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ABSTRACT

Uncovering links between processing conditions, microstructure, and properties is a central

tenet of materials analysis. It is well known that microstructure determines properties, but express-

ing these structural features in a universal quantitative fashion has proved to be extremely difficult.

Recent efforts have focused on training supervised learning algorithms to place microstructure im-

ages into predefined classes, but this approach assumes a level of a priori knowledge that may not

always be available. This work expands this idea to the semi-supervised context in which class

labels are known with confidence for only a fraction of the microstructures that represent the ma-

terial system. It is shown that classifiers which perform well on both the high-confidence labeled

data and the unlabeled, ambiguous data can be constructed by relying on the labeling consensus of

a collection of semi-supervised learning methods. We also demonstrate the use of novel error es-

timation approaches for unlabeled data to establish robust confidence bounds on the classification

performance over the entire microstructure space.
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1. INTRODUCTION ∗

1.1 Motivation

A basic goal of materials data analysis is to extract useful information from materials datasets

that can in turn be used to establish connections along the processing-structure-properties chain.

As the volume, variety and complexity of the datasets increases, extracting such information will

likely be increasingly reliant on automated frameworks that facilitate the uncovering of distinctive

features and patterns that can be used for further analysis in the context of Integrated Computational

Materials Engineering (ICME). A central challenge exists in arriving at such a framework in the

case of microstructure image data stemming from the fact that variation in a material’s internal

structure is high and exists in a truly multi-dimensional (feature) space that is often times difficult

to navigate without the aid of sophisticated analysis tools [1, 2]. The microstructure space is

difficult to navigate in part because of the difficulty associated with establishing the most important

features that can in turn be used to establish differences among microstructures as well as the

complex, multi-dimensional and often times non-linear relationships between such features and

materials behavior. While expert human annotation is highly effective, problems arise when the

microstructure datasets are large. In this work, we present a framework for the semi-supervised

learning of the microstructure space that moves towards addressing some of these challenges.

1.2 Background

It is well known that computational methods have been identified as a cost-effective way of

solving the inverse mapping problem of properties to structure to processing conditions for materi-

als design. Forging these links requires quantitative analysis, and while processing parameters and

property observations are generally easily quantifiable — they tend to be represented as objects

that exist in a relatively low dimensional space — (micro)structure, the central link in the chain,

∗The abstract, this section, and all subsequent sections have been reprinted with permission from “Semi-supervised
Learning Approaches to Class Assignment in Ambiguous Microstructures” by Courtney Kunselman, Vahid Attari,
Levi McClenny, Ulisses Braga-Neto, and Raymundo Arroyave, 2020. Acta Materialia, Volume 188C, 49-62, Copy-
right 2020 by Elsevier B.V. or its licensors or contributors
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presents a much more challenging characterization obstacle.

For well-studied material systems, expert identification of features and resulting demarcation

of microstructure samples into predefined classes is a start [3, 4, 5]. Unfortunately, these human-

assigned labels can be too subjective in the face of large structural diversity, and with recent

advances in simulation capabilities [6, 7, 8, 9, 10], physics-based models can generate massive

microstructure datasets for which human annotation is prohibitively expensive [11]. Automated

classification models (e.g. support vector machines and neural networks) address both of these

concerns by removing the human decision-maker after initial training, making them popular mi-

crostructure analysis tools in the literature [4, 12, 13, 14, 15, 16, 17].

These classification algorithms are in the category of supervised learning methods. Models

built from these approaches are inductive predictors, implying that they are mappings from inputs

to outputs, including inputs which the model has not yet seen. This is in contrast to unsupervised

learning methods which are transductive algorithms used to infer relationships between samples

within a given set for which no outputs are known. These relational inferences are commonly

used for tasks such as dimensional reduction and clustering, which provide insight into feature

redundancy and data structure, respectively. Because they do not have an output to train over (or

validate with), these methods generally make much stronger assumptions about data distributions

than their supervised counterparts. We note, however, that when these assumptions align well with

the problem at hand, insights from unsupervised methods can be helpful in the construction of

higher-performing supervised models [18].

Just as with many other automated tools, a supervised classifier’s performance is limited by the

assumptions it ‘is told’ to make and the samples on which it is trained [19]. In general, a successful

classifier requires (I) a robust labeling of the training set, (II) a discriminative feature set, and (III)

an appropriate choice of model assumptions and hyper-parameters. Due to the rigorous theoretical

framework of most mainstream supervised classification algorithms, meeting the third requirement

is usually a straight-forward exercise when the first and second requirements are readily available.

Unfortunately, for a given microstructure classification problem, attaining the first two require-

2



ments is anything but straight-forward because their acquisition usually requires an appreciable

amount of a priori information. Consider the requirement of a robustly labeled training set, recall-

ing that a class of microstructures is most helpful to the design problem if its members share a set

of structural features which map to a tight region in some property space of interest. For material

systems in which the relationship between (micro)structural features and resulting properties is not

well-studied or for a more general problem where multiple material systems are involved, identi-

fying the correct number of classes and confidently assigning a discrete label to each sample turns

into a highly subjective, nontrivial task. Consequently, expense and/or uncertainty can lead to only

a fraction of the available data being labeled, further deteriorating the robustness of the training

set.

Fortunately, semi-supervised learning methods have been developed specifically to address the

challenges associated with partially labeled training data. While examples of these methods are

sparse in the available literature investigating microstructure classification (Okaro et al. did make

use of them to detect faults in the microstructures of additively manufactured parts [20]) semi-

supervised learning has been used successfully in a variety of other image classification studies

[21, 22, 23, 24]. Just as with the supervised case, traditional semi-supervised methods can still

only assign sample points to predefined classes, which can be a concern if the unlabeled dataset

contains sample points from classes beyond those that are known a priori. To address this issue,

approaches which allow for new class discovery have been explored in contexts outside materials

science [25, 26, 27], with a large portion of the work focusing on identifying new cancer classes

through patterns in gene expression.

Similar to the unsupervised learning problem, most semi-supervised methods operate under

the assumption that sample points which are close to each other in the feature space (based on a

given distance metric) have a high chance of belonging to the same class. Supervised classifiers

do not necessarily make this assumption, but as the second requirement above implies, it is to be

expected that in general the larger the degree of separation between classes in the feature space, the

more successful the classifier will be. However, finding such a feature set which is simultaneously

3



adequately discriminative and computationally tractable can be extremely difficult, and even if

it is found for one material system, there is no guarantee that it will generalize with success. In

response to this problem, DeCost and Holm [28] explored a classification framework which applies

the ‘bag of visual features’ methodology [29] to build a discriminative feature set which requires

no a priori knowledge of the relevant structural features present in the dataset. DeCost and Holm

demonstrated the utility of this method of characterization with an 83% classification accuracy on

microstructure images from seven different material systems, and subsequent studies have utilized

the bag of visual features approach for their own classification models [30, 31].

