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ABSTRACT 

 

Educational researchers frequently work with data measured as multilevel structures; 

sometimes, they are also interested in latent constructs that cannot be directly observed and 

measured. Therefore, handling data dependency and measurement error issues is particularly 

important in statistical modeling. Multilevel Structural Equation Modeling (MSEM) is a 

promising approach to dealing with both issues. However, educational researchers still prefer 

Multi-Level Modeling (MLM) to MSEM. Conventional MLM cannot address the data 

dependency issue in within-level predictors. In addition, it cannot include a measurement model 

to handle measurement errors and construct a latent factor. As such, computing an average score 

to represent a latent factor in MLM is a common alternative approach in educational studies. 

This study evaluated the consequence of using an average score to represent a latent factor in 

MLM. The simulation results suggested that the bias of using an average score to represent a 

latent predictor in MLM is acceptable only when the following criterion are met: (1) group-mean 

centering or latent-mean centering is utilized; (2) the within-level factor loading of each item is 

equal to or above .80 (i.e., within-level composite reliability ω ≥ 0.88). Otherwise, MSEM is 

recommended. 
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CHAPTER I 

INTRODUCTION 

 

Educational researchers frequently work with data measured as multilevel structures, for 

instance, student-level survey or demographic data, and school-level administrative or aggregate 

contextual data. As such, the use of data with multiple levels is common. Methodologists have 

already warned that when analyzing multilevel data with traditional linear models (e.g., multiple 

linear regression), the results (e.g., tests of significance) could be inaccurate due to the disregard 

of data dependency. For example, for a two-level dataset with students nested within schools, 

students from the same school are likely not to completely independent from each other. Without 

adequately taking this non-independent observation issue into account for the analyses, the 

results, especially the test of significance, can be biased and lead to incorrect statistical 

conclusions (Raudenbush & Bryk, 1986). 

Multi-Level Modeling (MLM), also known as Hierarchical Linear Modeling (HLM; 

Raudenbush & Bryk, 1986), has become a widely used approach for analyzing multilevel data. 

This technique is a useful method to separate school effects from student and family inputs 

(Sellström & Bremberg, 2006). More specifically, researchers can identify how much of the 

variation in student outcomes is attributed to individual effort or family background at the 

student level (also called Level 1, the within level, or individual level) and how much is related 

to differences between schools (i.e., effects from the school level, also called Level 2, the 

between level, or cluster level). Nevertheless, MLM still has limitations. This study aims to 

evaluate the risk when researchers do not properly address the methodological issues in MLM. 
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In some situations, MLM may not work well. For example, examining the relationships 

between intrinsic motivational factors (e.g., science interest, math self- efficacy, and subjective 

task values) and student educational outcomes and career trajectories has been a long-standing 

interest of educational researchers (e.g., Schneider et al. 2016; Wang, 2013; Wigfield & Eccles, 

2000). Given that MLM cannot include a measurement model for a motivational factor or a 

latent factor, researchers tend to theorize a construct, compute a composite score through a set of 

observed items from a scale, and utilize the composite score that is assumed to be free of 

measurement error in the analysis. 

Computing an average score to represent a latent factor is a common approach in 

educational studies, especially for studies using the Trends in International Mathematics and 

Science Study (TIMSS) data established by the International Association for the Evaluation of 

Educational Achievement (IEA). TIMSS is an international dataset that provides policy makers 

and practitioners with insights for math and science education in the form of collected 

international assessments of knowledge and attitudes in math and science from students across 

70 countries since 1995. With the need to analyze these latent measures, TIMSS (e.g., 2003, 

2007) furnishes researchers with an average score for each non-cognitive measure (Martin & 

Preuschoff, 2008; Mullis, Martin, & Foy, 2008). Hence, researchers can conveniently utilize the 

composite scores representing latent constructs in their analyses. 

However, when modeling latent factors by merely using a composite score, rather than 

the original items, two methodological issues could potentially bias the analytic results in MLM. 

The first issue is measurement errors. Since the items within a latent factor have been converted 

into a composite score, analysis without considering the measurement error of each item could 

lead to biased path coefficients (Hsiao, Kwok, & Lai, 2018; Rose, Wagner, Mayer, & Nagengast, 
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2019). Additionally, the regression family approaches (e.g., regression, MLM) are based upon 

the assumption that predictors are free of measurement error (Curran, 2003; Jaccard & Wan, 

1995). Unless the observed composites are measured perfectly, the analytic results are biased. 

The second issue is the existence of data dependency in predictors. In MLM, only the variance of 

the outcome variable is separated into different levels. For predictors (especially the lower level 

or within-level predictors), their variances are assumed to be all from the same level. In other 

words, for the within-level predictors, the variations are all from the same within level. However, 

this assumption is too restrictive and, in many situations (e.g., educational studies), the variation 

of each within-level predictor may not solely come from “within” but may also include variation 

between clusters. The potential impact of ignoring the between-level variance for the within-

level predictor has not yet been thoroughly examined. 

Multilevel Structural Equation Modeling (MSEM) is an alternative way of analyzing 

multilevel observed data. The advantage of MSEM is the possibility to combine Structural 

Equation Modeling (SEM) with MLM; in other words, researchers can simultaneously estimate 

all the measurement errors and path parameters at different levels. The variance of each within-

level variable (including predictors) can be separated into different levels, so we may estimate 

more authentic interrelationships among predictors and outcomes, partialling out the 

measurement errors at multiple levels (Preacher, Zhang, & Zyphur, 2011; Preacher, Zyphur, & 

Zhang, 2010).  

Despite the ability of MSEM to possibly address the previously mentioned issues, 

educational researchers still prefer MLM to MSEM. As of August 1, 2019, the search results 

from the Web of Science database revealed that over the past few decades in educational 

research, 75 studies utilized MSEM, while 640 studies employed MLM or HLM. A similar trend 
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was also found in TIMSS research. After further refining the search results to studies using the 

TIMSS datasets, the results showed that the studies employed MSEM only four times, whereas 

23 TIMSS research projects utilized MLM (HLM). 

Given the described risk from the failure to account for measurement errors and data 

dependency in within-level predictors, the purpose of this study was to evaluate the bias of 

estimating the relationship between an average composite score (representing a latent predictor) 

and a continuous outcome in MLM by comparing MLM results with MSEM results. A Monte 

Carlo study with 1,440 simulation factors was conducted. The simulation factors included the 

level of the intraclass correlation coefficients (ICC) for the predictor and outcome, the level of 

factor loadings of the latent predictor at the between- and within- levels, as well as multiple 

centering strategies. Considering the potential impact on math and science education policy and 

instructional decision-making around the world based on TIMSS research, this study also aimed 

to generate methodological insights for TIMSS researchers. The simulation followed the 

multilevel settings of TIMSS, such as cluster size = 30 and average number of clusters = 150. 

The results provide guidance on selecting adequate modeling strategies for a variety of complex 

scenarios. 
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CHAPTER II 

LITERATURE REVIEW 

 

Multilevel Structural Equation Modeling 

Multilevel Structural Equation Modeling (MSEM) has been available for decades (e.g., 

Hox, 1995; McDonald & Goldstein, 1989; Muthén, 1989, 1994). With the recent progress of 

computer science and technology, the MSEM routine has been mostly available in SEM software 

such as Mplus, LISREL, and Stata, allowing researchers to examine the relationships among 

latent and observed variables under multilevel data structures (Li & Beretvas, 2013).  

