory [118]. This speed advantage is am-

plified in the Monte Carlo setting where neighboring sample trajectories will be able to benefit

from a hot start of the Picard iterations.

A hot start is where the solution path of one trajectory is used as the initial estimate for a

neighboring trajectory. Since sample trajectories of the Monte Carlo are all sampled from the

same initial distribution, they tend to form a bundle of separate yet similar trajectories. Hence, the

orthogonal polynomial fit of the mean trajectory typically provide a good initial guess for other

20



sample trajectories in the distribution. This speeds up the overall Monte Carlo since a good initial

guess when using MCPI decreases the number of Picard iterations until the solution converges.

Another benefit of the MCPI solution for the satellite collision problem is in locating the point

of closest approach. Typically for Monte Carlo methods, trajectories from both initial distributions

are propagated and then compared to find which trajectory pairs result in a collision. The collision

event being defined for satellites coming within a certain distance of each other, usually called the

radius of collision Rc. Typical numerical integrators return discrete states along the trajectory at

either uniform or non uniform time intervals. If the time interval between states returned from

the integrator is long, then it is likely that a close approach between two trajectories happened

sometime between reported states and times. This results in an interpolation problem to find if

there was a time when two trajectories were within Rc of each other since often Rc << 1km.

To get around this difficulty many researchers and practitioners fit a cubic or quartic polynomial

to the two trajectories in the window of the collision event and then use a root finding method to

locate the time of closest approach. This is simplified when using the MCPI integrator since what

is returned from the integrator is not just the states at discrete times, but the coefficients of the

continuous orthogonal polynomial fit of the state space trajectories, so a highly precise trajectory

interpolation is built into the MCPI solution. This permits rapid, machine precision root solving

for TCA.

Theoretically, the exact solution to the Pc problem can be obtained if the probability density

function (PDF), from which the Pc is computed, satisfies the governing Fokker Planck equation.

For the work at hand, we consider a system that is not acted upon by a random forcing function.

In the absence of such a noise term, the Fokker Planck equation reduces to the Liouville equation;

which governs the evolution of the PDF in time. While an exact solution to the Liouville equation

is readily obtainable in terms of the initial distribution, it is often desirable to have an expres-

sion that does not require back propagating states through the dynamical differential equations or

computation of high order state transition tensors. This is done by projecting the logarithm of the

solution to the Liouville equation onto a set of orthogonal polynomials. This rigorous approxima-

21



tion of the PDF is then used to compute Pc. Computing the Pc in this manner carries with it the

computational burden of needing to perform numerical integration in a high number of dimensions

and will likely take as long or longer than the Monte Carlo. However, computing a nearly exact

Pc, for the given assumptions, allows for different advantages compared to the Monte Carlo. It

will be easier, for instance to use the same definition of the collision event as other semi analytical

techniques, therefore we will be able to separate error due to the collision definition from errors

due to Gaussian assumptions.

2.2 Methods

2.2.1 Monte Carlo using MCPI

Let us consider satellites S1, S2 with initial distributionsN1(q̄1, Q1) andN2(q̄2, Q2) whereN is

the normal distribution. Suppose that m samples are drawn from each distribution. To perform our

Monte Carlo analysis we will propagate these 2m samples forward in time and then determine the

number of pairs n that result in a collision. Note that from 2m samples we are able to generate m2

pairs. It is important to note thatm2−m of these pairs are not strictly independent. However, given

the efficiency of generating trajectory pairs this way many authors use this all on all pairing for their

conjunction Monte Carlo analysis. Once the n colliding pairs have been identified the probability

of collision is simply Pc = n
m2 . The major computational considerations for this problem are

propagating the 2m trajectories and finding the subset of n trajectory pairs that result in a collision

fromm2 candidates. Let us now consider how MCPI can enhance the efficiency of these two steps.

To see why MCPI is particularly well suited to Monte Carlo analysis it is helpful to recall

how the method works. The following discussion will briefly discuss the derivation of MCPI on

a first order system and assumes the reader is familiar with the Chebyshev polynomials. Relevant

properties of the Chebyshev polynomials can be found in Appendix A. A more in depth discussion

of the derivation and current enhancements of the MCPI method can be found in [113, 118]
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2.2.2 MCPI Polynomial Fitting

Consider the first order differential equation Ẋ = f(t,X(t)), X(t0) = x0. In general a < t ≤ b

is not the interval [−1, 1]. This is taken care of by the following change of variables. t = w1 +w2τ

where w1 = (b+ a)/2, w2 = (b− a)/2 and −1 < τ ≤ 1.

Now

dx

dt
=
dx

dτ

dτ

dt
=⇒ dx

dτ
=
dx

dt

dt

dτ
(2.1)

hence

Ẋ = w2f
(
t(τ), X(t(τ))

)
, X(t(−1)) = x0 (2.2)

or

Ẋ = g
(
τ,X(τ)

)
, X(−1) = x0 (2.3)

Now in terms of Chebyshev polynomials

g(τ,X(τ)) =
N−1∑
k=0

αkTk(τ) (2.4)

If τ is taken at the Chebyshev nodes τk = cos (kπ
M

), k = 0, 1, . . . ,M , we can later exploit the

discrete orthogonality property

g(τk, X(τk)) =
N−1∑
i=0

αiTi(τk), τ ∈ RM+1 (2.5)

Or more conveniently in vector matrix notation

g = Φα (2.6)
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where the vectors g, α, and matrix [Φ] have the following form.



g0

g1

g2

...

gM


=



T0(τ0) T1(τ0) T2(τ0) . . . TN−1(τ0)

T0(τ1) T1(τ1) T2(τ1) . . . TN−1(τ1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T0(τM) T1(τM) T2(τM) . . . TN−1(τM)





α0

α1

α2

...

αN−1


(2.7)

Using a least squares curve-fitting mentality, it behooves us at this time to find the coefficients

α such that we obtain a least squares fit. If the residuals of the fit are given by r = g − Φα, then

the α that minimizes ‖r‖2 is given by:

min
∀α∈<

J =
1

2
rT r (2.8a)

0 =
d

dα

[
1

2
(g − Φα)T (g − Φα)

]
(2.8b)

0 =
d

dα

(
1

2
gTg − gTΦα +

1

2
αTΦTΦα

)
(2.8c)

0 = 0− ΦTg + ΦTΦα (2.8d)

α = (ΦTΦ)−1ΦTg (2.8e)

For non-orthogonal basis functions, the matrix ΦTΦ quickly becomes ill-conditioned as the

order of Tn increases, making the matrix difficult to invert. If τ is taken at the Chebyshev nodes

however, and a weighting matrix W is introduced such that ΦTWΦ is a diagonal matrix due to

discrete orthogonality, then the inverse is simply the inverse of the diagonal elements. For τk =

cos(πk
M

), k = 0, 1, . . . ,M W is simply diag([1
2
, 1, 1, . . . , 1, 1, 1

2
]). See [109] for more detail. With

W the least squares fit is now given by the following.

J =
1

2
(g − Φα)TW (g − Φα) (2.9)
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where

α = (ΦTWΦ)−1ΦTWg (2.10)

Since (ΦTWΦ) is diagonal with the diagonal elements

(ΦTWΦ)ii = mii =
M∑
j=0

WjjT
2
i (τj) (2.11)

, the coefficients are computed independently from the inner products.

αi =
1

mii

M∑
j=0

WjjTi(τj)gj (2.12)

2.2.3 MCPI Integration Via Picard Iteration

Now that we have obtained a least squares approximation of g
(
τ,X(τ)

)
in terms of the Cheby-

shev polynomials for the case that M = N − 1. Hence, Ẋ = g(τ,X(τ)) =
∑N−1

k=0 αkTk(τ) =

αTT (τ), X(−1) = x0 Where α was found in the previous section. We will now integrate this

expression to obtain the solution to the differential equation Ẋ = g(τ,X(τ)).

X(τ)−X(−1) =

∫ τ

−1

g(s,X(s))ds

=⇒ X(τ) = x0 +

∫ τ

−1

g(s,X(s))ds

(2.13)

Since we are solving for X , the expression on the right cannot be evaluated analytically. Given

an initial guess for X(τ) the solution can be found via Picard Iteration (2.14).

X i(τ) = x0 +

∫ τ

−1

g(s,X i−1(s))ds (2.14)
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Plugging in our approximation for g(τ,X(τ))

X(τ) = x0 +

∫ τ

−1

αTT (s)dsX(τ) = x0 + αT
∫ τ

−1

T (s)ds (2.15)

Recall the recursive integration relationship
∫
Tn dx = 1

2

(
Tn+1

n+1
− Tn−1

n−1

)
plugging this in to the

expression above we obtain

X(τ) = x0 +
αT

2



2T1(τ)

T2(τ)+T0(τ)
2

T3(τ)
3
− T1(τ)

1

T4(τ)
4
− T2(τ)

2

...

TN (τ)
N
− TN−2(τ)

N−2


− αT

2



2T1(−1)

T2(−1)+T0(−1)
2

T3(−1)
3
− T1(−1)

1

T4(−1)
4
− T2(−1)

2

...

TN (−1)
N
− TN−2(−1)

N−2


(2.16)

Now suppose that X(τ) is also approximated using a Chebyshev series and note that the 3rd term

on the right is just a column of constants.

X(τ) = βt



T0(τ)

T1(τ)

T2(τ)

...

TN(τ)


= x0 +

αT

2



2T1(τ))

T2(τ)+T0(τ)
2

T3(τ)
3
− T1(τ)

1

T4(τ)
4
− T2(τ)

2

...

TN (τ)
N
− TN−2(τ)

N−2


− αT

2



C0

C1

C2

C3

...

CN−1


(2.17)

By equating like orders of Tn we find the equations for the coefficients β in terms of α

β0 = x0 +
α1

4
− αT

2
C (2.18a)

β1 =
2α0

2
− α2

2
(2.18b)
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βn =
αn−1

2(n− 1)
− αn+1

2(n+ 1)
(2.18c)

βN−1 =
αN−2

2(N − 2)
(2.18d)

βN =
αN−1

2(N − 1)
(2.18e)

Note that α appears linearly in the equations for β, thus β is conveniently written in matrix

form β = x0 + [S]α. [S] is given in [118], but can be easily derived and is presented in Appendix

A. Expanding the expression for α we see...

β =



x0

01

...

0N


+ [S](ΦTWΦ)−1ΦTWg (2.19)

Recall that X(τ) = βTT (τ). If we discretize the domain τ = τk, k = 0, 1, 2, 3, . . . ,M , the

expression becomes X(τk) = βTT (τk), or in vector matrix notation.



X(τ0)

X(τ1)

X(τ2)

...

X(τN)


=



T0(τ0) T1(τ0) T2(τ0) . . . TN(τ0)

T0(τ1) T1(τ1) T2(τ1) . . . TN(τ1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T0(τM) T1(τM) T2(τM) . . . TN(τM)





β0

β1

β2

...

βN


(2.20)

Note that the matrix of Chebyshev polynomials used here is not the same dimensions as Φ. The

difference will be noted by calling this matrix Ψ. By expanding the expression the final form of

the MCPI integrator is obtained for the case where M > N .
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X i = [Ψ]



x0

01

...

0N


+ [Ψ][S][(ΦTWΦ)−1ΦTW ]g(τ ,X i−1) (2.21)

For convenience we rewrite the expression as

X i = [Ψ][Θx0 ] + [Ψ][Cα]g(τ ,X i−1) (2.22)

Where all bracketed terms are constant and can be pre-computed beforehand. This expression

is iterated until a desired tolerance is reached. If a hot start is employed the number of iterations

untill convergence is reduced.

2.2.4 MCPI and Monte Carlo for Conjunction Analysis

Suppose now that we have used the MCPI method propagate the mean of the initial distribution

for S1 to get q̄1(τk). It is now desired to propagate a sample trajectory from the distribution of S1

with initial conditions qj(0). To get an initial guess for qj(τk) it is written in terms of the mean

trajectory as.

qj(τk) = q̄1(τk) + ∆qj(τk), k = 0, 1, 2, . . . ,M (2.23)

If q is in orbital elements then

∆qj(τk) ≈ ∆qj(τ0) (2.24)

will provide a good estimate of the trajectory to use in equation (2.22) for all but the time varying

anomaly variable. For the last element we look at the partial of the true anomaly with respect to

the initial semi-major axis.

∂f

∂a0

=
∂f

∂E

∂E

∂Me

∂Me

∂a0

=
−3
√

µ
a5

∆tk

4
(
λ2 sin2 (E

2
) + cos2 (E

2
)
)
(1− e cosE)

(2.25)
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Where E is the eccentric anomaly, Me is the mean anomaly, and λ is
√

1+e
1−e . If the dynamics are

instead expressed in terms of modified equinoctial elements, then we note that ∂L
∂a0
≈ ∂f

∂a0
since

L = f + ω + Ω. This partial derivative need only be evaluated once for each τk and can then be

used to update our initial estimate of the true anomaly for any sample trajectory qj(τk). Now that

an initial estimate of the sample trajectory has been made it is iterated upon in equation (2.22) until

it has converged.

MCPI is unique in this aspect. The solution of one trajectory can be used to as a hot start for a

neighboring trajectory to speed up convergence. The effects of this hot start will be quantified on

some sample Monte Carlos in the results section of this chapter. It is also important to note that

these results extend to the case where the dynamics are being evaluated in Cartesian coordinates

since the mean trajectory and initial condition of the sample trajectory can be mapped to the orbital

elements space, where an estimate for the sample trajectory is made. The estimate for the sample

trajectory can then be mapped back into Cartesian coordinates, if needed.

2.2.5 Monte Carlo Convergence

It is important whenever performing Monte Carlo analysis to ensure that the Monte Carlo has

converged. The number of samples needed to achieve satisfactory convergence is a function of

the probability Pe of the event, the confidence level α, and the confidence interval ε, and most

importantly, the level of independence between subsequent samples.

There are many different ways to predict if a Monte Carlo has converged. Most commonly

these are the Chebyshev inequality, the Chernoff-Hoeffding bound [104, 105], and more recently

the Dagum bound [106]). Let us examine these bounds and see when they apply to our proposed

Monte Carlo.

An experiment is designed in which a trajectory pair pi = (q1i(t), q2i(t)) is independently

sampled from the joint probability density function fp(p(t0)). We then consider the sum of random

variable Z, which equals one when the selected trajectory pair results in a collision, and zero

otherwise. Since we do not expect an equal number of zeros and ones we define the mean and
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variance of Z as

µ = E[Z] =
1

n

n∑
i=1

Zi (2.26)

σ2 = E[(Z − E[Z])2) =
1

n− 1

n∑
i=1

(Zi − µ)2 (2.27)

The Chebyshev inequality applied to the sum of Z gives.

P
(∣∣∣∣ n∑

i=1

Zi −
n∑
i=1

µi

∣∣∣∣ ≥ nε

)
≤
V ar

(∑n
i=1 Zi

)
n2ε2

(2.28)

When designing our experiment, it was stated that qi were independently sampled. In practice,

qi are usually only pairwise independent as a result of the all on all pairing scheme discussed

earlier. Even in the case of pairwise independence, the variance operator can be taken inside the

summation and since all Zi are identically distributed (i.e have the same mean and variance) the

following is obtained.

P
(∣∣∣∣∑n

i=1 Zi
n

− µ
∣∣∣∣ ≥ ε

)
≤ σ2

nε2
(2.29)

Let the probability that our estimate of the mean is within ±ε of the actual mean be called α.

Then, the number of monte carlo samples needed then to ensure convergence within ±ε of the true

value with a confidence of 1− α is

n ≤ σ2

αε2
(2.30)

While known to be conservative, the classical Chebyshev bound is very fundamental and does

not assume any prior knowledge of the distribution of the random variable. Since Zi can only take

values zero and one we can compute the variance of Z in terms of its mean using equation (2.27).

This is useful since there is often an a priori estimate of the mean µ̃ that we are trying to verify

with the Monte Carlo.

σ2 = µ(1− µ) (2.31)

Improvement over the Chebyhev bound can be achieved if Zi are independent. For the sum-

mation of independent identically distributed (iid) random variables Chernoff used the Hoeffding
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inequality to achieve the following.

P
(∣∣∣∣∑n

i=1 Zi
n

− µ
∣∣∣∣ ≥ ε

)
≤ e−nD(µ+ε||µ) (2.32)

Where D(x||y) = x ln x
y
− (1− x) ln 1−x

1−y . Even though it results in a looser bound, this result is

often simplified by recognizing

D(µ+ ε||µ) ≥ 2ε2 (2.33)

This results in the familiar expression.

n ≤ 1

2ε2
ln

(
2

α

)
(2.34)

The Chernoff - Hoeffding bound represents a significant improvement over the Chebyshev

bound for the case of independent Zi. In a generalization of the zero-one estimator theorem

[119, 120, 121], Dagum developed sophisticated sequential Monte Carlo algorithms designed

to converge using a near minimum number of samples. These algorithms are based on a sim-

ple stopping rule, which has come to be called the Dagum bound in several papers [74, 89]. If

εµ ≤ µ(1− µ) the bound is written as

n ≤ 4(e− 2)(1− µ)

µε2
ln

(
2

α

)
(2.35)

This gives a near minimum number of samples needed to achieve a certain (ε, α) for our case

where Zi is limited to values of zero and one, but can overestimate the number of samples needed

by a factor of 1/ε in cases where σ2 << µ.

2.2.6 Exact Solutions

Another method for validating Pc results is to numerically compute the exact Pc using the PDF

that satisfies the governing Fokker Planck Equation. Consider a general dynamical system with no
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process noise:

ẋt = f(xt) (2.36)

When the initial condition x0 are uncertain, modeled by the distribution x0 ∼ p(x0), the state xt

over time becomes uncertain. As a result, it is then required to compute the the evolution of the

state probability density function (pdf) p(xt). The exact solution to the evolution of the state pdf

is governed by the Fokker Planck Kolmogorov equation (FPKE) or here just Liouville equation

when there is no process noise:

∂p(x, t)

∂t
= −

n∑
i=1

∂ [fi(x)p(x, t)]

∂xi
(2.37)

Upon inspection the Liouville equation is simply a statement the conservation of probability

mass along trajectories. Since this is the case, one can obtain a pointwise solution to the Liouville

equation by mapping a state at some time t back onto the initial distribution as t0. If the mapping

of states forward in time is written as

x(t) = g(x(t0); t, t0) (2.38)

then the probability density function at time t which satisfies the Lioville equation, can be written

as

p(x, t) = p
(
g−1(x(t); t0, t), t0

)∣∣∣∂g−1(x(t); t0, t)

∂x(t)

∣∣∣ (2.39)

As has been done before, the mapping g(x(t0); t, t0) will be expanded in terms of state tran-

sistion tensors (STT) [49, 51]. If the initial distribution was Gaussian this will naturally lead to a

PDF of the form.

p(x, t) ≈ e(cTφ(x)) (2.40)

where c is a vector of coefficients and φ(x) is a vector of polynomials. The number of polynomials
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is adjusted so that the approximation in equation (2.40) is sufficiently accurate over the domain of

interest.

If we then consider the joint PDF of two objects, whose motion is independent of each other,

and with distributions satisfying the Liouville equation at time t ∈ [t0, tf ], we obtain

p
(
xa, xb

)
= e

(
cTφ(xa)+cTφ(xb)

)
(2.41)

Given this distribution in xa and xb we should like to know the distribution of the random vector

xr = xb−xa. This is immediately obtainable by noting that xb = xr +xa and substituting into the

previous expression.

p
(
xa, xr

)
= e

(
cTφ(xa)+dTφ(xa+xr)

)
(2.42)

At this point we would like to define a collision in terms of xr . The two objects shall be said

to be colliding if the relative distance between them r(t) ≤ Rc . In general, Rc is a function of

the attitude of the two spacecraft. For the current discussion let us assume Rc = constant. From a

probability standpoint there are some difficulties with our definition of a collision. Since the time

of collision is not deterministic, the condition r(t) ≤ Rc will generally be satisfied for a finite

amount of time or even multiple times by the same two trajectories during the analysis window. To

avoid this, we must either (1) define the collision in such a way such that we can assume that the

collision criteria will only be satisfied at a unique time by each trajectory, or (2) we must account

for the correlation in probability of collision along trajectories in time. Approach 1 is by far the

predominant method for addressing this problem and has been implemented in either a 2D or 3D

approach.

2D methods project the joint PDF onto a plane at a deterministic time of closest approach

[76, 122, 87, 88, 85]. Recent 2D methods [103] evaluate the planar Pc as each cross section of the

PDF passes through a plane of collision and then integrates over time.
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The 3D method is accredited to Coppola [96]. He defines a set

Λτ = {(xa, xb) ∈ X(t)|r(t) = Rc and (v · r̂) ≤ 0} (2.43)

and then assumes that trajectory pairs only belong to the set for a unique t = τ ∈ (t0, tf ]. Ob-

viously both the 2D and the 3D methods make assumptions that will not be justifiable over all

collision scenarios. Despite their limitations however they are applicable to the majority of col-

lisions that come under analysis. Approach 2 has not yet been implemented in a semi analytical

technique, but is easily carried out using Monte Carlo techniques.

Whether approach 1 or 2 is taken, let Λr be the set of conditions on xr that define a collision It

is then clear that

Pc =

∫
xa

∫
Λr

p(xa, xr)dΛrdxa (2.44)

If no further assumptions are made the integral in equation (2.44) must be numerically evalu-

ated over all twelve dimensions. This is done by taking quadrature points from the distribution of

xa and evaluating the inner integral in equation (2.44) at each quadrature point and then numeri-

cally evaluating the outer integral. Fortunately, these computations may be carried out in parallel.

The locations of these quadrature points will be determined by the quadrature rule used as well

as techniques developed in Chapters 3 and 4 for identifying the region of interest. Computing Pc

in this fashion is believed to be more computationally burdensome than solving the problem via

Monte Carlo, but gives an exact solution for Pc with respect to our definition of a collision.

2.3 Results

The first set of results is the comparison of the different Monte Carlo bounds. In Figures 2.1

and 2.2, the number of Monte Carlo runs needed to verify a given Pc within 5% with either a 99%

or 95% confidence respectively are plotted using the Chebyshev bound, the Chernoff-Hoeffding

bound using equation (2.32), the Dagum bound, and the relaxed Chernoff-Hoeffding bound from

equation (2.34).

