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ABSTRACT

Motion planning is an important problem in robotics which addresses the question of how to

transition an actor between states in an environment subject to obstacles, kinematic, and other

constraints. Exact motion planning is a computationally hard problem, which has prompted the

popularity of sampling-based approaches. Algorithms in this family operate in the configuration

space of a robot. This abstraction represents the space of possible poses, where feasible poses are

termed valid. A solution to the planning constitutes a curve in the valid subset of configurations

space, known as the free space.

However, computing an explicit representation of the free space is an intractable problem,

which renders sampling-based planners blind to its structure. This requires the algorithms to dis-

cover the space’s topology by randomized sampling and validity checking. We observe that when

planning for physical robots, there are frequently strong ties between the physical environment

or workspace and the free subspace corresponding to the translational degrees of freedom. When

such a relation exists, we can leverage information about the topology of workspace to provide

direction to the search in configuration space, thereby significantly reducing the search domain.

We present two algorithms which realize this objective.

The first, Dynamic Region sampling, employs a topological skeleton of workspace to define

the valid paths through the physical environment. This focuses the planner’s generation of new

samples within specific regions that travel along the skeleton, just ahead of the frontier of known

valid configurations. This directs the search for a free space path along the known possibilities in

workspace. The regions thus form both a guide for the planner and a mechanism of representing

progress in covering the workspace.

The second, Topological Nearest-Neighbor Filtering, uses a cell decomposition of the workspace

as a means of mapping configurations to neighborhoods in free space. This mapping supports rapid

locations of other configurations in neighborhoods that are nearby through connected workspace.

This builds a model of connectivity into the nearest-neighbor process, which is a critical compo-
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nent in determining how to attempt connecting known configurations with local plans. The filter

both expedites the nearest-neighbor operation and filters out obviously poor choices, promoting a

higher rate of successful connection.

We show how these methods can improve the robustness and efficiency of sampling-based

motion planners in problems where a robot must traverse a complex workspace. We demonstrate

that the methods work synergistically with each other to guide both exploration of free space and

connection of the roadmap representation, promoting fast feasibility planning in many difficult

problems.
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1. INTRODUCTION

Motion planning is the problem of determining a valid trajectory which moves an object from

a start configuration to a goal configuration. In the context of robotics, the object is a robot or

manipulated object, and validity refers to both avoiding collisions and respecting the dynamic

and kinematic constraints of the object’s physical mechanisms. Motion planning is an important

component of a robotic system that determines what actions should be taken to transition the robot

from one physical state to another. This is necessary for planning all kinds of motions, from

moving between rooms to grasping objects.

Exact motion planning has been shown to be PSPACE-hard [1] and is thus considered in-

tractable. The best-known complete planner is Canny’s roadmap algorithm [2], which is singly

exponential in the degrees of freedom (DOFs) of the robot. To solve motion planning problems

in reasonable time, research has focused on sampling-based algorithms. Sampling-based motion

planners trade completeness for probabilistic completeness and a large gain in expected efficiency.

Probabilistic completeness describes a weaker completeness property where a sampling-based al-

gorithm is complete in the limit of infinite samples; it is useful in establishing that a given algorithm

has a non-zero probability of solving any particular problem.

Sampling-based planners gain efficiency by avoiding an explicit construction of the configu-

ration space, or Cspace, which is an abstract space of all possible configurations of the robot [3].

Cspace is a useful abstraction for planning because particular poses of the robot may be represented

as points, and motions may be represented as paths. At the same time, Cspace is inconvenient be-

cause a direct representation of the obstacles is not feasible. The core methods of sampling-based

planning thus only consider spatial information while collision testing a particular configuration of

the robot against itself and the environment obstacles which define the workspace for a particular

problem. This renders the planner effectively blind to the topology of the space: it has information

about a few points and paths, but no notion of the shape of the valid subset known as the free space

or Cfree ⊂ Cspace. Without such information, the search for a path in Cfree must rely purely on ran-
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domly sampling appropriate configurations to lead roadmap extension in a productive direction.

However, the probability of this occurring drops dramatically with the problem difficulty. This has

been described as the narrow passage problem [4].

Since collision-free validity is defined in terms of the workspace, the workspace is a very

important component of virtually all robot motion planning problems. Prior work has shown that

information regarding the workspace can be useful in solving many kinds of planning problems,

especially where the workspace geometry is complex or contains narrow passages [5, 6, 7]. Such

heuristics build on the observation that the workspace geometry is strongly correlated with the

subset of Cspace which describes the robot’s translational DOFs.

Any solution to a motion planning problem must pass through some part of each subspace:

a guidance mechanism which steers a planner through subspaces effectively provides a partial

solution. We observe that the topology of workspace describes such partial solutions, and can be

used to approximate information about the topology of Cfree. The goal of this work is to leverage

the topology of the workspace (a particular subspace of Cfree in which the obstacle boundary

is known) to approximate the connectivity of Cfree in sampling-based planning. We present two

algorithms, Dynamic Region sampling and Topological Nearest-Neighbor Filtering, which employ

models of workspace to achieve such an approximation.

Dynamic Region sampling employs a topological skeleton of workspace to define the valid

paths through the physical environment. It focuses the planner’s generation of new samples within

specific regions that travel along the skeleton, just ahead of the frontier of known valid configura-

tions. This provides a coarse model of the translational subspace for the planner to follow, thereby

limiting the search domain to the parts of Cspace that might contain solution paths in Cfree.

Topological Nearest-Neighbor Filtering uses a cell decomposition of the workspace as a means

of mapping configurations to neighborhoods in free space. For a given configuration q, this map-

ping supports rapid locations of other configurations in neighborhoods that are nearby through

connected workspace. As workspace is a subset of Cfree, the located configurations are a superset

of those which are near to q through connected Cfree. This builds a model of connectivity into the
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nearest-neighbor process, which is a critical component in determining how to attempt connecting

known configurations with local plans. The filter both expedites the nearest-neighbor operation

and filters out obviously poor choices, promoting a higher rate of successful connection.

We show that these algorithms significantly improve sampling-based planners in problems

where the workspace is relatively tight and complex. By following an approximate model of the

Cfree topology, the planner is able to focus effort on the relatively small portions of Cspace that may

produce a valid path. The net effect is to shrink the search domain to a much smaller relevant set

for faster and more robust planning.

Portions of this research were previously published. The work on Dynamic Region sampling

for RRT methods was published in part in Jory Denny’s PhD thesis [8] and the proceedings of

the Workshop on the Algorithmic Foundations of Robotics (WAFR) 2016 [9]. The material on

Topological Nearest-Neighbor Filtering with k nearest-neighbors appears in the proceedings of

the IEEE International Conference on Robotics and Automation (ICRA) 2018 [10].
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2. PRELIMINARIES AND RELATED WORK

For a movable object R such as a robot, a configuration of R fully specifies its position, ori-

entation, and dependent component layout with respect to its environment E. The set of all con-

figurations of R within E is the configuration space or Cspace of R in the context of E [3]. The

dimension of Cspace is equal to the degrees of freedom (DOFs) of R. The set of valid (i.e. collision-

free) configurations of R is referred to as the free space Cfree ⊂ Cspace, while the set of invalid

configurations is referred to as the obstacle space Cobst ⊂ Cspace.

Given a movable object R, an environment E, and start and goal configurations qs, qg ∈ Cfree,

the motion planning problem is to find a valid trajectory τ :

τ(t) : R→ Cfree | t ∈ [0, 1], τ(0) = qs, τ(1) = qg

Real robots always have some space of allowed controls U and a dynamics model such as

C(q, u) = q̇, which describes the change in configuration q̇ which results from applying a control

u ∈ U to the robot at some initial configuration q ∈ Cfree. This is an example of a first-order

dynamics model in which a robot can directly control its velocity; a more realistic model describes

the output of C as an acceleration q̈ or higher-order derivative of q.

When dynamics are considered in the planning problem, we are often concerned with various

derivatives of a configuration q in addition to q itself. The combination of a configuration q and

one or more of its derivatives in this context is referred to as a state as in classical mechanics and

control theory. The set of all states is correspondingly termed the state space.

A holonomic robot is one with no constraints on its change in state: it can instantly achieve any

velocity q̇ from any configuration q ∈ Cfree. This is an idealized model which essentially ignores

the robot’s dynamics to simplify the planning problem. Such robots have a state space which is

identical to their configuration space. In contrast, robots with velocity or higher-order constraints

(grouped together under the term differential constraints) are referred to as nonholonomic. Since
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their dynamics models depend on derivatives of their state, such derivatives must be incorporated

into their states. For a nonholonomic robot with constraints on n derivatives of its configuration,

the state space must include all n derivatives and will have dimension equal to n ∗ DOFs.

For nonholonomic robots, the motion planning problem is formulated with respect to the set of

allowed controls since these are the inputs that the robot can accept. Let the full state space of the

robot be denoted by X , which defines all valid (constraint-satisfying) states ignoring obstacles. For

a given state x ∈ X , let q(x) : X → Cspace denote the robot’s configuration at x. In this context,

the start will be a state xs, and the goal is usually relaxed to a region in state space Xg because

it is often extremely difficult to arrive at an exact state. The problem is then to find a continuous

sequence of controls u which produce a valid trajectory τ in state space:

u(t) : R→ U, τ(t) : R→ X | t ∈ [0, 1], q(τ(t)) : R→ Cfree, τ(0) = xs, τ(1) ∈ Xg

2.1 Sampling-Based Planning

Sampling-based motion planning is an algorithmic paradigm which aims to efficiently con-

struct a coarse map of configuration space to solve a motion planning problem. The core idea is

to randomly generate samples in configuration space, check their validity, and attempt to connect

valid configurations with simple local plans, which are short paths in free space. There are two

major families of these algorithms, which are graph-based and tree-based.

The graph-based family of algorithms is descendent from the Probabilistic Roadmap, or PRM [11]

method. These methods construct a graph roadmap in free space by connecting randomly sampled

configurations to their k nearest neighbors. The resulting roadmap can be queried for a path from

start to goal using a graph search algorithm such as Dijkstra’s [12] or A∗ [13]. PRM methods are

intended for settings where the roadmap will be used for multiple queries in the same environ-

ment. They provide good connectivity and often encode more than one path between particular

configurations, which makes them particularly well suited to multiple query problems with multi-
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ple robots. However, PRMs can be difficult to apply to nonholonomic robots because constructing

a local plan between two states requires a steering function, which is not readily available for many

robots.

The tree-based family of algorithms is descendent from the Rapidly-Exploring Random Tree,

or RRT [14] method. RRT methods work by sampling a random configuration qrand and extending

the nearest existing roadmap configuration qnear towards it for a finite distance. This incrementally

builds a tree roadmap in free space which can be queried for a path in the same manner as their

PRM counterparts. A subsequent extension showed that building a tree from both the start and goal

configurations (commonly referred to as bi-directional RRT) can yield significant performance

benefits in many scenarios [15]. Since it does not rely on the ability to exactly connect qnear to

qrand, RRT can easily handle differential constraints by searching the control space for the best

control to steer towards qrand from qnear [16].

2.1.1 Probabilistic Completeness

All sampling-based planners suffer from a common problem, which is the lack of complete-

ness. A sampling-based planner would need to attempt sampling every possible point in configu-

ration space to determine that no solution exists, and may need to do this in the worst case if there

is only one valid solution and it is the last one attempted. This leads to the notion of probabilistic

completeness: in the limit where the sampled configurations cover the entire configuration space,

a sampling-based planner will discover a valid path if one exists. In practice, few problems are so

difficult that only one valid path exists, and sampling-based planners can frequently identify even

very obscure paths with appropriate guidance mechanisms.

2.1.2 The Narrow Passage Problem

A common problem with uniform sampling is a relatively low probability of identify narrow

regions of free space, which are known as narrow passages. When such areas are necessary for

a valid trajectory, sampling-based planners require some form of biasing mechanism efficiently

discover them.
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Two approaches for this which work purely in configuration space are the obstacle-based PRM

(OBPRM) [17] and TogglePRM [18]. OBPRM works by sampling line segments in configuration

space to search for pairs of configurations which lie on either side of the obstacle boundary. The

free configuration in this pair is necessarily very close to the obstacle. This strategy works very well

for identifying configurations in tight spaces like narrow passages. TogglePRM similarly leverages

the obstacle space by simultaneously mapping it alongside the free space. Failed local plans in

either space identify some area of the alternate space: narrow passages are easily discovered by

this method when local planning in the obstacle space.

2.1.3 Workspace-Guided Methods

In many robotics problems, the free workspace is highly correlated with the translational com-

ponents of the free configuration space. Several methods have leveraged this observation to use the

free workspace as a guide for generating samples. The Workspace Importance Sampling (WIS) [5]

method biases configuration sampling based on a cell decomposition of the workspace. Cells are

analyzed to determine the probability that they are located within a narrow passage; this prob-

ability is then used as a bias for preferentially sampling within a given cell. A similar method

employs a watershed test to identifies constriction in the workspace and increases the sampling

density within [6]. Another class of methods are the medial-axis based planners, which employ a

medial axis of the workspace to generate samples that are far from obstacles [19, 20, 21].

