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ABSTRACT 

 

Precise field phenotyping has always been a bottleneck in wheat breeding. 

Traditionally, field phenotyping has been done by physically inspecting plots one by 

one. A substantial amount of time, cost, and labor is required to collect data from many 

breeding lines. High-throughput phenotyping (HTP) is gaining interest in recent years. 

Advancement in Unmanned Aerial System (UAS) and sensor technology enabled the 

collection of high spatial and temporal resolution data which can be used in agricultural 

research and management. This study was conducted to develop and assess the use of 

UAS in wheat breeding. The major objectives of this study were to define UAS data 

collection and processing framework and to investigate the application of UAS data to 

assess disease, seasonal growth, and yield in wheat (Triticum aestivum L.).  

The experiment to investigate the application of UAS to assess disease severity 

was conducted in 2017 and 2018 at Castroville, Texas. RGB images were acquired by 

flying rotary wing UAS. Images were then processed to develop orthomosaics and three 

vegetation indices were calculated. Visual notes on field response and leaf rust severity 

were taken to calculate Coefficient of Infection (CI). A significant variation in 

vegetation indices was found among the wheat genotypes. Normalized Difference Index 

(NDI), Green Index (GI), and Green Leaf Index (GLI) were linearly related to CI with 

coefficient of determination (R2) values of 0.78 (p<0.05), 0.75 (p<0.05), and 0.72 

(p<0.05), respectively. Vegetation indices used in this study showed great potential for 

their use in leaf rust severity assessment in wheat. 
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Crop growth analysis was performed to investigate the application of UAS data 

to assess wheat seasonal growth. This field study was conducted in 2018-2019 winter 

wheat growing season and RGB-based multi-temporal UAS data were collected 

throughout the growing season. Canopy Cover (CC) was obtained from UAS images and 

used to perform growth analysis by fitting several growth functions. Four-parameter 

logistic growth function had the best fit with R2 value of 0.99 (p<0.05) and lowest Root 

Mean Square Error (3.43). Grain yield was positively associated with CC obtained 

during reproductive stage of wheat (R2=0.65, p<0.05), and negatively associated with 

the rate of canopy decay (R2=0.65, p<0.05) suggesting the importance of maintaining 

healthy canopy during grain filling for better yield.  

The relationship between UAS obtained canopy features and vegetation indices 

with grain yield was analyzed to develop a wheat yield prediction model. Eight 

vegetation indices and two canopy features (CC, canopy height) were extracted from 

multispectral and RGB imagery. UAS parameters obtained during grain filling stage of 

wheat were significantly related to grain yield (R2>0.30, p<0.05). A three-layered 

Artificial Neural Network (ANN) model was created using multi-temporal CC, canopy 

height, Excess Green Index (ExG), Normalized Difference Red Edge Index (NDRE), 

Normalized Difference Vegetation Index (NDVI), standard deviation of NDRE and ExG 

measurements as input parameters to predict grain yield. R2 values between predicted 

yield and observed yield were 0.78 and 0.60 (p<0.01) for training and testing data set, 

respectively. Satisfactory performance of ANN model shows the potential of using 

machine learning models to predict grain yield based on UAS parameters.    
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW  

 

Wheat (Triticum aestivum L.) is one of the most important staple food crops 

grown in the world. It is also a major crop in the U.S. Great Plains, including Texas High 

Plains (Howell et al., 1995). In 2018, it was planted in 90 thousand hectares in the Texas 

High Plains (USDA-NASS, 2019). The current global annual increase in wheat yield is 

about 0.9%. With a steady increase in global population, wheat yield needs to increase 

by 1.7% per year to feed the expected 9.7 billion people by 2050 (Hawkesford et al., 

2013). The impact of increasing temperature due to global warming and the decrease in 

the availability of freshwater resources for irrigation will be a major challenge for wheat 

production in the future. Development of better wheat cultivars through improved 

breeding (Donmez et al., 2001; Brancourt-Hulmel et al., 2003; Shearman et al., 2005; 

Foulkes et al., 2007; Green et al., 2012) and utilization of better crop management 

techniques (Evenson and Gollin, 2003; Pingali, 2012) have increased wheat production 

since the green revolution. Wheat breeding has played a crucial role to increase yield 

through the development of disease resistant (Ausemus, 1943; Sayre et al., 1997; 

Rajaram et al., 2001; Bariana et al., 2007; Hiebert et al., 2010; Paillard et al., 2012; 

Basnet et al., 2013; Rehman et al., 2013; Li et al., 2014; Ullah et al., 2015; Wu et al., 

2015; Tolmay et al., 2016), drought tolerant (Hurd, 1974; Cushman and Bohnert, 2000; 

Araus et al., 2002; Paulsen, 2002; Cattivelli et al., 2008; Fleury et al., 2010; Blum, 2011; 

Morran et al., 2011; Fritsche-Neto and Borém, 2012; Panguluri and Kumar, 2013; 
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Budak, Kantar and Yucebilgili Kurtoglu, 2013; Timmusk et al., 2014; Mwadzingeni et 

al., 2016; Mohammadi, 2018), and high-yielding cultivars (Slafer et al., 1994; Acreche 

et al., 2008; Bradshaw, 2017). It is important to improve genetics, agronomy and 

efficiency of wheat breeding programs to achieve the demand of wheat. Technologies 

that can complement conventional breeding approaches have the potential to identify 

new traits, improve genetic gain, widen the gene pool and identify elite progeny 

efficiently and precisely.  

Genetic gain is the improvement in the genetic or phenotypic value of a 

population due to selections over multiple breeding cycles (Tester and Langridge, 2010). 

During the variety development process, a population goes through a multiple year of 

recombination, selection, and evaluation until the best performing cultivar can be 

released. Evaluation and selection are based on the phenotypic and/or genotypic data 

collected during the growing season to induce genetic gain in the subsequent generation. 

The genetic gain is usually defined by the following formula according to the breeder’s 

equation (Rutkoski et al., 2016). 

                                  𝑅𝑅 = ir𝜎𝜎𝐴𝐴
2

y
      

Where 𝑅𝑅 is genetic gain over time, i is selection intensity, r is selection accuracy, 𝜎𝜎𝐴𝐴2 is 

genetic variance, and y is years per cycle.  
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Figure 1. Overall wheat breeding process and the potential of high-throughput 
phenotyping 
 

Selection intensity is the amount of population that is selected from the total 

population for a particular trait or traits combined. Population size affects selection 

intensity. Selection accuracy improves estimation of genetic value of a population. Thus, 

as outlined and explained by (Barabaschi et al., 2015; Bai et al., 2016; Araus et al., 

2018; Sun et al., 2019); increase in the genetic gain can be achieved by (i) expanding 

breeding program (ii) improving selection accuracy (iii) introducing enough genetic 

variation, and (iv) shortening the breeding cycles. To achieve the desired output using 

the components, the breeding program needs a high-throughput data collection and 

analysis mechanism for obtaining genetic and phenotypic information (Figure 1). 

Use of genomic tools such as Marker Assisted Selection (MAS), gene editing, 

and genetic engineering can help conventional breeding programs for selecting 
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genotypes for disease resistance (Jena and Mackill, 2008; G. Miah et al., 2013; Gous 

Miah et al., 2013). Although difficult, genomic approaches have the ability to assemble 

desired genes but it is necessary to screen a population for a certain trait under replicated 

trials across multiple environments (Kang et al., 2016) to finally produce a desirable 

variety. High throughput genotyping enables indirect selection of genotypes using 

predictive models prior to phenotyping. This reduces the number of genotypes that are 

needed to evaluate in the field (Lorenz et al., 2011). The genomic models require 

phenotypic data for the training population and is tested using an entirely different 

population. This model is then used to select another population. This process of 

genomic selection has the potential to improve genetic gain over time by increasing 

selection intensity, selection accuracy and genetic variance and reducing the time per 

cycle. However, genomic selection is much more dependent on the accuracy of 

phenotypic data of the training population. Development of low cost, non-destructive, 

high-throughput phenotyping (HTP) system not-only addresses the traditional labor and 

time intensive phenotyping system but also complements genomic selection.  

Precise field phenotyping has always been a bottleneck in wheat breeding. 

Traditionally, field phenotyping has been done by physically inspecting plots one by 

one. Substantial amount of time, cost and labor is required to collect phenotypic data 

from large number of breeding lines (Haghighattalab et al., 2016). For example, the 

Texas A&M wheat breeding program evaluates around 90,000 F5 head-rows annually 

and advances them to subsequent generations for derivation and subsequent testing in 

multiple environments (Figure 1). The accuracy of the manual data is affected by the 
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raters and their ability to properly diagnose the disease and other phenotypic features 

which can reduce the repeatability and reliability of the measured trait (Chakraborty et 

al., 2014; Mutka and Bart, 2015). HTP is gaining interest in recent years as an 

improvement to manual phenotyping. Plant phenotyping facilities are developed for 

green houses, growth chambers with robotics system and remote sensing tools to assess 

plant growth and development (Araus and Cairns, 2014). High-throughput field 

phenotyping tools use remote sensing techniques and capture information about a 

particular trait remotely. These techniques have several advantages over traditional 

phenotyping approaches (Araus et al., 2002; White et al., 2012; Panguluri and Kumar, 

2013b; Fernie and Gutierrez-Marcos, 2019; Furbank et al., 2019; Parmley et al., 2019; 

Pieruschka and Schurr, 2019; Pratap et al., 2019; York, 2019). HTP has the potential to 

enable rapid assessments of large breeding nurseries across time and space by providing 

high spatial and temporal resolution measurements from small plots. This can increase 

our capability to monitor and quantify field data obtained from multiple breeding 

nurseries and improve genetic gain in the long run. Ability to obtain precise phenotypic 

information can replace tedious and subjective ratings of breeding plots with highly 

dependable phenotypic information about a certain genotype (Mutka and Bart, 2015). If 

we look at the breeder’s equation of genetic gain, the high-throughput field phenotyping 

can improve genetic gain by improving selection intensity and selection accuracy 

directly and indirectly to all components of the equation.  

Ground-based platforms (Bai et al., 2016; Crain et al., 2016; Tattaris, Reynolds 

and Chapman, 2016; Thompson et al., 2018), satellite imaging (Tattaris, Reynolds and 
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Chapman, 2016; G. Yang et al., 2017), manned aerial system (Olanrewaju et al., 2019), 

Unmanned Aerial Systems (UAS) (Haghighattalab et al., 2016; Tattaris, Reynolds and 

Chapman, 2016; Chawade et al., 2019; Sun et al., 2019) are four different platforms 

commonly used to collect data for various agriculture applications (White et al., 2012; 

Sun et al., 2017; G. Yang et al., 2017; Sankaran et al., 2018; Chawade et al., 2019; 

Zhang et al., 2019). All these different platforms come with several advantages and 

disadvantages and can be used for specific applications. Ground-based platforms provide 

high resolution data (temporal and spatial) but they are time consuming if we collect 

data from many plots. Crain et al. (2016) developed a portable ground-based field 

phenotyping system (phenocart) by integrating a GreenSeeker, an infrared thermometer 

(IRT), and a global navigation satellite system (GNSS) receiver to measure Normalized 

Difference Vegetation Index (NDVI), canopy temperature, and geographic co-ordinates 

for geo-referencing. Although it allowed faster data collection of multiple traits from 

wheat breeding trials, it was expensive (~US$12,000) to build the platform compared to 

the UAS system. The phenotyping platform developed by mounting sensors on a high-

clearance tractor becomes even more expensive compared to the UAS (White et al., 

2012; Cobb et al., 2013; Yang et al., 2017). Additionally, the ground clearance and 

variation of canopy height between genotypes makes it even more difficult to obtain 

uniformity in data collection (Yang et al., 2017). Satellite imaging system have several 

challenges such as the cost of using the sensor and cloud coverage might obstruct image 

acquisition. Additionally, lower spatial and temporal resolution limits its use as a tool for 

HTP as plots in a breeding trial are relatively small in size (Chapman et al., 2014). Low 
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cost UAS can be used as a rapid, affordable, and efficient field-based crop phenotyping 

tool in breeding programs to collect data on several phenotypic features (Liebisch et al., 

2015; Inostroza et al., 2016). UAS-based remote sensing is gaining interest in recent 

years in high-throughput field phenotyping. Development of lightweight, low-cost 

portable sensors had added benefits of using UAS for obtaining high spatial and 

temporal resolution data which can be helpful for obtaining data from small breeding 

plots (Ashapure et al., 2019).  

UAS equipped with RGB, thermal and multispectral sensors have been used to 

estimate several crop biophysical parameters such as Leaf Area Index (LAI) (Potgieter et 

al., 2017; Yang et al., 2017), the fraction of intercepted photosynthetically active 

radiation (Guillen-Climent et al., 2012), biomass (Bendig et al., 2014, 2015; Bendig, 

2015; Brocks and Bareth, 2018; Acorsi et al., 2019), plant height (Bendig et al., 2014; 

Bendig, 2015; Anderson et al., 2019; Hassan et al., 2019), plant density (Yang et al., 

2017), disease assessment (Su et al., 2018), water stress (Hoffmeister et al., 2016), 

Canopy Cover (CC) (Chu et al., 2016), growth status (Du and Noguchi, 2017; Shafian et 

al., 2018) and yield (Yang and Everitt, 2002; Stroppiana et al., 2015; Hoffmeister et al., 

2016; Shi et al., 2016; Q. Yang et al., 2017; Zhou et al., 2017; Su et al., 2018; Anderson 

et al., 2019; Wang et al., 2019; Yang et al., 2019). The sensors capture the amount of 

light reflected by different objects in the surface of the earth. If we analyze the spectral 

reflectance curve of vegetation, soil and water in the electromagnetic spectrum then we 

can find the variation in the reflectance in the visible region, Near Infrared Region (NIR) 

and beyond. For healthy green vegetation, the reflectance is low in both the blue and red 
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regions of the spectrum, due to absorption by chlorophyll for photosynthesis while the 

reflectance is high in the green region (Wang et al., 2016). As NIR is affected by the 

cellular structure of leaves, the reflectance is much higher in this region. While the 

reflectance from soil is higher in the visible region than the vegetation and lower in the 

NIR region. UAS collect aerial image data, which can be converted into reflectance 

dataset to obtain meaningful information. These images can further be processed to 

generate plot level high throughput measurements. These measurements can be used as 

an indirect approach to study the agronomic and physiological traits of plants, which can 

be useful to evaluate genotypes in wheat breeding programs, thus increasing size and 

efficiency (Haghighattalab et al., 2016). These measurements will help to select parents 

and evaluate progenies on a large scale. One of the commonly used indirect approach of 

estimating a plant physiological trait is based on spectral vegetation indices (VIs).  

RGB and multispectral imagery can be used to obtain reflectance measurements 

in the red (R), green (G), blue (B), Red edge and NIR wavebands and calculate the 

spectral vegetation indices (VIs). Numerous VIs has been developed so far and are used 

to study the growth and development of vegetation. Table 1 provides a list of several VIs 

that has been used to assess disease severity, drought stress, and plant growth and can be 

derived from RGB and multispectral sensors. For example, the reflectance observed in 

the G, NIR and R channels can be used to obtain indices such as NDVI, Green 

Normalized Vegetation Index (GNDVI), and Normalized Difference Red edge Index 

(NDRE), Simplified Canopy Chlorophyll Content Index (SCCCI), and Green 

Normalized Difference Vegetation Index (GNDVI). NDVI is used to estimate green 
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biomass (Bendig et al., 2015; Olanrewaju et al., 2019; Zhang et al., 2019), canopy 

health, LAI (Araus et al., 2018) and yield (Goodwin et al., 2018). NDRE, which uses the 

reflectance obtained in the red edge region of the spectrum, can be used in vegetation 

stress detection and crop canopy senescence (Gitelson et al., 1996). GNDVI was used to 

estimate LAI, chlorophyll content, nitrogen, protein content and water content of the 

canopy (Prasad et al., 2007; Garcia-Ruiz et al., 2013). Potgieter et al. (2017) evaluated 

the use of NDVI, NDRE, and Enhanced Vegetation Index (EVI) to assess the seasonal 

leaf area dynamics of sorghum breeding lines. They found a good correlation of NDVI 

and EVI with plant number per plot, CC, and LAI. They also found that NDRE can be 

used to estimate chlorophyll content and was useful to characterize the leaf area 

dynamics and senescence. The indices in this study were obtained from a multispectral 

sensor flown using UAS. Shafian et al. (2018) evaluated UAS-derived NDVI, GNDVI, 

Enhanced Vegetation Index (EVI), and Modified Triangular Vegetation Index (MTVI2) 

to quantify LAI, fractional vegetation cover, and yield in sorghum. Of the four indices, 

NDVI was highly correlated with LAI, fractional vegetation cover, and yield. NDVI was 

strongly correlated with LAI followed by vegetation cover, and yield. They also stated 

that NDVI obtained during the flowering stage of sorghum (Sorghum bicolor L.) was 

highly correlated with grain yield. NDVI measured during grain filling had a higher 

correlation with wheat grain yield in a study conducted by Hassan et al. (2019). They 

concluded that the multispectral sensor mounted on a UAS platform can be a reliable 

high-throughput platform to measure NDVI and use it to predict biomass and grain 

yield. Additionally, a higher heritability estimates of NDVI obtained during flowering 
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and grain-filling stages suggested that grain-filling can be an appropriate stage to make 

selections based on UAS measurements. Strong correlations were found between UAS-

based NDVI measured around flowering and final grain yield (Duan et al., 2019). NDVI 

is strongly associated with aboveground biomass and total green area (Cabrera-Bosquet 

et al., 2011). Green leaf Index (GLI), Green Index (GI) and Normalized Difference 

Index (NDI) are some of the indices that can be developed by using only the RGB band 

information. GLI values range from -1 to +1. Feature with negative GLI values represent 

non-living objects while positive values represent green canopy features. This index was 

originally formulated to measure CC in wheat (Louhaichi et al., 2001). GI, which is the 

ratio of reflectance in the R and G region is negatively associated with leaf rust severity 

in wheat (Ashourloo et al., 2014). NDI was developed to filter soil and residue 

background and select green vegetation in the images (Perez et al., 2000).  
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Table 1. List of spectral vegetation indices 
Reflectance obtained in the red band is denoted by R, green band by G, red edge by RE, and near infrared 
by NIR. 