There is a common misconception in the conjunction analysis community that the Dagum

34



Figure 2.1: Comparison of Monte Carlo Bounds
to Achieve a 5% Error with 99% Confidence.

Figure 2.2: Comparison of Monte Carlo Bounds
to Achieve a 5% Error with 95% Confidence.

bound is far superior to the Chernoff Hoeffding bound [74, 89]. This is an unfair comparison

however since the Dagum bound is allowed to make use of a predicted mean and is often compared

against the familiar relaxed version of the Chernoff Hoeffding bound. When information about the

mean is provided to both the Chebyshev and Chernoff Hoeffding bounds, their performance is

essentially the same as the Dagum bound to within a constant. Indeed, of the methods compared,

it is clearly seen that the Chernoff Hoeffding bound provides the tightest estimate on the number

of Monte Carlo runs needed. Apparently, while Chernoff and Hoeffding would not be surprised,

this observation corrects a common miss-conception in the literature [74, 89].

The results in Table 2.1 show the benefits of using MCPI for the Monte Carlo. It is important to

note that the version of MCPI used here is just the most basic version, without any enhancements

and without taking advantage of parallel computing [113, 118]. Each ode solver in the table was

used to propagate N trajectories using a J2 gravity model. From the table it is seen that MCPI

results in about an order of magnitude speed up over ODE45 while an additional 20% time savings

can be achieved in Monte Carlo settings through the use of a hot start. Another order of magnitude

enhancement to the performance can be achieved using parallel architecture, since MCPI is inher-

ently parallelizable, whereas traditional ode solvers such as ODE45 are not parallelizable along

individual trajectories.
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Table 2.1: Monte Carlo Propagation Times.

N ODE45 MCPI MCPI+HS
1000 41.5 s 4.7 s 3.9 s
5000 207.7 s 23.7 s 19.6 s

25000 1035.9 s 118.1 s 98.0 s

In Monte Carlo conjunction analysis it is also common to fit a low order polynomial to the time

history of the miss distance between two trajectories. Cubic or quartic polynomials are usually used

for this purpose, since the minimum miss distance can be found analytically. This approach can

work but is prone to error. Since Rc is often on the order of 10 - 50 meters, errors in approximating

the trajectory as a polynomial need to be much smaller than this. As the length of the encounter

increases the order of the polynomial fit needs to increase as well. This type of error manifested

itself when bench-marking the LG method from CRATER on the test cases from [89] and were

discovered when the LG method appeared to be not even as good as the Foster method on these

fairly linear test cases, a separate Monte Carlo was run to verify the results. Instead of using a

cubic polynomial to detect collisions, the trajectory was propagated with a small enough time step

such that the maximum relative velocity during the collision event multiplied into the the time step

would produce a distance that was less than a radius of collision. The discrete set of points along

each trajectory were then compared to see if the two closest points were within Rc of each other.

Performing the Monte Carlo in this fashion agreed much better with the LG results as seen in Table

2.2. This approximation error introduced by the local cubic interpolation is not well understood

or quantified in the current Pc literature, and hopefully this discussion will resolve the issue. The

poorer performance of the LG method for cases 9 and 10 is indicative of the occasional difficulty

experienced in accurately applying the LG approximation to near co-planar collisions.

When mapping the PDF forward in time or between coordinate systems it is important to

recognize that nonlinearity is not homogeneous across all dimensions. This insight led to the

important use of local Gaussians (LG) in Chapter 3. Figures 2.3 and 2.4 show 2D cross sections

of the propagated PDF in orbital element space and corresponds to the PDF from CRATER test
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Table 2.2: Discrete Monte Carlo Verification of Cubic Spline Method.

Test Case Cubic MC Pc Discrete MC Pc LG Pc Cubic Mc % Error LG % Error
1 2.17E-01 2.58E-01 2.56E-01 15.85 % 0.98 %
2 1.57E-02 s 1.04E-02 1.14E-02 -51.41% -9.78%
3 1.01E-01 1.33E-01 1.40E-01 24.01% -5.80%
4 7.31E-02 3.23E-02 3.42E-02 -126.57% -6.14%
5 4.45E-02 4.72E-02 4.65E-02 5.69% 1.45%
6 4.30E-03 4.57E-03 4.54E-03 5.87% 0.61%
7 1.61E-04 1.66E-04 1.64E-04 2.48% 0.88%
8 3.53E-02 4.76E-02 4.87E-02 25.91% -2.32%
9 3.65E-01 3.70E-01 3.13E-01 1.19% 15.27%
10 3.63E-01 3.63E-01 3.13E-01 0.12% 13.84%
11 3.33E-03 4.31E-03 4.35E-03 22.85% -0.90%
12 2.56E-03 3.76E-03 3.76E-03 32.03% -0.04%

case 1. The cross sections are taken along the eigenvectors of the second moment of the PDF. The

true PDF has been propagated via Monte Carlo, while the red concentric ellipses are the linear

estimate of the PDF. The "eigenfiber", coined by Junkins in [98] has also been plotted in green and

shows where local Gaussians (LG) would be placed to approximate this PDF. The error in the LG

approximation is also shown as a heatmap.

Figure 2.3: A 2D Subspace of the Propagated
PDF with a Gaussian Cross Section.

Figure 2.4: A 2D Subspace of the Propagated
PDF with Significant Non-Gaussian Behavior
Beyond 1σ.
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The majority of 2D cross sections for the PDF resemble Figure 2.3 with only a few cross

sections exhibiting non Gaussian behavior. This served as the motivation in CRATER to use GMM

splitting only along the eigenfiber of the PDF as the other subspaces were still predominantly

Gaussian. Even with a large Gaussian subspace there may be considerable error in the Local

Gaussian approximation of the PDF. This level of error is acceptable for computing quanitities of

interest where only the first one to two digits are required. This error however is not acceptable

if we desire a much more accurate solution for diagnostic purposes. This error is driven down by

including higher order terms from the approximation of the mapping as discussed in Section 2.2.6.

The improvement in the PDF approximation is quantified in Figures 2.5 - 2.8. In these figures,

the error in the PDF approximation is computed at 1000 discrete points, sampled from the initial

Gaussian PDF. The exact solution to the Liouville equation was computed at each of the points

giving an exact point-wise solution.

Figure 2.5: Histogram of LG PDF Ap-
proximation Error with Respect to Liou-
ville Solution.

Figure 2.6: Histogram of 1st Order PDF
Approximation Error with Respect to Li-
ouville Solution.

For this case, the LG approximation is seen to be about 2 order of magnitude better than a

linear approximation. More accurate approximations are obtained by using the 2nd and 3rd order

STT. The third order STM (for this scenario) will be accurate enough to compute a nearly exact Pc.

The exact Pc method for validating less accurate methods is demonstrated on CRATER test case
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Figure 2.7: Histogram of 2nd Order PDF
Approximation Error with Respect to Li-
ouville Solution.

Figure 2.8: Histogram of 3rd Order PDF
Approximation Error with Respect to Li-
ouville Solution.

1. To reduce the dimensionality of the problem uncertainty was limited to the velocity space and

the time of collision was fixed at the time of closest approach. Results are shown for six variants

of this test case in Table 2.3 [123]. The error in the Monte Carlo is within the bound ε predicted by

the Chernoff-Hoeffding bound for all cases.

Table 2.3: Liouville Pc vs Monte Carlo.

σ2
v rc km TCA PCL PCMC % Error MC Size (Millions)

1E-7 0.1 0.25 5.85e-6 5.2e-6 6.4% 100
1E-7 0.1 0.75 2.34e-5 2.12e-5 6.3% 100
1E-7 0.1 1.25 9.36e-5 8.2e-5 4.5% 100
1E-4 10 0.25 5.85e-4 5.36e-4 3.9% 100
1E-4 10 0.75 9.36e-5 8.2e-5 1.0% 100
1E-4 10 1.25 5.85e-4 5.36e-4 8.6% 100

2.4 Conclusions

While Monte Carlo is an extremely important part of conjunction analysis, there is a significant

variability in the level of understanding of the assumptions that go into producing the bounds

within the Pc community. Some sub-spaces of the recent literature represent branches that are
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not fully connected to the older developments. As a consequence we find that the Dagum bound,

which promises near optimal performance, has gained in popularity despite offering no advantage

over more established methods when a level playing field is used to test performance. Also of

significance for all-on-all pairing, the Chebyshev bound is a more appropriate bound since it only

requires pairwise independence.

The propagation portion of Monte Carlo conjunction analysis can consume a significant frac-

tion of the overall computation time. The propagation can be significantly expedited by use of the

recent enhancements to the MCPI ode solver. This method was shown to offer about an order of

magnitude speed up over traditional integrators and an additional twenty percent speed up in Monte

Carlo scenarios where use of the hot start is available and with even further speedup possible if

massively parallel computation is used.

Linear and locally linear approximations of the PDF in orbital element space, while often

accurate enough to compute Pc to one to two digits of accuracy, were shown not accurate enough

to approach an exact solution. In this scenario Liouville methods are preferred to get the Pc.

However, these methods come with the added computational expense of integration over all 12

dimensions of the joint PDF, which limit their practical usefulness outside the scope of validation

studies for competing algorithms.
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3. THE CRATER ALGORITHM ∗

3.1 Introduction

This chapter details the development of a new collision risk assessment tool called CRATER.

The CRATER algorithm was developed by the author and is a novel approach for conjunction

assessment that makes use of new insights from collision geometry and from quantifying non-

linearity in mappings to drive adaptive algorithm selection. New techniques, developed herein,

for approximating probability density functions greatly enhance CRATER’s computational per-

formance over other contemporary approaches, while the exact Liouville solution is employed to

quantify error in any approximations made during the uncertainty propagation phase. These fea-

tures help to set CRATER apart from other approaches and build upon the current state of the art

in conjunctions analysis.

There are many contributors to the current state of the art for calculating the probability of

collision between satellites. One of the earliest treatments of the subject was by Foster [76] in

1992. This work was published around the time that space debris emerged as a major concern;

with many countries and space agencies agreeing to a voluntary adoption of operational procedures

to reduce the amount of debris their missions would produce. Foster’s method assumed that the

initial PDFs were Gaussian in Cartesian space and remained Gaussian for the remainder of the

analysis window. Then, by assuming constant relative velocity and rectilinear motion during the

collision event, the Pc integral was reduced to an analytical expression in two variables, valid

for short term encounters. His work would influence later researchers such as Akella, Patera,

Alfano, and Chan [84, 85, 87, 88, 89]. These early efforts were still heavily focused on short term

encounters and many did not take into account full state uncertainty. Coppola, in his derivation

of the Pc integral [96] arrived at an expression that allowed for velocity uncertainty and long term

encounters. However, to reach his final result Coppola still assumed that the PDFs were Gaussian,

∗Parts of this chapter are reprinted with permission from "Probability of collision between space objects including
model uncertainty", by C. T. Shelton and J. L. Junkins, Acta Astronautica, vol. 155, pp. 462-471, 2019 by Elsevier
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but noted that his methods could be extended via the Gaussian Mixture Model (GMM) to cases

where the PDF was not Gaussian. This extension using a GMM was spelled out in an engineering

note by DeMars K. et al. [72]. The works of Coppola and DeMars were added to recently by

Joshua Horwood et al. [74] who advocated the use of orbital elements for the propagation phase

and brought some additional insights into the construction of the GMM.

The CRATER Algorithm owes much to its predecessors, especially [96, 72, 74]. In order to

be a general collision risk assessment tool, CRATER opted for an adaptive strategy, balancing

fidelity and performance over an array of collision types. In collisions where nonlinear effects on

the initial PDF (due to propagation) are negligible CRATER evaluates the Pc integral according to

[96]. In cases of moderate non Gaussian behavior, where the relative inclination of the orbits is

high, local Gaussians (defined later) are generated along the eigenfiber and the two nearest local

Gaussians from each distribution at each time step are used to compute the Pc using Coppola’s

integral. In the context of this paper, eigenfiber will refer to the path generated in Cartesian space

by displacements along the eigenvector of the covariance matrix in orbital element space with

the largest eigenvalue. In the orbit problem, this invariably becomes the eigenvector that points

predominantly along the direction of the time varying anomaly variable. This vector in orbital

element space and its eigenvalue will serve as the basis for the approximation techniques presented

later. Finally, if the distributions in Cartesian space are highly non Gaussian or the region of overlap

of the two distributions is primarily in the direction of the eigenfiber, a GMM approximation of

the PDF is formed in a manner similar to the one in [74] with the Pc evaluated according to [72],

excluding mixture components that are further than 6σ from each other.

Another class of collisions are those with considerable model uncertainty. As of today, few

studies have been done to consider the effects of model uncertainty on the probability of colli-

sion [124]. For LEO satellites, particularly debris objects with high surface area to mass ratios,

significant model uncertainty may exist. Ignoring model uncertainty in these cases and using deter-

ministic dynamics could result in erroneous and either overly optimistic Pc estimates or pessimistic

estimates leading to excessive false alarms. CRATER focuses on an important subset of model un-
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certainty in which the model uncertainty is strictly parametric. That is, only the parameters of the

force model (with a known probability distribution function) are considered uncertain and capture

all model error. This point of view can, for example, capture a "cannonball" drag model with an

uncertain ballistic coefficient.

One of the primary problems facing all numerical simulations is knowing how well the com-

puted result reflects reality. A necessary condition for a physically accurate solution is that the

numerical simulation has computational fidelity with respect to the governing physics. CRATER

seeks to address this problem by incorporating the Fokker Planck equation and using it as a truth

model to measure the error caused by assumptions in the algorithm as well as to ensure that ap-

proximations of the PDF satisfy the Fokker Planck equation.

In the conjunction analysis and probability of collision problems, one is interested in identify-

ing potential collisions and the probability of those collisions within some window of analysis (7

days in our case). The efforts detailed here focus on the second half of the problem. That is, deter-

mining the probability of collision for a given satellite pair (S1,S2). To determine the probability

of collision, one must first know the nominal states for S1 and S2 at the initial time T0 as well as

the probability density function (PDF) for S1 and S2 at T0. These inputs are the same as those

required by other methods from the previously mentioned authors. The CRATER algorithm makes

the assumption that the initial PDF is Gaussian in orbital element space [125]. In reality the initial

PDF is likely not rigorously Gaussian in any coordinate frame (except, in some cases, the mea-

surement frame); nevertheless, this assumption is made again here, as it has been in the previously

cited works, to ensure the tractability of the required computations. While the theory remains the

same for any set of non-singular element sets, the current version of CRATER is designed to work

with the modified equinoctial orbital elements [126, 127]. Thus, the input mean and covariance

are assumed to be in terms of normalized modified equinoctial orbital elements (MEEs).

Given the initial conditions, the algorithm propagates the mean and covariance of S1 and S2

using Linear Element Error Propagation (LEEP). This involves mapping the initial mean and co-

variance into a suitable set of non-singular orbital elements. The CRATER algorithm assumes that
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this mapping has already occurred. The mean and covariance are then propagated using Gauss’s

variational form of the variation of parameters equations, formulated in modified equinoctial or-

bital elements, and the state transition matrix (STM). The STM can of course be augmented to

account for parametric model uncertainty. Orbital elements are used to propagate the PDF, since a

Gaussian distribution in orbital element space is able to capture, to a high degree of accuracy, the

non-Gaussian behavior often observed in Cartesian space [128, 129].

Even in orbital element space, the Gaussian assumption will eventually break down. CRATER

assumes that the PDF is adequately modeled by a single Gaussian in orbital element space, but

computes and reports the error in this assumption relative to the solution of the Fokker Planck

equation at discrete points, chosen along the eigenvectors of the distribution.

Since the probability of a collision is most easily measured in Cartesian space, it is required to

map the propagated PDF from element space into Cartesian coordinates. This can result in a loss

of covariance realism as described by Aristoff [130]. To maintain realism and aid computational

efficiency, it is necessary to evaluate how non-Gaussian the PDF will be once mapped into Carte-

sian Coordinates. This is done by evaluating a non-linearity index, which evaluates how nonlinear

the mapping is [42] at discrete points along the eigenfiber of the orbital element covariance ellipse

that have been mapped into Cartesian space. If MEE are used for the uncertainty propagation in

time, the primary source of non-linearity is typically the algebraic coordinate transformation of

the propagated PDF back to Cartesian coordinates. If the non-linearity index is below a tolerance,

the PDF is considered to be fully Gaussian in Cartesian coordinates over the region in which the

tolerance is satisfied. If the non-linearity index is low, 20% -50% over ±3σ then the PDF may be

adequately approximated by a number of local Gaussians. Typically less than 100 local lineariza-

tion points along the eignfiber, mapped into Cartesian coordinates, are sufficient to define a highly

truncated but accurate PDF approximation over the collision region. However, for highly non-

Gaussian PDFs, it may be preferable to use a Gaussian mixture when evaluating the probability of

Collision (Pc) integral.

The Pc is then determined using Coppola’s formulation of the integral [96], whose performance
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has been verified by Hejduk [97] as well as by the previously cited studies [72, 74]. When re-

deriving the Pc integral to account for parametric model uncertainty it was found that the addition

of parametric model uncertainty did not affect the final formulation of the integral, but only enters

in during the propagation of the covariance. This is a very attractive feature of incorporating the

model uncertainty in this fashion. For a complete list of assumption please see Appendix D.

3.2 Methods

3.2.1 Uncertainty Propagation

From probability theory, we know that a function g : X → Y of a random variable x ∈ X , is

also a random variable. The probability distribution fy(y) of a continuous, one-to-on map for the

transformation y = g(x) (often called a derived distribution) is commonly obtained by differenti-

ating the cumulative distribution function FY (y) with respect to y. This process is demonstrated in

several texts including [131]. The distribution of y = g(x) is then given by:

fy(y) = fx
(
g−1(y)

)
|J−1| (3.1)

So long as g is one to one and invertible, where J−1 = dg−1(y)
dy

is the Jacobian of the function

g−1 evaluated at y. This relationship holds whether X and Y are scalars or vectors. In our case

X is usually the state of the satellite at the initial time and Y is the state of the satellite at the

final time. If X initially has a Gaussian distribution with mean µ and covariance matrix Σ then the

distribution of X is given by

fx(X) =
1√

(2π)n|Σ|
exp {−0.5(X − µ)TΣ−1(X − µ)} (3.2)

We now wish to know the distribution of Y = g(X). For the current discussion take g to be

the nonlinear map of the state vector from the initial time t0 to a given time t, Y to be the state at

time t, and X to be the state at t0. In general, the function g is not known globally in closed form,

but can be evaluated pointwise by numerically solving the initial value problem. We can, however,
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approximate g using a Taylor series expansion about the solution of the nominal trajectory. Doing

this results in the following

Y = g(µ+ ∆X, t, t0) ≈ g(µ, t, t0) +∇g(µ, t, t0)∆X +H.O.T (3.3)

where ∆X = x(t0)− µ(t0), x(t) is a trajectory of interest, and µ(t) is the nominal trajectory

Subtracting over the first term and recognizing that if g : X(t0) → X(t) then ∇g(µ, t, t0) is

the state transition matrix Φ. We then rewrite the previous equation to first order as:

∆Y ≡ x(t)− µ(t) = Φ(µ, t, t0)∆X (3.4)

For linear differential equations g is linear and equation 3.4 is exact for any input ∆X . Unfor-

tunately, for systems governed by nonlinear differential equations, this relationship is approximate

and will only be accurate within some finite neighborhood of µ. In the case of the two body equa-

tion, which governs the motion of the satellites in our collision problem (and is nonlinear whether

formulated in Cartesian coordinates or orbital elements), prior work suggest that this neighborhood

is not large enough (in Cartesian space) to capture the true nature of the PDF as it is propagated

forward in time, since qualitatively, the state transition matrix will merely stretch and rotate the

initial covariance ellipsoid, while the true distribution becomes, qualitatively, a skinny banana that

wraps around the orbit. One way to solve the problem is to include the higher order terms in equa-

tion (3.3). Since g is a vector valued function, the nth order term will contain a nth order tensor

of the mixed partial derivatives of g. Another approach, would be to introduce a change of vari-

ables to some regularized or slow variables, which make the dynamics more linear. That is to say,

a change of variables which increase the domain over which the nonlinear equation (3.3) is well

approximated by equation (3.4). One attractive set of such coordinates are the orbital elements.

The question then becomes, how long can the propagated PDF be accurately approximated

as a Gaussian? This thinking has spurred the development of various metrics for answering this

question and are explored in [42, 43, 128]. A more fundamental question may be, how well does
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the approximation of the PDF satisfy the Fokker Planck equation? Recall that the Fokker Planck

equation (or Kolmogorov forward equation [29]) is the partial differential equation governing the

evolution of a PDF p(x, t) where the time evolution of the state (x) is given by the stochastic

differential equation

dx(t) = f
(
x(t), t

)
dt+G

(
x(t), t

)
dw(t) (3.5)

In equation (3.5) f
(
x(t), t

)
are the state dynamics acted on by a random forcing process w(t)

which is mapped onto the state space by the linear, time varying function G
(
x(t), t

)
[49]. The

Fokker Planck equation then is given by:

∂p(x, t)

∂t
= −

n∑
i=1

∂

∂xi

(
p(x, t)fi(x, t)

)
+

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

(
p(x, t)[GQGT ]ij

)
(3.6)

CRATER assumes that all uncertainty associated with the process may be sufficiently modeled

through parametric uncertainty. Therefore Q = E[dwdwT ] = 0. This reduces the Fokker Planck

equation to the well known Liouville equation [132, 31].

∂p(x, t)

∂t
+

n∑
i=1

∂

∂xi
(p(x, t)fi(x, t)) = 0

⇒ p(x, t)dv = p(x0, t0)dv0

(3.7)

The local volume distortion due to a non linear deformation g(x, t, t0) is simply dv = |∇g|x,t,t0dv0

and again Φ(x, t, t0) = ∇g(x, t, t0). Therefore, p(x, t) = p(x0, t0)dv0
dv

= p(x0, t0) 1
|Φ(t,t0)| . The

percent error in the Gaussian approximation of the propagated PDF at time t is then given by:

Errort =

∣∣∣∣1− |Φ(µ, t, t0)|fx
(
x(t), µ(t),Σ(t)

)
p(x0, t0)

∣∣∣∣ (3.8)

Where the density function fx is the same as in (3.2) and µ(t) and Σ(t) are the propagated mean

and covariance.