A notable workspace-guided technique which does not merely bias PRM sampling is the RRT-

based method Synergistic Combination of Layers of Planning (SyCLoP) [7]. SyCLoP employs a

discrete search over a workspace decomposition to identify a potential workspace solution path; it

then selects a roadmap configuration near the relative frontier within this path for expansion. This

method was designed for random control propagation with nonholonomic systems, however it can

easily be extended to holonomic robots and/or best-control selection as in our work [9] (described

in Chapter 3).
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2.1.4 Asymptotically Optimal Planning

Another area of interest in sampling-based motion planning is the study of asymptotically-

optimal (abbreviated by AO) planning algorithms. These techniques continue to refine the solution

after an initial trajectory is identified, and asymptotically converge to an optimal solution. Vari-

ations of the major algorithm families have been extended to support AO, and are denoted by

attaching a star to the algorithm name (PRM∗, RRT∗) [22]. Since no robotics application can

afford unlimited sampling time, many authors refer to these methods as ‘anytime’ planners to indi-

cate that the current best solution may be extracted any time after the initial discovery of a feasible

path.

However, these variants require steering functions to support nonholonomic robots, and are

thus not applicable to systems without a known steering function. To combat this difficulty, the

Stable Sparse Tree or SST method provides an RRT-like algorithm which achieves AO behavior

without a steering function [23]. This is achieved by enforcing sparseness of the produced tree

and extending only from the lowest-cost configuration within a sparsified region of state space.

Although tuning the sparseness is non-trivial, the SST is theoretically important in being the only

algorithm to provide AO without a steering function.

2.2 Nearest-Neighbor Algorithms

In all sampling-based planning algorithms, the two most expensive components are collision-

checking and nearest-neighbor location. While several techniques for assuaging the cost of collision-

checking have been investigated [24, 25], in the present work we focus on the nearest-neighbor

problem.

The nearest-neighbor problem is to locate the k nearest neighbors from a set of known points

Q to some query point q, usually in a high-dimensional space. Motion planning algorithms solve

this problem repetitively when determining which configurations to connect in various contexts.

Several computational techniques have been developed for locating exact and approximate nearest-

neighbors.
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The simplest approach to the nearest-neighbor problem is to compare each candidate point in

Q with the query point q; the closest k points in Q are then returned as the nearest neighbors.

This approach is known as brute force or linear scan. While simple, it takes O(|Q| lg k) time.

In motion planning algorithms, Q represents the set of roadmap configurations. Each q ∈ Q

must be connected to at least one other configuration to be useful, so a nearest neighbor problem

must be solved for each such configuration. Using linear scan for this results in a complexity of

O(|Q|2 lg k) over the entire planning problem.

A more sophisticated approach is to use a k-d tree, which can locate points in logarithmic

time [26]. A popular k-d tree method for motion planning also allows relaxing the exactness prop-

erty for increased efficiency [27]. A later work re-iterates on this method to develop a partitioning

strategy which better respects the nuances of the orientation components [28]. Other structures

such as metric and cover trees have also been suggested, although empirical evidence suggests that

these are not significantly faster than k-d trees in problems of moderate size and dimension [29].

However, other researchers have noted that k-d trees perform little better than brute-force when

the problem dimension is moderate to large [30]. Such difficulties have spurred investigation in

approximate nearest neighbor methods, which aim to trade a relatively small sacrifice in accuracy

for a larger gain in computational speed.

Locality-sensitive hashing (LSH) is a class of approximate methods which attempts to bucket

similar samples together with some form of hashing scheme, and has been applied in both ma-

chine learning [31, 32] and motion planning [30]. An alternative approximate method from the

motion planning realm is distance-based projection onto Euclidean space (DPES) which uses a

projection from configuration space to a lower-dimensional Euclidean space before computing the

neighbors [33].

Another notable exact approach which has been applied in motion planning contexts is the

geometric nearest-neighbor access tree (GNAT) [34]. This method identifies all nearest neighbors

within a given radius of the query point (as opposed to the k nearest neighbors within any distance).

It employs a hierarchical Voronoi decomposition of a metric space to filter out large segments of
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(a) A cell decomposition (b) A topological skeleton

Figure 2.1: The two types of workspace models used in this work. Obstacles are shown in gray,
free workspace in white, and model components in color.

the domain which exceed the search radius. It was designed for cases where measuring distance

is expensive and has been applied in motion planning with a deep-learning based swept-volume

distance metric [35].

2.3 Workspace Models

Throughout this work we will rely on models of the workspace which describe its topology.

Two types of models will be used, which are cell decompositions and topological skeletons.

2.3.1 Cell Decompositions

A cell decomposition is a partitioning of volume into a set of discrete cells (Fig. 2.1(a)). Cell

decompositions are a well-studied area of computational geometry and are covered in standard

texts [36]. In addition to partitioning the volume, a cell decomposition should also describe the

adjacency relationships between the cells, usually in the form of an undirected graph. This structure

effectively forms an atlas of the volume with cells as the component charts.

Decompositions usually produce convex cells. Common choices are grids, and triangulations

(also called tetrahedralizations for three-dimensional volumes). Grids necessitate some overlap

with the obstacle space while triangulations do not; the latter can precisely represent a free space

which is presented as a piecewise linear complex. Tetrahedralizations also share this property,
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although it may be necessary to introduce additional vertices called Steiner points to produce a

valid result [37].

In this work we will refer to cell decompositions of the free workspace (i.e. physical space

without obstacles) as workspace decompositions or simply decompositions.

2.3.2 Topological Skeletons

A topological skeleton or topological graph is a 1-complex representation of a space in which

vertices map to points in the space and edges map to paths between their source and target [38]

(Fig. 2.1(b)). There are many ways to produce skeletons with different properties, such as a medial

axis [36], Reeb graph [39], or mean-curvature skeleton [40]. Concatenations of the edge paths

describe the set of homotopy classes for paths through the volume.

In motion planning, skeletons are useful as compact representations of a space where vertices

represent open volumes and edges represent junctions between them. We will refer to skeletons of

the workspace as workspace skeletons or simply skeletons.

2.3.3 Inner Distance

For parts of our work, we will require a measurement of the shortest-path distance between

two cells in a workspace decomposition without entering the obstacle space. This is known as the

inner distance [41] or euclidean shortest path distance. We will prefer the former term to avoid

confusion with the general euclidean distance. An exact computation of this distance is known to

be NP-Hard [42], but bounded approximations exist which can estimate the distance in polynomial

time [43].
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3. DYNAMIC REGION SAMPLING∗

All sampling-based planners must sample configurations to explore Cspace, but it is not neces-

sary that they do so in a uniform random fashion. Certainly some areas of Cspace are more likely

worth the computational resources required to explore them than others; the volumes inside ob-

stacles are clearly outside of Cfree, for instance. We observe that a workspace skeleton describes

valid paths through the free workspace, which is closely tied to the translational subspace of Cfree.

This suggests that sampling near the vertices and edges of a workspace skeleton is more likely to

produce configurations on a valid path through Cfree than uniform random sampling.

Dynamic Region sampling is a paradigm for biasing the generation of new configurations along

regions that traverse a workspace skeleton, which focuses sample generation on more promising

locations. Additionally, it provides a mechanism for tracking the algorithm’s progress in extending

the roadmap across the skeleton and further biases the sampling distribution to favor regions just

ahead of the current roadmap frontier. We show how this paradigm can be applied to RRT planners

for fast feasibility planning, and to PRM planners for building roadmaps with good connectivity.

3.1 Dynamic Region RRT

Dynamic Region sampling can be employed to guide an RRT planner along a topological

skeleton of the workspace [9]. The method assumes a topological skeleton S of the workspace

W as input (Fig. 3.1(a)), which encodes the valid paths between all portions of W . However, we

observe that the goal of RRT is feasibility planning, and it is not necessary to consider the entire

skeleton.

We first prune and direct the skeleton to represent the query at hand by removing superfluous

components. We identify the skeleton vertices vs, vg ∈ S which are nearest to the planning prob-

lem’s start and goal respectively, and prune the skeleton of components which lead away from a

∗Portions of this chapter describing the core concepts and application to RRT planners are reprinted with permission
from [9] J. Denny, R. Sandström, A. Bregger, and N. M. Amato. “Dynamic Region-biased Rapidly-exploring Random
Trees,” in Alg. Found. Robot. XII, Springer, 2020. (WAFR 2016). c⃝ 2020 Springer.
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(a) Workspace and Skele-
ton

(b) Initialization (c) Tree Growth (d) Multiple Regions

Figure 3.1: A sketch of dynamic region RRT. (a) A workspace skeleton (pink) is generated. (b)
The skeleton is directed and pruned for a given query, and the first region (green) is initialized.
(c) The region advances as the tree (blue) extends. (d) Multiple regions are generated as the tree
passes a skeleton junction point with two outbound edges. Reprinted with permission from [9], c⃝
2020 Springer.

possible (workspace) path from vs to vg (Fig. 3.1(b)). This is accomplished in two phases: first,

a single-source shortest paths algorithm is executed from vs to identify the set of edges which

lead away from the start. Second, we execute a backward breadth-first search from vg (tracing

the inbound edges) to identify all ancestors of vg in the search tree from vs; any non-ancestors

are removed from S. The remaining edges in S are then known to lie along a path from vs to vg,

which represent the relevant portions of workspace for this particular query. This pruned skeleton

is computed once prior to RRT execution for use as a sampling guide. The final initialization stage

is to create a set of sampling regions on each edge outbound from vs to begin the guidance process.

On each iteration of RRT a random configuration qrand is generated from some sampling

boundary, which is usually all of Cspace. In Dynamic Region RRT, we employ a weighted selection

to choose either one of the sampling regions or the entire Cspaceas the sampling domain. This is

initially with equal probability, but quickly leans towards a strong favor of sampling regions which

are productive in extending the roadmap. When a sampling region r is selected, we sample our

growth target qrand from r and attempt to extend towards it from the nearest configuration in the

roadmap, qnear. This causes the tree to grow towards the area of workspace covered by r.

If the tree is extended into a sampling region r, we advance r along its skeleton edge until either
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r is clear of the newly extended configuration or the end of the end is reached (Fig. 3.1(c)). In the

later case, r has arrived at a new skeleton vertex v ∈ S, which indicates that the roadmap tree now

covers r’s skeleton edge. We create additional sampling regions for each outbound edge from v

which have not already been generated to continue guiding the roadmap through the next segments

of workspace (Fig. 3.1(d)). This advancement strategy keeps the sampling regions just ahead of

the roadmap frontier, effectively tracking the planner’s progress in covering the region around the

skeleton. Biasing samples just ahead of the roadmap forces the planner to continue expanding the

roadmap outward rather than ‘infilling’, which occurs when the growth target is generated within

a region already well-covered by the roadmap.

As the sampling regions are traversing edges of a workspace skeleton rather than a Cspace skele-

ton, it is possible that there is no valid path in Cspace which corresponds to a given workspace edge.

To address this, we adaptively tune the probability of selecting a given region r based on the

recent success rate of generating samples within r. Regions that are performing well will be pref-

erentially selected to exploit the ease of planning through the corresponding workspace volume.

Regions which are not performing well will have a lower probability of selection. This feature au-

tomatically tunes the selection probabilities to favor exploiting good regions and exploring when

none are known. It additionally allows the method to gracefully degrade to a standard RRT in the

event that the workspace does not provide a reasonable guide for solving the given problem.

We retain the probability of selecting the full Cspace as the sampling region to ensure proba-

bilistic completeness. Unlike the sampling regions, the probability of selecting the entire Cspace is

not updated with respect to the rate of successful extension. This is because the update represents

a metric for how well we have exploited a region recently, and we do not consider the Cspace as an

exploitable region. Rather, sampling from it represents a choice of exploration which broadens the

search space when the dynamic sampling regions are performing poorly.

In applications for nonholonomic robots, we additionally need to be aware of the robot’s mo-

mentum and control capabilities. For a realistic model of such a robot (i.e. a quad copter), it

is often quite difficult to extend towards a growth target qrand which is too close to the nearest-
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Algorithm 1 Dynamic Region RRT

1: function DYNAMICREGIONRRT(Environment e, Configuration qstart, Configuration qgoal)
2: ***Initialize***
3: S ← COMPUTEWORKSPACESKELETON(e)
4: S ← PRUNE(S, qstart, qgoal)
5: R← INITIALIZEREGIONS(S, qstart)
6: G = {GV , GE} ← {∅,∅})
7: ***Main loop***
8: while ¬done
9: r ← SELECTREGION(R, e)

10: qrand ← SAMPLE(r)
11: qnear ← NEARESTNEIGHBOR(qrand, GV )
12: qnew ← EXTENDTREE(qnear, qrand)
13: if qnew ̸= ∅
14: GV ← GV ∪ qnew
15: GE ← GE ∪ (qnear, qnew)
16: ADVANCEREGIONS(qnew, S, R)
17: return G
18: function ADVANCEREGIONS(Configuration qnew, Skeleton S, Regions R)
19: ***Check each region for contact with qnew***
20: for all Region r ∈ R
21: while qnew ∈ r
22: ***Check for end of edge***
23: p← r.GETNEXTSKELETONEDGEPOINT( )
24: if ∄p ▷ r has reached the end of the edge
25: R← R \ r
26: CREATEREGIONS(r.edge.target)
27: continue
28: r.center← p
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neighbor qnear. This problem occurs when the robot’s momentum cannot be quickly overcome by

any control, so such an extension is likely to produce an erratic path in an attempt to steer from

qnear to qrand. A simple fix for this is to relax the requirement for advancing a region: rather than

requiring the newly generated configuration qnew to be fully contained within the sample region r,

we instead advance r if qnew lies partially within r. This has the effect of prematurely advancing

the sampling regions so that the sampled growth targets lead the tree by a greater distance, which

improves the likelihood that the extension will be fruitful. The level of relaxation is parameterized

with respect to the robot and region radius; robots which can achieve large momentums benefit

from more relaxation, while robots with sufficiently strong controls do not require as much.

