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ABSTRACT™

As autonomous vehicles continue to grow in popularity, it is imperative for engineers to gain
greater understanding of vehicle modeling and controls under different situations. Most research
has been conducted on on-road ground vehicles, yet off-road ground vehicles which also serve
vital roles in society have not enjoyed the same attention. The dynamics for off-road vehicles are
far more complex due to different terrain conditions and 3D motion. Thus, modeling for con-
trol applications is difficult. A potential solution may be the incorporation of empirical data for
modeling purposes, which is inspired by recent machine learning advances, but requires less com-
putation. This thesis presents results for empirical modeling of an off-road ground vehicle, Polaris
XP 900. As a first step, data was collected for 2D planar motion by obtaining several velocity step
responses. Multivariable polynomial surface fits were performed for the step responses. Sliding
mode control layered on top of pure pursuit guidance is then used to drive the vehicle for waypoint
following, using the empirical model. Simulation and experimental results show that the vehicle
can perform waypoint following for a circular and sinusoidal with minimal error. Furthermore,
more experimental data was collected to show the effects of adaptive velocity and adaptive look-
ahead for path tracking. A comparison of the controller’s performance was also explored between

on-road and off-road terrain.

*The Abstract and Sections 1-7 have been reprinted with permission from Hassen, S., Chour, K., Weaver, A., and
Gopalswamy, S., “Nonlinear Control of a Ground Vehicle using Data-Driven Dynamic Models,” SAE Technical Paper
2020-01-0171, 2020, doi:10.4271/2020-01-0171, (©) Copyright 2020 by SAE International
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1. INTRODUCTION AND LITERATURE REVIEW

Autonomous vehicle development has been making rapid strides, and they promise many ben-
efits such as eliminating emissions, reducing road accidents, and improving traffic conditions. Yet
most autonomous research has only been involved in on-road vehicles owing to their ubiquitous
use in daily life. Many important vehicle operations take place on unpaved off-road tracks made of
materials such as dirt, sand, gravel, snow, rocks, and other natural terrain. Compared to traditional
on-road vehicles which can only operate on standardized road ways, off-road vehicles serve far
more versatile roles in many different fields of applications. Such applications include military,
agricultural, recreational, transportation, forestry, recreational and tourism. Given the important
roles filled by off-road vehicles, it warrants further study to improve their reliability and efficiency.
Also compared with traditional vehicles, off-road vehicles bring greater engineering challenges
in the form of modeling and controls. With off-road vehicles, there are additional variables to
consider, such as terrain type and off-road vehicle structure.

The first step in vehicle analysis is to obtain an accurate motion model, typically derived from
energy conservation, first principles, or geometry. For on-road vehicles, the kinematic bicycle
model is commonly used to model a 4-wheeled ground vehicle without capturing inertial informa-
tion. Yet, at higher longitudinal speeds, the kinematic bicycle model suffers from path deviation
due to nonlinearities. On the other hand, the dynamic bicycle model is used to model the same
ground vehicle moving at higher speeds, but may perform poorly at very low speeds due to sin-
gularity issues with tire force calculations [1]. Clearly, for off-road vehicles, these models cannot
adequately describe the complex tire-terrain interaction or 3D motion. On the other hand, highly
complex models have been derived which describe one aspect or several aspects of the vehicle. 6-
DOF models which describe the full vehicle dynamic behavior serve as useful simulation tools in
[2], [3], [4], [5]. Also simpler models which omit the suspension are also common [6]. Important
for the 6-DOF model is the calculation of tire forces, which are arguably the most important con-

sideration in modeling. Utilizing different tire force models may yield drastically different motion



results. Tire-terrain interaction forces for different soil conditions are considered in [7]. A key idea
is the inclusion of empirical data to aid in the modeling process. Nonlinear and non-steady state
tire modeling for dynamic simulation was presented in [8]. The authors term their model "semi-
physical" which includes empirical data for modeling purposes. Clearly, the examination of the
presented models reveal they are complex and highly involved, yet only describe a limited aspect
of the vehicle.