Vegetation indices Formula References 

Green Leaf Index (GLI) 2G − R − B
2G + R + B

 Louhaichi et al., 

2001 

Green Index (GI) R
G

 Zarco-Tejada et 

al., 2005 

Normalized Difference Index 

(NDI) 

G − R
G + R

 Perez et al., 

2000 

Normalized Difference Vegetation 

Index (NDVI) 

NIR − R
NIR + R

 Rouse et el., 

1974 

Normalized Difference Red Edge 

Index (NDRE) 

NIR − RE
NIR + RE

 Barnes et al., 

2000 

Simplified Canopy Chlorophyll 

Content Index (SCCCI) 

NDRE
NDVI

 Raper and 

Varco, 2015 

Green Normalized Difference 

Vegetation Index (GNDVI) 

NIR − G
NIR + G

 Giletson et al., 

2003 

Soil Adjusted Vegetation Index  

(SAVI) 

1.5(NIR − R)
NIR + R + 0.5

 
Huete, 1988 

Modified Soil Adjusted Vegetation 

Index (MSAVI) 

2𝑁𝑁𝑁𝑁𝑁𝑁 + 1 − �(2NIR + 1)2 − 8(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅)
2

 
Qi et al. (1994) 

 
Although, VIs can be used to measure and estimate several crop biophysical 

parameters, they are subjected to limitations. One of the major limiting factors is the 

influence of soil background on the measurements. Additionally, the vegetation indices 

are saturated when the plot is fully covered by the canopy. Other factors that influence 
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the VIs measurements are crop type and climate. The proper time and growth stage for 

collecting spectral data is still a topic of discussion. Some researchers propose that data 

collection should be done when the crop canopy is fully covered. However, others argue 

that the data collection should be done before the ground is fully covered by the canopy 

so that there will be enough threshold between the soil and canopy to filter the later from 

former. The color of the soil on other hand play an important role when calculating 

vegetation indices as the canopy during senescence sometimes can resemble to the soil 

in wheat (Colwell, 1974). Yang et al. (2001) reported that the NDVI measured between 

soft to hard dough to before physiological maturity can be important in predicting yield. 

The use of including threshold values in the vegetation indices can be another approach 

to estimate green biomass. For example, an NDVI value of 0.5 or higher can be 

considered as the canopy pixels in the image while the lower values can be classified as 

soil pixels (Potgieter et al., 2017). Duan et al. (2019) suggested a data fusion technique 

in which the ground and aerial sensing system can be integrated to improve the accuracy 

of the estimates across multiple resolution and scales. Thus, it is important to reduce the 

contribution of the soil in the VI measurements to determine the canopy VI. Therefore, it 

is necessary to test the ability of VIs according to the crop and the growing conditions. 

The influence of the climate and environmental variability on the UAS data collected 

multiple times during the growing season is the use of radiometric calibration technique 

to maintain the uniformity in the reflectance data despite changing weather conditions 

during the crop growing season.  
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Using the radiometric calibration approach, image digital numbers (DN) are 

converted into surface reflectance values so that the uniformity can be obtained across 

multiple measurements throughout the growing season. The data obtained from UAS 

imagery are in the form of DN and are converted into reflectance data following 

different procedures. Radiometric correction is done to calibrate the pixel values and 

correct errors in the values. During this process, DN from the imagery data sets are 

converted into reflectance values to derive meaningful interpretation of remotely sensed 

data. Most importantly, if we are comparing multiple imagery data sets gathered for 

monitoring crop growth dynamics, radiometric correction is essential as climatic 

conditions vary during the growing season. If we use satellite imagery, atmospheric 

correction is needed to discard the effects of atmospheric absorption and scattering on 

imagery dataset. However, the UAS platforms are usually flown in lower altitudes (20 

m-120 m) in which the reflected light passes through a small atmospheric column. This 

results in small difference in radiance in the sensor, and in the surface. Therefore, the 

work of atmospheric correction is discarded. However, radiometric calibration should be 

done on the UAS imagery. There are several different approaches to conduct radiometric 

calibration such as vicarious calibration, absolute radiometric calibration, and relative 

radiometric calibration. Vicarious calibration is usually performed on satellite imagery. 

When the satellite overpasses a certain region, at that same time, hyperspectral surface 

reflectance data and atmosphere transmittance data are measured. These measurements 

along with local meteorological data are used with the satellite measured values to 

develop a calibration coefficient. This type of calibration is performed by MODTRAN 
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software (Berk et al., 2014). Absolute radiometric calibration is also performed in 

satellite imagery data. In this approach, Pseudo Invariant Calibration Sites (PICS) are 

constructed on the earth surface where the surface reflectance properties are constant. 

The reflectance obtained on these sites are used as calibration sources. These sites are 

made in the regions where there is minimal atmospheric variation. In relative radiometric 

calibration, calibration from one detector is done to another in the system. One of the 

most common methods of radiometric calibration of UAS imagery is the empirical line 

method (Haghighattalab et al., 2016). In this method calibration targets of known 

reflectance are placed in the field during the UAS flight. The spectral measurements 

(reflectance) of these calibration targets are recorded using spectrometer and the DN are 

extracted during image processing. The DN values of the target are plotted against the 

reflectance values to obtain a regression equation. With the advancement of sensors, real 

time radiometric corrections are performed based on the amount of light incident and 

reflection from the objects. One of such sensors is SlantRange 3p which has onboard 

sunlight correction ambient illumination sensor that calibrates the imagery data based on 

the proportion of the amount of light incident on and reflected from the surface. It 

captures the incoming solar radiation and the reflected radiation. Radiometric correction 

of the sensor coupled with radiometric calibration of the UAS imagery would be a better 

option for obtaining precise results. UAS provides higher flexibility in data collection as 

that can be arranged in a day without cloud coverage. Also, UAS can collect data when 

the sky is completely covered by clouds. As the UAS platforms fly in lower altitude, the 

radiations reflected to the sensors incur less error because of atmospheric conditions 
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such as clouds, dusts, aerosols, etc. For example, clouds and snow tend to be bright in 

the red and dark in the NIR region of the spectrum. This can significantly vary the 

results of vegetation indices obtained from UAS and satellite imagery. 

Canopy height is another important trait that can be used to study the crop 

phenology and growth. It can be used as a measure to estimate crop biomass and final 

yield. Traditionally, plant height is measured by using a scale meter in wheat breeding. 

This requires substantial amount of time if we are required to take multiple plant height 

measurements in a single plot. One of the common approaches to obtain canopy height is 

the photogrammetric method using the principal of stereo vision (Xiao et al., 2010). 

Another approach is the use of airborne or ground-based LiDAR sensor (Popescu et al., 

2003). Although the LiDAR measurements are relatively accurate, the sensor is costly, 

and it is difficult to handle in a wheat breeding trial. RGB images obtained by flying 

UAS platforms at low altitude can be used to develop Digital Surface Model (DSM) of 

the bare ground and the surface of the canopy which can be used to determine canopy 

height (Jensen and Mathews, 2016). Biomass can be estimated using the plant height 

derived from DSM in wheat. Khan et al. (2018) evaluated UAS and mobile ground 

platform (MGP) to estimate canopy height and canopy vigor in wheat. They found that 

the MGP imaging system provided better estimates of height while the UAS was able to 

provide better estimates of canopy vigor. One of the reasons for obtaining better results 

using MGP system was the acquisition of high-resolution imagery. This shows that the 

development and use of sensors on UAS platforms capable of flying at lower altitude 

can provide better estimates of canopy height measurements. Higher resolution images 
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can be useful to differentiate wheat canopy from the soil as the leaves of the wheat 

plants are small. UAS can be used to obtain high resolution images which can be used to 

generate 3D point clouds and produce DSM using the Structure from Motion (SfM) 

approach. This technique has been used by several researchers to obtain canopy height in 

maize (Zea mays L.) (Anderson et al., 2019), sorghum (Hu et al., 2018), and wheat 

(Holmen et al., 2016). Bendig (2015) used UAS-based RGB imagery to develop crop 

surface models (CSMs) multiple times during the growing season to estimate canopy 

height. The results obtained in these studies were highly correlated with ground 

measurements. Anderson et al. (2019) used this same method to determine canopy 

height of maize and estimate grain yield.  In this method, digital terrain model (DTM) 

developed from the UAS images of bare ground is acquired immediately after planting. 

Once the plants emerge and canopy is developed, UAS flights are conducted to obtain 

images to develop CSM. Ground control points are placed in the field to obtain the 

geographic coordinates so that each image can be geo-referenced when developing the 

point cloud data sets. The canopy height model is developed by subtracting DTM from 

CSM. Many studies have shown that the results obtained from this method are reliable 

and accurate. However, the accuracy of the measurement depends on the absolute 

accuracy of the 3D point cloud data, image overlap, spatial resolution, and accurate 

coordinate measurement of the ground control points. Although, UAS platforms are 

mounted with their own GPS system, their accuracy is affected by the wind and the 

motion during the flight mission. Therefore, it is suggested to place permanent/semi-

permanent ground control points in the field while flights are conducted. Additionally, 
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accurate geo-referencing is highly desirable to extract phenotypic data from orthomosaic 

images in plant breeding. During data extraction plot boundary shape file is generated 

that constitute polygon shape file for each plot and accurate geo-referencing can save the 

amount of time required to generate the plot boundary shape files.  

Developing wheat genotypes for better yield, quality, disease resistance, and 

drought tolerance is the primary goal of any wheat breeding. Development of disease 

resistance varieties is important as wheat is threatened by one or several diseases every 

year in most of the wheat producing regions in the world. In the United States, leaf rust 

caused by fungus Puccinia triticina f. sp. tritici, is one of the most important diseases 

(Kolmer and Hughes, 2018). It is important to grow resistant varieties on the southern 

region of the US as the uredospores survive the winter in this region and become the 

source of inoculum for leaf rust infection in the wheat grown in the Central and Northern 

Great Plains. Additionally, continuous development of resistant varieties to leaf rust is 

critical as new virulent leaf rust races develop every year and overcome the varietal 

resistance (Oelke and Kolmer, 2004). Precise and efficient disease phenotyping can play 

an important role in the development of wheat cultivar resistant to leaf rust. The use of 

UAS to assess disease severity in different crops such as yellow rust (Puccinia 

striiformis f. sp. tritici) in wheat (Su et al., 2018), rice sheath blight (Rhizoctonia solani) 

in rice (Oryza sativa L.) (Qin and Zhang, 2005; Zhang et al., 2018), anthracnose 

(Colletotrichum sublineola) in sorghum (Sorghum bicolor L.) (Pugh et al., 2018) has 

been studied and it was shown as a potentially useful tool for assessing plant diseases. 

Wheat yield is the culmination of several directly and indirectly related factors. 
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Incorporating several phenotypic features obtained from imagery dataset can help to 

develop precise yield prediction models and explain yield variation among genotypes. 

Strong relationship between UAS-based NDVI and grain yield were observed at grain-

filling stage (R2 = 0.40, 0.49 and 0.45) of wheat grown under irrigated condition in a 

study conducted by Hassan et al. (2019). Additionally, NDRE and normalized green red 

difference index (NGRDI) correlated in a similar way with grain yield. UAS equipped 

with multispectral sensor can be a reliable tool to predict biomass and grain yield. 

Anthesis and grain-filling stages (10.51 to 11.1 in Feekes scale; Large (1954)) of wheat 

development are the best periods for making selection based on UAS measurements. 

Genotypes with higher NDVI have faster growth, higher vegetative biomass, delayed 

senescence and have higher yields. Multi-temporal measurements throughout the wheat 

growing season can help to predict yield based on UAS parameters (Goodwin et al., 

2018). Thus, UAS can be considered as having a great potential to be incorporated into 

wheat breeding programs but its technical capabilities should be studied to make its use 

specific to wheat breeding programs. This study was conducted to develop and evaluate 

the use of high-throughput field phenotypic system for disease and yield phenotyping in 

wheat breeding with the following objectives: 

1. Develop a procedure for image acquisition, processing and data 

extraction using UAS, 

2. Develop image processing methodology to determine canopy height, 

canopy volume, canopy area, and vegetation indices specific to wheat, 
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3. Validate the UAS-based canopy features results with the field 

measurements for disease severity, and use UAS derived canopy features 

to assess disease severity in wheat, and  

4. Use UAS derived canopy features to perform growth analysis and 

estimate grain yield in wheat 
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CHAPTER II  

ASSESSING WINTER WHEAT FOLIAGE DISEASE SEVERITY USING AERIAL 

IMAGERY ACQUIRED FROM UNMANNED AERIAL SYSTEM (UAS) 

 

INTRODUCTION 

Wheat (Triticum aestivum L.) is one of the most important cereal crops and is 

widely grown around the world. However, in most of the wheat producing regions, it is 

threatened by one or several fungal, bacterial, or viral diseases that can cause partial or 

complete canopy damage (Prescott, Burnett and Saari, 1986). In most of the U.S. wheat 

producing areas, leaf rust, caused by the fungus Puccinia triticina f. sp. tritici, is one of 

the most important diseases (Line and Chen, 1995; Kolmer and Hughes, 2018). When 

the plant is infected by leaf rust, small brown pustules develop on the leaf surface. These 

pustules are the fruiting bodies (uredinia) and produce urediospores. A single uredinium 

can produce numerous spores on the leaf surface within a short time under favorable 

conditions(Stubbs et al., 1986). Once the leaf is infected, chlorophyll content and 

photosynthesis are reduced (Carretero, Bancal and Miralles, 2011) which can cause 

severe yield losses in highly susceptible cultivars. Severe epidemics of leaf rust occurred 

in 2007 in the U.S. Great Plains and caused almost 14% yield losses in some places 

(Wegulo and Byamukama, 2012). If the disease appears early in the season it can reduce 

yield by more than 20% (Roelfs et al., 1992). The reduction in grain yield is primarily 

attributed to reduced floral set (Roelfs et al., 1992) and kernel weight (Singh and Huerta-

Espino, 1997). Growing resistant varieties and the effective use of pesticides have 
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decreased the severity and incidence of leaf rust in the US. However, varietal resistance 

is the most economical method in controlling the disease (Oelke and Kolmer, 2004; 

Ponce-Molina et al., 2018).  

Growing resistant varieties in the southern region of the U.S. is important as the 

uredospores survive the winter in this region and become the source of inoculum for leaf 

rust infection in the wheat growing in the Central and Northern Great Plains during 

spring (Wegulo and Byamukama, 2012). Additionally, continuous development of 

resistant varieties to leaf rust is critical as new virulent leaf rust races develop every year 

and overcome varietal resistance (Oelke and Kolmer, 2004; Ponce-Molina et al., 2018). 

Precise and efficient disease phenotyping can play an important role in the development 

of wheat variety resistant to leaf rust (Zhang et al., 2018). Traditionally, disease 

phenotyping is done by trained personnel through visual assessment of infection type 

and severity (Ali and Hodson, 2017). The accuracy of visual data is affected by the raters 

and their ability to properly diagnose the disease, which can reduce the repeatability and 

reliability of disease estimates (Mutka and Bart, 2015). Moreover, a significant amount 

of time, labor, and money is required to collect data from large breeding nurseries 

(Haghighattalab et al., 2016; Wang et al., 2016). The development and use of 

phenotyping tool that can provide precise disease estimates can assist breeders to 

evaluate genotypes for disease severity and make selection decisions. Low cost 

Unmanned Aerial System (UAS) can be used as a rapid, affordable, and efficient field-

based crop phenotyping tool in breeding programs (Haghighattalab et al., 2016; 

Potgieter et al., 2017). The use of UAS to assess disease severity in different crops such 
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as yellow rust (Puccinia striiformis f. sp. tritici) in wheat (Su et al., 2018), rice sheath 

blight (Rhizoctonia solani) in rice (Oryza sativa L.) (Qin and Zhang, 2005; Zhang et al., 

2018), anthracnose (Colletotrichum sublineola) in sorghum (Sorghum bicolor L.) (Pugh 

et al., 2018) has been studied. UAS can provide rapid and non-destructive HTP 

measurements for detecting and monitoring plant diseases and have several advantages 

of being low cost, flexible, convenient, and high-spatial resolution data collection tools 

(Dash et al., 2017).  