Dynamic Region sampling adds little overhead to standard RRT growth. Additional operations

include selecting, advancing, creating, and deleting regions. The maximum number of active re-

gions |R| is O(|SE|), at most linear in the number of edges in the skeleton S. Checking for region

advancement takes O(|R|) operations to check each active region. Over the whole problem, ad-

vancing the regions along the edges SE is bounded by the number of sub points Pe ∈ SE , for a

total cost of O(|Pe|). However, these are extremely pessimistic upper bounds. In most scenarios,

the number of active regions is much smaller than the number of skeleton edges, and the number

of uncovered edges drops monotonically during execution.

3.1.1 Validation

We demonstrate Dynamic Region RRT on holonomic robots in five environments, including

MazeTunnel, LTunnel, Garage, GridMaze4, and GridMaze8 as shown in Figure 3.2. We

also evaluate performance on the LTunnel with nonholonomic robots, comparing against RRT

and SyCLoP, to show that Dynamic Region sampling can benefit nonholonomic systems. These

environments contain narrow passages in the workspace that are correlated with valid paths in

Cspace, and are thus good exhibitions of the planner’s ability to exploit that correlation. The diffi-

culties in each environment vary. MazeTunnel contains false passages, LTunnel incorporates

narrow entrances, Garage has multiple homotopy classes, and GridMaze environments have

long, winding paths in a cramped tunnel that constrain the robot’s rotational DOFs.
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The robots in all cases are 6 DOF rigid bodies. The nonholonomic experiment uses a fully

actuated robot with a 1:2 ratio of random vs. best control selection and a 1:2 ratio of fixed vs.

variable timestep for extension [44].

We compared Dynamic Region RRT (DR-RRT) against RRT [44], Dynamic-Domain RRT [45],

Synergistic Combination of Layers of Planning (SyCLoP) [7], and the Probabilistic Roadmap

(PRM) approach using Workspace Importance Sampling (WIS) [5]. We selected these represen-

tative methods for their similarities to our approach. Dynamic-Domain RRT, SyCLoP, and WIS

use adaptive sampling distributions. SyCLoP and WIS employ pre-computations to decompose

the workspace. SyCLoP additionally uses a search over the decomposition graph to guide an RRT

planner.

3.1.1.1 Experiment Setup

All methods were implemented in a C++ motion planning library developed in the Parasol Lab

at Texas A&M University. All experiments were executed on a laptop running Fedora 23 with an

Intel R⃝ CoreTM i7-6500U CPU at 2.5 GHz, 8 GB of RAM, and the GNU gcc compiler version 5.3.1.

Each experiment ran until the query was solved (success) or 20,000 nodes had been added to

the roadmap or 20 minutes had elapsed (failure). We performed 35 trials for each experiment and

removed the fastest and slowest run from each. Success rates are shown in Table 3.1, and average

run times and standard deviations are shown in Figures 3.3 and 3.4. Times are reported over all

runs.

Skeletonization was considered as a pre-processing step and not included in the run time. These

experiments use a Reeb graph skeleton, for which construction took an average 3.5 seconds to build

in MazeTunnel, 0.7 seconds in LTunnel, and 2.3 seconds in Garage.

3.1.1.2 Analysis

As Figure 3.3 shows, Dynamic Region RRT exhibits faster planning time as compared with

the other methods for the holonomic problems. The improvements over the closest competitors

are significant, with pval = .0083 against RRT and pval = .0175 against Dynamic-Domain RRT in
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(a) MazeTunnel
(toroidal plus)

(b) LTunnel (box)

(c) Garage (helicopter)

(d) GridMaze4 (stick) (e) GridMaze8 (stick)

Figure 3.2: Test environments for Dynamic Region RRT. The Garage contains multiple alterna-
tive paths. The GridMazes are 3D mazes with internal pathways and tunnels throughout. The
robots in all cases are 6 DOF rigid bodies. In the GridMazes, the robot length is equal to the tunnel
width to constrain rotational motion. Reprinted with permission from [9], c⃝ 2020 Springer.

MazeTunnel (using the student’s unpaired t-test). The closest competitor in the other environ-

ments were slower with pval < .0001 (WIS in LTunnel and Garage, SyCLoP in GridMaze4).

Neither RRT nor Dynamic-Domain RRT was able to solve the Garage problem. WIS showed
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(a) MazeTunnel (b) LTunnel

(c) Garage (d) GridMaze4 (e) GridMaze8

Figure 3.3: Evaluation of Dynamic Region RRT in holonomic problems. Plots show the average
planning time over 33 trials. Error bars indicate standard deviation. A * indicates that none of the
trials solved the query. Reprinted with permission from [9], c⃝ 2020 Springer.

strong performance in LTunnel and Garage, but lacked efficiency in MazeTunnel and con-

sistency in GridMaze4. Only DR-RRT was able to solve the large GridMaze8, which pushes

the algorithm to the limits of what it can handle with high reliability.
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Planner DR-RRT RRT Dynamic-Domain RRT SyCLoP WIS
MazeTunnel 100% 100% 100% 100% 100%
LTunnel 100% 100% 100% 100% 100%
Garage 100% 0% 0% 100% 100%
GridMaze4 100% 100% 100% 100% 100%
GridMaze8 76% 0% 0% 0% 0%
LTunnel (nonholonomic) 90% 24% - 97% -

Table 3.1: Evaluation of Dynamic Region RRT in holonomic problems. The table shows the
success rates in each experiment. Reprinted with permission from [9], c⃝ 2020 Springer.

Compared with the other RRT methods, DR-RRT’s topological guidance leads to more pro-

ductive samples and thus smaller roadmaps. This results in faster neighborhood finding tests and

faster overall execution. Despite SyCLoP’s mechanism for expediting neighborhood finding, our

guidance mechanism showed significantly lower per-extension cost, which more than compensated

for this in the holonomic trials. WIS generally produced the smallest roadmaps, but often took a

long time to generate its samples and spent much more time connecting them due to being a PRM

method.

In the nonholonomic experiment (Figure 3.4), DR-RRT was faster than RRT (pval < .0001)

and slower than SyCLoP (pval = .0002) in LTunnel with high confidence. While DR-RRT

improves over RRT, it doesn’t perform as well as SyCLoP for this problem. This is because

SyCLoP’s neighborhood finding expedition offers more benefit in problems with larger roadmaps

(like nonholonomic problems), and because it doesn’t always expand from the front of the tree,

which helps prevent it from getting stuck when the leading nodes in the tree are difficult to extend

from.

3.2 Theoretical Considerations

The skeleton must be a deformation retract [46] of the free workspace to ensure that it ade-

quately represents the environment. This implies that every point in the free workspace can be

mapped onto the skeleton, i.e., it represents the entire workspace and preserves its topology. This

is important because every workspace homotopy is a generalization of one or more Cspace homo-
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Figure 3.4: Evaluation of Dynamic Region RRT in nonholonomic problems. Plot shows the aver-
age planning time over 33 trials. Error bars indicate standard deviation. Reprinted with permission
from [9], c⃝ 2020 Springer.

topy classes (i.e., with a projection of a Cspace homotopy into workspace using only the positional

DOFs). We thus require the skeleton to be complete to avoid missing any Cspace homotopy classes.

Some problems exhibit only a partial correlation between Cspace and workspace. One example

is manipulation planning, where the end-effector’s path is strongly correlated with the environment,

but the movement of the rest of the robot may not be. In such cases, a skeleton could be used to

guide sampling for the correlated component. This would additionally require a sampling method

that is able to place the correlated component first and subsequently sample the remaining DOFs,

such as reachable volumes [47] or cyclic coordinate descent [48].

Unfortunately, not all problems exhibit a useful correlation between the workspace and Cspace

topology. In problems such as the alpha puzzle, the use of a workspace skeleton may not be

sensible. However the underlying idea may still apply, which is to use regions and topological

analysis in low-dimensional manifolds of Cspace to explore Cfree. We have so far considered the

translational subspace as this manifold, but one could feasibly design alternatives for other classes

of problems.

Dynamic Region sampling can be expected to work well when the union of all sampling regions

covering the skeleton points contains a path-connected volume in Cfree. Formally, define the metric

space MC = (Cspace, D) where D is the euclidean metric and MW = (W,T ) where W is the

workspace and T is translational distance. Let βcr(q) be a ball in MC of radius r centered at
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q ∈ Cspace, and let βwr(p) be a ball in W of radius r centered at p ∈ W . Let τ(q) : Cspace →

W represent the mapping between the translational subspace of Cspace and the robot’s reference

point in W . Then for any ball βwr(p) ∈ W , the inverse map Q(p) = τ−1(βwr(p)) ∈ Cspace

describes a hypercylinder in Cspace which is a ball in the translational subspace centered on τ−1(p).

Therefore βcr(τ
−1(p)) ⊂ Q(p), meaning that a ball of radius r in MW encompasses a superset

of the corresponding ball of radius r in MC . The union of all possible sampling regions along

the skeleton U thus represent a union of hypercylinders in CspaceX; in the case where U is path-

connected, X will be also.

To ensure that U contains a path-connected volume in Cfree, it remains to show that the in-

tersection Y = X ∩ Cfree is path-connected. A general argument for this is not possible due to

the wide variety of choices for the skeleton, robot, and environment. For example the workspace

and skeleton may be disjoint (in which case no planner can succeed in completely connecting the

space), the skeleton may be badly positioned (resulting in disjoint components for Y ), or the robot

may be too large to traverse into certain regions of workspace (again resulting in disjoint compo-

nents for Y ). As such, this description serves as a characterization of when the method can produce

a good coverage of W and Cfree rather than a statement that it will always do so.

There are at least two cases where one can be assured that Y is path-connected. The first

is when the robot is a free-body with maximum radius less than or equal to some value ρ and

the skeleton has clearance greater than or equal to ρ everywhere. This holds for some common

cases where floor-dwelling robots must perform tasks in large but reasonably uncluttered spaces.

A second case is where there is a valid configuration at each skeleton point and a valid local plan

between them: this represents the case where one knows that the robot has a valid maneuver for

all localities, and shows a similar flavor to human intuition in collaborative planning [49]. A third

case is for a point robot, which will always meet this criterion because its Cspace is exactly the

workspace. Non-rotational robots will similarly satisfy when the skeleton is path-connected in an

‘inflated’ workspace produced by the Minkowski sum of the robot with each obstacle.

In cases where Y is path-connected, a planner driven by Dynamic Region sampling is prob-
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abilistically complete if the skeleton meets the definition of a deformation retract. This is true

because a retract skeleton is visible to the entire Cfree, and a path between any two points can be

formed by connecting each point to its nearest visible point on the skeleton. Adding sampling from

the full environment ensures probabilistic completeness even when Y is not path-connected or the

skeleton is ill-formed; however as these assumptions break down, we expect the performance of

the region guidance to degrade correspondingly.

3.3 Sampling Regions and Clearance Awareness

We assume topological skeleton of the workspace S = SV , SE as an input element, which may

be any type with reasonable clearance properties. Throughout the algorithm, we define sampling

regions at vertices and points on the edge paths. These regions may be given some fixed size,

but we observe that an alternate strategy can be employed to leverage the known clearance in

workspace.

At any point p in workspace, we can define a spherical sampling region r with clearance aware-

ness by considering the available space to place the robot. Let the center be p and radius be defined

as the clearance at p minus the robot’s minimum radius from the reference point pr defining its

translational DOFs. Define r such that any samples generated will place pr within the sphere. Such

a region r inscribes the maximum region of workspace around p where a sample could be placed

for p on the medial-axis.

In practice, few skeletons truly lie on the medial axis, and this sizing mechanism may preclude

the generation of configurations at points where the skeleton’s clearance is poor. To avoid this

problem, a minimum radius should be selected for non-medial skeletons to account for the fact

that the clearance is not uniform around the skeleton components.

When working with a skeleton on the medial-axis, we can employ pure clearance-based sizing

to filter out regions of workspace that cannot accept the robot. This enables the planner to avoid

obstructions with small holes such as chain-link fences without wasting effort on an unfruitful

exploration. In this case, the skeleton can be pruned of low-clearance points as a pre-processing

step. We note that for non-medial skeletons, the biasing of region selection based on success
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(a) (b) (c) (d)

Figure 3.5: An illustration of Dynamic Region sampling with PRM. Obstacles are shown in gray.
(a) The workspace skeleton is shown in purple. (b) The algorithm samples initial connected compo-
nents (blue) in regions (green) around each skeleton vertex. (c) Sampling regions expand outward
along the skeleton edges. We depict the regions in the location where samples were generated for
clarity; in the actual algorithm the regions advance past the newly generated samples. (d) The com-
ponents in the middle tunnels successfully connect to form bridges, and their regions are released.
The outer passages are still expanding.

rate still gives a strong preference for avoiding regions which are stuck at impassible regions of

workspace.