In two-level data with observations nested within clusters (e.g., students nested within 

schools), the two sources of random variation are (a) random variation due to between-cluster 

differences at the between level and (b) random variation owing to differences among 

individuals within clusters at the within level. Assuming a balanced design, the data vector yij, a 

p-dimensional response vector with a total of N individuals (i) nested within J clusters (i = 1…N 

individuals and j = 1…J groups), can be decomposed into a within-level random component 

(yWij) and between-level random component (yBj) (Ryu, 2015): 

 

yij = yBj + yWij , (1) 

 

where E (yBj) = μy, E (yWij ) = 0, Cov (yBj , yWij) = 0, and E (yij) = μy. The within-level random 

component (yWij) and between-level random component (yBj) are uncorrelated and can be 

modeled (Hox, 2013; Ryu, 2015) by 

 

http://www.joophox.net/publist/Chap14ProofsX.pdf


 

6 

 

 

yWij = ΛWηW + εW 

yBj = μ + ΛBηB + εB (2) 

 

By combining Equations (1) and (2), we obtain 

 

yij = μ + ΛWηW + ΛBηB + εB + εW. (3)  

 

where μ is a p-dimensional vector of grand means, and ΛW is a p × m within-level factor-loading 

matrix, and m represents the number of within-level factors; ηW is a m-dimensional vector of 

within-level factor scores, and ΛB is a p × h between-level factor loading matrix, where h shows 

the number of between-level factors; ηB is a h-dimensional vector of between-level factor scores; 

εB is a p-dimensional vector of between-level unique factors/measurement errors, while εW is a p-

dimensional vector of within-level unique factors/measurement errors (Hsu, Lin, Kwok, Acosta, 

& Willson, 2016). 

Measurement Model 

Estimation of a measurement model begins with a partitioning of the total covariance 

matrix (ΣT) into the between-level and within-level covariance matrices (i.e., ΣB and ΣW, 

respectively): 

 

Cov(yij) = ΣT = ΣB + ΣW (4) 

 

The between-level and within-level covariance matrices of the two-level confirmatory 

factor analysis (CFA) model can be expressed as follows: 
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ΣB = ΛBΨBΛ′B + ΘB 

ΣW = ΛWΨWΛ′W + ΘW, (5) 

 

where ΛB and ΛW represent the factor-loading matrices for the between-level and within-level 

components, respectively; ΨB and ΨW are the factor covariance matrices for the between-level 

and within-level components, respectively; ΘB and ΘW are the covariance matrices of the unique 

factors (measurement errors) for the between-level and within-level components, respectively 

(Hsu et al., 2016). 

Structural Model 

The estimation of a structural model in MSEM is similar to the one in a conventional 

single-level SEM model. The model-implied covariance matrix Σ̂ of a single-level SEM model 

for a set of l exogenous variables regressed on k exogenous latent variables and a set of m 

endogenous latent variables regressed on n endogenous latent variables with both measurement 

and structural models can be written as follows: 

 

                 �̂� =  [
𝛬𝑌 (𝐼 − 𝐵)−1(𝛤𝛷𝛤′ + 𝛹)[(𝐼 − 𝐵)−1]′𝛬′

𝑌 + 𝛩 𝛬𝑌 (𝐼 − 𝐵)−1𝛤𝛷𝛬′
𝑋

𝛬𝑋𝛷𝛤′[(𝐼 − 𝐵)−1]′𝛬′
𝑌 𝛬𝑋𝛷𝛬′

𝑋 +  𝛩𝛿

], (6) 

 

where 𝛬𝑋(l × k) and 𝛬𝑌 (m × n) represent factor-loading matrices for exogenous variables X and 

endogenous variables Y, respectively; B represents a n × n square matrix containing the 

structural path coefficients from endogenous to other endogenous factors; 𝛤 is a n × k matrix 

whose elements are the structural regression parameters from exogenous to endogenous factors; 

𝛷 and 𝛹 represent the k × k and n × n covariance matrices for exogenous factors ξ and the 

endogenous factors η, respectively; 𝛩𝛿 and 𝛩  represent the l × l and m × m covariance matrices 



 

8 

 

 

for the measurement errors, 𝛿 and 휀, respectively. In MSEM, Equation (6) can be extended to 

use the corresponding between-level and within-level components for measurement and 

structural models, representing the between-level and within-level matrices, �̂�𝐵 and �̂�𝑦, 

respectively (Li & Beretvas, 2013). 

Parameter Estimation 

A multilevel full information maximum likelihood (FML) estimation is commonly utilized 

for estimating parameters in multilevel models (Hsu et al., 2016; Ryu & West, 2009). Assuming 

multivariate normality for each level component and balanced case in which each cluster had 

equal individuals, the FML fitting function for the two-level structural equation model can be 

expressed as (Hsu et al., 2016): 

 

𝐹𝑀𝐿 = 𝐹𝐵 (𝜃) + 𝐹𝑊 (𝜃) =  ∑ {𝑡𝑟[∑ (𝜃)𝑆𝐵] + 𝑙𝑜𝑔 |−1
𝑆𝐵

𝐽
𝑗=1 ∑ (𝜃)|} 𝑆𝐵 + (𝑁 − 𝐽){𝑡𝑟[∑ (𝜃)𝑆𝑊] +−1

𝑊

𝑙𝑜𝑔 | ∑ (𝜃)|} 𝑊  , (7) 

 

where 𝐹𝐵  (𝜃) and 𝐹𝑊 (𝜃) are the between-level and within-level fitting functions; 𝜃 is the vector 

of the estimated parameters corresponding to a specified model; J denotes the number of 

clusters, while N is the cluster size; ∑ (𝜃) 𝑆𝐵 represents the implied between-level covariance 

matrix, and SB is the between-level sample covariance matrix; ∑ (𝜃) 𝑊 represents the implied 

within-level covariance matrix, and SW is the within-level sample covariance matrix (Hsu et al., 

2016). 

Overall, the advantage of utilizing MSEM is the capability of combining SEM with 

MLM. First, to model latent factors, researchers can use measurement models to construct latent 

factors measured by a number of observed items, and the measurement models provide the entire 
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model with important measurement information (e.g., factor loadings, measurement errors) for 

estimating less-biased parameters. Second, the covariance structure is partitioned into the 

between-level and within-level structures, which are not correlated with each other. The 

variations for both within-level variables, even for predictors, can be decomposed into two 

levels. The effects associated with the within-level variables are also partitioned into between- 

and within-levels; thus, researchers can investigate the multilevel effects. To sum up, both 

measurement error and data dependency issues are handled in MSEM. 

Multi-Level Modeling 

Multi-Level Modeling (MLM), also known as Hierarchical Linear Modeling (HLM; 

Raudenbush & Bryk, 1986), is a regression-based analysis that takes the multilevel data structure 

into account and is being more widely used in social science than MSEM. A simple two-level 

MLM model with one within-level predictor (Xij) and one between-level predictor (Wj) can be 

written as follows: 

 

Yij = β0j + β1jXij + rij 

β0j = ᵞ00 + ᵞ01Wj + u0j 

β1j = ᵞ10 + ᵞ11Wj + u1j , (8) 

 

where the subscript j is for the clusters (j = 1…J), and the subscript i is for individuals (i = 

1…nj); Yij denotes an outcome variable at the within level for the ith individual in the jth cluster; 

β0j represents the y-intercept of the regression line for the jth cluster, and β1j is the slope of the 

regression line for the jth cluster; rij means the random error associated with the response for the 

ith individual in the jth cluster; ᵞ00 is the overall mean intercept adjusted for Wj, and ᵞ01 refers to the 
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regression coefficient associated with Wj relative to the intercept; u0j denotes the random effect 

of the jth cluster on the intercept adjusted for Wj; ᵞ10 is the overall mean slope adjusted for Wj, 

and ᵞ11 refers to the regression coefficient associated with Wj relative to the slope; u1j denotes the 

random effect of the jth cluster on the slope adjusted for Wj. 