UAS platforms equipped with red, green, blue (RGB), multispectral, 

hyperspectral, and thermal sensors can provide real time data for several phenotypic 

traits of plants (Yang et al., 2017). All these sensors have their own advantages and 

disadvantages in terms of resolution, precision, weight, size, and cost. Compared to 

hyperspectral and multispectral sensors, the RGB camera has lower spectral resolution 

but it has the advantages of low cost, high spatial resolution, light weight, small size, 

easy operational procedure, and convenience in image processing (Yang et al., 2017).  

The data obtained from RGB camera can further be processed to develop reflectance 

data and obtain vegetation indices (Du and Noguchi, 2017). These indices can be used as 

an indirect approach for disease phenotyping in wheat breeding programs. 

The amount of light reflected in the visible region is significantly different 

between leaf rust infected and healthy leaves (Wang et al., 2016).  When the chlorophyll 

content is reduced in the diseased leaf, the reflectance is higher in the red region and 

lower in the green region of the spectrum (Wang et al., 2016). This variation offers a 

potential to use RGB camera for assessing leaf rust severity in wheat. Some of the 
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commonly used spectral vegetation indices derived from RGB sensors are Green leaf 

Index (GLI), Green Index (GI) and Normalized Difference Index (NDI). GLI values 

range from -1 to +1. Feature with negative GLI values represent non-living objects while 

the positive values represent green vegetation. This index was originally formulated to 

measure Canopy Cover (CC) in wheat (Louhaichi et al., 2001). GI, which is the ratio of 

reflectance in the red and green region is negatively associated with leaf rust severity in 

wheat (Ashourloo et al., 2014). NDI was developed to separate plants from soil and 

residue background in the images (Pérez et al., 2000). There are several other indices 

that use reflectance data obtained beyond the visible region of the spectrum. Su et al. 

(2018) examined different vegetation indices and found Ratio Vegetation Index (RVI), 

Normalized Difference Vegetation Index (NDVI), Optimized Soil Adjusted Vegetation 

Index (OSAVI) as top three indices and red and NIR bands to be the top two spectral 

bands to classify healthy and yellow rust infected wheat plants. Although this low-cost 

technology offers great potential in field phenotyping for disease severity, there are few 

studies in the literature primarily focused on improving its technical capabilities and use 

for assessing leaf rust severity in wheat. In this study, a multirotor UAS equipped with a 

digital camera (Red, Green, and Blue bands) was flown over the Multi-state Wheat Rust 

Evaluation Nursery (MSREN) at Castroville, TX to capture high-spatial resolution 

images of wheat genotypes infected with leaf rust. The specific objectives of this study 

were to: 1) outline the procedure of UAS image acquisition, processing and data 

extraction, 2) determine the relationship between UAS-based vegetation indices and 
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field measurements of disease severity, and 3) discuss the opportunities and limitations 

of using UAS to assess disease severity in wheat.     

MATERIALS AND METHODS 

Study area 

A field experiment was conducted at the MSREN located at Castroville, Texas 

(35º11’N, 102º06’W, and elevation 1170 m) in 2017 and 2018 wheat growing seasons. 

Major screening of Texas A&M’s (TAM) wheat breeding lines for leaf rust resistance 

takes place in this nursery. The nursery is in the southern region of Texas and has 

favorable weather conditions for leaf rust inoculum to survive the winter. The 

overwintering fungi in this region develops spores in the spring (usually third week of 

March) when the weather is moist and temperature is below 20°C. Wheat grown in 

Castroville is mainly infected by leaf rust and the urediospores appear in the flag leaf 

during the third week of April. Thirty-four and 45 winter wheat genotypes representing 

Uniform Varietal Trial (UVT) of TAM wheat breeding program were grown in 2017 and 

2018, respectively. Genotypes were replicated three times in a randomized complete 

block design. Plots were 3.4 m × 1.52 m in size consisting of seven rows with 0.18 m 

spacing. Seeds were sown on November 13, 2016 and November 15, 2017. Irrigation 

was maintained at optimum level throughout the growing season and other agronomic 

practices such as nutrient management and weed control were carried out as needed 

(Kimura et al., 2018).  
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Image acquisition, geo-referencing, and radiometric calibration 

DJI phantom 4 pro (SZ DJI Technology Co., Ltd, Shenzhen, China) was flown in 

this study. Phantom 4 pro is a low cost, light weight multi-rotor UAS equipped with 20 

megapixels one-inch CMOS (Complementary metal-oxide-semiconductor) RGB sensor. 

This platform also has an additional advantage of flying at low altitude, which is helpful 

for obtaining ultra-high resolution orthomosaic images.  In this study, UAS was flown at 

25 m altitude to obtain sub-centimeter (~0.7 cm/pixel) ground resolution. Pix4Dcapture 

(Pix4D S. A, Switzerland), a UAS mission planning software was used to plan UAS 

flights. The flight plan was set to 85% forward and backward overlap and the camera 

was set to face vertically downwards at nadir. UAS data were collected on April 14 and 

April 15 in 2017 and 2018 respectively when the leaf rust infection was visible in the 

flag leaf. Images were captured during the solar noon and field data were taken after the 

UAS flights on the same date.  

Portable ground control points (GCPs) were placed across the field before flying 

the UAS. The GCPs were 0.6 m × 0.6 m square plywood board, painted black and white 

to make them easily identifiable during image processing. V-Map Post Processing 

Kinematic (PPK) system (Micro Aerial Projects LLC., Gainsville, FL) was used to 

survey precise coordinates of GCPs. GCPs were placed in the field before the flight and 

were collected once the flights were conducted and coordinate date was taken.  

Radiometric calibration is the conversion of image digital numbers (DN) to 

surface reflectance values to compare data obtained across different dates and different 

crop growing seasons (Mafanya et al., 2018). Airborne sensor ground calibration panels 
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(Group 8 technology, Inc., Utah, USA) were used to convert digital number (DN) values 

into reflectance measurements. Four level gray panels of 3%, 12%, 33%, and 56% 

reflectance were placed in the field during UAS data collection. These panels were 0.6 m 

× 0.6 m square in size and made from type 822 fabric providing uniform reflective 

surface. The spectral reflectance of the panels was measured using ASD 

Spectroradiometer (Malvern Panalytical, Malvern, UK). Mean DN value of the 

reflectance panel was extracted from the orthomosaic for all the RGB bands separately. 

An equation was developed for all the red, green and blue bands after regressing the DN 

values with the surface reflectance values of the reflectance panels. In this study, the 

relationship between reflectance data and DN values of calibration target was 

exponential for all the three bands. Therefore, a simplified empirical line method of 

radiometric calibration proposed by Wang and Myint (2015) was followed. According to 

this method, a natural log transformation was carried out on reflectance values and again 

regressed to obtain a linear relationship between image DN values and reflectance as 

follows. 

− ln(𝑦𝑦) = 𝑚𝑚 × (𝐷𝐷𝐷𝐷) + 𝐶𝐶                                                                  

Where y is reflectance, m is slope for each individual band, DN as the digital number of 

that respective band, and C is the calibration parameter.    

Image processing and data extraction 

After each flight, images were processed using Agisoft metashape software 

(Agisoft LLC, St. Petersburg, Russia, 191144) to generate 3D point cloud, Digital 

Surface Model (DSM), and orthomosaic images. Once the orthomosaic was developed, 
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vegetation index maps were created on QGIS software (www.qgis.org) using raster 

calculator tool. Plot boundary shape file was created using plot boundary tool available 

in the UAS hub (https://uashub.tamucc.edu) for plot level data extraction. Each plot has 

a boundary of 3 m × 1.2 m leaving boarders on each side of the plot. Plot boundary 

shape file was overlaid on the vegetation index map and plot level data was extracted 

using zonal statistics tool in QGIS software. 

Spectral vegetation indices 

Spectral vegetation indices are the combination of two or more bands to obtain 

information about the vegetation. Compared to hyperspectral and multispectral imagery, 

the vegetation indices obtained from RGB imagery are limited because of the limited 

number of bands and wider spectral band width. However, it has the advantages of using 

low cost UAS platform, easy operational procedure, and convenience in image 

processing. It also serves as a useful tool to visually screen the spread and intensity of 

disease. Vegetation indices have been used to determine disease severity in different 

crops (Zang et al., 2018; Ashourloo et al., 2014; Su et al., 2018; Pugh et al., 2018). In 

this study, we adopted four different vegetation indices that could be used to assess leaf 

rust severity based on previous literature findings (Table 2). These indices estimate 

chlorophyll content and greenness of the canopy and can provide indirect assessment of 

the damage caused by the disease. 
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Table 2. Spectral vegetation indices used in this study  
Reflectance obtained in the red band is denoted by R, green band by G, blue band by B, and near infrared 
by NIR. GLI, GI, and NDI were obtained from Unmanned Aerial System (UAS) and NDVI measurements 
were taken using handheld green seeker. 

Vegetation indices Formula References 

Green Leaf Index (GLI) 2G − R − B
2G + R + B

 Louhaichi et al., 2001 

Green Index (GI) 𝑅𝑅
𝐺𝐺

 Zarco-Tejada et al., 2005 

Normalized Difference Index (NDI) G − R
G + R

 Perez et al., 2000 

Normalized Difference Vegetation Index (NDVI) NIR − R
NIR + R

 Rouse et al., 1974 

 

Ground measurements 

A handheld GreenSeeker (Trimble Navigation Limited, California, US) was used 

to collect NDVI data from each plot. This device has an active sensor and measures the 

amount of light reflected in the red and NIR regions to calculate NDVI (Rouse et al., 

1973). Seven NDVI measurements were made in each plot on the same date when UAS 

data were collected, and they were averaged to obtain the plot-wise average NDVI value. 

For ground truthing, visual notes on field response, a.k.a, infection type and disease 

severity, were taken for leaf rust infection following the rust scoring guide from 

International Maize and Wheat Improvement Center (CIMMYT) (Rust-scoring guide, 

CIMMYT, 1986). Infection type measures the nature of disease reaction and is 

expressed as Resistant (R), Moderately Resistant (MR), Moderately Susceptible (MS), 

and Susceptible (S). Severity is the percentage of rust infection on the plants and is 

largely determined by the number of pustules present in the leaf surface. Visual rating of 

disease severity was recorded on a scale of 0-100% after inspecting the damage on the 



 

48 

 

flag leaves. Numerical values were given to infection type, as R = 0.2, MR = 0.4, 

MS = 0.8 and S = 1.0. Infection type and severity were multiplied to calculate 

Coefficient of Infection (CI) (Pathan and Park, 2006; Draz et al., 2015). 

Statistical analysis 

Data analysis was conducted using SAS version 9.4 (Statistical Analysis System 

Institute, Cary, NC, USA). Analysis of variance (ANOVA) was performed using 

General Linear Model (GLM) in SAS to compute variance components to evaluate 

genotypic variation. Repeatability (R), which is the ratio of genotypic variance to the 

phenotypic variance was calculated for each individual trait measured in 2017 and 2018. 

Repeatability measures the precision and accuracy of a given trait and is used to 

determine if the trait measured in a breeding trial can be repeatable. In this study, we 

computed repeatability for 2017 and 2018 separately using the following equation. 

𝑅𝑅 =
𝜎𝜎𝑔𝑔2

𝜎𝜎𝑝𝑝2
=

𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔2 + 𝜎𝜎𝑒𝑒2
 

Where 𝑅𝑅 is the repeatability, 𝜎𝜎𝑔𝑔2 is the genotypic variance, 𝜎𝜎𝑝𝑝2 is the phenotypic variance, 

and 𝜎𝜎𝑒𝑒2 is error variance. 

To evaluate the precision, accuracy and reliability of the phenotypic information 

derived from UAS data and the associated traits, the vegetation indices were correlated 

with CI. Coefficient of determination (R2) was obtained to study the relationship 

between CI and individual vegetation indices. R2 is used to assess the variability in 

dependent variable caused by the independent variable. Multiple regression analysis with 

stepwise variable selection procedure was used to obtain a predictive model for CI using 
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aerial imagery indices. The decision for model selection was based on high adjusted R2, 

low Akaike Information Criteria (AIC), and low Root Mean Square Error (RMSE). AIC 

provides a means for model selection from a set of available models. Models with low 

AIC values are considered to have a better quality relative to those with high AIC 

values. RMSE measures the error obtained between the observed and predicted values. It 

is calculated using the following formula: 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �� ( 𝑌𝑌� 𝑖𝑖−𝑌𝑌𝑌𝑌)2

𝑛𝑛
 

𝑛𝑛

𝑖𝑖
 

Where  𝑌𝑌� 𝑖𝑖 are predicted values, 𝑌𝑌𝑌𝑌 are observed values, and n is the number of 

observations 

RESULTS 

Radiometric calibration 

The regression relationships between the DN values obtained from the images of 

ground calibration panels and reflectance measurements in the R, G, and B band are 

shown in Figure 2. A linear relationship with R2 values greater than 0.97 (p<0.01) was 

obtained for all the three wavebands in 2017 and 2018. Orthomosaic image DN values 

for both years were converted into reflectance values using the obtained linear regression 

equation. Converted reflectance values were used to further calculate vegetation indices.  
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Figure 2. Relationship between digital number (DN) values obtained from ground 
calibration panels and reflectance measurements in the red, green, and blue wavebands 
for 2017 and 2018 
The reflectance measurements for red, green, and blue wavebands are r, g, and b, respectively. DNr, DNg, 
and DNb are the DN values for red, green, and blue wavebands, respectively. All R2 values are significant 
at p<0.05. R2: coefficient of determination. 
 

Assessing leaf rust severity based on vegetation index map 

Figure 3 shows the RGB orthomosaic and vegetation indices map obtained from 

April 14, 2017 UAS flight. The three vegetation indices maps were developed using NDI 

(2B), GLI (2C), and GI (2D) indices. The differences between healthy and severely 

infested wheat canopies are depicted by the color scale of the vegetation indices. All the 

index’s maps show significant variations in disease severity in the field.  Red and green 

color intensity in the map represent the severity level of leaf rust infestation. Plots with 

dark red color had highly severe leaf rust infestation while the plots with dark green 

color had either less leaf rust infestation or no infection. 
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The RGB orthomosaic in combination with the vegetation index maps can be 

useful for breeders to locate plots that are severely damaged by the disease. The 

differences in the color of canopy after being infected by leaf rust provided the 

opportunity to visually inspect the field for disease spread and identification of 

genotypes that are resistant to leaf rust. However, caution should be taken as the exposed 

soil in the plot can cause the plot to look dark red in color. Suitable date of disease 

severity assessment and UAS data acquisition play an important role to visually scan the 

field based on the orthomosaic images.  

 

Figure 3. Visualization of plots on Unmanned Aerial System (UAS) imagery and 
different vegetation maps 
Original RGB image (A) captured on April 14, 2017 at Castroville, Texas, B. Normalized Difference 
Index (NDI), C. Green Leaf Index (GLI), and D. Green Index (GI) maps 
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Relationship between vegetation indices and coefficient of infection (CI) 

The relationship between vegetation indices obtained from UAS imagery and CI 

is presented in Figure 4. To evaluate the consistency of UAS tool for disease assessment 

across years, data obtained from 2017 and 2018 were analyzed separately. All the 

vegetation indices had significant relations with CI (p<0.01). The R2 estimate was higher 

(0.72 to 0.78; p<0.01) for NDI, GI, and GLI in 2017 compared to 2018 (0.63 to 0.68; 

p<0.01). NDI and GLI were negatively correlated with CI whereas GI was positively 

correlated with CI in both years. Figure 5 shows the relationship between ground based 

NDVI and CI in 2017 and 2018. A significant negative relation (R2 =0.86 in 2017 and R2 

=0.83 in 2018; p<0.01) was found between NDVI and CI. NDVI had highest R2 value 

compared to those obtained from RGB UAS imagery in both years.  

 
Figure 4. Relationship between Unmanned Aerial System (UAS)-based vegetation indices 
and Coefficient of Infection (CI) for 2017 and 2018 
Each data point represents a winter wheat genotype which is the average of three replicates. Normalized 
Difference Index (NDI), Green Index (GI), and Green Leaf Index (GLI) are vegetation indices derived 
from UAS. CI was obtained by multiplying visual ratings of wheat leaf rust disease severity and infection 
type. R2: coefficient of determination and all R2 values are significant at p<0.05. 
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Figure 5. Relationship between green seeker-based Normalized Difference Vegetation 
Index (NDVI) and Coefficient of Infection (CI) for 2017 and 2018  
Each data point represents a winter wheat genotype which is the average value of three replicates. CI was 
obtained by multiplying visual ratings of wheat leaf rust disease severity and infection type. R2: coefficient 
of determination and all R2 values are significant at p<0.05. 
 
