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ABSTRACT

The appearance of homoplasy occurs when mutations are not derived from a common ances-

tor but arise independently in multiple branches of a phylogenetic tree. For bacteria, it suggests

that genetic recombination events occur or positive selection exists during evolution, affecting the

accuracy of phylogeny estimation. Without considering recombination, the reconstruction of phy-

logenetic trees based on an alignment of bacterial strains could be misleading. Hence, to better

understand their true evolutionary histories among a bacterial population, it is essential to identify

recombination breakpoints before estimating their phylogeny.

We developed an average compatibility ratio method with a permutation test, ptACR, to detect

recombination breakpoints in a multiple sequence alignment without requiring a tree. We use a

sliding window to evaluate the local compatibility of adjacent polymorphic sites to locate potential

breakpoints and then assess the statistical significance of candidate breakpoints by applying a per-

mutation test. We evaluate the performance of ptACR on both simulated and empirical datasets.

The simulation results show that it has similar sensitivity but higher specificity and better F1 score

compared to existing methods. Also, ptACR detects recombination events in a collection of clinical

isolates of Mycobacterium avium and Staphylococcus aureus, and identifies boundaries of regions

with statistical significance, where the adjacent regions exhibit distinct phylogenies.

For clonal species, since recombination is less likely to occur, the occurrence of homoplasy is

a strong indicator of positive selection, such as antibiotic resistance. To identify mutations con-

ferring resistance, genome-wide association studies are commonly applied to identify statistically

significant associations between genotypes (polymorphisms) and phenotypes of interests (antibi-

otic resistance) across the entire genome. However, homoplasy is not well accounted for by most

bacterial genome-wide association analyses, producing false positives or false negatives. Also,

existing association methods usually use an individual site or group polymorphisms within a gene

as genotypes without considering the frequency of evolutionary convergence and the mutation rate

in different regions.
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To better exploit homoplasy, we developed a two-phase evolutionary cluster-based conver-

gence test (ECC) to identify regions harboring mutations under selection pressure associated with

antibiotic resistance. In the first-phase step, we apply a Poisson distribution to detect regions ex-

hibiting more changes (distinct mutational events) than expected by optimizing the grouping of

SNPs within windows. Next, we test associations between the clustered regions and drug resis-

tance using a hypergeometric distribution based on the concept of convergence test in the second

phase. We model the distribution of changes occurring in the resistant or sensitive branches for

each clustered region and compare it to the background. We evaluate the ECC method on em-

pirical datasets of clinical isolates of Mycobacterium tuberculosis with seven phenotypes from

drug susceptibility tests. Our two-phase evolutionary cluster-based convergence method is able to

identify known resistant-associated sites within genes or intergenic regions corresponding to seven

anti-tuberculous drugs. It also identifies two novel clustered regions in Rv2571 and Rv1830, poten-

tially linked to isoniazid resistance. It improves the potential over existing methods for association

tests to find more novel resistant-associated mutations, which will ultimately help in developing

new antibiotic treatments.

In sum, we present two models for identifying genomic regions affected by recombination

(ptACR) and clustered regions associated with antibiotic resistance driven by selection pressure

(ECC) in bacterial genomes.
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1. INTRODUCTION ∗

1.1 Motivation

In a phylogeny, the appearance of homoplasy occurs when mutations/polymorphisms are not

from a common ancestor but arise independently in multiple branches. Homoplasy occurs due to

evolution with recombination and recurrent mutations driven by selection pressures [2]. Estimat-

ing a phylogeny accurately helps to intepret the evolutionary history of bacterial species. Bacteria

are prokaryotes which have a single set of chromosomes, i.e., haploid. The evolution of bacterial

species is influenced by the extent of clonality varying between vertical inheritances and horizontal

transfers. During evolution, some bacteria tend to reproduce clonally by replicating DNA through

cell division with a few random point mutations. Conversely, some become divergent by exchang-

ing DNA through recombination [3, 4]. Growing evidence has shown that several bacteria exhibit

homoplasy in their genomes, including Mycobacterium avium [5], Mycobacterium intracellulare

[6], Neisseria meningitidis [7, 8], Salmonella enterica [9], Staphylococcus aureus [10, 11, 12],

Streptococcus pneumoniae [13] and Streptococcus pyogenes [14]. For strains exhibiting recombi-

nant genomes, the inferred phylogenetic tree may be misleading since some polymorphisms are

incongruent with a single tree [15]. Hence, it is essential to identify recombination breakpoints

to obtain local regions of distinct phylogenies. We will describe an approach (ptACR) based on

incompatibility and a permutation test for finding boundaries of recombination regions. It is more

efficient than other computational approaches. This will help studies of bacterial species where

recombination is prevalent.

For some pathogens, their evolution processes are believed to be highly clonal across time,

meaning that most genetic materials descend vertically through cell division. However, they har-

∗Part of the data reported in this chapter is reprinted with permission from "A statistical method to identify recom-
bination in bacterial genomes based on SNP incompatibility" by Y.-P. Lai and T. R. Ioerger, 2018. BMC Bioinformat-
ics, 19, 450, Copyright [2018] by BioMed Central. DOI:10.1186/s12859-018-2456-z.
Part of the data reported in this chapter is reprinted with permission from "A compatibility approach to identify recom-
bination breakpoints in bacterial and viral genomes" by Y.-P. Lai and T. R. Ioerger, 2017. Proceedings of the 8th ACM
International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 11-20, Copyright
[2017] by Association for Computing Machinery. DOI:10.1145/3107411.3107432.
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bor some mutations occurring in more than one branch in the tree, i.e. homoplasy. Homoplasy

occurs when mutations do not evolve randomly during DNA replication, suggesting positive selec-

tion pressure. For example, Mycobacterium tuberculosis is thought to be highly clonal in general,

but it has acquired homoplasic mutations driven by the emergence of antibiotic resistance [16]. The

occurrence of homoplasy is a strong indicator of selection pressures in clonal species, yet it is not

exploited in current genome-wide association studies (GWAS). GWAS is developed to statistically

find genotypes associated with phenotypes of interest in whole genomes. Humans are diploid eu-

karyotes while bacteria are haploid prokaryotes. Commonly used methods in human GWAS cannot

be applied directly to bacterial association mappings without considering confounders of popula-

tion stratification, linkage disequilibrium and homoplasy [17, 18]. In addition, the genotypes used

in an association test are usually an individual polymorphic site or a grouping of sites within a

single gene. However, the known resistant-associated variants vary in groupings of sites (clusters)

under different phenotypes. Furthermore, co-resistance may exist, resulting in ambiguous associa-

tions. Studies have shown that isoniazid-resistant strains have a higher propensity to have resistant

mutations to rifampicin in M. tuberculosis, i.e., multidrug-resistant strains [19]. Therefore, in a

dataset exhibiting co-resistance, the identified polymorphisms associated with a particular drug

may be confounded by another drug, resulting in ambiguous associations. We show that optimiz-

ing the grouping of SNPs can enhance the statistical significance. However, this must be done

efficiently, to avoid complexity of testing too many windows. Hence, we develop a two-phase

evolutionary cluster-based convergence (ECC) approach to test associations between genotypes as

clustered regions against phenotypes of interest. The clustering gives a benefit to homoplasic sites

because they are often in clusters and hence get tested for significance. Our approach considers

the effects of homoplasy and population stratification using a Poisson distribution and a hyperge-

ometric model along with a reconstructed phylogenetic tree. We evaluate our method in empirical

datasets of M. tuberculosis. It is not only able to identify known resistant-associated loci but iden-

tify novel loci potentially linked to antibiotic resistance. It helps to increase the power of bacterial

association tests to determine novel causal variants responsible for drug resistance.
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In sum, we develop algorithms to characterize homoplasy in bacteria from two aspects: the

detection of recombination breakpoints in recombinant genomes and the identification of poly-

morphisms associated with antibiotic resistance in clonal genomes considering homoplasy.
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2. RECOMBINATION IN BACTERIAL GENOMES ∗

2.1 Background

Recombination is an important force of evolution in prokaryotes that results in mosaic genomes

through exchanging genetic materials between strains [20]. In bacterial populations, when some

strains acquire genetic changes from other strains, it can produce the appearance of homoplasy

(where the same change at a site appears to have occurred multiple times independently, in separate

branches). In a multiple sequence alignment, the polymorphic sites may have different phyloge-

netic relationships compared with other sites, i.e., phylogenetic incongruence [2, 15]. Studies have

explored the effect of recombination in phylogeny estimation and indicated that the impact depends

on the extent of recombinant events and the relatedness of taxa [20, 21, 22]. The true evolutionary

history of a set of taxa may not be reflected if recombination events occurred during evolution yet

are ignored. Growing evidence indicates that recombination has occurred in the evolution of many

pathogenic bacterial species, including Mycobacterium avium [5], Mycobacterium intracellulare

[6], Neisseria meningitidis [7, 8], Salmonella enterica [9], Staphylococcus aureus [10, 11, 12],

Streptococcus pneumoniae [13] and Streptococcus pyogenes [14]. Hence, it is essential to identify

recombination regions among bacterial isolates before inferring a phylogeny, to better understand

their evolutionary histories.

Over the last four decades, many methods have been proposed to detect the presence of re-

combination in bacterial genomes, applying concepts of maximum likelihood, phylogenetic incon-

gruence, substitution patterns, distance-based approach, or character compatibility [23, 24, 25, 26,

27, 28]. Commonly used methods to identify recombination breakpoints include ClonalFrameML

[26], RDP [27] and GARD [28]. All are phylogenetic-based programs. ClonalFrameML uti-

∗Reprinted with permission from "A statistical method to identify recombination in bacterial genomes based on
SNP incompatibility" by Y.-P. Lai and T. R. Ioerger, 2018. BMC Bioinformatics, 19, 450, Copyright [2018] by BioMed
Central. DOI:10.1186/s12859-018-2456-z.
Part of the data reported in this chapter is reprinted with permission from "A compatibility approach to identify
recombination breakpoints in bacterial and viral genomes" by Y.-P. Lai and T. R. Ioerger, 2017. Proceedings of the
8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 11-20,
Copyright [2017] by Association for Computing Machinery. DOI:10.1145/3107411.3107432.
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lizes a maximum-likelihood tree to reconstruct ancestral states of internal nodes. It then applies a

hidden Markov model (ClonalFrame) to infer the recombination parameters and recombination lo-

cations of each branch of the tree using an Expectation-Maximization (EM) algorithm [26]. RDP

characterizes homoplasy signals using pairwise scanning of the alignment, with the integration

of several non-parametric recombination detection methods [27]. GARD applies Akaike’s Infor-

mation Criterion with a genetic algorithm to search the recombinant locations heuristically [28].

Compatibility-based methods are considered to be more efficient than phylogenetic-based meth-

ods to identify recombination, since they do not require the reconstruction of phylogenetic trees

[23]. The Reticulate program uses compatibility matrices to calculate neighbor similarity score

(NSS) and clusters compatible sites by randomly shuffling the matrices [24]. Bruen et al. define

the pairwise homoplasy index (PHI) in terms of pairwise incompatibility score of each site and

its downstream sites in entire alignment globally, and then they obtain the Monte Carlo p-value

by permuting the entire alignment, or by computing the cumulative probability under a normal

distribution generated from expected mean and variance of the PHI statistic [25]. Both programs

are compatibility-based methods and able to detect recombination and report informative sites, but

they do not report breakpoints.

We introduce an average compatibility ratio (ACR) method to identify the potential recombi-

nation breakpoints in a bacterial genome by analyzing the pattern of SNPs among a collection of

isolates [29]. The ACR method detects the presence or absence of recombination by calculating an

overall compatibility score among pairs of sites. Next, ACR will scan the entire alignment with a

sliding window of fixed size to identify regions where the local compatibility among pairs of sites

in the region decreases and reaches a local minimum. However, the local minima that are below

a fixed threshold may include false positives. To reduce false positives, we apply a permutation

test on the positions of local minima to assess the statistical significance of potential breakpoints

in the genome. We also extend the ACR method to test the compatibility of multi-state characters

by applying an efficient algorithm based on Buneman’s theorem [30]. The performance of ptACR

is evaluated on simulated datasets with varying mutation rates and rate heterogeneity among sites.
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The sequences are simulated by evolving along distinct trees with changes in topology, where a

group of taxa have been moved from one branch to another randomly. The simulation results show

that the integration of the permutation test has lower false positive rate than basic ACR method. Yet

both methods have a similar level of sensitivity for the detection of recombination breakpoints. We

use ptACR [31] to identify genomic regions of recombination in clinical isolates of Mycobacterium

tuberculosis, Mycobacterium avium and Staphylococcus aureus.

2.2 Methods

2.2.1 Characters and Compatibility

For a multiple DNA sequence alignment, a character is defined as a set of states (nucleotides)

for all taxa at a given site. The definitions of pairwise compatibility for binary characters and

multi-state characters are given as follows [32].

Definition 1. Pairwise compatibility for binary characters: Two sites of binary characters are com-

patible if and only if there exists a tree for which each site can be explained by one change.

Definition 2. Pairwise compatibility for multi-state characters: Two sites of multi-state characters

are compatible if and only if there exists a tree for which each site can be explained by the number

of change that equals to the number of distinct states minus one (the minimum number of changes

required for a site with n nucleotides is n-1).

For a pair of binary characters at two sites, the four gamete test is a quick way in polynomial

time to determine their compatibility [33]. It converts the state of taxa at each site to 0 and 1, and

concatenates the states at two sites for a given taxon as one of the following combinations: {00, 01,

10, 11}. If at most three combinations exist, then the two sites are compatible. For a set of binary

characters in an alignment, there exists a perfect phylogeny if all characters are jointly compatible.

To determine the compatibility of a pair of multi-state characters (two sites at a time), the problem

can be reduced to triangulating colored graphs problem [34] and then solved in polynomial time

[30]. Two characters are first converted to a partition intersection graph by the following steps. For

each character, the taxa of the same state are denoted as a vertex. An edge between two vertices
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is added if the vertices contain the same taxon/taxa to form the partition intersection graph. Next,

if their derived partition intersection graph is acyclic, then they are determined to be compatible

[30]. The method to determine the compatibility of two characters is illustrated in Algorithm 1.

Algorithm 1 Pairwise compatibility of two multi-state characters
Input: Characters χp and χq at the site p and site q

Output: True if they are jointly compatible and False if they are incompatible;

function CHARCOMPAT(χp, χq)

Collect the sets of taxon/taxa of the same state (nucleotide), where the number of unique

states are denoted as r1 and r2:

χ′p← {xi}, i = 1, ..., r1

χ′q ← {yj}, j = 1, ..., r2

Initialize an undirected graph G by the adjacency list

Add sets in χ′p and χ′q as nodes to G

Add an edge between node u and node v by G(u, v) to update the graph G:

for all xi in χ′p do

for all yj in χ′q do

if xi ∩ yj 6= ∅ then

G← G(xi, yj)

end if

end for

end for

Check for cycles in G by depth first search (DFS)

return True if there is no cycle in G, False otherwise

end function
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2.2.2 Recombination Algorithm Using Compatibility

Given a multiple sequence alignment of n taxa and m informative sites (i.e., with more than

one nucleotide among the taxa), at each informative site i, ACR calculates a pairwise compatibility

score between all pairs of informative sites within a sliding window of size 2w centered on the ith

SNP (from i-w to i+w). The pairwise compatibility score is 1 if two characters χp and χq are

compatible; otherwise, the score is 0 (Equation 2.1). Next, it averages the scores of all pairs of

sites within the region to obtain the average compatibility ratio, σiw , for the region (Equation 2.2).

CompatPWpq =


1, if characters χp and χq are compatible

0, otherwise
(2.1)

σiw =
1(

2w+1
2

) i+w−1∑
p=i−w

i+w∑
q=p+1

CompatPWpq (2.2)

The lower the value of the average compatibility ratio (σiw), the less jointly compatible the sites

in a window are. Hence, a site of local minimum means that sites in the region are least compati-

ble locally, suggesting phylogenetic incongruence between the upstream and downstream regions.

Sites with local minima of average compatibility ratio are regarded as potential breakpoints. An

example of applying ACR on a recombined alignment of 5200 sites using the window size of 200

is demonstrated in Figure 2.1.
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Figure 2.1: Example of applying ACR on an alignment of several recombined regions using the
window size of 200. Among 5200 sites, six sites are identified as the potential breakpoints and
labeled in red.