Equation (3.8) is computed at +1, +3, and +6 sigma points along each eigenvector of the covari-
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ance matrix at time t. This information could be used in real time to adaptively refine a GMM or

other approximation, similar to the adaptive entropy based approaches in [71, 72]. For the results

computed in the next section, CRATER implemented a single mean and covariance, derived from

linearization about the expected state in orbital element space, to model the propagated PDF and

uses equation (3.8) to report the point-wise error in this assumption along the different eigenvectors

of the orbital element covariance matrix. This single Gaussian in orbital element space was then

used to generate local Gaussians or a GMM in the Cartesian space.

In the case where we wish to consider a vector of uncertain force model parameters q ∈ Rm,

the state equation becomes.

χ(t) = χ0 +

∫ t

t0

f(X, q, t)dτ (3.9)

Where χ(t) is the augmented state vector χ(t) =

X(t)

q(t)

. Differentiating equation (3.9) with

respect to χ0 we get the state transition matrix for our augmented state.

Φa =

Φ(t, t0) Ψ(t, t0)

∂q(t)
∂X(t0)

∂q(t)
∂q(t0)

 (3.10)

Where Ψ = ∂X(t)
∂q(t0)

, as discussed in [33, pp. 632–646], is given by the solution to the matrix

differential equation.

Ψ̇ =
∂f(X, q, t)

∂X
Ψ +

∂f(X, q, t)

∂q
Ψ0 = 0nxm (3.11)

Of course, equation (3.10) becomes much simpler if q is made up of time and state invariant

parameters such as the ballistic coefficient for a uniform spacecraft. For the results in Section 3.3

the uncertain force model parameters were assumed to be constant both spatially and temporally.

Equations (3.9) and (3.10) are then used to propagate the mean and covariance of the initial

distribution. At this point, we have developed the theory to map the initial PDF of the state and

parameters from t0 to t.
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Unfortunately, the orbital elements are not a computationally efficient set of variables to ana-

lyze conjunctions with, since the relative position and velocity state is not easily expressed. This

means that the PDF at time t must undergo another non linear transformation into Coordinates

better suited for efficient Pc analysis (Cartesian Coordinates in this case).

3.2.2 PDF Approximation

The mapping of the PDF from orbital elements into Cartesian coordinates can result in a loss

of covariance realism [130]. This effect is most egregious along the eigenfiber of the covariance

ellipsoid, which corresponds to the center line of the banana shaped ellipsoid in Cartesian space as

seen in Figure 3.1.

Figure 3.1: Projection of Principle Axis into Cartesian Coordinates. Reprinted with permission
from [98].

Assuming that the approximate Gaussian PDF in orbital element space has sufficiently satisfied

the Liouville equation, we can use the Gaussian in orbital element space as the truth for construct-

ing a PDF in Cartesian space which also satisfies the Liouville equation. The PDF in Cartesian

coordinates will be approximated locally as Gaussian in the direction of the eigenfiber and fully
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Gaussian in the off axis directions for the CRATER algorithm. This approximation has be found

to be well justified in most applications. The number of local Gaussians needed then is tied to the

range of validity of the Gaussian assumption in the direction of the eigenfiber. This range can be

determined by computing the error between the analytically exact mapping into Cartesian Coor-

dinates (3.1) and a local linearly mapped PDF. The PDF with mean P̄ and covariance Σ is given

analytically in terms of Cartesian coordinates by

fp
(
h−1(X)

)
=

1√
(2π)n|Σ|

exp

{
−1

2

[
h−1(X)− P̄

]T
Σ−1

[
h−1(X)− P̄

]} 1

|∇h(p)|p
(3.12)

Where X = h(P ), X is the Cartesian state, P is the corresponding state in orbital elements

and h : P → X . This exact mapping is then linearized and is substituted into (3.12) to give

fx(X) =
|R|p̄√

(2π)n|Σ|
exp

[
−1

2
(R∆X)TΣ−1(R∆X)

]
(3.13)

Here R = ∂P
∂X

and ∆X = h(P )− h(P̄ ). The error between the two then is simply

Errorc =

∣∣∣∣1− ( |R|p̄|R|p exp

{
−1

2

[
(R∆X)TΣ−1(R∆X)− (∆P )TΣ−1(∆P )

]})∣∣∣∣ (3.14)

where ∆P = h−1(X) − P̄ . This error is evaluated along the eigenfiber of the covariance

ellipsoid in element space starting at 6σ (where σ is the square root of the eigenvalue associated

with the eigenfiber) and moving inward along the eigenfiber until Errorc(∆P ) ≤ ε. Here, ε is a

desired tolerance for the linear approximation. The number of Local Gaussians is then 12σ/∆σ,

such that ∆P = ∆σEν where Eν is the eigenfiber and ∆P satisfies the linearity tolerance.

Depending on Errorc and the geometry of the collision, the PDF will be approximated as a

single Gaussian PDF, by the best local Gaussian PDF, or as a Gaussian Mixture Model. A GMM

is used over the best local Gaussian when the relative angle between the orbital planes is low.

To define the local Gaussian approximation, consider a PDF in Cartesian Space that is most

non Gaussian along the direction corresponding the eigenfiber of the covariance ellipse in orbital
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element space. Points are placed sufficiently dense along this axis such that equation (3.14) glob-

ally satisfies a desired tolerance. These points are the nodes where the local Gaussians will be

created. As the PDFs of the two satellites pass through each other the Gaussians of the two closest

nodes are used to create the joint PDF for evaluation in Coppola’s integral.

To create a local Gaussian in the vicinity of a node point Pi in orbital element space, consider

the following: We are interested in creating a locally valid Gaussian in Cartesian space in the

neighborhood of h(Pi) where h is the mapping from a point in element space to the corresponding

point in Cartesian space. Suppose the point we are interested in can be expressed as

P = (P − Pi) + (Pi − P̄ ) + P̄ (3.15)

where P̄ is the mean of the distribution and (P −Pi) is assumed to be small such that it can be

accurately approximated linearly as:

∆Pi = (P − Pi) =
∂P

∂X
∆Xi (3.16)

where ∆Xi is X −h(Pi). Note this assumption is justified in evaluating the joint PDF over the

sphere defined by the radius of collision, but may break down when integrating over the velocities

entering the sphere, as is required when the collision is defined as it is in equation (3.22)

Plugging (3.15) and (3.16) back into the Gaussian defined in element space the exponent of the

Gaussian becomes.

−1

2
(R∆Xi + ∆P̄ )TΣ−1(R∆Xi + ∆P̄ ) (3.17)

Where R = ∂P
∂X

evaluated at Pi and ∆P̄ = (Pi − P̄ ). This can be rearranged to the following.

−1

2

[
(∆X +Mλ)TM−1(∆X +Mλ) + ∆P̄ T

(
Σ−1 − Σ−1RMRTΣ−1

)
∆P̄

]
(3.18)

Where M = (RTΣ−1R)−1 and λ = RTΣ−1∆P̄ . Note that the second term in (3.18) reduces
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to zero. Thus the local Gaussian in the neighborhood of Xi is

fx(X) =
1√

(2π)n|Σ|
exp

{
−1

2

[
X − (Xi −R−1∆P̄ )

]T
M−1

[
X − (Xi −R−1∆P̄ )

]}
(3.19)

If we desire to integrate (3.19) in the Cartesian domain we must include the determinant of the

Jacobian of the transformation R. Since 1√
|M |

= |R|√
|Σ|

, the integral of (3.19) can simply be written

as the integral of a normal distribution N(X,µ,M) over X with a mean of (Xi − R−1∆P̄ ) and

covariance M ∫
fx(X)dX =

∫
N
(
X, (Xi −R−1∆P̄ ),M

)
dX (3.20)

The Local Gaussians have poor global error characteristics, especially when compared to other

forms of approximating the PDF such as GMM. What motivates their use here is their superior

local error characteristics, since the radius of collision is usually on the order of 0.01km− 0.1km

while the 6σ contours of the PDF may span hundreds of kilometers, two local Gaussians in the

neighborhood of the hardball radius can generate a very good local estimate of the joint PDF,

especially in cases where the relative inclination between the orbits is high as shown in Figure 3.2.

Figure 3.2: Influence of Collision Geometry on the Joint PDF. Reprinted with permission from
[98].
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In the event that a GMM is needed, the methods outlined in [72, 130] are used. However,

instead of using the algorithms in [130] to generate the GMM, the number of mixture components

is determined by a nonlinearity index (ηi) evaluated along the eigenfiber of the PDF.

ηi =
||∇h(Pi)−∇h(P̄ )||2

||∇h(P̄ )||2
(3.21)

In equation (3.21) h and P̄ are as defined in (3.12) where ∇ denotes the gradient and || · ||2 is the

2-norm. Pi is moved in along the eigenfiber until ηi satisfies a desired nonlinearity tolerance. The

∆σ is computed as before and the number of mixture components (n) is then 12σ/∆σ. Equation

(3.21) is used here as opposed to (3.14) as (3.14) tends to over predict the the number of Gaussians

needed to construct a global approximation.

Each mixture component is given the same covariance matrix and placed along the eigenfiber

such that µi = r tan(θi), θi = linspace(−π
4
, π

4
) and r is equal to min

(
max

(
GH_node(n)

)
, 6
)

.

The functionGH_node(n) simply returns all of the roots of the nth degree Hermite polynomial

[115]. The covariance of each mixture is the same as the original except the principle eigenvalue

is weighted by a scalar sigscalar = 0.5 ∗ 1.0+n
nk

. The weights are computed offline according

to algorithm 1 from [130] and are loaded by the CRATER algorithm if needed. Each mixture

component is propagated through the collision window using the full nonlinear dynamics and are

mapped into Cartesian coordinates using the 4th order Conjugate Unscented Transform points [58].

3.2.3 PC Integral

Recall from Coppola [96] that Λt is the set of all trajectories from satellites 1 and 2 that result

in a collision at some time t ∈ (t0, t0 + T ] and is defined below.

Λt = {X(t)|r(t) = Rc and (v · r̂) ≤ 0} (3.22)

Where r(t) is the relative distance along the unit vector r̂, v the relative velocity of the two satel-

lites, and Rc is the radius of collision [76]. With Λt defined in this manner, assuming the satellites
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have large initial separation, integrating the joint density function ρ(X, t; t0) over the union of all

Λt gives the probability of collision between the two satellites as seen in equation (3.23).

PI =

∫ t0+T

t0

∫
Λt

ρ(X, t; t0)|v · r̂|dAΛtdt (3.23)

Where |v · r̂| is an artifact from the change of variables dr = dr
dt
dt.

With the addition of a vector of uncertain force model parameters q, dAΛt is given by:

dAΛt = R2
ccos(θ)dx1dqdvdθdφ (3.24)

Here x1 is the six dimensional state of satellite 1, v is the three dimensional relative velocity, and

θ and φ are the azimuth and elevation of the vector r̂.

Substituting equation (3.24) back into (3.23) it is apparent that we will need to integrate over

2d+m dimensions where d is the dimension of the state and m is the dimension of the parameter

vector q. If the density function ρ(χ, t; t0) (where χ is the same as in equation (3.9)) is the normal

distribution or can be expressed as a sum of Gaussian PDFs, then the integral over all but three of

these dimensions can be evaluated analytically. This is demonstrated in [96] and [72] and is only

briefly summarized here.

Following the development in [96], see [72] for GMM development, if ρ(χ, t; t0) is the nor-

mal distribution, with satellite 1 and 2 moving independently of each other, then equation (3.23)

becomes the following.

PI =

∫ t0+T

t0

∫
Λt

N
[
χ1(t), µχ1(t),Σχ1(t)

]
N
[
χ2(t), µχ2(t),Σχ2(t)

]
|v · r̂|dAΛtdt (3.25)

If we let χ2 = χr + χ1, where χr is the relative state and substitute back into (3.25) then we

obtain a joint PDF that is a function of the state of satellite 1 and the relative state. The product of
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Gaussians in equation (3.25) can then be manipulated to obtain the distribution of the relative state

N
[
χ1(t), µχ1(t),Σχ1(t)

]
N
[
χ2(t), µχ2(t),Σχ2(t)

]
=

N
[
χ1(t) + Tχr(t), µχ1(t) + Tµχr(t),M(t)

]
N
[
χr(t), µχr(t),Σχr(t)

] (3.26)

where µχr = µχ2 − µχ1 , Σχr = Σχ1 + Σχ2 , M−1 = Σ−1
χ1

+ Σ−1
χ2

and T = MΣ−1
χ2

. Substituting

equation (3.26) into (3.25), the expression can then be integrated analytically over χ1 leaving the

joint PDF exclusively in terms of the relative state χr.

PI =

∫ t0+T

t0

∫
Λ′t

N
[
χr(t), µχr(t),Σχr(t)

]
|v · r̂|R2

ccos(θ)dqdvdθdφdt (3.27)

The integration over dq is handled using Lemma I from Coppola’s paper. That is, the Gaussian

PDF in equation (3.27) is split into two portions such that a Gaussian with full state uncertainty

and m uncertain force model parameters is given by the following.

N6+m(χr, µχr ,Σχr) = N6(Xr, µxr ,Σxr)Nm(q′, µ′q,Σ
′) (3.28)

Since the portion of the PDF containing the relative state Xr does not depend on q, it can be

pulled out of the integral over dq and the integral ofNm(q′, µ′q,Σ
′) over dq evaluates to 1. Of course

this assumes that the distributions are Gaussian. If the distributions are not Gaussian, it may not be

possible to separate the PDF into two parts as described in the previous paragraph. To get around

this difficulty CRATER will approximate the PDF using the LG (when possible) or GMM method,

since both of these methods can make use of the analytical marginalization described above.

From this point forward, one can follow the rest of Coppola’s derivation to arrive at the same

formulation for Pc, but now taking into account the effects of parametric uncertainty. The numer-

ical quadrature over θ and φ is computed using Lebedev quadrature [133], while the quadrature

over time is handled using Python’s numpy.trapz.

This formulation of the Pc is subject to the following assumptions:
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A1. Trajectories only enter the hardball radius once

A2. Trajectories do not satisfy r(t) = Rc (where r(t) is the relative distance between the

satellites) for a finite amount of time, such that each trajectory belongs to a unique Λt

A3. The dynamics and PDF of each object are independent

A4. The PDF at time T can be modeled as a Gaussian Mixture or is locally Gaussian

Under these assumptions, CRATER will be able to consider conjunctions with parametric

model uncertainty, full state uncertainty, long encounter times, and non-Gaussian PDFs (in Carte-

sian space). It is felt that this level of generality, adaptability, accuracy and numerical efficiency,

sets a new standard in conjunction analysis.

3.3 Results and Discussion

The CRATER algorithm has been tested so far on eight different test cases. For the test cases

below, the Pc was computed using four different methods. The single Gaussian (SG) method,

assumes that the PDF in Cartesian space is adequately modeled by a single mean and covariance

and the Pc is computed with respect to Coppola’s result allowing for non linear relative motion.

The second and third methods used were the local Gaussian approximation (LG) and the Gaussian

mixture model GMM as described in Section 3.2. These results are then compared with the fourth

method; a Monte Carlo (MC) simulation.

To facilitate easily verifiable and illuminating comparison, all test cases except IV, V, and VIII

use unperturbed Keplarian motion as the force model. Test case IV includes J2 and cases V and

VIII include a simplified version of the Harris Priester drag model [134] . In the tables below, the

approximate time of closest approach (TCA) as well as the screening period relative to the epoch

time is given as a scalar multiple of the orbital period of either satellite 1 or 2, where the orbital

period for satellites 1 and 2 are denoted T1 and T2 respectively. Test Case IV involves a collision

where there is uncertainty in the J2 parameter. J2 was chosen as the uncertain parameter for test

case IV, merely to demonstrate that CRATER is not limited to drag uncertainty only. It should

be noted that the initial conditions for the test cases below have been converted from normalized

modified equinoctial orbital elements to ECI Cartesian coordinates and Kepler orbital elements to
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help the reader visualize the scenario.

With each set of results is listed the convergence interval (ε) of the Monte Carlo result as com-

puted by the Dagum bound [106] with a confidence of (1 − α) = 95%. The Dagum convergence

interval (ε) in equation (3.29) is used to compute the lower bound of the number of Monte Carlo

samples (N ) needed to ensure the predicted value of the Pc is within±ε% of the true Pc value (PT )

with a confidence of (1− α). In equation (3.29) e is Euler’s number.

N >
4(e− 2)(1− PT )

ε2PT
ln

(
2

α

)
(3.29)

The Dagaum bound has the advantage of requiring far fewer MC samples than other methods,

such as the Chernoff-Hoeffding bound [104], in cases where the expected value of PT is known

and ε ∗ PT < (1 − PT ) ∗ PT as discussed in [89]. For the ε computed in the tables below, the

MC result was used for PT along with the stated number of MC samples. Except for test case VII,

which used the LG result for PT .

In addition to Pc results, the run times of each method on the different test cases are also given.

The LG Pc and run time are then compared to the Monte Carlo predicted Pc and run time and are

presented in the LG percent error column, giving the percent difference between the LG and MC

Pc result and how much faster the LG method was computed by taking the MC run time divided

by the LG run time.

3.3.1 Test Case I

The test case in Table 3.1 was run with a radius of collision Rc = 1.0km and verified via a 100

million sample Monte Carlo. Results are shown in Table 3.2. The screening interval was [1.24 T1,

1.26T1].
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Table 3.1: Initial Conditions Test Case I. Reprinted with permission from [98].

TCA = 1.25T1 Orbit 1 Orbit 2
a 10000 km 10000 km
e 1.0e-7 1.0e-7
i 90.0 90.0
ω 0.0 0.0
Ω 0.0 90.0
θ 0.0 0.0

σ2
X , σ

2
Y , 1.0e-2 (km)2 1.0e-2 (km)2

σ2
Z , 1.0e-1 (km)2 1.0e-1 (km)2

σ2
Vx
, σ2

Vy
, 1.0e-5 (km/s)2 1.0e-5 (km/s)2

σ2
Vz

, 1.0e-4 (km/s)2 1.0e-4 (km/s)2

Table 3.2: Results Test Case I. Reprinted with permission from [98].

SG LG GMM MC LG % Error Dagum ε
Pc 2.809E-4 2.809E-4 2.769E-4 2.675E-4 5.0% 1.9%

Time 2.6 sec 5.6 sec 1728 sec 26299 sec 4.6E3 faster

3.3.2 Test Case II

Table 3.3: Initial Conditions Test Case II. Reprinted with permission from [98].

TCA = 1.237T1 Orbit 1 Orbit 2
a 10000 km 9935 km
e 1.0e-7 1.0e-7
i 90.0 93.0
ω 0.0 0.0
Ω 0.0 90.0
θ 0.0 2.0

σ2
X , σ

2
Y , 1.0e-2 (km)2 1.0e-2 (km)2

σ2
Z , 1.0e-1 (km)2 1.0e-1 (km)2

σ2
Vx
, σ2

Vy
, 1.0e-5 (km/s)2 1.0e-5 (km/s)2

σ2
Vz

, 1.0e-4 (km/s)2 1.0e-4 (km/s)2
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The test case defined in Table 3.3 was run with Rc = 1.0km and verified via a 164 million

sample Monte Carlo. Results are in Table 3.4 The screening interval was [1.228 T1, 1.26T1].

Table 3.4: Results Test Case II. Reprinted with permission from [98].

SG LG GMM MC LG % Error Dagum ε
Pc 3.53E-5 5.97E-5 5.993E-5 5.892E-5 1.36% 1.0 %

Time 2.7 sec 5.1 sec 436 sec 65250 sec 1.2E4 faster

3.3.3 Test Case III

Table 3.5: Initial Conditions Test Case III. Reprinted with permission from [98].

TCA = 1.0T2 Orbit 1 Orbit 2
a 7000 km 24500 km
e 1.0e-7 0.714285714286
i 0.0 40.0
ω 0.0 0.0
Ω 0.0 0.0
θ -197.244 0.0

σ2
X , σ

2
Y , 1.0e-2 (km)2 1.0e-2 (km)2

σ2
Z , 1.0e-1 (km)2 1.0e-1 (km)2

σ2
Vx
, σ2

Vy
, 1.0e-5 (km/s)2 1.0e-5 (km/s)2

σ2
Vz

, 1.0e-4 (km/s)2 1.0e-4 (km/s)2

The test case defined in Table 3.5 was run with Rc = 0.5km and verified via a 100 million

sample Monte Carlo. Results are in Table 3.6 The screening interval was [0.9999 T2, 1.0001T2].
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Table 3.6: Results Test Case III. Reprinted with permission from [98].

SG LG GMM MC LG % Error Dagum ε
Pc 9.29E-4 9.29E-4 9.893-4 9.740E-4 4.62% 1.0%

Time 4.1 sec 4.4 sec 4842 25038 sec 5.7E3 faster

3.3.4 Test Case IV

Table 3.7: Initial Conditions Test Case IV. Reprinted with permission from [98].

TCA = 5.017T1 Orbit 1 Orbit 2
a 7000 km 7000 km
e 1.0e-7 1e-7
i 90.0 90.0
ω 0.0 0.0
Ω 0.0 90.0
θ -90 -90.0

σ2
X , σ

2
Y , σ

2
Z , 1.0e-4 (km)2 1.0e-4 (km)2

σ2
Vx
, σ2

Vy
, σ2

Vz
, 1.0e-12 (km/s)2 1.0e-12 (km/s)2

σ2
J2, (J2/10)2 (J2/10)2

The test case defined in Table 3.7 was run with Rc = 0.05km and verified via a 100 million

sample Monte Carlo. Results are in Table 3.8 The screening interval was [5.008 T1, 5.026T1].

Table 3.8: Results Test Case IV. Reprinted with permission from [98].

SG LG GMM MC LG % Error Dagum ε
Pc 6.149E-4 6.149E-4 6.047E-4 2.21e-4 178% 2.2 %

Time 16.27 sec 16.8 sec 4821 sec 26200 sec 1.5E3 faster
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3.3.5 Test Case V

Table 3.9: Initial Conditions Test Case V. Reprinted with permission from [98].

TCA = 0.877T1 Orbit 1 Orbit 2
a 6500 km 6500 km
e 1.0e-7 1e-7
i 90.0 90.0
ω 0.0 0.0
Ω 0.0 90.0
θ -90 -90.0

σ2
X , σ

2
Y , σ

2
Z , 1.0e-6 (km)2 1.0e-6 (km)2

σ2
Vx
, σ2

Vy
, σ2

Vz
, 1.0e-9 (km/s)2 1.0e-9 (km/s)2

σ2
BC , (BC/100)2 (BC/100)2

The test case defined in Table 3.9 was run withRc = 1.0km and verified via a 51 million sample

Monte Carlo. Results are shown in Table 3.10 The screening interval was [0.872 T1, 0.8795T1].