Genotypic variation and repeatability 

Significant differences were found for all the vegetation indices obtained from 

UAS as well as the ground measurements of NDVI and CI (Table 3) in 2017 and 2018. 

GI values ranged from 0.8 to 1.6, GLI ranged from 0.015 to 0.26, and NDI ranged from -

0.20 to 0.13. NDVI values were from 0.4 to 0.73 and CI from 0 to 100. Every year, the 

time for screening genotypes for disease resistance in the winter wheat nursery at 

Castroville, TX is determined based on the climatic conditions and the rate at which leaf 

rust develops. The screening usually takes place in the third week of April. April 14 and 

April 15 were selected for 2017 and 2018, respectively. Optimum time for data 

acquisition plays a critical role in using UAS for disease phenotyping as it is important 

to reduce the errors caused by other physiological changes in the canopy. Consistent 

results obtained in 2017 and 2018 shows that the aerial imaging tool can be useful to 
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collect disease phenotyping data and can complement traditional screening of genotypes 

for leaf rust resistance. 

Repeatability for each vegetation index derived from UAS imagery was 

calculated on an entry mean basis. Traits with higher repeatability estimates can be 

interpreted to have higher accuracy of measurements. Repeatability values for all the 

vegetation indices were above 0.8 in both the years (Table 4). Values were higher in 

2017 compared to 2018. NDI had higher repeatability values compared to GI and GLI in 

both the years. CI had higher repeatability values compared to vegetation indices.  

Table 3. Statistical summary of the vegetation indices and Coefficient of Infection (CI) 
of winter wheat measured in 2017 and 2018  
Green Index (GI), Green Leaf Index (GLI), Normalized Difference Index (NDI) were obtained from 
Unmanned Aerial System (UAS) and Normalized Difference Vegetation Index (NDVI) was obtained 
using green seeker, CI was obtained by multiplying visual ratings of wheat leaf rust disease severity and 
infection type. 

Genotypes GI GLI NDI NDVI CI 
2017      

Min. 0.81 0.01 -0.21 0.39 0 
Max. 1.58 0.25 0.11 0.72 100 
Mean 1.15** 0.14** -0.04* 0.57*** 59*** 

2018      
Min. 0.79 0.01 -0.19 0.4 0 
Max. 1.53 0.26 0.13 0.73 100 
Mean 1.07*** 0.17*** -0.01** 0.57*** 33.98*** 

*, **, and *** indicate significance at p<0.05, 0.01, and 0.001 respectively.  
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Table 4. Repeatability estimates for vegetation indices and Coefficient of Infection (CI) 
in winter wheat measured in 2017 and 2018  
GI, GLI, NDI were obtained from Unmanned Aerial System (UAS) and NDVI was obtained using green 
seeker, CI was obtained by multiplying visual ratings of wheat leaf rust disease severity and infection type. 

Vegetation indices 
Repeatability (R) 

2017 2018 

Green Index (GI) 0.86 0.84 
Green Leaf Index (GLI) 0.82 0.80 
Normalized Difference Index (NDI) 0.88 0.87 
Normalized Difference Vegetation Index (NDVI) 0.90 0.88 
Coefficient of Infection (CI) 0.91 0.89 

 

Predictive models 

The data from 2017 and 2018 was combined to perform multivariate regression 

analysis using NDI, GLI, GI, and NDVI as independent variables to predict CI. To test 

the predictability of the model, data collected from 2017 and 2018 were combined to get 

a total of 77 observation in which each data point is the average value of three replicates. 

It consists of four predictor variables (NDI, GLI, GI, and NDVI) and one response 

variable (CI). The response variable was categorized into four classes based on CI values 

and training and testing sets were developed by stratified random sampling. Training set 

comprised 70% of the observations randomly assigned from each class and testing set 

comprised 30% of the remaining observations in each class. In total, training set consists 

of 54 observations and testing set consists of 23 observations. Best predictive variables 

and models are presented in Table 5. Among four vegetation indices, NDVI was found 

to be the best index explaining 83% variability in CI. On a separate multivariate analysis 

using the UAS-based indices, the multivariate model was insignificant for all the 

variable combinations. However, GLI explained highest variability (80%) alone in the 



 

56 

 

model. Among 11 different multivariate models, the combination of NDVI and GLI was 

the best multivariate model which explained 88% variability in CI. The performance of 

these two models was evaluated using the testing data set to estimate CI from NDVI and 

combining GLI with NDVI (Figure 6). A strong linear relationship with R2 values of 

0.89 and 0.90 (p<0.01) was found between the observed and predicted CI in both cases.  

Table 5. Best regression models developed between vegetation indices and Coefficient 
of Infection (CI) from the training dataset 
Green Index (GI), Green Leaf Index (GLI), Normalized Difference Index (NDI) were obtained from 
Unmanned Aerial System (UAS) and Normalized Difference Vegetation Index (NDVI) was obtained 
using green seeker, CI was obtained by multiplying wheat leaf rust disease severity and infection type 

No. Predictors R2 adj. R2 AIC RMSE Regression model 

1 NDVI 0.83 0.83 449 14.9 COI=276.8-389.35(NDVI) 

2 NDVI GLI 0.88 0.87 431 12.6 
COI=257.5-293.2(NDVI)-
227.9(GLI) 

3 NDVI GI GLI 0.88 0.86 433 15.6  

4 NDVI NDI GI GLI 0.88 0.86 435 15.6  
R2: coefficient of determination; adj. R2: adjusted coefficient of determination; AIC: Akaike Information C
riterion; RMSE: root-mean-square error. All R2 values are significant at p<0.05.  
 

 

Figure 6. Relationship between actual Coefficient of Infection (CI) and predicted CI 
using vegetation indices 
a. Normalized Difference Vegetation Index (NDVI) and b. NDVI and Green Leaf Index (GLI), R2: 
coefficient of determination, NDVI was obtained using hand-held green seeker, GLI was obtained from 
Unmanned Aerial System (UAS), CI was obtained by multiplying visual ratings of wheat leaf rust disease 
severity and infection type. 
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DISCUSSION 

The variation in environmental conditions such as solar radiation, angle of the 

sun, and cloud coverage across different measurement dates may result in inconsistent 

images obtained by digital cameras flown using UAS platforms. Therefore, calibration 

of remotely captured images to the physical units of reflectance is important to achieve 

consistent quantitative analysis (Smith and Milton, 1999). The need for developing 

vegetation indices to assess and quantify disease severity in this study required 

radiometric calibration as calibrated images improve accuracy of the vegetation indices 

(Nguyen et al., 2015). In this study, we adopted the empirical line method to perform 

radiometric calibration using ground calibration panels. The relationship between image 

DN values of the calibration panels and known reflectance measurements was 

exponential for R, G, and B wavebands which was also observed in other studies (Smith 

and Milton, 1999; Wang and Myint, 2015). Therefore, a natural log transformation was 

carried out on reflectance values obtained from the calibration panels to obtain linear 

relationship between image DN values and reflectance. Shafian et al. (2018) found a 

linear relationship between image DN values and known reflectance values of the 

calibration tarps for a multispectral sensor. The exponential relationship obtained in this 

study might be the result of using more than two calibration targets (Smith and Milton, 

1999). Multispectral sensors such as Micaense RedEdge (MicaSense, Inc., Seattle, USA) 

come with its own calibration panel to normalize the reflectance differences and 

calibrate the orthomosaic image. However, the use of calibration tarps or panels is 

common for accounting environmental errors when measurements are compared across 
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different dates (Haghighattalab et al., 2016; Shafian et al., 2018). Pseudo-invariant (PIF) 

method was used by Du and Noguchi (2017) to perform radiometric normalization of the 

multi-temporal orthomosaic images to monitor the wheat growth status. Iqbal, Lucieer 

and Barry (2018) proposed a pseudo target-based calibration method for accurate UAV 

image calibration. The linear relationship results between image DN values and 

reflectance measurement of the calibration for R, G, and B bands obtained in this study 

shows that the empirical line method can be used to calibrate orthomosaic images. This 

study shows the significance of radiometric calibration while comparing UAS imagery 

data obtained from multiple days and seasons.  

The significant genotypic variation found for all the vegetation indices and CI 

showed the potential of UAS tool to differentiate genotypes for disease resistance. 

Numerous studies have shown the potential of UAS in breeding program to study 

physiological traits (Louhaichi et al., 2001; White et al., 2012; Potgieter et al., 2017; Yu 

et al., 2017; Zhang et al., 2018). The change in color of the canopy because of disease 

infection was captured by the digital imagery and is reflected by the variation in 

vegetation indices. CI measured on the ground comprised of infection type and severity 

of leaf rust. This might be the reason for higher repeatability values of CI compared to 

vegetation indices. Close inspection of infection type and severity produce precise 

results. UAS was unable to capture infection type as it requires very high resolution to 

isolate the infected area based on symptoms of infection (Pugh et al., 2018). However, 

obtaining data from large breeding nursery requires substantial amount of time and have 

higher chances of producing biased results. The assessment of disease severity is 
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possible with the use of UAS that was used in this study as we were able to generate 

orthomosaics with ~0.7cm resolution. Consistent, repeatable measurements obtained in 

both years show the potential of using this tool for improving accuracy in disease 

severity quantification. This study contained several released varieties and advanced 

lines comprising a wide range of genetic variability. This might be one of the reasons 

that UAS-based vegetation indices were able to dissect variation in terms of disease 

severity. Future studies are needed to confirm its suitability for evaluating early 

generation breeding lines.  

A linear relationship between vegetation indices and CI was found in this study. 

At leaf level, Ashourloo et al. (2014) also found a strong relationship between several 

vegetation indices derived from hyperspectral sensor and disease severity obtained from 

digital camera. In particular, the GI used in this study had a significant association with 

wheat leaf rust severity. Su et al. (2018) ranked GI and GLI within top seven vegetation 

indices to discriminate healthy and yellow rust infected plants. The vegetation indices 

obtained in the visible region rely on several factors such as concentrations of 

chlorophyll and non-chlorophyll pigments in the leaves, level of chlorophyll 

degradation, color of the leaves, and spectral characteristics of pustules that appear on 

the leaves. A significant correlation was obtained between vegetation indices and leaf 

rust severity in our study. NDI, GLI, and NDVI were negatively associated with CI 

whereas GI was positively related to CI. NDI, GLI, and NDVI provides an indirect 

measurement of green vegetation. GI, which is the ratio of reflectance in the R and G 

bands, estimates the non-green portion of the vegetation. In other words, increased 
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disease severity reduces the green vegetative parts of the wheat canopy and increases 

the dead biomass. Although, NDVI measurements were made using handheld green 

seeker, it had highest R2 value compared to other three UAS-based indices. It was also 

selected as the best predictor of CI. Zang et al. (2018) also found NDVI as best 

performing index for detecting different levels of rice sheath blight severity. NDVI is 

sensitive to the changes in the color of the plant canopy which is caused by leaf rust 

infestation (Haboudane et al., 2004). GLI, which measures the green leaf area derived 

from the reflectance obtained in the G and R band, was one of the best predictors 

among UAS-based vegetation indices. This index can be used to rank genotypes based 

on disease severity using a simple UAS platform equipped with digital camera. 

Reflectance observed in the R waveband which is one of the major components of GLI 

can play a vital role in separating healthy and rust infested wheat plants (Su et al., 

2018).  

Small UAS equipped with consumer grade digital camera with easy operational 

procedure are readily available at low cost. The availability of software applications to 

plan and design the flight mission have made it easier to use UAS in breeding 

programs. Under naturally inoculated field conditions, there are several factors that 

influence UAS measurements. The appearance and spread of diseases such as leaf rust 

in the field is largely determined by variety, disease epidemiology, and virulence 

(Roelfs et al., 1992) which is attributed to higher R2 and repeatability values obtained 

in 2017 compared to 2018. Plant physiological factors such as senescence, leaf optical 
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properties, presence of multiple diseases, CC, and growth stage can have significant 

influence on data if we are using this tool for assessing severity of a specific disease.  
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CHAPTER III  

UNMANED AERIAL SYSTEM (UAS)-BASED PLANT GROWTH ANALYSIS OF 

WINTER WHEAT 

INTRODUCTION 

Crop growth is a continuous process which is a result of genes, environment, and 

their interaction. Temperature is one of the most important environmental factors 

regulating winter wheat (Triticum aestivum L.) growth. Generally, winter wheat is 

planted in fall in the areas where the temperature does not go below freezing for longer 

periods. In the U.S, winter wheat is mostly grown in the Great Plains. However, 

phenological differences during wheat development are observed throughout the region 

because of microclimatic differences in the south, central, and northern regions. Seeds 

are sown in fall and seedlings are exposed to a lower temperature during early winter. 

This low temperature promotes vernalization and induce flowering (Dixon et al., 2019). 

Winter wheat goes through a series of physiological changes from emergence to 

maturity. According to Feekes scale (Feekes, 1941), major stages of wheat growth are 

emergence, tillering, jointing, booting, heading, anthesis, and maturity (Large, 1954). 

These stages are critical in making management decisions such as fertilizer applications, 

irrigation requirements, and pest control. Numerous morphological and physiological 

parameters such as canopy architecture, dry matter accumulation, photosynthesis, and 

transpiration are vital plant properties that can be monitored during the growth cycle to 

understand crop physiological status and obtain optimum yield. In plant breeding, 

understanding the mechanisms of physiological growth can help in selecting parents, 
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evaluating genotypes, and making selection strategies. For example, early vigor, which 

is defined as rapid early growth and accumulation of above-ground biomass, has a 

positive relationship with final grain yield in wheat (Carmo-silva et al., 2017). This is 

achieved by reducing evaporation and early competition of crops with weeds (Rebetzke 

and Richards, 1999; Lemerle et al., 2001; Botwright et al., 2002; Richards et al., 2002; 

Ludwig and Asseng, 2010). However, this may not always be true under dryland 

conditions  as higher growth and biomass accumulation early in the season may reduce 

available soil water later during anthesis and grain filling stage (Feekes, 194; Large, 

1954) leading to the reduction in grain yield (Zhao et al., 2019). Additionally, plant 

growth analysis can help to investigate the morphological, physiological, and 

environmental reasons behind yield variations between genotypes. Therefore, a high-

throughput system capable of estimating biomass accumulation early in the season and 

enabling analysis of the rate of plant growth can provide additional information to 

determine factors responsible for grain yield.  

Traditionally, above ground dry matter and green leaf area are determined by 

destructive sampling procedures. This method has limitations in scalability and 

repeatability because of labor, cost, and time consumption. Also, several samples are 

harvested during the growing season and their contribution to final grain yield will be 

neglected when using multi-temporal dry matter accumulation approach to predict final 

grain yield. Although green leaf area and biomass can be estimated by using different 

sensors that can capture the rate of photosynthesis, canopy light interception, and gas 

exchange at single plant and leaf level, it is limited to few measurements in a given time 
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and is highly affected by the weather variability between two measurements. The issue 

of labor, time and expenses of collecting many samples can be addressed by using 

Unmanned Aerial Systems (UAS). With the rapid advancement in UAS and sensor 

technology, we can obtain high spatial-temporal resolution data of plant morphological 

features such as plant height, green canopy cover, and canopy volume. These proxy 

measurements can be used to perform growth analysis and estimate biomass, and 

vegetation growth rate. UAS equipped with sensors can collect spectral data based on 

the reflectance properties of plants and other elements such as soil, plant internal 

structures, pigments, and plant water status (Yang et al., 2017). This spectral data is 

further processed to generate multiple band images (for example, RGB band image) and 

can be used to obtain canopy features by following programmatic image processing 

approaches. Data obtained throughout the season using this technique can be used to 

perform growth analysis.  

Plant growth is a dynamic process which is the result of genetics and 

environmental variations. Plant growth analysis is a holistic approach and integrates the 

shape, size, and efficiency function of a plant ( Schurr et al. 2006; Szparaga and Kocira, 

2018). It is either performed by simple calculations using growth equations to obtain 

growth parameters such as growth rate (GR), relative growth rate (RGR)) (Hunt and 

Parsons, 1974; Hunt, 1979; Glasbey and Hunt, 1983; Schurr et al., 2006; Szparaga and 

Kocira, 2018) or using the conceptual models obtained by fitting the nonlinear 

regression models (Sugar et al., 2017). Plant growth generally follows sigmoidal growth 

function characterized by an early lag phase when growth is slow, an exponential phase 



 

72 

 

when the growth is maximum, and a stationary phase when growth is saturated 

(Batchelor, 1997; Yin et al., 2003). First order derivative of a fitted function forms a 

bell-shaped curve (Yin et al., 2003) from which the growth parameters (GR and RGR) 

can be obtained. Some of the commonly used functions for analyzing plant growth are 

logistic function, Richard function, and Gompertz function (Yin et al., 2003).  