As an alternative, research efforts have begun to shift towards a new paradigm; the so called
model-free approach. Under this regime, tools from the field of machine learning such as neural
networks and its variants are used along side measured input-output data to produce black-box
models. A survey of techniques can be found in [9]. In [10], a real-time recurrent neural network
(RNN) is described which is used to generalize lateral vehicle motion. However, longitudinal
dynamics were not considered. In [11], suspension and tire dynamics were also simulated us-
ing RNN. The model was able to predict vertical forces with sufficient accuracy, but had issues
with longitudinal forces. Finally, in [12], radial basis function networks were trained on pure slip
conditions, but tested on combined slip, which provided results within 1% accuracy.

The focus of machine learning approaches is on producing a working model with less emphasis
placed on understanding the physics underlying the system’s behavior. Additionally, in many cases,
an extremely large data set is required for training. A good compromise between the analytical
and model-free approaches may come in the form of empirical data-fitting. Using data-driven
dynamics, collected data is fit using simpler mathematical models such as n-th degree multivariable
polynomials. A famous example is Pacejka’s empirical tire model.

Once an acceptable vehicle model is found, control theory can then be applied to drive the
system to a desired output(s). For model-based controls, linear control theory such as LQR can be
used. Additionally, model-less techniques such as PID and advanced variants can produce good
results, though they become cumbersome with high degree of freedom systems. Alternatively,
typical nonlinear control design methodologies include feedback linearization, the backstepping

method, or control-lyapunov functions. However these methods depend on having a highly accu-



rate analytical model. Robust control techniques such as sliding mode control, however, can prove
useful in the face of uncertainties. In [13], a combination of an analytical physics-based model
for the lateral control and a model-free controller for longitudinal control was used. The method
was simple to implement resulting in securing first place in the DARPA Grand Challenge in 2005.
This method may be improved by using data-driven models to capture complex nonlinearities in
the system to aid in control system design.

In this paper, data-driven approaches were utilized to empirically derive a model for an off-
road vehicle, a drive-by-wire enabled Polaris XP 900. As a first step of study, planar motion is
studied. After collecting motion data through sensors, the data is fit using high order multivariable
polynomials. Finally, to validate the fit, path following is observed using sliding mode control
inspired by pure pursuit. A few works have used this concept ([14], [15], [16]), but none to date—
to the best of our knowledge—have used data-driven models for control of a ground vehicle. This
control methodology is adopted to both overcome imperfections in the modeling phase and specify
targets along a path. Simulation and experimental results show that vehicle modeling and control

through data-driven approaches is viable, with good results.



2. DATA-DRIVEN DYNAMIC MODEL

In this paper, for any function f(.), the function f(.) will denote that this is an approximation
of the original function based on measured data.

2.1 Dynamic Model

First, the vehicle motion model in the body frame is represented, as below:

Uy — Ovy = f1(ve, vy, v, B)
v.y + évac = f2<v;ra Uy, 6)

9 = f3<vxa Uy7 5)

o] <o

2.1)

T

where v, v, and 0 are the longitudinal, lateral, and angular velocities, respectively, of the vehicle
in the body frame, and X, Y, represents the velocity of the vehicle in the global frame. “R(6)p
is the rotational transformation matrix associated with the vehicle or the orientation of the vehicle
frame, called B, with respect to ground coordinate frame G. Additionally, « € [0, 1] is the throttle
command, 5 € [0,1] is the brake command, and 0 € [—7.854, 7.854] is the steering wheel com-
mand. The key point to note in (2.1) is that the right hand side of the equation represents quantities
that can be measured through experiments (first three lines) or are known analytically (fourth line).
Specifically the first two items represent the longitudinal and lateral accelerations, and the third
item represents the angular velocity, and all these quantities can be measured through standard
sensors such as an inertial measurement unit, or by using kinematics and knowing the actual path

traversed by the vehicle.