The nominal ballistic coefficient (BC) was 0.0196 m2/kg.

Table 3.10: Results Test Case V. Reprinted with permission from [98].

SG LG GMM MC LG % Error Dagum ε
Pc 12.1E-3 12.1E-3 9.872E-3 5E-3 142% 0.6 %

Time 8.2 sec 8.9 sec 4842 sec 28000 sec 3.1E3 faster
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3.3.6 Test Case VI

Table 3.11: Initial Conditions Test Case VI. Reprinted with permission from [98].

TCA = 1.237T1 Orbit 1 Orbit 2
a 10000 km 9913 km
e 1.0e-7 1e-7
i 90.0 93.0
ω 0.0 0.0
Ω 0.0 89.0
θ 0.0 2.0

σ2
X , σ

2
Y , 1.0e-2 (km)2 1.0e-2 (km)2

σ2
Z , 1.0e-1 (km)2 1.0e-1 (km)2

σ2
Vx
, σ2

Vy
, 1.0e-5 (km/s)2 1.0e-6 (km/s)2

σ2
Vz

, 1.0e-4 (km/s)2 1.0e-5 (km/s)2

The test case defined in Table 3.11 was run with Rc = 1.0km and verified via a 500 million

sample Monte Carlo. Results are shown in Table 3.12. The screening interval was [1.227 T1,

1.247T1].

Table 3.12: Results Test Case VI. Reprinted with permission from [98].

SG LG GMM MC LG % Error Dagum ε
Pc 7.966E-9 1.235E-5 1.205E-5 1.200E-5 2.92% 4.2 %

Time 20.7 sec 25.6 sec 258 sec 32000 sec 1.2E3 faster

The difference of the SG result compared to the others is understood when looking at the col-

lision geometry in Figure 3.3. Significant non-Gaussian behavior has developed in the distribution

of satellite 1, as is seen when contrasting the blue (true) distribution with the pink (Gaussian) dis-

tribution. Whereas, the true distribution of satellite 2 (green) is still relatively Gaussian. Since the

intersection of the distributions of satellites 1 and 2 occurs almost exclusively between the blue

and green distributions the SG method will result in a gross under prediction of the true Pc.
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Figure 3.3: TC VI Collision Geometry. Reprinted with permission from [98].

3.3.7 Test Case VII

Table 3.13: Initial Conditions Test Case VII. Reprinted with permission from [98].

TCA = 1.237T1 Orbit 1 Orbit 2
a 7000 km 6970 km
e 1.0e-7 1e-7
i 90.0 93.0
ω 0.0 0.0
Ω 0.0 40.0
θ 0.0 2.0

σ2
X , σ

2
Y , 1.0e-2 (km)2 1.0e-2 (km)2

σ2
Z , 1.0e-1 (km)2 1.0e-1 (km)2

σ2
Vx
, σ2

Vy
, 1.0e-5 (km/s)2 1.0e-6 (km/s)2

σ2
Vz

, 1.0e-4 (km/s)2 1.0e-5 (km/s)2

The test case defined in Table 3.13 was run with Rc = 1.0km and verified via a 100 million

sample Monte Carlo. Results are shown in Table 3.14. The screening interval was [1.217 T1,

1.247T1].
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Table 3.14: Results Test Case VII. Reprinted with permission from [98].

SG LG GMM MC LG % Error Dagum ε
Pc 2.790E-5 2.187E-11 3.094E-11 0.0 NA 6960 %

Time 20.3 sec 25.4 sec 106 sec 27800 sec 1.1E3 faster

In contrast to the test case VI, this case was designed to yield a higher Pc if an incorrect Gaus-

sian assumption was made for satellite 1. In Figure 3.4 below we see the distribution of satellite 2

(green) predominantly intersecting the Gaussian approximation of satellite 1’s distribution (pink).

Figure 3.4: TC VII Collision Geometry. Reprinted with permission from [98].
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3.3.8 Test Case VIII

Table 3.15: Initial Conditions Test Case VIII. Reprinted with permission from [98].

TCA = 0.9999T1 Orbit 1 Orbit 2
a 6600 km 6600 km
e 1.0e-7 1.0e-7
i 90.0 90.0
ω 0.0 0.0
Ω 0.0 90.0
θ -90 -90.0
σ2
X , 1.0e-3 (km)2 1.0e-4 (km)2

σ2
Y , 1.0e-4 (km)2 1.0e-3 (km)2

σ2
Z , 1.0e-4 (km)2 1.0e-4 (km)2

σ2
Vx
, σ2

Vy
, σ2

Vz
, 1.0e-8 (km/s)2 1.0e-8 (km/s)2

σ2
BC , (0.2BC)2 (0.2BC)2

The test case defined in Table 3.15 was run with Rc = 0.1km and verified via a 1 million

sample Monte Carlo. Results are shown in Table 3.16. The screening interval was [0.999725 T1,

1.0001T1]. The nominal ballistic coefficient (BC) was 0.0196 m2/kg.

Table 3.16: Results Test Case VIII. Reprinted with permission from [98].

SG LG GMM MC LG % Error Dagum ε
Pc 1.298E-2 1.298E-2 1.298E-2 1.2562E-2 3.33% 2.8 %

Time 3.4 sec 5.6 sec 28.5 sec 287 sec 50x faster

To demonstrate the effects of force model uncertainty on the predicted Pc, this test case was run

using a range of different uncertainties for the ballistic coefficient. Since the collision was nearly

deterministic before considering drag uncertainty, the effect of adding more drag uncertainty was

to decrease the likelihood of the collision as shown in Figure 3.5.
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Figure 3.5: Pc vs Drag Uncertainty. Reprinted with permission from [98].

3.3.9 Propagation Error

Notice, from the last section, that there was good agreement between CRATER results and

Monte Carlo results for all test cases except cases IV and V. The reason for this is most likely

explained by the results in the following table.

Table 3.17: Propagation Error. Reprinted with permission from [98].

Test Case I II III IV V VI VII VIII
1 σ Error 9.7% 6.3 % 88.4% 100% 100% 7.7 % 7.2 % 23 %

Table 3.17 shows the maximum 1σ propagation error for the PDF in orbital element space.

That is the percent difference as predicted by (3.8). Recall that the error was computed at +1, +3,

and +6 sigma along each eigenvector of the distribution. The maximum 1σ error was invariably

along the eigenfiber in all test cases. For test cases IV and V the error at 1σ along the eigenfiber

has saturated at 100% and was significant along the other eigenvectors. In other words these test

cases violated the assumption that the PDF remains Gaussian in orbital element space.
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Notice in all cases where the Gaussian assumption in orbital element space was met, the LG

approach yielded small single digit percentage errors in Pc with about one order of magnitude

speedup relative to GMM. In fact the computational burden was more comparable to the linear

analysis SG, but for the most nonlinear conjunction scenarios corrected errors of 4 to 6 orders of

magnitude when estimating Pc.

3.3.10 Sensitivity of Pc Results

One question with any simulation is: How good are the results? This worry alone has driven

some operators to doubt the fidelity of the Pc computed and therefore to simply ignore conjunction

warnings. CRATER seeks to address this concern by quantifying the error in the propagated PDF

with respect to the Fokker Planck equation, as well as computing the sensitivity of the computed

probability of collision to variations in the initial distributions.

Prior work shows that the Pc can vary by orders of magnitude with respect to distribution

parameters and associated assumptions. Often these works also present the maximum probability

of collision [88, 122], in which, the eigenvalues that give the maximum probability of collision are

found. What is frequently missing from this discussion however, is the likelihood of the distribution

from which the maximum probability of collision was computed. In other words, the maximum

Pc is a conditional probability and will likely not accurately represent the threat of a collision

without knowing how likely the initial distribution was that resulted in the max Pc. Unfortunately

this likelihood function is not in general known, leaving limited options when wishing to consider

the Pc with uncertainty in the initial distribution. If the likelihood function is known then the Pc

can be computed which properly takes into account the uncertainty in the initial distribution using

the law of total probability. One quantity that is readily computed is the sensitivity of the Pc to

perturbations in the initial distribution. Using CRATER, the sensitivity of the Pc can be computed

for collisions with longer encounter times and non Gaussian distributions.

Earlier methods for computing Pc rely on linearizing the dynamics and may not consider full

state uncertainty [76, 88, 85, 87, 84]. For most collision candidates these assumptions are justified

and convenient, but can cause problems in more non-linear collision scenarios. CRATER builds
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on the works of [74, 72, 96] which avoids these limiting assumptions, but is still in a form where

the sensitivity is easily computed.

The probability of collision computed using two local Gaussians or two components of a GMM

is given by.

PI =

∫ tf

t0

∫ 2π

0

∫ π
2

−π
2

N3(r,µr(t),A(t))ν(r̂, t)R2 cos θ dθ dφ dt (3.30)

WhereN3 is a normal distribution with mean µr = µ2−µ1 and covarianceA = P1 +P2, and

ν(r̂, t) is the 1D analytical integral of the relative velocity along the direction r̂ as derived in [96].

If the eigenvalues of the initial covariance matrices P01 and P02 were scaled by scalars α1, α2

respectively, then Equation (3.30) can be differentiated with respect to these scalars to find the

sensitivity of the Pc.

∂PI
∂αi

=

∫ tf

t0

∫ 2π

0

∫ π
2

−π
2

(
∂N3(r,µr(t),A(t))

∂αi
ν(r̂, t)+

N3(r,µr(t),A(t))
∂ν(r̂, t)

∂αi

)
R2 cos θ dθ dφ dt

(3.31)

Once the terms ∂N3(r,µr(t),A(t))
∂αi

and ∂ν(r̂,t)
∂αi

are computed the expression in (3.31) is easily eval-

uated via numerical integration.

Expansion of equation (3.31) ∂N3(r,µr(t),A(t))
∂αi

and ∂ν(r̂,t)
∂αi

∂N3(r,µr(t),A(t))

∂αi
=

∂

∂αi

( 1√
2πddet(α1P1 + α2P2)

exp−0.5∆rT (α1P1 + α2P2)−1∆r
)

(3.32)

Let K(α) = det(α1P1 + α2P2) and recallA = α1P1 + α2P2 then

∂N3

∂αi
=
( −1

2
√

2πdK3/2

∂K

∂αi
exp(−0.5∆rT (A)−1∆r)

)
+

( 1√
2πdK

exp(−0.5∆rT (A)−1∆r)(−0.5∆rT
∂A−1

∂αi
∆r)

) (3.33)
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Where
∂K

∂αi
= det(A)tr(A−1Pi) (3.34)

and
∂A−1

∂αi
= −A−1PiA

−1. (3.35)

Now we wish to consider ∂ν(r̂,t)
∂αi

.

ν(r̂, t) =
σ√
2π
e−

ν20
2σ2 − ν0

2
[1− erf(

ν0

σ
√

2
)] (3.36)

∂ν(r̂, t)

∂αi
=

1√
2π

∂σ

∂αi
e−U − σ√

2π
e−U

∂U

∂αi
− ∂ν0

2∂αi
[1− erf(

√
U)] +

ν0

2

∂erf(
√
U)

∂αi
(3.37)

Where U =
ν20
2σ2 and let r∗ = Rr̂ − µr then

∂ν0

∂αi
= r̂T [BiA

−1r∗ +BiA
−1PiA

−1r∗] (3.38)

and
∂σ2

∂αi
= r̂T [Ci −

(
BiA

−1BT +BA−1PiA
−1BT +BA−1BT

i

)
]. (3.39)

And finally,
∂erf(

√
U)

∂αi
=

e−U√
πU

∂U

∂αi
(3.40)

For the sensitivity analysis, we consider four test cases. Test Case I represents a nominal

collision scenario where 2D methods would be adequate. Test cases VI and VII are cases where the

linear analysis under predicts and over predicts the Pc respectively and Test Case VIII is a nominal

case with uncertainty in the ballistic coefficient. The initial eigenvalues of the two distributions

are independently scaled by ±10% yeilding four Pc results for each test case the nominal max and

min Pc are then plotted for each test case, showing the sensitivity in the Pc to a ten percent change
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in the Eigenvalues using equation (3.31). In addition to this analysis the mean of the distribution

was allowed to vary within its 95% confidence bound, based on a theoretical 1000 sample mean,

the 95% confidence bound on the Pc was then numerically computed via Monte Carlo.

Figure 3.6: Variation in Eigenvalues. Figure 3.7: Variation in Mean.

As can be seen in the figures, small variations in the mean and covariance did not lead to large

changes in the computed Pc for these four test cases. With Pc variations remaining below ±4%

of the nominal value. While there are cases where small changes in the initial conditions can lead

to large changes in the computed Pc, it is important to ascertain the likelihood of these events if

possible.

The developments leading to Figures 3.6 and 3.7 represent an important first step in a process

that can increase confidence in Pc computation. In principle only parametric model and distribution

uncertainty can be treated in a similar fashion to assess the sensitivity of the computed Pc to model

errors and errors in the reported distributions.

3.4 Conclusions

In most of the test cases, there was not an appreciable difference seen in the predicted results

using the various methods. That said, the GMM was slightly more accurate on most test cases.
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This is contrasted by test cases II, VI, and VII where the collision was designed such that linear

approximations would result in either an over or under prediction of the Pc. In these cases LG

and GMM solutions were seen to agree more closely with the MC results. Since these types of

collisions can occur under a number of scenarios, CRATER only adaptively selects to use the

SG solution when the true distribution is determined to be sufficiently Gaussian by use of of the

non-linearity index.

The LG approximation were shown to offer a significant step of realism over the SG approach,

when nonlinear effects were significant, while maintaining much of the computational efficiency.

This approximation scheme works particularly well when the Rc is small compared to the valid

domain of the LG and when the colliding satellites have a high relative inclination to each other. In

cases where there is a low relative inclination, it is possible that the PDFs intersect in such a way

that the intersection region spans the domains of several LGs. This case traditionally calls for the

use of a GMM, however if care is taken during the integration phase, LGs could be a more efficient

alternative to GMM in these collision scenarios as well.

Error in the propagated PDF clearly has the strongest correlation with the fidelity of the pre-

dicted results, as demonstrated by test cases IV, and V. Both of these cases had high propagation

error and consequently had the largest discrepancies of any of the test cases with respect to their

corresponding Monte Carlo results. Quantifying the error with respect to the Liouville equation

has shown that the most restrictive of the assumptions imposed on the test cases was the assump-

tion that the PDF remains Gaussian in orbital element space. It was seen that the error in this

assumption was most severe along the eigenfiber of the covariance ellipsoid. Since this error is

largely restricted to a single axis, it is a simple matter adapt the LG or GMM generation techniques

used in CRATER to fit the true PDF along this axis. This way, CRATER would use the same LG

and GMM approximation techniques to handle the nonlinear transformation of the PDF, in orbital

element space, through time as it does when mapping the propagated PDF from orbital elements

to Cartesian coordinates.

Finally, the ability to consider uncertain force model parameters was added to the CRATER
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algorithm. It was shown that under the given assumptions, the uncertain force parameters only

affect the propagation of the PDF and not the process used to compute the final Pc integral. While

accounting for uncertain force model parameters did not affect the form of the Pc integral, ac-

counting for them did correctly affect the computed Pc by orders of magnitude as seen in test cases

IV, V, and VIII. This is because uncertainty in the force model parameters affects the evolution

of the covariance matrix over time, causing it to become significantly changed with respect to a

covariance matrix that was propagated without taking model uncertainty into account. This is in

agreement with the results reported in [122], which investigated the effects scaling the covariance

matrix had on the computed Pc and similarly found that the Pc could vary by orders of magnitude

as a result of simply scaling the covariance matrix.

In Summary, the CRATER algorithm has sought to combine the best elements of [96, 72, 74]

while adding some important features. These key features are summarized as:

• Quantifying the error in the propagated PDF with respect to the Liouville Equation

• Adaptive local Gaussian approximations and algorithm selection based on the non Gaussian-

ity / linearity of the problem

• Accounting for force model uncertainty

• Adaptive construction of GMM based on the errors in the Gaussian assumption

• Use of the full nonlinear dynamics to allow long term encounters when velocities are not

constant over the collision event

When operating within the bounds of its assumptions, CRATER is able to accurately predict

the probability of collision while appropriately adapting to the collision under analysis to reach an

amicable union of accuracy, adaptability, and computational performance.
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4. RELATIVE ORBITAL ELEMENTS ∗

4.1 Introduction

The satellite probability of collision problem is an important part of space situational aware-

ness (SSA) and risk analysis for space based assets. Efficient computation of the probability of

collision (Pc) is highly dependent on Gaussian initial conditions, linear dynamics and linear coor-

dinate transformations. Many early efforts on this problem relied heavily on these assumptions and

focused primarily on developing efficient 2D methods [76, 84, 85, 87, 88, 89]. Since then more

emphasis has been placed on higher fidelity analysis that makes use of full state uncertainty and

relaxes the dependence on Gaussian and linearizing assumptions [96, 72, 64, 74, 98, 73, 100].

Most of these methods however, rely on evaluating the Pc integral in Cartesian coordinates.

Since uncertainty is usually propagated in the more linear orbital element space, evaluation of the

Pc integral will necessitate a nonlinear coordinate transformation into Cartesian coordinates. When

assessing the non-linearity of the problem [42], previous work (see Chapter 3) suggests that one

of the most nonlinear parts of the Pc problem is this mapping of the propagated distribution from

orbital element space into Cartesian coordinates. This nonlinear mapping is typically addressed

by projecting the distribution onto a set of basis functions [135, 136]. This approach is able to

capture the nonlinear effects on the transformed distribution, but can require a large number of

basis functions. The present work seeks to address this nonlinear portion of the probability of

collision problem by deriving the Pc integral in terms of relative orbital elements. This will extend

the range over which local Gaussian approximations (introduced in Chapter 3) are valid and reduce

the number of mixture components needed, if using a Gaussian mixture to represent the distribution

at the time of integration.

Throughout this chapter there will be frequent mention of the eigenfiber and nonlinearity (NL)

index. These concepts are presented in greater context in Chapter 3 and in [42, 98], but key

∗Reprinted with permission from "Conjunction Analysis and Probability of Collision using Relative Orbital El-
ements AAS18-446," by C. T. Shelton and J. L. Junkins, Proceedings of the 2018 AAS Astrodynamics Specialist
Conference, vol. 167 of Advances in Astronautical Sciences, (Snowbird, UT), pp. 2387-2402, 2018 by Univelt Inc.
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elements are reproduced here to facilitate the discussion of this chapter. If the initial PDF is taken

to be Gaussian in orbital element space then before long, and regardless of the initial distribution,

the eigenvector of the covariance matrix that points along the true anomaly direction will become

the largest principle axis of the element space covariance ellipsoid. When, centered at the nominal

trajectory, this straight vector in orbital element space is mapped into Cartesian coordinates it

becomes, to a high degree of fidelity, the center line of the banana shaped distribution. For ease of

reference we call this space curve the eigenfiber.

The NL index was developed and investigated extensively in [42] as an answer to the question,

"How nonlinear is it?", referring to a given dynamic or static nonlinear mapping. In the context of

Pc analysis the NL index is used primarily to quantify the nonlinearity of coordinate changes, but is

also used to quantify the nonlinearity of the dynamics as well. If we define the nonlinear algebraic

one-to-one coordinate transformation from classical orbital elements (q) to Cartesian coordinates

(X) as X = f(q), then the Jacobian J(q) = ∂f
∂q

is easily evaluated at any qi. The NL index (η) is

then defined as

ηij =
||J(qj)− J(qi)||2
||J(qi)||2

(4.1)

where || · ||2 is the 2 norm. Hence, the NL index is essentially the relative change in the first

derivatives of the mapping f(q) along the vector qj − qi. If qi is taken as the nominal or center-

point of the orbital element distribution then qj can be taken along each eignenvector. This is used

to estimate the neighborhood over which a first order Taylor series approximation of f(q) is valid

and identify any quasi-linear sub-spaces in the mapping.

4.2 Methods

Consider a possible collision between two satellites S1 and S2. The initial conditions of these

satellites are given as Gaussian distributions in orbital element space with respective means q̄10

and q̄20 and covariances Q10 and Q20 . For the ease of discussion, let us suppose these means and

covariances are given in terms of the Kepler orbital elements [137]. The motion of the satellites

is then fully characterized by the orbital elements {aj, ej, ij, ωj,Ωj, νj}, j = 1, 2. Note that the
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elements {a, e, ν} fully describe the planar motion of a satellite in the perifocal orbital reference

frame (hereafter the perifocal frame), while the orientation of that frame is given by the 3-1-3

rotation through the angles {Ω, i, ω}. Let R1 and R2 be the 3-1-3 rotation matrices from the

inertial frame to the perifocal frames of S1 and S2 respectively. Then a vector can be mapped from

the S2 into the S1 perifocal frame through the composite rotation R1R
T
2 .

At this point, we would like to describe the motion of S2 with respect to the perifocal frame of

S1. As before {a2, e2, ν2} describe the planar motion of S2, we then need to define a set of relative

orbital elements {Ωr, ir, ωr} that give the orientation of the S2 perifocal frame, in terms of a 3-1-3

rotation Rr, with respect to the S1 perifocal frame. It is clear that Rr = R2R
T
1 . Since Rr is a 3-1-3

rotation the elements Ωr, ir, ωr can be expressed in terms of the elements of the matrix Rri,j by

noting

cos ir = Rr3,3

tanωr =
Rr1,3

Rr2,3

tan Ωr =
Rr3,1

−Rr3,2

(4.2)

If we then express Rr in terms of the orbital elements of S1 and S2, the following relations are

obtained.

cos ir = sin i1 sin i2 cos (Ω2 − Ωi) + cos i1 cos i2

tan Ωr =
Si2(Cω1SΩ2−Ω1 − Ci1Sω1CΩ2−Ω1) + Ci2Si1Sω1

Si2(Sω1SΩ2−Ω1 + Ci1Cω1CΩ2−Ω1)− Ci2Si1Cω1

tanωr =
−Si1(Cω2SΩ2−Ω1 + Ci2Sω2CΩ2−Ω1) + Ci1Si2Sω2

Si1(Sω2SΩ2−Ω1 − Ci2Cω2CΩ2−Ω1) + Ci1Si2Cω2

(4.3)

where Sθ = sin (θ) and Cθ = cos (θ).