2.2.3 Permutation Test for Statistical Significance of Candidate Breakpoints

To assess the statistical significances of potential breakpoints, we apply a permutation test.

The test statistic, siw , for a potential breakpoint at the site i is defined as the summation of all

compatibility scores of pairs composed of a site from the upstream region [i − w, i − 1] with the

other site from the downstream region [i+ 1, i+ w] (Equation 2.3).

siw =
i−1∑

p=i−w

i+w∑
q=i+1

CompatPWpq (2.3)

This statistic is compared to a null distribution generated by permuting the sites in the window. The

null hypothesis is that the level of compatibility between the sites in the window is independent of

the sequential order of the sites, i.e., whether sites are compared from upstream or downstream of

site i does not matter. The alternative hypothesis is that the order of the sites in the local sequences

is crucial and does not happen by chance. So the sites within the region are randomly shuffled mul-

tiple times (default: 10,000) to produce the sampling distribution of values siw obtained under the

null hypothesis. Let the distribution of values from random permutations on sites in the window be

denoted by Ds. The significance of observed value siw is determined by computing the proportion
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of times that the permuted statistics in Ds are less than or equal to the observed value to get the

empirical p-value (Equation 2.4).

p = P (x ≤ siw for x ∈ Ds) (2.4)

If the p-value is lower than a given threshold (default: 0.05), then it rejects the null hypothesis of

no recombination, hence ptACR will report the site as a probable/significant breakpoint. To correct

the p-value threshold due to multiple comparisons, we use the Bonferroni correction and set the

adjusted p-value cutoff to 0.05/n, where n is the number of local minima identified by ACR, to

limit the false discovery rate to at most 5%. An example of a statistic determined as significant

in the histogram of a null distribution is illustrated in Figure 2.2. To make the permutation test

more efficient, we convert all characters in nucleotides of the alignment to patterns in numbers

and make character patterns as a unique set. Then we record pairwise compatibility information

among all pairwise patterns in the set in a hash table. Hence, the compatibility information of any

two shuffled sites can be looked up in the hash table in constant time.

Figure 2.2: Example of the assessment of statistical significance for a compatibility score in the
histogram of a null distribution (N=10k). Observed compatibility score at the site i was 12800,
among pairs selected upstream and downstream sites. Distribution shows scores from randomly
selected pairs in window of [i− w, i+ w]. The p-value in this case is 0.0092 (at the tail).
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2.2.4 Estimation of Phylogenies and Homoplasy

Given a sorted list of candidate breakpoints, local phylogenetic trees of each region between

two adjacent breakpoints is constructed by the maximum parsimony method using the function of

dnapars in PHYLIP 3.66 [35]. To estimate the level of homoplasy for each region, the homoplasy

ratio and excess changes is calculated by applying the Sankoff Algorithm [36] on each local tree.

The homoplasy ratio, which is also called the ratio of changes per site, is defined as the summa-

tion of actual state changes (Sankoff score) divided by the summation of minimum number of

changes (number of nucleotides at each site minus one). The number of excess changes for a site

is defined as the difference between the number of actual changes and the minimum number of

changes. For a given region, the homoplasy ratio of 1.0 means all sites are congruent (homoplasy-

free); a homoplasy ratio > 1.0 means some sites are homoplasic, requiring excess changes in the

maximum-parsimony tree.

2.3 Performance on Simulated Datasets

To evaluate the performance of ptACR, we generated simulated sequence data with known

recombinations by random branch swaps. Our goal was to evaluate the sensitivity and specificity

of detecting known breakpoints, and how this depends on mutation rate and differences in topology.

To simulate sequences with predetermined recombination events, a bifurcating tree with 10 taxa is

generated by GenPhyloData [37] under a birth-death process with a birth rate of 0.2 and a death rate

of 0.1. Next, 300 alternative trees with recombination between a random pair of donor and acceptor

branches based on the original tree are obtained using HGT-Gen [38]. Then, Seq-Gen 1.3.4 [39]

is applied to generate aligned sequences of 1000 sites evolved along each tree. Parameters for

substitution rate and heterogeneity are varied in the experiment, as described below. The sequences

are simulated under the Hasegawa-Kishino-Yano model (HKY85) [40] with nucleotide frequencies

A:0.2, G:0.3, C:0.3, T:0.2 and 2-to-1 ratio of transitions to transversions. Lastly, we concatenate

sequences for the original tree, one of the modified trees, and the original tree again to obtain a

simulated alignment with 3000 total sites that has recombination breakpoints around coordinates

1000 and 2000 and a distinct phylogeny in the middle.
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The true positive rate (sensitivity), false positive rate (1-specificity), and F1 score for the ptACR

method are defined as follows. For an alignment with a predetermined recombination region, the

inferred breakpoint that is located within 50 bp of an actual breakpoint (ground truth) is counted as

true positive (TP), and one that is identified by our method but not within this range is denoted as

false positive (FP). Failure to detect a known breakpoint at any site within 50 bp is counted as false

negative (FN). The true and false positive rates are defined by dividing by the total number of true

breakpoints, and the total number of negative sites outside the breakpoint windows, respectively,

TP
TP+FN

and FP
FP+TN

. The precision is defined as the number of accurately inferred breakpoints

to the number of identified breakpoints, TP
TP+FP

. The F1 score, which is the harmonic mean of

sensitivity and precision, is TP
2TP+FP+FN

; higher F1 is better. For each scenario, we average the

statistics over all the replicates.

2.3.1 Effect of Evolutionary Branch Swapping Distance

Because recombination events among deeper branches should involve strains with more dif-

ferences and make incompatibility easier to detect, we expect that sensitivity and specificity will

be a function of the magnitude of the changes in the simulated trees. To quantify this, we defined

an metric called evolutionary branch swapping distance (EBSD) to divide the alternative trees into

3 groups: small, medium, and large evolutionary changes. While there are several generalized

methods for comparing topologies of arbitrary labeled trees (sharing the same taxa) [41, 42, 43],

assuming that the change between two trees involves only a single branch swap (as generated by

HGT-Gen, simulating recombination), we developed a quantitative measure that reflects the mag-

nitude of evolutionary distance involved in the change. First, we identify the group of taxa that

changes position in the tree. Call this group A, and let B be the complement in the tree (rest of the

taxa). We define the evolutionary branch swapping distance between the two trees (T1 and T2) as

the average absolute value of the difference in distances between each pair of taxa i in A and j in

B in trees T1 and T2 (Equation 2.5).
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EBSD(T1, T2) =
1

|A| ∗ |B|
∑
i∈A

∑
j∈B

|distT1(i, j)− distT2(i, j)| (2.5)

The distances (sum of branch lengths on connecting path) between pairs of taxa that are both

in A or both in B should be unaffected by the branch swap; only pairs of strains between the two

groups will exhibit changes in relative position and hence changes in distance. If a strain or group

of taxa recombines with a nearby branch, the average change of distances will be low; however, if

they recombine with a more remote branch of the tree, representing exchange of genetic material

with a more divergent ancestor strain, then the relationships among the strains will be larger. The

distribution of EBS distances between the original tree and the 300 alternative trees ranged from

0.77 to 9.22 (Figure 2.3). The alternative trees are categorized into three groups according to

the tree distance with the original one, including small (0.77-2.99), medium (3.02-4.80) and large

distance (4.80-9.22) groups. There are about 100 trees in each category.

The true positive rate, false positive rate and F1 score of replicates in the three groups are

shown in Figure 2.4. Importantly, there is a great reduction in false positives (2.4b) without much

loss of true positives (2.4a) for ptACR on ACR. In general, a replicate in the large evolutionary

branch swapping distance group has sequences simulated from a more distinct alternative topology

compared to the original tree, which makes the sites in the middle of the alignment tend to exhibit

more homoplasy. Thus, the boundaries of the recombination event are easier to detect. In contrast,

replicates in the small distance group have closer relatedness of taxa since the alternative tree is less

different to the original tree. As evolutionary branch swapping distance decreases, both sensitivity

and specificity are reduced.
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Figure 2.3: Histogram of evolutionary branch swapping distance between the original tree and 300
alternative trees generated using HGT-Gen.

(a) (b)

(c)

Figure 2.4: True positive rate (a), false positive rate (b) and F1 score (c) of 3 scenarios of increasing
evolutionary branch swapping distance (no heterogeneity).
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2.3.2 Effect of Substitution Rate and Heterogeneity

Sequences were simulated in four scenarios by setting the substitution rate parameter of Seq-

Gen to 0.01, 0.02, 0.04 and 0.08. The default substitution rate heterogeneity parameter in Seq-

Gen was used (α = ∞, which means no heterogeneity). The proportion of nucleotides in each

scenario is shown in Figure 2.5. With low substitution rate, there are 62% monomorphic sites. As

substitution rate increases, the fraction of informative sites increases. The true positive rate, false

positive rate and F1 score of the four scenarios are plotted in Figure 2.6. With low substitution

rate, the true positive rate is high, the false positive rate is low and the F1 score is high. The ptACR

approach performs better than the ACR in terms of lower false positive rate and higher F1 score.

Figure 2.5: Proportion of nucleotides in 4 scenarios of increasing substitution rate.
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(a) (b)

(c)

Figure 2.6: True positive rate (a), false positive rate (b) and F1 score (c) of 4 scenarios of increasing
substitution rate (large evolutionary branch swapping distance group).

To examine how substitution rate heterogeneity affects ptACR performance, we varied the

heterogeneity α (shape parameter of the gamma distribution) in Seq-Gen, which influences the

variability of substitution rates among individual sites. Sequences are simulated in four scenarios

of heterogeneity parameter α ranging from 0.2, 0.8, 1.6 to ∞ (with the fixed substitution rate of

0.01). The scenario where α is equal to ∞ represents sequences simulated with a uniform rate

at all sites. The proportion of nucleotides in alignments in each scenario is listed in Figure 2.7.

With low heterogeneity (α=∞), there are 37% polymorphic sites and 12% of there are multi-

state characters. As heterogeneity increases, the fraction of informative sites decreases. The true
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positive rate, false positive rate and F1 score of four scenarios are plotted in Figure 2.8. The red

bars stand for the results from the previous ACR method while the green bars show the results of

incorporating the permutation test (ptACR). With low heterogeneity, the true positive rate is high,

the false positive rate is low and the F1 score is high. Only at the highest heterogeneity are the

sensitivity and specificity reduced. Hence, ptACR accurately detects recombination breakpoints

in the alignments, including multi-state characters, except in the most extreme divergent situations

(where there is more background homoplasy) occurring stochastically even without recombination.

Figure 2.7: Proportion of nucleotides in 4 scenarios of increasing heterogeneity.
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(a) (b)

(c)

Figure 2.8: True positive rate (a), false positive rate (b) and F1 score (c) of 4 scenarios of increasing
heterogeneity (fixed substitution rate and large evolutionary branch swapping distance group).
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3. IDENTIFICATION OF RECOMBINATION IN COLLECTIONS OF PATHOGENS ∗

To evaluate our ptACR method, we use it to characterize homoplasy in three species: Mycobac-

terium tuberculosis, Mycobacterium avium and Staphylococcus aureus.

3.1 Mycobacterium tuberculosis

The bacterial species M. tuberculosis is thought to be highly clonal and have shown basically

no recombination events in previous studies [44, 45]. It is used as a negative control.

The dataset is composed of 50 worldwide clinical isolates [46]. We aligned them to the refer-

ence genome H37Rv (accession NC_000962.2) of size 4.4M bp. There are 10565 SNP sites in the

alignment and the number of changes per site is 1.006 (10633/10565). The global phylogenetic

tree is reconstructed from 10565 informative sites and shown in Figure 3.1. The tree was produced

using SplitsTree [47] where an acyclic graph suggests that the tree is monophyletic. The over-

all compatibility ratio is 0.999, reflecting the clonal nature of M. tuberculosis strains worldwide.

Hence, we should expect to find no recombination. The plot of average compatibility ratio of three

window sizes is shown in Figure 3.2. Since the average compatibility ratio of the entire alignment

is over 99.5%, our approach will report no combination breakpoints. In addition, RDP4 reported

that no evidence of recombination event was found in the alignment.

∗Reprinted with permission from "A statistical method to identify recombination in bacterial genomes based on
SNP incompatibility" by Y.-P. Lai and T. R. Ioerger, 2018. BMC Bioinformatics, 19, 450, Copyright [2018] by BioMed
Central. DOI:10.1186/s12859-018-2456-z.
Part of the data reported in this chapter is reprinted with permission from "A compatibility approach to identify
recombination breakpoints in bacterial and viral genomes" by Y.-P. Lai and T. R. Ioerger, 2017. Proceedings of the
8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 11-20,
Copyright [2017] by Association for Computing Machinery. DOI:10.1145/3107411.3107432.
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Figure 3.1: Global phylogenetic tree of 50 isolates for M. tuberculosis.

Figure 3.2: Average compatibility ratio for each site using window sizes of 125, 250 and 500 for
M. tuberculosis.
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3.2 Mycobacterium avium

The second dataset we evaluated consists of a set of 18 clinical isolates of Mycobacterium

avium (M. avium) from our collaborators at St. Olav’s Hospital in Trondheim, Norway [48].

The isolates were collected from sputum samples of the patients diagnosed with M. avium in-

fections between 2007 and 2009. The isolates were sequenced by an Illumina sequencer (HiSeq

4000) to obtain paired-end reads of a length of 150 bp, and then the reads were assembled by

an in-house method [49]. The contigs were aligned to the reference genome avium104 (acces-

sion NC_008595.1) together with two other reference strains of TH135 (AP012555.1) and H87

(CP018363.1).

The isolates are highly diverse. In the alignment of length 5.5 Mb, there are 70722 polymorphic

sites, and 510 sites (0.72%) have more than two nucleotides (multi-state). The overall compatibility

ratio over the whole genome is 78.65%, and the average homoplasy ratio is 1.6799. The global

phylogenetic tree is reconstructed from 70722 informative sites and shown in Figure 3.3. The tree

is produced using SplitsTree [47]. The cluster of edges (circles in the graph) in the middle indicates

that sites exist that are not congruent with a perfect monophyletic tree, suggesting recombination

or non-clonality. The ptACR algorithm is applied to scan the alignment using a window size of 250

SNPs. Figure 3.4 shows that it identifies 71 local minima as the potential recombination boundaries

(labeled in red). Next, 70 breakpoints (labeled in green) are identified as statistically significant

with permutation test where the threshold of the corrected p-value is 0.0007 (0.05/71).

To validate the level of phylogenetic congruence of 71 regions from the global tree to the

regional tree, the plot of the homoplasy ratio for each region based on the global tree and a regional

tree is shown in Figure 3.5. The homoplasy ratio for each region decreases from the global tree to

each regional tree. Further analysis of the consecutive regions from the 34th to 36th segments shows

that the excess changes are reduced in each region using the corresponding local tree. Statistics

are listed in Table 3.1. The phylogenetic trees of the consecutive regions are shown in Figure

3.6. Seven isolates that do not share a common branch point across the three regions are labeled in

rectangles of the same color. For example, MAV07 and MAV09 are clustered with avium104 in the
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34thregion, but they are clustered with H87 in the 35th region, indicating a probable recombination

event. An interesting example related to antibiotic resistance is that, in the 34th region, there is a

gene named MAV_3128 (Lysyl-tRNA synthetase LysS), which has been shown to be sensitive to

antibiotics and prone to mutation in the M. avium subspecies hominissuis [50].

Lastly, the plot of the most closely related reference strain for each isolate in each region is

shown in Figure 3.7. Changes of the most closely related reference strain across the regions for

all isolates suggeste mosaic structures in the population. Five isolates, MAV21, MAV38, MAV18,

MAV32 and MAV23, are not only divergent but considerably mosaic, with similarities alternating

among avium104, H87 and TH135.

The analysis of recombination from ClonalFrameML is shown in Figure 3.8 where dark blue

horizontal bars indicate recombination events for each branch and white vertical bars represent

substitutions. Strains MAV23, MAV32, MAV18, MAV38 and MAV21 have several recombina-

tion events across the genomes. The locations of recombinations in strains MAV18 and MAV38

are close to each other. The ClonalFrameML identifies 601 recombinant regions in 15 internal

branches and 332 recombinant regions in 7 strains. The sizes of regions range from 5 to 6510

SNPs and 341 regions are smaller than 200 SNPs. It shows that the ClonalFrameML identifies

more small recombinant regions and more breakpoints than ptACR.
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Figure 3.3: Global phylogenetic tree of 18 isolates for M. avium. The cluster of edges in the middle
indicates that sites exist that are not congruent with a perfect monophyletic tree.