2.2 Assumptions

There are some assumptions about the model presented in eq. (2.1):



e Asa first step, all work performed have the assumption of no side-slip condition, i.e. |v,| <<
|v,|, hence dynamics associated with v, in (2.1) can be ignored. Additionally, the throttle
and braking commands are combined as one input u such that v € [—1, 1] where v < 0 for

braking and « > 0 for throttle. Thus, eq. (2.1) becomes:

U.;r = fl(vxau)

0 = f3(vs,0) 2.2)

] <o o]

e Explicit representation of the suspension dynamics are neglected. However, since the model
will be data driven (i.e. the RHS of eq. (2.2) is obtained through experimentation), this
assumption translates to neglecting some transient dynamics between actuation and realized

accelerations or angular velocities.

e Actuator dynamics are also neglected, i.e. the relationship between the actuation inputs
(namely «, $ and ¢) as directly impacting the achieved accelerations and angular velocity.
Effectively this translates to neglecting the transient dynamics, similar to the previous as-

sumption.



3. NONLINEAR CONTROL STRATEGY

In this section, a control strategy is developed that utilizes the data-driven dynamic model es-
tablished in the prior section. The control strategy involves a high level outer loop that determines
desired quantities to track, and a low-level controller using sliding mode control. Figure 3.1 visu-

ally represents the overall architecture of the control strategy.
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Figure 3.1: Overall diagram for the nonlinear control strategy.

3.1 High Level Strategy

The overall objective is to track a desired path P(s) parameterized by s, at a desired velocity vy.
Inspired by the simplicity of the pure-pursuit approach [17] [18], its look-ahead manner was com-
bined with the robustness of sliding mode control. First, the target position is identified (X 4, Y, 4)

to steer towards, using a look-ahead distance d and based on the current position (X, Y,):

T T
{ngd’ygd] = LookAhead(P, [Xg,yg} ,d) (3.1)



Defining 7, := (X,,Y,;) = (X 4,Y,4) as the vector from the current location to the look
ahead point on the path, in the global reference frame, the desired heading 6, as well as the desired

yaw rate 6, are defined as below:

7= Tg/l|rll

Clat = (fb)y
3.2)
Hd = tan 2_1 (723,” f’x) + kpelat
_ 2sin (0 — 0)
" d
éd = RUq

Here r, is used to calculate the desired vehicle heading 6, using simple geometric relationships.
Additionally, the desired heading vector 7 is projected into the body frame 7, in order to calculate
a lateral error €;,;. Together, the two quantities form the total desired vehicle yaw ;. Using pure
pursuit relations, curvature ~ can also be derived, which defines a circular arc passing through the
target point and the vehicle’s current position. Finally, the desired angular velocity 0, can be found
via curvature kinematics.

Thus, the quantities 6, éd, and v, form the desired trajectories to track for the low level sliding

mode controller. For added comfort, v; may be defined as follows

vg = min <vmam, max <7Jmm, \/ZAyhm//i)>> (3.3)

Equation (3.3) effectively bounds v,; above and below with v,,,, and v,,;, respectively, while
also ensuring that commanded velocity is lowered during sharp corners (high « values). This is

due to the lateral acceleration limit, A,;;,,, that the designer selects in the control strategy.



3.2 Nonlinear Robust Control

Recalling the assumption on |v,| << |v,|, the following control objectives is presented:

Ve —Uq

(3.4
0 —>9d
3.2.1 Error Dynamics
Based on the lower level control objectives, two error terms are defined as below:
€y = VUp — Uy
3.5

69:9—961

The error terms can be used to define linear sliding surfaces upon which we will enforce first
order behavior on the linear system. In other words, we wish to define a sliding surface per degree

of freedom as follows:

d P
S; = (% + /\Z-> e; where =00 (3.6)

Here, p is the relative degree of the state. Since, the relative degree p is 1, s; = e;. Now, taking

the derivatives of these error terms and using eq. (2.2), the following is obtained:

é’u = flu(vxa U) - /U‘d + Fv
3.7

€9 = f3(vg,0) —Oa+ Ty
where [', and I'y represent the unstructured uncertainty in the modeling because of the approxi-
mations in the surface fits of the data, the errors in the data measurements, and any unmodeled

dynamics.