As expected ir is the angle between the two angular momentum vectors h1 and h2, Ωr is the

angle between the eccentricity vector of S1 and the vector h1 × h2, and ωr is the angle between
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Figure 4.1: Relative Orbit Geometry. Reprinted with permission from [103].

the eccentricity vector of S2 and h1 × h2, as shown in Figure 4.1. Defining the relative orbital

elements in this way will of course be problematic for cases where either orbit has zero inclina-

tion, zero eccentricity, or are co-planar. The developments are presented for the classical elements,

because of the ease of visualization. The analogous process though is easily carried out for other

element sets which can mitigate these singularities, and is done for the modified equinoctial ele-

ments in Appendix C. These relative orbital elements are related, but distinct from those often used

in relative satellite motion applications [138, 139, 140].

With the relative geometry defined and the relations given by equation (4.3), the state of the

system can be redefined as a twelve element set with the last three being the relative elements

P = [{a1, e1, ν1}{i1, ω1,Ω1}{a2, e2, ν2}{ir, ωr,Ωr}]T (4.4)
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Since the relative elements {ir, ωr,Ωr} are functions of both q1 and q2, it may be preferable to

propagate the state and PDF in terms of q1 and q2 and then map the distribution into terms of the

12 elements of P for analysis. The primary motivation for defining the state of the system this

way is to avoid the need to convert to Cartesian coordinates when it comes time to evaluate the Pc

integral. The details of this are presented in the Planar Conjunction Analysis section.

4.2.1 Collision Prefiltering

Before moving on to the probability of collision calculations, let us first consider some of the

insights that can be gained from examining Figure 4.1. One aspect of conjunction analysis is the

prefiltering stage. The crux of this part of problem lies in quickly finding pairs of satellites that

may potentially collide within some screening window while screening out satellite pairs that do

not warrant a full Pc analysis. For example, one of the coarsest filters on collisions is to compare

the radius of perigee of one orbit with the radius of apogee of the other orbit and see if there is a

possible overlap. Should two orbits pass this filter, we then need to take a closer look to see if a

Pc analysis is necessary. A number of Geometric conditions exist for doing this type of analysis

and have been explored in [77] and have been used by agencies such as NORAD to find and

issue conjunction warnings. One issue of only using geometric filters is that it generally relies on

heuristic processes and bounds to decide what defines a close approach and how close two objects

need to be before the pair is considered for a probability of collision analysis. By incorporating the

information from the initial distributions and the radius of collision a more probabilistic definition

of close approach can be formed and lend some formality to establish a probabilistic means of

prefiltering without the need to numerically propagate the orbit or the distributions in time.

It is obvious from the geometry in Figure 4.1 that collisions will only occur within a small

neighborhood of the relative line of nodes that lies along the instantaneous vector h1×h2, with the

exception of orbits that are, or nearly are, coplanar. We can then filter out improbable collisions, for

a large class of collision scenarios, by comparing r1(a1, e1, ν1 = {Ωr,Ωr±π}) and r2(a2, e2, ν2 =

{−ωr,−ωr ± π}) by projecting the initial distribution in {q1, q2} onto ∆r along this direction.

This will allow us to answer the question: "What is the probability that the two orbits come within
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a radius of collision (Rc) of each other?". This probability must be computed for two cases, the

ascending node ν1 = Ωr, ν2 = −ωr, and descending node ν1 = Ωr + π, ν2 = π − ωr.

The mean of this distribution can be defined as ∆r̄ = r̄2 − r̄1, where r̄i ≈ r(āi, ēi, ν̄∗i = 0, π)

and

ν∗1 = ν1 − Ωr

ν∗2 = ν2 + ωr

(4.5)

Next the variance in ∆r can be obtained through a similarity covariance mapping

σ2
∆r ≈

d∆r

dP
QP0

d∆r

dP

T

(4.6)

Where d∆r
dP

is the 1× 12 gradient of ∆r evaluated at āi, ēi, ν̄∗i = 0, π. When mapping the 12× 12

covariance into σ2
∆r note that we do not map any initial uncertainty in ν1 or ν2 into ∆r, since

these angles are given. Instead uncertainty in the relative angles Ωr and ωr are mapped into σ2
∆r.

Alternatively, it is a simple matter to use nonlinear mapping techniques to acquire ∆r̄, σ∆r, or even

a non-Gaussian probability distribution for ∆r.

Now suppose we are considering the ascending node case ν1 = Ωr, ν2 = −ωr. The probability

that the two orbits come within Rc of each other (P ∗c ), or equivalently the probability of a collision

between two satellites given ν1 = Ωr, ν2 = −ωr is then

P ∗c = P (∆r ≤ Rc|ν1 = Ωr, ν2 = −ωr) =

∫ Rc

−Rc
N(∆r,∆r̄, σr)d∆r

P ∗c =
1

2

{
erf

(
∆r̄ +Rc

σr
√

2

)
− erf

(
∆r̄ −Rc

σr
√

2

)} (4.7)

If P ∗c ≤ ε for both the ascending and descending nodes, where ε is a desired tolerance, then the

two orbits in question may be considered non-colliding. It is important to recognize that P ∗c is an

upper bound to the probability of collision, and not the probability of collision itself, since it is

conditioned on the event that both satellites are exactly on the line of relative nodes. Furthermore,
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this analysis is linear, and Keplerian, as such, σ2
∆r may not be sufficient to characterized the distri-

bution if the initial uncertainty is too large to accurately map linearly. Additionally, perturbations

will cause ωr and Ωr to process with time. To account for this effect one can easily compute the

mean procession rates for ω1, ω2,Ω1,Ω2 due to a J2 gravity model [141, 142, 143]. The mean

procession rates for the relative orbital elements ωr,Ωr is then

˙̄Ωr =
∂Ωr

∂Ω1

˙̄Ω1 +
∂Ωr

∂ω1

˙̄ω1 +
∂Ωr

∂Ω2

˙̄Ω2 +
∂Ωr

∂ω2

˙̄ω2 (4.8)

˙̄ωr =
∂ωr
∂Ω1

˙̄Ω1 +
∂ωr
∂ω1

˙̄ω1 +
∂ωr
∂Ω2

˙̄Ω2 +
∂ωr
∂ω2

˙̄ω2 (4.9)

Even taking into account the mean procession rate, this analysis is meant to filter out unlikely

conjunctions that may occur within a moderate analysis window.

Another useful quantity to consider is the phase angle between the two satellites. If we define

a phase angle φ.

φ = (ν2 + ωr)− (ν1 − Ωr) = (ν2 − ν1) + (ωr + Ωr) (4.10)

and for Keplerian motion

φ̇ = ν̇2 − ν̇1 (4.11)

If we express the phase angle and rate in terms of the mean anomalies we get

φ∗ = (M2 −M1) + (Ω∗r + ω∗r)

φ̇∗ = n2 − n1 =
√
µ(a

− 3
2

2 − a−
3
2

1 )

(4.12)

Dividing this rate by 2π yields the mean beat frequency of collisions between the two satellites, or

divide by 2 if there are two collisions possible per period, and the mean period between possible

collisions for satellites in circular or near circular orbits is then given by T̄col.

T̄col =
2π

n2 − n1

(4.13)
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This quantity can then be used to estimate how many close encounters to anticipate in a given

analysis window.

In particular, for collisions, one is interested in the phase angle as one of the satellites passes

through the orbital plane of the other. If the quantity P ∗c ≤ ε, on either the ascending or descending

node, we do not need to concern ourselves with the phase angle at that node. Suppose for a given

pair of satellites that P ∗c is significant only for the ascending node. For this example, let satellite

S1 be the reference orbit, thus we are looking at the phase angle φ as S2 passes through the relative

ascending node ν∗2 = 0. If the period of S2 is T2 and has a time till first nodal crossing of tnc

(which we find using the Kepler solution) then the times of the future nodal crossings is simply

Tnci = i ∗ T2 + tnc, i = 0, 1, 2, ...

At this point we would like to quantify, in a statistical sense, the distance between S1 and S2.

To do this we find the initial change in the semi major axis ∆a0 such that 0 = ν∗1(Tnci) As this

is a prefiltering method, and the semi-analytical methods for computing the Pc presented later in

this paper take little longer than numerically propagating the orbit, we shall use either the Kepler

solution, or a low order zonal only gravity model to find ∆a0. Proceeding with the Kepler solution,

we can analytically find ∆a0, by transforming Ωr into a mean anomaly angle MΩr and solving

MΩr + i ∗ 2π =

√
µ

(ā0 + ∆a0)3
(Tnci − T0) +M0 (4.14)

for ∆a0. We can now compute the minimum Mahalanobis distance [144] between S1 and S2

in terms of the initial Gaussian distributions. Recall q20 had a covariance of Q20 . Let Q20 =A BT

B C

. The minimum Mahalonobis distance (Dm) is then

D2
m = [∆a0, ξ

T ]Q−1
20

∆a0

ξ

 (4.15)

where ξ = −C−1B∆a0
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Should this distance remain large for all nodal crossings, then a collision will be of negligible

probability. Additionally plugging in ±6σ values for ∆a0 into (4.14) and solving for T will give

the approximate limits of integration for the time integral when it comes time to compute the Pc.

4.2.2 Planar Conjunction Analysis

Let us resume our consideration of the possible collision between satellites S1 and S2. To

simplify our analysis, we shall first explore the case where the orbits of the two satellites have

a high relative inclination and the distributions are either Gaussian, locally Gaussian, or given

by a GMM. At each time t we map the state and distribution from the inertial orbital elements

q̄1(t), q̄2(t), Q1(t), Q2(t) into the relative orbital elements P̄ (t), Qp(t). Since {Ωr, ir, ωr} describe

the relative orientation of the two orbital planes, we can take the orbital plane of S1 as fixed with

uncertainty in the orientation of the plane of S2 with respect to S1. It is clear then that any collision

will occur within ±Rc of the orbital plane of S1. For high relative inclinations and all but the most

extreme values of Rc we can limit our analysis to collisions on the orbital plane of S1 without an

appreciable affect on the computed Pc. In this case we assume S2 trajectories only cross the orbital

plane of S1 once at a unique τ ∈ (t0, tf ]. We use this assumption to define the collision event set

Λτ .

Λτ := {P (t)| ρ(t) ≤ Rc at time t = τ} (4.16)

for some τ ∈ (t0, tf ] and where ρ(t) is the Euclidean distance between S1 and S2.

That is Λτ will simply be the subset of the states on the orbital plane of S1 at time t = τ (or

equivalently for which ν∗2 = 0, π) that satisfy the collision criteria ρ(t) ≤ Rc. The union of all Λτ

then would be the set of all P that resulted in a collision anytime between t0 and tf . In terms of

the set Λτ the Pc can then be defined as

Pc =

∫ tf

t0

∫
Λτ

fp(P (t), t; t0)dP (4.17)
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For our planar analysis, a state P can be said to belong to the set Λτ if and only if

ν∗2 = 0, π

R2
c ≥ ∆r2 + (r̄∗2ν

∗
1)2

(4.18)

Where r̄∗2 is the r corresponding to the orbital element state q2(τ) along the eigenfiber of the S2

distribution that intersects the S1 plane at time t = τ . That is

q2(τ) = q̄2(t)− ν̄∗2(t)

λν
Eν (4.19)

where Eν is the eigenfiber with an eigenvalue of λν As with other planar Pc formulations, the

velocity does not explicitly enter into the conditions for a collision. From these conditions we can

define limits of integration over {∆r, ν∗1}.

|∆r| ≤
√
R2
c − (r̄∗2ν

∗
1)2

⇒ |ν∗1 | ≤
Rc

r̄∗2

(4.20)

Integrating over the limits in (4.20) would produce the probability of a collision given ν∗2 =

0, π. From the law of total probability, it is clear that to get the probability of collision we must

include the probability density of the event that ν∗2 = 0, π at time t = τ and integrate over all such

events. This integration will be made easier by noting that the differential dν∗2 can be written as the

following.

dν∗2 =
dν∗2
dt
dt (4.21)

To evaluate the integral in (4.17), we shall employ a change of variables from relative orbital

elements to relative polar coordinates χ = [∆r, ν∗1 , ν
∗
2 ]T . Since the relative orbital elements are

functions of q1 and q2 it is easier to form the distribution in χ directly from the distribution in P

as opposed to forming a distribution in {r1, θ1}, {r2, θ2} and then forming the relative distribution

as is done in [96]. After mapping the PDF into the relative polar coordinates and bringing in the
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limits of integration from (4.20), the Pc is given by the following expression.

Pc =

∫ tf

t0

∫ Rc/r̄∗2

−Rc/r̄∗2

∫ +
√
R2
c−(r̄∗2ν

∗
1 )2

−
√
R2
c−(r̄∗2ν

∗
1 )2

fχ(χ(t), t; t0)|ν̇∗2 | d∆r dν∗1 dt (4.22)

If the PDF in χ can be expressed in terms of a Gaussian and if the motion of q1 is independent

of q2, then equation (4.22) can be reduced to

Pc =

∫ tf

t0

∫ Rc/r̄∗2

−Rc/r̄∗2

∫ +
√
R2
c−(r̄∗2ν

∗
1 )2

−
√
R2
c−(r̄∗2ν

∗
1 )2

N(χ,µχ, Qχ)|ν̇∗2 | d∆r dν∗1 dt (4.23)

4.2.3 3D Analysis

For a number of collision scenarios it is necessary to do a 3D Pc analysis that takes into account

the full state uncertainty. Several algorithms [72, 74, 98] have been developed, as an alternative to

Monte Carlo, based on [96], which have this capability. The efficiency of these methods is highly

dependent on the underlying distributions, in the frame which the Pc integral is to be evaluated,

being Gaussian or a GMM with a moderate number of mixture components at the time of collision.

This can be partially achieved by formulating the PDF in spherical coordinates as opposed to

Cartesian.

Unfortunately spherical coordinates have singularity issues with the azimuth angle and rate,

when objects are located along the ẑ axis. To avoid this difficulty the x-y-z axes of the spherical

coordinate system will be aligned with the nominal perifocal frame axes of satellite S1. This

ensures that all collision events occur near the x-y plane. As usual θ measures the angle from the

the x̂ axis to the projection of the of the position vector onto the x-y plane and φ is the angle from

the ẑ axis. With this definition of coordinate axis, the spherical coordinates in terms of the orbital

elements is.
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r =
a(1− e2)

1 + e cos ν

θ = arctan

(
Rr2,1 cos ν +Rr2,2 sin ν

Rr1,1 cos ν +Rr1,2 sin ν

)
φ = arccos (Rr3,1 cos ν +Rr3,2 sin ν)

ṙ =
µ

h
e sin ν

θ̇ =
h

r2

Rr3,3

sinφ2

φ̇ =
h

r2
(Rr2,3 cos θ −Rr1,3 sin θ)

(4.24)

where Rr ∈ R3×3 is the rotation matrix from the S2 perifocal frame to the S1 perifocal frame.

Since we are often concerned with collisions between objects in circular or nearly circular orbits,

equation (4.24) is given in terms of the modified equinoctial elements in Appendix C.

A Taylor series expansion of equation (4.24) at the point where the Eigen fiber of the distri-

bution crosses the line of relative nodes, will allow us to linearly map the distribution into the

spherical coordinates. As was the case in [96] we are concerned with finding the probability of the

relative position being on the surface of a sphere, of radius Rc with relative velocities entering the

sphere, at discrete times ti ∈ (t0, tf ] and then integrating over all ti. The PDF of the relative state

is formed in the same way it is in [96], such that the mean (µr) and covariance (Σr) of the relative

state distribution (in spherical coordinates) are given by the relations below.

µr = µ2 − µ1 (4.25)

Σr = Σ1 + Σ2 (4.26)

At this point in the discussion it is useful to summarize how all of the pieces come together to

compute a Pc value (please see Algorithm 1).

A quick note on Algorithm 1 step 13, in going from the Cartesian integral to an earth centered
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Algorithm 1: CRATER
1 function CRATER (qS1 , qS2 , QS1 , QS2 , t0, tc0 , tcf ) ;

Input : Initial means and covariances in orbital elements qi and Qi along with inial time t0
start of screening window tc0 and end of screening window tcf

Output: Pc
2 Linearly Propagate the nominal trajectories q1n, q2n and covariances Q1n, Q2n from t0 to tc0
3 Compute the non linearity index of the STM along the Eigen fiber, find ∆σ such that
||Φi−Φn||2
||Φn||2 ≤ ε, where Φi is the STM linearized about qi = qn + ∆σEνn (where Eνn is the

Eigenfiber computed at the mean)
4 Place N = 12σ

∆σ
linearization points qi along the axis of the initial distributions

corresponding to uncertainty in the semi major axis of the orbit
5 Propagate each qi and STM Φi linearized about qi all the way through tcf
6 for each time tj ∈ [tc0 , tcf ] do
7 Find the qi that is closest to the relative line of nodes by computing ωr,Ωr, let this be

called qij
8 Then find the states q∗1, q

∗
2 such that {ν∗1 , ν∗2} = 0 or π where q∗k = qijk + ∆σkEνik

where Eνik
is the Eigen fiber of ΦiQkΦ

T
i , k = 1, 2 .

9 Compute the linearized transformation from orbital elements to spherical coordinates
M1,M2 about the vectors q∗1, q

∗
2 . We can now express the displacement from the mean

to a given state s (in spherical coordinates) in terms of the orbital elements at t0 (in the
neighborhood of our expansion point) as

∆q0k = q0k − q̄0k = Φ−1
ik
M−1

k (s− s∗k) + Φ−1
ik

(q∗k − qijk) + (qi0k − q̄0k) (4.27)

10 Compute the mean of the relative distribution in spherical coordinates µr = µ2 − µ1

where µk = s∗k −Mk(q
∗
k − qijk)−MkΦik(qi0k − q̄0k)

11 Compute the covariance of the relative distribution Σr = Σ1 + Σ2 where
Σk = MkΦikQkΦik

TMT
k , k = 1, 2

12 Let Σr =

[
Ar Br

BT
r Cr

]
13 And, as in [96], except now in terms of relative spherical coordinates, evaluate

Pcj =
∫ 2π

0

∫ +π/2

−π/2 N(sr,µr, Ar)ν(ŝ, t)R2
c cos γ dγ dψ

14 end
15 return Pc =

∫ tcf
tc0 Pcjdt
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spherical coordinate system we pick up an dX
dsE

= R2 sinφ. Then if we wish to evaluate the the

integral in terms of a body centered spherical frame, as in [96], we pick up a factor of dsE
dsB

=

R2
c

R2 cos γ. Noting that sinφ ≈ 1 we end up with the approximation dv = R2
c cos γdγ dψ where γ

is the elevation angle.

The reader has likely noticed that many of these methods rely heavily on the line of relative

nodes and may face some difficulty when the two colliding objects are in co-planar or nearly co-

planar orbits. These methods however, are still valid over a large portion of practical collision

scenarios. Instances where these techniques may break down are easily identified beforehand by

computing ir.

4.3 Results

The 2D and 3D formulations of the Pc from the Planar and 3D Analysis sections were in-

corporated into the CRATER collision risk assessment tool and then used to compute the Pc on

select test cases from Chapter 3. These results are compared to the classical implementation of

CRATER, which uses the Pc integral derived by Coppola [96] with local Gaussian and GMM en-

hancements. The only thing that changes between these two methods then is the coordinate system

in which the Pc integral is evaluated, giving a comparison between the Cartesian and the relative

orbital element formulations. We shall see two sets of comparison results; one for the classical

linear analysis, where no local Gaussian or GMM are used to compensate for the nonlinearity in

the problem, and the other set where local Gaussians are used.

Table 4.1: CRATER Results Cartesian Vs. Relative OE Linear Analysis. Reprinted with permis-
sion from [103].

Test Case II Cart. 2D Rel. OE. 3D Spher. MC
Pc 3.53E-5 4.06E-5 6.05E-5 5.892E-5

Test Case VI Cart. 2D Rel. OE. 3D Spher. MC
Pc 7.96E-9 8.77E-6 1.050E-5 1.200E-5

Test Case VII Cart. 2D Rel. OE. 3D Spher. MC
Pc 2.79E-5 2.08E-11 1.71E-11 0.0
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Cases II, VI, and VII were designed to highlight the difference between linear and non-linear

techniques for computing the Pc. This is evident by the difference seen in the results obtained

using linear Cartesian analysis versus the fully nonlinear Monte Carlo analysis. Relative orbital

based linear methods to compute Pc formulations developed in this chapter are seen to provide

up to orders of magnitude accuracy improvement over the classical linear Cartesian method. To

reiterate, the Cartesian, 2D Relative Orbital Element, and 3D Spherical results in Table 4.1 were

obtained using only linear analysis, with no use of the GMM or Local Gaussian enhancements.

To better understand the results in Table 4.1, it is helpful to look at the linearly propagated

distributions projected into Cartesian space compared to the true distribution.

Figure 4.2: True Position Distribution Com-
pared to Linearly Propagated Cartesian and
Spherical Distributions Projected into x −
y−z Space. Reprinted with permission from
[103].

Figure 4.3: True Velocity Distribution
Compared to Linearly Propagated Carte-
sian and Spherical Distributions Projected
into ẋ − ẏ − ż Space. Reprinted with per-
mission from [103].

In Figures 4.2 and 4.3, an ensemble of states on the 6σ ellipsoid of a Normal distribution that

was initially Gaussian in orbital element space were propagated through the nonlinear equations

of orbital motion resulting in the true (blue) distribution. The approximate linear Cartesian (green)

and Spherical (red) distributions were generated by linearly propagating the ensemble of initial
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states about the nominal trajectory using the STM in orbital elements and the linearized mapping

from the orbital elements into Cartesian and spherical coordinates respectively. The linearized

Spherical distribution was then mapped into Cartesian coordinates using the algebraic relations

between spherical and Cartesian coordinates. While the linearized Cartesian distribution is tangent

to the true distribution at the point of expansion, it is unable to capture the banana shape of the true

distribution. The linearized distribution in spherical coordinates is seen to do a much better job

approximating the shape of the true distribution.

Matching the shape of the distribution, at least approximately, is important for avoiding false

positives or negatives, but does not guarantee an accurate PDF or Pc computation. To compare

the accuracy of the approximate distributions, the density of states at various sigma levels are

computed and then compared to the Liouville solution [132, 31], which gives the true density of a

state in the absence of process noise. These level set results are presented in Figures 4.4 and 4.5.