Figure 3.4: Identified breakpoints using window sizes of 250 bp for M. avium.
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Figure 3.5: Homoplasy ratio based on global and regional trees for each region of M. avium.

Table 3.1: Information for regions of M. avium.

Region Size (kb) a SNPs b Genes c Compat d EC_G e EC_L f Ratio g

34th 237.16 2964 MAV_3053-3224 84.98% 1597 1407 11.90%

35th 134.98 1895 MAV_3225-3319 85.20% 1577 1076 31.77%

36th 114.24 1588 MAV_3320-3429 87.19% 1014 717 29.29%

a region size; b number of informative sites; c genes in the region;

d regional compatibility ratio; e the excess changes based on the global tree;

f the excess changes based on the local tree; g the reduction ratio of excess changes,

1- EClocal

ECglobal
.
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(a)

(b)

(c)

Figure 3.6: Phylogenetic trees in the 34th-36th regions (a-c) of M. avium.
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Figure 3.7: Mosaic patterns plotted from the most closely related reference strains across 71 re-
gions for 18 M. avium strains.

Figure 3.8: ClonalFrameML analysis in M. avium. Recombination events are marked in dark blue
horizontal bars.
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Mycobacterium avium complex is a group of pathogenic mycobacteria, including M. avium,

M. intracellulare and M. chimaera. It is characterized as non-tuberculous mycobacteria (NTM).

Clinical isolates of M. avium exhibit high genetic diversity [51]. The recombination that we see

in M. avium contrasts with Mycobacterium tuberculosis, for which it has been shown that isolates

worldwide fit into a well-defined tree (lineage structure) without the evidence of recombination,

likely due to the lack of functional recombination pathways [52, 53] or conjugation [54]. In gen-

eral, M. tuberculosis is believed to be highly clonal during evolution [55]. However, recombination

has been observed in other mycobacterial species such as M. canetti [56, 57] and M. smegmatis

[58]. Recombination in some mycobacterial strains mediates the exchange of genetic materials and

drives rapid genetic evolution. Recombination in M. avium has been reported [5], but the recombi-

nant regions we detect with ptACR are much larger than individual genes. In this study, we reveal

that frequent recombination events are observed in M. avium. The identification of breakpoints

contributes to obtaining regional phylogenies that are different from the global tree, explaining

homoplasy in the clinical isolates.

3.3 Staphylococcus aureus

Staphylococcus aureus is a human pathogen that causes lung and skin infections. Studies

have revealed that S. aureus contains many types of mobile genetic elements that drive recom-

bination hotspots, including plasmids, bacteriophages, pathogenicity genomic islands and islets,

transposons, insertion sequences and staphylococcal cassette chromosomes (SCC) [11, 12].

We applied ptACR to analyze a collection of 30 clinical isolates of S. aureus [11] aligned with

5 reference strains, including ST8:USA300 (NC_010079.1), SACOL (CP000046.1), EMRSA-15

(HE681097.1), N315 (BA000018.3) and ATCC 25923 (NZ_CP009361.1). Recombination has pre-

viously been observed for the species [11, 12]. The alignment of Staphylococcus aureus contains

2.87 Mb nucleotides where 113,936 sites are informative (polymorphic) and 3,625 sites (3.18%)

have over two nucleotides. The overall compatibility ratio over the genome is 88.34% and the

homoplasy ratio is 1.4484, suggesting recombination occurs among the population. The global

phylogenetic tree is shown in Figure 3.9. This figure is produced using SplitsTree [47]. Figure
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3.10 illustrates that 86 local minima (labeled in red) are identified by ACR as potential breakpoints

using a window size of 250 informative sites, and then 65 breakpoints (labeled in green) are identi-

fied as statistically significant by ptACR with permutation test where the threshold of the corrected

p-value is 0.000581 (0.05/86). Hence, 66 regions are obtained. Any two adjacent regional phy-

logenetic trees constructed by their corresponding local alignments have distinct tree topologies,

reflecting the identified boundaries are confident, since changes in phylogenetic relationships occur

between each pair of adjacent regions.

The plot of the homoplasy ratio for each region based on the global tree and a regional tree is

shown in Figure 3.11. For each region, both homoplasy ratio and excess changes decrease from

the global tree to the regional tree, showing that the regions identified by ptACR have different

topologies from the global tree, and each local tree is able to accommodate more sites within the

corresponding region. Figure 3.12 shows local phylogenetic trees for three consecutive regions,

starting from the 37th segment, as an example for further analysis. The recombined groups of

isolates are labeled in rectangles of the same color. According to the tree topologies, the 37th region

shows that the strain ERR410042 receives a copy from an ancestor of two strains, ERR410056 and

ERR410060. Yet in the 38th region the strain ERR410042 receives a copy from an ancestor of

three strains, ERR410044, ERR410046 and N315, while a parent of ERR410056 and ERR410060

receives a copy from an ancestor of ERR410038, ERR410039 and EMRSA-15. In the 39th region

the strain ERR410042 receives the copies from parents of the strain ERR410058 instead. The

information of region size, number of informative sites (SNPs), genes, overall compatibility ratio

(Compat), the excess changes based on global tree (ECglobal) and local tree (EClocal), and the

reduction ratio of excess changes (Ratio) for the three regions is listed in Table 3.2. The number

of excess changes decreases from the global tree to the local tree, showing that the local trees

significantly reduce the apparent homoplasy based on the global tree.

To visualize the relationships among strains, a plot of the most closely related reference strain

for each strain in each region is shown in Figure 3.13. Strains ST8:USA300, EMRSA-15, ATCC

25923 and N315 were used as references, spanning several different lineages/strain types world-

28



wide. For each strain, the most closely related reference strain is defined as the one that has the

least differences in a region. Figure 3.13 shows that for several strains, the most closely related

reference strain changes across the genome (i.e., pattern is mosaic), indicating that they are likely

recombined (especially ERR410042). This is consistent with previous studies that found extensive

recombination in this collection of S. aureus isolates [11, 12]. In the collection we studied, the

28th region contains mecA (USA300HOU_0956) gene that is located on SCC and most commonly

known as encoding methicillin resistance in S. aureus [59, 60]. Also, the scpA gene, which is on a

plasmid-associated island and contributes to staphylococcal virulence [61], is in the 37th region.

The analysis of recombination from ClonalFrameML is shown in Figure 3.14 where dark blue

horizontal bars indicate recombination events for each branch and white vertical bars represent

substitutions. It shows that lots of recombination events are detected in several internal branches

and three strains, ERR410035, ERR410042 and ERR410058. Each of three strains receives a

copy from different ancestors in consecutive regions identified by ptACR. The ClonalFrameML

identifies 1264 recombinant segments in 18 internal branches and 307 recombinant segments in 10

strains. The sizes of segments range from 2 to 20052 SNPs and 519 segments are smaller than 200

SNPs. In sum, the ClonalFrameML identifies more breakpoints than ptACR.
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Figure 3.9: Global phylogenetic tree of 35 strains for S. aureus. The cluster of edges in the middle
indicates that sites exist that are not congruent with a perfect monophyletic tree.

Figure 3.10: Identified breakpoints using window sizes of 250 informative sites for S. aureus.
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Figure 3.11: Homoplasy ratio based on global and regional trees for each region of S. aureus.

Table 3.2: Information for regions of S. aureus.

Region Size (kb) a SNPs b Genes c Compat d ECglobal
e EClocal

f Ratio g

37th 228.41 5526 USA300_1420-1668 94.59% 1993 1808 9.28%

38th 97.74 4777 USA300_1669-1747 93.63% 1512 1400 7.41%

39th 36.17 1745 USA300_1747-1778 89.93% 914 577 36.87%

a region size; b number of informative sites; c genes in the region;

d regional compatibility ratio; e the excess changes based on the global tree; f the excess

changes based on the local tree; g the reduction ratio of excess changes, 1- EClocal

ECglobal
.
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(a)

(b)

(c)

Figure 3.12: Phylogenetic trees in the 37th-39th regions (a-c) of S. aureus.
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Figure 3.13: Mosaic patterns plotted from the most closely related reference strains across 66
regions for 30 S. aureus strains.

Figure 3.14: ClonalFrameML analysis in S. aureus. Recombination events are marked in dark blue
horizontal bars.
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4. HOMOPLASY IN DRUG-RESISTANT POLYMORPHISMS IN PATHOGENS

4.1 Background

To infer the causality between genotypes and phenotypes in genomes of bacterial pathogens,

methods for genome-wide association studies have been developed to statistically find the genetic

variants (mutants) associated with the phenotypic traits, including antibiotic resistance, host speci-

ficity and virulence [17, 18, 62]. Bacteria accumulate heritable genetic variants during evolution.

Since bacteria are haploid and their reproduction is asexual, the occurrence of homoplasy is an

important signal in genome evolution for bacterial species. The genetic mechanisms of homoplasy

include horizontal gene transfer (usually involving transformation, transduction and conjugation),

recombination (through conjugation) and recurrent mutation [17]. Some bacteria tend to exchange

DNA frequently through recombination and therefore their genomes are more diversified. In con-

trast, some bacteria generally replicate DNA vertically so they remain highly clonal. Their homo-

plasic signals in genomes are mainly from recurrent mutations driven by selection pressures [18].

Hence, for clonal bacteria, homoplasy plays a role in understanding antibiotic resistance through

the statistical associations between polymorphic sites and resistant phenotypes. It indicates posi-

tive selections yet it is not well accounted by most methods.

4.1.1 Bacterial Genome-Wide Association Studies

Genome-wide association studies identify statistically significant associations between geno-

types and phenotypes among the entire genomes without prior assumptions on causal associations

[63]. The genotypes are genetic variants among samples, such as gene expressions from microar-

ray, single nucleotide polymorphisms (SNPs), insertions or deletions (indels) from next-generation

sequencing (NGS). The phenotypes are traits of interests from binary (e.g., resistant versus sen-

sitive to a drug) to different levels of quantitative values (e.g., growth rates, minimal inhibitory

concentrations). The first GWAS was proposed and applied in human genomes in 2005 [64]. Hu-

man genomes are eukaryotic with diploid chromosomes. Through meiosis, parental cells pass on
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genetic materials to descendants by chromosomal crossover or recombination to achieve linkage

equilibrium, i.e., no correlation between genetic sites. Typical human GWAS categorizes samples

at each polymorphic site into a two-by-two contingency table according to the genotypes of ma-

jor and minor allele frequencies and phenotypes of cases and controls. It then commonly applies

statistical tests such as the chi-squared test, Fisher’s exact test or hypergeometric test to calculate

the test statistics. By comparing with expectations, the statistical significance of the association

could be assessed. Other regression-based methods apply linear models to regress genotypes (co-

variates) against phenotypes to estimate the significance of correlations [65]. Main confounding

factors in human GWAS are population stratification and linkage disequilibrium (LD) [66, 67].

Stratification in a population represents that some subpopulations exist and individuals in the sub-

groups are relatively closer to each other than others. Linkage disequilibrium occurs when some

regions of the genome are descended together, forming LD blocks with correlated alleles. Current

methods to reduce the impact of confounders are genomic control (λGC) [68], principal component

analysis (PCA) [69], LD score regression [67], and linear mixed model [70, 71]. Well-known and

frequently-used programs include PLINK [65], EMMA [70] and GEMMA [71].

Recently GWAS has begun to be applied to bacterial genomes to dissect the genetic variants

associated with traits of antibiotic resistance, virulence and bacterial-host interaction [17, 18, 62].

Yet approaches in eukaryotic studies cannot be applied directly to bacteria due to the differences

of genome compositions. Humans are diploid eukaryotes while bacteria are haploid prokaryotes.

The reproduction of bacteria is asexual and the clonality of genomes is shaped by replicating DNA

vertically and exchanging DNA horizontally. During evolution, some bacterial genomes tend to

be more divergent through recombination, while some bacteria remain clonal through cell division

[3, 4]. For clonal bacteria, the extent of linkage disequilibrium is larger, the impact of population

structure is stronger and the recombination is less likely to occur. Hence, if a homoplasic polymor-

phism exists, it shows that a recurrent mutation evolves along different tree branches, indicating

the selection pressure. Ignoring confounders like population structure or homoplasy in bacterial

GWAS may produce false positives or false negatives.
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A conventional linear model tests the effect size β between two random variables, assuming

the null hypothesis H0: β = 0 and the alternative hypothesis H1: β 6= 0. Given n individuals,

regressing phenotypes against genotypes can be modeled as

y = α + xβ (4.1)

where y is an n-vector of phenotypic traits, x is an n-vector of genotypes at a given locus, β

is the effect size and α is the intercept. The top principal components of genotypes capture ge-

netic distances between individuals, representing the ancestry. To reduce the impact of population

stratification in bacterial GWAS, regression-based approaches apply the PCA as covariates or fixed

effects in linear regression test. It is usually modeled as

y = Wα + xβ (4.2)

where W = (w1, . . . , wk) is an n x k matrix of top k principal components as covariates and

α is a k-vector of coefficients of corresponding covariates. In addition, to account for population

structure, a genetic relatedness (kinship) matrix is applied to the linear mixed models (LMMs) as

a random effect. Let genotypes X be an n x p matrix of n samples and p genetic loci, the kinship

matrixK can be estimated as

K = XXT . (4.3)

K is an n x n matrix that captures genetic covariances between individuals and is also named

as a genetic relatedness matrix. Then the LMM can be described as

y = xβ + u+ ε,

u ∼ MVNn(0, σ2
aK),

ε ∼ MVNn(0, σ2
eIn),

(4.4)

where y is an n x 1 vector of phenotypes, x is a matrix of genotypes, β represents the effect size
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of genotypes, u presents the random effect modeled by a multivariate normal distribution (MVN)

with the genetic variance (σ2
a) and the genetic relatedness matrix (K), ε represents a vector of

environmental errors with the variance (σ2
e ), and In is an n x n identity matrix. The significance

of coefficients can be determined by the Wald test or likelihood ratio test [71]. For example,

an R package, bugwas, not only utilizes LMM but also considers lineage-effect associations by

decomposing the kinship to principal components [72].

4.1.2 Phylogenetic Convergence Tests

For clonal bacterial species, a single phylogeny exists, which can be used to account for ho-

moplasy. Thus, phylogeny-based approaches have also been developed, including phyC [16], phy-

Overlap [73] and treeWAS [74]. The phylogenetic convergence test (phyC) obtains the internal

nodes where the mutations occur for all polymorphic sites, and then it determines the drug sus-

ceptibility of all internal nodes by maximum parsimony. For each site, it utilizes a permutation

test to assess the significance by calculating the empirical p-value from background signals of all

polymorphic sites [16]. For example, we assign both a phenotype and a genotype at a site to 15

strains, assuming they evolve along the tree shown in Figure 4.1. The phenotype for each branch is

determined from the maximum parsimony approach. The allele substitutions occur in 6 strains. We

apply Sankoff’s algorithm on the genotype to the tree and then obtain 3 branches (changes) where

the substitution/mutation occurs. Two occur in sensitive branches and one in a resistant branch

(2S, 1R). Subsequently, we test the significance of the association between the genotype and the

phenotype by computing how likely this observation occur by chance compared to the background.

The concept of phyOverlap is similar to the phyC. It identifies the tree branches where the changes

occur, and calculates how many strains underneath the branches have the phenotypic traits to de-

termine the overlapping score. The significance of the score is estimated from the permutation of

redistributing mutations across the tree [73]. The treeWAS tool tests three statistics of genotypic

variants correlated with phenotypic traits from leaves (terminal score) to branches (simultaneous

score) to the entire tree (subsequent score) [74]. These three scores rely on the permutation test

to estimate the statistical significance. The loci of associations that do not occur by chance from
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three tests are pooled as the candidates. The above methods are usually applied to genotypes of

individual sites or sites grouped by a whole gene without considering interactions between geno-

types (epistasis). They also do not consider correlations among phenotypes, i.e., co-resistance of

drugs.

Figure 4.1: Tree of 15 strains with a pair of a binary phenotype (R/S) and a genotype (C/T) at a site.
The R/S labeled in each branch is determined by the maximum parsimony approach. A red bar in
the branch presents where allele substitution occurs in the tree estimated by applying the Sankoff’s
algorithm. In this example, we obtain three branches where a change occur from nucleotide C to
T. One branch is resistant-associated and two are sensitive-associated.