3.4 Dynamic Region sampling for Graph-Based Planners

Dynamic Region RRT provides a fast feasibility planner which addresses single-query settings

well. For multi-query settings, a planner should construct a roadmap with good coverage and

connectivity of Cfree so that diverse queries can be answered efficiently. This is typically best

achieved by graph-based planners that build roadmaps with multiple connected components. To

tackle problems in this setting, we show how the dynamic region sampling technique can be gen-

eralized to account for the separate evolution of multiple connected components in the roadmap.

We use the PRM method as the axis for presentation, but the concepts can be employed with any

sampling-based planner that can be cast in terms of expanding and connecting components of the

roadmap.

The high-level concept for PRM with dynamic region sampling is to view the workspace skele-

ton as a rough map of the important regions of Cfree that we must cover. The skeleton edges de-

scribe simple contiguous volumes such as rooms or tunnels, while the skeleton vertices describe

24



junctions of such volumes. We will refer to the volume of workspace described by a skeleton

edge as an edge segment, which reflects the concept of a skeleton-induced segmentation of the

workspace [50].

Our goal will be to cover each edge segment with a set of vertices that connect the roadmap

from the region near the source vertex to the region near the target vertex. We describe a roadmap

with this property as locally connected. Such a roadmap has good coverage of all distinct regions of

workspace, and should be able to quickly answer a wide variety of queries with a path of reasonable

cost.

Algorithm 2 Roadmap construction with Dynamic Region PRM

Require: Skeleton S = {SV , SE}, Roadmap G = {GV , GE}
1: function BUILDROADMAP( )
2: ***Initialize components at each skeleton vertex***
3: for all v ∈ SV

4: r ← GETREGIONRADIUS(v.point)
5: Q← SAMPLEVALIDCONFIGURATIONS(βr(v))
6: E ← ∅
7: for all q ∈ Q
8: N ← NEARESTNEIGHBORS(q, Q)
9: E ← E ∪ ATTEMPTCONNECTIONS(q, N )

10: for all Connected Componet cc ∈ {Q,E}
11: INITIALIZEREGIONS(cc.vertices, v)
12: GV ← GV ∪Q
13: GE ← GE ∪ E

14: ***Main PRM Loop***
15: while ¬done ▷ either node limit or S covered
16: r ← SELECTREGION()
17: if R ̸= ∅
18: Q← EXPANDLOCALCOMPONENT(r)
19: while ∃q ∈ Q | r.CONTAINS(q)
20: ADVANCEREGION(r, Q)
21: CONNECTLOCALCOMPONENTS(r.edge)
22: else
23: e← RANDOMUNCONNECTEDSEGMENT( )
24: CONNECTLOCALCOMPONENTS(e)
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To aid in describing the method, we define a local connected component for an edge segment

as a set of roadmap vertices which are mutually connected without considering vertices outside of

the segment volume. For any two vertices va, vb in a local connected component C, there must

be a path from va to vb through some set of vertices V ⊂ C. This concept describes a portion of

a roadmap that is locally connected within a particular volume of workspace. A local connected

component with vertices near both the source and target of the corresponding skeleton edge will

be termed a bridge. Bridges represent a connected path that traverses the edge segment volume.

The gist of the method is to generate local connected components near skeleton vertices and

extend them across their edge segments with dynamic sampling regions. Local connected compo-

nents form bridges by either extending all the way across their edge segment or by merging with a

local component inbound from the opposite direction.

We begin by initializing sampling regions at each skeleton vertex v ∈ SV and sampling a

number of configurations within (Alg. 2). Next, we attempt to form connections within each group

of samples to form one or more connected components at each skeleton vertex. For each such

component C, we initialize a sampling region on each outbound edge e from v and track each

tuple (C, e.source, e.target) as our local connected components. This seeds the roadmap with at

least a pair of local connected components for each edge e, with an equal number rooted on either

end (Fig. 3.5(b)). Note that vertices sampled near a skeleton vertex will be present in more than one

local component because they are partially responsible for covering each adjacent skeleton edge

segment. We initialize sampling regions for each local connected component on the first point in

the edge path it is traversing to lead their extension through the appropriate edge segment.

The sampling regions are used to perform a guided expansion of the local connected compo-

nents they lead. On each iteration of the algorithm, we select a sampling region r and generate one

or more configurations Q within its boundary. We then attempt to connect each valid configura-

tion q ∈ Q to its nearest neighbors in the local connected component C that r is expanding: on

failure, q is discarded. Successful connections are retained and added to C (Fig. 3.5(c), Alg. 3).

We then advance r along its skeleton edge path until it no longer touches any of the newly added
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Algorithm 3 Component expansion and connection

Require: Roadmap G = {GV , GE}
1: ***Expand a local component***
2: function EXPANDLOCALCOMPONENT(Region r)
3: Cr ← GETLOCALCOMPONENT(r)
4: Q← SAMPLEVALIDCONFIGURATIONS(r)
5: for all q ∈ Q
6: N ← NEARESTNEIGHBORS(q, Cr)
7: E ← ATTEMPTCONNECTIONS(q, N )
8: if E = ∅
9: Q← Q \ q

10: continue ▷ couldn’t connect
11: GV ← GV ∪ q
12: GE ← GE ∪ E

13: r.UPDATESUCCESSRATE(|Q|, K)
14: return Q

15: ***Connect local components in a segment***
16: function CONNECTLOCALCOMPONENTS(SkeletonEdge e)
17: ***Draw samples at a random point on the edge***
18: p← RANDOMPOINT(e.path)
19: r ← GETREGIONRADIUS(p)
20: Q← SAMPLEVALIDCONFIGURATIONS(βr(p))
21: ***Attempt to merge components***
22: C ← GETLOCALCOMPONENTS(e)
23: for all q ∈ Q
24: E ← ATTEMPTCONNECTIONS(q, C)
25: if E has edges to more than one c ∈ C
26: merge all c ∈ C connected by E

samples (Alg. 4). In this way, the sampling region r tracks the component C’s progress in covering

the edge segment.

If r successfully expands C, we additionally attempt to connect the retained samples in Q to

any local components inbound on this edge segment from the opposite direction. This is to make

the algorithm aggressively attempt to form bridges at the earliest opportunity. On forming a bridge,

we merge the newly connected local components and release their sampling regions, which are no

longer needed (Fig. 3.5(d)).

If r advances to the end of its edge without C connecting to a local component rooted at the
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target skeleton vertex st, then C has formed a bridge but not yet connected to the roadmap locally

near st. In this case, we generate local components with the new vertices Q on the edges outbound

from st to continue searching for a connection to the local components already rooted at st. This

ensures that the algorithm continues to explore until the roadmap is locally connected or disjoint

global connected components cover the skeleton. The latter can happen in problems with disjoint

regions of Cfree (Fig. 3.6(b)).

To ensure that disjoint local components within an edge segment are connected, we apply

an additional connection stage after each expansion step. We pick a random point p along r’s

skeleton edge path and sample a set of valid configurations Q. For each q ∈ Q, we attempt to

form connections between at least two local connected components within this edge segment. Any

configurations that form the necessary connections will be added to the roadmap and will trigger a

merge of the corresponding local connected components (Alg. 3).

As in the expansion step, a merge of two components coming from opposite directions forms a

bridge and releases their sampling regions. Similarly, a merge with an existing bridge absorbs all

affected vertices into the bridge. When two components from the same side merge, we retain the

sampling region which has advanced the farthest along the edge path.

The set of initial regions will expand their corresponding components outward from their root

skeleton vertex in a similar fashion as in Dynamic Region RRT possibly extending to the end of the

skeleton. When selecting a region to expand on each iteration, we can employ a weighted random

choice to favor regions which have been more successful in expanding the roadmap. The weight

for each region is calculated by the success rate of extending into that region. To ensure that region

weights represent the recent history of performance, we can apply a discount factor between zero

and one to the prior weight before updates. A weighting based on success rate ensures that the

algorithm will explore the edge segments which have proved to be traversable before expending

effort on segments which are difficult to connect or even not path-connected in Cfree.
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Algorithm 4 Dynamic Region operations

1: ***Initialize regions and local components***
2: function INITIALIZEREGIONS(Configurations Q, SkeletonVertex v)
3: for all e ∈ v.GETOUTBOUNDEDGES( )
4: C ← MAKELOCALCOMPONENT(e, v, Q)
5: CREATEREGION(C)
6: ***Advance an expansion region one step***
7: function ADVANCEREGION(Region r, Configurations Q)
8: ***Check for end of edge***
9: p← r.GETNEXTSKELETONEDGEPOINT( )

10: if ∄p
11: ***Attempt to merge components***
12: C ← GETLOCALCOMPONENTS(r.edge.target)
13: for all q ∈ Q
14: E ← ATTEMPTCONNECTIONS(q, C)
15: if E ̸= ∅
16: merge all c ∈ C connected by E

17: if not merged
18: INITIALIZEREGIONS(Q, r.edge.target)
19: DELETEREGION(r)
20: else
21: ***Move to the next position***
22: r.center← p
23: r.radius← GETREGIONRADIUS(p)

3.4.1 Local Connectivity

A straight-forward application of the dynamic region sampling paradigm for RRT methods is

very likely to produce disconnected roadmaps because there is no mechanism ensuring that the

samples produced within a region r will connect to other vertices within r’s edge segment. This is

implied in RRT methods due to tree extension, but not guaranteed for PRM methods which form

local plans rather than growing towards a new sample. This motivates our choice of requiring

sampling regions to expand a particular local connected component.

Even with this consideration, it is quite possible that local components may grow past each

other along a skeleton edge and fail to connect when a connection is feasible (Fig. 3.6(a)). This

motivates the need for a separate connection step to provide a guidance mechanism for completing
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(a) (b)

Figure 3.6: Two examples of connection problems that can occur with disjoint connected compo-
nents. The robot is a car-like vehicle with mecanum wheels, with an arrow indicating its orienta-
tion. Two connected components of the roadmap are shown in red and blue. (a) An example of
a missed connection. The components are connectable because the mecanum wheels permit the
robot to turn in place. (b) An example of a locally disjoint CfreeṪhere is no way to merge these
components within the tunnel because the car can’t turn in the available space.

the connections to achieve local connectivity.

However, we note that a locally connected roadmap does not necessarily express a complete

coverage of Cfree because Cfree can have locally disjoint components within a particular edge

segment. Consider an example where a car-like robot must traverse a tunnel that is too narrow to

turn around (Fig. 3.6(b)). Within the tunnel, there are two disjoint regions of Cfree: one for each

direction of travel. In more complex examples with three-dimensional environments or mobile

manipulators, there could be many more locally disjoint components that are only connected in

some specific areas of the environment. The algorithm attempts to account for this by creating

new local components when a sampling region completes a skeleton edge without connecting to

the other side. This encourages construction of a roadmap that presents some level of coverage for

locally disjoint regions of Cfree.
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3.4.2 Answering Queries

When presented with a query consisting of a start configuration qstart ∈ Cfree and a goal region

Qgoal ⊂ Cfree, we sample a qgoal ∈ Q and attempt to connect qstart, qgoal to the roadmap. If the

roadmap has adequately covered Cfree, this should be straight-forward.

It is possible that either start or goal q is not connectable to the current roadmap. This repre-

sents a case where either the skeleton missed the corresponding parts of workspace (resulting in

no configurations nearby) or the nearby configurations lie in a region of Cfree that is locally dis-

connected from q. The repair strategy is to expand rapidly outward from q in search of either the

roadmap (thus completing the connection) or the skeleton (thus allowing the use of dynamic region

guidance to complete the connection). An RRT is ideal for this purpose as it handles both cases

elegantly: it will rapidly find a nearby skeleton point, either leading to a connection or arrival at a

region near a skeleton vertex where dynamic region guidance can be employed. This is analogous

to the Spark PRM strategy [51] where an RRT is locally employed to bridge narrow passages for a

PRM planner.

3.4.3 Validation

To evaluate Dynamic Region sampling with PRM, we tested the method on two problems

with multiple path homotopy classes and compared against PRM (baseline), PRM with Workspace

Importance Sampling (WIS) [5], and Dynamic Region RRT(DR-RRT).

The environments include a Garage problem with a quadcopter robot, a DhaA protein with a

ligand probe, and a cramped three-dimensional GridMaze. Each environment exhibits winding

tunnels which increase the difficulty of connecting configurations. In each problem, the PRM

planners build an initial roadmap with a fixed number of vertices before being presented with a

series of queries. They then search for a solution for each query in sequence, starting from the

current roadmap and expanding it if necessary. This exercises the multi-query intention of PRM

and shows how well the constructed roadmaps generalize over several planning requests. The

Dynamic Region RRT method is included to contrast the performance of a guided single-query
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method.

3.4.3.1 Experiment Setup

All methods were implemented in a C++ motion planning library developed in the Parasol Lab

at Texas A&M University. All experiments were executed on a desktop computer running CentOS

7 with an Intel R⃝ CoreTM i7-3770 CPU at 3.4 GHz, 16 GB of RAM, and the GNU g++ compiler

version 4.8.5. Skeletonization for the dynamic region methods was performed with a Mean Curva-

ture Skeleton [40] implemented in the CGAL library [52]. Workspace tetrahedralization for WIS

was performed with a combination of the TetGen [37] and CGAL libraries. Time to build these

models was considered pre-processing and not included in the result plots.

Each experiment ran until all queries solved. We performed 35 trials for each experiment and

report the initial roadmap construction time, time to solve each query, and cost of the produced

paths. Construction and Query time are reported in seconds, while path cost is in euclidean distance

in Cspace. Each trial is plotted as a scatter dot to illustrate the spread of behavior, with jitter to clarify

overlaps.