Logistic function was originally formulated by Verhulst (1838). The first 

derivative of this function is symmetrical around time and is described as 

w =
wmax

1 + e−k(t−tm) 

where, wmax is maximum value, tm is the time when growth rate reaches the 

maximum value, k is a constant that determines the growth pattern, the relative growth 

rate at tm is k/2 and the value at tm is half of the maximum value (wmax). 

Richard function was originally formulated by Richards (1959) to deal with the 

asymmetrical nature of growth and is described as  

w =
wmax

[1 + ve−k(t−tm]1 v�
 

where, wmax is maximum value, tm is the time when growth rate reaches 

maximum value, k is a constant that determines growth pattern, v is an additional 

parameter which determines relative growth rate at tm as k/(1+v). 

Gompertz (1815) developed another function that gives an asymmetrical sigmoid 

pattern with three parameters and is described 

w = wmaxe−ek(t−tm) 
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where, wmax is maximum value, tm is the time when growth rate reaches 

maximum value, w is equal to wmax/e, relative growth rate at tm is k  

There are several other equations used in the growth analysis of plants and other 

organisms. The selection of any of the available functions depends on the nature of 

plants and the trait being measured. One of the important selection criteria as described 

by Zeide (1993) is the flexibility of a function and it depends on number of parameters. 

The major objective of this study was to investigate if multi-temporal Canopy Cover 

(CC) parameter obtained throughout the growing season using UAS can be used to 

perform growth analysis using growth functions. Specific objectives were to: i) outline 

the procedure to obtain CC from small breeding plots using UAS system ii) fit growth 

functions and obtain daily CC estimates, and iii) obtain interpretable growth parameters, 

namely; average growth rate, maximum growth rate, and day at which maximum growth 

rate was achieved from the fitted growth curve. 

MATERIALS AND METHODS 

Study area 

Forty-five winter wheat genotypes were planted in a field experiment at the 

Texas A&M University farm located at College Station, Texas. UAS data were collected 

in 2018-2019 winter wheat growing season. Experiment was a random block design with 

six replications. Three of those six replications were treated with fungicide (Trivapro at 

0.95 kg/ha) during heading (10.5 in Feekes scale; Large (1954)). This resulted in 

fungicide-treated and control plots. Plots were 3.4 m × 1.52 m in size consisting of seven 

rows with 0.18 m spacing. Seeds were sown on October 29, 2018. Plots were irrigated 
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throughout the season and other agronomic practices were conducted as per the 

requirement (Kimura et al., 2018).  

UAS platforms and sensors 

DJI phantom 4 pro (SZ DJI Technology Co., Ltd, Shenzhen, China) was flown to 

collect high-resolution red green, and blue (RGB) images. Phantom 4 pro was equipped 

with 20 megapixels one-inch CMOS (Complementary metal-oxide-semiconductor) RGB 

sensor. UAS platform was flown at 20 m altitude with front and side overlap of 85 

percent to obtain high resolution orthomosaic images. Data were collected multiple 

times during the growing season and are summarized in Table 6. 

Table 6. Unmanned Aerial System (UAS) data collection timeline 
Red, green, and blue band images were collected using DJI phantom 4 pro at several Days after Planting 
(DAP) over winter wheat breeding trial at College Station, Texas. Raw images were processed to generate 
orthomosaic images with certain spatial resolution (ground resolution). 

Time of year Days after Planting (DAP) Ground resolution 
Oct 29, 2018 Planting date - 
Nov 20, 2018 21 0.75 cm/pixel 
Dec 3, 2018 34 0.75 cm/pixel 
Dec 21, 2018 52 0.75 cm/pixel 
Jan 09, 2019 71 0.75 cm/pixel 
Jan 16, 2019 78 0.75 cm/pixel 
Jan 26, 2019 88 0.75 cm/pixel 
Feb 13, 2019 105 0.75 cm/pixel 
Mar 19, 2019 139 0.75 cm/pixel 
Mar 26, 2019 146 0.75 cm/pixel 
Apr 12, 2019 163 0.75 cm/pixel 
Apr 16, 2019 167 0.75 cm/pixel 
May 05, 2019 187 0.75 cm/pixel 

 

Geo-referencing, image processing and data extraction 

UAS platform was equipped with a Global Positioning System (GPS). However, 

the accuracy of collected geographic coordinate’s data is low as the platform is distorted 
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by wind during data collection. Georeferencing of collected raw images is important to 

achieve a high level of accuracy in the orthomosaics. Using same plot boundary 

shapefile throughout the growing season can reduce time required to extract data from 

small breeding plots. Temporary Ground Control Points (GCPs) were placed in the field 

before the flight and surveyed to collect the coordinate data. The GCPs were 0.6 m × 0.6 

m square plywood board, painted black and white to make them easily identifiable 

during image processing. V-Map Post Processing Kinematic (PPK) system (Micro 

Aerial Projects LLC., Gainsville, FL, US) was used to survey precise coordinates of 

GCPs. Thus, obtained V-map data was further processed to acquire and latitude, 

longitude, and elevation of the GCPs. This information was uploaded in the Agisoft 

Metashape software (Agisoft LLC, St. Petersburg, Russia, 191144) during image 

processing (Figure 7).  

 

Figure 7. Unmanned Aerial System (UAS) workflow of data collection, processing, and 
analysis 
RGB: Red, green and blue band, GPS: Global Positioning System. 
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Raw images obtained from the RGB sensor were processed using Agisoft 

Metashape software to generate a 3D point cloud, Digital Surface Model (DSM), and 

orthomosaic images (Jung, 2017; Jung et al., 2018; Ashapure et al., 2019). Figure 7 

illustrates image processing workflow in AgiSoft Metashape software (Westoby et al., 

2012). After generating orthomosaic images, percentage of CC was calculated. CC is 

positively correlated with the dry matter accumulation and final grain yield in wheat. It 

considers the area covered by the canopy based on the intensity of greenness. Therefore, 

CC obtained from the UAS imagery was used to perform growth analysis and assess 

physiological changes in winter wheat genotypes. CC was obtained by following the 

Canopeo algorithm developed by Patrignani and Ochsner (2015). In this approach, a 

certain threshold was used to classify the image into canopy and non-canopy classes and 

a binary image was produced by applying following equations during image processing.  

                         𝑅𝑅
𝐺𝐺

< 𝑃𝑃1 , 𝐵𝐵
𝐺𝐺

< 𝑃𝑃2 , 2𝐺𝐺 − 𝑅𝑅 − 𝐵𝐵 > 𝑃𝑃3                                                                   

where R, G, and B are Digital Number (DN) values for red, green and blue bands 

respectively. P1 and P2 are parameters to classify pixels in the green band and P3 sets 

the minimum value for excess green index to select green vegetation. In this study, 

parameter (P1, P2, and P3) values were set to default as explained in Canopeo (P1=0.95, 

P2=0.95, and P3=20). Figure 8 describes binary image classification and data extraction 

procedure, which classified, canopy pixels as white color and soil pixels as black color. 

A plot boundary shape file was created to extract data from the orthomosaic. The 

shapefile was overlaid on the classified image and total number of pixels and total 
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number of canopy pixels within the plot boundary were extracted using zonal statistics 

tool in QGIS software (www.qgis.org).  

Average CC within the plot was calculated using the following formula.    

       Canopy Cover (CC) = Number of canopy pixels
Total number of pixels

× 100                                                                      

 

Figure 8. Binary image classification and data extraction to generate plot level canopy 
cover (CC) 
Black color in the image is non-canopy pixels, white color is canopy pixels, red colored boundary is used 
to calculate CC and extract data from each plot. 
 
Ground measurements 

Biomass was harvested at 88 Days after Planting (DAP) from first two 

replications representing 20 genotypes to study the relationship between early growth 

http://www.qgis.org/
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parameters and biomass. Samples were oven dried at 60⁰C for 48 hours to obtain dry 

matter content. Each plot was harvested using combine harvester (Classic Plus, 

Wintersteiger AG, Germany) to determine final grain yield.  

Growth analysis 

Logistic function, Richard, and Gompertz function were tested for their use in 

growth analysis using UAS obtained CC data. CC values obtained throughout the 

growing season from each plot were averaged to obtain mean value of CC for each of 

the measurement days. Growth analysis was performed using a dynamic fit wizard tool 

available in SigmaPlot (Systat Software, Inc). The decision to select the best function for 

further parameter extraction was based on adjusted R2 and Root Mean Square Error 

(RMSE). RMSE measures the error obtained between the observed and predicted values. 

It is calculated using the following formula: 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �� ( 𝑌𝑌� 𝑖𝑖−𝑌𝑌𝑌𝑌)2

𝑛𝑛
 

𝑛𝑛

𝑖𝑖
 

where,  𝑌𝑌� 𝑖𝑖 are predicted values, 𝑌𝑌𝑌𝑌 are observed values, and 𝑛𝑛 is the number of 

observations 

Statistical analysis 

Growth parameters (maximum CC, maximum growth rate in CC, day of 

maximum CC) were obtained from the first derivative of the growth functions. Linear 

regression was performed between the growth parameters, biomass and yield to study 

the relationship between these variables. Coefficient of determination (R2) was 

calculated to study the relationship. 
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RESULTS 

Growth analysis 

CC data obtained from emergence to 146 DAP followed a sigmoidal growth 

pattern (Figure 9). Canopy growth was slow in the beginning until 20 DAP which is the 

early lag phase. An exponential growth occurred from 20 DAP to 66 DAP. There were 

no significant variations in CC from 66 DAP to 146 DAP which is often termed as a 

saturated phase in growth analysis. All the growth functions fitted well with CC data. 

Table 7 summarizes the statistical parameters used to assess the validity of growth 

functions. Growth functions applied in this study are nonlinear models consisting of 

different set of parameters. Four parameters logistic function had highest R2 value and 

lowest RMSE. However, it predicted negative CC estimates in the early ten days. To 

remove negative estimates during growth analysis, a three-parameter sigmoid function 

was fitted in CC data obtained during 0 to 146 DAP. It had a higher RMSE and lower 

adjusted R2. All four equations estimated similar growth parameters. In most cases, 

logistic function had a better fit than three other functions. Therefore, it was selected for 

further growth parameter calculations. 
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Figure 9. Fitting growth functions over a seasonal Canopy Cover (CC) distribution of 
winter wheat  
Solid lines are fitted lines using growth functions. Vertical bars represent standard deviation. Each data 
point is the average of all CC values obtained on that day from three replications. 
 

Following functions were used to perform growth analysis in this study: 

Logistic function: 

y = y0 +
a

1 + � x
x0
�
b 

where, 𝑦𝑦0 is estimated response at zero Days after Planting (DAP), a represents 

asymptote which is the maximum Canopy Cover (CC), 𝑏𝑏 is slope factor, 𝑥𝑥0 is mid-range 

DAP 

Gompetz function: 

y = y0 + ae−e
x−x0
b  
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where, 𝑦𝑦0 is estimated response at zero Days after Planting (DAP), a represents 

asymptote which is the maximum Canopy Cover (CC), 𝑏𝑏 is slope factor, 𝑥𝑥0 is mid-range 

DAP 

Richard function: 

y = y0 + a�1 − e−bx0�c 

where, 𝑦𝑦0 is estimated response at zero DAP, a represents asymptote which is the 

maximum Canopy Cover (C), 𝑏𝑏 is slope factor, 𝑥𝑥0 is mid-range DAP 

Sigmoid three parameter function: 

y =
q

1 + e−(x−x0b )
 

where, 𝑞𝑞 represents asymptote which is the maximum Canopy Cover (CC), 𝑏𝑏 is slope 

factor, 𝑥𝑥0 is mid-range DAP 

Table 7. Statistical parameters of growth functions 
Growth functions Parameters R2 adj. R2 RMSE 

Richard 4 0.99 0.98 3.82 
Gompretz 4 0.99 0.98 3.98 
Logistic  4 0.99 0.99 3.43 
Sigmoid  3 0.98 0.98 4.84 

R2: coefficient of determination; adj. R2: adjusted coefficient of determination; RMSE: root-mean-square 
error.  
 
Growth parameters 

Three different parameters, namely maximum CC during 0-146 DAP (CCmax), 

maximum canopy growth rate per day (CCMGR), and day at which CC had maximum 

growth rate (CCGRDAP) were calculated based on a four parameter logistic growth 

function.  
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CCmax, which is represented by “a” is shown in Figure 10. CCGR was calculated using the 

following formula:  

Canopy growth rate (CCGR) =
CC2 − CC1

T
 

Where, 𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺  is the canopy growth rate, 𝐶𝐶𝐶𝐶2 and 𝐶𝐶𝐶𝐶1 are Canopy Cover measurements 

obtained in Day 2 and Day 1, respectively, and 𝑇𝑇 is the number of days between each 

measurement.  

Once CCGR values were obtained, a graph was generated to plot the growth rate 

against DAP. As shown in Figure 11, growth rate was asymmetrical and maximum 

growth of canopy in terms of CC took place during 35-40 DAP. Value falling at the top 

of the bell-shaped curve is CCMGR. 

 

Figure 10. Description of logistic function and its related parameters  
a represents asymptote which is the maximum Canopy Cover (CC), b is the mid-point slope, X0 is the 
mid-point at which canopy growth rate reaches maximum, Y0 is the amount of CC during lag phase. 
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Figure 11. Growth parameters extracted from logistic growth function 
Daily Canopy Cover (CC) measurements were estimated using logistic function and canopy growth rate 
was calculated by obtaining daily CC estimates. 
 
Relationship between growth parameters, biomass, and grain yield 

One of the major objectives of this study was to investigate if growth parameters 

extracted from growth functions can be used to assess genotypes for early vigor and 

grain yield. CCMGR was positively associated to biomass (R2=0.70, p<0.05) (Figure 

12A). However, it was not correlated to grain yield (Figure 12B). Therefore, we wanted 

to study if canopy greenness after 146 DAP contributed to grain yield in this study. As 

shown in Figure 13 (A-B), CC measured at 163 DAP and 167 DAP had a strong 

relationship with grain yield (R2=0.65, R2=0.51, p<0.01). These two dates of UAS 

measurement coincided with grain filling stage (10.54 to 11.1 in Feekes scale; Large 

(1954)). Genotypes with lower CC values had lower yield compared to those with higher 

CC values. Images in Figure 14 clearly explain this variation in canopy greenness. At 

146 DAP CC was 85-100 percent in the entire trial (Figure 9). As the season progressed, 
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intensity of greenness decreased, and plots started to turn yellow (Figure 14). 

 

Figure 12. Scatter plot showing the relationship of canopy growth rate with biomass (A) 
and grain yield (B) 
Each data point represents a genotype which is the average value of two replicates. 

Leaf rust (Puccinia triticina f. sp. tritici) which is one of the major fungal 

diseases of wheat appears during last week of March in the southern region of Texas. 

Some of the susceptible genotypes such as ‘TAM 204’ (Rudd et al., 2019) had leaf rust 

infection at 140-145 DAP which is visible in some plots in the RGB image taken at 146 

DAP (Figure 14). The rate of canopy decay due to the disease infection was higher as the 

season progressed which is visible in Figure 14 on the images taken at 163 DAP and 167 

DAP. CC measured at 163 DAP and 167 DAP had a positive relationship with grain 

yield (Figure 13). R2 was higher (R2=0.65, p<0.05) at 163 DAP (Figure 13A) compared 

to 167 DAP (R2=0.52, p<0.05; Figure 13B). The results show that the slow rate of 

canopy decay during the reproductive stage leads to higher grain yield under the wheat 

growing conditions at College Station, TX. Strong relationship between the change in 

CC from 146 DAP to 163 DAP resulted into another approach of determining the rate of 
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canopy decay during this period. The rate of canopy decay based on CC values was 

calculated using the following formula: 

Rate of canopy decay =
CC163DAP − CC146DAP

17
 

where 𝐶𝐶𝐶𝐶163𝐷𝐷𝐷𝐷𝐷𝐷 and 𝐶𝐶𝐶𝐶146𝐷𝐷𝐷𝐷𝐷𝐷 is Canopy Cover (CC) obtained from UAS data at 163 

and 146 DAP respectively, denominator value (17) is the number of days between those 

measurements 

The relationship between the rate of canopy decay and grain yield is presented in 

Figure 15 (R2=0.65, p<0.05). As shown in the figure, genotypes with slow canopy decay 

produced higher yield compared to those with faster decay. This study demonstrates the 

importance of maintaining canopy health to produce a better yield. Genotypes resistant 

to fungal diseases maintained green foliage for a longer period and had higher chances 

of producing better yield.  

 

Figure 13. Scatter plot showing the relationship between grain yield and Canopy Cover 
(CC) measured at 163 (A) and 167 (B) Days after Planting (DAP) 
Each data point represents a genotype which is the average value of three replicates. 
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Figure 14. Orthomosaic images taken at different times during the growing season of 
winter wheat 
DAP is Days after Planting. 
 

 

Figure 15. Scatter plot showing the relationship between grain yield and rate of canopy 
decay obtained from Unmanned Aerial System (UAS) 
Each data point represents a genotype which is the average value of three replicates. 