While DeCost and Holm have presented a method for handling a lack of a priori information

for the requirement of a discriminative feature set, as far as we know corresponding work has yet

to be done for the situation of human annotation by visual inspection leading to uncertainty in class

taxonomy and initial label assignment for the microstructure classification problem. The following

notional example illustrates why this problem is worth considering.

1.3 Notional Example

Similar to many problems involving the exploration of microstructure spaces [7], color is a

continuous physical feature which is often discretized for a given application. Suppose we are

tasked with building a color classification model using color data (a-g) shown in Fig. 1.1. We are

given no information about how many classes there should be or what they should contain. Upon

visual inspection of our data set, we decide to keep it simple and define two widely-recognizable

classes: purple and blue. Furthermore, we are confident that colors (a) and (e) belong to the purple

class and that colors (c) and (d) belong to the blue class. However, the remaining data could really

belong to either class, so we leave them unlabeled to start. We find a feature space which clusters

our confidently labeled data well, and following our intuition, (b), (f), and (g) lie in a space between

the two clusters. From here, we are unsure of how to provide labels to the remaining three colors.

One option is to claim that classification is inherently subjective and label them according to

our expert opinion. Another is to leave them unlabeled, train a classifier on the high-confidence

samples, and then use this model to label the ambiguous colors. However, the first approach

4



has the potential to provide the model with bad training information while the second may not

provide enough information. In response to this predicament, we could define a third class, say

indigo, which is somewhere between purple and blue. But now our dilemma is doubled because

we have to decide between purple and indigo on one front and blue and indigo on another, and our

confidence level on previously labeled data could drop now that a new class is available.

(a) (b) (c) (d)

(e) (f) (g)

(h)

Figure 1.1: Sample set of colors (a-g) from the spectrum in (h).

The above example illustrates that when class taxonomy is uncertain, there can exist a tension

between providing enough labeled data for the training set and avoiding the addition of potentially

detrimental data to the training set. The remainder of this paper proposes a framework to address

this tension in a data-driven manner which involves appending the high-confidence training set

with a subset of the ambiguous data points identified through the application of a collection of

5



semi-supervised learning methods. The idea is that if a ‘safe’ subset of the ambiguous data can be

labeled and added to the training set, the supervised model trained over this set will gain valuable

information at little risk of degrading performance.

6



2. FEATURIZATION OF THE MICROSTRUCTURE DATASET

2.1 Dataset Creation

A multi-scale elasto-chemical phase-field approach based on Cahn-Hilliard (C-H) formalism

[7, 32] is used to generate synthetic microstructure dataset used in this study. The total free energy

functional (F tot) for a heterogeneous solid medium as the sum of contributing fields over the

domain (Ω) is:

F tot =

∫
Ω

(fbulk + finterfacial + felastic) dΩ (2.1)

where bulk free energy, fbulk, interfacial free energy, finterfacial, and elastic strain energy, felastic

are:

fbulk = f 0(c, T ), (2.2)

finterfacial = κ(∇c)2, (2.3)

felastic =
1

2
σijε

el
ij (2.4)

where c is the composition field, f 0(c, T ) is the free energy of a unit volume of homogeneous

material for a given temperature (T ), κ is the gradient energy coefficient, εelij and σij are the local

elastic strain and stress in the material, respectively.

We postulate the following form of the (C-H) kinetic equation (Eq. 2.5) along with the micro-

elasticity equations (Eq. 2.6-2.8) to generate the synthetic microstructure space by tracking the

evolution of composition field. We start with a uniform state where the composition is randomly

perturbed only ±2% around alloy composition, and let the system evolve based on the given input

material parameters:
∂c

∂t
= ∇ ·M∇

(
δF tot

δc

)
, (2.5)

7




∂
∂rj

{Cijkl (Ekl + ε⋆kl − ε0kl)}=0 on Ω

ε⋆kl periodic on Ω

, (2.6)

εelij = εtotij − ε0ij, (2.7)

εtotij = Eij − ε∗ij = Eij −
1

2

(
∂u⋆i
∂rj

−
∂u⋆j
∂ri

)
(2.8)

whereM , Cijkl,Eij , ε⋆ij , ε
0
ij are mobility, elastic constant tensor, mean of total strain (εtotij ), periodic

strain, and stress-free transformation strain, respectively. εelij is elastic strain, and ε∗ij is the periodic

fluctuation strain field given by period displacement (u⋆). The eigenstrain term is interpolated over

the domain by ε0ij = εT δijh(c), where εT is the strength of the mismatch, δij is the Kronecker-delta

function and h(c) = c3(10−15c+6c2) is an standard interpolation function. A detailed description

of the microelasticity model is provided in detail in [7]. An efficient method is used to sample

input parameters out of prior probably distributions of input parameters to minimize the number of

samples and these samples are fed to the phase-field model to generate the microstructure dataset.

For a complete explanation of the method for propagation of the uncertainty in microstructure

space and generation of the microstructure dataset refer to [8].

2.2 Data Labeling and Preprocessing

Phase-field simulations produced ten thousand 512 × 512 microstructure images for charac-

terization and classification [8]. Of these ten thousand images, 2, 439 were determined to have

undergone phase decomposition (i.e. they self-organized into two phases). Through visual inspec-

tion, 1, 920 of the two-phase microstructures were labeled as either ‘Bicontinuous’ or ‘Precipitate.’

The remaining 519 images resembled a weighted blend of these two classes; thus, they were ini-

tially left unlabeled since class assignment could not be made with confidence. Fig. 2.1 provides

examples of this labeling scheme.

Following label assignment, the two-phase dataset was reduced to binary images using Otsu

8



(a) Bicontinuous

(b) Precipitate

(c) Unlabeled

Figure 2.1: Examples of initially labeled and unlabeled microstructures.

Thresholding [33]. This popular image segmentation technique iterates through all possible thresh-

old values and chooses the value which minimizes the sum of intra-class variance of pixels above

and below the threshold. Final processing consisted of applying opening, a mathematical mor-

phology operator used to eliminate small foreground islands in binary images, to those reduced

images requiring noise removal [34]. Fig. 2.2 illustrates this process. Image processing methods

were implemented using the scikit-image package in python [35].

9



(a) (b) (c)

Figure 2.2: Microstructure characterization process flow. The raw image (a) is binarized using the
Otsu method and noise is removed through opening (b). The image is then ready to be characterized
using the black autocorrelation function (c).