PRM and WIS sample ten configurations per iteration in all environment. Dynamic Region

PRM uses five in Garage and Gridmaze because it generates all samples for an iteration within

the same locality and additionally attempts a second set of samples during the connection phase.

In DhaA it uses ten samples to reflect the greater difficulty of sampling a valid configuration for

the ligand probe. All PRM methods use eight nearest-neighbors. Dynamic Region PRM employs

clearance-based sampling, while Dynamic Region RRT uses fixed-size regions to keep the tree

compact near the skeleton.

3.4.3.2 Analysis

The Garage problem (Fig. 3.7) presents a series of ten queries scattered across the levels of

the structure. The space is relatively open compared to the robot size, and the primary sources of

difficulty are thin walls and large scale. We observe that Dynamic Region PRM consistently takes

longer to construct an initial map than PRM or WIS, and struggles slightly on the second query.
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Figure 3.7: Evaluation of Dynamic Region PRM in the Garage environment. DR-RRT failed to
solve queries six and ten at all within an 80 second time limit, and occasionally failed queries one
(four fails), eight (ten fails), and nine (three fails).
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Figure 3.8: Evaluation of Dynamic Region PRM in the DhaA environment.

However, it consistently produces very low path costs with little variance. This occurs because

the region guidance forces the planner to cover a regular volume around the skeleton edges, which

provides a roadmap with paths that roughly map to paths through the skeleton (plus any distance
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Figure 3.9: Evaluation of Dynamic Region PRM in the Gridmaze environment.

needed to reach the skeleton if the query is far away). WIS produces better paths than PRM by

taking greater care to sample in less accessible regions of workspace, thus providing coverage that
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is better but not as consistent as Dynamic Region PRM. Dynamic Region RRT can sometimes

match its PRM counterpart’s path cost, but always takes longer to do so and frequently fails to find

a path within a reasonable time limit (80 seconds here).

The DhaA problem (Fig. 3.8) presents a sequence of four queries representing ligand binding

sites. The first three queries have start and goal positions close to the skeleton, while the fourth is

farther away. We see that Dynamic Region PRM has the fastest build time, although the advantage

is not highly significant over WIS. Its query time however is consistently low, whereas the other

methods exhibit a significant spread of times. Path cost is better than PRM but not as low as WIS;

this occurs because the Dynamic Region paths follow the skeleton closely, while the WIS paths

hug the boundary relatively closely. The path for the fourth query is longer for Dynamic Region

PRM because it lies farther from the skeleton. Here the nearest nodes are concentrated around the

skeleton, so the path effectively ‘snaps’ to the skeleton’s topology. This case illustrates a possible

negative side-effect of skeleton guidance. Dynamic Region RRT exhibits a similar issue with lower

intensity due to constant-sized regions. However, its query time is subject to long-running outliers

when the algorithm gets stuck trying to break through a low-clearance area.

The Gridmaze problem (Fig. 3.9) presents a sequence of four queries dispersed in the maze.

The maze is fairly tight, making the entire workspace relatively close to the skeleton. In this setting

Dynamic Region PRM excels with rapid build and query times compared with the other methods.

Its path cost is also consistent and minimal, which is expected given the close matching between

the workspace and its skeleton. This is an ideal case for Dynamic Region PRM, even over its RRT

counterpart which fails to discover the cheapest path for the first query.

3.5 Summary

Dynamic Region sampling is a general paradigm that can be applied to any sampling-based

planner to focus its exploration along the salient paths through workspace, just ahead of the tree

frontier. It supports both fast feasibility planning with RRT and building well-connected roadmaps

with PRM. While not applicable to all planning problems, our characterization shows that it works

well for many problems requiring locomotion of a physical robot.
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4. TOPOLOGICAL NEAREST-NEIGHBOR FILTERING∗

Sampling-based motion planners such as PRM [11] and RRT [15] explore a problem by sam-

pling random configurations for a robot and connecting them to nearby neighbors. To determine

which configurations to connect, planners use a nearest-neighbor algorithm to determine which ex-

isting roadmap configuration qnear is closest to a new sample qnew. In this context, the nearness of

two configurations is determined by a distance metric defined over the entire configuration space.

This is problematic because the topology of Cfree is very different from that of Cspace where the

distance is measured. As a result, standard nearest-neighbor algorithms produce very poor choices

in the presence of thin walls, which we denote as the thin wall problem (Fig. 4.1(a)).

As indicated in Chapter 2.2, nearest-neighbor finding is a major bottleneck for sampling-based

planners. However, prior work has focused primarily on utilizing faster computational techniques

as opposed to leveraging the shape of the free space.

Topological Nearest-Neighbor Filtering examines how a model of workspace connectivity can

be employed to identify a reduced set of candidate neighbors which are nearby through connected

Cfree [10]. Proximity through connected workspace is an important factor in estimating the prob-

ability that a connection will succeed because workspace is a dilated model of the translational

subspace of Cfree for all physical robots with translational degrees of freedom (Fig. 4.1(b)). A

path through Cfree necessarily implies a corresponding path through workspace, even though the

converse isn’t necessarily true. Identifying the candidate neighbors for which a workspace path

exists thus identifies a superset of the connectable neighbors which meet at least one criterion for

being connectable.

∗Portions of this chapter describing the core concepts and application to k-nearest neighbors are reprinted with
permission from [10] R. Sandström, A. Bregger, B. Smith, S. Thomas, and N. M. Amato. “Topological nearest-
neighbor filtering for sampling-based planners,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3053–3060,
2018. c⃝ 2018 IEEE.

37



(a) Problem with pure proximity (b) Topological Filtering

Figure 4.1: A sketch of the Topological Filtering concept. (a) An example scenario where proxim-
ity alone is not a good metric for choosing a nearest-neighbor. The start S and goal G are shown in
green and red, and the roadmap is shown in blue. The planner is searching for a nearest-neighbor
for the sample Q. The best neighbor is N , but nearest-neighbor algorithms based purely on a prox-
imity metric will choose M because it is closer in Cspace. (b) Topological filtering identifies a set
of candidate cells (purple) which are nearby to the cell containing Q. Configurations within are
passed to the nearest-neighbor algorithm as the input set. Reprinted with permission from [10], c⃝
2018 IEEE.

4.1 Method

Topological Filtering relies on a convex cell decomposition of the workspace, which is a parti-

tioning of the free workspace into a set of discrete convex cells [36]. The decomposition provides

a graph-representation of adjacent convex cells in workspace and can be thought of as a coarse

atlas of the space with the cells as charts. This map encodes information about the connectivity of

the cells and can be searched to locate sets of nearby cells, or neighborhoods.

The decomposition graph can also be used as a means of ‘bucketing’ nearby configurations

together. A point on the robot’s base, termed the reference point, is chosen to represent the robot’s

rough location in workspace. Usually the object’s centroid or bounding box center is a good choice

for this point. Let r be a robot and p be its reference point. For any free configuration q of r, a cell

c in the decomposition graph W is said to contain q if p ∈ c when r is configured at q (as in [7],

Fig. 4.10(a)). The cell c which contains p may be efficiently determined by a range-searching

method such as a segment tree [36] or spatial hash [53] to a grid with a precomputed mapping
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between voxels and colliding decomposition cells. Since the cells of W are disjoint, each free

configuration will map to exactly one cell (boundary cases may be decided by any deterministic

method).

Algorithm 5 Topological Filtering

1: ***Find topological candidates for a query configuration q w.r.t. a topological map m.***
2: function FINDTOPOLOGICALCANDIDATES(Configuration q, TopologicalMap m)
3: cell ← m.FINDCONTAININGCELL(q)
4: F ←FINDTOPOLOGICALFRONTIER(cell)
5: candidateCfgs← { }
6: for all cell ∈ F
7: cfgs← m.GETCONTAINEDCFGS(cell)
8: candidateCfgs← candidateCfgs ∪ cfgs

9: return candidateCfgs

The topological filter leverages this relationship by mapping configurations to their containing

cells with a hash map. Whenever a configuration q is added to the roadmap, the filter maps q to

the set for cell c, and conversely maps c to q. This topological mapping provides an amortized

constant-time lookup of the vertices in a cell and the cell holding an already-discovered vertex

(although the latter can be efficiently recomputed as noted above).

When searching for nearest-neighbors to some configuration q, the filter first locates the cell c

which contains q. Next, it performs a single-source shortest path search through the decomposition

graph W starting from q to identify a set of cells F ⊂ W called the topological frontier for this

query. F is a set of cells which hold the most promising nodes for connection w.r.t. the subset of

Cspace that W is modeling (in this case, the physical workspace). The specific manner of selecting

F will depend on the type of nearest-neighbor process we wish to achieve (k-nearest or radius-

based).

The roadmap vertices in F can be determined using the topological map, which we call the

topological candidates for the query configuration q (Alg. 5). These are passed to a standard
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(a) Standard Frontier (b) Query-Relevance Frontier

Figure 4.2: An example of Topological Frontiers for k-NN. The candidate cells are shaded pink.
The start S is shown in green and the goal G in red. The workspace decomposition is shown in
beige, and the current roadmap is shown in blue. For illustration purposes, we use hops as the
distance metric and set δthreshold = 1. (a) The query point Q is one hop from the nearest populated
cell, so the candidate cells are the set of cells within two hops of Q. (b) The candidate cells are
reduced when observing query relevance by ignoring edges that lead closer to the goal. Reprinted
with permission from [10], c⃝ 2018 IEEE.

nearest-neighbor method as the input candidates. As such, the filter’s role is to efficiently select a

small set of promising nearest-neighbors for some nearest-neighbor algorithm.

4.2 Filtering for k Nearest-Neighbors

For k-nearest neighbors, the search for the topological frontier F begins from the initial cell c

containing the query point and looks for the first cell c1 that holds a mapped configuration. It then

continues searching until exceeding an additional backtrack distance δthreshold, and takes all cells

discovered since (and including) c1 (Alg. 6, Fig. 4.2(a)). This frontier represents a dynamically-

selected set of cells that include the most topologically relevant configurations for the query point.

The backtrack distance serves as a smoothing of the approximate relationship between workspace

and Cfree to prevent over-fitting of the candidate set based on an imperfect approximation.

The frontier F may be very large and far from the original cell c if c is far from the covered

free space, and would seem to be not topologically relevant to c in that case. However, there is

no set of candidate cells with better topological relevance, and the set of configurations in F will
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typically be much smaller than the entire roadmap.

This frontier may be empty if there are no roadmap configurations in any cell that is connected

to c - in this case, there are no connectable configurations in the roadmap. A non-empty frontier

is guaranteed to hold at least one configuration by construction, which will be relatively nearby

through connected workspace compared to other configurations in the roadmap.

The worst case complexity for locating this frontier occurs when there are no configurations in

the roadmap. In this case, the search executes a complete single-source shortest paths algorithm

over the entire set of cells reachable from c in the decomposition graph. This may be expensive

initially, but as the roadmap coverage of free space increases, it is more and more likely that F will

represent a topologically relevant neighborhood. The graph search can also be cached so that the

frontier can be recomputed in linear time in the number of discovered cells on each reuse. As the

frontier will shrink over time, the filter’s efficiency and efficacy improve as the roadmap grows in

size.

Nonetheless, it is pertinent to choose a fairly coarse decomposition to minimize the cost of the

candidate cell search. Extremely fine decompositions provide more stratification of neighborhoods

than is needed for the filter, and offer little benefit in return for the additional overhead. A good

heuristic is to choose a convex decomposition that generates the smallest number of well-formed

cells needed to cover the environment.

4.2.1 Query Relevance Variant

For tree-based methods, choosing neighbors that are relevant to solving the query is equally

important because performance depends on choosing cells that are likely to generate productive

extensions from an ‘earlier’ region of the problem (i.e., closer to the query start) towards a ‘later’

region (i.e., closer to the query goal). We refer to candidate cells meeting this criteria as query

relevant.

The filter can be adjusted to consider the query relevance of potential candidate cells by deter-

mining a subset of the original adjacency map for the decomposition graph which discards edges

leading away from the goal. This can be computed as a pre-processing step with a single-source
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Algorithm 6 Frontier selection for k-nearest neighbors.

1: ***Topological relevance only.***
2: function FINDTOPOLOGICALFRONTIER(Cell cell)
3: map← Original adjacency map
4: return FINDTOPOLOGICALFRONTIER(cell, map)
5:
6: ***Topological and query relevance.***
7: function FINDQUERYSAMPLINGFRONTIER(Cell cell)
8: ***Initialize a query-relevant adjacency map.***
9: if map is empty or goal has changed

10: mapo ← Original adjacency map
11: map← SSSP(goal, mapo)
12: ***Add cross edges.***
13: for all v ∈ decomposition.vertices
14: for all adj ∈ v.neighbors
15: if map[v].score < map[adj].score
16: map[v].successors← {adj} ∪map[v].successors
17: return FINDTOPOLOGICALFRONTIER(cell, map)
18:
19: ***General frontier finding.***
20: function FINDTOPOLOGICALFRONTIER(Cell cell, AdjacencyMap m)
21: stop← visited a cell with distance at least δthreshold

greater than the first populated cell
22: childMap← SSSP(cell, m, stop)
23: ***Pick out the frontier.***
24: frontier ← { }
25: for all parent ∈ childMap.keys
26: if ISPOPULATED(parent)
27: frontier ← frontier ∪ {parent}
28: return frontier

29:
30: ***Run a SSSP algorithm on a decomposition graph d from cell c, and terminate when t is

true.***
31: function SSSP(Cell c, DecompositionGraph d, TerminationCritera t)
32: return set of discovered cells and distances from c
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(a) Helico (helicopter)
(b) LTunnel (box)

(c) GridMaze
(stick)

(d) Garage (helicopter)

Figure 4.3: Test environments for Topological Filtering with k-NN. Selected paths from RRT with
filtering are shown from start (green) to goal (red). Reprinted with permission from [10], c⃝ 2018
IEEE.

shortest paths algorithm starting from the cell which contains the query goal. The resulting dis-

tances are a measure of each cell’s proximity to the goal through connected workspace: smaller

distances indicate closer proximity. Adding the cross-edges creates an adjacency map where each

cell’s successors are of equal or greater distance from the query (Alg. 6, Fig. 4.2(b)).