Assumptions 

The assumptions of the MLM model are shown below (Raudenbush & Bryk, 2002; 

Sullivan, Dukes, & Losina, 1999; Woltman, Feldstain, MacKay, & Rocchi, 2012): 

 

E(u0j) = E(u1j) = 0; 

E(β0j) = ᵞ00; E(β1j) = ᵞ10; 

var(β0j) = var(u0j) = τ00; var(β1j) = var(u1j) = τ11; 

cov(β0j, β1j) = cov(u0j, u1j) = τ01; cov(u0j, rij) = cov(u1j, rij)= 0. (9) 

 

The means of the random effects (u0j and u1j) are assumed to be zero. β0j and β1j have 

normal multivariate distributions with variances defined by τ00 and τ11, respectively, and means 

equal to ᵞ00 and ᵞ11, respectively. The covariance between β0j and β1j is τ01, being identical to the 

covariance between u0j and u1j. Finally, the between-level random effects (u0j and u1j) and within-

level random effect (rij) are uncorrelated with each other. 

Two other assumptions in MLM could be limitations for researchers. First, the within-

level predictor (Xij) is assumed to be an observed variable with error-free measurement. Latent 

variables and measurement models are not allowed. An alternative approach in practice is to 

compute a composite score through a set of observed items to represent a latent factor. However, 

by doing this, the measurement error for each item would not be taken into account in the 
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analysis. Second, the variance for an outcome variable yij could be decomposed into the within-

level and between-level; yet, the variances for within-level predictors are assumed to stay at the 

within-level. This is problematic in MLM because for each within-level predictor, if the 

between-level variance exists, it will be added to the within-level variance. Therefore, MLM may 

fail to deal with both data dependency and measurement error issues. 

This is best illustrated with an example. Figure 1 shows an MSEM model where the 

between-level and within-level factors (ηB and ηW, respectively) can be measured by the observed 

Items 1 to 4 (I1ij to I4ij), and the effect between the latent factor and outcome Yij at each level 

would be estimated. If one analyzing the same dataset computes an average (Mij) from I1ij to I4ij 

to represent a within-level latent factor (Mw) in MLM (as shown in Figure 2), three things must 

be noticed: (a) the total variance of Mij will be assumed to stay at the within-level (i.e., Mw); (b) 

the variance of this composite variable (Mij) at the within level will be forced to include the 

between-level total variance, as shown in Equation (10); and (c) the measurement error variance 

mixed in the total variance cannot be partialled out. The variance of this composite variable is 

formally defined as follows: 

 

ΣM = (ΣB + ΣW) / I2 , (10) 

 

where ΣM represents the total variance of the within-level composite variable computed through a 

mean score approach; ΣB and ΣW are computed based on Equation (5) consisting of elements like 

factor loadings, factor variances (and covariance), as well as measurement error variances (and 

covariance); I denotes the number of observed items.  
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Figure 1. An MSEM example. 
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Given that the variance components of a composite score are mixed (ΣB + ΣW), we should 

be aware that in some situations, data dependency and measurement errors may cancel out. For 

example, in theory, a higher measurement error variance at the within level will lead to a lower 

total variance (ΣB + ΣW); at the same time, a higher between-level variance will result in a higher 

total variance. Hence, the variance components could counterbalance each other. This example 

demonstrates that using a composite score in MLM involves very complicated methodological 

issues, leading to an unreliable, risky result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. An MLM model for the current study. 
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Estimation of the Standardized Path Coefficient 

When examining the effect between Mw and Yw in MLM, researchers often report the 

standardized path coefficient (βW). In Figure 2, βW can be calculated as: 

 

βw = bw * sqrt (VARM / VARYW) 

= (COV(M,Yw) / VARM) * sqrt(VARM / VARYW) 

= (COV(M,Yw) / SDM
2) * (SDM / SDYW)  

= COV(M,Yw) / (SDM*SDYW) 

= rw * SDM*SDYW / (SDM*SDYW) = rw , (11) 

 

where bw is an unstandardized regression coefficient computed through COV(M,Yw) / VARM; 

and COV means covariance; VARM represents the total variance of Mij (i.e., ΣM); VARYW is the 

variance of Yij at the within level; sqrt denotes square root; SD represents standard deviation; rw 

means the correlation coefficient between Mw and Yw; in this case, βw will be equal to rw 

eventually.  

Equation (11) reveals that the variance of the composite variable (VARM) shows a strong 

impact on the estimation of the effect between the composite variable (Mij) and the outcome (Yij). 

In other words, to avoid obtaining a biased standard coefficient, the predictor’s variance should 

be estimated accurately. However, as mentioned previously, in MLM, the variance estimation for 

each within-level variable is often inaccurate when the variable contains either measurement 

errors or between-level variance. 

Centering Strategy 

Two centering strategies in MLM can potentially deal with the data dependency of 

within-level predictors. Both Raudenbush and Bryk (2002) and Enders and Tofighi (2007) 

suggested using group-mean centering (xij – x̅.j) to decompose the within-level predictor into the 
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between-level and within-level effects. A significant drawback in group-mean centering is that 

the observed group mean (x̅.j) may contain measurement errors. Several questions arise: (1) are 

the samples from each cluster randomly and sufficiently selected? and (2) are missing data 

completely at random? If not, centering observed group mean is inaccurate because the observed 

group mean is not identical to the true group mean (Shin & Raudenbush, 2010).  

One promising approach is to utilize Latent-Mean Centering in MLM (LMC-MLM) 

(Asparouhov & Muthén, 2019). When estimating the relationship between an observed variable 

(Xij) and a continuous outcome (Yij), LMC-MLM (without a random slope) can be described as in 

the following equations: 

 

Xij = XW,ij + XB,j 

Yij = αj + β1XW,ij + εW,ij 

αj = α + β2XB,j + εB,j 

εW,ij ~ N(0, σW), εB,j ~ N(0, σB), XW,ij ~ N(0, ψW), XB,j ~ N(μ, ψB). (12) 

 

The main difference from the conventional group-mean centered MLM is the 

identification of the latent group mean (XB,j) for each group, which is an unknown value that can 

be estimated to account for the sampling error in the mean estimate through Bayesian estimation 

algorithms (Asparouhov & Muthén, 2019). However, even though LMC-MLM seems more 

promising, the observed variable (Xij) is still assumed to be free of measurement error under the 

MLM theoretical framework. If Xij is a composite score containing measurement errors, there is 

less evidence in the literature to show whether and to what extent the latent-mean centering can 

improve biased estimates in this particular case. 
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TIMSS Research 

In practice, researchers generally utilize observed composites in their studies (Hsiao et 

al., 2018), especially in the Trends in International Mathematics and Science Study (TIMSS) 

research. The TIMSS consists of both an international large-scale survey and assessments 

conducted by the International Association for the Evaluation of Educational Achievement (IEA) 

that monitor trends in students’ math and science in Grades 4 and 8 across 70 countries since 

1995 (IEA TIMSS & PIRLS International Study Center, 2019). Given that the TIMSS datasets 

collect numerous variables related to student achievement and motivational factors in math and 

science, many researchers have engaged in analyzing their country’s data within this dataset to 

investigate the relationships among student ability, school average ability, and student academic 

self-concept, as in examinations of the big-fish-little-pond effect (BFLPE) (Marsh & Parker, 

1984).  