2.3 Characterization Through the Two-Point Correlation Function

Statistical characterization of microstructures is pervasive throughout recent literature investi-

gating classification, reconstruction, and structure-property linkages [12, 30, 36, 37, 38]. Statistical

functions provide probabilistic spatial correlation information and have interpretations based in the

random placement of a given polyhedron. Specifically, the two-point correlation function Pl,l′(r)

can be interpreted as the conditional probability of finding local state l at the first endpoint and lo-

cal state l′ at the second endpoint of the vector r after it is randomly placed into the microstructure

where local state is a set of structural characteristics needed to distinguish one possible material

state from another at the length scale of interest. In [39], Niezgoda et al. give a mathematically

rigorous explanation which starts by defining the microstructure function m(x, h) as a wide sense

stationary stochastic process in which h is a random variable associated with finding a specific

local state at spatial position x. The two-point correlation function is then expressed as

Pl,l′(x1,x2) = E [m(x1, l)m(x2, l
′)] , (2.9)

which can be reduced to only a function of the spatial variable r = x2 − x1 since m(x, h) is

assumed to be stationary:

10



Pl,l′(r) = E [m(x, l)m(x+ r, l′)] . (2.10)

When local state information is limited to realizations over a uniform grid in spatial position, the

two-point correlation function is given by

Pl,l′(r) =
1

S

∑
s

M l
sM

l′

s+r (2.11)

where S is the total number of grid points, s is a position in the grid, and M l
s is an indicator

function which equals one when local state l is at spatial position s [40]. For the case of a binary

microstructure with white (w) and black (b) phases, four two-point correlations are defined for

a given vector r: Pw,w(r), Pb,b(r), Pw,b(r), and Pb,w(r). However, as the following system of

equations demonstrates, only one of these correlations is independent [41]:

Pw,w(r) + Pb,b(r) + Pw,b(r) + Pb,w(r) = 1, (2.12)

Pw,b(r) = Pb,w(r), (2.13)

Pw,w(r) + Pw,b(r) = ϕw, (2.14)

Pb,b(r) + Pb,w(r) = ϕb = 1− ϕw (2.15)

where ϕi is the volume fraction of phase i. Thus, for this study, only Pb,b(r) (also known as the

black phase autocorrelation) was considered. These autocorrelations were computed using the

PyMKS framework, where a primitive basis and periodic boundaries were assumed [42]. Figure

2.2 provides a flow from raw input image to black phase autocorrelation. Note that the axes for the

autocorrelation image define the vector r which is being placed into the microstructure and not a

spatial position in the microstructure.
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2.4 Normalization of the Two-Point Statistics and Dimension Reduction

The black phase autocorrelations calculated for the binary microstructures lie in a 512 × 512

dimensional space, making the data an impractical input for a classifier due to computational ef-

ficiency, classification accuracy, and data visualization concerns. Principal Component Analysis

(PCA) is a popular unsupervised dimension reduction tool in machine learning which builds an

orthonormal basis corresponding to directions of most variance in the input data. These basis vec-

tors, known as Principal Components, are normalized linear combinations of the original features,

allowing for the reduced representation to be easily inverted. Principal Components are determined

through an eigenvalue decomposition of the covariance matrix C:

C = WΛW−1 (2.16)

where W is a matrix of eigenvectors of C and Λ a diagonal matrix of corresponding eigenvalues.

These eigenvectors are the Principal Components. Thus, reduction to dimension k is accomplished

through multiplying the feature matrix by the first k columns of W [43]. However, direct compu-

tation of this decomposition is often not practical for large datasets due to computational expense

and finite memory constraints. In response to this dilemma, the machine learning community

developed a class of methods known as Incremental PCA (IPCA). These methods either incre-

mentally build the eigenvectors without constructing the covariance matrix or estimate eigenvalue

decompositions by incorporating the data in batches [44]. Following the latter strategy, Ross et al.

[45] developed an IPCA algorithm which is computationally efficient when the number of features

is much greater than the number of observations. An additional advantage of this method and

those that are similar is that, since these algorithms process training inputs in batches, new training

samples can be incorporated into the model without having to reconsider the old data.

PCA has been demonstrated to be an effective dimension reduction technique for two-point

correlation data [4, 30]. However, when the volume fraction of the microstructure dataset has high

variability, the first Principal Component, which has been shown to be highly related to volume
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fraction, can have an extremely large eigenvalue relative to the other eigenvectors [39]. If this

is the case, then all of the data points in the high-dimensional feature space could be arranged

around a line closely related to volume fraction. This implies that the first few eigenvectors of

the decomposition provide very little discriminative (micro)structural information beyond volume

fraction while claiming to capture a large fraction of the variance of the original data. Although

volume fraction can be an important discriminative feature for many material systems, for this

study we aim to craft a classifier which is sensitive to higher order (micro)structural features but

robust to varying volume fraction. To address this concern, we introduce the correlation function

corrl,l′(r) =
E [m(x, l)m(x+ r, l′)]− E [m(x, l)]E [m(x+ r, l′)]√

Var [m(x, l)]
√

Var [m(x+ r, l′)]
. (2.17)

By combining Eq. 2.10 and Eq. 2.17 and exploiting the stationarity of m(x, h), corrl,l′(r) can be

expressed as a function of Pl,l′(r) and the volume fractions of local states l, l′

corrl,l′(r) =
Pl,l′(r)− ϕlϕl′√
(ϕl − ϕ2

l )(ϕl′ − ϕ2
l′)
. (2.18)

Normalizing Pl,l′(r) in this fashion removes the strong relationship with volume fraction, which

allows a PCA decomposition of corrl,l′(r) to be used as a discriminative feature space based on

structural information which is robust to varying volume fraction.

Thus, for this investigation, the black phase autocorrelations calculated using PyMKS [42]

were normalized using Eq. 2.18. Those normalized correlations corresponding to labeled mi-

crostructures were split into a training set of 1, 536 and a test set of 384 sample points. The training

set was combined with the ambiguous set, and the IPCA method of Ross et al. was then applied to

this combined set using the implementation developed by scikit-learn [46]. All normalized corre-

lations were then projected into the subspace defined by the first fifty Principal Components, which

cumulatively explained about 60% of the variance (see Table 2.1). Following projection into the

PCA subspace, the data was mean-centered at zero and scaled to unit variance in preparation for

classification.
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For purposes of comparison, while the PCA decomposition of Pb,b(r) was not used for classifi-

cation, the method described above was also followed for the black phase autocorrelation data and

the results are presented in Table 2.1. As expected, the first Principal Component, which we know

to be highly related to volume fraction, explains a very large fraction of the variance while the con-

tributions from the succeeding eigenvectors are negligible. Pearson correlation coefficients were

also calculated for black phase volume fraction with the first Principal Component from the de-

composition of each of the correlation functions. As expected, the Pearson correlation coefficient

between black phase volume fraction and the first Principal Component of Pb,b(r) is quite high at

0.9952, whereas the coefficient for black phase volume fraction and the first Principal Component

of corrb,b(r) demonstrates very little correlation at a value of −0.1901. Fig. 2.3 gives a graphic

representation of this result.