3.2.2 Controller Assumptions

The key assumption made is that the inaccuracies can be bounded:

|Fv| < vaax
(3.8)

|F9| < F@maz
3.2.3 Core Control Strategy

Inverse dynamics are utilized for a known model in order to implement sliding mode control.

The control strategy is defined as below:

U = f:ﬂ}(vxa Vg + u(ey))

8 = fi (Va, 0 + do(eq))

(3.9

where ¢, and ¢y represent the robust feedback terms. Using eq. (3.9) with eq. (2.2), the following

1s obtained:

Uz = bd + ¢v(ev> = év - (bv(ev) =0
(3.10)

0 =04+ doles) = €p— dpleg) =0

Several options have been studied for these in literature in order to impose the so-called Sliding

Conditions [19]. A common approach is to use signum function on error as follows:

du(ey) = =N, sgn(ey)

¢9(€9) = —)\9 Sgﬂ(eg)

(3.11)

where \, and )y are control constants to be chosen.



However, using the signum function may introduce undesirable chattering phenomena due to
its non-continuous switching feature. Thus, we will use a piece-wise continuous function such as

the saturation or sigmoidal function such that f; : R — [—1, 1]:

2
= -1, f  =v,0
/ <1 + exp (—k;e;) ) or r=v

¢v(€v) = _>\v fv (312)
Po(€) = —Xo fo

3.2.4 Controller Feasibility

The inverse functions fful and f.; ! must exist in order for the controller defined in eq. (3.9) to

be feasible. Analytical solutions are presented later in Inverse Functions.
3.2.5 Stability and Robustness

In the simplified dynamics of eq. (2.2) with the assumption of zero side slip, we have to concern
ourselves with only two states when discussing stability, namely v, and . Alternatively, we can
consider the corresponding errors e, and ey as defined in eq. (3.5).

We can expand the error dynamics in eq. (3.7) using the control definitions in eq. (3.9) and eq.

(3.12) to get

e.v = ¢v(ev) + Fv = _/\v fv + Fv
(3.13)

€9 = ¢gleg) +Tg=—Xo fo + 1

Considering eq. (3.8), if we choose A, > T'ymae and Ag > Tonazs €q. (3.13) leads to (e,, €9) —
€ > 0 in finite time, where € is some non-zero residual about the origin. Within the boundary layer,
the switching function is approximated by a smooth sigmoidal function as described before. Thus,
instead of driving the system error states to zero and risk chattering, the states are instead driven

to remain inside the boundary layer to remove chattering. We then obtain acceptable trajectory

10



tracking independent of the modeling errors I', and I'y.
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4. DATA COLLECTION EXPERIMENTS

For our experiments, the off-road vehicle is a drive-by-wire enabled Polaris Ranger XP 900.
As a result, the control inputs for throttle, braking, and steering are fully programmable via PC
interface. The software interface called PACMOD has been designed with the Robot Operating
System (ROS) architecture, allowing for a publish and subscribe mechanism. The vehicle was
subjected to open loop commands in order to map steady-state outputs to the commands. The

vehicle is shown in figure 4.1.

Figure 4.1: Polaris Ranger with autonomous features

The vehicle was driven on relatively flat paved roads during these experiments to ensure consis-
tency and as a first step towards validating the methodology. Future experiments will be conducted

on off-road terrain which will expand the applicability of this approach.
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4.1 Longitudinal Dynamics