As expected, many BFLPE studies constructed academic self-concept in MLM by using a 

composite score. Reviewing the articles published in high impact journals (2001-2018) indexed 

by the Web of Science, I found that more than half of the BFLPE studies (16 out of 29) noticed 

the multilevel structure of the TIMSS data, as these studies utilized MLM or MSEM. As shown 

in Table 1, among these 16 studies, only four demonstrated explicit awareness of the 

measurement error issue by employing measurement models to construct latent factors (e.g., 

math/science self-concept) in the MSEM models. The other 12 studies using MLM relied on 

composite scores to represent latent factors. Interestingly, most of these 12 studies directly used 

average scores as latent factors because TIMSS (e.g, 2003, 2007) had already computed an 

average for each non-cognitive measure in the released datasets (Martin & Preuschoff, 2008; 

Mullis, Martin, & Foy, 2008). Regarding the centering strategies, three studies did not report on 
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this, two studies used group-mean centering, and the other seven studies employed grand-mean 

centering. Yet, all 12 studies using MLM failed to provide a rationale about a decision in the 

choice of centering strategy. Theoretically, as previously mentioned, MLM has limitations in 

modeling latent factors. However, TIMSS researchers still tend to use the MLM approach, and 

their studies have been cited by other studies. The number of citations range from six to 215. 
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Table 1 

 

TIMSS Research (2001-2018) Using MSEM or MLM as Indexed by the Web of Science 

 

Author (Year) Journal Country Data Method Composite Centering Citations 

Guo, Marsh, 

Parker, & 

Dicke (2018) 

Learning 

and 

Instruction 

15 OECD 

countries 

TIMSS 

and PIRLS 

2011 

MSEM 
  

3 

Wang & 

Bergin (2017) 

Learning 

and 

Individual 

Differences 

59 

countries 

and 

regions 

TIMSS 

2011 

MSEM 
  

3 

Wang (2015) Educational 

Psychology 

49 

countries 

TIMSS 

2007 

MSEM 
  

13 

Marsh et al. 

(2014) 

Journal of 

Cross-

Cultural 

Psychology 

US and 

Saudi 

Arabian 

TIMSS 

2007 

MSEM 
  

40 

Liou & Jessie 

(2018) 

Research 

Papers in 

Education 

Taiwan TIMSS 

2007 

MLM Average Grand 

mean 

8 

Wang & Liou 

(2017) 

International 

Journal of 

Science 

Education 

Taiwan TIMSS 

2011 

MLM IRT Group 

mean 

13 

Min, Cortina, 

& Miller 

(2016) 

Learning 

and 

Individual 

Differences 

13 

countries 

TIMSS 

2003, 2007 

and 2011 

MLM Average Unknown 8 
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Table 1 (continued) 

 

Author (Year) Journal Country Data Method Composite Centering Citations 

Sheldrake 

(2016) 

Learning and 

Individual 

Differences 

England TIMSS 

2011 

MLM IRT Unknown 6 

Tsai & Yang 

(2015) 

International 

Journal of 

Science 

Education 

Taiwan TIMSS 

2011 

MLM Average Unknown 14 

Liou (2014a) International 

Journal of 

Science 

Education 

Taiwan TIMSS 

2003 and 

2007 

MLM Average Grand 

mean 

11 

Liou (2014b) The Asia-

Pacific 

Education 

Researcher 

Taiwan TIMSS 

2011 

MLM Average Grand 

mean 

12 

Mohammadpour 

& Abdul Ghafar 

(2014) 

Scandinavian 

Journal of 

Educational 

Research 

48 

countries 

TIMSS 

2007 

MLM Average Grand 

mean 

17 
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Table 1 (continued) 

 

Author (Year) Journal Country Data Method Composite Centering Citations 

Mohammadpour 

(2013). 

Learning and 

Individual 

Differences 

Singapore TIMSS 

2007 

MLM Average Grand 

mean 

31 

Mohammadpour 

(2012a). 

Science 

Education 

Malaysia TIMSS 

1999, 

2003, 

and 2007 

MLM Average Grand 

mean 

24 

Mohammadpour 

(2012b). 

The Asia-

Pacific 

Education 

Researcher 

Singapore TIMSS 

2007 

MLM Average Grand 

mean 

25 

Wilkins (2004) The Journal of 

Experimental 

Education 

41 

countries 

TIMSS 

1999 

MLM Average Group 

mean 

215 

Note. Literature search date: Feb. 8, 2019. The number of citations was counted on Aug. 6, 2019, 

as provided by Google Scholar. 

 

  



 

21 

 

 

Gaps in the Literature and Purpose of the Study 

To the best of my knowledge, when using an average score as a latent predictor in MLM, 

the performance of estimating the relationship between the latent predictor and outcome has yet 

to be investigated—not to mention when a centering strategy is also involved. Furthermore, the 

TIMSS often attracts worldwide attention when announcing world rankings for student math and 

science achievement of each country. The impact of TIMSS research might ripple through 

education policy and curriculum decisions in each country. Therefore, a methodological study 

for using composite scores in MLM is needed. 

The present study aimed to conduct a simulation study to evaluate the risk of estimating 

the relationship between an average composite score (representing a latent predictor) and a 

continuous outcome in MLM. Given that MSEM properly handles both data dependency and 

measurement error issues, the MLM simulation results are used for comparison with MSEM 

results. The discrepancy between them would be considered as a bias, since the variance 

components show impacts in Equation (11). Given one must also consider the elements in 

Equation (5), the simulation factors included the level of the intraclass correlation coefficients 

(ICC) for the predictor and outcome, the level of factor loadings of the latent predictor at the 

between- and within-levels, as well as the multiple centering strategies. The simulation followed 

the multilevel settings of TIMSS (i.e., the cluster size of TIMSS is about 30, and the average 

number of clusters is approximately 150). The number of items for a latent factor was set to four 

based on the number of items for math/science self-concept in TIMSS (Liou, 2014a, 2014b). The 

results will then provide guidance on selecting adequate modeling strategies under a variety of 

complex scenarios. 
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CHAPTER III 

METHODS 

 

Data Generation 

Figure 3 was used as the population model for generating simulation datasets. The 

population model consisted of a measurement model and an outcome variable at the between 

level and within level. In the measurement model, four observed items (I1ij to I4ij) were 

partitioned into the between level and within level. The partitioned variances were loaded on the 

between latent factor (ηB) and within latent factor (ηW), respectively. bB and bW denoted the 

effects of the latent factor on the outcome (Yij) at the between level and within level, 

respectively. The residual variance of Yij was partitioned into the between level and within level 

(i.e., ζYB and ζYW, respectively). 

At the within level, four observed items were loaded on ηW. The factor variance ηW was 

set at 1.0. Six sets of factor loadings (λ1ij to λ4ij) were set to (.5,.5,.5,.5), (.6,.6,.6,.6), (.7,.7,.7,.7), 

(.8,.8,.8,.8), (.9,.9,.9,.9), and (.99,.99,.99,.99), respectively; the corresponding measurement 

errors (δ1ij to δ4ij) were (.75,.75,.75,.75), (.64,.64,.64,.64), (.51,.51,.51,.51), (.36,.36,.36,.36), 

(.19,.19,.19,.19), and (.02,.02,.02,.02), respectively. bW was set to .50. The residual variance ζYW 

was 1.0. All the parameters at the within level are summarized in Table 2.  
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Table 2 

 

Population Model Parameters at the Within Level 

 

ηW ζYW bW λ1j to λ4j δ1j to δ4j 

1.0 1.0 .50 .5,.5,.5,.5 .75,.75,.75,.75 

1.0 1.0 .50 .6,.6,.6,.6 .64,.64,.64,.64 

1.0 1.0 .50 .7,.7,.7,.7 .51,.51,.51,.51 

1.0 1.0 .50 .8,.8,.8,.8 .36,.36,.36,.36 

1.0 1.0 .50 .9,.9,.9,.9 .19,.19,.19,.19 

1.0 1.0 .50 .99,.99,.99,.99 .02,.02,.02,.02 

 

 

 

 

The between-level model had an identical structure to the within-level model. The 

parameters of the between-level population model are listed in Tables 3 and 4. bB was set to .50. 