4.1.3 Association Mapping in Mycobacterium tuberculosis

Mycobacterium tuberculosis is a causative pathogen of tuberculosis that primarily infects hu-

man lung. The M. tuberculosis genome is about 4.4M base pairs and believed to be highly clonal

with low mutation rate in previous studies [75, 76]. There is also no obvious evidence of re-

combination or horizontal gene transfer in the M. tuberculosis genome. Worldwide M. tuberculo-

sis complex in human is classed to four major lineages by spoligotype families: lineage 1 (East

African-Indian (EAI)), lineage 2 (Beijing), lineage 3 (Central Asian (CAS)), and lineage 4 that

includes Latin American-Mediterranean (LAM), Haarlem, T clade, X clade and H clade [77].
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To treat tuberculosis infection, current anti-tuberculous drugs include 5 first-line drugs and

several second-line drugs. The five first-line drugs are isoniazid (INH), rifampicin (RIF), strep-

tomycin (STR), ethambutol (EMB) and pyrazinamide (PZA). Other second-line drugs include

fluoroquinolones (ofloxacin (OFX), moxifloxacin (MOX) and ciprofloxacin (CPX)), ethionamide

(ETH), cycloserine (CS), amikacin (AMK), kanamycin (KAN), capreomycin (CAP) and para-

aminosalicylic acid (PAS). If the strain is resistant to both INH and RIF, it is defined to be multidrug-

resistant (MDR). If it is further resistant to any second-line antibiotics, then it is defined to be ex-

tensively drug-resistant (XDR). Mechanisms of resistance to several antibiotics in M. tuberculosis

have been discovered and conferred by some SNPs and indels [78]. The well-known annotated

loci associated with anti-tuberculous drugs are listed in Table 4.1.

Since M. tuberculosis genome is clonal, association mappings in M. tuberculosis could be

impacted by population stratification, linkage disequilibrium and selection pressure. Positive se-

lection such as drug resistance is a driving force for evolution with causal mutations [16]. Sites

that are incongruent with the tree are homoplasic and their impact needs to be accounted for in as-

sociation mappings. Currently treating polymorphic sites (SNPs) individually as a genotypic input

does not exploit proximity/clustering of SNPs, as often observed in an active site. Yet applying

genotypes at the gene level (sites grouped by a gene) may not maximize homoplasy signals. Also,

the correlation of multidrug resistance is not well-considered in current GWAS methods. That is, a

strain that is resistant to one of the first-line anti-tuberculous drugs has a higher propensity to be re-

sistant to others, i.e., a multidrug-resistant strain [19]. For example, studies have shown that strains

resistant to INH have a higher propensity to be resistant to RIF. Thus the identified polymorphisms

associated with a given drug may be conferred by another drug, resulting in false positives. Hence,

we aim to develop a phylogeny-based probabilistic model to identify novel polymorphisms within

an optimal window that maximizes homoplasy impact associated with drug resistances driven by

positive selections. Our approach is expected to account for the population stratification and the

co-resistance between drugs to find the sets of loci conferring corresponding drug resistance with

higher sensitivity and specificity.
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Table 4.1: Most frequent resistance mutations observed for several anti-tuberculous drugs.

Antibiotics Mutations

INH katG: S315T, S315R; inhA promoter: t-8c, c-15t, g-17t; inhA: S94A, I194T, I21T

RIF rpoB: RDRR; rpoC

EMB embB: M306V, M306I, G406S, G406A; intergenic region between embC and embA

STR rrs: A514C; rpsL: K43R, K88T; gidB: nonsynonymous mutations

PZA pncA: nonsynonymous mutations and indels

KAN rrs: A1401G; mutations in the upstream of eis (UTR)

Fluoroquinolones gryA: A90, D94

ETH ethA, inhA promoter

PAS folC; thyA;

4.2 Methods

To identify loci associated with drug resistance, a linear mixed model and a phylogenetic-

based convergence test (phyC) are evaluated by three types of genotypes, including an individual

polymorphic site (site-based), a single gene (gene-based) and a k-mer (k-mer-based). A k-mer

means a sequence of k neighboring sites pooled as a pseudo site. For pooling sites as a gene or a

pseudo site of k-mer, a strain that has at least one mutation in the sites within the boundaries will

be marked as having a mutant.

We implement a convergence test using the concept in phyC as follows. Given a set of strains,

we align them with a reference genome to obtain a multiple sequence alignment. We apply the

maximum parsimony or maximum likelihood method on the alignment of polymorphisms to re-

construct the phylogenetic tree. We then apply Sankoff’s algorithm [36] to determine both the

genotypic and phenotypic states for each internal nodes in the tree. We traverse the tree to obtain

branches where changes occur and record corresponding phenotypic states for each polymorphic

site. The numbers of phenotypic states of branches are used in the hypergeometric model to calcu-

late the probability of each site.
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4.3 Results

4.3.1 Evaluation of Three Existing Methods Using Simulated Datasets

To better understand the performance of the linear model with principal components, linear

mixed model and convergence test, we create a simulated dataset with homoplasy patterns. We

first generate a bifurcating tree of 15 taxa (Figure 4.2) using GenPhyloData [37]. We then simulate

10,000 sites based on the tree using a HKY85 model [40] with unequal nucleotide substitution

frequencies and unequal frequencies of transitions and transversions (2:1) by Seq-gen[39]. We

obtain 5616 polymorphic sites. Six taxa are labeled as cases (R) while nine are labeled as controls

(S). The linear model with PCA and linear mixed model are implemented by python scripts and

the program GEMMA [71]. The plot of accumulated variances of PCA and the scatter plot of the

top two components of 15 taxa are shown in Figure 4.3 (a)-(b), respectively. We apply the top two

principal components which account for 60% of variances as the covariants in the linear regression

model to reduce the effect of population structure. The heatmap of genetic relatedness matrix is

shown in Figure 4.4. It is calculated by the simulated genotypes and used as random effects in the

LMM.

Six genotypic patterns are shown in Table 4.2. Taxa of mutants are all resistant in the genotype

1, making a perfect correlation (100%). The rest of the genotypes have four mutants in different

taxa, but all are labeled as resistant. Thus the frequency distribution of phenotypes and genotypes

in the contingency table are the same for the genotypes 2 to 6, which will result in the same

p value by the linear regression, the Fisher’s exact test, and the chi-squared test. However, the

homoplasy levels are different among them. The genotype 2 has no homoplasy. The mutations in

the genotypes 3 and 4 occur in two branches so the number of excess changes is 1. The mutations

in the genotypes 5 and 6 occur in three branches, indicating a higher level of homoplasy. Results

tested by the linear model with principal components (LM_PCA), the LMM and the convergence

test (phyC) are shown in Table 4.3. The linear model with PCA distinguishes the genotype 2

from the genotypes 3 to 6. It estimates a lower significance for the genotype 2 since taxa with
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mutations are more clustered in the genotype 2 than other genotypes. However, the genotypes

2, 3 and 4 have higher significances estimated from the LMM while the genotypes 5 and 6 have

higher homoplasic extents. In the convergence test, patterns of higher homoplasic extents have

lower p values, suggesting a higher level of significance. In sum, the genotypes 2 to 5 have the

same proportion of mutants associated with resistance, but the genotypes 3 to 6 should be more

significant because they are homoplasic.

Figure 4.2: Tree of 15 taxa generated based on a birth-death process of rate 3:1 for evaluation.

(a) (b)

Figure 4.3: Plot of accumulated variances (a) and the scatter plot of the top two components (b)
for 15 taxa.
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Figure 4.4: Heatmap of the genetic relatedness matrix (kinship).

Table 4.2: Phenotypes and genotypes of 15 taxa.

Taxa A B C D E F G H I J K L M N O Excess changes

Phenotype S S S S R R S S R R R R S S S

Genotype 1 C C C C T T C C T T T T C C C 1

Genotype 2 C C C C C C C C T T T T C C C 0

Genotype 3 C C C C T T C C T T C C C C C 1

Genotype 4 C C C C T T C C C C T T C C C 1

Genotype 5 C C C C T T C C T C T C C C C 2

Genotype 6 C C C C T C C C T T T C C C C 2
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Table 4.3: Results estimated from LM_PCA, LMM and phyC.

Genotype LM_PCA_es a LM_PCA_p b LMM_es c LMM_p d N e R f S g phyC_p h

1 1.0 0.0 1.0 0.0 2 2 0 0.085

2 0.924 0.084 0.841 0.011 1 1 0 0.284

3 0.655 0.003 0.416 0.036 2 2 0 0.085

4 0.667 0.002 0.450 0.018 2 2 0 0.085

5 0.660 0.003 0.137 0.247 3 3 0 0.025

6 0.586 0.041 0.241 0.172 3 3 0 0.025

a effect size estimated from the linear model with PCA;

b p value estimated from the Wald test in the linear model with PCA;

c effect size estimated from the linear mixed model; d p value estimated from the Wald

test in the linear mixed model; e number of branches in which changes occur;

f number of branches in which changes occur and are labeled as resistant;

g number of branches in which changes occur and are labeled as sensitive;

h p value estimated from the convergence test

4.3.2 Identifications of Antibiotic Resistant Polymorphisms in Mycobacterium tuberculosis

The empirical dataset contains 660 M. tuberculosis strains from Lima, Peru. They are aligned

to the reference genome H37Rv. There are 19933 polymorphisms, excluding gaps and ambiguous

sites. The phylogenetic tree labeling with lineages is shown in Figure 4.5 where most strains are

categorized to lineage 2 or lineage 4.

The clinical phenotypic dataset consists of drug susceptibility test (DST) of 7 antibiotics. The

distributions of drug susceptibility tests of INH, RIF, EMB, STR, PZA, KAN and CPX are listed

in Figure 4.6. The DST data of KAN and CPX are only available for a subset of strains.
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The heatmap of correlation coefficients between pairs of anti-tuberculous drugs is shown in

Figure 4.7. The correlation coefficient between INH and RIF is about 0.87, indicating high co-

resistance of antibiotic susceptibilities. Also, many coefficients of pairwise first-line drugs are

larger than 0.5, suggesting that they have medium to high levels of correlation with most of each

other.

Figure 4.5: Phylogenetic tree and the distribution of lineages of 660 clinical isolates from Peru.
The number of isolates and labeling color for each lineage is as follows: Red: Beijing (78); green:
LAM (255); purple: Haarlem (167); blue: T-clade (82); orange: X-clade (42); yellow: H-clade
(2); none: unrecognized (34).
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Figure 4.6: Distribution of drug susceptibility in the Peru dataset of 660 strains. KAN and CPX
are available for only a subset of 286 strains.

Figure 4.7: Heatmap plot of pairwise correlations between drugs. Each cell represents the correla-
tion between a pair of drug susceptibilities. Darker green presents stronger co-resistance between
drugs for strains. The correlation between INH and RIF is 0.87, suggesting that many strains are
resistant to INH and RIF or sensitive to both of the drugs.
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Three types of genotypes, site-based, gene-based and k-mer-based, and three anti-tuberculous

drugs are tested in association mappings using LMM and the convergence test (Figure 4.8, Figure

4.9 and Figure 4.10). The scatter plots of negative logarithm of p value for each site, gene or pseudo

site associated with isoniazid are shown in Figure 4.8 (a-c), respectively. The x-axis is the negative

logarithm of the p value estimated from the LMM and the y-axis represents the negative logarithm

of the p value estimated from the convergence test. In these plots, ideally, we want known resistant-

associated mutations to be significant based on both tests (LMM in x-axis and phyC in y-axis), and

hence to appear as far toward upper-right as possible. Annotated loci conferring INH resistance are

katG mutations at codon 315 (S315T), the promoter region of the gene inhA (c-8t, c-15t, g-17t),

and inhA mutations at codons 21, 94 and 194. In the site-based association test (Figure 4.8 (a)),

both methods report katG mutations at codon 315 associated with INH, yet they also report other

polymorphisms that are involved in other drug resistances, suggesting false positives. In Figure

4.8 (b), noncoding_1699 is the intergenic region between Rv1482c and fabG1, noncoding_4191 is

the intergenic region between embC and embA, noncoding_2693 is in the Rv2418-Rv2419c region

and noncoding_2948 is at coordinate near 2965856. Gene katG and intergenic region between

Rv1482c and fabG1 (noncoding_1699) are identified with strong associations from both methods

in the gene-level test. Figure 4.8 (c) shows the results of the k-mer-based test where mutations at

codon 315, noncoding_1673423 and noncoding_1673425 (loci in the Rv1482c-fabG1 intergenic

region) are identified by both methods.

Figure 4.9 (a-c) are the scatter plots of negative logarithm of p value for each site, gene or

pseudo site associated with rifampicin estimated from convergence test (y-axis) and LMM (x-axis),

respectively. Well-known mutants involving in RIF resistance are loci within rpoB RDRR region

(region determining rifampicin resistance, codons 435-450). In Figure 4.9 (a), both methods iden-

tify S450L, D435V and H445D from the site-based test. The noncoding_4243217 is in the inter-

genic region between embC and embA. Pooling sites within a gene enhances the overlapping level

of allele counts and resistant counts yet decreases the homoplasic extent for rpoB in Figure 4.9

(b). But when we group adjacent sites together (k-mers = 3), more loci in the rpoB RDRR region
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(D435Y, D435V, H445D, R448Q) show stronger associations (rank near top) in Figure 4.9 (c). The

mutations at the loci only occur in a few isolates with low level of homoplasy, but they are known

to contribute RIF-resistance in RDRR.

The scatter plots of negative logarithm of p value for each site, gene or pseudo site associated

with ethambutol estimated from convergence test (y-axis) and LMM (x-axis) are shown in Figure

4.10 (a-c), respectively. Mutations in the embB operon (codons 306 and 406) and embC-embA

intergenic region are known to be related to EMB resistance. In the site-based association test,

convergence test identifies strong associations between embB mutations at codon 316 and EMB

resistance while LMM is unable to do that (Figure 4.10 (a)). The gene-based test in Figure 4.10

(b) indicates gene embB has the highest rank in both tests, yet the embC-embA intergenic region

(noncoding_4191) is significant in the convergence test but not in the LMM. Results of the k-mer-

based association test in Figure 4.10 (c) demonstrate that the convergence test performs better than

the LMM in terms of identifying causal mutations associated with EMB resistance.

The results in Figure 4.8-Figure 4.10 show that the k-mer-based association test performs better

than the site-based or gene-based test, suggesting the feasibility of grouping part of SNPs within a

gene optimally to identify loci associated with drug resistance.
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(a)

Figure 4.8: Scatter plots of association mapping between INH and (a) single site, (b) individual
gene and (c) pseudo site of 3-mer in M. tuberculosis using LMM and phyC. The x-axis and y-axis
represent the negative logarithm of p values from two association tests, respectively. Genotypic
traits that are relatively associated with the phenotype are labeled with the gene annotations or
coordinates for intergenic regions.
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(b)

(c)

Figure 4.8: Continued.
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(a)

Figure 4.9: Scatter plots of association mapping between RIF and (a) single site, (b) individual
gene and (c) pseudo site of 3-mer in M. tuberculosis using LMM and phyC. The x-axis and y-axis
represent the negative logarithm of p values from two association tests, respectively. Genotypic
traits that are relatively associated with the phenotype are labeled with the gene annotations or
coordinates for intergenic regions.
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(b)

(c)

Figure 4.9: Continued.
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(a)

Figure 4.10: Scatter plots of association mapping between EMB and (a) single site, (b) individual
gene and (c) pseudo site of 3-mer in M. tuberculosis using LMM and phyC. The x-axis and y-axis
represent the negative logarithm of p values from two association tests, respectively. Genotypic
traits that are relatively associated with the phenotype are labeled with the gene annotations or
coordinates for intergenic regions.
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(b)

(c)

Figure 4.10: Continued.
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4.4 Optimized Grouping of SNPs for Genome-wide Convergence Test

To identify drug-resistant loci across an entire genome, a genotypic trait used in an association

test is usually an individual allelic SNP or a gene-level grouping of SNPs. However, previous

results show the k-mer-based approach performs better than either site-based or gene-based meth-

ods. The k in the k-mer is a fixed number of k adjacent sites as a window, yet sites that confer drug

resistance vary from individual locus to a group of sites. Thus, we optimize the grouping of SNPs

to maximize significance in some cases where a homoplasic site by itself is enough and in other

cases where several adjacent sites with mutations are related to antibiotic resistance. That is, we

extend the window size of a fixed k to every possible k-mer where k ranges from 1 to the size of

a gene to test the optimized grouping of k SNPs against a certain phenotype. The pseudocode of

the algorithm is in Algorithm 2 and the time complexity is O(s2m), where s is the total number

of SNPs within a gene or an intergenic region, and m is the number of all genes and intergenic

regions.