To model longitudinal dynamics, the vehicle was allowed to reach a specified steady-state
velocity and then a throttle or brake command was given. The resulting transient response was
used to estimate the vehicle’s acceleration for the specified command. In these experiments, the
vehicle’s initial velocity was varied from 0-25 mph in 5 mph increments. Step responses were
obtained for these initial velocities with the throttle command in the 0-70% range and braking in
the 0-100 % range. Afterwards, the data was smoothed out as a surface by fitting it with a 3rd
order polynomial function. A 3rd order polynomial surface fit was chosen to avoid overfitting and
underfitting. Simple evaluations on the sensitivity of the coefficients were done by changing one
or several points to different values and evaluating how the polynomial equation varied. While
arriving at the best fit, the coefficients for each term were allowed to be unbounded except for
constant coefficient. The constant coefficient was set to 0 to reflect the physical reality that the

vehicle will not accelerate if both the input and velocity are 0, on flat ground.
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Figure 4.2: Data-driven longitudinal dynamics due to throttle and brake

Figure 4.2 refers to the longitudinal dynamics with throttle and brake separately.
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Figure 4.3: Data-driven longitudinal dynamics due to throttle and brake combined as a synthetic
input

Figure 4.3 refers to the longitudinal dynamics with throttle and brake combined as a synthetic
input.
Equation (4.1) is a 3rd order polynomial that represents the longitudinal dynamics surface fit

due to throttle action.

fra(ve, @) = — 0.4876v, — 2.385a + 0.05360>
+ 0.4953v,a + 19.650* — 0.0018v° (4.1)

—0.0207v2a — 0.8346v,0° — 8.4480°

Equation (4.2) is a 3rd order polynomial that represents the longitudinal dynamics surface fit

due to brake action.

fi(ve, B) = — 0.7403v, + 0.825508 + 0.12110> — 0.2619v,3
4.2)

— 3.7043% — 0.005902 + 0.0571v23 — 0.6992v, 8% + 1.5513°
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Equation (4.1) and eq. (4.2) can be combined to obtain the longitudinal dynamics in eq. (2.2)
as below:

By defining a synthetic input v as

u=ax(a>=0)—Fx*(8>0) (4.3)
The combined dynamic equation can be written as the following polynomial fit:

Fra(z, u) :=fi(vy, @, B)
= —0.6062v, + 1.937u + 0.08625v§ + 0.2565v,u + 4.983u2 4.4)

—0.00339v2 — 0.03248v%u — 0.3862v,u* + 4.878u*

4.2 Lateral Dynamics

Similar experiments were conducted to obtain descriptions for the lateral dynamics. In accor-
dance with the assumptions made earlier, we will restrict the discussion to angular velocity and
ignore lateral acceleration data. For each empirical data point, the vehicle was set to a constant for-
ward velocity and steering angle. In this experiment, the steering wheel angle was varied between
—450° and 450° in 90° increments, while the forward velocity was varied between 2-10 m/s in 2
m/s increments. However, the tests were limited to a total lateral acceleration magnitude of less

than 5.5 m/s? for safety reasons.

15



Figure 4.4 refers to the vehicle lateral dynamics.

Figure 4.4: Data-driven angular velocity dynamics due to road wheel angle
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Equation (4.5) is a 3rd order polynomial that represents the lateral dynamics surface fit due to

steering action.

4.3 Inverse Functions

f3(vg,6) = 6 = 0.0264v, — 0.0067v2 + 0.39110,5

4 0.0013v3 — 0.1934025

+ 0.1626v,6>

4.5)

As discussed in Core Control Strategy, the main requirement for sliding mode control is dy-

namic invertilibity. Thus, inverse mapping functions are found that are also parameterized as

polynomial surfaces.
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First, the synthetic input will be described as a function of desired acceleration and current
velocity. This can be achieved from using the model derived from before. Second, the road wheel
angle will be described as a function of current velocity and desired yaw rate. Figure 4.5 illustrates

the surface fits which represent the synthetic input and road wheel angle, respectively.