The filter can use this mapping instead of the original when exploring for the sampling frontier.

This further limits the frontier to those cells that are ‘behind’ the original cell c relative to the goal

to encourage productive extensions. The method could feasibly be applied with other types of

adjacency maps for specialized problems.

4.2.2 Validation

We evaluate the method by comparing nearest-neighbor and planning times for several RRT

methods with and without the filter and query relevance. The planners used include RRT [15],

SST [23], Dynamic Region RRT [9] (DR-RRT), SyCLoP [7], and a modified version of SyCLoP

for holonomic problems referred to as SyCLoP-holo. These were selected as a spectrum of differ-

ent levels of heuristic guidance. The unfiltered methods use a brute-force nearest-neighbor search
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to isolate the gains produced by the filter.

The modified SyCLoP-holo algorithm is a modification of SyCLoP for holonomic problems,

in which there are no controls to sample. This variant is identical to the original except that (a)

a sampled configuration qrand is used as the growth target as in standard RRT, and (b) once a

workspace cell is selected from the discrete lead, we use a traditional neighborhood finder to

select qnear from the set of configurations within (rather than using the selection history as in the

original method). These changes aim to adapt SyCLoP to holonomic problems while retaining the

spirit of the method. Since SyCLoP and SyCLoP-holo are already choosing qnear from a single

decomposition cell, it does not make sense to subsequently apply our filter. We have included them

for comparison because they also employ a decomposition to locate configurations for extension.

4.2.2.1 Experiment Setup

We use four simulated environments for the evaluation with different aspects of interest (Fig. 4.3).

Helico is relatively open. LTunnel presents three narrow entrances. Garage has a four-

story winding ramp and additional longer routes toward the other end of the environment. The

GridMaze environment has long, winding paths in a cramped tunnel that constrains the robot’s

rotational DOFs. Maze-like problems are notoriously difficult for RRT’s because the sampled target

configurations qrand are quite frequently located across the maze walls, resulting in short, erratic

extensions that scrape very close to the obstacle space. Additionally, corners and tight turns fre-

quently create portions of Cspace where only a very small portion of the local sampling volume can

yield a configuration that extends the tree around the corner.

Nonholonomic trials were performed in the Helico and LTunnel environments. Nonholo-

nomic robots increase the problem difficulty by increasing the dimensions of the planning space

and severely limiting the allowed actions to the robot’s control set.

The robots in all cases are six DOF rigid bodies. The RRT maximum extension distance is

set to approximately the bounding sphere radius for the robot, and a tetrahedralization is used for

the workspace decomposition. The nonholonomic robots are fully actuated with simple discrete

control sets (i.e., over a single extension the robot can exert a force on itself in any one of its
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Helico

LTunnel

GridMaze

Garage

Legend Unfiltered Topological Filtering Topological Filtering with Query Relevance

Figure 4.4: Evaluation of the topological filter with k-NN in holonomic problems. Error bars
indicate standard deviation. A * indicates that no trials were successful. SyCLoP refers to SyCLoP-
holo. Reprinted with permission from [10], c⃝ 2018 IEEE.

45



position or orientation DOFs). An even mix of best and random controls were used for RRT, SST,

and DR-RRT, while random controls were used for SyCLoP (as it does not use a growth target).

All experiments were executed on a desktop computer running CentOS 7 with an Intel R⃝

CoreTM 2 Quad Q9550 CPU at 2.83 GHz, 8 GB of RAM, and the GNU g++ compiler version

4.8.5. The workspace tetrahedralization was performed with a combination of the TetGen [37] and

CGAL [52] libraries.

Thirty-five trials are run for each evaluation. Each run is limited to a maximum time of three

minutes to complete the queries illustrated in Fig. 4.3. Executions which do not solve the query

in this time are considered failures. We report the success rate for each planner and the average

execution and nearest-neighbor times for the successful runs (Fig. 4.4). Error bars indicate standard

deviation in all cases. Statistical significance is measured with Welch’s t-test on the successful

trials.

The reported run times do not include the time needed to decompose the workspace; the slowest

environment to decompose is the Garage, which takes about one second.

4.2.2.2 Analysis

Topological Filter: A consistent drop in nearest-neighbor time is observed for all planners

when using the topological filter without query relevance (in both holonomic and nonholonomic

trials). The difference from the unfiltered method is highly significant (pval ≤ .01) in all cases

except DR-RRT in GridMaze (pval = .05).

The effect on overall planning time is positive with high confidence (pval ≤ .01) in the holo-

nomic trials, excepting DR-RRT in GridMaze (improvement with pval = .08). In the other cases,

significant improvements are observed in both total time and variance. In the nonholonomic trials,

planning time improved with high confidence (pval ≤ .01) for SST in both environments and RRT

in LTunnel. The other three cases showed low confidence improvements.

The unguided planners RRT and SST also attained a unilateral increase in success rate, and are

able to reliably solve the holonomic GridMaze and Garage problems within the three minute

time limit. The guided planner DR-RRT sees equivalent or better success rate in all cases.
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Helico

LTunnel

Legend Unfiltered Topological Filtering Topological Filtering with Query Relevance

Figure 4.5: Evaluation of the topological filter with k-NN in nonholonomic problems. Error bars
indicate standard deviation. A * indicates that no trials were successful. Reprinted with permission
from [10], c⃝ 2018 IEEE.
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Query Relevance: The query relevance option presents mixed results for both nearest-neighbor

and planning time. The nearest neighbor time is frequently worse compared with the plain filter.

In Helico, small differences are seen for all planners with high confidence (pval ≤ .01) except

RRT (pval = .90) and nonholonomic DR-RRT (pval = .12). In holonomic LTunnel, all methods

require more nearest-neighbor time than the plain filter with high confidence (pval ≤ .01) except

SST (pval = .77). The nonholonomic LTunnel shows low confidence differences across the

board (pval ≥ .23). In GridMaze, all planners showed low confidence differences (pval ≥ .43).

In Garage, RRT and SST used significantly less nearest-neighbor time with query relevance

(pval ≤ .01), while DR-RRT showed a high confidence increase (pval ≤ .01).

The overall planning time with the query relevance option is frequently worse than the regular

filter, with the most extreme cases occurring for the guided planner DR-RRT. The holonomic

Helico trials were mixed: RRT showed a low confidence degradation (pval = .27), SST showed

a high confidence improvement (pval ≤ .01), and DR-RRT showed a high confidence degradation

(pval ≤ .01). The nonholonomic trials exhibited the opposite trend: RRT and DR-RRT improved

with low confidence (pval ≥ .69) while SST degraded with high confidence (pval ≤ .01). In

holonomic LTunnel we see a unilateral increase in planning time for all planners, with low

confidence for SST (pval = .73) and high confidence for RRT and DR-RRT (pval ≤ .01). In

the nonholonomic version RRT attained a slight improvement but with very low confidence (pval =

.91), while the other two planners again degraded with low confidence (pval ≥ .29). In GridMaze,

the planning time increased over the regular filter with high confidence for RRT (pval ≤ .01) and

low confidence for SST and DR-RRT (pval = .2 and pval = .03, respectively). In Garage, RRT and

SST saw large improvements while DR-RRT performed worse, with high confidence (pval ≤ .01)

in all cases.

Success rate with query relevance was roughly equivalent to the regular filter in most cases.

Reductions are observed for RRT in GridMaze, DR-RRT in Garage, and SST in the nonholo-

nomic LTunnel.

The SyCLoP planner shows a small amount of nearest-neighbor time because we attempt to
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connect configurations which are very near to the goal directly; we found this to necessary in

practice to obtain reasonable results. In the nonholonomic Helico, SyCLoP wastes some effort

evenly expanding the tree; however the LTunnel results show that this method is highly effective

in less expansive environments.

The nearest-neighbor time for the query relevance variant is generally worse than for the plain

topological filter because the more restrictive filter returns no candidates with higher probability,

and therefore requires more attempts over the entire execution. For DR-RRT, this restrictiveness

appears to interfere with the guidance heuristic in many cases. In these scenarios, the query rel-

evance filters out candidates that were expected by the guidance heuristic. Specifically, DR-RRT

employs moving sampling regions from which new samples are drawn; if the sampling regions are

moving perpendicular to the flow prescribed by query relevance, this creates contention where the

filter could reject the nearby configurations as not en route to the query relative to the sampling

region.

For the unguided planners RRT and SST, the filters provide an immense boost in both efficiency

and reliability in all cases. The query relevance variant produced good results in Garage for

these planners, but did not perform well with DR-RRT. Based on this observation, query relevance

appears to be a potentially useful enhancement only for unguided planners.

The filter is also shown to work in nonholonomic problems with reduced efficacy. The most

important gains are in terms of the success rates in the LTunnel environment, where the filter

helps limit the number of unproductive extensions.

4.3 Distance Between Cells

Ideally, the distance between a pair of cells c1, c2 would be computed as the minimum inner

distance (Section 2.3.3) between any two points p1 ∈ c1, p2 ∈ c2, which is an NP-Hard problem.

When approximate nearest-neighbors are acceptable, we can employ a rough estimate of the inner

distance with a decomposition graph search where the edge weights are the distance between cell

centers, measured through the midpoint of the shared facet (Fig. 4.6). While computationally

cheap, it unfortunately has many failure cases and is not suitable for exact nearest-neighbors.
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Figure 4.6: Example where the straight-line distance between cell centers c1, c2 is not a good metric
for the connected workspace distance. A better metric is to measure the path through the shared
facet midpoint M . Reprinted with permission from [10], c⃝ 2018 IEEE.

When we must have exact nearest-neighbors (i.e. for asymptotically-optimal planning), we

require a measure of the inner distance Tid(c1, c2) between cells. We can accept an approximation

T̂id(c1, c2) so long as it is upper-bounded by a constant; i.e., T̂id(c1, c2) ≤ δTid(c1, c2) for all

c1, c2 and some δ > 0. With such an approximation, the frontier F will be the set of cells where

T̂id(c1, c2) ≤ δrL.

One such approximation is to employ an occupancy grid search by overlaying a grid with voxel

length s onto the workspace and mapping cells to voxels with collision checking. An outward

manhattan search over the grid from the voxels touching a cell c1 can then determine the minimum

distance to a voxel touching another cell c2. This yields an approximation with δ =
√
2 for two

dimensional workspaces and δ =
√
3 for three-dimensional workspaces.

To construct the occupancy grid, we begin by overlaying a grid with voxel length s onto the

workspace. The occupied cells are determined by collision-checking each obstacle face against

the grid voxels which touch its bounding box. Grid voxels lying in the interior of obstacles will be

ignored; we only need the free space and boundary for this purpose.

This grid can be searched with a best-first strategy to estimate the minimum inner distance

between two cells c1, c2. We first determine the set of voxels which touch each cell. Let V1 be

the set of voxels touching the first cell c1 and V2 be the set of voxels touching the second cell

c2. Initialize the distance to each voxel v ∈ V1 as zero. Mark each v ∈ V1 as discovered and

add each adjacent voxel (through face, edge, or vertex) to the search queue with distance zero.
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This considers all possible edge cases where a voxel boundary may lie exactly on a cell boundary.

Proceed with a best-first search, now considering two voxels as adjacent if they share a face only

(i.e. manhattan adjacency). The distance between adjacent voxels will be the voxel length s. This

yields an approximation with δ =
√
2 for two dimensional workspaces and δ =

√
3 for three-

dimensional workspaces (because the greatest error lies along the diagonals). Search outward until

discovering the first voxel v2 ∈ V2. The distance to v2 is then the δ-approximate inner distance

between c1, c2.

4.4 Topological Filtering with Asymptotically-Optimal Planners

Asymptotically-optimal planners such as RRT∗ and SST require a Cspace-radius search to iden-

tify candidate neighbors. We will refer to the radius required by either planner as r∗ in this section.

To employ topological filtering with these methods, we must use a radius-based frontier with a

carefully chosen radius to capture the necessary portions of Cspace.

For these radius-based nearest-neighbor methods, we will select a topological frontier begin-

ning at the initial cell c containing the query point q and include all cells which have a minimum

distance to c of less than or equal to a radius value. The filter’s radius must be carefully selected to

respect the differences between the Cspace and workspace distances, as we describe in this section.