To serve as a baseline for how well a linearized distribution can approximate the true distribution,

results for the linearized distribution in Modified Equinoctial orbital elements are included.

Figure 4.4: Average Error in the Linearly Prop-
agated PDF vs the Liouville Solution as a Func-
tion of σ and Coordinate Choice. Reprinted with
permission from [103].

Figure 4.5: Average Error in the Linearly Prop-
agated PDF vs How Much Mass Has Been Ac-
counted For. Reprinted with permission from
[103].
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It is clear that while linearization in spherical coordinates is much more accurate than Cartesian

for linearly approximating the propagated PDF, there is still considerable error in trying to linearly

approximate the true PDF for this problem. However, if one is only approximating a portion of the

PDF, as is the case with the Local Gaussian approximation, spherical coordinates are an excellent

choice.

In cases where local approximations are insufficient to accurately construct the joint PDF, such

as when the relative inclination between the orbits is low, it may be necessary to use a global

approximation method. Currently, the most popular global approximation method that has been

used by others on this problem [74, 72, 73], is the GMM. As was shown in Chapter 3, the use of a

nonlinearity index [42] can play an important role in estimating the number of mixture components

needed to model the propagated non-Gaussian PDF and greatly enhance GMM. In Figure 4.6, the

nonlinearity (NL) index for the mapping from Modified Equinoctial orbital elements into either

Cartesian or spherical coordinates is shown. The NL index was calculated at intervals along the

Eigenfiber of the distribution in orbital elements.

Figure 4.6: Percent Change in the NL Index Along the Eigenfiber. Reprinted with permission from
[103].
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From Figure 4.6 it is easy to see that the conversion to spherical coordinates is more linear than

the transformation into Cartesian along the Eigenfiber. What this figure means in a practical sense

can be communicated by the following short example. For example, if a linearity tolerance of 2.5

% is to be satisfied then mixture components would need to be placed at about 1σ intervals along

the Eigenfiber if the PDF is to be mapped into Cartesian coordinates. If the PDF is to be mapped

into Spherical coordinates then the tolerance is met with wider spacing of about 2.5σ. Or in other

words, less than half the mixture components are needed at this tolerance.

Next, the new methods were tried on cases I - VII from Chapter 3. This time Cartesian and

3D Spherical methods made use of the Local Gaussian enhancement. The 2D method was run

without enhancements. In Table 4.2 there are six columns of data. Column one has the results

from the prefilter for the ascending/ descending node. Note that the prefilter was not run on cases

with parametric force model uncertainty. Columns two through five contain the predicted Pcs for

each method along with how long (CPU time) it took the algorithm to run. Column six contains

the percent improvement in accuracy for the 3D spherical method over the Cartesian method as

well as the percent reduction in run time goring from Cartesian to spherical. It should be noted that

the Pc values presented in Tables 4.1 and 4.2 are for a single close approach, even though there are

multiple close approaches possible for many of these test cases.

Looking at Table 4.2, the use of local Gaussians has allowed the Cartesian method to close

most of the performance gaps seen from Table 4.1. The remaining differences however, are not

negligible. The 3D spherical method resulted in an average of 52 % improvement in the accuracy

of the solution over Cartesian and and average speed up of 55 %. The 3D spherical method was

also more consistent in its run time across the different cases. This is because the 3D spherical

method requires fewer Local Gaussian expansions to meet a given linearity tolerance. The 2D

method was ballpark close when predicting the Pc, but lacked the consistent accuracy of either of

the 3D methods when local Gaussians were used. However, the 2D method was more accurate

than the 3D Cartesian method when doing linear analysis, as was seen in Table 4.1. Notably, in

cases III and V, the 2D method was the most accurate. This is likely due to there being large errors
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Table 4.2: CRATER Results Cartesian vs Relative OE. Reprinted with permission from [103].

TC I PC* Cart. 2D Rel. OE. 3D Spher. MC % Improvement
PC 2E-2/2E-3 2.809E-4 1.99E-04 2.464E-4 2.675E-4 -

Time - 1.1 sec 0.09 sec 0.6 sec 26299 sec 43%
TC II PC* Cart. 2D Rel. OE. 3D Spher. MC % Improvement

PC 6E-3/6E-3 5.97E-5 4.06E-05 5.927E-5 5.89E-05 -
Time - 7.8 sec 0.09 sec 1.0 sec 65250 sec 87%

TC III PC* Cart. 2D Rel. OE. 3D Spher. MC % Improvement
PC 3E-1/0 9.29E-4 9.29E-04 9.961E-4 9.74E-04 -

Time - 1.5 sec 0.11 sec 0.61 sec 25038 sec 60%
TC IV PC* Cart. 2D Rel. OE. 3D Spher. MC % Improvement

PC NA 6.149E-4 4.05E-04 6.1E-4 2.21E-04 -
Time - 0.6 sec 0.1 sec 0.6 sec 26200 sec 0%
TC V PC* Cart. 2D Rel. OE. 3D Spher. MC % Improvement

PC NA 12.1E-3 5.62E-03 6.386E-3 5E-3 -
Time - 0.73 sec 0.1 sec 0.6 sec 28000 sec 18%

TC VI PC* Cart. 2D Rel. OE. 3D Spher. MC % Improvement
PC 1E-3/6E-4 1.235E-5 8.77E-06 1.201E-5 1.200E-5 -

Time - 5.49 sec 0.09 sec 0.62 sec 32000 sec 89%
TC VII PC* Cart. 2D Rel. OE. 3D Spher. MC % Improvement

PC 1E-2/1E-2 2.187E-11 2.08E-11 2.29E-11 0.0 -
Time - 5.78 sec 0.1 sec 0.69 sec 27800 sec 87%

in the velocity portion of the linearized PDF compared to the position portion.

The prefilter successfully flagged each test case for further analysis and P ∗c bounds the actual

Pc each time. Test Case VII would be difficult to filter out without doing a nonlinear Pc analysis

since a linear analysis results in a much higher Pc as seen in Table 4.1. Enhancements to this

method are made in the next chapter to make these prefiltering bounds less conservative.

4.4 Conclusions

The relative orbital elements {Ωr, ir, ωr} provide important insights into the satellite collision

problem that are not apparent when using Cartesian coordinates or even orbital elements computed

with respect to an inertial frame. In particular they give the location of the relative line of nodes

with respect to the x̂ axis of the perifocal frame for both satellites. This information was used to

predict the probability of a close approach (P ∗c ) along this critical line in a prefiltering technique
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which improved upon widely used geometric filters by incorporating the initial state uncertainties

of the two satellites. This, combined with the phase information, allowed for the close approach to

be defined in a probabilistic manner rather than by heuristic bounds on deterministic calculations.

Furthermore they played an integral part in the formulation of the 2D Pc method. By projecting

the uncertainty in the inertial orbital elements onto the relative elements, we defined a fixed plane

of collision and obtained conditions for collisions on this plane in terms of the relative orbital

elements. For the 3D method they were used to obtain a spherical coordinate frame that avoids

the polar singularity issues associated with spherical coordinates for any collision by defining the

x-y plane in terms of the orbital plane of one of the satellites. Useful insights established where to

place local Gaussian expansion points to obtain a good local approximation of the joint PDF (see

steps 8 and 9 from algorithm 1).

In the development of the new 2D and 3D methods we were able to avoid converting to Carte-

sian coordinates to carry out the Pc computation. The effect of this was to make the entire problem

more linear as evidenced by the marked improvement in accuracy when using linear analysis (see

Table 4.1), and by the NL index (see Fig. 4.6). Importantly the linearized PDFs in these curvilin-

ear coordinates were more accurate when compared to the solution of the Liouville equation and

preserved the shape of the true PDF better than their Cartesian counterpart (see Fig.s 4.2 - 4.5).

When doing nonlinear Pc analysis, the new methods were comparable in accuracy to the nonlinear

Cartesian method but with improvements in speed (see Table 4.2).
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5. STEADY STATE ANALYSIS AND ORBITAL ELEMENT METHODS

5.1 Introduction

The developments of the previous chapters are largely focused on pushing the current state-

of-the-art forward in terms of uncertainty propagation and Pc calculation in a computationally

efficient and accurate manner for conjunction analysis. The present study hopes to compliment

this body of work (as well as the wider literature) by contributing additional fundamental insights

into the collision problem as well as new methods for achieving improved Pc algorithms.

One such insight has come from the investigation of the long term behavior of colliding ob-

jects subject to Kepler motion. This insight resulted from asking the question: What is the steady

state probability of collision for two orbiting objects with known initial distributions? As will be

shown, this question led to the discovery of the upper bound in the Pc between two classically

orbiting objects. There are a number of ways of bounding the probability of collision that have

been developed by various authors. These bounds, however, were developed to account for uncer-

tainty in the colliding objects initial covariances, uncertainty in the dynamics or error due to some

underlying assumption [145, 88]. The bound developed here is different and is a supremum on

the Pc for two orbiting objects with known initial distributions subject to Keplerian motion. This

steady state Pc is useful for quickly computing an upper bound on the risk of collision between

two objects, even if the initial distributions are not Gaussian. The result and especially this line

of thinking can also be useful in informing what the SSA requirements for a new mission should

be in order to limit the long term risk of collision with other objects. This is because the steady

state Pc is not concerned with the satellite’s initial true anomaly, but only with how well the orbit

is known.

To compute this steady state Pc we first consider letting time go to infinity while assuming

Keplerian motion. As such this approach is clearly better suited and easily visualized for the case

of nearly circular orbits, since the collision geometry is almost invariant as the two orbits precess
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with respect to one another under the influence of the gravitational harmonics.

In order to relax some of the assumptions made in computing the steady state Pc, another

bound is computed for a single close approach. This result is much more in holding with other

bounds on the Pc previously discussed in the literature, but has the distinction of being easy to

compute for non-Gaussian distributions. This is achieved by using the steady state Pc and then

computing the probability of one of its major conditioning events. This conditioning event is shown

to be well approximated by simple bound on the satellites time varying anomaly. Computing the

probability that the time varying anomaly is within this bound, together with the steady state Pc,

will yield a bounding probability for a given close approach. This upper bound for a single close

approach is also easily computed for non Gaussian distributions, since the conditioning event is in

a single dimension making function approximations and integration in this one dimensional space

are trivial. This upper Pc bound for a single pass will be compared to both the steady state Pc and

the transient solution on a number of test cases.

The final major focus of this chapter is to address a long standing difficulty in accurately com-

puting the Pc over a given time interval. It has long been acknowledged that there are benefits

to performing uncertainty propagation in orbital element space [129, 130]. Unfortunately, for the

purposes of conjunction analysis, the state PDF is often mapped into Cartesian coordinates, or

some other coordinate frame, where the relative distances are easily defined in order to compute

Pc. Since the mapping from orbital elements into this new coordinate frame is nonlinear, special

techniques must be employed to accurately approximate the "more non-Gaussian" PDF in this new

coordinate frame. These techniques can range from efficient local approximations, demonstrated

in Chapter 3, to less efficient (but more generally applicable) global approximation techniques like

the Gaussian Mixture [73] or orthogonal basis functions [136]. In either case, great care must be

taken to ensure that the mapped PDF and resulting Pc are accurate. These difficulties will be ad-

dressed, in this chapter, by deriving a formulation of the Pc integral that is evaluated in the orbital

element space.

This new formulation of the Pc is made possible through the use of the relative orbital elements
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developed in Chapter 4. Being able to compute the Pc in the orbital element space will eliminate

the nonlinear transformation associated with mapping the propagated PDF from orbital element

space to another coordinate system as is typically done to be able to compute Pc. While computing

the Pc in element space makes the propagated PDF easier to accurately approximate, it complicates

the formulation of the Pc integral. This increase in complexity will shift the computational burden

away from approximating the propagated PDF to numerically evaluating the Pc integral. This new

orbital element method for computing Pc will be derived for the general collision case and then

demonstrated and compared to Monte Carlo for a number of reduced dimension cases.

5.2 Methods

5.2.1 Steady State Distribution

Let us consider two satellites S1, S2. Suppose that the satellites are distributed according to the

PDF’sD1, D2 respectively. These distributions are defined at some initial time t0 and are allowed to

evolve according to the Liouville equation [146]. In particular, this means that the probability mass

associated with a given trajectory X1(t) is constant for all t. The support of these distributions is

defined on R6 whose coordinate axes are given by the classical orbital elements {a, e, i, ω,Ω,M}.

Where M is the mean anomaly.

For the present analysis, let us limit our discussion to objects undergoing idealized Keplerarian

motion. Note that for the prescribed motion, the first five elements are constant with M(t) varying

linearly with time. Since the first five orbital elements are constant for the prescribed motion, the

distribution over this five element subspace is also constant. Examining the behavior of M(t) we

hope to arrive at a steady state distribution. Recall that for Kepler dynamics M(t) is given by

M(t) = M0 + n(t− t0) (5.1)

where n(a) =
√

µ
a3

. Suppose we choose two neighboring trajectories from X1 with semi-major

axes a, a+ ∆a such that the difference in the probability density of the two trajectories is less than
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some ε > 0.

|D1(a)−D1(a+ ∆a)| < ε (5.2)

These two orbits have a relative period of

Prel =
2π

|n(a)− n(a+ ∆a)|
(5.3)

Notice that after one relative orbit, the density along the arc connecting the two neighboring

trajectories does not vary by more than ε. Where epsilon can be chosen arbitrarily small for large

enough t. Therefore, as t→∞ the probability density of M along the arc can be taken as constant

(see Figure 5.1). Hence, in the limit as t→∞, M is uniformly distributed M ∼ U [0, 2π].

Figure 5.1: Evolution of Mean Anomaly Distribution.

Given that the distribution is uniform in M , a steady state distribution in terms of the true

anomaly f can also be obtained. To obtain the distribution in terms of f , a differential probability

mass dm is written in terms of density and a differential volume in both the true and mean anomaly

spaces. Since M is uniformly distributed, its density is a constant 1
2π

. The density function over

f is unknown and is written as ρ(f). Since the differential probability mass is equal in these two

spaces, we obtain the following.

dm =
1

2π
dM = ρ(f)df (5.4)
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Next, recalling that dM
dt

= n and df
dt

= h
r2

, we obtain the steady state distribution of f for a

given e as

ρ(f |e) =
1

2π

dM

df
=

1

2π

dM

dt

dt

df
=

n

2πh
r2 =

(1− e2)
3
2

2π(1 + e cos (f))2
(5.5)

.

Unlike the the steady state distribution for the mean anomaly, the distribution of the true

anomaly in equation (5.5) is not uniform for e > 0, but reflects the truth that orbiting objects tend

to spend most of their time near apoapsis. This result is qualitatively an expected consequence

of Kepler’s second law. Conversely, the distribution of f approaches the uniform distribution as

e → 0 since f = M when e = 0. The distribution of f is plotted for different orbit eccentricities

in Figure 5.2.

Figure 5.2: Steady State Distribution of True Anomaly.
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At this point we have expressions for the steady state distributions of the mean and true anoma-

lies and would like expressions for the entire state vector’s distribution in the steady state. This is

constructed using the law of total probability [131].

Dx(x) = ΣN
i=1D(x|yi)Dyi(yi) (5.6)

Let us partition our state vector X∞ = [f, q0], where q0 = {a, e, i, ω,Ω}. Using the law of total

probability the distribution of X∞ is given by.

DX∞(X∞) = ρ(f |e)D
(
q0(t0); t0, t0

)
(5.7)

5.2.2 Steady State Probability of Collision

Now that an expression for the steady state distribution has been obtained, it is desired to com-

pute the steady state probability of collision PC∞. The collision event shall be defined using the

radius of collision Rc [76]. That is, a collision is said to occur between two trajectories, if at

any point the distance between them is less than Rc. In the transient case, each close approach

between satellites brings a subset of trajectories from the distributions D1, D2 within Rc of each

other. For the steady state probability of collision PC∞, all infinity of close approaches will be con-

sidered simultaneously. This requires finding all of the state pairs from the initial orbital element

distributions that will at some point result in a collision.

For a given sample from the joint PDF (q01 , q02), we can compute the f ∗1 , f
∗
2 that result in the

minimum separation between the two satellites. If this distance is less than Rc, the trajectory pair

results in a collision, otherwise they won’t collide even as t→∞. The question then is what is the

probability that f1 = f ∗1 and f2 = f ∗2 simultaneously as t → ∞. To further illustrate, but without

loss of generality, let us suppose that orbits from the two distributions are nearly circular, such that

f(t) ≈M(t) = M(t0) +

√(
µ

a3

)
(t− t0) (5.8)
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Now for some time between t0 and one orbital period of S1 it is evident that f1(t) = f ∗1 for t = t∗1

for any q0 from D1. At the time t∗1 we compute the true anomaly of S2. We would now like to find

if there is a future time such that f2(t) = f ∗2 for any q0 from D2. This can be done by looking at

the quantity ∆f(t) = f2(t)−f1(t) and seeing if there is a time such that ∆f(t) = ∆f ∗ = f ∗2 −f ∗1 .

∆f ∗ = ∆f(t∗1) +

(√
µ

(a1 + ∆a)3
−
√
µ

a3
1

)
(t− t∗1), t ≥ t∗1 (5.9)

where a2 = a1 + ∆a.

It is apparent looking at equation 5.9 that for any finite ∆a, there is a finite t∗ such that

∆f(t∗) = ∆f ∗. Rearranging this equation to solve for ∆a and taking the limit as t → ∞ it

can be seen that as time goes to infinity ∆a→ 0. Therefore the probability that both f1 = f ∗1 and

f2 = f ∗2 simultaneously as t→∞ is one for any (q01 , q02).

Thus, finding the steady state probability of collision is the same as finding the probability that

the minimum distance between two orbits sampled from distributions D1, D2 is less than Rc and

is consequently the maximum Pc that can result from distributions D1, D2. This can be seen by

looking at the formula for the steady state Pc.

Pc(t) = Pc(t0) +

∫ t

t0

∫
Λτ

D1

(
X1(τ); τ, t0

)
D2

(
X2(τ); τ, t0

)
dΛτdτ (5.10)

Where again, Λτ is the set of all states that uniquely satisfy the conditions for a collision at time

t = τ and X1, X2 are the state vectors.

Since the integrand D1

(
X1(t)

)
D2

(
X2(t)

)
≥ 0 for all t and X1, X2, the function Pc(t) must be

monotonically increasing. That is Pc(t) ≤ Pc(t+∆t) for any twhere ∆t > 0. Also, by the property

of distributions Pc(t) ≤ 1 for any t. Since Pc(t) is a monotonically increasing bounded function,

there exists some upper limit on the probability of collision ‖Pc‖∞. Therefore, the maximum

probability of collision for any two objects is given by

lim
t→∞

Pc(t) = ||Pc||∞ ≤ 1 (5.11)
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For many orbits ‖Pc‖∞ is well approximated by computing the probability that ∆r ≤ Rc along

the line of relative nodes as was done in chapter 4. The analysis presented here has extended that

work to allow for general distributions and has shown that it is the minimum upper bound on the

Pc as t → ∞ for cases where the minimum miss distance between two orbits can approximately

be said to lie on the line of relative nodes.

5.2.3 ‖Pc‖∞ for a Single Pass

The result of Section 5.2.2 provides good insight into the bounding probability of collision

between two orbits and the nodes of interest. However the assumption of Kepler motion while

letting t→∞may cause either over or under prediction of the bounding probability. We therefore

seek a more practical bounding probability that is easily calculated for general distributions.

In this case we look at an upper bound on the probability of collision for a single close approach

between two satellites S1, S2 with initial distributions D1(q1, t0; t0), D2(q2, t0; t0) and perturbed

orbital motion. Suppose a close approach is predicted for t ∈ [ta, tb]. ta is chosen such that no state

from either distribution has come within Rc of each other yet. This is done using the eigenfiber.

To facilitate the computation, the state uncertainty in q1, q2 at ta will be mapped into the relative

orbital elements. Furthermore the interval [ta, tb] shall be assumed to be sufficiently small such

that Kepler dynamics hold over the interval. Note that this last assumption is valid for almost all

collision scenarios.

In the previous section, we derived an expression for PC∞ . One way to think about this value,

is that it gives the probability of collision given f1, f2 are chosen such that the relative distance

between each point from the distributions of S1, S2 is at a minimum. The argument being, that as

time goes to infinity the probability that f1, f2 assume these values simultaneously is one.

Suppose now that we propagate the distributions of q1 and q2 to obtain D1(q1; ta, t0) and

D2(q2; ta, t0) respectively. We then use these distributions to compute ‖Pc‖∞ as was prescribed in

the previous section. Now suppose that the following sets are defined. Let

A ≡ {(qa1 , qa2)|min
(
r(t)

)
≤ Rc, t ∈ [ta,∞)} (5.12)
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Where qak = [ak, ek, ik, ωk,Ωk]
T , k = 1, 2 are the partial state vectors for satellites Sk sampled

from their respective distributions at ta. In this sense, A is the set of all orbit pairs with a minimum

miss distance of less thanRc. For convenience let qa ≡ (qa1 , qa2) denote a trajectory pair. Next the

set B is defined as the set of all f ≡ (f1, f2) pairs such that f1 = f ∗1 and f2 = f ∗2 simultaneously or

f = f ∗. Where, again f ∗ minimizes the distance of the trajectory pair qa. Recall Bayes rule which

gives

P (A|B) =
P (A ∩B)

P (B)
(5.13)

for any events A and B. If the event A is defined as qa ∈ A and the event B defined as f ∈ B,

equation 5.13 can be rearranged to solve for P (A ∩B).