I surface Fit

e Empirical Data

|~
KON e Empirical Data
L
,

Input

Road Wheel Angle (rad)

e 8
4 [

2 4
0 Velocity (m/s) Velocity (m/s)

Longitudinal Accleration (m/s?) Angular Velocity (rad/s)

Figure 4.5: Synthetic input mapping from inverse data-driven longitudinal dynamics fl_ul and road
wheel angle mapping from inverse data-driven angular velocity dynamics f; *

The synthetic input surface fit can be described as the following equation:

Fr (Ve Dades) = u = 0.09970, + 0.25860 545 — 0.016402 — 0.026005 Ve

(4.6)
—0.026092,,, + 0.0009v2 + 0.00340204es + 0.0049v,52,. .
The road wheel angle input surface fit can be described as the following equation:
fa (Vg 04es) = 6 = — 0.0303v, + 1.9666 + 0.0077v> — 0.35240,040 — 0137462,
(4.7)

— 0.00050% + 0.0211020 405 + 0.0296v,62,, — 0.204563,
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5. RESULTS AND DISCUSSION

To test the sliding mode controller, the vehicle was driven on two paths consisting of a circular
shape and a sinusoidal shape. The circular path meant to test if the controller is tracking the desired
path correctly, while the sinusoidal path is meant to test the controller at extremes.

For both simulation and initial implementation experiments, the look-ahead distance was 5 m
and the desired velocity was 5 m/s. This was done to keep the simulation and physical experiments
consistent with each other.

After initial testing, more implementation experiments were conducted during wet conditions
for both on-road and off-road terrain. With adaptive velocity command mentioned in section 3.1
and adaptive look-ahead distance of v, + 1, the vehicle was able to track the path and maintain

desired velocity with some error even during extremities.
5.1 Simulation Results

Figure 5.1 presents the simulated data for the circular path.

Qg
Qg

Qo [ © Targets
. Pasition
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7 3 . T 5 i l 0 s 10 15 ) 5 30 35
= e A5 Gy 5 o 0 5 10 15 20 25 30 3s o

¥ alobal conrdinates (m) Time {sec)

Figure 5.1: Circular path simulated data for path tracking, velocity tracking, and controller input
behaviors.
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Figure 5.2 presents the simulated data for the sinusoidal path.
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Figure 5.2: Sinusoidal path simulated data for path tracking, velocity tracking, and controller input
behaviors.

With both of these simulations to verify the control strategy, the next step is to validate the

control strategy through implementation.
5.2 Implementation Results

The implementation of the sliding mode controller on the vehicle yielded similar results to the
simulation. The real-world paths attempted to emulate the simulated paths on paved roads. They
are not perfectly identical, but the general behaviour of the vehicle can be compared between the
results of the simulation and the physical implementation.

Figure 5.3 presents the data collected from real-world implementation into a vehicle for the

circular path.
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Figure 5.3: Circular path implemented data for path tracking, velocity tracking, and controller
input behaviors.

Figure 5.4 presents the data collected from real-world implementation into a vehicle for the

sinusoidal path.
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Figure 5.4: Sinusoidal path implemented data for path tracking, velocity tracking, and controller
input behaviors.

Moving forward with cases that involve harsher condition, the ground vehicle was subjected to
rainy conditions to track the path given and velocities. This includes wet paved roads and muddy
off-road terrain. These experiments were to show the controller’s robustness. Figure 5.5 shows the

terrain’s physical features.
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Figure 5.5: On-road track (left) and off-road track (right).

Figure 5.6 presents the data collected from real-world implementation into a vehicle on satu-

rated paved roads with both adaptive velocity and adaptive look-ahead algorithms executed.
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Figure 5.6: Wet conditioned on-road implemented data for path tracking, velocity tracking, and

controller input behaviors.
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Figure 5.7 presents the data collected from real-world implementation into a vehicle on satu-

rated soil terrain with both adaptive velocity and adaptive look-ahead algorithms executed.
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Figure 5.7: Wet conditioned off-road implemented data for path tracking, velocity tracking, and

controller input behaviors.

Four experiments were completed for both the on-road and off-road tracks during saturated

conditions. Figure 5.8 shows the results for average lateral error and maximum lateral error for

each run.
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Figure 5.8: On-road lateral error data (left) and off-road lateral error data (right).