Algorithm 2 Optimized Grouping of SNPs within a Gene or an Intergenic Region
Input: An alignment (Aln) of n SNPs (χj) in m genes and intergenic regions (Gi)

function OPTIMIZEDGROUPING(Gi in Aln)
Aln has m regions (Gi), where i ranges from 1 to m;
Gi has s SNPs (χj), where j ranges from 1 to s;
for all i← 1 to m do . for each gene, genei

for all k← 1 to s do . s is the number of SNPs in each gene
for all l← k to s do . all combinations of groupings

χ′l = changes of χl . number of branches where changes occur in the tree
gikl ←

∑l
p=k χ

′
p . a sub-region between SNPk and SNPl in the genei

Conduct an association test on the sub-region (gikl) with a particular phenotype
end for

end for
Identify the sub-region of strongest association (g′ikl) within the genei with a particular

phenotype
end for
return sub-regions of optimized grouping of SNPs for all genes or intergenic regions (g′ikl

for each Gi)
end function
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4.4.1 Associations between Groupings of SNPs within rpoB and RIF Resistance

We evaluate the optimized grouping method using the phenotypes of rifampicin susceptibility.

The associations between all possible groupings of SNPs within the rpoB gene and the rifampicin

resistance are shown in Figure 4.11. Each cell in the heatmap represents a negative logarithm

p value of association of a sub-region gijk for the window from SNPj to SNPk within a region

Gi. Forty-four SNPs are found in the rpoB gene and eleven SNPs are found in the RDRR region

(codons 435-450). The most significant association (presented in the darkest green) occurs in the

grouping of eight SNPs from N437H to S450L locating within the RDRR region. The association

of the entire gene against RIF resistance is presented in the most bottom-right cell with light green,

suggesting little association. The association of the mutation at codon S450L by itself against

RIF resistance is presented in the 27th diagonal cell with relatively darker green, yet it is not the

darkest one. The p values of the grouping of SNPs from N437H to S450L, mutation at the codon

S450L, and the grouping of all SNPs within the rpoB are 4.84× 10−19, 7.41× 10−17, and 0.10,

respectively. In other words, mutation at codon S450L by itself has a strong association with RIF

resistance, but it is strengthened by grouping SNPs within the RDRR region for rpoB.

4.4.2 Associations between Groupings of SNPs and Other Anti-tuberculous Drugs

For INH resistance, the best grouping of SNPs within katG that maximizes the association

is from codons G120S to Y337C with 17 SNPs in total, where forty-four SNPs occur in katG

spanning 2223 bp. The subregion has 63 changes where 53 occur in the INH-resistant branches.

This is consistent with reports that other nonsynonymous mutations besides S315T in katG can

confer resistance [79]. The p values from the association test for three genotypes within the katG

of the best grouping of SNPs, S315T by itself, and the grouping of SNPs within the whole gene are

2.27× 10−15, 3.69× 10−13 and 2.85× 10−6, respectively. The size of the upstream of the inhA

promoter is 134 bp and 3 positions harbor mutations with 33 changes, where 28 are in the INH-

resistant branches. The strongest association happens when grouping all three mutations together

as a sub-region where the p value equals to 7.12× 10−9.
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For EMB resistance, we expect to see higher association occurring in embB at codons 306

and 406. The size of the embB gene is 3297 bp and 40 mutations are obtained during evolution.

The strongest association happens in the sub-region of 16 consecutive mutations between codons

S297A and V493M resulting in 72 changes where 56 are resistant to EMB. The sub-region includes

known causal loci of M306V/I and G406S/A. The p values for the best grouping (S297A-V493M),

local grouping of M306V/I, and local grouping of M306V/I are 1.20× 10−23, 2.25× 10−19, and

8.20× 10−7, respectively.

4.4.3 Summary

We perform association tests on groupings of SNPs against anti-tuberculous drugs and the

results provide evidence that optimizing the grouping of allelic sites enhances the detection of

drug-resistant loci. However, three limitations arise. Since we optimize over many windows per

gene, the time complexity is quadratic for looping over all possible consecutive groupings. Also,

the empirical p values will be reduced by the multiple testing correction to adjust the p values since

so many significance tests are being performed in parallel within each gene. Lastly, the grouping

of adjacent polymorphic sites in a gene does not consider the span of the gene. To overcome these

challenges, the method will be extended in the next chapter.
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Figure 4.11: Heatmap plot of associations between the genotypes of all possible groupings of
SNPs within the rpoB gene and the phenotype of rifampicin suscetibility. A square cell represents
the negative logarithm of p value from the association test of the grouping of SNPs between two
codons. A cell in diagonal presents the association between phenotype and genotype of an indi-
vidual site while the most bottom-right cell presents the genotype of grouping of all SNPs within
the gene. The darker the green, the higher the association. The most significant association occurs
in the region of grouping SNPs between codons N437H and S450L.
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5. IDENTIFICATION OF DRUG-RESISTANT POLYMORPHISMS USING

EVOLUTIONARY CONVERGENCE CLUSTERING

5.1 Introduction

In this chapter, we combine statistical tests of association of SNPs with drug resistance pheno-

types with clustering of SNPs, as a secondary indicator of positive selection. As a bacterial genome

evolves, it accumulates genetic variants across time. According to the neutral theory of evolution,

the evolutionary changes are assumed to be randomly occurred and spread out the genome. A neu-

tral change is a synonymous or silent nucleotide substitution (mutation) which encodes the same

amino acid and thus is presumed to have little or no effects on fitness. The other type of change is

a nonsynonymous mutation that encodes different amino acid, which is more likely to be affected

by positive selection, including virulence, adaptation to immune response and drug resistance.

To identify regions harboring mutations under selection pressure, Wagner developed a method

called variation clusters by assuming that genomes neutrally evolve with mutations spontaneously

[80]. The null hypothesis is that mutations/nucleotide substitutions occurring within a given span

of sites in the DNA sequence follow a Poisson distribution. If nucleotide substitutions observed in

a region are more abundant than expectations, then the mutations are unlikely to occur by chance

within the region. Higher deviations from the expectation in the Poisson model indicate more

adjacent mutations are clustered closely within a region, suggesting positive selection exists.

In a bacterial population, the evolutionary history can be estimated from a phylogenetic tree

reconstructed based on the whole-genome polymorphisms. Some polymorphisms are incongruent

with the tree topology and are defined as homoplasic changes. Homoplasy occurs when genetic

changes are descended in different branches instead of from a common ancestor during evolution.

Homoplasic polymorphisms often reflect positive selection. Grandjean et. al. detect homoplasic

polymorphisms across the entire genome using a convergence method based on the disruption of a

phylogenetic tree. Many well-known drug-resistant loci are observed as being homoplasic among
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the dataset of a high proportion of multidrug-resistant Mycobacterial tuberculosis strains [81],

suggesting they are under selection pressure. The convergence test, phyC, looks for evolutionary

changes in a phylogenetic tree that are related to antibiotic resistance [16]. However, phyC as a

statistical test does not get the advantage of homoplasy since it applies genotypic traits as either an

individual polymorphism or a gene-level pooling of SNPs by a burden test. It does not consider that

in some cases a locus has enough homoplasic changes by itself while in other cases some adjacent

sites have fewer homoplasic changes yet are related to drug resistance. It also does not consider

the size of a gene, thus loses the ability to distinguish the cases where the same number of changes

occurs within a large span or a small span of genes. Moreover, not all SNPs within a gene are

related to the phenotype, and pooling them with the real associated SNPs together may decrease

the true positive rate. Thus, optimizing the grouping of SNPs to maximize the significances of

associations is essential.

A challenge arises, that is, how to identify optimized groupings of sites for association testings.

Our previous optimization using window sizes of all possible k-mer within a gene (Ch. 4) has

issues of multiple testing correction and computational complexity. All possible combinations of

groupings in an alignment of n polymorphisms and m genes of size p at most take quadratic time

(O(mp2)). Thus, in this chapter, we develop a two-phase evolutionary cluster-based convergence

test (ECC). We firstly identify regions of clustered SNPs across the whole genome using a Poisson

distribution. Secondly, we test the associations of clustered regions as genotypes against antibiotic

susceptibilities as phenotypes by applying a hypergeometric model. The association of a region

with drug resistance is determined by the probability of observed changes relative to resistant

than sensitive branches under the null distribution of the population modeled by a hypergeometric

distribution. For correcting the multiple testing, we estimate false discovery rate (FDR) to adjust

p values from both tests using the Benjamini-Hochberg procedure. We apply the cluster-based

convergence method in three empirical datasets and evaluate its performance with previous site-

based, gene-based and k-mer-based methods.
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5.2 Methods

Our two-phase evolutionary cluster-based convergence algorithm is shown in Algorithm 3.

5.2.1 Phase 1: Clustered Region Identification

Given a phylogeny reconstructed from polymorphic sites in a multiple sequence alignment

(excluding ambiguous sites, repetitive regions and known drug-resistant loci), we apply Sankoff’s

algorithm to determine ancestral states of internal nodes/branches in the phylogenetic tree. For

each locus, we obtain the number of branches where changes occur. If mutations occur in more

than one branch in the tree, then the locus has over one change and is defined as homoplasic. The

probability of adjacent changes occurring within a span of a genome can be modeled as a Pearson

type III distribution [80]. Given m mutations occurring in a genome of n nucleotides, the mutation

rate λ is estimated by the total number of mutations evolved over the entire genome, which equals

to m
n

. The probability density of a span of length x containing k consecutive mutations equals to

P (x) =
λ

Γ(k − 1)
(λx)k−2e−λx (5.1)

, where λ = m
n

and Γ(k) = (k − 1)!.

The probability of k changes occurring within regions smaller than the size of dk can be esti-

mated from the accumulated Pearson type III distribution as

P (dk) =
λ

Γ(k − 1)

∫ dk

0

(λx)k−2e−λxdx (5.2)

It is also equivalent to be modeled as a Poisson distribution by estimating the accumulated

probabilities where more abundant changes occur within a given span dk.

P (dk) = 1−
k−2∑
i=0

(λdk)
i

i!
e−λdk (5.3)

The k-cluster method is applied to the alignment of polymorphisms where k is the total number

of changes within a region by grouping adjacent loci up to a given number of nucleotides. The
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p values are adjusted by the FDR method (Benjamini-Hochberg procedure). We sort all regions

by the adjusted p values into a list and then apply a greedy algorithm to examine each ordered

region to obtain non-overlapping clustered regions. For each candidate region sorted in order, if

the candidate region does not overlapped with previously examined regions, then the region is

marked as examined. In contrast, the overlapping region is discarded from the list. Lastly, we

obtain optimized clustered regions of changes from the examined regions where their adjusted p

values are less than 0.05 as the default cutoff. Thus, a gene or an intergenic region might have

none, one or more than one non-overlapping clustered sub-regions.

5.2.2 Phase 2: Association Test Based on the Evolutionary Convergence

We test associations of genotypes as clustered regions against phenotypes using a evolutionary

convergence method similar to the phyC [16]. The permutation test in phyC to test the convergence

of genotypes against phenotypes can be modeled as a hypergeometric distribution. The probability

density of a clustered region whether the changes are related to a particular phenotype like drug

resistance equals to

P (X = r) =

(
NR

r

)(
N−NR

k−r

)(
N
k

) (5.4)

, where k is the number of changes in the region, r is the number of changes labeled as resistant

in the region, N is the total number of changes, and N_R is the total number of changes labeled as

resistant.

To determine whether a cluster of homoplasic changes resistant to a particular drug is overrep-

resented in the population, the p value is calculated as

P (X ≥ r) = 1−
r−1∑
i=0

(
NR

i

)(
N−NR

k−i

)(
N
k

) , r ≥ 1 (5.5)
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Algorithm 3 Two-phase evolutionary cluster-based convergence test (ECC)
Input: An alignment (Aln) of n polymorphisms (χj), a phylogenetic tree, phenotypes (DST)

Phase 1 – ClusteredRegions

Aln has n polymorphic sites
Given a maximum window size k
Calculate mutation rate λ
for all i← 1 to n do . for each locus

for all j ← i to i+ k do . all possible groupings up to k adjacent loci
χ′j = changes of χj
gij ←

∑j
p=i χ

′
p

Calculate the accumulated probability for the region (gij) by a Poisson distribution
end for

end for
Apply FDR correction to adjust p values
Obtain non-overlapping clustered regions by a greedy algorithm (g′ij)
Identify significant clustered regions Gij where padjusted < 0.05 (the set of g′ij)

Phase 2 – ConvergenceTest

for all g′ij in Gij do
Conduct an association test on g′ij against DST using a hypergeometric model

end for
Adjust p values by the FDR correction
Identify regions of strong associations with a particular drug based on the adjusted p values
(cutoff = 0.05)
Obtain clustered regions associated with drug resistance

63



5.3 Results

5.3.1 Genetic Variants, Lineages Distribution and Anti-tuberculous Drugs

We test our proposed two-stage model on an empirical dataset of M. tuberculosis from Lima,

Peru, where pre-dominantly multi-drug resistant (MDR) strains were sampled. A MDR strain

is defined as being resistant to both isoniazid and rifampicin. It consists of 660 strains with 7

drug susceptibility tests and minimum inhibitory concentrations. For genotypes, there are 21,501

polymorphic sites in the alignment, excluding ambiguous sites and repetitive regions in PPE and

PGRS genes. We locate branches where mutations occur in the tree and obtain 23,847 changes

(some sites have multiple changes). The phylogenetic tree labeling with lineages is shown in

Figure 4.5 where most strains are categorized to lineage 2 (Beijing) or lineage 4 (LAM, Haarlem,

X-clade, T-clade and H-clade). For phenotypes, the proportions of drug-resistant strains are shown

in Figure 5.1. The proportion ranges from 18.2% (CPX) to 40.8% (INH). The MDR-TB accounts

for 35.9% (237 / 660) in the population.

Figure 5.1: Proportion of drug-resistant strains for 7 drugs. The proportion ranges from 18.2%
(CPX) to 40.8% (INH).
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5.3.2 Identification of Optimized Clusters of SNPs

In the multiple alignment of 660 clinical isolates, regions that harbor variants occurring in the

same strains in adjacent sites repeatedly are viewed as artifacts of sequencing and thus are also

masked out, including Rv0095c, Rv1148c, Rv1945, Rv2048c (pks12), Rv2081c, Rv2543 (lppA),

Rv2791c, Rv2931 (ppsA), and intergenic regions around coordinates of 104782, 332704, 838186,

1277749, 2030239, and 2338512.

The overall mutation rate is 0.54 % (23,847 changes / 4,411,532 bp). By applying the Poisson

model, we obtain 643 clustered regions where their adjusted p values are less than 0.05 by the

Benjamini-Hochberg correction. The distribution of clustered regions across the entire genome

is shown in Figure 5.2 and the top clustered regions are listed in Table 5.1. The smallest size of

a region is one site harboring from 3 up to 53 changes. The largest region spans 1213 bp with

17 changes in 15 sites. The well-known drug-resistant loci are identified as homoplasic with the

specific clustered regions, including gyrA, embB, intergenic region of embC-embA, rpoB RDRR,

rpoC, katG, inhA promoter region (Rv1482c-fabG1), rpsL, gidB, pncA and the upstream of eis.

The gene lldD2 is also identified as homoplasic, though it does not have any known relation to

drug resistance [82].

5.3.3 Convergence Test for Clustered Regions for Individual Drugs

Not all clustered polymorphic regions are associated with drug resistance (e.g. lldD2). There-

fore the second phase is to test regions for the significance of association with resistant to individual

drugs. The convergence test is conducted on the 643 clustered regions for seven drugs individually

and Manhattan plots of genetic associations with anti-tuberculous resistance of INH, RIF, STR,

EMB, PZA, KAN and CPX are shown in Figure 5.3-5.18, respectively. In each figure, the y-axis

presents the negative logarithm of the adjusted p value from our clustered association test. And

the x-axis stands for the coordinates in base pairs over the whole genome. A blue point represents

a clustered region that groups sites of more changes than expected from a Poisson distribution in

terms of the size of the region regarding the mutation rate in a population. Points ranked higher in
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Table 5.1: Top 25 non-overlapping clustered regions of 660 M. tuberculosis strains from Peru.