Preserving the optimality guarantees for either planner requires that the nearest-neighbor oper-

ation locate all configurations within r∗ of a query configuration q ∈ Cspace. For a distance metric

D(q1, q2) which measures the proximity of two configurations q1, q2 through Cspace, this radius

criterion indicates that all roadmap configurations x ∈ Cfree | D(q, x) ≤ r∗ must be considered

as candidates. However, this choice of radius is motivated by percolation arguments from random

geometric graph theory which do not account for obstacles [22]. In the presence of obstacles, we

observe that the graph must percolate over Cfree rather than Cspace. We will thus bend the distance

requirement to consider a radius measured with respect to the inner distance in Cfree, denoted as

Did(q1, q2). The inner distance measures the length of the shortest path from q1 to q2 without

leaving Cfree (Figs. 4.7(a),4.7(b)). It stands to reason that this more accurately addresses the per-

colation requirement that all vertices within a particular radius are connected because connectivity
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(a) (b) (c)

Figure 4.7: Relationship between Cspace radius, inner distance, and topological frontier. (a) A
Cspace radius (yellow) as computed by a standard distance metric, projected onto workspace. (b)
The same radius measured by inner distance. (c) The radius-based frontier (purple) selected to
model the desired inner distance.

must occur with respect to this metric.

However, we cannot feasibly compute the set of configurations within a Cspace ball βr∗ with

respect to Did. Our strategy then will be to leverage the workspace topology to approximate a

projection of βr∗ into the workspace W , where we can then leverage our topological map to locate

a superset of the desired candidates. Formally, let βr∗ be a ball of radius r∗ in the metric space

MC = {Cspace, Did} which contains some set of configurations XC ⊂ βr∗ . Let βrL be a ball in the

metric space MW = {W,Tid}, where Tid represents the inner distance in W and βrL contains a set

of configurations XW . We aim to compute an approximate mapping ϕ : MC → MW such that the

co-image of a ball in MW is a superset of its counterpart in MC , e.g. ϕ−1(βrL) ⊃ βC . When this

is possible, the topological filter is able to provide a reasonable over-estimate of the configurations

in βrL which satisfy the radius criterion as measured through Cfree by Did.

To satisfy this requirement, we can leverage a relationship between the Cspace metric Did(q1, q2)

and the workspace metric Tid(q1, q2). If Tid(q1, q2) ≤ αDid(q1, q2) for all q1, q2 ∈ Cfree and some

constant α > 0, then all configurations within a Did-distance of r∗ are also within an Tid-distance

of rL = αr∗. In this case, we can determine the candidate neighbors which satisfy the radius

criterion using a distance measurement in workspace. This relation between Did and Tid holds for
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many popular distance metrics, including the canonical L2 norm. For mobile-base robots, it can

be satisfied with α = 1 since the L2 norm will always be at least the translational displacement.

This is an approximation of the ideal mapping between spaces ϕ that is sufficient to guarantee the

desired co-image property.

For satisfying distance metrics, we can employ a topological frontier F which includes all

cells within inner distance of αr∗ from the cell c containing a query point q, where inner distance

between cells c1, c2 indicates the minimum possible inner distance between any pair of points in

each cell (Fig. 4.7(c)). This frontier describes a radius in connected workspace. We argue that this

set F will contain all configurations XW , and therefore all configurations XC ⊂ XW because the

relationship between metric spaces establishes a valid approximation of the ideal mapping ϕ.

In simpler terms, the set F includes all configurations which may be connectable to q with a

path through Cfree of length r∗ or less. The radius criterion in optimal planners is specifically meant

to lower-bound this path distance, so our slight over-estimate will yield asymptotically-optimal

behavior. Any configurations that are within an absolute D-distance of r∗ to q with Did-distance

greater than r∗ are necessarily occluded by an obstacle and will not be connectable to q.

4.4.1 Validation

To validate the filter with asymptotically-optimal planners, we demonstrate its performance in

two environments with RRT∗ and SST. We compare the filtered version against the same algorithms

using brute-force nearest-neighbors (nearest) and k-d tree for the non-radial search in RRT∗.

4.4.1.1 Experiment Setup

The environments are two examples from the feasibility-planning experiments (Helico and

LTunnel) that were solvable by the unguided methods (Section 4.2.2) to ensure that the difference

between the guided and unguided algorithms during path refinement (i.e., after the initial plan is

found) can be compared. As in the feasibility tests, Helico represents a more open environment

while LTunnel represents a problem with three moderately narrow passages.

The methods all employ a Cspace euclidean distance metric with straight-line local planning and
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uniform random sampling in Cfree. Each variation is run thirty times to 20k iterations. We report

the generated map size, running time, nearest-neighbor time, path cost, and success rate (where

success is defined as generating a path before the iteration limit). The plots show an average as

well as the minimum/maximum envelope for each method as a function of iteration count. Times

are reported in seconds and path cost in euclidean distance. Only successful trials are plotted.

Figure 4.8: Evaluation of the topological filter in a holonomic free-body problem where a quad-
copter must traverse a cityscape. The x-axis shows iterations, while the y-axis shows vertex count,
time in seconds, or path cost measured by L2 norm. The solid lines show the average while the
colored areas represent the spread.

All experiments were executed on a desktop computer running CentOS 7 with an Intel R⃝

CoreTM i7-3770 CPU at 3.4 GHz, 16 GB of RAM, and the GNU g++ compiler version 9.2.0. The

workspace tetrahedralization was performed with a combination of the TetGen [37] and CGAL [52]
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libraries.

4.4.1.2 Analysis

In the Helico problem (Fig. 4.8), we see that the filter provides consistently faster run and

nearest-neighbor time for both methods vs. the brute-force and k-d tree versions. The gain is suffi-

cient that the envelope maximum for the filtered algorithms performs better than the minimum for

the non-filtered instances. We also observe no loss in path quality, and that the filtered algorithms

take equal or less time for all trials to discover an initial path.

Figure 4.9: Evaluation of the topological filter in a holonomic free-body problem where a box
robot must traverse two L-shaped tunnels and a narrow gap. The x-axis shows iterations, while
the y-axis shows vertex count, time in seconds, or path cost measured by L2 norm. The solid lines
show the average while the colored areas represent the spread.
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In the LTunnel problem (Fig. 4.9), we observe a similar trend: the filtered algorithms’ maxi-

mum envelope lies beneath the unfiltered variants’ for both time metrics. There is no loss in average

path quality for either RRT or SST, although the filtered SST exhibits slightly higher variance than

the unfiltered version. The number of iterations until all paths solve is also slightly higher for the

filtered RRT in comparison to the k-d tree version, but the filter’s advantage in run time means that

it will reach that point before the k-d tree would.

In both problems, we see a clear advantage in both run-time and nearest-neighbor time for

the filtered methods which continues to increase as the iteration count grows. This supports the

hypothesis that the filter’s efficiency and efficacy grow with roadmap size, which is a very desirable

property in asymptotically-optimal planning.

(a) Single-link Containment (b) Multi-link Containment

Figure 4.10: Configuration containment in decomposition cells. (a) A configuration of a single-
link robot (red) is contained by the decomposition cell (blue) which contains its reference point
(yellow). Reprinted with permission from [10], c⃝ 2018 IEEE. (b) A configuration of a multi-link
robot (red) where the neighborhood key cells are colored for the first (green), second (orange), and
third (blue) joints.

4.5 Extension to Manipulators

Applying the topological filter to multi-link robots presents an obvious question on whether

a single reference point pR is adequate to characterize the workspace neighborhood of the full
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robot body. A single pR on the robot’s base will certainly provide a valid filter for mobile-base

manipulators, but this fails to capture connectivity for the remainder of the links. The same issue

applies to fixed-base manipulators where the end-effector is the most important body. In these

cases, there is no choice of pR that provides a complete topological mapping for the entire robot.

The topological filter can be extended to support filtering on multiple links of the robot by gen-

eralizing the concept of a cell containing a configuration. Let B = {b1, b2, . . . , bn} be an ordered

tuple of the robot R’s n individual component links. When R is positioned at some configuration

q, each of its individual links bi ∈ B will be contained by some cell c ∈ W , where W is the set of

all cells in the decomposition graph. We define the neighborhood key of R at a configuration q as

the ordered tuple of cells {d1, d2, . . . , dn} occupied by R’s individual links B when R is positioned

at q (Fig. 4.10(b)).

The set of all valid neighborhood keys and transitions between them is exceedingly large even

for a small decomposition. Each link bi ∈ B may be contained by any cell di ∈ W , and multiple

links may also be contained by the same cell such that di = dj for i ̸= j. The number of possible

neighborhood keys is thus |W |n, so we unfortunately cannot form a graph over that space. However

we can approximate the function of such a structure by composing a separate topological map for

each of the robot’s links.

To apply topological filtering to multiple links of R, we can construct a separate topological

map for individual links. When searching for a nearest-neighbor to some configuration q, the filter

now begins by locating the neighborhood key for q via the set of individual maps. The frontiers and

candidates are then identified as in the rigid-body case and joined by a soft intersection to produce

a refined candidate set.

To compute the soft intersection, we count the number of times each candidate appears across

all frontiers and select the candidates which have been observed most frequently. This identifies

the best available candidates and empirically produces good results. It is achievable with the same

time complexity as a strict intersection, which is undesirable because it may produce an empty

candidate set. This can occur due to a relatively high mobility of the end-effector (and other distal
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links) in comparison with the base (and other proximal links). As the number of links and their

lengths increase, this problem worsens because there are a greater variety of configurations which

do not simultaneously occupy the topological frontiers for all links. An empty intersection a worst-

case scenario for the filter because all of the computation which was performed to locate candidates

is wasted without discovering any useful information.

We also note that it is not strictly necessary to filter on all of the links, as there is a kinematic

relationship between them defined by the properties of their adjacent joints. Depending on the

mobility of the robot, it may be desirable to filter only one link or some subset of the links, such

as the base, end-effector, and a middle elbow. The filter will ignore the unfiltered links in this case

and only restrict the candidate set based on the links under consideration.

4.5.1 Asymptotically-Optimal Filtering with Multi-link Robots

For multi-link robots, we require a radius-based frontier for each joint. For fixed-base robots

this is feasible by establishing a maximum ratio of workspace translation to Cspace distance to

define an α value for each link to be filtered. For mobile bases however, this presents a challenge

as there is often no meaningful way to bound the ratio for links other than the base. In such cases,

a filter on the base body alone will preserve the AO properties but lack the discerning power of a

filter covering more links. The filter power can be increased by applying a filter with a carefully

selected radius to other links, but this is a heuristic which unfortunately can’t strictly preserve the

AO properties of RRT∗ (although the near-AO properties of SST will be preserved). Because this

may rule out configurations that are truly within the optimal radius r∗, the resulting planner may

not converge to the true optimal path and is thus only near-optimal.

Despite the theoretical limitations, we observe good results in practice from applying the fil-

tering radius for the base to the end-effector alone. This prefers to attempt rewiring between more

likely candidate configurations at the cost of true asymptotic optimality.

In some cases however, a workspace-based filter on the end-effector is counter productive.

This occurs for end-effector positions where the robot has high redundancy and thus self-mobility.

High self-mobility means that there are many possible configurations which can place the end-
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effector at or near the same position, and it is not necessarily the case that transitioning between

all of these configurations is easy or likely. For very highly redundant manipulators, it is best

to perform filtering on links that are more proximal to the base with lower self-mobility, or to

at least include such a link in a composite multi-link filter to avoid this problem. This sacrifices

some discriminating power but avoids over-fitting the neighbor selection on the assumption that

configurations with nearby end-effectors are easy to transition between.

4.5.2 Validation

To validate the method, we compare RRT∗ and SST with brute-force, k-d tree, and topological

filtering over three manipulator planning problems with thin walls that extend beyond feasibility

planning and into path refinement. The k-d tree variant employs a k-d tree only during the 1-nearest

check and not the radial searches, and is thus not applicable to SST.

4.5.2.1 Experiment Setup

The problems include a fixed-base manipulator maneuvering between shelves (Fig. 4.11), a

mobile-base manipulator moving around shelves (Fig. 4.12), and a mobile-base Kuka Youbot

loading a lumber beam from a shelf into a shipping container (Fig. 4.12). This covers a range

of manipulator problems where the topological filter is expected to provide some level of utility

by avoiding candidate neighbors likely to intersect with thin walls. In all cases, the filtering is

performed only on the end-effector to maximize this potential benefit (which also implies that the

RRT∗ variants are limited to asymptotic near-optimality).

The same robot is used for the fixed-base and mobile-base problems. It has four spherical joints

and is permitted to translate but not rotate its base in the mobile version (because rotation would

be redundant with the first joint). This makes for a total of eight DOF for the fixed problem and ten

for the mobile one. The Kuka Youbot has five revolute joints and is permitted to both translate and

rotate its base, for a total of eight DOF.

The methods all employ a Cspace euclidean distance metric with straight-line local planning and

uniform random sampling in Cfree. Each variation is run thirty times to 20k iterations. We report

59



Figure 4.11: Evaluation of topological filtering in a fixed-base manipulator problem where the
robot must transition between grasping positions within pick shelves on alternate sides of the
workspace. Thirty trials were performed, and time plots include only successful runs which cre-
ated a path by 20k iterations. The x-axis shows iterations, while the y-axis shows vertex count,
time in seconds, or path cost measured by L2 norm. The solid lines show the average while the
colored areas represent the spread.

the generated map size, running time, nearest-neighbor time, path cost, and success rate (where

success is defined as generating a path before the iteration limit). The plots show an average as

well as the minimum/maximum envelope for each method as a function of iteration count. Times

are reported in seconds and path cost in euclidean distance. Only successful trials are included in

the map size, time, and cost plots.