With the results presented, data analysis is needed to understand more about the path and
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velocity tracking performance.
5.3 Data Analysis

In the initial results, the controller performed reasonably well. In the simulated circular path
tracking, the vehicle’s center of gravity was slightly inside the waypoints of the circular path. For
velocity tracking, there was a steady-state error of 0.139 m/s which is 2.78% off of the desired
value. There are some discrepancies regarding the control inputs that happened in the simulation
that should not happen in real life. First, the throttle command should not go to 1 immediately from
rest or an engine misfire will happen. Second, the chattering of the steering control will cause the
riders to feel uncomfortable in the vehicle.

In the simulated sinusoidal path tracking, the vehicle was offset 7 m and the vehicle’s initial
heading was not aligned with the path. Even when this happened, the vehicle was able to follow the
path. The results for the sinusoidal velocity tracking are the same as the circular velocity tracking.
The throttle command needs to gradually increase instead of immediately going to 1, which will
lead to an engine misfire. The steering command still has a chattering effect which would be
uncomfortable for passengers.

For the implemented circular path tracking, the vehicle was slightly inside the circle. This
result is very similar to the simulated circular path tracking. For implemented velocity tracking,
the steady-state error is 0.62 m/s which is 12.4% off of the desired value. The implemented throttle
input gave an instantaneous acceleration while smoothly approaching the desired velocity without
any chattering. The implemented steering input has clear chattering.

For the implemented sinusoidal path tracking, the vehicle turned earlier than the path intended.
For implemented velocity tracking, the steady-state error is 0.56 m/s which is 11.2% off of the
desired value. The implemented throttle and steering input are similar to the results from the
circular path.

For the saturated paved road experiment, adaptive velocity and adaptive look-ahead algorithms
helped improved performance for path tracking. The steady-state error when approaching 9 m/s is

0.45 m/s which is 5% off of the desired value. The average lateral error ranges from 25 cm to 45
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cm, and the maximum lateral error ranges from 1.23 m to 1.41 m.

For the saturated soil terrain experiment, adaptive velocity and adaptive look-ahead algorithms
helped improved performance for path tracking. The steady-state error when approaching 7 m/s is
0.48 m/s which is 6.8% off of the desired value. The average lateral error ranges from 30 cm to 55

cm, and the maximum lateral error ranges from 1.49 m to 4.02 m.

24



6. CONCLUSION

Ultimately, a data-driven model was derived using simple experiments which did not require a
large amount of data. This model was split into two categories: longitudinal dynamics and lateral
dynamics. The models were surface fitted into 3rd order polynomials which avoided overfitting
and underfitting. It should be noted that these models were only calculated and implemented offline
in this paper but could be used and updated online in order to improve any discrepancies.

Afterwards, a nonlinear closed-loop control strategy was developed. This control strategy was
tested in simulation for a circular path and a sinusoidal path. Then, this strategy was implemented
into a real vehicle to follow both a circular path and a sinusoidal path similar to the simulation. To
test the robustness of the controller, the implementation was tested in conditions that the model did
not reflect.

The main issues with the implementation is that the path tracking cuts corners, velocity tracking
approximately has a 0.5 m/s steady-state error for desired velocities explored, and steering input
has chattering. This shall be addressed in future work.

Overall, this method displayed simple modeling with data-driven dynamics. The control strat-
egy was developed offline which led to fast computational speed. Initial implementation results
can easily be improved with a few more algorithms and gain tuning. This method can easily be

applied to off-road terrain.
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7. FUTURE WORK

Future work for this thesis includes collecting experimental data in off-road terrain. This way,
more aggressive maneuvers will produce side slip and the data from these maneuvers will help
produce a more complete lateral dynamic model. Then the same control strategy will be explored
for off-road driving.

Once the offline approach is improved, using machine learning for this project will be feasible.
Neural networks can be developed to solve for the inverse dynamics [20]. Then the nonlinear
control strategy proposed in this paper can be used for velocity and path tracking. This will most
likely not be explored during my thesis, but this could be a future direction for this project in order

to reduce inaccuracies in the inverse dynamic model while driving.
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