Effect of fungicide application on canopy cover (CC) and yield 

Figure 16 shows the differences in CC values obtained between fungicide-treated 

and control plots. CC values were averaged across genotypes and standard error was 

calculated to show the statistical significance between the two treatments.  

SE =
SD
√n
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Where SE is standard error, SD is standard deviation and n is the total number of 

observations. 

Fungicide application reduced the rate of canopy decay and maintained greener 

canopy compared to untreated ones. CC values were significantly higher at 163 DAP 

and 167 DAP in the treated plots. The application of fungicide significantly improved 

grain yield (Figure 17).  

 

Figure 16. Unmanned Aerial System (UAS) obtained Canopy Cover distribution of 
fungicide-treated and control plots measured over a wheat growing season 
Vertical bars represent standard error. 
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Figure 17. Bar graph showing grain yields of fungicide-treated and control plots  
Yield was averaged across treatments. Vertical bar represents standard error. Letter a, b indicate 
significant difference between two treatments. 
 

DISCUSSION 

UAS equipped with RGB camera was useful in obtaining high-resolution 

orthomosaics. Easy operational procedures added benefits in collecting data multiple 

times during the growing season. In this study, the importance of GCPs during image 

processing and data extraction was realized. It is very important to install semi-

permanent GCPs to speed up image processing and data extraction. Temporary GCPs 

were used which needed to be placed before flights and collected after flights. It took a 

sizable amount of time to place GCPs, obtain coordinates, and collect them. Technical 

malfunction of GPS at some dates of data collection resulted in additional work to 

generate plot boundaries. There was equal possibility of losing the pixels that lie in the 

exact same location because of GPS inaccuracies. Therefore, to improve the efficiency 
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of image processing and data extraction, it is important to install semi-permanent GCPs 

mobile during agronomic operations and place them back throughout the growing 

season. UAS resulted in a large amount of high-resolution multi-temporal data with the 

potential to be used at multiple dimensions to understand crop growth and development. 

Importance of GCPs was highlighted in several previous studies (Jung, 2017; Jung et al., 

2018; Ashapure et al., 2019).    

UAS data acquired multiple times over the growing season can be used for crop 

growth analysis. Application of non-linear growth functions to study plant growth 

dynamics has been considered since the early times. Fresco (1973) illustrated the use of 

a logistic function to model plant growth. Use of non-linear models came with an 

understanding that the relative and absolute growth of plants differ with environmental 

conditions and growth stages. Growth models need to account for this temporal 

dynamics of growth and varying relative growth rates that happen as plants increase in 

biomass and achieve its potential biomass accumulation (Paine et al., 2012). Growth 

functions have been developed and used in modeling emergence of winter rapeseed 

(Brassica napus L.) (Szparaga and Kocira, 2018), modeling plant growth, and calculate 

growth rate (Paine et al., 2012). Liu et al. (2018) derived an improved sigmoidal model 

to estimate maximum crop biomass to forecast yield. Derived functions were fitted in 

dry biomass content in eight crop species. They concluded that the use of growth 

functions can be helpful to understand the growth of different plant species. Traditional 

way of harvesting biomass to determine dry matter content and use it to develop growth 

functions is time-consuming and laborious process. This method is totally based on a 
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destructive sampling procedure where the same plants samples are not used to determine 

future growth and yield. Additionally, plant growth parameters such as relative and 

absolute growth were calculated by fitting a curve entirely in a small number of biomass 

samples. Therefore, this study is an improvement over the traditional approach of crop 

growth analysis. Indirect estimates of green biomass through CC measurements allowed 

the fitting of a non-linear growth curve and derivation of important growth parameters.  

Wheat growth followed a sigmoidal pattern in this study, including the lag phase, 

linear phase, and stationary phase. It is important to determine a growth function that can 

fit across all these growth phases (Batchelor, 1997). In wheat, it is important to consider 

the longer lag phase in case of low temperatures during the first three week of planting. 

Low temperature early in the season slow down the rate of canopy growth. Therefore, a 

four-parameter logistic function was selected as a best fit model in this study to account 

for a longer lag phase. The results showed a negative estimation of CC for the first ten 

DAP which might be attributed to a longer interval between the first and second 

measurements after planting. It is suggested to improve the frequency of measurements 

(3-5 days interval) during the early stage of growth. However, growth parameters 

extracted in this study showed large variation and were significantly different among 

genotypes. Based on the statistics, four-parameter logistic function was selected as the 

best fit and its first derivative resulted in asymmetrical bell-shaped growth rate curve. 

The logistic function is commonly used to quantify growth and compute growth rate in 

several studies (Hunt and Parsons, 1974; HUNT, 1979, 1982; Hunt, 1990; Batchelor, 

1997; Hunt et al., 2002; Yin et al., 2003). But its use for analyzing UAS data was not 
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found in literature. This study aimed to test a simple approach for understanding wheat 

growth using UAS data rather than developing and defining new growth functions. The 

quantification of growth by using this method can be adopted by crop physiologists and 

breeders as an additional trait to characterize genotypes in different environments and 

design varieties for target environments. For example, growth parameters can be used to 

assess genotypes for early CC which is an important trait to breed for developing forage 

wheat genotypes. This approach can also be used to assess early season freezing damage 

by quantifying the change in green CC.   

The nature of canopy growth can improve canopy architecture and affect light 

interception, absorption, distribution within the plant canopy, and also affect crop yield 

(Gifford et al., 1984; Dreccer et al., 1997; Bruin and Pedersen, 2008; Eberhard et al., 

2008; Giunta et al., 2008; Acreche et al., 2009; Cossani et al., 2009; Distelfeld et al., 

2014; Feng et al., 2016). One of the hypotheses tested in this study was the relationship 

between early growth of canopy and final grain yield based on the assumption that a 

genotype with a bigger canopy can produce higher yield (De Bruin and Pedersen, 2008). 

This is because of the availability of large photosynthetic area (Gifford et al., 1984; 

Eberhard et al., 2008; Fischer, 2011). However, there was no significant relationship 

between early canopy growth and final grain yield. Another important physiological 

factor contributing to grain yield is the efficiency of a canopy in converting the available 

sunlight into biomass and produce better yield (Loss and Siddique, 1994; Maddonni and 

Otegui, 1996; Reta-Sánchez and Fowler, 2002; Richards et al., 2002; Stewart et al., 

2003; Nielsen et al., 2012; Sandaña et al., 2012). In wheat, flag leaf contributes about 60 
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percent of grain yield. Spectral indices measured during anthesis and grain filling stages 

are correlated with grain yield of wheat in several studies (Marti et al., 2007; Jin et al., 

2017; Kyratzis et al., 2017; Olanrewaju et al., 2019; Thapa et al., 2019; Zhang et al., 

2019). Positive relation of CC measured during the reproductive stage with grain yield 

suggested the importance of canopy greenness during reproductive stage to convert the 

captured energy into grain yield. Therefore, it is important to maintain canopy health 

after heading until the late grain filling stage. 

Fungicide was applied after heading (10.51 in Feekes scale; Large (1954)) 

following the onset of leaf rust infection in susceptible varieties. The objective of using 

three replications for fungicide treatment was to quantify the effect of leaf rust on CC 

values and differentiate it from normal physiological changes. Although we were able to 

see the differences in greenness of the canopy, it was not enough to isolate the 

differences in the decrease in CC due to leaf rust infection or physiological changes.  
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CHAPTER IV  

WINTER WHEAT YIELD PREDICTION USING UNMANNED AERIAL SYSTEM 

(UAS)-BASED CANOPY FEATURES 

 

INTRODUCTION 

Estimating wheat (Triticum aestivum L.) yield before harvest can be of great 

importance to plant breeders, farmers, and policy makers. Precise estimates of yield 

early in the season can help breeders to evaluate genotypes efficiently and accurately. 

The prediction tools can be used by the farmers and production industries to make in-

season management and financial decisions. Wheat grain yield is a function of total 

biomass and harvest index (Reynolds and Langridge, 2016). Harvest index, which is the 

ratio of harvested grain yield to above ground biomass measures the efficiency of plants 

in allocating biomass to the grain (Calderini et al., 1997; Hütsch et al., 2019). Biomass is 

the product of incident solar radiation during the growing season, the amount of light 

intercepted by the canopy, and the its conversion into plant dry matter (Stöckle and 

Kemanian, 2009; Bai et al., 2016). Establishment of Canopy Cover (CC) earlier in the 

growing season to maximize light interception can increase dry matter production in 

wheat through increased photosynthetic duration. Assessing biomass and canopy 

features throughout the growing season is useful for crop growth monitoring and grain 

yield estimation (Shi et al., 2019). The three yield components: 1) number of heads per 

unit area, 2) number of kernels per head, or 3) kernel weight, which determine yield per 

plant either alone or in combinations are affected by the physiological changes that occur 
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during the growing season (Pennacchi et al., 2018). Therefore, continuous monitoring of 

canopy features such as plant height, CC, and Leaf Area Index (LAI) can provide crucial 

information about biomass, crop growth and yield (Richards, 2000; Yield, 2002). LAI is 

directly proportional to light interception by the canopy and gross primary production in 

wheat. Incorporating genes (Rht) targeted to dwarfing of plants reduced height in wheat 

and prevented lodging. This improved harvest index and increased wheat yield 

(Richards, 2000; Araus et al., 2008). Reduced plant height increases leaf area and light 

interception as more dry matter can be allocated to the growth of leaves rather than 

stems. Breeders select for short high-yielding lines to maintain dwarfing genes in the 

population so that they will be able to select for high yielding semi-dwarf lines in the 

advanced generations (Law et al., 1978). CC, a.k.a. ground cover, is the area covered by 

the canopy per unit area of the land surface. It is positively correlated with LAI and 

biomass (Gamon et al., 1995). In wheat breeding, one of the reasons for determining CC 

is to assess genotypes in terms of early vigor. It can also be used as an indirect measure 

of photosynthetic duration of individual genotypes. Additionally, assessing growth of 

winter wheat genotypes can be helpful for plant breeders to determine tolerance to 

abiotic and biotic stresses such as freezing, water stress, diseases, and pests. 

Optimization of canopy features is important for determining photosynthetic efficiency, 

biomass, and yield of selected genotypes. For this, it is important to have precise, 

reliable and efficient methods to measure all traits associated with yield. Measuring LAI 

and biomass throughout the growing season using destructive sampling method takes 

significant amount of time and the measurements are often inaccurate. Therefore, there 
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is a need to develop and evaluate a high-throughput field phenotypic system for making 

precise phenotypic measurements and assessing wheat growth and yield (Crain et al., 

2016, 2018).  

Remote sensing based on Unmanned Aerial System (UAS), is gaining interest for 

high-throughput field phenotyping (Yang et al., 2017). Development of lightweight, 

low-cost portable sensors had added benefits of using UAS for obtaining high spatial and 

temporal resolution data (Xu, Li and Paterson, 2019). UAS equipped with digital, 

thermal and multispectral sensors have been used to estimate several crop biophysical 

parameters such as LAI (Yang et al., 2017), the fraction of intercepted 

photosynthetically active radiation (Bendig et al., 2014, 2015; Bendig, 2015), plant 

height (Anderson et al., 2019), canopy temperature (Berni et al., 2009), disease 

assessment (Pugh et al., 2018), growth status (Du and Noguchi, 2017), and yield 

prediction (Potgieter et al., 2017). Red, green, and blue band (RGB) images obtained by 

flying small UAS at low altitude can be used to develop Digital Surface Model (DSM) 

of the bare ground and the surface of the canopy which can be used to determine canopy 

height. Biomass can be estimated using plant height derived from DSM in wheat 

(Anderson et al., 2019). RGB and multispectral imagery can be used to obtain 

reflectance measurements in the R, G, B, red edge and near infrared (NIR) wavebands 

and calculate spectral vegetation indices. Numerous indices have been developed so far 

and are used to study vegetation growth and development. For example, reflectance 

observed in the green, NIR and red channels can be used to obtain indices such as 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Red Edge 
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Index (NDRE), Simplified Canopy Chlorophyll Content Index (SCCCI), and Green 

Normalized Difference Vegetation Index (GNDVI). These indices can be used to 

estimate LAI, CC, and canopy chlorophyll content and provide an indirect assessment of 

canopy growth and health (Xue and Su, 2017). A strong correlation was found between 

vegetation indices, LAI and biomass in several studies (Calderini et al., 1997; Bala and 

Islam, 2009; Bendig et al., 2015; Xu, Li and Paterson, 2019). NDVI, which is one of the 

widely used indices was correlated with CC in cotton (Xue and Su, 2017), yield (Hassan 

et al., 2019) and above ground biomass in wheat (Gamon et al., 1995). NDRE, which 

uses the reflectance obtained in the red edge region of the spectrum can be used in 

vegetation stress detection and crop canopy senescence (Potgieter et al., 2017).  

Determining the right time to obtain imagery data during the crop growing 

season is another challenge faced by the breeders to evaluate genotypes for biomass, 

LAI, and yield as flying UAS platforms several times during the growing season can be 

costly. While there are several studies on the use of UAS as a high-throughput 

phenotyping (HTP) tool in wheat breeding, very few of them are focused on developing 

UAS parameters-based yield prediction models to predict grain yield in wheat. In the 

recent years, machine learning (ML) methods have been developed and used in 

prediction modeling. Some of the common ML methods are random forest (RF), support 

vector machine (SVM), and neural network models, such as the artificial neural network 

(ANN), and deep neural network (DNN). ML techniques have several advantages over 

traditional linear regression to predict crop yield. The ML methods can handle huge data 

with the problems of complexity and non-linearity (Jiang et al., 2004).  
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Chlingaryan et al. (2018) reviewed ML research and development works and 

concluded that the advancement in remote sensing techniques coupled with ML 

techniques can provide better crop yield estimations. Khaki and Wang (2019) used DNN 

to predict grain yield in corn by using genotype, weather and soil information. They 

found a strong correlation between the predicted and actual corn yield and DNN 

outperformed Lasso, shallow neural networks (SNN), and regression tree. Kim et al. 

(2019) tested several ML methods with crop land information, vegetation indices 

derived from satellite images, meteorological and hydrological data and found that ANN 

and DNN can predict corn and soybean yield with high accuracy. ANN is one of the 

mostly used ML approaches in recent years to predict crop yield. ANN consists 

computational models and functions as an analogy with human neural system consisting 

of computational units called neurons (Zhelavskaya et al., 2017). In this model, a 

network structure that has at least one hidden layer and multiple neurons is created, and 

nonlinear response function is employed to reiterate many times to understand the 

complex relationships between input and output in training data. Jiang et al. (2004) used 

ANN for estimating wheat yield using back propagation algorithms based on satellite 

imagery data. They found that the performance of ANN was better than traditional linear 

regression methods. Use of ANN to predict yield is found in several crops such as wheat 

(Pantazi et al., 2016), maize (Zea mays L.) (Kaul, Hill and Walthall, 2005), soybean 

(Glycine max L.) (Kaul, Hill and Walthall, 2005), potato (Solanum tuberosum L.) 

(Gómez et al., 2019). Much of the work on using ANN to predict crop yield has been 

done by using either satellite imagery or weather and soil data. There are limited studies 
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that used season-long multi-temporal UAS data for developing ML models. In this 

study, the potential use of UAS equipped with RGB and multispectral sensor to predict 

grain yield was evaluated. This was tested by obtaining measurements on multiple traits 

including plant height, CC, and vegetation indices by flying UAS multiple times during 

the winter wheat growing season. These traits were used to study wheat growth and yield 

prediction. Thus, the objectives of this study were to i) obtain canopy features from UAS 

imagery and test the accuracy of the methods ii) assess the relationship between UAS 

parameters and grain yield in wheat iii) test ANN based-ML model for its potential to 

predict grain yield 

 

MATERIALS AND METHODS 

Study area 

A field experiment was conducted at the Texas A&M AgriLife Research 

Experiment Station at Bushland, Texas (35º11’N, 102º06’W, and elevation 1170 m) in 

2017-2018 winter wheat growing season. Sixty-two wheat cultivars and advanced lines 

were grown following a randomized complete block design with three replications under 

full irrigation. Plots were 3.4 m × 1.52 m in size consisting of seven rows with 0.18 m 

spacing. Seeds were sown on October 17, 2017. Agronomic practices such as nutrient 

management and weed management were carried out as per the requirement (Kimura et 

al., 2018). 
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UAS platforms and sensors 

UAS platforms and sensors used in this study are shown in Figure 18. To obtain 

multispectral images, a 4-band multispectral camera; SlantRange 3P (SlantRange, Inc., 

California, USA) was flown using DJI Matrice 100 quadcopter (SZ DJI Technology Co., 

Ltd, Shenzhen, China). SlantRange 3p is a multispectral sensor with 410-950 nm 

spectral range availability and have 1.2-megapixel resolution. It has a global shutter 

module which helps to capture data on G, R, red edge, and NIR wavebands. The center 

wavelengths of each bands are 550 nm, 650 nm, 720 nm, and 850 nm. Low accuracy 

Global Positioning System (GPS) was mounted on Matrice 100 and connected to the 

sensor to capture the geographic coordinates of the image. Another platform, DJI 

phantom 4 pro (SZ DJI Technology Co., Ltd, Shenzhen, China) was flown to collect 

high resolution RGB images. Phantom 4 pro is equipped with 20 megapixels one-inch 

CMOS (Complementary metal-oxide-semiconductor) RGB sensor. Both platforms have 

the advantage of flying at low altitude, which is helpful for obtaining high resolution 

orthomosaic images. UAS mission planning software: Pix4Dcapture (Pix4D S. A, 

Switzerland) and DroneDeploy (DroneDeploy, San Francisco, US), were used to plan 

UAS flights for phantom 4 pro and Matrice 100, respectively.  
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Figure 18. Unmanned Aerial System (UAS) platforms and sensors used in this study 
Matrice 100 was used to carry SlantRange 3p (multispectral sensor). 