To create different intraclass correlation coefficient (ICC) conditions (i.e., .01, .10, .30, .50) for 

outcome Yij, the residual variance ζYB was set to .01, .11, .43, and 1.00 based on the following 

equation: 

 

𝐼𝐶𝐶 =  
𝜏00

𝜏00+𝜎2  , (13) 

 

where 𝜏00 is the between-level variance for Yij , and σ2 is the within-level variance for Yij. In 

other words, ICC represents the proportion of the total variance of Yij that is accounted for by the 

between level.  
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Figure 3. The population model for generating simulation datasets. 
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Table 3 

 

Residual Variance at the Between Level for Outcome Yij 

 

ζYB bB 

.01    (ICCy=.01) .50 

.11    (ICCy=.10) .50 

.43    (ICCy=.30) .50 

1.0    (ICCy=.50) .50 

 

 

 

In the same vein, to create different latent factor ICC conditions (i.e., .01, .10, .30, .50), 

the factor variance ηB was also set to .01, .11, .43, and 1.00, respectively. Three sets of 

standardized factor loadings were (.5,.5,.5,.5), (.7,.7,.7,.7), and (.99,.99,.99,.99), and the 

corresponding measurement errors (δ1j to δ4j) were (.75,.75,.75,.75), (.51,.51,.51,.51), and 

(.02,.02,.02,.02), respectively. However, in some conditions, ηB was not equal to 1.0. The 

unstandardized between-level factor loadings (λ1j to λ4j) had to be recalculated through the 

following equation to keep the identical between-level variance (ΣB) in Equation (5): 

 

λ = sqrt ( λ2
standardized / ηB). (14) 

 

The corresponding λ1j to λ4j and δ1j to δ4j are shown in Table 4.  

The study applied the Monte Carlo procedure in Mplus 8 (Muthén & Muthén, 1998-

2017). Tables 2–4 summarize the 288 (6 × 4 × 12) conditions for the population model. For each 

condition, 500 datasets were generated. Following the multilevel settings of the TIMSS design, 

each simulation dataset contains 150 clusters with cluster size = 30. Datasets were created based 
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on a standard multivariate normal distribution utilizing a randomly chosen seed. The MLR was 

applied to obtain the model solutions.  

 

Table 4 

 

Population Measurement Model at the Between Level for the Latent Predictor 

 

ηB λstandardized λ1j to λ4j δ1j to δ4j 

.01  (ICCX=.01) .5 5, 5, 5, 5 .75, .75, .75, .75 

.01   (ICCX=.01) .7 7, 7, 7, 7 .51, .51, .51, .51 

.01   (ICCX=.01) .99 9.9, 9.9, 9.9, 9.9 .02, .02, .02, .02 

.11   (ICCX=.10) .5 1.51, 1.51, 1.51, 1.51 .75, .75, .75, .75 

.11   (ICCX=.10) .7 2.11, 2.11, 2.11, 2.11 .51, .51, .51, .51 

.11   (ICCX=.10) .99 2.98, 2.98, 2.98, 2.98 .02, .02, .02, .02 

.43   (ICCX=.30) .5 0.76, 0.76, 0.76, 0.76 .75, .75, .75, .75 

.43   (ICCX=.30) .7 1.07, 1.07, 1.07. 1.07 .51, .51, .51, .51 

.43   (ICCX=.30) .99 1.51, 1.51, 1.51, 1.51 .02, .02, .02, .02 

1.0   (ICCX=.50) .5 .5, .5, .5, .5 .75, .75, .75, .75 

1.0   (ICCX=.50) .7 .7, .7, .7, .7 .51, .51, .51, .51 

1.0   (ICCX=.50) .99 .99, .99, .99, .99 .02, .02, .02, .02 

 

 

 

 

Simulation Design Factors 

Five design factors were considered in this study. These were (1) latent predictor ICCX, 

(2) ICCY, (3) factor loadings at the within-level (λ1ij to λ4ij), (4) factor loadings at the between-

level (λ1j to λ4j), and (5) misspecification types.  

(1) Latent predictor ICCX 

The four levels of latent predictor ICCX were set to .01, .10, .30, and .50. An ICCX of .01 

implies that there was no data dependency for the latent predictor. Note that the calculations of 
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ICC for the latent predictor and for the observed items within the measurement model were not 

identical. More details can be found in the study of Hsu et al. (2016). 

(2) ICCY 

The four levels of ICCY were set to .01, .10, .30, and .50. 

 

(3) Factor loadings at the within level (λ1ij to λ4ij) 

Given that my primary focus was the within-level latent predictor, I set six levels of 

factor loadings for the within level (more than the between-level). The six levels of factor 

loadings at the within level were .50, .60, .70, .80, .90, and .99. The loading of .99 implied that 

the latent predictor was free of measurement error at the within-level. 

(4) Factor loadings at the between level (λ1j to λ4j) 

The three levels of factor loadings at the between level were .50, .70, and .99. The 

loading of .99 implied that the latent predictor was free of measurement error at the between 

level. 

(5) Misspecification types 

Five misspecification types were considered, including the MSEM, uncentered MLM, 

grand-mean centered MLM, group-mean centered MLM, and latent-mean centered MLM 

models. All the MLM models were with random intercepts and no random slope. Given that 

MLM is unable to incorporate any measurement models, an average score was computed through 

observed items (I1ij to I4ij) to represent a latent factor in all the MLM models, as shown in Figure 

2. The latent-mean centering in the current study followed the study of Asparouhov and Muthén 

(2019) and Example 9.1 of the Mplus 8 User’s Guide (Muthén & Muthén, 1998-2017). 
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In sum, for each data-generating model, a 4 (latent predictor ICCx) × 4 (ICCY) × 6 (factor 

loadings at the within level) × 3 (factor loadings at the between level) × 5 (misspecification type) 

factorial design was used, totaling 1,440 conditions.  

Analysis of Simulation Results 

The current study aimed to evaluate whether and to what extent using an average score in 

MLM leads to biased estimation. The primary focus was the performance of the standardized 

path parameter at the within level (βW) across conditions. R packages (e.g., MplusAutomation, 

Tidyverse, etc.) and Microsoft Excel were used to analyze and produce visuals of the simulation 

results (Hallquist & Wiley, 2018). A few analyses of the simulation results were conducted. 

First, as discussed in Chapter II, variance plays a key role in estimating βW, as shown in 

Equation (11). This study explored the relationship between the variance of the average score 

(VarM) and βW in MLM by conducting a regression analysis, controlling for the variance of Yij at 

the within level (VARYW) and the unstandardized path coefficient (bW). The results highlight the 

consequence of failing to partial out the error variance and between-level variance, providing 

insights in interpreting the evaluation results. 

Second, to evaluate the performance of βW in MLM, this study used the βW of MLM 

models (i.e., uncentered, grand-mean centered, group-mean centered, and latent-mean centered 

MLM models) to compare with the βW of MSEM at each condition (i.e., the same ICCX, ICCY, 

factor loadings at the within level, and factor loadings at the between level). In other words, the 

βW of MSEM was treated as a true population value at each condition. The major evaluation 

criteria for βW were the (1) relative parameter bias, (2) relative standard error bias, and (3) root 

mean squared error (RMSE). 
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(1) Relative parameter bias 

The relative parameter bias RPB(θ) was calculated as follows: 

 

𝑅𝑃𝐵(𝜃) = 𝑅−1 ∑
�̂�𝑟−𝜃

𝜃
𝑅
𝑟=1   , (15) 

 

where 𝜃𝑟 is the parameter estimate for replication r, θ stands for the population parameter, and R 

is the total number of replications. The acceptable RPB should be between -10% and 10% 

(Muthén & Muthén, 2002). 

(2) Relative standard error bias 

In a similar way, the relative standard error bias RSEB(θ) was calculated as follows: 

 

𝑅𝑆𝐸𝐵(𝜃) = 𝑅−1 ∑
𝑀𝑆�̂�𝑟−𝑆𝐷

𝑆𝐷
𝑅
𝑟=1   , (16) 

 

where 𝑀𝑆�̂�𝑟
 is the average of the estimated standard errors of the parameter estimate for 

replication r; SD stands for the true population value of this parameter, the standard deviation of 

the parameter estimate over the replications of the Monte Carlo study; R is the total number of 

replications. The acceptable RSEB should be between -10% and 10% (Muthén & Muthén, 2002). 