Table 2.1: Explained variance of the first five Principal Components (PC) for decompositions of
Pb,b(r) and corrb,b(r).

PC Number Pb,b(r) corrb,b(r)

1 0.99801 0.19101

2 0.00037 0.08322

3 0.00017 0.03055

4 0.00006 0.02508

5 0.00004 0.02041
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(a) Before Normalization

(b) After Normalization

Figure 2.3: Principal Component 1 (PC 1) versus black phase volume fraction (ϕb) for (a) the PCA
decomposition of Pb,b(r) and (b) the PCA decomposition of corrb,b(r).
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3. CLASSIFICATION

3.1 Classification of Labeled Data

As articulated in the introduction, the aim of this investigation is to develop a data-driven ap-

proach of assigning labels to a select subset of the unlabeled, ambiguous microstructures in order

to train the decision-making mechanism of a supervised classifier on a more comprehensive rep-

resentation of the data. However, any addition to the training set that deteriorates the classifier’s

performance on the confidently-labeled data must be avoided. To this end, it is necessary to con-

struct a classifier only on the labeled samples for the sake of providing a performance baseline.

Sundararaghavan and Zabaras [16, 17] and later Niezgoda et al. [4] successfully employed mi-

crostructure classification schemes involving characterization via two-point statistics, dimension

reduction using PCA, and class assignment through support vector machines (SVM). In simple

terms, a SVM is a binary classification method which constructs an optimal separating hyperplane

in the feature space by maximizing the distance between the hyperplane and the nearest data points

in the training set. A more detailed explanation is given below.

3.1.1 Support Vector Machines

Suppose we are given the labeled feature set (x1, y1), (x2, y2), . . . , (xm, ym) where xi ∈ Rn

and yi ∈ {−1, 1} for i = 1, 2, . . . ,m. The goal is to find a decision function

Dw,b(x) = sgn(⟨w,x⟩+ b) (3.1)

such that

Dw,b(xi) = yi (3.2)
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for i = 1, 2, . . . ,m and where ⟨·, ·⟩ denotes a dot product in the feature space. The hyperplane

itself is defined where Dw,b(x) = 0. To determine w and b, the objective

J(w) =
1

2
||w||2 (3.3)

is minimized such that

yi(⟨w,xi⟩+ b) ≥ 1 (3.4)

are satisfied for i = 1, 2, . . . ,m. Introduction of the Lagrangian leads to the conclusion that the

solution vector w is of the form

w =
m∑
i=1

αiyixi (3.5)

where αi ≥ 0. Since these αi’s are Lagrange multipliers, they are only nonzero when the corre-

sponding constraints of Eq. 3.4 are active. Feature vectors with αi > 0 define the distance between

classes, and they are known as support vectors.

At this point, we have assumed that all of the constraints in Eq. 3.4 can be satisfied. However,

this is not always the case, especially when outliers are present. This concern is alleviated through

the addition of slack variables ξi ≥ 0 and an adjustment of the constraints in Eq. 3.4

yi(⟨w,xi⟩+ b) ≥ 1− ξi (3.6)

for i = 1, 2, . . . ,m. Inspection of Eq. 3.6 reveals that these constraints will always be met if

the slack variables are allowed to be arbitrarily large. To address this issue, we add them to the

objective in Eq. 3.3

J(w, ξ) =
1

2
||w||2 + C

m∑
i=1

ξi (3.7)

where C > 0 is a predetermined parameter. This is known as a soft margin SVM. Since we are

minimizing J , only those data points in the training set which violate Eq. 3.4 will have nonzero

slack variables. Thus, the larger C gets, the stricter the boundary becomes.
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The above discussion only covers the case of a linear boundary. However, positive definite

kernels can be used to transform the training set into a higher dimensional space in order to provide

a more general decision boundary. This is simply accomplished by replacing instances of xi in the

above equations with Φ(xi), an appropriate mapping into a higher-dimensional space. This leads

to solution vectors of the form

w =
m∑
i=1

αiyiΦ(xi) (3.8)

with αi > 0 once again indicating that xi is a support vector. Common kernels include polynomial

⟨Φ(x),Φ(xi)⟩ = ⟨x,xi⟩d (3.9)

where d is the degree of the polynomial and Gaussian

⟨Φ(x),Φ(xi)⟩ = exp(−γ ∥x− xi∥2) (3.10)

where γ > 0. Further details can be found in [47].

3.1.2 Classification of Labeled Data Using Support Vector Machines

For this study, soft margin SVMs employing linear and Gaussian kernels were considered, and

the python package scikit-learn was used to implement them [46]. The penalty hyper-parameter

C and Gaussian kernel hyper-parameter γ were optimized through an exhaustive grid search using

five-fold cross validation on the specified training set. For purposes of classification performance

comparison, hyper-parameters for a baseline SVM were optimized on the initially labeled training

set, resulting in C = 10 and γ = 0.01. The ensuing classifier had a training error estimate

of 0.0358, and application of the labeled test set produced an unbiased error estimate of 0.0547.

These error estimates show that the constructed baseline classifier discriminates well between high-

confidence data points.
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3.2 Assignment of Labels to a Subset of the Unlabeled Data

While the results of the previous section provide an excellent performance diagnostic, it must

be remembered that the baseline SVM only demonstrated an ability to correctly classify high-

confidence data points. The decision boundary is still completely uninformed by the initially unla-

beled microstructures, many of which could be in close proximity to the boundary. To explore the

distributions of both ambiguous and high-confidence data points relative to the decision boundary,

the decision function given in Eq. 3.1 was calculated for each data point in the labeled training

and ambiguous sets. The results are displayed in Fig. 3.1. As expected from the low training error

estimate, the densities for the high-confidence ‘Precipitate’ and ‘Bicontinuous’ sample points are

well separated. Of further interest is that few of the high-confidence data points have values of the

decision function at values close to zero whereas the distribution for the ambiguous set appears

to be centered close to zero. This means that many of the ambiguous data points are close to the

decision boundary relative to the high-confidence points, implying that the decision boundary is

not informed by much of the data closest to it. Therefore, in its current state, the baseline SVM is

not necessarily a reliable tool for classifying the initially unlabeled microstructures.