Coordinates Gene / Intergenic Codons Changes Size (bp) Adjusted p value
761095-761156 Rv0667_rpoB C:[L430P]-T:[S450S] 114 62 7.34× 10−234

2155168-2155168 Rv1908c_katG G:[S315T]-G:[S315T] 53 1 9.45× 10−183

4247429-4247431 Rv3795_embB G:[M306V]-A:[M306I] 52 3 1.56× 10−154

2123145-2123182 Rv1872c_lldD2 T:[V3I]-C:[S3S] 62 38 7.19× 10−123

2338768-2338994 Rv2082_- T:[P20P]-A:[A96T] 81 227 1.78× 10−109

55549-55553 Rv0050_ponA1 T:[P629P]-T:[P631S] 40 5 1.02× 10−104

1673423-1673432 inhA promoter 1673423-1673432 33 10 1.58× 10−73

1480945-1481337 Rv1319c_- G:[T519T]-A:[R389W] 66 393 3.50× 10−68

840858-840901 non_coding 840858-840901 35 44 1.36× 10−57

3127922-3127931 Rv2820c_- G:[A117A]-A:[K114X] 25 10 3.95× 10−52

2122395-2122395 Rv1872c_lldD2 T:[V253M]-T:[V253M] 18 1 5.23× 10−51

7566-7585 Rv0006_gyrA A:[D89N]-C:[S95T] 26 20 2.44× 10−47

2637541-2637541 non_coding 2637541-2637541 16 1 4.15× 10−44

1473246-1473246 Rvnr01_rrs G:[S467S]-G:[S467S] 16 1 4.15× 10−44

4247728-4247730 Rv3795_embB C:[E405D]-C:[G406A] 18 3 5.54× 10−43

764810-764948 Rv0668_rpoC A:[P481T]-G:[L527V] 31 139 1.49× 10−34

4407952-4408009 Rv3919c_gidB A:[P84L]-C:[V65G] 25 58 4.15× 10−34

2976541-2976592 Rv2652c_- T:[A5E]-C:[K106K] 23 52 1.98× 10−31

4243217-4243228 embC-embA 4243217-4243228 16 12 3.63× 10−28

781687-781687 Rv0682_rpsL G:[K43R]-G:[K43R] 11 1 1.86× 10−27

2289069-2289216 Rv2043c_pncA C:[F58C]-C:[V9G] 24 148 2.70× 10−23

39022-39030 non_coding 39022-39030 13 9 8.62× 10−23

2288805-2288934 Rv2043c_pncA A:[A146E]-C:[Y103X] 22 130 1.40× 10−21

2715340-2715346 eis promoter 2715340-2715346 11 7 3.29× 10−19

4408054-4408156 Rv3919c_gidB C:[L50R]-C:[L16R] 19 103 4.96× 10−19

the figure indicate that changes within the clustered region occur more frequently in the resistant

branches relative to sensitive branches compared to the background (more associated with drug

resistance) or vice versa.

5.3.3.1 Isoniazid

Isoniazid is a prodrug for the treatment of tuberculosis infection by interfering the cell wall

synthesis through blocking inhA. The katG gene encodes the catalase-peroxidase enzyme, which

is responsible for the activation of isoniazid. The enoyl-acyl carrier protein reductase enzyme is

encoded by the inhA gene and required for the biosynthesis of mycolic acid, an essential compo-

nent of the cell wall. Mutations at the katG gene, inhA gene and its promoter region have been

linked with resistance, so mycobacterial strains harboring these mutations may develop resistance

to INH. The causal variants for isoniazid resistance are mutations in katG at the codon Ser315Thr
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(S315T) and substitutions in positions of -8, -15 and -17 in the inhA promoter region which in-

crease expression of the target [83, 84, 85, 86].

Our analysis of genetic associations with INH resistance across the genome is shown in Figure

5.3, where the top identified regions are listed in Table 5.2. Two sub-regions within katG are

identified to be statistically significant clustered from the test (see Figure 5.4). The first one is

the mutation at the codon S315T by itself. It has 53 homoplasic changes where 49 occur in the

branches labeled as isoniazid resistance. The other one is the region grouping 15 SNPs from codons

P57R to A202A that spans 437 bp (marked in Figure 5.4). It has 16 changes and 13 occur in the

INH-resistant branches. Though S315T is the highest frequency, other amino acid substitutions in

katG have been shown to inhibit binding, decrease activation and increase resistance [79], and this

has been observed in INH-resistant clinical isolates [87]. For the inhA promoter region, 3 mutations

exist and the best clustering results in the grouping of all 3 loci (g-17t, c-15t, c-8t) spanning 10 bp.

There are 33 changes in the intergenic region and 28 are related to resistance (Figure 5.5).

For lineage-specific mutations, our method does not identify them as associated with the phe-

notype. Codon R463L at katG has been shown no association against isoniazid resistance. It is a

lineage-specific marker associated with Beijing strains [88]. In the dataset, 82 strains have muta-

tions at the site. Yet, there are only two changes in the tree and one is labeled as resistant. Thus,

our method reports low or no association between codon R463L and INH resistance.

By comparison, in the previous association test on INH resistance, the site-based method re-

ports one site S315T, the gene-based method reports the gene katG, and the k-mer-based method

reports codons S315R, Y337C and S315T as the starting positions of a 3-mer (see Figure 4.8 in

Chapter 4). Identified associations between INH resistance and genotypes related to the inhA pro-

moter region by site-based, gene-based, and k-mer-based (k=3) methods are one site g-17t (coor-

dinate 1673423), the whole intergenic region, and loci from g-17t (coordinate 1673423) and c-15t

(coordinate 1673425) for 3 mers, respectively. Our cluster-based method identifies all known mu-

tations that confer resistance to INH, but the previous methods do not. Therefore, the cluster-based

method identifies regions associated with resistant to INH more comprehensively with known loci
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either by itself or as a region than other methods. It is also able to disregard mutations in lineage-

specific codons to decrease the false positives in the association test.

Several clustered regions ranked higher in Table 5.2 are known resistant loci related to other

drugs, for example, rpoB associated with rifampicin resistance and embB associated with ethamb-

utol resistance, indicating co-resistance in the population. That is, resistance to one drug co-exists

with another drug resistance and makes association ambiguous. An indication of the accuracy of

the ECC method is that there are very few false positives on this list. Almost everything is known

to be associated with resistance to isoniazid or another anti-tuberculous drug.

Figure 5.3: Genetic associations between clustered regions and INH resistance for 660 strains from
Peru. Top resistance-associated regions are labeled in texts and listed in Table 5.2.
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Table 5.2: Top regions most associated with INH resistance (passoc < 0.05).

Coordinates Gene / Intergenic Codons R a S b Adjusted p value Known drug effect c

761095-761156 Rv0667_rpoB C:[L430P]-T:[S450S] 102 12 1.49× 10−30 RIF

4247429-4247431 Rv3795_embB G:[M306V]-A:[M306I] 50 2 4.82× 10−18 EMB

3248308-3248308 Rv2931_ppsA C:[H955P]-C:[H955P] 45 1 3.12× 10−17 NA

2155168-2155168 Rv1908c_katG G:[S315T]-G:[S315T] 49 4 6.46× 10−16 INH

3127922-3127931 Rv2820c_− G:[A117A]-A:[K114X] 25 0 6.79× 10−10 NA

764810-764948 Rv0668_rpoC A:[P481T]-G:[L527V] 29 2 1.78× 10−9 RIF

2288805-2288934 Rv2043c_pncA A:[A146E]-C:[Y103X] 22 0 1.10× 10−8 PZA

2289069-2289216 Rv2043c_pncA C:[F58C]-C:[V9G] 23 1 5.39× 10−8 PZA

1673423-1673432 inhA promoter 1673423-1673432 28 5 4.92× 10−7 INH

1473246-1473246 Rvnr01_rrs G:[S467S]-G:[S467S] 16 0 3.57× 10−6 KAN

4243217-4243228 embC-embA 4243217-4243228 16 0 3.57× 10−6 EMB

840858-840901 non_coding 840858-840901 0 35 1.20× 10−5 NA

4247728-4247730 Rv3795_embB C:[E405D]-C:[G406A] 17 1 1.28× 10−5 EMB

7566-7585 Rv0006_gyrA A:[D89N]-C:[S95T] 22 4 1.58× 10−5 CPX

2288937-2289066 Rv2043c_pncA A:[A102X]-A:[S59F] 14 0 2.09× 10−5 PZA

2288696-2288778 Rv2043c_pncA A:[L182X]-C:[V155X] 10 0 1.05× 10−3 PZA

781687-781687 Rv0682_rpsL G:[K43R]-G:[K43R] 10 1 6.55× 10−3 STR

4269292-4269317 Rv3806c_ubiA A:[A181V]-C:[S173A] 10 1 6.55× 10−3 EMB

2155506-2155942 Rv1908c_katG T:[A202A]-C:[P57R] 13 3 6.55× 10−3 INH

1923918-1924684 Rv1699_pyrG T:[S30S]-C:[T286P] 13 3 6.55× 10−3 NA

4327289-4327520 Rv3854c_ethA T:[L62X]-* 12 3 1.46× 10−2 ETH

765462-765669 Rv0668_rpoC G:[N698S]-C:[H767P] 9 1 1.54× 10−2 RIF

4269090-4269148 Rv3806c_ubiA T:[F248L]-G:[V229A] 7 0 1.73× 10−2 EMB

4407952-4408009 Rv3919c_gidB A:[P84L]-C:[V65G] 17 8 2.20× 10−2 STR

2895175-2895875 Rv2571c_- C:[S262R]-G:[Q29P] 11 3 2.85× 10−2 NA

781822-781822 Rv0682_rpsL C:[K88T]-C:[K88T] 6 0 3.86× 10−2 STR

1472750-1472753 Rvnr01_rrs A:[S302*]-G:[K303R] 6 0 3.86× 10−2 NA

3877947-3877969 Rv3457c_rpoA T:[T187T]-A:[A180V] 6 0 3.86× 10−2 RIF

4327034-4327082 Rv3854c_ethA G:[Y147S]-T:[C131Y] 6 0 3.86× 10−2 ETH

764660-764725 Rv0668_rpoC A:[V431M]-G:[F452L] 6 0 3.86× 10−2 RIF

a Number of changes occurring in the resistant branches
b Number of changes occurring in the sensitive branches c INH: Isoniazid, RIF: Rifampicin, STR: Streptomycin, EMB:

Ethambutol, PZA: Pyrazinamide, ETH: Ethionamide, KAN: Kanamycin, CPX: Ciprofloxacin, NA: Not Available.
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Figure 5.4: The distribution of changes occurring in branches associated with INH susceptibility
(R/S) for each polymorphic site in the gene katG. The y-axis presents number of changes linked to
resistance or sensitivity and the x-axis represents the position of a site in the ORF in bp. A codon
exhibiting over one change (homoplasic site) in the resistant branch is labeled in text. The cluster
(besides S315T) is boxed.

Figure 5.5: The distribution of changes occurring in branches associated with INH susceptibility
(R/S) for each polymorphic site in the promoter region of inhA. The y-axis presents number of
changes linked to resistance or sensitivity and the x-axis represents the position of a site in the
ORF in bp. A codon exhibiting over one change (homoplasic site) in the resistant branch is labeled
in text.
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5.3.3.2 Rifampicin

Rifampicin blocks DNA-dependent RNA synthesis (transcription) in M. tuberculosis by bind-

ing to the RNA polymerase. Since the β-subunit of the RNA polymerase is encoded by the gene

rpoB, the known mutations that mediate RIF resistance are mostly located within the RDRR region

of rpoB (amino acids 435-450, region determining rifampicin resistance) [89, 90]. Additionally,

several compensatory mutations are observed in rpoC and rpoA associated with RIF resistance[91].

We found that the region of the strongest association with rifampicin resistance is within the

rpoB gene by grouping 15 mutations at loci starting from L430P to S450S that covers the RDRR

region (Figure 5.7). The identified region has 114 changes spanning 62 bp and 100 changes are

associated with RIF resistance. The distributions of changes occurring in branches associated with

RIF susceptibility (R/S) for each polymorphic site in the genes rpoC and rpoA are shown in Figures

5.8 and 5.9, respectively. Mutations in four regions within the gene rpoC and one region within the

gene rpoA which have the compensatory effects [91] are strongly associated with RIF resistance

(FDR < 0.05). In rpoC, they are regions P481T-L527V with 29 resistant and 2 sensitive changes,

N698S-H767P with 10 changes that are all resistant to RIF, E1033A-A1047P with 7 resistant and 1

sensitive changes, and V431M-F452L with 6 changes that are all related to RIF-resistant (marked

in Figure 5.8). In rpoA, the clustered region contains 6 mutations between codons A180V and

T187A spanning 23 bp, and all changes are resistant to RIF. Comas et. al. [91] also noted that

compensatory mutations in rpoA tended to be clustered around amino acid 187, whereas they were

distributed throughout the rpoC.

In the previous association tests (see Figure 4.9), codons D435V, H445D and S450L are iden-

tified as highly associated with RIF resistance in the site-based analysis. These are the most fre-

quently observed RIF-resistant mutations clinically [92]. Grouping all sites within rpoB shows

less association in the gene-based analysis since multiple changes at loci outside of the RDRR

region occur in sensitive branches. Nine regions are identified from the k-mer-based association

test (because we restricted to windows of size k that equals 3 adjacent SNPs) and all are located

within the RDRR.
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For rpoC, it is identified to be slightly associated with RIF resistance in 3 previous analyses. In

the site-based analysis, only codon V483G is reported since there are 11 changes where 10 occur

in the resistant branches. Though some changes at other loci in rpoC are related to resistance,

they are not abundant enough to pass the test. That is, a SNP at an individual site does not have

enough changes occurring in resistant branches. In the gene-based analysis, grouping all SNPs

within the gene results in more changes (18) yet 5 changes occur in sensitive branches, showing a

weak association (p-value = 2.54× 10−3). In the k-mer-based analysis, 3 groupings of consecutive

sites are identified to be slightly associated with RIF resistance, all include the codon V483G.

For rpoA, none of the previous analyses reports they are associated with the RIF resistance.

There are 12 SNPs in total occurring from codons L80V to E319K, where each individual site has

exactly 1 change (see Figure 5.9). In the site-based analysis, 7 sites harbor changes occurring in the

resistant branches and 5 changes are in the sensitive branches. Since sites within rpoA do not have

many changes occurring in resistant branches by itself, no association is identified. Similarly, in the

k-mer-based test where k equals to 3, the grouping of adjacent 3 SNPs still does not have enough

changes related to resistance. Furthermore, grouping all SNPs within the gene rpoA increases

the total number of changes to 12 yet 5 changes occur in the sensitive branches, suggesting little

or no association from the gene-based analysis. In contrast, our cluster-based approach focuses

significance testing on 6 SNPs between amino acids 180 to 187, all of which are associated with

resistant branches (adjusted p value = 0.0246).

Thus, for cases like rpoB, where changes in an individual site are abundant enough to be

strongly linked with resistance, our cluster-based method performs better than others in terms

of identifying the best grouping that maximizes the association. For other cases like rpoC and

rpoA, where changes in an individual site are not enough to be identified from the association test,

locating the locally clustered region with more changes occurring in resistant branches helps to

identify resistant-associated regions within genes.
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Figure 5.6: Genetic associations between clustered regions and rifampicin resistance for 660 strains
from Peru. Top resistance-associated regions are labeled in texts.

Figure 5.7: The distribution of changes occurring in branches associated with RIF susceptibility
(R/S) for each polymorphic site in the gene rpoB. The y-axis presents number of changes linked
to resistance or sensitivity and the x-axis represents the position of a site in the ORF in bp. The
region between two blue vertical dashed lines is the RDRR region.
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Figure 5.8: The distribution of changes occurring in branches associated with RIF susceptibility
(R/S) for each polymorphic site in the gene rpoC. The y-axis presents number of changes linked to
resistance or sensitivity and the x-axis represents the position of a site in the ORF in bp. A codon
exhibiting over one change (homoplasic site) in the resistant branch is labeled in text. Clusters are
boxed.