(3) RMSE 

The root mean squared error (RMSE) is a measure of overall accuracy (Ma, Raina, 

Beyene, & Thabane, 2012). The RMSE is defined as the square root of the sum of the variance 

and squared bias of the parameter estimate as follows: 

 

𝑅𝑀𝑆𝐸 = 𝑠𝑞𝑟𝑡 (𝐵𝑖𝑎𝑠2 + 𝑉𝐴𝑅(𝜃))  , (17) 
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where Bias represents 𝜃𝑟 − 𝜃 in Equation (15); 𝑉𝐴𝑅(𝜃) denotes the variance of the parameter 

estimate over the replications of the Monte Carlo study. The lower the RMSE, the higher the 

accuracy.  
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CHAPTER IV 

RESULTS 

 

 

The 4 (latent predictor ICCX: .01, .10, .30, and .50) × 4 (ICCY: .01, .10, .30, and .50) × 6 

(within-level factor loadings: .50, .60, .70, .80, .90, and .99) × 3 (between-level factor loadings: 

.50, .70, .99) × 5 (misspecification types: MSEM, uncentered MLM, grand-mean centered MLM, 

group-mean centered MLM, and latent-mean centered MLM models) factorial design yielded 

1,440 simulation settings. As shown in Table 5, MSEM was the population model for each 

simulation condition (N = 288), while MLM models with centering approaches were evaluated 

whether and to what extent computing an average score for a latent construct in MLM leads to a 

biased standardized path coefficient. Given that the analytic results of the grand-mean centering 

and uncentered approach in MLM were identical, this study only presents and evaluates the 

results for grand-mean centering, group-mean centering, and latent-mean centering under 

different simulation conditions (N = 288 × 3). 

  



 

32 

 

 

Table 5 

 

Simulation Settings for the Population Model and Misspecification Types 

 

Population model Misspecification types 

MSEM: Grand-mean centered 

MLM: 

Group-mean centered 

MLM: 

Latent-meancentered 

MLM: 

 

4 (latent predictor 

ICCX) × 4 (ICCY) × 6 

(within-level factor 

loadings) × 3 

(between-level factor 

loadings) = 288 

simulation conditions 

 

4 (latent predictor 

ICCX) × 4 (ICCY) × 6 

(within-level factor 

loadings) × 3 

(between-level factor 

loadings) = 288 

simulation conditions 

 

4 (latent predictor 

ICCX) × 4 (ICCY) × 6 

(within-level factor 

loadings) × 3 

(between-level factor 

loadings) = 288 

simulation conditions 

 

4 (latent predictor 

ICCX) × 4 (ICCY) × 6 

(within-level factor 

loadings) × 3 

(between-level factor 

loadings) = 288 

simulation conditions 

Note. The analytic results of grand-mean centered and uncentered MLM were identical.  

 

 

 

The Relationship Between VARM and βW in MLM 

Equation (11) implies that the variance of the average composite score (VARM) shows a 

strong impact on the estimation of the effect (i.e., the within-level standardized path coefficient, 

βW) between the within-level composite predictor (an average score computed through four 

items) (Mij) and the outcome (Yij). To verify the relationship between VARM and βW, I analyzed 

the simulation results across 864 conditions (i.e., 288 conditions × 3 centering approaches) in 

MLM. Variables collected from the simulation results included βW, VARM, the within-level 

variance of the outcome Yij (VARYW), and the within-level unstandardized path coefficient (bW), 

which are the important components of Equation (11).  
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The correlation matrix (Table 6) indicated the VARM and βW are highly correlated (r = 

.945) without controlling for VARYW and bW. I further conducted a multiple linear regression 

analysis to control for VARYW and bW. The regression results (Table 7) showed that a one 

standard deviation increase in VARM was associated with a 1.461 standard deviation increase in 

βW, over and above the VARYW and bW; namely, the higher the VARM, the higher βW. In other 

words, to avoid obtaining a biased βW, VARM should be estimated accurately. 

 

 

 

Table 6 

 

Correlations (r) for VARM, VARYW, bW, and βW (N = 864) 

 

 1 2 3 4 

1. VARM ─    

2. VARYW .820 ─   

3. bW -.708 -.257 ─  

4. βW .945 .829 -.540 ─ 

 

 

 

 

Table 7 

 

Results of the Multiple Linear Regression Analysis (N = 864) 

 

 β SE 

VARM 1.461*** (.005) 

VARYW -.259*** (.019) 

bW .428*** (.036) 

Intercept .067*** (.014) 

R2 .935*** 

Note. Dependent variable = βW; N = sample size; β = standardized coefficient; SE = standard 

error; *** p < .001. 
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Evaluating the Performance of βW of MLM 

Issues in examining the relationship (βW) between a within-level average composite score 

(representing a latent predictor) and a continuous outcome in MLM include the measurement 

error estimation and data dependency of the within-level predictors. These issues might bias the 

estimation of the variance of the average composite predictor (VARM) and further lead to an 

inaccurate βW.  

Hence, to evaluate the performance of βW in MLM, the βW of MSEM was treated as a true 

population value at each simulation condition given its capability to handle both measurement 

error and data dependency issues. The evaluation criteria were the (1) relative parameter bias, (2) 

relative standard error bias, and (3) root mean squared error (RMSE). For each criterion, factors 

potentially influencing the estimation of VARM, such as centering strategies, the level of within-

level factor loadings, the level of predictor’s ICC (ICCX), and the level of between-level factor 

loadings, were considered when evaluating the performance of βW in MLM. 

Relative Parameter Bias 

The distribution of relative parameter bias values of estimating the βW across conditions 

for each centering strategy in MLM by the level of within-level factor loadings is illustrated in 

boxplots in Figure 4. A range between two blue dashed lines (i.e., between -0.1 and 0.1) 

indicates an acceptable level of relative parameter bias; however, outside of this range, the βW 

would be considered biased. Overall, when the within-level factor loading for each item was 

equal to or above 0.80, the relative parameter bias values for the group-mean centering and 

latent-mean centering across conditions were acceptable.  

As discussed in Chapter II, group-mean centering and latent-mean centering have the 

capacity to partition the variance into the between level and within level. Only the within-level 
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variance of VARM is used for estimating the within-level effect (βW), no matter what the between-

level factor loadings and predictor’s ICC (ICCX) are. As expected, in Figure 4, in each level of 

within-level factor loadings, there were no variations of relative parameter bias values across 

other between-level related conditions (ICCY, ICCX, and between-level factor loadings) for 

group-mean centering and latent-mean centering. 

Even though group-mean centered MLM and latent-mean centered MLM can handle the 

data dependency issue for the within-level predictors, these two approaches are not able to deal 

with the measurement error issue. As shown in Figure 4, when the within-level factor loading 

was .99 (almost perfect reliability with very little measurement error), the relative parameter bias 

values for group-mean centered MLM and latent-mean centered MLM were close to zero. 

However, the relative parameter bias became worse as the level of within-level factor loadings 

decreased (i.e., measurement error increased) from .99 to .50. Based on Equations (5) and (10) 

and previous regression results, the relative parameter bias became worse because the lower 

within-level factor loadings led to a smaller variance of the average composite predictor (VARM) 

and further resulted in an underestimated within-level standardized path coefficient (βW) in 

MLM. 
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Figure 4. Boxplots showing the distribution of relative parameter bias values across conditions 

for each centering strategy in MLM by the level of within-level factor loadings. 