Figure 3.1: Distributions of the decision function Dw,b(x) of the baseline SVM for the labeled
training and ambiguous sets.
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To address this concern, a collection of semi-supervised methods involving the labeled training

set were used to provide labels for the initially unlabeled data. In contrast to traditional classi-

fication which is a completely supervised exercise, semi-supervised classification makes use of

additional unlabeled training data to build more accurate classifiers [48]. This can be useful when

labeled data is expensive or label assignment is uncertain. Many semi-supervised methods are

transductive, implying that a traditional supervised classifier is often trained over the results of the

semi-supervised labeling to provide an inductive model for the classification of future samples.

In this study, the collection of semi-supervised methods acts as a transductive algorithm which

assigns labels only to that subset of the unlabeled data which receives a unanimous labeling vote.

This subset is then added to the original training set in order to train a new SVM.

As mentioned previously, any addition to the training set which weakens classifier perfor-

mance on initially labeled data should be avoided. This is an important consideration with semi-

supervised methods because it can be very difficult to correctly fit model parameters to the prob-

lem at hand when labels are missing [49]. Thus, to mitigate the risk of a poor match between the

problem and the model, a variety of methods with a variety theoretical frameworks make up the

collection of methods being used for the transductive step described above. The tested methods

are described below. Note that for all four semi-supervised methods, the original labeled training

set was used as the set of labeled data.

3.2.1 Method 1: Modified Yarowsky Algorithm (MY)

Self-training methods are semi-supervised classification tools which wrap around an existing

supervised classifier, known as the base classifier. In general, they are easy to understand and

implement, making them a common starting point for semi-supervised investigations. Because

they are wrappers, self-training methods can be applied to almost any complicated classification

framework [49]. In 1995, Yarowsky introduced an iterative rule-based self-training algorithm for

classification problems in computational linguistics [50]. The algorithm consists of the following

steps:
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1. Train the base classifier using the available labeled data.

2. Feed all initially unlabeled data into the trained classifier. For each data point, if the proba-

bility of belonging to a certain class is greater than a predetermined threshold, add that data

point with its corresponding label to the original labeled training set.

3. Retrain the base classifier using the updated training set.

4. Repeat steps (2) and (3) until label convergence is reached.

Note that since the labels of all initially unlabeled data points are reassigned based on class

probability for each iteration, label assignments in earlier iterations can be changed in later itera-

tions. While this method was successful for Yarowsky’s purposes, the algorithm did not receive a

robust mathematical analysis until Abney’s investigation in 2004 [51]. In this work, Abney showed

that a slightly modified version of Yarowsky’s algorithm minimizes a reasonable objective func-

tion. His modifications include fixing the probability threshold at 1/L where L is the number of

classes and imposing the condition that once a data point gains a label, it can change labels, but it

cannot become unlabeled.

In this study, the base classifier is the SVM used to establish the baseline classification perfor-

mance. Only five iterations were necessary to achieve label convergence.

3.2.2 Method 2: Safe Semi-Supervised Support Vector Machine (S4VM)

Transductive SVMs (TSVM) are a class of semi-supervised classification methods derived

from the framework of traditional SVMs. Consider our SVM framework above. Now, suppose

we introduce an unlabeled feature set x̂1, x̂2, . . . , x̂u where x̂j ∈ Rn for j = 1, 2, . . . , u. These

unlabeled observations have corresponding slack variables ξ̂j ≥ 0, and constraints similar to those

in Eq. 3.6. However, the labels ŷj are variables instead of parameters since they are not assigned.

For the TSVM problem, Eq. 3.7 becomes

J(w, ξ, ξ̂) =
1

2
||w||2 + C1

m∑
i=1

ξi + C2

u∑
j=1

ξ̂j (3.11)
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where C1, C2 > 0 and ŷj ∈ {−1, 1} for j = 1, 2, . . . , u [52].

Minimizing Eq. 3.11 in its current form is a combinatorial nightmare and is known to be NP-

hard [53]. Thus, many less expensive methods aimed at approximating the TSVM solution have

been proposed [52, 53, 54, 55, 56]. While these algorithms have made the problem tractable, they

still must be used with caution because properly tuning hyper-parameters in a semi-supervised

environment is difficult and converging to a decision boundary which hurts classifier performance

is an ever-present danger. Considering these concerns, the Safe Semi-Supervised SVM (S4VM)

algorithm developed by Li and Zhou [56] is of particular interest. In contrast to other TSVM im-

plementations which converge to a single optimal decision boundary, the S4VM algorithm builds

a pool of candidate low-density separators and then chooses labels for the unlabeled data which

maximize the performance for any separator. Li and Zhou determined these labels through simu-

lated annealing and heuristic representative sampling approaches. Most importantly, Li and Zhou

showed that S4VM is relatively insensitive to choice of hyper-parameters and claimed that the al-

gorithm never performs significantly worse in a statistical sense than an SVM trained only on the

labeled data.

For these reasons, S4VM is used to approximate the TSVM solution in this study. For com-

putational efficiency, the sampling technique was used instead of simulated annealing, and the

algorithm was implemented using Li and Zhou’s MATLAB package. While most parameters were

left at default values, the γ parameter for the Gaussian kernel and the C1 penalty parameter were

set to 0.01 and 10 respectively to mirror the optimized hyper-parameters for the baseline SVM.

3.2.3 Method 3: Label Propagation (LP)

Many methods developed for the semi-supervised classification problem are graph-based (see

[49] for a thorough overview). In discrete mathematics, a graph is an abstract entity which captures

pairwise relationships between elements within a finite set. Formally, a graph (also known as a

simple graph) is an ordered pair G = (V,E) comprised of a finite, nonempty set V of elements

called vertices and a set E containing pairs of distinct elements of V called edges. Graphs can be

thought of as geometrical objects by representing vertices as points and corresponding edges as
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lines between them in a planar space. An example is given in Fig. 3.2. In a weighted graph, each

edge α = {x, y} ∈ E is assigned a non-negative number c(α) (called as its weight) through the

weight function c. Weights generalize graphs by allowing the relationship between two vertices to

go beyond the existence or absence of an edge, allowing physical concepts such as distance or cost

to be modeled. Further details on graph theory can be found in [57].

Figure 3.2: Geometrical representation of graph G = (V,E) where V = {vA, vB, vC , vD, vE} and
E = {{vA, vC}, {vA, vE}, {vB, vC}, {vB, vD}, {vC , vE}}.