Figure 5.9: The distribution of changes occurring in branches associated with RIF susceptibility
(R/S) for each polymorphic site in the gene rpoA. The y-axis presents number of changes linked
to resistance or sensitivity and the x-axis represents the position of a site in the ORF in bp. The
codons in the clustered region are labeled in text. The clustered region of amino acids 180-187 is
boxed.
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5.3.3.3 Ethambutol

Ethambutol is involved in the inhibition of cell wall synthesis by targeting the arabinogalactan

biosynthesis. The embB gene (especially codons 306 and 406, which are the highest frequency) and

the embC-embA intergenic region are responsible for mediating EMB resistance [93, 94]. Genes

embABC form a cell-wall complex that is involved in transferring lipoarabinomannan (LAM)

precursors to the outer membrane. Growing evidence shows that ubiA appears to be associated

with EMB resistance, especially high-level EMB resistance [95]. Gene ubiA encodes decaprenyl-

phosphate 5-phosphoribosyltransferase in the pathway for synthesizing LAM (a cell wall glycol-

ipid in M. tuberculosis) [96].

In Figure 5.10, the locally clustered region of two codons M306V and M306I in embB gene

shows the strongest association with EMB resistance. There are 52 changes in the region of 3

bp, and 43 changes are related to resistance. The other locally clustered region within embB

containing codons G406S and G406A is also identified in the association test analysis. It has 18

changes that span 3 bp where 15 changes are associated with EMB-resistant (Figure 5.11). Seven

polymorphisms exist within the embC-embA intergenic region spanning 39 bp and 18 changes are

obtained from the tree. In the first-phase, a clustered region is obtained consisting of 6 SNPs with

16 changes spanning 12 bp. In the second-phase, the clustered region is identified to be associated

with EMB resistance since 12 changes occur in the resistant branches (Figure 5.12). The Rv3806c

(ubiA) gene is also found to be homoplasic and associated with resistance. Three clustered regions

are obtained and two have overrepresented resistant changes, including 8 SNPs clustered from

codons A181V to S173A with 11 changes (9R, 2S) spanning 26 bp, and 7 SNPs clustered from

codons F248L to V229A with 7 changes (6R, 1S) across 59 bp (Figure 5.13).

In previous results (see Figure 4.10), codons M306V, M306I, G406A and G406S are identified

to be associated with EMB resistance by the site-based test. Gene embB is identified to be strongly

associated with resistance to EMB from the gene-based association test. Several 3-mer groupings

show associations with EMB resistance from the k-mer-based test, including loci starting from

M306V, S297A, S203L, M306I, G406S, E405D and L402V, ranked by association levels. None of
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the mutations in gene Rv3806c (ubiA) is identified to be involved in EMB resistance by previous

tests in site-based and k-mer-based analyses, but the gene-based association test (combining all

changes in a gene together by a burden test) found it to be significant (p value = 1.44× 10−9).

Mutations are found in 22 sites spanning from A35S to L284L with 26 changes in total. In the

site-based analysis, each site has only 1 or 2 changes, resulting in little or no association from the

test. In addition, grouping 3 adjacent SNPs together increases the significance of the association

between sites within Rv3806c and EMB resistance but is still not significant enough. Thus, our

method detected ubiA, intergenic region of embC-embA, whereas other methods did not.

Figure 5.10: Genetic associations between clustered regions and ethambutol resistance for 660
strains from Peru. Top resistance-associated regions are labeled in texts.
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Figure 5.11: The distribution of changes occurring in branches associated with EMB susceptibility
(R/S) for each polymorphic site in the gene embB. The y-axis presents number of changes linked to
resistance or sensitivity and the x-axis represents the position of a site in the ORF in bp. A codon
exhibiting over one change (homoplasic site) in the resistant branch is labeled in text.

Figure 5.12: The distribution of changes occurring in branches associated with EMB susceptibility
(R/S) for each polymorphic site in the intergenic region between embC and embA. The y-axis
presents number of changes linked to resistance or sensitivity and the x-axis represents the position
of a site in the ORF in bp. A codon exhibiting over one change (homoplasic site) in the resistant
branch is labeled in text. The cluster is boxed.
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Figure 5.13: The distribution of changes occurring in branches associated with EMB susceptibility
(R/S) for each polymorphic site in the gene ubiA. The y-axis presents number of changes linked to
resistance or sensitivity and the x-axis represents the position of a site in the ORF in bp. A codon
exhibiting over one change (homoplasic site) in the resistant branch is labeled in text. Clusters are
boxed.

5.3.3.4 Streptomycin

Streptomycin binds to 16S ribosomal RNA (rrs) and ribosomal protein S12 (rpsL) to inhibit

protein synthesis (translation). Resistance to streptomycin has shown to be conferred by the mu-

tations in A514C of rrs (16S rRNA) and codons K43R and K88T in rpsL (S12 ribosomal protein)

[97, 98]. Also, nonsynonymous mutations at gidB (a 16S rRNA methyltransferase) have been

discovered for conferring streptomycin resistance [99]. The Methyl group is needed for optimal

binding of streptomycin, so loss-of-function mutations in the methyltransferase mediate resistance

to STR.

In Figure 5.14, two codons at K43R and K88T in rpsL and one clustered region within the gidB

are identified from the cluster-based analysis. Two mutations occur in rpsL and apart with each

other by 135 bp, so they are locally clustered by itself for each. Codon K43R has 11 changes and

all are resistant to STR. Codon K88T has 6 changes and all occur in the STR-resistant branches.

For gidB, 59 mutations are acquired across 528 bp. Four clustered regions are obtained yet only

one is associated with STR resistance. The region ranges from codons P84L to V65G spanning

58 bp with 25 changes where 18 are in the resistant branches. Seven strains have mutations in
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S172R of rrs evolving along 5 branches independently in the tree where 4 branches are labeled as

resistant, resulting in a weak association.

In the previous results, since both codons K43R and K88T at rpsL harbor multiple changes

mostly occurring in the resistant branches, they are identified to be strongly associated with STR

resistance in all three analyses. For gidB, most individual sites harbor only 1 or 2 changes, so

the site-based method fails to report the association between gidB and STR resistance. This is

because gidB is a ribosome methyltransferase, and resistance is conferred by loss-of-function mu-

tations, which can occur anywhere throughout the ORF. Similarly, in the k-mer-based analysis,

any grouping of adjacent 3 SNPs within gidB still does not have enough changes occurring in

resistant branches. Yet, grouping all SNPs within gidB turns out to be slightly associated with

resistance to streptomycin since it obtains 32 changes where 21 occur in the resistant branches.

Thus, our cluster-based method does a much better job identifying the significance of association

of mutations in gidB with STR resistance.

Figure 5.14: Genetic associations between clustered regions and streptomycin resistance for 660
strains from Peru. Top resistance-associated regions are labeled in texts.

80



5.3.3.5 Pyrazinamide

Pyrazinamide is one of the first-line anti-tuberculous drugs. It must be activated by the pyraz-

inamidase (PZase), an enzyme encoded by the pncA gene, to become pyrazinoic acid (POA), an

active form of PZA. Mutations, especially loss-of-function, occurring in pncA have been observed

primarily to confer PZA resistance [100, 101].

In the dataset of 660 strains from Peru, 166 strains have at least 1 mutation in pncA. Figure 5.16

shows the distribution of changes occurring in branches associated with PZA susceptibility (R/S)

for each polymorphic site in the gene pncA. The y-axis presents number of changes linked to resis-

tance or sensitivity and the x-axis represents the position of a site in the ORF in bp. We observed

55 mutations occurring in pncA across 536 bp, where one occurs in the stop codon (Q10*). Among

55 loci, 11 polymorphic sites are homoplasic, exhibiting distinct mutational events. For insertions

and deletions (indels), 15 strains have indels (14 indels < 10 bp) and 13 of them are resistant to

pyrazinamide. In our cluster-based analysis, 4 sub-regions in pncA are identified from the first

phase. In the second phase, 3 sub-regions of pncA are strongly associated with PZA resistance,

where their FDR-corrected p values are all less than 0.05, including codons F58C-V9G (18R, 5S),

A102X-S59F (10R, 3S) and A146E-Y103X (19R, 3S).

In previous analyses, the site-based method did not identify any association between loci in

pncA and PZA resistance since changes in loci are not abundant enough (less than 4) to pass the

test. Several 3-mer groupings show weak associations with PZA resistance from the k-mer-based

test, including loci starting from F58L, H57L, and D12G. In the gene-based analysis, pncA is

identified to be associated with resistance to PZA. There are 51 changes in total and 34 occur in

the resistant branches. Like gidB, loss-of-function mutations can occur anywhere throughout the

ORF, since pncA is an activator of the prodrug PZA to pyrazinoic acid (POA) [100, 101].

Recently, it has been reported that PZA-resistant mutations have a low frequency of mutations

in panD (pantothenate pathway) [102], and that the true target of pyrazinoic acid (activated species

of PZA) is coaBC in coenzyme A biosynthesis pathway [103]. However, there are only two SNPs

in panD and both are in the sensitive branches. In comparison, loss-of-function mutations in pncA
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are more prevalent than panD mutations in PZA-resistant isolates.

Figure 5.15: Genetic associations between clustered regions and pyrazinamide resistance for 660
strains from Peru. Top resistance-associated regions are labeled in texts.

Figure 5.16: The distribution of changes occurring in branches associated with PZA susceptibility
(R/S) for each polymorphic site in the gene pncA. The y-axis presents number of changes linked to
resistance or sensitivity and the x-axis represents the position of a site in the ORF in bp. A codon
exhibiting over one change (homoplasic site) in the resistant branch is labeled in text. Clusters are
boxed.
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5.3.3.6 Kanamycin

Kanamycin, one of the second-line injectable drugs, binds to ribosomes and results in protein

synthesis inhibition. Mutations within the eis promoter region and rrs at codon S467S (nucleotide

1401, A1401G) are reported to be involved in the kanamycin resistance [104]. Gene eis is an efflux

pump, and mutations in the promoter increase expression.

Six mutations evolve within the upstream of eis across 93 bp (2715340-2715432). One clus-

tered region is identified where 4 mutations are grouped within 7 bp (2715340-2715346). The

strongest association with the KAN resistance results in the clustered region of eis promoter with

11 changes consisting of 10 resistant branches and 1 sensitive branch. Four clustered regions

within the gene rrs are obtained for the first phase analysis, and 1 region that contains a single site

at the codon S467S by itself has a strong association with KAN resistance. It has 15 changes and

11 occur in the resistant branches.

By comparison, in the previous association test on kanamycin resistance, the site-based method

only identified one site in the eis promoter (coordinate 2715346) to be associated with KAN re-

sistance because it exhibits 5 changes that all occur in the resistant branches. Even though other

3 sites (2715342, 2715344 and 2715376) harbor changes in the resistant branches, they do not

pass the test due to the exhibition of only 1 or 2 changes per site. In the gene-based analysis, the

grouping of all SNPs within the eis promoter is strongly associated with resistance to KAN. In the

k-mer-based analysis, 4 groupings of 3 consecutive sites are identified to be associated with KAN

resistance, starting from codons 2715340 to 2715346.
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Figure 5.17: Genetic associations between clustered regions and kanamycin resistance for 660
strains from Peru. Top resistance-associated regions are labeled in texts.

5.3.3.7 Ciprofloxacin

Ciprofloxacin is one of the fluoroquinolones categorized to the second-line drug. It is a DNA

synthesis inhibitor that targets DNA gyrase enzyme encoded by gyrA. Resistance to CPX is known

to be mediated by mutations occurring in the gyrA gene, primarily codons A90V and D94G [105].

In the Peru dataset, there are 14 mutations spreading over 2361 bp in gyrA. Only one clustered

region is reported within the gene gyrA. That is, the grouping of codons from D89N to S95T of 5

mutations spanning 20 bp. This sub-region of gyrA is highly homoplasic with 23 changes and 20

are related to CPX resistance.

Mutation at codon S95T is a lineage-specific mutation and not related to CPX resistance [88].

However, it is located within the clustered region. The reason is probably that S95T is just 3

bp downstream of D94G, in the first phase clustering it together with its upstream 4 mutations

(D89N, A90V, D94N, D94G) would be a region with the highest local mutation rate among others

than expected.

In the previous analyses of three methods, the site-based method only identified codon D94G at

gyrA to be strongly associated with CPX resistance since it exhibits 13 changes and 12 occur in the
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resistant branches. Not all known mutations that confer resistance to CPX are identified because

codon like A90 or D94N does not have enough changes by itself. In the k-mer-based analysis

where k equals 3, the grouping of 3 codons A90V, D94N and D94G maximizes the association

between gyrA and CPX resistance. We observed 19 changes and 18 are in the resistant branches.

Grouping of all SNPs within gyrA also shows association with CPX in the gene-based analysis yet

it is less significant than the best grouping (A90V-D94G) from the k-mer-based analysis which is

less significant than the grouping of 5 codons (D89N-S95T) from our cluster-based analysis.

Figure 5.18: Genetic associations between clustered regions and ciprofloxacin resistance for 660
strains from Peru. Top resistance-associated regions are labeled in texts.
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5.3.4 Novel Genetic Variant Associated with Anti-tuberculous Drugs: Rv2571c

Rv2571c was identified as a novel gene significantly linked with resistance to multiple anti-

tuberculous drugs in the analysis of MDR clinical isolates from Peru. Rv2571c is a gene of un-

known function categorized as a nonessential gene [106] of length 1068 bp (coordinates 2894893-

2895960). It is a membrane protein consisting of 355 amino acids with 6 predicted transmembrane

regions (alanine, valine and leucine-rich, see Figure 5.19) located adjacent to aspS, aspartyl-tRNA

synthetase (see Figure 5.20). In the dataset of 660 strains from Peru, it is identified as a clustered

region spanning 701 bp with 14 changes (distinct mutational events) distributed throughout the

open reading frame (ORF) from Q29P to S262R (see Figure 5.21). Among fourteen changes, two

are stop-codon (loss of function) mutations and one is synonymous (A57A).

Rv2571c shows up on the list of associations for several drugs but is not previously linked to

resistance. The FDR-adjusted p values of associations with resistance are listed in Table 5.3. In the

association test analysis, the changes in the region occur in more branches related to INH, RIF and

EMB resistance of adjusted p values less than 0.03 (see Figures 5.3, 5.6 and 5.10). For comparison,

InhA promoter region is shown, mostly associated with INH resistance, but also with other drugs

due to co-resistance. LldD2 is shown because it is a known homoplasic locus, but is clearly not

associated with resistance to any of these anti-tuberculous drugs [82].

In the clustered region of Rv2571 from Q29P to S262R, Table 5.4 shows the distribution of

phenotypes for strains harboring mutations distributed throughout the 14 codons in Rv2571c. For

each codon, the number of HRES resistant strains and the number of sensitive strains are listed.

An HRES resistant strain represents it is at least resistant to one of the anti-tuberculous drugs

that include isoniazid (H), rifampicin (R), ethambutol (E) and streptomycin (S). The topological

distribution of mutations in katG, inhA promoter region and Rv2571c are shown in Figure 5.22.

Lineages are labeled in colors in the leaves of the tree. Strains from Peru are mostly categorized to

lineage 2 (Beijing) and lineage 4 (LAM, Haarlem, T-clade, X-clade and H-clade). Strains resistant

to drugs (INH, RIF, EMB, and STR) are labeled in red, strains harboring mutations in katG or inhA

promoter region are labeled in green, and strains exhibiting mutations in sites within Rv2571c are
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labeled in blue.

Figure 5.19: Prediction of transmembrane helices in proteins for Rv2571c from TMHMM [1]. Six
transmembrane regions are predicted in Rv2571c across 355 amino acids.

Figure 5.20: The genomic location of Rv2571c and its adjacent genes in the M. tuberculosis
genome.
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Figure 5.21: Relative locations of observed changes within the clustered region of Rv2571c in the
dataset of 660 strains from Peru. Rv2571c has 355 amino acids.

Table 5.3: Associations with resistance and clustered regions of Rv2571c, InhA promoter and
LldD2 of M. tuberculosis. The adjusted p values are listed for pairs of SNP clusters and drugs
along with the number of changes at resistant branches (R) and the number of changes at sensitive
branches (S).