Note. Bias_B = relative parameter bias of βW; W_loading = within-level factor loading; GRA = 

grand-mean centering; GRO = group-mean centering; LMC = latent-mean centering. 
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Grand-mean centering cannot deal with both measurement errors and the data 

dependency of the within-level predictors. As shown in Figure 4, when the within-level factor 

loadings were .99 (almost perfect reliability with very little measurement error), most of the 

relative parameter bias values for grand-mean centered MLM were higher than 0.1 (out of the 

acceptable range). It was because the between-level variance was not separated out from VARM. 

The inflated VARM led to an overestimated βW. Interestingly, as the within-level factor loading 

decreased from .99 to .50, the relative parameter bias became better but was still risky because 

the between-level variance and measurement error variance canceled out each other (as discussed 

in Chapter II). Therefore, grand-mean centered MLM is not recommended. 

I further examined different levels of ICCX as shown in Figure 5. As expected, the 

relative parameter bias values were identical across different conditions of ICCX for group-mean 

centered MLM and latent-mean centered MLM. These two centering approaches were less 

biased only when the within-level factor loading for each item was equal to or above 0.80. Not 

surprisingly, because the between-level variance was not partitioned out in grand-mean centered 

MLM, the boxplots in each level of the within-level factor loadings across different ICCX 

roughly indicated that the higher the ICCX, the higher the relative parameter bias.  

Figure 6 shows the evaluation results of the relative parameter bias across conditions for 

each centering approach by the level of within-level and between-level factor loadings. The 

overall patterns in Figure 6 are similar to the results of Figure 5. Group-mean centering and 

latent-mean centering are recommended only when the within-level factor loadings are equal to 

or above 0.80. Again, for grand-mean centering, the between-level variance cannot be separated 

out. The higher level of factor loadings at the within level and between level lead to an inflated 

VARM. As a result, an inflated VARM brings about an overestimated βW. Therefore, in Figure 6, 
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grand-mean centered MLM shows high relative parameter biases when the factor loadings at the 

between- and within-levels are also high. 

 

 

 

 
Figure 5. Boxplots showing the distribution of relative parameter bias values across conditions 

for each centering strategy in MLM by the level of within-level factor loadings and ICCX. 

Note. Bias_B = relative parameter bias of βW; W_loading = within-level factor loading; GRA = 

grand-mean centering; GRO = group-mean centering; LMC = latent-mean centering. 
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Figure 6. Boxplots showing the distribution of relative parameter bias values across conditions 

for each centering strategy in MLM by the level of within-level factor loadings and between-

level factor loadings. 

Note. Bias_B = relative parameter bias of βW; W_loading = within-level factor loading; 

B_loading = between-level factor loading; GRA = grand-mean centering; GRO = group-mean 

centering; LMC = latent-mean centering. 
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Relative Standard Error Bias 

The boxplots in Figure 7 illustrate the distribution of relative standard error bias values 

across conditions for each centering strategy in MLM by the level of within-level factor 

loadings. A range between the two blue dashed lines (i.e., between -0.1 and 0.1) indicates an 

acceptable level. Overall, when the within-level factor loading for each item was equal to or 

above 0.80, the relative standard error bias values for the group-mean centering and latent-mean 

centering across conditions were acceptable. However, most conditions under the grand-mean 

centering were out of the acceptable range. 

Next, I examined the distribution for each centering strategy by the level of within-level 

factor loadings and ICCX. Similar findings are found in Figure 8. For group-mean centering and 

latent-mean centering, all relative standard error bias values were within the acceptable range. 

However, the standard error estimates for most conditions under the grand-mean centering were 

biased. Specifically, as the ICCX increased, the standard error estimates tended to be more 

underestimated. 

Figure 9 shows the evaluation results of relative standard error bias across conditions for 

each centering approach by the level of within-level factor loadings and between-level factor 

loadings. As expected, the relative standard error bias values of group-mean centering and latent-

mean centering were acceptable, while most conditions under the grand-mean centering showed 

an underestimated standard error especially for the conditions of high between-level factor 

loadings (above .70). 
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Figure 7. Boxplots showing the distribution of relative standard error bias values across 

conditions for each centering strategy in MLM by the level of within-level factor loadings.  

Note. Bias_SE = relative standard error bias; W_loading = within-level factor loading; GRA = 

grand-mean centering; GRO = group-mean centering; LMC = latent-mean centering. 
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Figure 8. Boxplots showing the distribution of relative standard error bias values across 

conditions for each centering strategy in MLM by the level of within-level factor loadings and 

ICCX. 

Note. Bias_SE = relative standard error bias; W_loading = within-level factor loading; GRA = 

grand-mean centering; GRO = group-mean centering; LMC = latent-mean centering. 
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Figure 9. Boxplots showing the distribution of relative standard error bias values across 

conditions for each centering strategy in MLM by the level of within-level factor loadings and 

between-level factor loadings.  

Note. Bias_SE = relative standard error bias; W_loading = within-level factor loading; B_loading 

= between-level factor loading; GRA = grand-mean centering; GRO = group-mean centering; 

LMC = latent-mean centering. 
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Root Mean Squared Error (RMSE) 

The root mean square error (RMSE) is a measure of the overall accuracy of βW. A larger 

RMSE indicates less accuracy in the estimate. The boxplots (Figure 10) show the distribution of 

RMSE values across conditions for each centering strategy by the level of within-level factor 

loadings.  

As anticipated, for the group-mean centering and latent-mean centering, the higher the 

within-level factor loadings (i.e., the lower measurement errors), the higher the accuracy in the 

estimate. It was because these two centering approaches cannot deal with the measurement error 

issues. Overall, when the within-level factor loadings were equal to or above .80, group-mean 

centering and latent-mean centering showed the higher accuracy than grand-mean centering for 

most simulation conditions. 

As for grand-mean centering, the boxplots in Figure 10 reveal the higher the within-level 

factor loadings (i.e., lower measurement errors), the lower the accuracy in the estimate. When 

the within-level factor loadings were .99 (with very few measurement errors), the grand-mean 

centering showed the lowest accuracy because the between-level variance showing a strong 

impact on the estimation was not separated out. As the within-level factor loadings decreased 

from .99 to .50, the decreasing within-level variance reduced the bias resulting from the 

between-level variance. Therefore, in some situations (e.g., within-level factor loadings = .50), 

grand-mean centering showed better accuracy than group-mean centering and latent-mean 

centering. This can be deceptive because measurement errors and data dependency could 

counterbalance each other at some points. 
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Figure 10. Boxplots showing the distribution of root mean square error (RMSE) values across 

conditions for each centering strategy in MLM by the level of within-level factor loadings. 

Note. W_loading = within-level factor loading; GRA = grand-mean centering; GRO = group-

mean centering; LMC = latent-mean centering. 
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Figure 11. Boxplots showing the distribution of root mean square error (RMSE) values across 

conditions for each centering strategy in MLM by the level of within-level factor loadings and 

ICCX. 

Note. W_loading = within-level factor loading; GRA = grand-mean centering; GRO = group-

mean centering; LMC = latent-mean centering. 

 

 



 

47 

 

 

 
Figure 12. Boxplots showing the distribution of root mean square error (RMSE) values across 

conditions for each centering strategy in MLM by the level of within-level factor loadings and 

between-level factor loadings. 

Note. W_loading = within-level factor loading; B_loading = between-level factor loading; GRA 

= grand-mean centering; GRO = group-mean centering; LMC = latent-mean centering. 
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Similar patterns can be found in Figures 11 and 12. Group-mean centering and latent-

mean centering showed a higher accuracy than grand-mean centering for most simulation 

conditions when within-level factor loadings are equal to or above .80. While the within-level 

factor loadings were .50, grand-mean centering showed better accuracy than group-mean 

centering and latent-mean centering. Under the conditions of each within-level factor loading, as 

the ICCX or between-level factor loadings increased, the accuracy for grand-mean centering 

decreased.  