Zhu and Ghahramani created a graph-based semi-supervised learning algorithm based on the

construction of a weighted graph [58]. It is known as label propagation. This algorithm ‘pushes’

labels from labeled data to unlabeled data under the assumption that close proximity implies sim-

ilarity. Suppose we have l labeled and u unlabeled samples where YL = {y1, y2, . . . , yl} are the

observed labels and YU = {yl+1, y1+2, . . . , y1+u} are unobserved. Let there be C possible class

labels. The graph is built by first placing all labeled and unlabeled samples into the set of vertices.

Each vertex is then connected to every other vertex in the set of edges, producing what is known
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as a complete graph. For edge α = {x, y} where x, y are vertices, the weight function is given by

c(α) = exp

(
−
d2xy
σ2

)
(3.12)

where dxy is the Euclidean distance in the feature space between the data points represented by

the vertices x, y and σ is a previously given parameter. Thus, data points which are closer in the

feature space have larger edge weights.

Now, define a (l + u)× (l + u) matrix T

Tij =
c({i, j})∑l+u
k=1 c({k, j})

(3.13)

where T is interpreted as the probability of traveling from vertex j to vertex i. Furthermore, let Y0

be a (l + u)×C matrix where the ith row contains the label probability distribution for data point

i. Assume that the first l rows correspond to the labeled data. The rows of labeled data contain a 1

in the appropriate column and 0 in all others; the distributions for the unlabeled data are arbitrarily

assigned. The algorithm is then conducted through the following procedure where t denotes the

current iteration number:

1. Propagate the labels by applying the transition matrix to the current label distribution matrix

Yt = TYt−1.

2. Row normalize Yt to maintain the probability interpretation.

3. Set the first l rows of Yt equal to the first l rows of Y0. This is known as clamping the labels.

4. Repeat until desired convergence criteria are met. Once converged, unlabeled data points are

assigned that label with the highest probability.

In their paper, Zhu and Ghahramani prove this algorithm converges to a fixed point solution re-

gardless of the initial label probability distributions for the unlabeled data. Step 3 ensures that a
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constant push is provided from initially labeled data and that classes with fewer labeled data points

are not pushed out.

At this point, choice of the σ parameter has yet to be discussed. In place of optimization

through cross validation on the labeled data, Zhu and Ghahramani propose a heuristic based on

the 3σ rule of a Gaussian distribution, but for our problem this heuristic produced a value of σ

on the order of 10−3, which caused the algorithm to become numerically ill-conditioned as c(α)

approached zero for large values of d2xy. Further investigation showed that this ill-conditioning

persisted for values of
√
σ on the order of 10−1 and lower. Conversely, values of

√
σ on the order

of 10 or higher made the radius of influence of each vertex so large that the algorithm assigned

the label of the class with the majority of data points in the training set (Precipitate) to each data

point in the ambiguous set. However, setting σ = 1 avoided both numerical ill-conditioning and

assignment of the same label to the entire ambiguous set; thus, we adopted this value of σ for our

problem. Label propagation was implemented through scikit-learn [46].

3.2.4 Method 4: COP-KMEANS Clustering (CKM)

Semi-supervised clustering methods are adaptations of traditional unsupervised clustering al-

gorithms designed to take advantage of partial information. In contrast to the other semi-supervised

methods discussed above, this information is not necessarily labeled data and often takes the form

of pairwise linkage constraints. Two common types of linkage constraints are ‘must-link,’ in which

two data points must be in the same cluster, and ‘cannot-link,’ where two data points cannot be in

the same cluster. [59].

Many studies modifying clustering algorithms to exploit partial information start with K-means

clustering [60, 61, 62, 63, 64]. For a given K, this method partitions the dataset into K clusters

such that the sum of intra-cluster variance (based on Euclidean distance) is minimized. An outline

of the K-means algorithm is presented below:

1. Randomly assign each data point a cluster label from 1 to K.

2. Compute the centroid, or vector of means for each dimension in the feature space, of each
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cluster.

3. Reassign each data point to the cluster whose centroid it is closest to.

4. Repeat steps (2) and (3) until cluster assignments converge.

A rigorous mathematical description can be found in [18].

Wagstaff et al. [64] introduced must-link and cannot-link constraints into this algorithm by

slightly adjusting step (3). That is, instead of each data point being assigned to the cluster whose

centroid is closest, each data point is assigned to the closest cluster which does not violate any of

the given constraints. Their method is known as COP-KMEANS.

In order to utilize COP-KMEANS for this study, K was chosen to be 2 and linkage constraints

were derived from the labeled training set by giving must-link conditions to those data of the same

class and cannot-link to those of opposite classes. However, specifying all of these constraints

introduced a large degree of redundancy and complication into the model. Thus, to relieve model

complexity, must-link constraints were established between one precipitate microstructure Pi and

all other precipitate microstructures in the training set. The same procedure was followed for

one bicontinuous microstructure Bl, and then one cannot-link constraint was specified between Pi

and Bl. Once all of the necessary constraints were specified, COP-KMEANS was applied using

Babaki’s implementation in python [65].

3.3 Classification of Labeled Data Using the Updated Training Set

To reiterate, the purpose of applying the collection of semi-supervised methods described

above was to identify a subset of the initially unlabeled data for which a labeling consensus could

be reached. This subset is then added to the initially labeled training set in order to train a new

SVM with a decision boundary which is informed by both high-confidence and ambiguous ex-

amples of each class. The idea is that only adding this subset to the training set will lessen the

risk of degrading classifier performance posed by many semi-supervised methods. The four semi-

supervised learning methods agreed on 301 of 519 initially unlabeled data (about 58%). The 301

microstructures from the initially unlabeled set which received an identical label vote from each of
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the four semi-supervised methods were added to the original training set with their corresponding

labels.

Fig. 3.3 shows examples of initially ambiguous microstructures that were subsequently as-

signed labels through consensus. As can be seen, the example microstructures are truly ambiguous

in that it is somewhat challenging to decide on the class they belong to. However, closer inspection

of the dominant features in each of the two subsets seems to make intuitive sense: microstructures

labeled as ‘Bicontinuous’ tend to have more elongated and tortuous single-phase domains, while

those labeled as ‘Precipitate’ tend to have motifs that are closer to precipitate-like morphologies

(or at least have them in greater numbers).

(a) Bicontinuous

(b) Precipitate

Figure 3.3: Examples of ambiguous microstructures which were assigned to the (a) Bicontinuous
or (b) Precipitate class by each semi-supervised method.