P (A ∩B) = P (qa ∈ A|f ∈ B)P (f ∈ B) (5.14)

From the previous section it is clear that P (qa ∈ A|f ∈ B) = ‖Pc‖∞ and that as time goes

to infinity P (f ∈ B) = 1. For the single pass, time shall not be allowed to go to infinity, but

will instead be limited to the interval [ta, tb]. Over this time interval we shall attempt to find

P (f ∈ B). In general this is quite difficult, since f ∗ can usually only be found by root finding

methods [77, 147]. Since an upper bound is being sought, the set B will be approximated as a box

in f1, f2 space, such that all f ∗ ∈ B satisfy f1 ∈ [fa, fb] and f2 ∈ [fc, fd]. Let this box be called

B∗. The P (f ∈ B∗) will depend greatly on the definition of B∗. For all but nearly co-planar orbits,

all f ∗ (that produce a miss distance of less than Rc) will be contained within a small box about the

relative line of nodes. If we define this box as B∗, then B ⊆ B∗ and

P (A ∩B) ≤ P (qa ∈ A|f ∈ B)P (f ∈ B∗) (5.15)

The bounds of this box are computed using the relative orbital elements of Chapter 4. Recall

that when the uncertainty is projected onto the relative orbital elements, the orbital plane of S1 can

be considered fixed, such that collision are only possible for |z2| ≤ Rc if z is parallel to the angular
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momentum vector of S1. If we then define z2 = r2 sin (f2 + ωr) sin (ir), we can solve for the f2

such that z2 = ±Rc with ωr, ir taking their extreme values from the distribution. This yields the

values of [fc, fd]. Next, let y2 = r2 sin (f2 + ωr) cos (ir) and compute the extreme values of y2 at

the points were S2 comes within Rc of S1’s orbital plane (i.e where f2 = fc and f2 = fd). Now

define y1 = r1 sin (f1 − Ωr) and find the f1 such that y1 = y2 for extreme values of Ωr yielding

the values [fa, fb]. With the bounds of B∗ defined we move on to computing P (f ∈ B∗).

While it is easy, at any given fixed time ti ∈ [ta, tb], to compute P
(
f1(ti) ∈ [fa, fb]

)
and

P
(
f2(ti) ∈ [fc, fd]

)
, these instantaneous probabilities cannot simply be integrated over time to

yield the probability of the event over the entire time interval. To derive the correct expression the

following example is employed.

Consider two independent objects P1, P2. Suppose that P1 has the distribution ρ1

(
x; t, t0

)
and

P2 has the distribution ρ2

(
y; t, t0

)
. P1 is located along the x-axis and moves in the positive x

direction at 1u/s, while P2 is along the y-axis and moves in the positive y direction at 1u/s. In this

example we would like to find the probability that P1 and P2 are both within a unit box centered at

the origin over the time interval [t0, tf ]. To compute the probability of the event, the time interval

shall be broken into two segments [t0] and (t0, tf ]. At t0 the probability of both objects being within

the unit square (P0) is simply given by the product of the probability of each object P1, P2 being

within the region independently.

P0 =

∫ 1
2

− 1
2

ρ1

(
x; t0, t0

)
dx

∫ 1
2

− 1
2

ρ2

(
y; t0, t0

)
dy (5.16)

Next we wish to consider t = t0 + ∆t. During this time step new probability mass enters the

region from both distributions ρ1

(
x = −1

2
; t0 + ∆t, t0

)
dx, ρ2

(
y = −1

2
; t0 + ∆t, t0

)
dy. This new

probability mass is multiplied by the probability that the other object is within the region at time t.

∆P =

{
ρ1

(
x = −1

2
; t0 + ∆t, t0

)
dx ∗

∫ 1
2

− 1
2

ρ2

(
y; t0 + ∆t, t0

)
dy

}
+{

ρ2

(
y = −1

2
; t0 + ∆t, t0

)
dy ∗

∫ 1
2

− 1
2

ρ1

(
x; t0 + ∆t, t0

)
dx

} (5.17)
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Taking the limit of (5.17) as t → 0 and letting dx = dx
dt
dt and dy = dy

dt
dt yields an expression for

the differential increase in probability of the event that can be integrated over time.

dP =

{
ρ1

(
x = −1

2
; t, t0

)dx
dt
dt ∗

∫ 1
2

− 1
2

ρ2

(
y; t, t0

)
dy

}
+{

ρ2

(
y = −1

2
; t, t0

)dy
dt
dt ∗

∫ 1
2

− 1
2

ρ1

(
x; t, t0

)
dx

} (5.18)

Performing this integration and recalling P0 as defined in (5.16) yields

PI = P0 +

∫ tf

t0

{(
ρ1

(
x = −1

2
; t, t0

)dx
dt
∗
∫ 1

2

− 1
2

ρ2

(
y; t, t0

)
dy

)
+(

ρ2

(
y = −1

2
; t, t0

)dy
dt
∗
∫ 1

2

− 1
2

ρ1

(
x; t, t0

)
dx

)}
dt

(5.19)

This example is exactly analogous to finding the probability that the true anomalies are within

the bounding box about the line of relative nodes. Substituting this result into the the expression

for bounding probability for a single pass (5.15), replacing x and y with f1 and f2 gives us the final

result.

PC∞[a,b]
= PC∞PI , t ∈ [ta, tb] (5.20)

This expression should yield a much tighter bound on the Pc and is easily compute for general

distributions.

5.2.4 Transient Solution

The result in Section 5.2.2 motivates the search for a solution to the transient Pc problem in

terms of the relative orbital elements. We shall employ the same assumptions as in Section 5.2.3.

Let us consider the collision problem for satellites S1, S2 with initial distributions D1(q1, t0; t0),

D2(q2, t0; t0) where q1, q2 are orbital elements. Suppose that a close approach is possible for

time t ∈ [ta, tb]. Using any appropriate method, the distributions are propagated from t0 to ta

allowing for perturbing accelerations and process noise to obtain the distributions D1(q1, ta; t0),

D2(q2, ta; t0). For t ∈ [ta, tb] we shall assume deterministic unperturbed Kepler dynamics. This
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allows us to hold five of the orbital elements as constant and, without stochastic forcing, the dis-

tributions evolve according to the Liouville equations during the interval [ta, tb]. As before, a

collision is said to occur if the Euclidean distance between any two states is less than or equal to

Rc.

For the transient case we face the difficulty of defining a set such that all colliding trajectories

belong to the set only once during the collision interval. One proposed definition for this set is

Λτ = {(q1, qr)|r = Rc and r · V ≤ 0 for t = τ} (5.21)

where r is the relative position vector (r1 − r2) and V = (v1 − v2). This is analogous to the

definition used in [96] except now the set Λτ will be defined in terms of orbital elements. If we

define the differential volume of the set Λτ as dΛτ then the probability of collision can be written

as

Pc =

∫ tb

ta

∫
q1

∫
Λτ

D1(q1, τ ; t0)Dr(qr, τ ; t0)dq1dqr (5.22)

Unfortunately to evaluate this expression in the orbital element space, we will not be able to

apply convenient analytical integration. This will necessitate the construction of some form of

quadrature grid. It is desired that this grid of points is dense where the joint probability density

is high and sparse elsewhere. To accomplish the construction of the grid, we use an eigenvalue

decomposition of the second statistical moment of Dr to generate an orthogonal grid of points

in the relative orbital element space along the eigenvectors. Here only quadrature points for the

portion of the PDF that approximately lies between z = ±Rc are placed. This is done by finding

the corresponding locations along the eigenfiber (see Chapter 3 and 4) that intersect these two

planes. Then a six dimensional grid is created along the eigenvectors of the distribution between

these two points. The distribution Dr need not be Gaussian, as we are only using the covariance

to construct the quadrature grid. Consequently, as the distribution Dr evolves with time, this grid

will need to be re-created at each time step and Dr will need to be evaluated at each grid point.
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We then map these grid points into Cartesian position and velocity coordinates. Each grid point

has coordinates Xi = [xi, yi, zi, ẋi, ẏi, żi, ]. Since all points of S1’s distribution are constrained to

the x-y plane, the points of S1’s distribution that satisfy the condition r = Rc are solutions to the

equation

R2
c − z2

i = x2
1 + y2

1; zi ≤ Rc (5.23)

as shown in Figure 5.3, where x1 = r1 cos (f1) and y1 = r1 sin (f1).

Figure 5.3: Grid of S1 States Satisfying the ρ = Rc Constraint.

For a given (x1, y1) along this circle we notice that f1 and r1 are constant, since the orbital

plane of S1 is fixed. Thus r1 is simply

r1 =
a1(1− e2

1)

1 + e1 cos (f1)

Recalling that x1 = r1 cos f1, we solve for a1 in terms of e1 and the constant x1 and find.

a1 =
(r1 + e1x1)

(1− e2
1)

(5.24)

This gives an explicit constraint on the (a1, e1) pairs that satisfy the constant r1 constraint.

Next we seek to find the subset of these pairs that generate relative velocities entering the radius of
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collision. Recall that in this PQW reference frame the velocities ẋ1, ẏ1, are given by (reference)

ẋ1 = −
√

µ

a1(1− e2
1)

sin (f1) (5.25a)

ẏ1 =

√
µ

a1(1− e2
1)

(
e1 + cos (f1)

)
(5.25b)

Substituting equation (5.24) into equations (5.25a), (5.25b) and letting c = cos f and s =

sin (f1) we obtain.

ẋ1 = −
√

µ

(r1 + e1x1)
s (5.26a)

ẏ1 =

√
µ

(r1 + e1x1)

(
e1 + c

)
(5.26b)

At this point we would like to find all of the values for e1 such that r̂ · V ≤ 0. Recall that

r̂ was specified when we chose a point (x1, y1) on the circle specified in equation (5.23) and that

V = V1 − V2 where V2 is fixed for the given quadrature point. Therefore all e1 resulting in a

collision satisfy the equation

r̂ · V1 ≤ r̂ · V2 (5.27a)

r̂ · V1 ≤ k0 (5.27b)

− r̂x
√

µ

(r1 + e1x1)
s+ r̂y

√
µ

(r1 + e1x1)

(
e1 + c

)
≤ k0 (5.27c)

Where the constant k0 = r̂ · V2. Next we multiply both sides by the denominator which is strictly

positive for elliptical orbits.

− r̂x
√
µs+ r̂y

√
µ
(
e1 + c

)
≤ k0

√
(r1 + e1x1) (5.28)

− r̂x
√
µs+ r̂y

√
µ
(
e1 + c

)
− k0

√
(r1 + e1x1) ≤ 0 (5.29)
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If we define constants k1 = r̂x
√
µ and k2 = r̂y

√
µ the the equation becomes

k2e1 − k0

√
(r1 + e1x1) + (k2c− k1s) ≤ 0 (5.30)

The equation above has two roots

e1 =
k2

0x1 − 2k2(k2c− k1s)± k0

√
4k2

2r1 + k2
0x

2
1 − 4k2x1(k2c− k1s)

2k2
2

(5.31)

Unfortunately, without specific values for the coefficients we cannot say if this equation will

give a real maximum or minimum value for e1. However, once an integration node is selected,

the coefficients will be determined and it will be easy to know if the valid root from (5.31) is a

maximum or a minimum. This inequality on e1 combined with equation (5.24) then gives the (a, e)

pairs of all of the states with a given (x1, y1) with velocities entering the sphere of collision. One

minor problem is presented by the nonlinear relationship between e1 and a1. This can be remedied

however, if the planar uncertainty in S1 is described in modified equinoctial orbital elements (MEq

OE) (p1, f1, g1, L1) [126].

Recall that in terms of the MEq OE we have

r =
p

1.0 + f cos (L) + g sin (L)
(5.32a)

x = r cos (L) (5.32b)

y = r sin (L) (5.32c)

ẋ =

√
µ

p
(−g − sin (L) (5.32d)

ẏ =

√
µ

p
(f + cos (L) (5.32e)

such that rearranging (5.32a) and substituting in the constants (r1, x1, y1) for a given grid point
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we get

r1 + fx1 + gy1 = p (5.33)

With unknowns f, g and p forming a plane in three dimensional space. If we also place fixed

integration nodes along p, then for a given pj we have

g = −x1

y1

f + (pj − r) (5.34)

This gives a linear relation between the remaining unknowns f and g. To find the f and g that

result in relative velocities less than zero we again look at the dot product between the relative

position and velocity vectors for satellites S1 and S2. Substituting equations (5.32d) and (5.32e)

into (5.27b) we obtain the following.

√
µ

pj

(
− r̂x(g + sin (L)) + r̂y(f + cos (L))

)
≤ k0 (5.35)

Collecting the constants and solving for g in terms of f yields

g ≥ r̂y
r̂x
f +

C

r̂x
(5.36)

where C = (r̂y cos (L) − r̂x sin (L)) −
√

pj
µ
k0. The inequality above flips of course if r̂x < 0 or

reduces to a simple inequality on f if r̂x = 0.

Since g is also constrained by (5.34), we can substitute this into (5.36) to get an inequality on

f .

f ≥
(

(pj − r)−
C

r̂x

)
/

(
r̂y
r̂x
− x1

y1

)
(5.37)

Here the denominator has been assumed to be positive, which yields a maximum bound on f . If

the denominator is negative, this expression will yield a minimum bound on f .

At this point we have clearly defined the subset of all the orbital elements from S1’s distribution
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that will be within a radius of collision and have a negative relative velocity with respect to a given

grid point from S2’s distribution. To compute the probability of collision, we must now integrate

the PDF of S1 over this set of states Λt multiplied into the relative velocity along the relative

position vector |vr · r̂r| and then integrate over time as shown in equation (5.22). In the general

case this must be done using numerical quadrature techniques. Some simplification is possible if

the distribution of S1 in orbital element space is Gaussian.

Suppose that the distribution of q1 = [p, f, g, L]T at time t ∈ [ta, tb] is given by

N
(
q̄1(t), Q1(t)

)
(5.38)

Having chosen a given grid point from Figure 5.3, it is seen that

N
(
q̄1(t), Q1(t)

)
= N

(
L̄1(t), C

)
N
(
q̄∗1(t), Q∗1(t)

)
(5.39)

where q′1 = [p, f, g]T and

Q1 =

 A B

BT C


therefore, q̄∗1 = q′1 − BC−1 and Q∗1 = A − BC−1BT . This shift in the mean and covariance of

q∗1 for a fixed L is of course the conditional PDF of q′1 given L. The vector q∗1 and its conditional

distribution are both in R3. However, when a S1 grid point (x1, y1) is chosen from Figure 5.3

the vector q′1 is constrained to lie in a two dimensional plane according to equation (5.33). The

problem is that the distribution for q∗1 is only conditioned on a fixed L, when in reality, when

choosing a S1 grid point, both r1 and L1 become fixed. Thus we must condition the PDF further

for fixed r1.

Notice from equation (5.33) that the the normal vector of the plane containing valid q′1 is given

by n = [1,−x,−y]T , which is constant for a given r1. If the distribution of q∗1 is resolved into

normal and planar components, it is easy to see that all states that satisfy equation (5.33) will have a

constant offset from the mean along the normal direction. Since the normal component is constant
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for any point on the plane, it is convenient to compute the normal offset of q′1 = [r, 0, 0]T , which

is where the plane intersects the p axis. We will then use this offset as an additional condition on

the distribution.

Let e1 ≡ n̂. We then define a vector e2 = p̂ × e1 where p̂ = [1, 0, 0]T . Since e2 ⊥ e1 it is

guaranteed to lie in the plane defined by constant r. Finally the orthogonal triad is completed by

taking e3 = e1×e2. An orthogonal matrix is then defined that maps vectors from the [p, f, g] axes

into the e frame such that Ri = êTi .

R =


1/m1 −x1/m1 −y1/m1

0 y1/r1 −x1/r1

r1/m1 x1/(r1m1) y1/(r1m1)

 (5.40)

where m1 =
√

(1 + r2
1). The normal offset from the mean to the plane of constant r can now

be given as

nc − n̄ = êT1R
TR(rp̂− q̄∗1) = êT1 (rp̂− q̄∗1) (5.41)

The relation between the e frame and the [p, f, g] frame is visualized in Figure 5.4 where the

components of the vector ξ = [n, s1, s2]T lie along the e1, e2, and e3 axis respectively.

The mean and covariance of the distribution in this new coordinate frame is given by applying

the R such that ξ̄ = Rq̄∗1 and Qξ = RQ∗1R
T . In the same manner as before, this Gaussian

distribution in R3 is conditioned on the event that n = nc to yield a conditional distribution on

(s1, s2) in R2.

N(ξ, ξ̄, Qξ) = N(nc, n̄, Qn)N(s, s̄, Qs) (5.42)

where n̄ = êT1 ξ̄.

Any s from this distribution will automatically satisfy the constraint that (r1, L1) have been

fixed. To see which s satisfy the velocity constraint in (5.27b) we express the result in (5.35) in
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Figure 5.4: New Coordinate System Defined with Respect to Plane of Constant r1 in [p, f, g] Space.

terms of s1, s2 and the constant nc using the following relations.

p = R11nc +R21s1 +R31s2 (5.43a)

f = R12nc +R22s1 +R32s2 (5.43b)

g = R13nc +R23s1 +R33s2 (5.43c)

Note that the first term on the right hand side of each expression above is constant with respect

to s1, s2 and that R21 = 0 from the definition of R in (5.40). Plugging these substitutions into

equation (5.35) yields
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s1 ≤

(
− s2(r̂yR32 − r̂xR33)− r̂y

(
R13nc + cos (L)

)
− r̂x

(
R13nc + sin (L)

))
(r̂yR22 − r̂xR23)

+
k0√

µ
(R11nc+R31s2)

(r̂yR22 − r̂xR23)

(5.44)

where the inequality flips if (r̂yR22 − r̂xR23) < 0. In this expression r̂x, r̂y are the x and y

components of the vector ρ from Figure 5.3. The distribution of s1, s2 is then integrated over the

region bounded by the curve given in equation (5.44).

It is important to note that this derivation in MEq orbital elements did not assume that the

argument of perigee was fixed, as it would have been if all of the uncertainty from S1’s argument

of perigee had been projected onto the relative right ascension of the ascending node. As such this

method for computing Pc is also capable of analysing general conjunctions between two satellites

in the same plane.

Once the PDF has been integrated over s1, s2 for each grid point in Figure 5.3, it still needs

to be integrated over L and n. While one could do this directly, it will be easier to use a polar

coordinate system centered at (x2, y2, z = 0) as illustrated in Figure 5.5.

Figure 5.5: Polar Coordinates for Integration Over L, n.
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Where again δ2 = R2
c − z2

2 . Integrating over δ, φ will require us to include the determinant

of the Jacobian to account for the change in volume where nc = r1√
(1+r21)

and L = arctan ( y2
x2

) +

arctan
( δ sin (φ)
R+δ cos (φ)

)
and r =

√
(δ sin (φ))2 + (R + δ cos (φ))2.

5.2.5 Example using Transient Solution

It will be helpful now to put all the theory from the previous section to work on a simple

example. Let qr = [p2, f2, g2, L2, hr, kr] be distributed according to the dirac delta distribution

[148] and q1 be distributed normally q1 ∼ N
(
q1(t), q̄1(t), Q1(t)

)
. If qr is not distributed according

the dirac delta function, then apply the results of this example at each quadrature point from the

integration over qr. Plugging these distributions into equations (5.22) we obtain

Pc =

∫ tb

ta

∫
Λτ

N
(
q1(τ), q̄1(τ), Q1(τ)

)
dq1 (5.45)

For convenience let q1 = [L1, p1, f1, g1]T , now we apply the linear transformation from equa-

tion (5.40) to obtain η = [L1, n, s1, s2]T and we have.

Pc =

∫ tb

ta

∫
Λτ

N
(
η1(τ), η̄1(τ), Qη1(τ)

)
dp df dg dL (5.46)

Now instead of integrating over p, f, g, L we desire to integrate over ρ, s1, s2, φ as previously

discussed where dp df dg dL = det(J) ds1 ds2 dρ dφ and the Jacobian is given in Einstein notation

as

Jij = RT
im,jηm +RT

imηm,j (5.47)

where the , j means take a derivative with respect to the jth component of the vector X where

X = [ρ, φ, s1, s2]T . In general this Jacobian is a function of s1 and s2 which can impede the

analytical integral over s1. However, the determinant of the Jacobian is well approximated if

evaluated at s̄1. The Jacobian can simplify even further for low eccentricity orbits. For orbits of
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low eccentricity the determinate of J is approximately

det(J) ≈ ρ

r
√

(1 + r2)
(5.48)

From (5.44) let the numerator be called−β(n, s2) and the denominator be called ω(n, s2) such

that ∆r ·∆v = s1ω(n, s2) + β(n, s2). These expressions are then plugged into the Pc integral to

obtain

Pc =

∫ tb

ta

∫
Λτ

N
(
η1(τ), η̄1(τ), Qη1(τ)

) ρ

r
√

(1 + r2)

(
s1m(n, s2) + b(n, s2)

)
ds1ds2dφdt (5.49)

where n, r are functions of ρ, φ and t.

Next, we wish to resolve the distribution into the product of conditional distributions

N
(
η1(τ), η̄1(τ), Qη1(τ)

)
= N

(
p(τ), p̄(τ), Qp(τ)

)
N
(
s′2(τi), s̄

′
2(τi), σs′2(τi)

)
∗

N
(
s′′1(τi), s̄

′′
1(τi), σs′′1 (τi)

) (5.50)

where p = [L1(δ, φ), nc(δ, φ)]T , p̄ = [L̄1, n̄] and Qη =

Qp BT

B Qs

. These are used to find

s′1
s′2

 =

s1

s2

 − BQ−1
p p and s̄′ = s − BQ−1

p p̄. Hence,

σs′1 b

b σs′2

 =

[
Qs −BQ−1

p BT

]
and

σs′′1 = σs′1 −
b2

σs′2
σs′2 with s′′1 = s′1 − b

σs′2
s′2 and s̄′′1 = s̄′1 − b

σs′2
s̄′2. The details behind splitting the

normal distribution this way are presented in appendix B.

With each term in equation (5.50) defined we are ready to integrate to find Pc. The quadra-

ture over t, φ and s′2 are handled using numerical quadrature while the integration over s′′1 can be

computed analytically.

Ps1 =

∫ s∗

−∞
−N

(
s′′1(τi), s̄

′′
1(τi), σs′′1 (τi)

)(
s′′1ω(n, s2) + β′′(n, s2)

)
ds′′1 (5.51)
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where s∗ = −β/ω is the limit of integration, β′′ = β+ω( b
σs′2
s′2 +1TBQ−1

p p) and 1T = [1, 0]. The

negative sign is because ∆v ·∆r ≤ 0 over this range. Evaluating this integral yields

Ps1 =
1

2
(ωs̄′′1 + β′′)

[
1 + λ erf

(
(s∗ − s̄′′1)√

(2σs′′1 )

)]
+ λω

√
σs′′1

2π
exp

(
− (s∗ − s̄′′1)2

2σs′′1

)
(5.52)

In the expression above λ = sign(ω) and accounts for the flip of the inequality in equation (5.44)

if ω < 0. The integration over the remaining three dimensions is fairly standard. Using Gaussian

quadrature we integrate over t ∈ [ta, tb], φ ∈ [0, 2π] and s′2 ∈ [s̄′2 − 6
√
σs′2 , s̄

′
2 + 6

√
σs′2 ] to obtain

Pc. This is done for a number of test cases in the results section.