In sum, based on the evaluation results of the relative parameter bias, relative standard 

error bias, and RMSE, group-mean centered and latent-mean centered MLM were less biased 

only when the within-level factor loadings were equal to or above 0.8. Even though the grand-

mean centered MLM showed better accuracy (RMSE) than the group-mean centered and latent-

mean centered MLM in some situations (e.g., within-level factor loading = 0.5), the grand-mean 

centered MLM yielded unacceptable relative parameter bias and relative standard error bias 

under the most conditions. Accordingly, grand-mean centered MLM (or uncentered MLM) is not 

recommended. 
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CHAPTER V 

DISCUSSION 

 

Educational research is inherently multilevel. Given that students are nested within 

schools, students in each school sharing the same culture, resources, and experiences tend to 

provide researchers with similar responses. This response pattern within a school (i.e., data 

dependency) violates the independence assumption of ordinary least squares (OLS) regression. 

Therefore, MLM has become a widely used approach for analyzing multilevel data in 

educational research.  

However, MLM still has limitations. First, MLM cannot handle the data dependency 

issue in the within-level predictors, and simply assumes that all the within-level predictors’ ICCs 

are equal to zero (no data dependency issues). Second, MLM cannot include a measurement 

model to handle measurement errors and construct a latent factor. An alternative approach is to 

compute a composite score through a set of observed items from a scale, and utilize the 

composite score that assumes the measurement to be error free to represent it in the analysis. 

Computing an average score to represent a latent factor is a common approach in educational 

studies, especially for studies using the TIMSS data (Martin & Preuschoff, 2008; Mullis, Martin, 

& Foy, 2008). Although MSEM is a promising approach for dealing with these issues (Table 8), 

educational researchers still prefer MLM to MSEM. Therefore, this simulation study aimed to 

demonstrate the biased estimates that emerge from failing to account for measurement errors and 

data dependency in the within-level predictors in MLM.  
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Table 8 

 

Modeling Latent Factors in Multilevel Settings: MLM vs. MSEM 

 

 MLM MSEM 

Measurement Models 
 

✔ 

Measurement Errors  
 

✔ 

Data Dependency in Outcome ✔ ✔ 

Data Dependency in the Within-level Predictors 
 

✔ 

 

 

 

The regression results and Equation (11) pointed out the importance of estimating an 

accurate variance for the within-level latent composite predictor (VARM). The results indicated a 

higher VARM leads to a higher βW. In other words, to avoid obtaining a biased βW, VARM should 

be estimated accurately. The VARM consists of the within-level variance and between-level 

variance. The total variance of each level is computed based on factor loadings, measurement 

errors, and factor variances, as shown in Equation (5). The data dependency and measurement 

error issues potentially lead to a biased VARM: 

(1) Data dependency 

The within-level predictor in MLM is theoretically assumed to contain no between-

level variance (i.e., ICCX = 0). If VARM actually contains between-level variance, the 

inflated VARM will lead to an overestimated βW.  

(2) Measurement errors 

The within-level predictor in MLM is theoretically assumed to be free of 

measurement error. If VARM contains measurement errors, which results in a smaller 

VARM, see Equation (5), the smaller VARM will lead to an underestimated βW (this 
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effect is known as regression dilution bias, or attenuation) (Hutcheon, Chiolero, & 

Hanley, 2010). 

(3) Data dependency + Measurement errors 

Data dependency implies the VARM contains between-level variance, leading to a 

large VARM. Measurement errors yield a small VARM. As discussed in Chapter II, 

there is a chance that data dependency (large VARM) and measurement errors (small 

VARM) may counterbalance each other in some situations. Therefore, using a 

composite score in MLM involves very complicated methodological issues, leading 

to an unreliable, risky result. Hence, the simulation conditions should consider the 

level of the intraclass correlation coefficients (ICC) for the predictor and outcome, the 

level of factor loadings of the latent predictor at the between- and within-levels, as 

well as centering strategies.  

The simulation results indicated that when both data dependency and measurement error 

issues are involved in MLM, group-mean centering and latent-mean centering demonstrated the 

capacity to partition the variance into the between level and within level across various 

conditions. However, these two centering approaches showed the limitations of handling 

measurement errors. The cutoff criterion of measurement errors for group-mean centering and 

latent-mean centering should be each a within-level factor loading ≥ 0.8 (i.e., each measurement 

error variance < 0.36; within-level composite reliability ω ≥ 0.88) (McDonald, 1970, 1999).  

In some situations (e.g., within-level factor loading = 0.5)., grand-mean centered MLM 

showed better accuracy (RMSE) than the group-mean centered and latent-mean centered options. 

It was because measurement errors and data dependency luckily canceled out each other. Despite 

that, the grand-mean centered MLM yielded unacceptable relative parameter bias and relative 
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standard error bias under the most conditions. Hence, grand-mean centered MLM (or uncentered 

MLM) is not recommended.  

Given that the impact from TIMSS research could potentially ripple through education 

policy and curriculum decisions in each country, a methodological study to evaluate the use of an 

average composite variable in MLM is needed. Accordingly, this simulation study followed the 

multilevel settings of TIMSS (i.e., the cluster size of TIMSS is about 30; the average number of 

clusters is approximately 150). Four items for a latent factor in this study were based on the 

number of items for math/science self-concept in TIMSS (Liou, 2014a, 2014b). The simulation 

results yielded biased βW estimates when grand-mean centering was used. However, as reviewed 

in Chapter II, many recent TIMSS researchers still used the grand-mean centered MLM in their 

BFLPE studies, and their studies had been highly cited by other research. 

There are a few limitations to this study. First, the simulation design was based on the 

TIMSS settings (i.e., cluster size = 30; the number of clusters = 150; the number of items = 4). 

Researchers in substantive areas may be situated in settings where other cluster sizes, numbers of 

clusters, and numbers of items would be more appropriate. Second, this study focused on simple 

model design, the relationship between a within-level predictor and an outcome in a two-level 

data structure. Researchers may have more complicated designs in their studies. Third, the 

current study did not address the missing data issue, and the current MLM design only focused 

on random intercepts with no random slopes. Therefore, the results of the group-mean centering 

and latent-mean centering were very similar (Asparouhov & Muthén, 2019). Future studies may 

consider other multilevel settings and complex models. 

Overall, this study makes a number of methodological and practical contributions to the 

literature. For the methodological contributions, the study presented and discussed the 
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importance of estimating an accurate variance for a within-level composite predictor when the 

data dependency and measurement error issues involved in the MLM analysis. For the practical 

contributions, the study provided researchers (especially for the TIMSS researchers) with the 

following two criteria of using an average composite score to represent a within-level latent 

predictor in MLM. First, group-mean centering or latent-mean centering must be used to deal 

with the data dependency of within-level predictors. Second, regarding the measurement error 

issue, the within-level factor loadings should be equal to or above .80 (i.e., each measurement 

error variance < 0.36; within-level composite reliability ω ≥ 0.88) (McDonald, 1970, 1999). 

Otherwise, MSEM is recommended. 
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CHAPTER VI 

CONCLUSION 

 

 

MSEM is a promising approach to dealing with data dependency and measurement error 

issues. However, many educational researchers still prefer MLM to MSEM. MLM cannot handle 

the data dependency issue in the within-level predictors and cannot include a measurement 

model to handle measurement errors and construct a latent factor. As such, computing an average 

score to represent a latent factor in MLM is a common alternative approach in educational 

studies. The current study evaluated the consequences of using an average score to represent a 

latent factor in MLM. The results suggested that the bias of using an average score to represent a 

latent predictor in MLM is acceptable only when the following criterion are met: (1) group-mean 

centering or latent-mean centering is utilized; (2) the within-level factor loading of each item is 

equal to or above .80 (i.e., within-level composite reliability ω ≥ 0.88). Otherwise, MSEM is 

recommended. 
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