Following the same procedure used for the baseline SVM, kernel and hyper-parameter selec-
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tion was optimized through an exhaustive grid search employing five-fold cross-validation. This

resulted in a Gaussian kernel with γ = 0.01 a penalty parameter C = 10. This classifier, which

will be referred to as the updated SVM, performed similarly to the baseline SVM on the high-

confidence data, with estimated error rates of 0.0397 from the initially labeled training set and

0.0599 from the labeled test set.

While the error estimates for the updated SVM regarding the initially labeled data are low,

they are still higher than those of the baseline SVM. To determine whether there is a statistically

significant difference between the performance of the baseline and updated SVMs on the high-

confidence data, McNemar’s test was employed. McNemar’s test is a non-parametric statistical

hypothesis test used to compare dependent categorical outputs, making it useful for evaluating

relative classifier performance when resampling and retraining is too expensive or when test data

is limited [66]. The test statistic for McNemar’s test is determined through a contingency table,

which summarizes how the two classifiers agree and disagree on the test set. An example is given

in Table 3.1 where a is the number of points from the test set of size n which both classifiers

labeled correctly, b denotes the number of points which the first classifier labeled correctly but the

second classifier did not, and so on.

Table 3.1: Example of a contingency table used for calculating the test statistic for McNemar’s
test.

Classifier 1

Correct Incorrect

Classifier 2
Correct a b

Incorrect c d

The null hypothesis is that the proportion of correctly classified points made by the first classi-

fier is equal to that of the second classifier. That is,
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H0 :
a+ b

n
=
a+ c

n
. (3.14)

The test statistic is given by

χ2 =
(b− c)2

b+ c
. (3.15)

Under the null hypothesis, this test statistic has a chi-squared distribution with one degree of free-

dom for sufficiently large values of b+ c. As a rule of thumb, when b+ c < 10, the exact binomial

variant is recommended [67]. Under the null hypothesis, the distribution ofB, the random variable

associated with b, conditioned on the number of discordant pairs b+ c is the binomial distribution

Binomial(b + c, 0.5). A two-sided p-value is then calculated from the observed value B = b

by multiplying the minimum of the upper and lower tail p-values by two [68]. As per popular

convention, in this work the null hypothesis will be rejected if the p-value is less than 0.05. The

contingency table for the baseline and updated SVMs regarding the labeled test set is given in

Table 3.2.

Table 3.2: Contingency table for the baseline and updated SVMs on the labeled test set.

Baseline

Correct Incorrect

Updated
Correct 360 3

Incorrect 1 20

The sum of discordant pairs is less than 10, so the exact variant of the test was used, resulting

in a p-value of 0.625. Thus, we do not have evidence to reject the null hypothesis at the 95%

confidence level, and we conclude that the difference in performance of baseline and updated
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SVMs on the high-confidence data is not statistically significant.
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4. ESTIMATING SEMI-SUPERVISED CLASSIFICATION ERROR

Estimating model error is of paramount importance in machine learning. Presently, estimating

classification error when some or all labels are missing is a difficult problem which has yet to be

studied extensively. To estimate the error for semi-supervised problem encountered in this study,

we propose using a convex combination of error estimates for the high-confidence labeled and

ambiguous unlabeled data. A rigorous mathematical discussion is given below.

4.1 Definitions

Let X be a feature vector of length d which is a member of either the labeled subpopulation πL

or the unlabeled subpopulation πU . Regardless of which subpopulation X belongs to, it will have a

corresponding true class label Y ∈ {0, 1}. We define the error rates of a classifier ψ : Rd → {0, 1}

with respect to these subpopulations as

ϵU = P (ψ(X) ̸= Y |X ∈ πU) = E [|Y − ψ(X)| |X ∈ πU ] , (4.1)

ϵL = P (ψ(X) ̸= Y |X ∈ πL) = E [|Y − ψ(X)| |X ∈ πL] . (4.2)

We note that the expectation of a random variable Z given event W can be expressed as

E [Z|W ] =
E [ZIW ]

P (W )
, (4.3)

where I is an indicator function. This allows us to rewrite Eqs. 4.1 and 4.2 as

ϵU =
E [|Y − ψ(X)| IX∈πU

]

P (X ∈ πU)
, (4.4)

ϵL =
E [|Y − ψ(X)| IX∈πL

]

P (X ∈ πL)
. (4.5)

It then follows that the overall error rate ϵ is given by
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ϵ = P (ψ(X) ̸= Y ) = E [|Y − ψ(X)|]

= E [|Y − ψ(X)| IX∈πU
] + E [|Y − ψ(X)| IX∈πL

]

= P (X ∈ πU)ϵU + P (X ∈ πL)ϵL,

(4.6)

which is a convex combination of ϵU and ϵL weighted by the probabilities of the feature vector X

belonging to πU and πL, respectively.

4.2 Labeled Error Estimation

Although the previous result provides us with a theoretical definition of the overall rate, in prac-

tice we can only estimate this value from available data. Suppose that this data is an i.i.d. sample

Sn+m = {(X1, Y1), . . . , (Xn, Yn),Xn+1, . . . ,Xn+m} where X1, . . . ,Xn ∈ πL and Xn+1, . . . ,Xn+m ∈

πU . From Eq. 4.5, we see that the sample estimator of ϵL is given by

ϵ̂L =
Ê [|Y − ψ(X)| IX∈πL

]

P̂ (X ∈ πL)
=

1
n+m

∑n
i=1 |Yi − ψ(X i)|

n
n+m

=
1

n

n∑
i=1

|Yi − ψ(X i)| ,
(4.7)

which is the well-known result for supervised error estimation. In this study, all supervised classi-

fiers are independent of the sample being used to estimate the labeled error rate, so we can assume

that the bias is negligible. Due to the lack of labels, ϵU cannot be estimated in the same fashion.

We discuss our procedure for estimating this quantity below.