SNP cluster INH RIF EMB STR

Rv2571c (Q29P-S262R) 0.02851 (11R, 3S) 0.0017 (12R, 2S) 0.0039 (10R, 4S) 0.1221 (10R, 4S)

InhA promoter (-8...-17) 4.92× 10−7 (28R, 5S) 0.0004 (23R, 10S) 0.0204 (16R, 17S) 0.7482 (13R, 20S)

LldD2 (V3I-S3S) 0.9431 (18R, 44S) 0.9599 (15R, 47S) 0.9973 (6R, 56S) 0.9970 (13R, 49S)
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Table 5.4: Distribution of phenotypes for strains harboring mutations in Rv2571c. An HRES
resistant strain represents it is at least resistant to one of the following anti-tuberculous drugs:
isoniazid (H), rifampicin (R), ethambutol (E) and streptomycin (S).

Sites Number of strains with any HRES resistance Number of sensitive strains

Q29P 1 0

L36V 3 4

A37G 1 0

A57A (synonymous) 0 3

N65D 1 0

Q74* (stop codon) 1 0

L118* (stop codon) 0 1

V173A 1 0

M175I 4 0

L176P 1 0

E225G 1 0

A230V 3 0

A237T 1 0

S262R 1 0
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Figure 5.22: Distribution of lineages, phenotypes and mutations in Rv2571c in the phylogenetic
tree. Lineages are labeled in colors in the leaves of the tree. Strains resistant to four drugs (INH,
RIF, EMB, and STR) are labeled in red, strains that harbor mutations in katG or inhA promoter
region are labeled in green, and strains that have mutations in locus within Rv2571c are labeled in
blue.
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We also expanded the study to a larger set of 1525 isolates from Lima, Peru by conducting the

analysis of the consistency of drug susceptibility and polymorphisms with a focus on Rv2571c.

The proportion of INH-resistant strains accounts for 70.9% in the population. Fifty-four strains

exhibit at least one nonsynonymous mutation in Rv2571c and forty-seven of them are resistant to

INH. Also, eleven strains have insertions in the Rv2571 and nine are resistant to INH.

Although we do not know the function of Rv2571c, this analysis suggests it is associated with

resistance. We cannot confidently determine which drug is related to the mutations at Rv2571c.

The association of Rv2571c with drug resistance has not been reported yet. However, Grandjean et.

al. noticed that Rv2571c was homoplasic in another MDR dataset, though they did not have sensi-

tive strains for comparison of association testings [81]. The distribution of sites throughout ORF,

along with mutations at 2 stop codons and 1 indel of Rv2571c, suggests resistance is conferred

through loss-of-function, similar to an activator.

For validation of Rv2571c, we used a worldwide dataset of 3651 clinical isolates of M. tubercu-

losis with susceptibility to anti-tuberculous drugs [46]. We aligned them to the reference genome

H37Rv (accession NC_000962.2) of size 4.4M bp. There are 197,519 polymorphic sites in the

alignment, excluding ambiguous sites, repetitive regions of PPE and PGRS genes. The global

phylogenetic tree is reconstructed from informative sites using PAUP [107] (Figure 5.23). For

five phenotypes of resistance to INH, RIF, EMB, STR and PZA, the proportion of drug-resistant

strains ranges between 6.86% (PZA) to 20.45% (STR) (Figure 5.24). The number of strains that

are resistant both to INH and RIF (MDR-TB) accounts for 10.5% (382/3651) in the population.

Nonsynonymous nucleotide substitutions occur in forty-seven sites within Rv2571c. Fifty-seven

changes from nonsynonymous mutations are found in the gene Rv2571c and 16 changes occur in

the resistant branches in the phylogenetic tree by maximal parsimony. Because this is close to the

background, there is little or no association with INH resistance. Therefore, our hypothesis is not

confirmed in this dataset.

There are several possible reasons for failing to observe Rv2571c associated with drug resis-

tance in the worldwide dataset. First of all, in the first dataset, clinical isolates are from Lima, Peru
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locally and all are categorized to either lineage 2 (Beijing) or lineage 4 (LAM, Haarlem, T-clade,

X-clade, H-clade). Yet clinical isolates in the second dataset are collected throughout the world and

categorized to all major M. tuberculosis lineages (lineages 1-7 and bovis) [108], which are more

divergent. In addition, the dataset of strains from Peru has a higher proportion of MDR strains

(35.9%) than the dataset of worldwide strains (10.5%). Lastly, differences in the accuracy of drug

susceptibility test could have an impact on the association test. The result of a drug susceptibility

test for a clinical isolate is binary, resistant or sensitive. However, the DST is not robust, especially

when the isolate does not grow well in culture, yielding poor reliability [109]. The DST results

are less reproducible or reliable for EMB and PZA [110]. An isolate determined as resistant from

the DST may be slightly or strongly resistant to the drug. To determine the drug susceptibility

for strains more accurately, the minimal inhibitory concentration quantitatively tests the lowest

concentration of antibiotic for killing a strain.
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Figure 5.23: Phylogenetic tree and the distribution of lineages of the worldwide dataset of 3651
M. tuberculosis clinical isolates.
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Figure 5.24: Proportion of drug-resistant strains for 5 drugs in the worldwide dataset of 3651 M.
tuberculosis clinical isolates.

5.3.5 Novel Genetic Variant Associated with Anti-tuberculous Drugs: Rv1830

We applied the two-phase approach on a dataset consisting of 550 M. tuberculosis clinical

isolates from China with DST data of 5 antibiotics (accession number PRJNA268900) [73]. We

subsampled strains randomly to obtain a subset of 175 INH-resistant and 201 sensitive strains,

where the proportion of INH-resistant strains equals 46.5% (175/376). We obtained 25,794 non-

synonymous polymorphic sites, excluding ambiguous sites and repetitive regions. By applying

Sankoff’s algorithm on the reconstructed tree, we acquired 29,535 changes. The overall mutation

rate is 0.67% (29,535 changes / 4,411,532 bp). In the first-phase analysis, 617 clustered regions

are obtained with adjusted p values below 0.05. In the second-phase association test, we identified

the known mutations in the katG gene and in the inhA promoter region associated with isoniazid

resistance (see Figure 5.25). We further observed that polymorphic sites within a sub-region of

Rv1830 exhibit more changes as a clustered region than are likely to occur by chance alone, and

more changes occur in INH-resistant branches than expected.
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Rv1830 is an essential gene [106] with unknown function, annotated as a putative helix-turn-

helixt type transcriptional regulator. Its gene length is 678 bp (coordinates 2074841-2075518)

comprising of 225 amino acids. Figure 5.26 presents the genomic location of Rv1830 and its

adjacent genes. In the dataset of 376 strains from China, there are 18 nonsynonymous mutations

spanning 493 bp within Rv1830. In the sub-region throughout the open reading frame from P68L

to H128P, 16 changes (distinct mutational events) are observed spanning 181 bp (see Figure 5.27),

where 13 changes occur in the INH-resistant branches. The distribution of INH susceptibility

for strains harboring mutations in the clustered region of Rv1830 are listed in Table 5.5. In the

clustered region of 15 codons, strains exhibiting mutations are resistant to INH in 12 codons. Hicks

et. al. also reported that Rv1830 was near significant in the dataset using phyOverlap [73]. By

using our cluster-based method, it is identified to be slightly associated with resistance to isoniazid.

For validation, we used two datasets of clinical isolates of M. tuberculosis. In the dataset

of 660 strains from Peru, there are 12 nonsynonymous mutations from codons P20L to *226W

spanning 619 bp. We obtain 13 changes and 7 occur in the INH-resistant branches, showing little

or no association. In the dataset of 400 worldwide strains, the proportion of INH-resistant strains

equals 39.8% (159/400). For Rv1830, 5 mutations are observed from codons L121I to D221A

spanning 302 bp. We obtain 5 changes where 3 occur in the INH-resistant branches, implying

a weak association between Rv1830 and INH resistance. Results from the above analyses using

three empirical datasets suggest that the gene Rv1830 may be slightly associated with resistance to

isoniazid. Further experiments need to be performed to understand the contribution of mutations

in Rv1830 on INH susceptibility. Mutations in the upstream of Rv1830 were hypothesized to be

putative markers of amoxicillin and clavulanate susceptibility [111].
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Figure 5.25: Genetic associations between clustered regions and isoniazid resistance for 376 strains
from China.

Figure 5.26: The relative location of Rv1830 and its adjacent genes in the M. tuberculosis genome.

Figure 5.27: Relative locations of observed changes within the clustered region of Rv1830 in the
dataset of 376 strains from China. Rv1830 has 225 amino acids.
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Table 5.5: Distribution of phenotypes for strains harboring mutations in
Rv1830. An INH-resistant strain represents that it is resistant to isoniazid.

Sites Number of INH-resistant strains Number of sensitive strains

P68L 1 0

C71R 1 0

T77A 1 0

Y83H 2 0

V90A 1 0

R95S 1 0

A97S 1 0

A97V 1 0

S100C 1 0

I111T 1 0

K115E 1 0

K118E 0 1

T123P 0 1

S126P 1 0

H128P 0 1

5.4 Discussion

We presented four types of methods for association tests:

1. site-based method (test polymorphisms at each individual site against phenotypes of interest)

2. gene-based method (pooling polymorphisms within a gene using a burden test)

3. k-mer-based method (grouping all windows of k adjacent polymorphisms)

4. two-phase cluster-based method (optimization of clustered polymorphisms using the ECC

algorithm).
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The known loci conferring drug resistance differ in sizes of loci within a gene or intergenic

region. In one case, a single polymorphism within the gene is associated with drug resistance, for

example, the S315T codon at katG. In another case, causal variants are involved in non-contiguous

parts of the sequence, such as K43R and K88T codons at rpsL. In other cases, a group of locally

adjacent polymorphisms (a SNP cluster) is associated with drug resistance, for instance, the RDRR

region of rpoB, intergenic region between embC-embA, codons of M306V and M306I or G406S

and G406A at embB, the upstream region of eis. In the association tests, regions like eis promoter

(associated with KAN resistance) and pncA (associated with PZA resistance) are not detected by

site-based or gene-based testings, yet they are detected in our evolutionary cluster-based conver-

gence test (ECC). Since the size of the grouping of polymorphic sites is different for each case and

homoplasic sites suggest the bacteria in the population are under positive selection, our two-phase

optimization method (ECC) locates regions harboring more changes than others and then tests for

associations subsequently. The proposed method of optimization of clustered polymorphisms as

genotypic traits performs better than using other genotypes (individual sites or grouping by a gene)

in terms of accuracy of detecting the known resistant-associated loci. In the association test against

RIF, the cluster-based method successfully groups sites within the RDRR region of rpoB as a region

and then reports that it is statistically significantly associated with RIF resistance. It also identifies

mutations in rpoA (A180V-T187T) and rpoC (P481T-L527V, N698S-F831L, V431M-F452L and

E1033A-A1047P) as clustered regions where most changes are resistant to RIF. Several compen-

satory mutations have already been described in rpoA and rpoC that involved in RNA polymerase

subunits [91]. However, the other three methods fail to report associations between RIF resistance

and rpoA. Previous methods identify a weak association between rpoC and RIF resistance.

There are at least two limitations of our method: epistasis and co-resistance of drugs. Epistasis

is the interaction of two or more loci. If codons that confer resistance to a certain drug are spread

out in several positions across a gene or several genes, our method might not identify them since

it is only able to identify polymorphisms that are clustered within a consecutive region. Non-

resistance-related mutations in between could decrease the significance. For example, there are 8
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polymorphic sites between codons 306 and 406 in embB. We obtained 14 changes yet 3 of them

occur in the sensitive branches.

The co-resistance of drugs means a strain that is resistant to one drug may have higher propen-

sity to be resistant to another one. For example, INH and RIF resistance in M. tuberculosis strains,

which is defined as the multi-drug resistant (MDR) strains. The dataset of strains from Peru con-

tains up to 35.9% of MDR strains. Thus, ambiguity exists in the association test. Loci that confer

INH resistance are also ranked top in the association test of RIF resistance and vice versa.

It might be possible to combine the two-phase method in the future to detect clustered regions

associated with antibiotic resistance simultaneously. Since the current method detects the cluster-

ings of polymorphisms first without considering DST, some regions are sub-optimal, for example,

gyrA. Our method identifies a clustered region within gyrA from codons to D89N to S95T in the

first phase. Thirty-three changes exist in gyrA spanning 2361 bp. The region is detected as being

clustered since it harbors 23 changes spanning 5 bp. In the second phase, the region is also identi-

fied as associated with CPX resistance since 20 changes occur in the resistant branches. However,

mutation at codon S95T at gyrA has been reported that it is a lineage-specific mutation and not

linked to CPX resistance [112]. In the dataset from Peru, 278 strains have the mutation at codon

S95T, but the mutation is inherited from a common ancestor for all these strains. That is, there is

only one change in the tree and the change occurs in the CPX-sensitive branch. Thus, the clustered

region is sub-optimal in the association test. In the future, it would be desirable to modify the

algorithm to identify regions that maximize clustering and association simultaneously.
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6. CONCLUSION ∗

The neutral theory of evolution assumes that bacteria acquire nucleotide substitutions spread

throughout the genome spontaneously during evolution. In many bacteria, these are inherited

clonally. Bacteria may also obtain genetic materials from the environment or exchange with other

organisms via transduction, transmission, or conjugation. The evolutionary history of bacteria in a

population can be inferred by the global phylogenetic tree estimated from the polymorphisms. If a

point mutation or a segment of nucleotide substitutions is incongruent with the tree, it creates the

appearance of homoplasy. Homoplasy occurs when a mutation by itself or a segment of consecu-

tive mutations (recombination) does not descend from a common ancestor but appears on at least

two branches independently. Homoplasy often indicates positive selection. For divergent species,

identifying regions that involve recombination would provide a better understanding of evolution-

ary history. For clonal species like Mycobacterium tuberculosis, the homoplasic mutations may be

associated with drug resistance.

To characterize homoplasy in bacterial genomes, in the first part of this work, we developed a

polymorphism incompatibility method to identify any region where a recombination event occurs

without requiring the reconstruction of a phylogenetic tree. We use a sliding window to scan for

potential breakpoints throughout the genome by locating sites with lower compatibility scores, and

then we assess the statistical significance of the breakpoints by a permutation test. Our method

(ptACR) is able to practically determine the compatibility of sites of binary- and multi-state char-

acters and detect the recombination boundaries of lower average compatibility ratio with the as-

sessment of statistical significance as candidate breakpoints. The evaluation of our method on the

simulated datasets of varying substitution rates and heterogeneity shows that ptACR is sensitive,

∗Part of the data reported in this chapter is reprinted with permission from "A statistical method to identify recom-
bination in bacterial genomes based on SNP incompatibility" by Y.-P. Lai and T. R. Ioerger, 2018. BMC Bioinformat-
ics, 19, 450, Copyright [2018] by BioMed Central. DOI:10.1186/s12859-018-2456-z.
Part of the data reported in this chapter is reprinted with permission from "A compatibility approach to identify recom-
bination breakpoints in bacterial and viral genomes" by Y.-P. Lai and T. R. Ioerger, 2017. Proceedings of the 8th ACM
International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 11-20, Copyright
[2017] by Association for Computing Machinery. DOI:10.1145/3107411.3107432.
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yet has a relatively lower false positive rate than method without using a permutation test, sup-

porting its ability to characterize mosaic genomes and identify the regions of distinct phylogenetic

histories. With the detection of recombination events in clinical isolates of Staphylococcus aureus

and Mycobacterium avium, it could provide a better understanding of evolutionary relationships

among bacterial isolates that are not clonal.

In the second part of this work, we studied methods for exploiting homoplasy to identify

sites/genes linked with drug resistance. We developed a two-phase evolutionary cluster-based

convergence test (ECC) to estimate associations between genetic variants and drug-resistant phe-

notypes with accounting for mutation rates, homoplasy, and population stratification. We locate

regions where changes cluster within a smaller span more strongly than expected from a Poisson

distribution. Homoplasic sites tend to nucleate clustered regions, and can even be clustered on

their own. Then we test the genotypes as clustered regions of changes against phenotypic traits of

drug resistance using a hypergeometric test to identify potential causal variants. We evaluate the

performance of ECC on three empirical datasets of clinical isolates of Mycobacterium tuberculosis

and compare its results to those from the site-based, gene-based and k-mer-based methods. The

results show that our cluster-based method is able to identify known drug-resistant loci more accu-

rately compared to other methods. The clustering in phase one and the focus of association testing

on the clustered regions in phase two give an advantage to homoplasic sites. It has the potential to

identify novel polymorphisms that confer drug resistance.
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