UAS mission details and image acquisition timeline are summarized in Table 8. 

UAS data were collected right after planting to generate Digital Elevation Model (DEM) 

to determine the elevation of the field. Data were collected by Ms. Shannon Baker, 

Research Associate at Texas A&M AgriLife at Amarillo, Texas over winter wheat 

breeding nursery maintained by Dr. Jackie Rudd. 

Table 8. Unmanned Aerial System (UAS) flight details and data collection timeline 
Red, green, and blue band (RGB) images were collected using DJI phantom 4 pro, multispectral sensor 
was used to collect data on R, G, red edge, near infrared (NIR) band using Matrice 100 platform at several 
Days after Planting (DAP) over winter wheat breeding trial at Bushland, Texas. Raw images were 
processed to generate orthomosaic images with certain spatial resolution (ground resolution). 

  Multispectral sensor RGB sensor 

Date DAP 

Flight 
altitude 

(m) 

Ground 
resolution 
(cm/pixel) 

Flight 
altitude 

(m) 

Ground 
resolution 
(cm/pixel) 

03-Jan-18 78 - - 12.4 0.52 
16-Jan-18 91 36.7 1.44 - - 
23-Jan-18 98 33.0 1.31 9.7 0.482 
31-Jan-18 106 32.9 1.30 19.0 0.493 
07-Feb-18 113 32.2 1.28 17.6 0.463 
01-Mar-18 135 31.6 1.24 17.5 0.494 
06-Mar-18 140 33.3 1.32 19.3 0.474 
12-Mar-18 146 32.9 1.30 17.6 0.462 
20-Mar-18 154 38.6 1.52 18.3 0.487 
28-Mar-18 162 39.1 1.55 19.3 0.484 
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Table 8 continued 
 

  Multispectral sensor RGB sensor 

Date DAP 

Flight 
altitude 

(m) 

Ground 
resolution 
(cm/pixel) 

Flight 
altitude 

(m) 

Ground 
resolution 
(cm/pixel) 

05-Apr-18 170 38.7 1.53 19.7 0.503 
09-Apr-18 174 42.0 1.66 21.9 0.543 
15-Apr-18 180 34.1 1.35 19.9 0.489 
23-Apr-18 188 28.3 1.12 16.5 0.446 
04-May-18 199 29.2 1.13 50.8 0.510 
08-May-18 203 30.9 1.19 22.0 0.543 
14-May-18 209 30.3 1.18 30.7 0.528 
21-May-18 216 29.8 1.17 19.0 0.460 
30-May-18 225 30.9 1.19 21.3 0.536 
05-Jun-18 231 30.6 1.20 17.3 0.515 
12-Jun-18 238 30.3 1.20 15.2 0.375 

 

Geo-referencing and radiometric calibration 

It is important to overlay all the multi-temporal orthomosaics on a same 

geographic location of the plots so that same plot boundary shape file can be used to 

extract data from the orthomosaic to reduce error on the obtained data.  Semi-permanent 

ground control points (GCPs) were placed across the field after planting and precise 

coordinates of the GCPs were surveyed using Real-time kinematics (RTK) GPS. The 

GCPs were surveyed after every flight throughout the growing season. 

Vegetation indices are based on the reflectance measurements. The data collected 

by the UAS sensors was in the form of image digital numbers (DN). The DN values are 

affected by solar illumination patterns, angle of the sun, and cloud coverage when data 

was collected multiple times during the season. The conversion from DN into reflectance 

values, also known as radiometric calibration, should be done to calculate vegetation 



 

110 

 

indices. In this study, vegetation indices were developed using the reflectance obtained 

in the R, G, red edge, and NIR wavebands of the multispectral sensor. Thus, the 

radiometric calibration was performed on the data obtained using multispectral sensor. 

SlantRange 3p camera used in this study had an on-board Ambient Illumination Sensor 

(AIS) which is capable of correcting sunlight variations when flying. The AIS sensor 

measures incident light and adjusts the exposure time for each frame during data 

collection. Therefore, data captured throughout a single flight and from flight-to-

flight during the growing season was comparable and consistent with respect to 

changing weather conditions. In this study, SlantView software (SlantRange, Inc., 

California, USA) was used to perform radiometric calibration of multispectral raw 

dataset. 

Image processing and data extraction 

Raw images obtained from the RGB sensor were processed using Agisoft 

metashape software (Agisoft LLC, St. Petersburg, Russia, 191144) to generate 3D point 

cloud, DSM, and orthomosaic images (Chang et al., 2017; Du and Noguchi, 2017; Jung, 

2017; Ashapure, Jung, Yeom, et al., 2019). Several canopy features (CC, canopy height) 

and vegetation indices (Table 9) data were extracted from DSM and orthomosaic 

images. Canopy height was calculated by subtracting DEM obtained after planting from 

DSM generated after every flight during the crop growth. Figure 19 shows the procedure 

for developing Canopy Height Model (CHM). 
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Figure 19. Determination of Canopy Height Model (CHM) from Unmanned Aerial 
System (UAS) 
CHM was generated by subtracting Digital Elevation Model (DEM) from Digital Surface Model (DSM). 
DEM and DSM are surface models generated from UAS data using Agisoft Metashape software. 
 

Percentage of CC was calculated by two different approaches following Jung et 

al. (2018) and Ashapure et al. (2019). In the first approach, CC was obtained by applying 

a threshold value in the NDVI map to separate vegetation and non-vegetation pixels and 

generate a binary image. NDVI map was generated from the calibrated multispectral 

imagery. In this study, an NDVI value of 0.6 was used as a threshold for separating 

vegetation from the soil. In the second approach, Canopeo algorithm (Patrignani and 

Ochsner, 2015) was used to classify the image into canopy and non-canopy classes.  
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Figure 20. Image processing and data extraction workflow after developing orthomosaic 
from Unmanned Aerial System (UAS) raw imagery  
Vegetation index map is generated from spectral band combinations and is overlaid by plot boundary 
shape file to extract plot measurements. 
 

Plot boundary shape file with individual plots was created to extract the data 

from individual plots (Figure 20C). This shapefile was overlaid on the canopy feature 

and vegetation indices maps. Data were extracted using zonal statistics tool in QGIS 

software (www.qgis.org). After the images were classified, CC in each plot was 

calculated using the following equation.  

       𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

                                                                        

Where CC is Canopy Cover 

 

 

 

http://www.qgis.org/
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Spectral vegetation indices 

Reflectance measurements obtained in four different spectral bands can be used 

to calculate several vegetation indices. In this study, eight vegetation indices commonly 

used to assess vegetation biomass, disease and senescence were calculated (Table 9). 

Table 9. List of spectral vegetation indices used in this study 
Reflectance obtained in the red band is denoted by R, green band by G, red edge by RE, and near infrared 
by NIR. 

Vegetation indices Formula References 

Normalized Difference 

Vegetation Index (NDVI) 

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅

 Rouse et al., 1974 

Excess Green Index (ExG) 𝐸𝐸𝐸𝐸𝐸𝐸 = 2𝐺𝐺 − 𝑅𝑅 − 𝐵𝐵 Patrignani and Ochsner, 

2015 

Normalized Difference Red 

Edge Index (NDRE) 

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅

 Barnes et al., 2000 

Simplified Canopy Chlorophyll 

Content Index (SCCCI) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 Raper and Varco, 2015 

Green Normalized Difference 

Vegetation Index (GNDVI) 

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺

 Giletson et al., 2003 

Soil Adjusted Vegetation Index  

(SAVI) 

1.5(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅)
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅 + 0.5

 
Huete, 1988 

Modified Soil Adjusted 

Vegetation Index (MSAVI) 
2NIR + 1 −�(2𝑁𝑁𝑁𝑁𝑁𝑁 + 1)2 − 8(NIR − R)

2
 

Qi et al., 1994 

Modified Triangular Vegetation 

Index (MTVI2) 

1.5[1.2(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺) − 2.5(𝑅𝑅 − 𝐺𝐺)
√[(2𝑁𝑁𝑁𝑁𝑁𝑁 + 1)2 − �6𝑁𝑁𝑁𝑁𝑁𝑁 − 5√𝑅𝑅� − 0.5

 
Haboudane et al., 2004 

 

Ground measurements 

Each plot was harvested by plot combine (Classic Plus, Wintersteiger AG, 

Germany) to determine final grain yield. Manual plant height measurements were 
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collected before harvest. A single measurement was taken per plot from the soil to the 

top of the plant.   

Statistical analysis 

Plant height obtained from the imagery data was used to study wheat growth and 

development. However, CC and vegetation indices were used to indirectly estimate grain 

yield. Data from UAS imagery can provide measurements on several traits that can be 

used to evaluate genotypes for higher grain yields. Data were analyzed using SAS 

version 9.4 (Statistical Analysis System Institute, Cary, NC, USA) and R programming 

language (R Development Core Team, 2014). 

The relationship of wheat grain yield with multi-temporal CC and spectral 

vegetation indices measurements was assessed using coefficient of determination (R2) 

and a significance level of 0.05 was used throughout. Significant temporal 

autocorrelation and multi-collinearity among the variables were found. Thus, appropriate 

variables contributing to grain yield were selected based on the variation observed in the 

temporal measurements of UAS features and R2. After selecting appropriate variables, 

multi-temporal parameters were concatenated as a single feature vector to develop and 

train a neural network model. 
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RESULTS 

Canopy height 

Canopy height obtained from UAS imagery during the growing season is 

presented in Figure 21. As shown in this figure, plants started to gain height at 100 Days 

after Planting (DAP). Tillers were formed early in the growing season until late tillering 

(Feekes scale: 2 to 4; Large (1954)) which was followed by stem elongation and increase 

in height. This behavior was clearly demonstrated when plotting multi-temporal UAS 

data against DAP. A sigmoidal growth pattern was found in canopy height. A four-

parameter sigmoid function was fitted across the multi-temporal dataset and a highly 

accurate sigmoid fitting line with R2=0.98 and RMSE=0.03 m was found. Growth in 

canopy height accelerated after 150 DAP and reached a maximum at 220 DAP. At this 

point, canopy height ranged from 0.7 to 0.9 m. Plot variability was larger in canopy 

height once the growth accelerated and when the plants reached maximum height. UAS-

obtained canopy height was validated using the actual measurements obtained in the 

field (Figure 22). UAS-based canopy height measurements correlated well with the 

ground measurements. Since ground measurements were obtained before harvest when 

the crop was at final growth stage, canopy height obtained at 225 (Figure 22a), 231 

(Figure 22b), 238 DAP (Figure 22c) from UAS imagery were used to validate the 

accuracy with ground data. Canopy height obtained at 225 (R2=0.67) and 238 DAP 

(R2=0.61) had better accuracy with ground measurements. 
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Figure 21. Canopy height obtained over an entire winter wheat growing season from 
Unmanned Aerial System (UAS)-based Digital Surface Models (DSM) 
Vertical bars represent standard deviation. 

 
Figure 22. Relationship between field measured plant height and Unmanned Aerial 
System (UAS) obtained canopy height. 
Each data point represents a genotype which is the average of three replicates. 
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Vegetation indices 

Vegetation indices obtained from the multispectral sensor are shown in Figure 23 

and Figure 24. GNDV, Modified Soil Vegetation Index (MSAVI), NDVI, SCCI, and 

Soil Adjusted Vegetation Index (SAVI) had lower variation among eight indices derived 

from multispectral imagery. NDRE, and Modified Triangular Vegetation Index (MTVI2) 

had higher variability. These indices were compared to assess their once the ground is 

fully covered by canopy. Almost all these vegetation indices had higher variability early 

and at the end of the season. However, MTVI2 and NDRE showed higher variability 

among genotypes during later growth stages (10.1 to 11.1 in Feekes scale; Large 

(1954)). NDRE had highest variability among all other indices after heading. Genotypes 

usually start senescing after anthesis. When the NDRE values of highest and lowest 

yielding genotypes were compared across the growing season, differences in NDRE 

values were found after heading. This shows the importance of NDRE which might not 

get saturated once a plot is fully covered by the canopy. However, if we assess Excess 

Green Index (ExG) obtained using RGB sensor, a higher variability was observed among 

genotypes throughout the growing season (Figure 25). ExG values were low early and 

started to increase after 140 DAP and reached maximum at 174 DAP. ExG being highly 

sensitive to change in color of the canopy might have attributed this variation in ExG. 

Another interesting difference noted in this study was that ExG was never saturated. It 

reached the peak and again started to decrease rapidly. Two major dips were found at 

180 and 188 DAP which was not seen in any of the vegetation indices obtained from 

multispectral sensor. reached 0.35 at 199 DAP. Visual inspection of orthomosaic images 
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was done to find the reason behind this decrease in ExG values at those two specific 

days. The difference in the brightness of the sun can be seen in the pictures. ExG is 

highly sensitive to weather conditions as this index was not radiometrically calibrated. 

Heading date was noted at 199 to 230 DAP. Once plots reached heading, ExG values 

decreased and was minimum during the late grain filling stage. This shows its sensitivity 

to change in color of the canopy and growth stage. Compared to ExG, vegetation indices 

obtained from multispectral imagery showed higher stability across the season.  

 
Figure 23. Vegetation indices obtained over the winter wheat growing season from 
Unmanned Aerial System (UAS)-based multispectral imagery (Group A) 
GNDVI: Green Normalized Difference Vegetation Index, MSAVI: Modified Soil Adjusted Vegetation 
Index, MTVI2: Modified Triangular Vegetation Index. Vertical bars represent standard deviations. 
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Figure 24. Vegetation indices obtained over the winter wheat growing season from 
Unmanned Aerial System (UAS)-based multispectral indices (Group B) 
NDRE: Normalized Difference Red Edge Index, NDVI: Normalized Difference Vegetation Index, SAVI: 
Soil Adjusted Vegetation Index, SCCI: Simplified Canopy Chlorophyll Content Index. Vertical bars 
represent standard deviations. 
 
 

 

Figure 25. Excess Green Index (ExG) obtained over the winter wheat growing season 
from Unmanned Aerial System (UAS)-based digital imagery  
Vertical bars represent standard deviations. 
 

Canopy cover (CC) obtained from RGB and multispectral sensors 

CC obtained by processing RGB and multispectral images is presented in Figure 

26. Applying threshold in NDVI values is a common approach to obtain precise 
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vegetation estimates. Potgieter et al. (2017) applied 0.5 as a threshold in NDVI to 

capture reflectance from green leaves in sorghum. In this study, pixels with NDVI values 

greater than 0.6 were considered as green vegetation. For obtaining CC measurements 

from RGB orthomosaic, canopeo algorithm developed by Patrignani and Ochsner (2015) 

was used. CC was generated using the digital number values and threshold was used as 

follows to classify green vegetation with respect to background soil. 

𝑅𝑅
𝐺𝐺

< 0.95 ,
𝐵𝐵
𝐺𝐺

< 0.95 , 2𝐺𝐺 − 𝑅𝑅 − 𝐵𝐵 > 20 

where, R, G, and B are the digital numbers in RGB imagery. 

As shown in Figure 26, CC obtained from RGB imagery (CC_RGB) was 

significantly lower than CC obtained from NDVI map (CC_NDVI) until 170 DAP. At 

170 DAP, CC reached maximum and plots were fully covered by green foliage. Lower 

CC_RGB values were caused by burned foliage tips due to low temperature. Minimum 

temperature reached below freezing during this time (Figure 27). On an average, 

CC_RGB values decreased from 40 % to 20 % from 106 DAP to 135 DAP. However, on 

those same dates, CC_NDVI remained constant. It was not affected by the change in 

vegetation color caused by lower temperature during those measurement dates. CC 

obtained from both methods increased as the temperature increased. CC_RGB was not 

significantly different than CC_NDVI from 170 DAP to 203 DAP. Wheat plots headed 

at 199 to 203 DAP, and as shown in Figure 26, CC_RGB started decreasing and it was 

significantly lower than CC_NDVI until 231 DAP. Abrupt decrease in CC_NDVI 
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occurred at 231 DAP.  

 

Figure 26. Comparison of Canopy cover obtained by using different Unmanned Aerial 
System (UAS) sensors over the entire season 
CC_RGB: Canopy Cover obtained from red, green, and blue band (RGB) orthomosaics, CC_NDVI: 
Canopy Cover obtained from Normalized Difference Vegetation Index (NDVI) map. Vertical bars 
represent standard deviations. 
 