4.3 Unlabeled Error Estimation Using Agreement Rates of Multiple Classifiers

For many recent machine learning problems, data generation and/or collection outpaces the

labeling process, resulting in a plethora of information which is practically useless for traditional

error estimation techniques. In response, exploring the unsupervised error estimation problem has

gained traction over the last ten years. Only a few methods have been proposed, with most making

limiting assumptions such as the label distribution being known [69] or that all classifiers make

independent errors [70]. However, in [71], Platanios et al. introduce a simple algorithm which
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uses the sample agreement rate estimates of a collection of classifiers on only unlabeled data to

estimate the individual and joint error rates. It requires no prior knowledge of the label distribution

of the sample data used to estimate agreement rates, and it relaxes the independence assumption

by turning it into the objective in an optimization problem. Let A be a set of classifiers and aA and

eA be the agreement rate (the probability that all classifiers in A assign the same label) and error

rate (the probability that all classifiers in A make the wrong prediction) for that set of classifiers,

respectively. Specifically, the objective to be minimized is given by

c1(e) =
∑

A:|A|≥2

(
eA −

∏
i∈A

ei

)2

, (4.8)

which is effectively minimizing error rate dependence by making the joint error rates close in

value to the product of their marginal rates. Equality constraints which relate sample agreement

rate estimates to error rates are given by

âA = eA + 1 +

|A|∑
k=1

[(−1)k
∑
I⊂A
|I|=k

eI ], (4.9)

where âA is simply the number of samples which received the same prediction from each classifier

in A divided by the sample size. Furthermore, the following inequality constraints

eA ≤ min
i∈A

eA\i (4.10)

for |A| ≥ 2 ensure that all joint error rates are properly bounded by the values of their correspond-

ing marginal error rates. Platanios et al. go on to recommend constraining some fraction of the

individual error rates to be less than 0.5 in order to avoid solutions which imply that most of the

classifiers perform worse than chance. We decided to implement this idea through the following

constraint

min
i∈A

ei ≤ 0.5 (4.11)
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which simply forces at least one of the individual error rates to be less than 0.5. We also considered

a second objective which attempts to minimize the sum of all of the individual error rates

c2(e) =
∑
i∈A

ei. (4.12)

While c2 has the potential to give a more optimistic solution than c1, it takes the independence of

error rates out of the problem completely.

Since the framework above allows for the estimation of error of multiple classifiers, we decided

to create four new training sets by combining the original labeled training data with the output of

each semi-supervised method. A new SVM was then trained over each of these training sets,

giving us a set of five classifiers including the updated SVM. The predictions of all five classifiers

were then collected on the ambiguous set in order to estimate agreement rates. Optimization was

implemented using Sequential Quadratic Programming in MATLAB.

4.4 Overall Error Estimation

Once ϵ̂L and ϵ̂U are available, an estimate of the overall error rate ϵ̂ can be obtained from

Eq. 4.6:

ϵ̂ = P̂ (X ∈ πU)ϵ̂U + P̂ (X ∈ πL)ϵ̂L =
m

m+ n
ϵ̂U +

n

m+ n
ϵ̂L. (4.13)

The labeled, unlabeled, and overall error estimates for all five classifiers are given in Tables 4.1

and 4.2.

There are a few observations of note. The first is that optimization of both objectives resulted in

very consistent solutions for unlabeled error estimation. This could be a result of the constraints.

That is, while there are infinitely many solutions to the equality constraints (which is why opti-

mization was necessary in the first place), the additional inequality constraints could have resulted

in an extremely small feasible region in the design space, leading to similar solutions for both

objectives. Along these lines, the addition of the constraint given in Eq. 4.11, which only forced

one of the five individual error rates to be less than 0.5, led to solutions in which all individual
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Table 4.1: Error estimation results using objective c1. The SVMs trained on the results of a specific
semi-supervised method are denoted by the abbreviation of that semi-supervised method.

Classifier ϵ̂L ϵ̂U ϵ̂

MY 0.0625 0.0929 0.0690

S4VM 0.0677 0.0538 0.0647

LP 0.0911 0.2038 0.1151

CKM 0.0964 0.1557 0.1090

Updated 0.0599 0.0271 0.0529

Table 4.2: Error estimation results using objective c2. The SVMs trained on the results of a specific
semi-supervised method are denoted by the abbreviation of that semi-supervised method.

Classifier ϵ̂L ϵ̂U ϵ̂

MY 0.0625 0.0963 0.0701

S4VM 0.0677 0.0520 0.0644

LP 0.0911 0.2004 0.1144

CKM 0.0964 0.1522 0.1082

Updated 0.0599 0.0289 0.0533

error rates are below this threshold, which still aligns with the assumption made by Platanios et

al. that most of the classifiers must have error rates better than chance. The second observation

is that the updated SVM, which was trained on the initially labeled training data and the subset of

ambiguous data which received a labeling consensus from all four semi-supervised methods, had

the lowest labeled, unlabeled, and overall error estimates. Thus, for this particular problem, only

adding this subset of the initially unlabeled data to the training set helped to avoid potential perfor-

mance degradation on the high-confidence data and resulted in the best decision boundary for the
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ambiguous data. Lastly, both labeled and unlabeled error estimates for the SVMs trained over the

results of the individual semi-supervised methods show that the Modified Yarowsky and S4VM

algorithms assigned labels in a less detrimental way than Label Propagation and COP-KMEANS.

This could be an artifact of the degree to which algorithm assumptions matched the given problem

and is further evidence that more than one semi-supervised method should be considered when

little is known about the distribution(s) of the data.

A complete suite of scripts with full implementation of all methods on an abridged version of

the dataset for replication and verification can be found in [72].
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5. CONCLUSIONS

Microstructure characterization and classification has been identified as an important step in

building processing-structure-property linkages for the ultimate goal of materials by design. While

the supervised classification problem is straight-forward given an appropriate metric and a robustly

labeled training set, the high level of variation in a material’s internal structure often hinders their

acquisition. As we move to generalize the microstructure classification problem to encompass

both established and emerging material systems, we must recognize that class taxonomy will be

an ambiguous and dynamic entity which will require tools beyond human inspection to define

and update. In response, we considered the specific problem of binary classification where class

assignment was certain for some samples and ambiguous for others and proposed a data-driven

classification framework which uses a collection of semi-supervised learning methods to identify

the largest ‘safe’ subset of the ambiguous samples to label and add to the training set. We showed

that the addition of this subset, consisting of almost 58% of the ambiguous data, to the training

set did not degrade supervised classifier performance on high-confidence data and that reliance

on the consensus of multiple semi-supervised methods mitigated the risk of adding detrimental

information to the training set. We also showed how classifier error can be estimated for the semi-

supervised problem when it cannot be assumed that classifiers make independent errors. Although

this paper has made an important step, future work will have to address changes in class taxonomy

through the identification of emerging classes, the partitioning of old, broad classes into new, more

specific subclasses, and so on. It must be stressed that the aim of this work was not only to demon-

strate that semi-supervised learning methods can be used to train high-performing microstructure

classification models. We also showed that automated, data-driven tools can be used in conjunction

with human experience and rationality to uncover subtle relationships in complex microstructural

systems. It is our hope that future studies on the microstructure classification problem will leverage

the paradigm of data-driven science to accelerate the discovery of new useful information about

the materials microstructure space, rather than simply training supervised classifiers in order to
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automate otherwise tedious tasks.
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