All experiments were executed on a desktop computer running CentOS 7 with an Intel R⃝

CoreTM i7-3770 CPU at 3.4 GHz, 16 GB of RAM, and the GNU g++ compiler version 9.2.0. The

workspace tetrahedralization was performed with a combination of the TetGen [37] and CGAL [52]
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Figure 4.12: Evaluation of the topological filter in a mobile-base manipulator problem where the
robot must transition between grasping positions within back-to-back pick shelves by translating
around the exterior. The reverse shelf is shown in wire-frame for visual clarity of the goal position.
Thirty trials were performed, and plots include only successful runs which created a path by 20k
iterations. The x-axis shows iterations, while the y-axis shows vertex count, time in seconds, or
path cost measured by L2 norm. The solid lines show the average while the colored areas represent
the spread.

libraries.

4.5.2.2 Analysis

In the fixed-base problem (Fig. 4.11), we observe reasonable benefits from the filter in all

metrics of interest. The execution and nearest-neighbor time envelopes for the filtered RRT∗ are

clearly below the unfiltered versions, and the path cost converges more quickly and to a lower

minimum value. The SST variants on the other hand struggle with this problem because the notion

of a witness radius does not work well with fixed-base manipulators. The problem here is that
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the robot’s Cspace is entirely comprised of its joint space, and small changes in joint space values

can yield drastically different changes in the end-effector position. This means that small motions

of the robot may be rejected due to a lower-cost witness ‘nearby’ even though the configurations

are significantly different. The witness regions are meant to define small neighborhoods in Cfree

where the contained configurations have similar connectivity properties, but this breaks down for

joint space due to the large differences in semantics that can occur with small differences in the

Cspace metric.

Figure 4.13: Evaluation of the topological filter in a mobile-base manipulator problem where a
Kuka Youbot must move a lumber beam from a shelf into a truck bed. Thirty trials were performed,
and plots include only successful runs which generated a path by 20k iterations. The x-axis shows
iterations, while the y-axis shows vertex count, time in seconds, or path cost measured by L2 norm.
The solid lines show the average while the colored areas represent the spread.
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In the mobile-base problem (Fig. 4.12), we observe that the SST problems are mitigated by the

influence of the translational DOFs on the distance metric. However, the filtered SST algorithm

under-performs compared to the unfiltered version in convergence rate; it does achieve equivalent

path cost but takes longer to do so, with more trials failing to discover a path by the iteration limit.

This occurs despite a better extension success rate indicated by the larger map size for the filtered

version. For RRT∗, we also observe a higher rate of successful extension and comparable path

cost, but with quicker discovery of initial solution. The filtered algorithm’s nearest-neighbor time

is roughly comparable to the k-d tree version despite working with a 25% larger roadmap.

The Kuka problem (Fig. 4.13) again shows the RRT∗ variants generating larger maps, this

time with a significant performance loss in nearest-neighbor time vs. the k-d tree version. In this

problem, the filter is only useful during the initial motion to remove the beam from the storage

bins. It clearly helps SST during this part of the problem, where the unfiltered version struggles to

overcome even a modest witness radius with the small motions required to ease out of the initial

constrained position. We also observe that both filtered algorithms produce better path cost than

their unfiltered counterparts, although the difference is not significant given the envelope spread.

These problems demonstrate that the filtering concept can be applied to asymptotically-optimal

manipulator problems. Generally we observe that the step down to asymptotic near-optimality with

RRT∗ by filtering on the end-effector for mobile base problems provides a better convergence rate

to lower path cost despite the reduced guarantee. This occurs because filtering during the extension

step changes the shape of the tree to avoid excessively driving configurations up against obstacle

walls, causing more of the extensions to be again extendable in a subsequent iteration. This also

causes the higher rate of extension success observed by the larger maps generated by the filter.

Filtering during the rewiring step helps manage the cost of rewiring the larger map, and avoids

costly local plans which are unlikely to succeed.

4.6 Isolated Evaluation

The validation experiments presented thus far have been within the context of a planning prob-

lem, which is the intended use case for the topological filter. While this demonstrates the methods
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efficacy as a planning tool, it is less clear in differentiating its behavior from other nearest-neighbor

methods because the selection of different nearest-neighbors leads to changes in the roadmap’s

growth; over many iterations, the roadmaps built with and without filtering diverge and become

quite distinct. It is thus difficult to determine whether the filter is producing computational advan-

tages or purely benefits the evolution of the roadmap. Here we compare the topological filter to

other nearest-neighbor methods in a setting that removes this source of ambiguity.

An ideal nearest-neighbor method (either k or radius) would return the closest set of configu-

rations that are connectable by the local planner to a query point q. We will denote such an ideal

set as the oracle neighbors for q. Our goal here is to measure how well a given nearest-neighbor

method identifies the oracle neighbors and excludes unconnectable options.

We define two metrics that measure this behavior. The oracle selection is the fraction of oracle

neighbors returned; this indicates the method’s ability to find the ideal choices, with a high value

indicating strong performance. The unconnectable rejection is the fraction of neighbors returned

that are connectable by the local planner. A high value for this metric indicates that the method is

effective at filtering out choices which do not lead to a successful local plan.

An ideal nearest-neighbor method would produce a value of one for both metrics, indicating

that it both found all of the ideal choices and returned no choices that were infeasible. A high value

for selection with a lower rejection score indicates an algorithm that did find the ideal choices, but

also located undesirable candidates. A low selection and high rejection is also possible if the

algorithm finds many connectable neighbors, but not the nearest ones included in the oracle set.

It is important to note that these metrics are specific to the given local planner, as different

choices of local planner will yield different paths through Cspace and thus different connectivity.

They can thus be viewed as ways of measuring the nearest-neighbor method’s fitness for that

particular local planner.

4.6.1 Experiment Setup

We begin by generating a roadmap with a fixed number of samples and determining the nearest

connectable neighbors (either k or radius) to each configuration by brute force. After determining
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the oracle set, we run several nearest-neighbor methods for each configuration and evaluate both

oracle selection and unconnectable rejection. We then add additional samples to the roadmap and

repeat the test to show how the outcome changes with increasing roadmap density.

We perform this experiment on a set of environments with varying levels of occlusion to char-

acterize how the filter behaves in a range of Cspace topologies. The Open problem presents a

completely open space, while Maze exhibits narrow tunnels and thin walls (Fig. 4.3(c)). We show

two rigid-body robots, one a three DOF sphere and the other a six DOF stick which cannot turn

around in the maze. The sphere’s radius is equal to the cross-sectional radius of the stick.

The sphere characterizes the filter’s behavior in a case where it can map the full Cspace. This

robot is essentially an inflated point, and the mapping is complete because the Cspace for a point

robot is exactly the workspace. The sphere’s Cspace is thus an ‘inflated’ version of the workspace

produced by the Minkowski sum of the robot body with each obstacle. The stick shows how this

changes when only a partial mapping is possible. In this case, the added rotational dimensions pre-

clude a direct relationship between the two spaces. The indirect relationship is easier to conceive

by considering a problem for a robot that translates (without rotation) in three dimensions x, y, z

and, a topological filter that considers only the x, y plane. Here the filter can rule out configurations

that are far away in the x, y dimensions but has no information about the z component. This allows

for rejection of poor candidates relative to x, y but not z. Analogously, the workspace filter for the

stick robot allows for good rejection relative to x, y, z but not the rotational components.

We show evaluations with both k-nearest and radius methods. For the topological filter we

show two evaluations: the ‘Frontier’ version examines all topological candidates, while the ‘Topo-

logicalNF’ version examines the candidates selected by the underlying nearest-neighbor method.

The former evaluates the two connectivity metrics on the identified topological candidates, while

the latter evaluates the final selection that will be used in practice. Since the Frontier includes a

subset of the TopologicalNF output, in all cases we should observe that the Frontier’s selection is

at least as great as TopologicalNF’s. Rejection may vary as the underlying method can still make

poor choices.
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k-Nearest Neighbors

Radius Neighbors

Figure 4.14: Isolated evaluation of the topological filter in the Open problem with a sphere robot.

Thirty-five trials were performed for each experiment. In all cases, we employ a euclidean

distance metric and straight-line local planner. The k-nearest variety uses eight nearest neighbors.

We plot the selection and rejection for each method and sample size with a color-hue probability

distribution, where darker colors indicate higher probability. The k-nearest plots are discretized

into eight segments to enhance visibility, as the values will always be fractions of eight. The radius

plots are presented with fifty segments to reflect the much larger number of candidates under
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k-Nearest Neighbors

Radius Neighbors

Figure 4.15: Isolated evaluation of the topological filter in the Open problem with a stick robot.

consideration.

All experiments were executed on a desktop computer running CentOS 7 with an Intel R⃝

CoreTM i7-3770 CPU at 3.4 GHz, 16 GB of RAM, and the GNU g++ compiler version 9.2.0. The

workspace tetrahedralization was performed with a combination of the TetGen [37] and CGAL [52]

libraries.
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k-Nearest Neighbors

Radius Neighbors

Figure 4.16: Isolated evaluation of the topological filter in the Maze problem with a sphere robot.

4.6.2 Analysis

In the Open problem, the sphere robot (Fig. 4.14) exhibits perfect selection and rejection in

all cases except for the filter at low sample counts, which is expected given the lack of obstacles

and the convex, non-rotational nature of the robot. Imperfect selection occurs for the filter at low

sample counts because the samples are more dispersed through the environment, and the nearest
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k-Nearest Neighbors

Radius Neighbors

Figure 4.17: Isolated evaluation of the topological filter in the Maze problem with a stick robot.

neighbors to the first discovered vertex lie farther away than the backtrack distance. This problem

vanishes by 500 samples as the roadmap is sufficiently dense that there are always at least eight

neighbors within a backtrack distance of the first discovered candidate.

The stick robot shows a slightly different picture (Fig. 4.15). Radius selection is ideal, but

rejection is not always so. This occurs near the environment boundary, where some configurations

would cross the border when attempting a straight-line plan through Cspace. In the k-nearest ver-
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sion, we see that the frontier reliably selects the oracles, but the subsequent selection of the eight

nearest in the TopologicalNF method can still miss parts of the oracle set. This again occurs near

the environment boundary, where a local plan from the very nearest candidates may collide with

the border. We also observe that the k-d tree rather frequently fails to select oracles despite good

rejection, which is due to the approximate nature of the method and the higher dimension of the

stick robot’s Cspace compared with that of the sphere.

In the Maze problem, the sphere robot exhibits lower selection rates overall in the k-nearest

version due to the presence of obstacles (Fig. 4.16). While all methods approach ideal selection

at high sample counts, we observe that the filter converges more rapidly than the others due to its

awareness of connectivity. The filter’s rejection also increases more rapidly for the same reason.

The radius version shows ideal oracle selection, which is again expected because each method

identifies at least all candidates within the radius region. The filter additionally shows strong

rejection performance in this case due to its ability to ignore configurations across the walls.

While the sphere robot illustrates a relatively ideal mapping between the filter frontier and the

robot’s Cspace, the stick robot shows how performance changes when this mapping is less com-

plete (Fig. 4.17). In the k-nearest problem, we observe lower performance in both metrics and a

more even spread across the methods. The filter has a minor advantage in selection at lower sample

counts, but this disappears as the roadmap gains density and the eight-nearest neighbors are likely

to be within the same workspace neighborhood anyway. The filter still provides computational ad-

vantages in that case by locating the neighbors without looking at the entire roadmap. In the radius

version, we see that the filter has a marginally better rejection rate, roughly 30% better than the

standard radius method. This amounts to a significant savings in asymptotically-optimal settings,

especially for configurations that are very close to the boundary.

4.7 Summary

We describe the topological filtering algorithm for nearest-neighbor search, and show exper-

iments which demonstrate that it both improves the likelihood of successful extension and re-

duces the computational cost of the nearest-neighbor process. These benefits arise from the use
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of a workspace model to approximate the connectivity of Cfree, thereby providing some level of

obstacle-awareness to the planner during nearest-neighbor selection.
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5. SUMMARY AND CONCLUSIONS

We show two methods which leverage workspace topology in sampling-based planning. Dy-

namic Region sampling guides the generation of new configurations along a topological skeleton

known to encode partial solutions, and topological filtering sifts nearest-neighbor candidates to

exclude unlikey connections to configurations which are close in Cspace but far away through the

shortest path in Cfree. The driving insight behind both methods is to exploit information about how

regions of workspace are connected to estimate the topology of Cfree, and to focus a sampling-

based planner’s resources on the areas of the domain which are likely to be productive. These

methods provide a higher-level view of the problem which enables a planner to make more strate-

gic choices about the best way to explore Cfree.

An avenue for furthering the work is to investigate whether either method can be applied with

subspace models for something other than the translational DOFs, for which we have used the

workspace as a natural representation. Theoretically, the techniques presented here are not re-

stricted to functioning with the translational subspace: any meaningful subspace should suffice. It

is also likely that derived spaces will work, such as the end-effector configuration for a manipula-

tor, which is a manifold derived from the full configuration space of the robot. The critical element

in both cases is to derive meaningful boundaries in the space where guidance will occur. This en-

ables construction of a topological skeleton for dynamic region sampling or a cell decomposition

for the topological filter.
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