 

Figure 27. Maximum and minimum temperature during winter wheat growing season at 
Bushland, TX during 2017-2018 growing season 
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Relationship between UAS features and grain yield 

Linear regression was performed between vegetation indices, canopy features 

and grain yield of wheat. All variables had positive relationship with grain yield. Most of 

the variables indicate leaf chlorophyll content which might be one of the reasons for 

positive relationship with grain yield. Relationship was strong at later growth stages 

specifically after flowering (10.51 to 11.1 in Feekes scale; Large (1954)). Table 10 

shows the R2 values obtained during the growing season. Among 11 different UAS 

features obtained in this study, NDRE, NDVI, SAVI, MSAVI, and CC_RGB were top 

five variables explaining maximum variation in grain yield (R2~0.3-0.35, p<0.05). NDVI 

and MSAVI had similar R2 values throughout the growing season. Highly significant 

multi-collinearity and autocorrelation was found between the UAS features. Features 

obtained from multispectral sensors were highly correlated with one another. Canopy 

features measured early in the growing season (during early vegetative stage) did not 

explain variability in yield. However, CC_RGB measured after 146 DAP started to show 

some impact on yield variation (R2 > 0.15).  
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Variables were selected based on the physiological property of UAS features, 

variability, available literature and hit-trial method to develop a prediction model. 

NDRE, ExG, CC_RGB, CH, and NDVI were selected to develop machine learning 

model based on neural network architecture. Features that were able to measure the rate 

of senescence were highly associated with grain yield. NDRE can measure the rate of 

senescence (Potgieter et al., 2017). CC_RGB had strong association with grain yield 

compared to CC_NDVI. Another aspect of using this approach is to find the 

determinants of photosynthetic efficiency and assimilatory area of a plant. For example, 

CC determines the size of photosynthetic area and the ExG which measures the intensity 

of greenness in a canopy and determines assimilation efficiency.  
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Table 10. Coefficient of determination (R2) values obtained between the linear relationships of Unmanned Aerial System 
(UAS)-based vegetation indices and canopy features with wheat grain yield 
DAP: Days after planting, GNDVI: Green Normalized Difference Vegetation Index, MSAVI: Modified Soil Adjusted Vegetation Index, MTVI2: 
Modified Triangular Vegetation Index, NDRE: Normalized Difference Red Edge Index, NDVI: Normalized Difference Vegetation Index, SAVI: Soil 
Adjusted Vegetation Index, SCCI: Simplified Canopy Chlorophyll Content Index, ExG: Excess Green Index, CH: Canopy height, CC_RGB: Canopy 
Cover obtained from RGB orthomosaic, CC NDVI: Canopy Cover obtained from NDVI. 
 
 
 

 

 

 

 

 

 

 

 

 

 

Values in bold letters are statistically significant at p<0.05.

 Vegetation indices Canopy features 
DAP GNDVI MSAVI MTVI2 NDRE NDVI SAVI SCCI ExG CH CC_RGB CC_NDVI 

78        0.01 0.03 0.00  
91 0.00 0.00 0.00 0.00 0.00 0.00 0.01    0.00 
98 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 

106 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.02 0.00 0.01 
113 0.00 0.01 0.00 0.02 0.01 0.00 0.01 0.01 0.02 0.04 0.01 
135 0.00 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.00 0.06 0.02 
140 0.01 0.05 0.06 0.03 0.05 0.04 0.00 0.02 0.00 0.09 0.06 
146 0.05 0.11 0.10 0.10 0.11 0.09 0.05 0.03 0.01 0.10 0.12 
154 0.06 0.10 0.10 0.12 0.10 0.09 0.05 0.04 0.02 0.13 0.08 
162 0.12 0.19 0.14 0.16 0.19 0.18 0.04 0.04 0.03 0.14 0.01 
170 0.12 0.14 0.08 0.09 0.14 0.14 0.01 0.06 0.03 0.14 0.00 
174 0.03 0.15 0.10 0.12 0.14 0.14 0.02 0.01 0.02 0.10 0.01 
180 0.13 0.24 0.17 0.18 0.24 0.23 0.04 0.11 0.02 0.24 0.02 
188 0.13 0.20 0.10 0.18 0.20 0.19 0.06 0.11 0.02 0.31 0.05 
199 0.19 0.30 0.23 0.22 0.29 0.28 0.06 0.14 0.02 0.23 0.00 
203 0.25 0.27 0.14 0.28 0.26 0.25 0.11 0.16 0.07 0.22 0.00 
209 0.28 0.32 0.19 0.32 0.32 0.31 0.17 0.18 0.14 0.23 0.00 
216 0.27 0.33 0.27 0.35 0.33 0.31 0.26 0.22 0.07 0.33 0.02 
225 0.21 0.33 0.32 0.33 0.33 0.32 0.25 0.28 0.15 0.20 0.30 
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Prediction model 

A three layered Artificial Neural Network (ANN), which consists of one input 

layer, one hidden layer, and one output layer was designed for predictive analysis 

(Mishra and Datta-Gupta, 2017). There were only 210 plots in the UVT and TXE trial. 

This data set was not enough to train the model. Therefore, data collected from other 

varietal trials was included in this study to train and test the neural network model. The 

data set comprised of 731 total samples, out of which 70% was divided into training set 

and 30% was used as a testing set resulting into 511 samples for training and 220 for 

testing following the stratified sampling procedure. An input feature vector was formed 

by concatenating UAS obtained temporal parameters. NDRE, ExG, CC_RGB, canopy 

height, NDVI, standard deviation of NDRE and ExG were selected as best performers of 

the model. In the process of developing predictive model, temporal parameters 

(independent variables) were scaled and divided into training and testing sets. The 

training vector with independent variables comprised the input layer and related to a 

hidden layer and yield was output layer of the network. Figure 28 shows the overall 

design of the network. A three-layered sequential model was created in Keras Python 

library. A sigmoid function was used as an activation function in the hidden layer, and 

the performance of the model was evaluated using mean absolute error. When a 

minimum error was achieved, the training of the model was stopped, and current 

parameter weights were used to predict the yield over the test samples. Model was 

trained using all UAS parameters measured across the season and using only the data 

collected after heading.  
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Figure 28. Artificial Neural Network (ANN) architecture based on Unmanned Aerial 
System (UAS) parameters 
CC_RGB: Canopy Cover obtained from RGB orthomosaic, ExG: Excess Green Index, NDVI: Normalized 
Difference Vegetation Index, NDRE: Normalized Difference Red Edge Index, STD: Standard deviation of 
a plot. Adapted from Mishra and Gupta (2018). 
 

Figure 29 shows the results of the model trained using data collected over entire 

season. R2 values between the predicted and observed yield were 0.78 and 0.56 (p<0.05) 

for training and testing sets respectively. Figure 30 shows the results of the model 

trained using only the data collected after heading. R2 values between the predicted yield 

and observed yield were 0.78 and 0.60 (p<0.05) for training and testing sets respectively.  
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Figure 29. Artificial Neural Network (ANN) performance results for training and testing 
data from all measurement dates 
 

 

Figure 30. Artificial Neural Network (ANN) performance results for training and testing 
data from measurements taken after heading 
 

DISCUSSION 

UAS equipped with multispectral and RGB sensors were used to collect data 

efficiently over an entire growing season. Huge data set was collected over the entire 

season resulting in high spatial and temporal resolution data. It is important to 

understand the information provided by the UAS data. Analyzing UAS data from 

multiple dimensions is important to make their meaningful interpretation and use in 
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wheat breeding. Acquisition of several canopy features has enabled an approach to look 

at a canopy from different perspectives. Several vegetation indices were extracted from 

multispectral sensor and compared with RGB sensor. Although, spectral indices provide 

indirect estimates of several canopy features, they are subjected to errors caused by the 

soil, non-photosynthetic surfaces, canopy saturation, and angle of sun, etc. For example, 

NDVI is saturated when the vegetation is dense, and the canopy is fully closed. NDRE is 

less prone to saturation (Delegido et al., 2013). The Soil Adjusted Vegetation Index 

(SAVI) minimizes the influence of background soil (Huete, 1988). Therefore, it is 

necessary to test the utility of UAS parameters specific to crops and their growing 

conditions. CC obtained from multispectral and RGB sensors was compared to test the 

stability and sensitivity of sensors. In terms of determining the canopy area coverage, 

multispectral sensor-based CC estimates were more stable compared to RGB-based CC 

estimates. RGB was more responsive to changes in canopy color, while multispectral 

measurements, which include reflectance in the NIR region, were more sensitive to 

change in canopy water content. This might be one of the reasons that CC obtained from 

multispectral sensor dropped during the end of the growing season whereas RGB-based 

CC was changing with the change in color of the canopy during freeze and senescence. 

(Ashapure et al., 2019) found similar pattern in cotton. In addition to CC, vegetation 

indices based on NIR reflectance were highly stable but at the same time saturated. They 

were not responsive to change in growth stage of wheat. However, RGB-based indices 

were highly sensitive and resulted in larger variability among plots. Radiometric 

calibration of multispectral sensor and lower spatial resolution of orthomosaic images 
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obtained from this sensor can attributed to its stable measurements. Although, 

multispectral sensor provides a better stability of multi-temporal UAS measurements, 

they are expensive, and image processing procedure is comparatively more tedious than 

RGB sensors. It also limits the variability among plots. In case of canopy height, ground 

measurements were taken from single plant per plot during maturity which is associated 

to lower R2 values between the UAS measured and actual plant height. In an experiment 

conducted by Anderson et al. (2019), canopy height measurements were reduced once 

the canopy started to dry. However, severe drop in canopy height was not observed in 

this study. A slight decrease in canopy height was observed once canopy reached 

maximum height. After that a reduction in 5-7 cm was found. 

All the vegetation indices and canopy features were highly correlated with grain 

yield. Some indices had better correlation. One of the interesting findings in this study 

was the amount of variability explained by UAS features measured after heading on 

grain yield. The finding of chapter III is supported by the results obtained in this chapter. 

Genotypes senesced too rapidly during grain filling stage were prone to low yielding 

potential. Genotypes which senesce slowly can maintain biomass conversion efficiency 

and produce higher yield. This information can be helpful to design canopy properties of 

a genotype in a breeding program. Therefore, continuous monitoring of canopy features 

such as plant height, CC, and vegetation indices can provide crucial information about 

biomass, crop growth and yield. Use of UAS can make it possible to obtain information 

about all these features that may be used to determine plant health, canopy architecture, 

nature of growth, and grain yield in wheat.  
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In this study, ANN-based model to predict wheat grain yield was developed 

using multi-temporal UAS parameters. Encouraging results were obtained and a 

potential of using machine learning models to predict grain yield was explored. Results 

obtained from the developed model demonstrated the potential of predicting grain yield 

using data acquired after heading. Data obtained before heading were used to develop 

models to predict grain yield, but accurate results were not obtained. Training data was 

over-fitted and did not predict yield with low mean square errors. Machine learning tool 

to predict yield before heading would be an important asset to plant breeders to analyze 

the performance of a genotype and make early decisions. If highly accurate, it will 

reduce the amount of time and labor required to harvest genotypes. UAS measurements 

collected from multiple environments and multiple year if combined with weather 

information can result in a better prediction of grain yield. A lower testing accuracy 

indicates the need for additional tuning of the model. This can be achieved by training 

the model with large datasets collected from multiple environments. Larger sample size 

can have better generalization capability of the model and can improve predictability. 

Acquiring enough variation in the training data is important to improve model accuracy. 

Once the desired accuracy of the model is acquired, it is important to design a model that 

can be replicated across environments and years. The input parameters for the models 

are the multi-temporal data obtained from UAS imagery. It is challenging to maintain 

similar data collection schedule across environment because of the weather conditions 

and the availability of resources. Therefore, UAS measurements obtained across the 

growing season can be interpolated to create a data framework. Ashapure et al. (2019) 
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used radial basis function neural network (RBFNN)-based regression model to 

interpolate UAS measurement to predict tomato yield. Daily UAS measurements 

obtained from the first day after transplanting to final harvest accounts for all the 

physiological changes of canopy growth and fosters the application of the model in 

multiple years and multiple environments. There are other several other methods such as 

spline interpolation, cubic interpolation, or linear interpolation to determine time-series 

measurements (Lepot et al., 2017). These approaches can be considered in future 

studies. 
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CHAPTER V  

CONCLUSIONS 

This study demonstrates the potential use of Unmanned Aerial System (UAS) in 

high-throughput phenotyping (HTP). UAS comes with efficient data collection 

advantages which has opened several avenues to study agronomic and physiological 

properties of crops. Major focus was placed on UAS collection, processing, and 

utilization of collected data to assess foliage disease severity, growth, and yield of winter 

wheat genotypes.  

Identification of sensors, data collection and processing procedure applicable to 

wheat breeding trials are outlined in each research chapter. Multiple UAS platforms 

equipped with Red Greed, and Blue (RGB) and multispectral sensors were flown over 

wheat breeding nurseries at Castroville, College Station, and Bushland, Texas. Image 

processing was mainly conducted using Agisoft Metashape, QGIS, and Python. 

As shown in Chapter II, a low cost, consumer grade UAS equipped with a high-

resolution RGB camera was used to capture imagery data of winter wheat breeding trials 

in 2017 and 2018. Raw images were processed to obtain orthomosaics which were 

radiometrically calibrated to generate vegetation index maps. Three different vegetation 

indices were developed and data from individual plots was extracted from the 

orthomosaics. All the image-based vegetation indices were highly associated with 

Coefficient of Infection (CI) that measured the leaf rust severity in both years. In 

addition, ground measured Normalized Difference Vegetation Index (NDVI) had a 

significant negative association with CI. These measurements can help to evaluate 
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genotypes for disease resistance on a large scale. Prediction models were developed, and 

their ability was tested to estimate disease severity based on vegetation index values. A 

very high association between the predicted and observed CI shows the ability of 

remotely measured data to estimate CI. Ability to significantly discriminate genotypes 

for disease severity, high repeatability, strong relationship between CI and vegetation 

indices, consistent results in both years, and reduced time to collect and process data 

show the significance of this approach as a HTP tool for foliage disease severity in 

wheat. 

Chapter III demonstrated the potential of utilizing UAS obtained temporal data to 

understand plant growth. A phenotyping tool for growth analysis can be developed based 

on high-throughput data collection combined with the simple approach of fitting non-

linear growth functions to derive multiple growth parameters. The rate of maximum 

canopy growth obtained using a logistic function can be useful to understand and predict 

plant biomass growth. In addition, it has the potential of serving as an additional trait to 

assess genotypes for early vigor and as a selection tool in forage breeding. A significant 

relationship between Canopy Cover (CC) during the reproductive phase shows the 

importance of slow canopy decay either due to disease infection or physiological 

changes (senescence). Genotypes capable of producing larger canopy and maintaining 

green canopy relatively longer can produce higher yield under biotic and abiotic stress 

conditions.  

In Chapter IV, several spectral vegetation indices and canopy features obtained 

from multispectral and RGB sensors were evaluated for their relationship with grain 
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yield. In addition, the behavior of these UAS parameters was analyzed to diagnose the 

sensitivity, stability, and saturation of vegetation indices across growing season. Results 

indicated that vegetation indices obtained using near infrared reflectance measurements 

are comparatively stable compared to RGB-based features in response to canopy color, 

growth stage and atmospheric conditions. Measurements taken after heading were highly 

correlated to grain yield. However, reflectance from wheat head may be different than 

that of canopy which needs further investigation. Additionally, difference in canopy 

color among genotypes needs to be addressed. This study also reveals that UAS 

measurements should be taken frequently early in the season until plots are fully covered 

by the canopy. If disease is not present, then longer intervals can reduce the cost of data 

collection and processing. After heading and during late grain filling period more 

frequent UAS measurements are recommended to isolate the rate of maturity. This study 

further reveals that use of machine learning models can be helpful to predict yield early 

in the season, but the models should be trained with large dataset obtained from multiple 

environments and multiple years. These models can be combined with weather data and 

initial soil parameter dataset to predict genotype performance early in the season which 

can save the cost of harvesting. Assessing spatial variability based on soil water content 

and nutrient content across the field can provide additional accuracy. Additionally, 

highly trained models can act as a tool to assess genotypes by growing them in small 

plots which can reduce space and increase the throughput of evaluating more genotypes. 

Predicting yield early in the season can help farmers to make informed decisions about 

crop management and marketing. 
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Development of autonomous and semi-autonomous UAS system that can 

automate data acquisition, processing and analysis can play a vital role in phenotyping 

multiple traits in wheat breeding. These measurements will help to select parents and 

evaluate progenies on a large scale. Additionally, this tool can complement traditional 

methods of disease phenotyping and improve the precision of collected data and produce 

reliable disease estimates. Ultimately, HTP technologies combined with machine-

learning algorithms can improve genetic gain by increasing the size and efficiency of 

breeding programs. 
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