5.3 Results

The steady state Pc for the special case when the point of closest approach is assumed to occur

along the line of relative nodes and the distributions are normal in orbital element space was already

demonstrated as a prefiltering technique in Chapter 4. This bound on the Pc was then tightened by

considering the angular displacement from the relative line of nodes. This upper bound for a single

pass is demonstrated on test cases (I - III, VI,VII) from Chapter 3 and is compared to the steady

state Pc and the actual Pc for that single pass in Table 5.1.

Table 5.1: ‖Pc‖∞ vs The Single Pass Method vs The Transient Solution.

Pc∞ Pc∞ (single pass) CRATER Pc
TCI 2E-2 4.6E-4 2.76E-4
TCII 6E-3 6.3E-5 5.97E-5
TCIII 3E-1 1.5E-3 9.89E-4
TCVI 1E-3 1.7E-4 1.21E-5

TCVIII 1E-2 6.6E-6 2.18E-11

Next we look at what happens to the Pc over time. For this result we took the collision from

CRATER test case I with the initial covariances for both satellites scaled by (1/160) and computed

the Pc at each close approach, which occur every half orbit. The Pc for each close approach is
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computed independently using the CRATER algorithm. This method will eventually over estimate

the bound since is does not account for correlation between subsequent close approaches. This is

shown in Figures 5.6 and 5.7.

Figure 5.6: Close Approach Pc Decaying as
1/n as Distribution Becomes Stretched in Along
Track Direction.

Figure 5.7: Cumulative Pc Soon Exceeds the
Predicted Maximum Pc Due to Correlation Be-
tween Subsequent Passes.

The final set of results demonstrates the method of computing the transient Pc in terms of

the orbital elements. The orbital element method was used to compute the Pc for five different

test cases and is compared to a Monte Carlo solution. To facilitate comparison only unperturbed

Keplerian dynamics are considered.

The results for each test case include Pc as computed by the orbital element method as well

as the Monte Carlo solution and the percent error between the solutions. The bounding epsilon as

predicted by the Chernoff Hoeffding bound [104] is also included and shows the 95% confidence

bound as a percentage of the reported MC result. A more extensive discussion on Monte Carlo

bounds can be found in Chapter 2. Both algorithms were run in serial on a single thread. It should

be noted however that both of these algorithms can be implemented with a parallel architecture.

The Monte Carlo solution will be referred to as the MC result while the orbital element solution

will be called the ROE result. Since the interest was in validating the Pc integral portion of the
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algorithm, the MC samples were propagated using the state transition matrix (STM) in orbital

element space, so that both the MC and ROE results would use the same method for propagating

the distribution forward in time.

The first test case considered was a variant of test case I from Chapter 3. The initial covariance

for satellite 1 was scaled by 1
160

and the distribution for satellite 2 was taken to be the Dirac

delta distribution centered at the mean. Next, the uncertainty in satellite 1’s orbit was limited

to planar uncertainty in the p, f, g, L orbital elements. This was accomplished by mapping the

propagated covariance matrix in orbital element space with Rp. Where Rp is a 4 × 6 matrix such

that [p, f, g, L]T = Rp[p, f, g, h, k, L]T .

Table 5.2: Results Test Case I (OE Method).

ROE MC % Error C-H ε
PC 4.28E-2 4.31E-2 0.60 % 4.1 %

Time 11.4 sec 95.3 sec

While the ROE result is nearly an order of magnitude faster for this test case (see Table 5.2). It

must be remembered that one of the distributions was taken as the Dirac delta and the MC samples

were linearly propagated using the STM.

The next four test cases are different from the first test case in that both satellites are in the

same orbital plane. The initial conditions are given in terms of Kepler orbital elements [134] and

the uncertainty is given in Cartesian with SI units (km,s). The tabulated initial condition in Table

5.3 were mapped into MEq OE for use in the ROE algorithm. The mean was mapped using the

exact algebraic relation while the covariance was linearly mapped.

The conjunction window under consideration for test cases Ip, IIp, IVp is 0.5T2 after epoch,

where T2 is the orbital period for satellite 2. For test case IIIp the screening period is about 1.0T2

after epoch.

Again the results for these test cases agree closely with the Monte Carlo results (see Table 5.4).
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Table 5.3: Initial Conditions Planar Test Case.

Tc Ip a (km) e ω (deg) ν (deg) (σ2
x, σ

2
y) (σ2

vx , σ
2
vy) Rc = 0.04 (km)

Sat1 7000 0.001 0 53.1164 6.25E-5 6.25E-8
Sat2 1000 0.3 0 180 0 0

Tc IIp a (km) e ω (deg) ν (deg) (σ2
x, σ

2
y) (σ2

vx , σ
2
vy) Rc = 0.1 (km)

Sat1 7000 0.001 0.3 53.1164 6.25E-5 6.25E-8
Sat2 1000 0.3 0 180 0 0

Tc IIIp a (km) e ω (deg) ν (deg) (σ2
x, σ

2
y) (σ2

vx , σ
2
vy) Rc = 0.5 (km)

Sat1 7000 1.0E-7 0 -197.224 1.0E-6 1.0E-7
Sat2 24500 0.7142857 0 0 0 0

Tc IVp a (km) e ω (deg) ν (deg) (σ2
x, σ

2
y) (σ2

vx , σ
2
vy) Rc = 1.0 (km)

Sat1 28000 0.001 0 53.1164 6.25E-5 6.25E-8
Sat2 40000 0.3 0 180 0 0

This is because both methods are using the the STM to propagate the initial distribution. Because

both satellites are coplanar in these test cases the length of the close approach was greater than in

test case I. The Monte Carlo algorithm for these cases does not use a polynomial approximation

to find the point of closest approach, but decreases the time step such that the relative velocity

multiplied into the time step results in a distance less than Rc. This feature combined with the

longer collision window is responsible for the longer Monte Carlo run times compared to test case

I. Based on the run times in Table 5.4, it is anticipated that the ROE method would have about the

same run time for these test cases as the MC and would be faster than MC at lower Pc values.

5.4 Conclusions

An investigation into the idealized long term behaviour of the state uncertainty lead to an

expression of the steady state distribution in orbital element space. This distribution was seen

to reflect the truths predicted by Keplers Law that orbiting objects spend most of their time at

apoapsis.

Looking at the probability of collision as time goes to infinity revealed that the maximum

achievable Pc between two satellites is equivalent to finding the probability that the minimum

close approach miss distance between any two trajectories is less than Rc. This yields a Pc that
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Table 5.4: Results Planar Test Cases.

Tc Ip ROE MC % Error C-H ε
PC 11.63E-2 11.63E-2 0.0 % 1.5 %

Time 3.5 sec 397 sec
Tc IIp ROE MC % Error C-H ε

PC 5.128E-2 5.13E-2 0.25 % 1.7 %
Time 3.5 sec 396 sec

Tc IIIp ROE MC % Error C-H ε
PC 54.78E-2 54.76E-2 0.03 % 1.1 %

Time 3.6 sec 395 sec
Tc IVp ROE MC % Error C-H ε

PC 40.28E-2 40.28E-2 0.0 % 1.5 %
Time 3.5 sec 396 sec

is conservative by about two orders of magnitude when trying to bound the Pc for a single close

approach in the cases studied. By also considering the probability that the true anomaly satisfies

conservative conditions for for a collision this bound can be reduced to give a ball park estimate

of the Pc for a given close approach. This approach lacks the accuracy of formal Pc analysis but is

easily computed for general distributions and may be useful as a filtering technique.

Finally, the transient solution was reformulated in terms or the Kepler and MEq orbital el-

ements. This formulation solves a long standing difficulty of needing to map PDF’s from the

relatively well behaved orbital element space to the Cartesian space for conjunction analysis. This

approach was then verified against test cases in three and two dimensions and was seen to have a

high level of agreement with the Monte Carlo Pc solution. This was in part due to the Monte Carlo

using the same uncertainty propagation method. The run times indicate that the cost of the high

dimension numerical quadrature is significant and that the new ROE method will likely be similar

in run time for high probability Pc, but may be significantly faster for lower Pc collision scenarios

due to the high number of MC samples needed to verify these cases.
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6. SUMMARY AND CONCLUSIONS

6.1 Research Objectives

Recall that the scope of this research is to build upon and contribute to the existing 28+ years of

literature on conjunction analysis in novel and meaningful ways. This has been achieved through

a successful pursuit of the following objectives.

1. Identify and exploit quasi linear sub-spaces in algebraic and differential equation mappings

of the probability density function associated with the orbital state uncertainty to improve

algorithm performance

The NL index was used to identify a quasi linear subspace of the propagated orbital element

PDF along 5 of its 6 eigenvectors. This stressed the importance of identifying the eignefiber

for improving algorithm performance.

2. Take into account collision geometry and demonstrate its importance

Collision geometry was shown to be vital in selecting between the local Gaussian and Gaus-

sian mixture approximation schemes.

3. Use the eigenvectors of the distribution in orbital element space to build efficient PDF ap-

proximations in Cartesian space

Use of the NL index along the eigenvectors of the covariance matrix in orbital element space

showed that non linearity was greatest along the eigenfiber resulting in a PDF approxima-

tion scheme that place local linearizations along this direction. This mitigated the problem

of high dimensional PDF approximations while capturing to great fidelity the nonGaussian

PDF in Cartesian space.

4. Allow for parametric model uncertainty

Model uncertainty was seen to have large effects on the computed PC and was incoporated

into CRATER by appending the uncertain parameters onto the state vector.

120



5. Use the Liouville equation to quantify the error in approximations

The Liouville equation was used to quatify the pointwise error in assuming the orbital ele-

ment pdf was Gaussian. This error was computed alonge each eigen vector of the covaraince

matrix revealing that the error is siginifcantly higher along the eigenfiber.

6. Combine these techniques and insights into single software tool

The CRATER collision risk assessment tool was developed and compared against contem-

porary and traditional conjunction analysis algorithms. It was seen to provide an order of

magnitude speed up while maintaining accuracy on highly nonlinear problems.

7. Explore the consequences of coordinate choice

The formulation of the Pc integral in spherical coordinates in either 2D or 3D proved to

provide significant accuracy benefits when compared to Cartesian algorithms using linear

analysis.

8. Explore collisions in the orbital element space

The introduction of the relative orbital elements helped identify where collisions take place

in orbital element space and led to new risk quantification and prefiltering techniques.

9. Develop new formulations for computing the probability of collision that can be evaluated

in orbital element space

Using the relative orbital elements we were able to derive an expression for the probabil-

ity of collision in terms of the modified equinoctial orbital elements; constituting a major

contribution to the understanding of colliding objects in space.

10. Explore the validity, accuracy, and computational merit of the algorithms and compare to the

best available pre-existing approaches

The approaches outlined in this dissertation were compared against both short and long en-

counter Pc methods, adaptive GMM methods and two different Monte Carlo methods. These

121



comparison revealed that no single method was superlative across all collision scenarios.

This insight motivated the adaptive strategy of the CRATER algorithm to use collision ge-

ometry and quantification of the nonlinear of mappings to ensure each Pc method was only

when appropriate. This led to an algorithm that was about an order of magnitude faster than

the next best semi analytical method over a large number of nonlinear collision scenarios.

6.2 Challenges

The work presented in this dissertation demonstrated several key advancements in the area of

conjunction analysis; nevertheless, there are several remaining challenges. Recall that the scope

of the Pc problem extends beyond the work of this dissertation and includes the areas of measure-

ments, catalog maintenance, as well as processes for communicating satellite state uncertainty and

Pc to operators. Most of these are processes that go into providing the initial conditions for Pc

algorithms. It is important that these initial conditions are highly accurate with uncertainties that

account for the model error in the measurements and the propagation, since any further conjunction

analysis will only be as accurate as these initial conditions. The accuracy of these initial condition

may come into question if standard propagation techniques such as sgp-4 [16] have been used in

updating the mean and covariance .

Another area of challenge is in implementing these algorithms as part of flight software. Many

satellites are concerned with computing Pc as part of their on board guidance, navigation, and

control, but are limited by size, weight, and power constraints. This has resulted in many flight

algorithms resorting to pseudo risk measures such as the Mahalonobis distance. While the lin-

earization techniques presented in Chapter 3 greatly simplify non-linear Pc analysis. It is yet to be

seen how well these perform, especially in missions featuring close proximity relative motion and

in cases where the conops may require the conjunction analysis to model the spacecraft with more

fidelity than a simple sphere.

Furthermore, many satellites in constellations undergo relative oscillatory motion with respect

to one another. This stresses the assumption made in traditional long encounter Pc analysis, which

assumes that trajectories shall only have a single close approach within the analysis window.
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6.3 Further Study

The orbital element method for computing Pc significantly reduces the burden on uncertainty

propagation by keeping the Pc analysis in the orbital element space. This technique is limited in

usefulness however by the need to numerically integrate over many dimensions. Further study

into the improved numerical methods for this algorithm and possible simplifying assumptions that

could be made could greatly expand this techniques potential.

The CRATER algorithm presented a method for obtaining a point wise check against the Liou-

ville solution. While this is likely good enough, further efforts to expand this technique to obtain

an estimate of the global convergence could be much more assertive in negating the need for a re-

dundant Monte Carlo validation. After the methodology is fully validated against Monte Carlo, it

is expected that all subsequent applications that satisfy a Liouville error metric will provide a much

better way to ensure Pc accuracy. This issue is also relevant in cases where stochastic model noise

is deemed necessary to the analysis. In such cases, the governing Fokker-Planck-Kolmogorov

equation would need to be satisfied by the propagated PDF and the process noise would need to be

included in the PDF propagation.

Finally the Pc formulation that results from long encounter analysis is such that it could be

directly implemented into feedback laws or trajectory optimization. This would allow trajectory

planners and guidance algorithms to build risk mitigation directly into the trajectories.
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APPENDIX A

MCPI OPERATORS AND PROPERTIES OF CHEBYSHEV POLYNOMIALS

A.1 Basic Properties of Chebyshev Polynomials

This section will briefly cover the properties of Chebyshev polynomials that are relevant in the

derivation of MCPI. A more complete discussion can be found in [115, 116].

1. Domain: Chebyshev Polynomials T (x) are defined on the domain x ∈ [−1, 1]

2. Recursive: T0(x) = 1 , T1(x) = x , and Tn+1(x) = 2xTn(x)− Tn−1

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

3. Trigonometric Definition: Tn(x) = cos(n arccosx) = cosh(n arcosh x), n = 0, 1, 2, . . . , N

4. Orthogonal:

∫ 1

−1
Tn(x)Tm(x) dx√

1−x2 =


0 : n 6= m

π : n = m = 0

π/2 : n = m 6= 0

5. Discrete Orthogonality:
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∑M−1
k=0 Ti(xk)Tj(xk)

1√
1−xk

=


0 : i 6= j

M : i = j = 0

M/2 : i = j 6= 0

where xk = cos
(
π 2k+1

2M

)
, k = 0, 1, 2, . . . ,M

6. Recursive Integration Relation:∫
Tn dx = 1

2

(
Tn+1

n+1
− Tn−1

n−1

)
A.2 MCPI Integration Matrix

The integration matrix is the linear operation that relates the coefficients of the Chebyshev

series of the integrand to the coefficients of the integrated series. That is

β = [S]α (A.1)

where
N∑
i=0

βiTi(τ) = x0 +

∫ τ

−1

N∑
i=0

αiTi(t) dt (A.2)

. [S] arises as a result of the recursive integration relation of Chebyshev polynomials and is given

as

[S] =



0 1
4

0 . . . . . . . . . 0

1 0 −1
2

0 . . . . . . 0

0 1
4

0 −1
4

0 . . . 0

... 0 1
2k

0 − 1
2k

. . . 0

...
... 0

. . . . . . . . . 0

...
...

... . . . 1
2(N−1)

0 − 1
2(N−1)

...
...

...
... 0 1

2N
0

0 . . . . . . . . . . . . 0 1
2(N+1)



(A.3)
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k = 3, 4, 5, . . . , N + 1. Where [S] ∈ RN+1×N is a non square matrix. This is because when-

ever a polynomial of degree N is integrated you get back a polynomial of degree N + 1. How-

ever, one can neglect the last row of [S] if N is chosen large enough. That is, if the series

εk = ‖x(τ) −
∑k

i=0 βiTi(τ)‖ converges to an acceptable degree within the first N terms, the

inclusion of additional terms is not necessary.

142



APPENDIX B

PROPERTIES OF NORMAL DISTRIBUTIONS

B.1 Normal Distribution as a Conditional PDF

Let us consider a normally distributed random variable q ∈ Rm supposes qT = [rT ,vT ] where

r ∈ Rn, n < m and v ∈ Rw, w = m− n. The covariance matrix of q is written as

Q =

A BT

B C

 (B.1)

We would now like to show

N (q, q̄, Q) = N (r, r̄, A)N (v − Pr, v̄ − P r̄, C ′) (B.2)

where P = BA−1 and C ′ = C −BA−1BT . To do this let us introduce a linear mapping

T =

 In×n 0n×w

Pw×n Iw×w

 (B.3)

Note that in terms of the linear transformation T we have the following relationship

q = T−1q′ (B.4)

where q′T = [rT ,v′T ] and T−1 =

 In×n 0n×w

−Pw×n Iw×w

 and det (T ) = 1.

Substituting the relationship in equation (B.4) into the normal distribution we obtain.

N (q, q̄, Q) =
1√

det (2πTQT T )
exp−1

2

[
T (q − q̄)

]T
T−TQ−1T−1

[
T (q − q̄)

]
(B.5)
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By direct computation we see that the above equation reduces to the desired expression

N (q, q̄, Q) = N (r, r̄, A)N (v − Pr, v̄ − P r̄, C ′) (B.6)

B.2 Product of Two Normal Distributions

In this section we will show that the product of two normal distributions returns again a normal

distribution. Let us consider the product of the distributions for two random vectors xa and xb =

xa + xr.

p = N (xa, x̄a, Qa)N (xa + xr, x̄b, Qb) (B.7)

Now let us make the following substitutions λ = xr − µ, µ = x̄b − x̄a and η = xa − x̄a. With

respect to these variables the original expression becomes

p = N (η, 0, Qa)N (η + λ, 0, Qb) (B.8)

Looking at just the exponent from the above product we see

exp−1

2

[
ηTQ−1

a η + (η + λ)TQ−1
b (η + λ)

]
= exp−1

2

[
ηT (Q−1

a +Q−1
b )η + (λ)TQ−1

b (λ) + 2ηTQ−1
b λ

] (B.9)

Let P−1 = Q−1
a +Q−1

b then the above expression can be rewritten as

exp−1

2

[
(η + Sλ)TP−1(η + Sλ) + λTQ−1

b (I − S)λ
]

(B.10)

where S = PQ−1
b . Note that the second term in the exponent expands to Q−1

b −Q
−1
b PQ−1

b . There

are several references on how to invert this expressions such as [149]. These show that in general

(A+BCD)−1 = A−1B(DA−1B + C−1)−1DA−1 (B.11)
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Applying this to our expressions yields the following.

(Q−1
b −Q

−1
b PQ−1

b )−1 = Qq + (P−1 −Q−1
b )−1 = Qb +Qa (B.12)

Letting R = Qa +Qb and substituting back into the exponential term we obtain

exp−1

2

[
(η + Sλ)TP−1(η + Sλ) + λTR−1λ

]
(B.13)

Therefore,

p = N (η + Sλ, 0, P )N (λ, 0, R)

= N (xa + Sxr, x̄a + Sµ, P )N (xr,µ, R)

(B.14)
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APPENDIX C

ORBITAL ELEMENT TRANSFORMATIONS

C.1 MEq Orbital Elements to Relative Orbital Elements

The rotation sequence from the inertial frame to the Modified Equinoctial PQW frame is again

a 3-1-3 rotation, this time through the angles Ω, ir,−Ω where Ω is the right ascension of the

ascending node.

Battin [39] gives the inverse rotation from the MEq frame to an inertial reference frame in

terms of the MEq orbital elements.

R =
1

1 + h2 + k2


1 + h2 − k2 2hk 2k

2hk 1− h2 + k2 −2h

−2k 2h 1− h2 − k2

 (C.1)

The composite rotation from the S2 perifocal frame to the S1 perifocal frame is then

Rr = RT
1R2 (C.2)

If Rr is a 3-1-3 rotation itself from the S2 to the S1 frame through the angles Ωrel, ir,−Ωref then

again we have

cos ir = Rr3,3

tan Ωref =
−Rr1,3

Rr2,3

tan Ωrel =
Rr3,1

−Rr3,2

(C.3)

In this case Ωrel is the angle between the x̂ axis of the MEq perifocal frame and the line of relative

nodes, ir is the relative inclination between the two orbital planes, and Ωref is the angle between
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the line of relative nodes and the x̂ axis of the reference orbit.

C.2 MEq Orbital Elements to Spherical Coordinates

If the x-y-z axis of the spherical reference frame are chosen such that they are aligned with the

x-y-z axis of the MEq perifocal frame, then the the spherical coordinates of an object with respect

to the reference frame are

r =
p

w

θ = arctan

(
R21 cosL+R22 sinL

R11 cosL+R12 sinL

)
φ = arccos (R31 cosL+R32 sinL)

ṙ =
H

p
(f sinL− g cosL)

θ̇ =
h

r2

R33

sinφ2

φ̇ =
h

r2
(R23 cosL−R13 sinL)

(C.4)

where w = 1 + f cosL+ g sinL.
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APPENDIX D

THE CRATER ALGORITHM

D.1 Assumptions

These assumptions were used for the current implementation of the CRATER algorithm

• A1. Trajectories only enter the hardball radius once

• A2. Trajectories do not satisfy r(t) = Rc (where r(t) is the relative distance between the

satellites) for a finite amount of time, such that each trajectory belongs to a unique Λt.

• A3. The dynamics and PDF of each object are independent

• A4. The PDF at time T can be modeled as a Gaussian Mixture or is locally Gaussian

• A5. Motion is deterministic or subject to parametric force model uncertainty

• A6. Initial state uncertainty is available in terms of orbital elements

• A7. The state PDF can be well approximated as a single Gaussian in orbital element space
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